WorldWideScience

Sample records for brillouin effect

  1. Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

    Science.gov (United States)

    Humphrey, K. A.; Trines, R. M. G. M.; Fiuza, F.; Speirs, D. C.; Norreys, P.; Cairns, R. A.; Silva, L. O.; Bingham, R.

    2013-10-01

    We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount of seed pre-pulse produced.

  2. Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

    International Nuclear Information System (INIS)

    We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount of seed pre-pulse produced

  3. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  4. Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber

    International Nuclear Information System (INIS)

    A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique

  5. Theoretical demonstration of Brillouin lasing effect in racetrack resonators based on germanium waveguides in the mid-infrared.

    Science.gov (United States)

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A; Passaro, Vittorio M N

    2016-01-15

    In this Letter, we present a theoretical investigation of integrated racetrack Brillouin lasers based on germanium waveguides that are buried in silicon nitride and operate at a wavelength of 4 μm. General design equations in a steady-state regime have been carried out to determine the threshold power and the emitted Stokes power as a function of the resonance mismatch and coupling factor. The pulling effect as induced by the Brillouin gain dispersion and the pushing effects originated by SPM and XPM effects have been accurately investigated to predict the lasing frequency. PMID:26766728

  6. Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

    OpenAIRE

    Humphrey, K. A.; Trines, R. M. G. M.; Fiuza, F.; Speirs, D. C.; Norreys, P.; Cairns, R. A.; Silva, L. O.; R. Bingham

    2013-01-01

    We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that col...

  7. Trehalose Bioprotective Effects in Lysozyme Aqueous Solution Studied by Brillouin Scattering and Calorimetric Measurements

    Science.gov (United States)

    Sasanuma, Keita; Seshimo, Yuichi; Hashimoto, Eiji; Ike, Yuji; Kojima, Seiji

    2008-05-01

    The bioprotective effect of trehalose in lysozyme aqueous solutions has been investigated by Brillouin scattering and modulated-temperature differential scanning calorimetry (MDSC). MDSC experiments show that the isothermal kinetics of thermally irreversible denaturation can be described by the Arrhenius equation. By the addition of trehalose, the irreversible denaturation of lysozyme is suppressed, and its activation energy is half that of the denaturation without trehalose. The sound velocity of lysozyme-trehalose-water ternary solutions obviously depends on the trehalose concentration. With increasing trehalose concentration, the sound velocity becomes higher because the hydration of trehalose reduces the hydrogen bonds between water molecules. Moreover, hydration around lysozyme molecules increases the sound velocity further. Trehalose molecules tend to aggregate with lysozyme molecules at high trehalose concentrations. The bioprotective effect of trehalose probably originates from the mechanical suppression of conformational fluctuations of lysozyme molecules.

  8. Effects of output coupler reflectivity on the performance of a linear cavity Brillouin/erbium fiber laser

    Indian Academy of Sciences (India)

    X S Cheng; S W Harun; H Ahmad

    2007-03-01

    The effect of output coupler reflectivity (or output coupling ratio) on the performance of a linear cavity Brillouin/erbium fiber laser (BEFL) is demonstrated. The operating wavelength, output laser power and number of channels vary with changes in the coupling ratio in the linear cavity system. The optimum BEFL operation is obtained with an output coupling of 40%, i.e., 60% of the laser power is allowed to oscillate in the cavity. A stable laser comb consisting of up to 40 channels with line spacings of approximately 0.09 nm are obtained at the Brillouin pump and 980 nm pump with powers of 2.5 mW and 100 mW, respectively. The linear cavity BEFL has the potential to be used in inexpensive wavelength division multiplexing system.

  9. Effect of large effective area fiber length on the performance of forward-backward scattering combination multiwavelength Brillouin-Raman fiber laser

    International Nuclear Information System (INIS)

    In this paper we experimentally demonstrate the effect of large effective area fiber length on the performance of a multiwavelength Brillouin–Raman fiber laser in which the forward and backward generated Stokes lines due to Brillouin scattering are combined together through a 3 dB coupler. Thus, the demonstrated laser is dubbed a forward–backward scattering combination multiwavelength Brillouin–Raman fiber laser (FBSC-MBRFL). This laser system utilizes a large effective area fiber and a dispersion compensating fiber that act as Brillouin and Raman gain media, respectively. It is demonstrated that by employing forward pumping schemes, the demonstrated laser system is capable of generating a good flat amplitude Brillouin Stokes line with an average optical to noise ratio of 17 dB along the spectral spans. However, the backward pumping scheme is able to produced high bandwidth spans. At the optimal large effective area fiber length of 50 km, a Raman pump power of 1100 mW at Brillouin pump wavelengths of 1550 mm and 1560 nm is identified to produce the maximum bandwidth with values of approximately 28.45 nm and 24.08 nm, respectively. (paper)

  10. Modeling the effects of laser-beam smoothing on filamentation and stimulated Brillouin backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R.L.; Kaiser, T.B.; Lasinski, B.F. [and others

    1996-06-01

    Using the three-dimensional code (F3D), the authors compute the filamentation and backscattering of laser light. The results show that filamentation can be controlled and stimulated Brillouin backscattering (SBBS) can be reduced by using random phase plates (RPP) and small f-numbers or smoothing by spectral dispersion (SSD) with large bandwidth. An interesting result is that, for uniform plasmas, the SBBS amplification takes place over several laser axial coherence lengths (coherence length = speckle length).

  11. Investigation on the effect of beam divergence angle upon output waveform based on stimulated Brillouin scattering optical limiting

    Institute of Scientific and Technical Information of China (English)

    Hasi Wu-Li-Ji; Lu Huan-Huan; Gong Sheng; Fu Mei-Ling; Lin Zhi-Wei; Lin Dian-Yang; He Wei-Ming

    2009-01-01

    This paper investigates the effect of beam divergence angle on output waveform based on stimulated Brillouin scattering optical limiting. Output waveforms in the case of different pump divergence angles are numerically simulated,and validated in a Nd:YAG seed-injected laser system. The results indicate that a small pump divergence angle can lead to good interaction between pump and Stokes, and a platform can be easily realized in the transmitted waveform.In contrast, a peak followed by the platform appears when the divergence angle becomes large.

  12. Effects of Ion-Ion Collisions and Inhomogeneity in Two-Dimensional Kinetic Ion Simulations of Stimulated Brillouin Backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B I; Divol, L; Langdon, A B; Williams, E A

    2005-10-17

    Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B. Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle ions and Boltzmann fluid electrons) have been used to investigate the saturation of stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion collisions and inhomogeneity. Ion-ion collisions tend to increase ion-wave dissipation, which decreases the gain exponent for stimulated Brillouin backscattering; and the peak Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the simulations. Two types of Langevin-operator, ion-ion collision models were implemented in the simulations. In both models used the collisions are functions of the local ion temperature and density, but the collisions have no velocity dependence in the first model. In the second model, the collisions are also functions of the energy of the ion that is being scattered so as to represent a Fokker-Planck collision operator. Collisions decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the acoustic wave. Nevertheless, ion trapping leading to a hot ion tail and two-dimensional physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation mechanisms for SBBS in a high-gain limit over a range of ion collisionality. SBS backscatter in the presence of a spatially nonuniform plasma flow is also investigated. Simulations show that depending on the sign of the spatial gradient of the flow relative to the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance (auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with theoretical arguments.

  13. Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas

    International Nuclear Information System (INIS)

    The reflectivity levels of stimulated Brillouin scattering (SBS) in recent large scale length laser plasma experiments is much lower than expected for conditions where the convective gain exponent is expected to be large. Long wavelength velocity fluctuations caused during the plasma formation process, or by parametric instabilities themselves, have been proposed as a mechanism to detune SBS in these experiments and reduce its gain. Evidence of large velocity fluctuation levels is found in the time-resolved SBS spectra from these experiments, and correlates with observed changes in the reflectivity of both SBS and stimulated Raman scattering (SRS). The authors present evidence of fluctuations which increase as the plasma density systematically increases, and discuss their effect on the growth of parametric instabilities

  14. Brillouin scattering self-cancellation

    Science.gov (United States)

    Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.

    2016-06-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.

  15. Brillouin Scattering Self-Cancellation

    CERN Document Server

    Florez, Omar; Espinel, Yovanny A V; Cordeiro, Cristiano M B; Alegre, Thiago P Mayer; Wiederhecker, Gustavo S; Dainese, Paulo

    2016-01-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancin...

  16. Noise and dynamics in forward Brillouin interactions

    CERN Document Server

    Kharel, Prashanta; Renninger, William; Rakich, Peter

    2015-01-01

    In this paper, we explore the spatio-temporal dynamics of spontaneous and stimulated forward Brillouin scattering. This general treatment incorporates the optomechanical coupling produced by boundary-induced radiation pressures (boundary motion) and material-induced electrostrictive forces (photo-elastic effects), permitting straightforward application to a range of emerging micro- and nano-scale optomechanical systems. Through a self-consistent fully coupled nonlinear treatment, developed within a general Hamiltonian framework, we establish the connection between the power spectral density of spontaneously scattered light in forward Brillouin interactions and the nonlinear coupling strength. We show that, in sharp contrast to backward Brillouin scattering, noise-initiated stimulated forward Brillouin scattering is forbidden in the majority of experimental systems. In fact, the single-pass gain, which characterizes the threshold for energy transfer in back-scattering processes, is negative for a large class o...

  17. Noise and dynamics in forward Brillouin interactions

    Science.gov (United States)

    Kharel, P.; Behunin, R. O.; Renninger, W. H.; Rakich, P. T.

    2016-06-01

    In this paper, we explore the spatiotemporal dynamics of spontaneous and stimulated forward Brillouin scattering. This general treatment incorporates the optomechanical coupling produced by boundary-induced radiation pressures (boundary motion) and material-induced electrostrictive forces (photoelastic effects), permitting straightforward application to a range of emerging micro- and nanoscale optomechanical systems. Through a self-consistent fully coupled nonlinear treatment, developed within a general Hamiltonian framework, we establish the connection between the power spectral density of spontaneously scattered light in forward Brillouin interactions and the nonlinear coupling strength. We show that, in sharp contrast to backward Brillouin scattering, noise-initiated stimulated forward Brillouin scattering is forbidden in the majority of experimental systems. In fact, the single-pass gain, which characterizes the threshold for energy transfer in back-scattering processes, is negative for a large class of forward Brillouin devices. Beyond this frequent experimental case, we explore mechanisms for dispersive symmetry breaking that lead to amplification and dynamics reminiscent of backward Brillouin scattering.

  18. Effects of Fe-deficiency on magnetic properties and Brillouin function characteristics for NiCuZn ferrites

    International Nuclear Information System (INIS)

    The polycrystalline Ni0.56Cu0.10Zn0.34Fe2−xO4−3/2x (x=0.00~0.14) ferrites have been prepared by conventional oxide ceramics process. The effects of Fe-deficiency content on magnetic properties and Brillouin function characteristics for NiCuZn ferrites have been investigated in details. With the increase of Fe-deficiency content, the opposite variation trend are observed for the saturation magntic induction Bs and the coercivity Hc. More importantly, based on the Néel molecular field theory, for the spinel ferrites which do not only contain Fe3+ but also some other multiple magnetic ions (Ni2+ and Cu2+), the molecular field coefficients ωaa, ωbb and ωab=ωba are calculated by non-linear fitting method, and the Curie temperature Tc formula has been modified. With the increase of Fe-deficiency content, the values of ωaa and ωbb increase gradually, however, the value of ωab=ωba has a contrary trend which results in the decrease of the Curie temperature. In addition, the fitting Curie temperatures values are coincided well with the Curie temperatures calculated by the modified formula. - Highlights: • Néel molecular field theory model of multi-magnetic ions (Fe3+, Ni2+, Cu2+) is completed and the correlation formula of Curie temperature has been derived. • The calculating for the molecular field coefficients has been completed from absolute zero degree to Curie temperature. • The corresponding values and variation trend of molecular field coefficients have been completely investigated

  19. Coherent forward stimulated Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray

    OpenAIRE

    Grech, M.; Riazuelo, G.; Pesme, D.; S. Weber; Tikhonchuk, V. T.

    2008-01-01

    A statistical model for forward stimulated Brillouin scattering (FSBS) is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. A threshold for the average power in a speckle is found, well below the self-focusing one, above which the laser beam spatial incoherence can not prevent the coherent growth of FSBS. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit f...

  20. Unifying Brillouin scattering and cavity optomechanics

    Science.gov (United States)

    Van Laer, Raphaël; Baets, Roel; Van Thourhout, Dries

    2016-05-01

    So far, Brillouin scattering and cavity optomechanics have been mostly disconnected branches of research, although both deal with photon-phonon coupling. This begs for the development of a broader theory that contains both fields. Here, we derive the dynamics of optomechanical cavities from that of Brillouin-active waveguides. This explicit transition elucidates the link between phenomena such as Brillouin amplification and electromagnetically induced transparency. It proves that effects familiar from cavity optomechanics all have traveling-wave partners, but not vice versa. We reveal a close connection between two parameters of central importance in these fields: the Brillouin gain coefficient and the zero-point optomechanical coupling rate. This enables comparisons between systems as diverse as ultracold atom clouds, plasmonic Raman cavities, and nanoscale silicon waveguides. In addition, back-of-the-envelope calculations show that unobserved effects, such as photon-assisted amplification of traveling phonons, are now accessible in existing systems. Finally, we formulate both circuit- and cavity-oriented optomechanics in terms of vacuum coupling rates, cooperativities, and gain coefficients, thus reflecting the similarities in the underlying physics.

  1. Effects of material parameter on interaction length to occur optical phase conjugation via stimulated Brillouin scattering in semiconductors

    International Nuclear Information System (INIS)

    In the present formulation using hydrodynamic model and coupled mode scheme of plasmas the interaction length necessary to achieve optical phase conjugation is obtained from steady-state Brillouin gain coefficient for a semiconductor crystal. The analytical investigation of steady-state gain of stimulated Brillouin scattering (SBS) is made by assuming that the SBS is resulted from the nonlinear interaction of an intense electromagnetic wave with acoustic perturbation internally generated due to acousto-optic property of the semiconductor crystal. Numerical estimates confirm that when cyclotron frequency is tuned with pump frequency, interaction length is found to be nearly 104 m smaller than that obtained in absence of magnetic filed. Pump intensity and free carrier concentration both helpful in reducing the required interaction length. -- Highlights: ► OPC via SBS is obtained in doped semiconductors. ► Favourable interaction length to occur OPC is obtained. ► Magnetic field reduces interaction length. ► Minimum interaction length is obtained in dispersionless acoustic regime.

  2. The pinning effect in a polar semiconductor quantum dot with Gaussian confinement: A study using the improved Wigner–Brillouin perturbation theory

    International Nuclear Information System (INIS)

    The effect of electron–phonon interaction on a few low-lying energy levels in a polar semiconductor quantum dot with Gaussian confinement is studied by using an improved Wigner–Brillouin perturbation theory (IWBPT). In the absence of the electron–phonon interaction, the electronic ground state plus one phonon state is degenerate with the first excited electronic state plus the zero-phonon state at some value of the confinement length. Similarly, the electronic ground state plus one phonon state is also degenerate with the second excited electronic state plus the zero-phonon state at a larger value of the confinement length. It is shown that the electron–phonon interaction lifts these degeneracies and as a result, the excited state energy levels bend downward and get pinned to the ground state plus one phonon state as the confinement frequency is increased. Our calculations are finally applied to GaAs and InSb quantum dots

  3. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

    Science.gov (United States)

    Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. PMID:23739586

  4. SELECTION OF BRILLOUIN SHIFT DISCRIMINATOR FOR BRILLOUIN LIDAR

    Institute of Scientific and Technical Information of China (English)

    吴东; 刘智深

    2002-01-01

    For the measurement of vertical profiles of sound speed in the sea using laser excited Brillouin scattering, a high-resolution measurement of Brillouin frequency shift is required. In this work, a molecular absorption cell was selec ted as the frequency shift discriminator and several kinds of absorption gases were tri ed. It was found that the strong line (#1095) of 127I2 at 18783.3297 cm-1 and two absorption lines of 129I2 located at the two sides of the #1095 line of 127 I2 could be used as frequency shift discriminator to detect the changes of the Brillouin frequency s hift. This selection is the best one within the range from 532.0131 nm to 532.5154 nm. But it is not perfect and there is a lot of work to do before its practical application.

  5. SELECTION OF BRILLOUIN SHIFT DISCRIMINATOR FOR BRILLOUIN LIDAR

    Institute of Scientific and Technical Information of China (English)

    吴东; 刘智深

    2002-01-01

    For the measurement of vertical profiles of sound speed in the sea using laser excited Brillouin scattering, a high-resolution measurement of Brillouin frequency shift is required. In this work, a molecular absorption cell was selected as the frequency shift discriminator and several kinds of absorption gases were tried. It was found that the strong line ( # 1095) of 127 I2 at 18783. 3297 cm-1 and two absorption lines of 129 I2 located at the two sides of the # 1095 line of 127 I2 could be used as frequency shift discriminator to detect the changes of the Brillouin frequency shift. This selection is the best one within the range from 532.0131 run to 532.5154 nm. But it is not perfect and there is a lot of work to do before its practical application.

  6. Shear Brillouin light scattering microscope.

    Science.gov (United States)

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-11

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution. PMID:26832263

  7. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Madami, M., E-mail: marco.madami@fisica.unipg.it; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Moriyama, T.; Tanaka, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Siracusano, G.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, Bari (Italy)

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.

  8. Recent Progress in Brillouin Scattering Based Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2011-04-01

    Full Text Available Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave, and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave, the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures.

  9. Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator

    CERN Document Server

    Asano, Motoki; Özdemir, Şahin Kaya; Ikuta, Rikizo; Yang, Lan; Imoto, Nobuyuki; Yamamoto, Takashi

    2016-01-01

    We report the first observation of stimulated Brillouin scattering (SBS) with Brillouin lasing, and Brillouin-coupled four-wave-mixing (FWM) in an ultra-high-Q silica microbottle resonator. The Brillouin lasing was observed at the frequency of $\\Omega_B=2\\pi\\times10.4$ GHz with a threshold power of $0.45$ mW. Coupling between Brillouin and FWM was observed in both backward and forward scattering directions with separations of $2\\Omega_B$. At a pump power of $10$ mW, FWM spacing reached to 7th and 9th order anti-Stokes and Stokes, respectively.

  10. ESTIMATION OF SOUNDING ABILITY OF A BRILLOUIN LIDAR IN THE EAST CHINA SEA

    Institute of Scientific and Technical Information of China (English)

    吴东; 宋小全; 刘智深

    2001-01-01

    Vertical profiles of sound speed in the sea can be measured by using laser excited Brillouin scattering. In this paper the dependence of the accuracy of sound speed measurement on the accuracy of the Brillouin shift measurement is analyzed. We calculated the maximum detecting depths of sound speed to an accuracy of 1 m/s by lidar with different laser pulse energy, platform altitude, telescope aperture and lidar effective attenuation coefficient. The estimation of sounding ability in the East China Sea is made in some stations. These data can be used in the design of Brillouin Lidar for the China Sea.

  11. Stimulated Brillouin scattering in metamaterials

    CERN Document Server

    Smith, M J A; de Sterke, C Martijn; Wolff, C; Lapine, M; Poulton, C G

    2016-01-01

    We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describe the SBS properties of the material at long wavelengths. Using the electromagnetic and strain energy densities we accurately characterise the optical and acoustic properties of the metamaterial. From a combination of energy density methods and perturbation theory, we recover the appropriate terms of the photoelastic tensor for the metamaterial. We demonstrate that electrostriction is not necessarily the dominant mechanism in the enhancement and suppression of the SBS gain coefficient in a metamaterial, and that other parameters, such as the Brillouin linewidth, can dominate instead. Examples are presented that exhibit an order of magnitude enhancement in the SBS gain as well as perfect suppression.

  12. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, G.; Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D–40225 Düsseldorf (Germany)

    2015-04-15

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of the seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.

  13. Ultra-narrow linewidth single longitudinal mode Brillouin fiber ring laser using highly nonlinear fiber

    International Nuclear Information System (INIS)

    In this letter, we demonstrate a single longitudinal mode (SLM) Brillouin fiber laser by using highly nonlinear fiber (HNLF) as the nonlinear medium in which the stimulated Brillouin scattering effect takes place. The first Stokes line is generated at a threshold power of 18 dBm with a wavelength shift 0.08 nm from the Brillouin pump. The signal-to-noise ratio of the first Stokes line is measured to be ∼58 dB. To the best of the authors’ knowledge, this is the first report of a 0.7 kHz ultra-narrow linewidth of an SLM Brillouin fiber laser, using HNLF as the nonlinear medium, which features a simple cavity configuration. (letter)

  14. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    International Nuclear Information System (INIS)

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered

  15. Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump

    International Nuclear Information System (INIS)

    We have demonstrated a new configuration of Brillouin-Erbium fiber laser, in which the Brillouin pump is pre-amplified within the laser cavity before entering the single-mode fiber. By using this simple scheme, a lower external Brillouin pump power is required to create the Brillouin gain and suppresses the laser cavity modes. The proposed laser structure exhibits a wide tuning range of 13 nm from 1597 nm to 1610 nm with 1480 nm pump power of 100 mW. The number of channels obtained within this wavelength range is 14 channels with 0.089 nm spacing

  16. Unifying Brillouin scattering and cavity optomechanics

    CERN Document Server

    Van Laer, Raphaël; Baets, Roel; Van Thourhout, Dries

    2015-01-01

    So far, Brillouin scattering and cavity optomechanics were mostly disconnected branches of research. Both deal with photon-phonon coupling, but a number of differences impeded their unambiguous fusion. Here, we reveal a close connection between two parameters of central importance in these fields: the Brillouin gain coefficient $\\tilde{\\mathcal{G}}$ and the zero-point optomechanical coupling rate $g_{0}$. In addition, we derive the dynamical cavity equations from the coupled-mode description of a Brillouin waveguide. This explicit transition shows the unity of optomechanical phenomena, such as stimulated Brillouin scattering and electromagnetically induced transparency, regardless of whether they occur in waveguides or in resonators. Therefore, the fields can no longer be disentangled. We propose an experimental manifestation of the link in silicon photonic nanowires.

  17. Brillouin Cooling in a Linear Waveguide

    CERN Document Server

    Chen, Yin-Chung; Bahl, Gaurav

    2016-01-01

    Brillouin scattering is rarely considered as a mechanism that can cause cooling of a material due to the thermodynamic dominance of Stokes scattering in most practical systems. However, it has been shown in experiments on resonators that net phonon annihilation through anti-Stokes Brillouin scattering can be enabled by means of a suitable set of optical and acoustic states. The cooling of traveling phonons in a linear waveguide, on the other hand, could lead to the exciting future prospect of manipulating unidirectional heat fluxes and even the nonreciprocal transport of quantum information via phonons. In this work, we present the first analysis of the conditions under which Brillouin cooling may be achieved in a linear waveguide. We analyze the three-wave mixing interaction between the optical and acoustic modes that participate in forward Brillouin scattering, and reveal the key regimes of operation for the process. Our calculations indicate that measurable cooling may occur in state-of-the-art systems whe...

  18. Stimulated Brillouin processes in crystals and glasses

    International Nuclear Information System (INIS)

    The basic physics and material properties needed to describe and predict the Brillouin gain for a variety of materials have been investigated. Lawrence Livermore National Laboratory (LLNL) has identified transverse stimulated Brillouin scattering (SBS) as an important limiting mechanism in high power laser fusion systems. At sufficiently high laser intensities, SBS drives acoustic vibrations that can damage optical components. SRI has performed measurements and developed the corresponding theory for stimulated Brillouin gain spectroscopy in anisotropic crystals. Absolute Brillouin steady-state gain coefficients, linewidths, and frequency shifts have been determined at 532 nm for a number of optical materials of interest to LLNL. This knowledge can be used to select optical materials and devise suppression schemes that will allow much higher laser fluences to be used in laser fusion

  19. Guided-wave Brillouin scattering in air

    CERN Document Server

    Renninger, William H; Rakich, Peter T

    2016-01-01

    Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber. A single resonance is observed at 35 MHz, which corresponds to the first excited axial-radial acoustic mode in the air-filled core. The linewidth and coupling strengths are determined by the acoustic loss and electrostrictive coupling in air, respectively. A simple analytical model, refined by numerical simulations, is developed that accurately predicts the Brillouin coupling strength and frequency from the gas and fiber parameters. Since this form of Brillouin coupling depends strongly on both the acoustic and dispersive optical properties of the gas within the fiber, this new type of optomechanical interaction is highly tailorable. These results allow for forward Brillouin spectroscopy in dilute gases, could be useful for sensing and will present a power and noise limitation for certain applications.

  20. Widely tunable linear-cavity multiwavelength fiber laser with distributed Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    M. Ajiya; M. H. Al-Mansoori; M. A. Mahdi

    2011-01-01

    We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration. The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end. Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity. At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.%@@ We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration.The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end.Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity.At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.

  1. Brillouin scattering induced transparency and non-reciprocal light storage

    CERN Document Server

    Dong, Chun-Hua; Zou, Chang-Ling; Zhang, Yan-Lei; Fu, Wei; Guo, Guang-Can

    2014-01-01

    Stimulated Brillouin scattering (SBS) is a very fundamental interaction between light and travelling acoustic waves, which is mainly attributed to the electrostriction and photoelastic effects with the interaction strength being orders of magnitude larger than other nonlinearities. Although various photonic applications for all-optical light controlling based on SBS have been achieved in optical fiber and waveguides, the coherent light-acoustic interaction remains a challenge. Here, we experimentally demonstrated the Brillouin scattering induced transparency (BSIT) in a high quality optical microresonantor. Benefited from the triple-resonance in the whispering gallery cavity, the photon-phonon interaction is enhanced, and enables the light storage to the phonon, which has lifetime up to 10us. In addition, due to the phase matching condition, the stored circulating acoustic phonon can only interact with certain direction light, which leads to non-reciprocal light storage and retrieval. Our work paves the way t...

  2. Realistic model for the stimulated Brillouin scattering instability

    International Nuclear Information System (INIS)

    The purpose of this work is to present a new model describing the stimulated Brillouin scattering instability in an inhomogeneous plasma. This model, called the harmonic decomposition method is based on the decomposition of plasma characteristics like density and speed into their short and long wavelengths components. This model describes: the propagation of the incident and reflected laser wave, the evolution of the sound wave and the hydrodynamic evolution of the plasma on a large scale. The first chapter recalls theoretical concepts concerning the stimulated Brillouin scattering, the filamentation and auto-focusing and introduces the harmonic decomposition method. The second chapter deals with the validation of this method through a comparison with an exact hydrodynamics model. The third chapter presents the interpretation of laser-plasma experiments with this new method. The fourth chapter presents different ways of improving the description by taking into account kinetics effects or a better decomposition of the sound wave. (A.C.)

  3. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    Science.gov (United States)

    Loh, K. K.; Yeo, K. S.; Shee, Y. G.

    2015-04-01

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  4. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K. K.; Yeo, K. S.; Shee, Y. G. [Integrated Lightwave Research Group, Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  5. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    International Nuclear Information System (INIS)

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated

  6. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, G.; Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D–40225 Düsseldorf (Germany)

    2013-07-15

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  7. A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser

    International Nuclear Information System (INIS)

    A simple model is developed to study the mechanism of stimulated Brillouin scattering (SBS) suppression with frequency-modulated laser in optical fiber. By taking into account the laser frequency distribution along the fiber induced by frequency modulation, the average effective Brillouin gain is calculated to determine the SBS threshold. Experimental results show agreement with the numerical analysis. The application for SBS suppression in interferometric fiber sensing system is also discussed in this paper. The results show that the maximum input power can be increased effectively by frequency modulation method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Single-passband microwave photonic filter based on a self-seeded multiwavelength Brillouin-erbium fiber laser

    Science.gov (United States)

    Xu, Ronghui; Zhang, Xuping; Hu, Junhui; Xia, Lan

    2015-03-01

    In this paper, a single-passband microwave photonic filter based on a self-seeded multiwavelength Brillouin-erbium fiber laser is demonstrated experimentally. In the filter, the multiwavelength Brillouin comb generated from the laser is used as the filter taps. The Brillouin comb is with the feature of quasi-Gaussian continuous distribution, which can ensure the filter realizes single-passband characteristic. The baseband response is suppressed effectively with the help of phase modulation. The single-passband filter has an out-of-band rejection of 25 dB. By adjusting the Brillouin multiwavelengh, the 3-dB bandwidth and the center frequency of the filter can be changed.

  9. Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser

    International Nuclear Information System (INIS)

    We demonstrate a generation of multiple wavelength lasers incorporating a Brillouin-Raman fiber laser using a double-pass structure. The Raman and Brillouin amplification medium is provided by the combination of 11 km long dispersion-compensating-fiber and 25 km long large-effective-area-fiber. The laser structure is primarily pumped by single Raman pump wavelength at 1455 nm. The loop mirror is utilized as the reflector, which allows Stokes lines and pump light to propagate back into the cavity. A flat output of multiwavelength lasers with uniform optical signal-to-noise ratio across the flat bandwidth is realized from the proposed laser structure

  10. Neutron Brillouin scattering in dense fluids

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, P. [Technische Univ. Delft (Netherlands); FINGO Collaboration

    1997-04-01

    Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).

  11. Bandwidth reconfigurable microwave photonic filter based on stimulated Brillouin scattering

    Science.gov (United States)

    Xiao, Yongchuan; Wang, Xin; Zhang, Youdi; Dong, Wei; Zhang, Xindong; Liu, Caixia; Ruan, Shengping; Chen, Weiyou

    2015-01-01

    A bandwidth reconfigurable microwave photonic filter is proposed and numerically analyzed employing Brillouin gain spectrum narrowing and broadening. The stimulated Brillouin scattering (SBS) process is used to convert the phase modulation to intensity modulation to generate filter passband. Due to the fact that the passband is formed by mapping the Brillouin gain spectrum, bandwidth reconfiguration can be implemented by changing Brillouin gain linewidth. In this paper, both bandwidth reduction and increase are included in a single system and the details of gain spectrum narrowing and broadening are demonstrated. Theoretically, nearly 60% bandwidth reduction and hundreds times of bandwidth increase are achieved as compared to the case without gain spectrum process.

  12. Ferroelectric Phase Transition and Photoinduced Cooperative Phenomena in Bi-Layered Perovskite Pb2Bi4Ti5O18 Ceramics Studied by Brillouin Scattering

    Science.gov (United States)

    Takesada, Masaki; Ueki, Ayaka; Onodera, Akira; Noguchi, Yuji; Miyayama, Masaru

    2010-09-01

    The ferroelectric phase transition mechanism and ultraviolet (UV) photoexcition effect have been investigated in the bismuth layered perovskite Pb2Bi4Ti5O18 by Brillouin scattering using a Sandercock-type tandem Fabry-Perot interferometer. The temperature dependences of Brillouin spectra both with and without UV irradiation were observed around phase transition points. The observed Brillouin spectra include a central peak component that shows an anomaly in the ferroelectric phase transition point TC=450 K. The central peak spectra show narrowing under UV irradiation. The correlation length of the ferroelectric dipole fluctuation should be enhanced with the UV irradiation effect below TC.

  13. Dynamic stimulated Brillouin scattering analysis

    DEFF Research Database (Denmark)

    Djupsöbacka, A.; Jacobsen, Gunnar; Tromborg, Bjarne

    2000-01-01

    We present a new simple analysis - including the effect of spontaneous emission - of the (dynamic) influence of SBS on the detected receiver eye diagram. It applies in principle for general types of modulation formats such as the digital formats of ASK, FSK, and PSK. The analysis is formulated fo...

  14. Rayleigh-Brillouin scattering of carbon dioxide

    CERN Document Server

    Gu, Ziyu; van de Water, Willem

    2014-01-01

    The spectral lineshape of spontaneous Rayleigh-Brillouin scattering in CO2 is studied in a range of pressures. The spectrum is influenced by the bulk viscosity, which is a relaxation phenomenon involving the internal degrees of freedom of the molecule. The associated relaxation rates can be compared to the frequency shift of the scattered light, which demands precise measurements of the spectral lineshape. We find the value of the bulk viscosity around 5.7 X 10^{-6} kg/(ms) for the range of pressures p= 2-4 bar and for conditions of room temperature.

  15. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron reson

  16. Short-Pulse Amplification by Strongly-Coupled Brillouin Scattering

    CERN Document Server

    Edwards, Matthew R; Mikhailova, Julia M; Fisch, Nathaniel J

    2016-01-01

    We examine the feasibility of strongly-coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  17. Tailorable Stimulated Brillouin Scattering in Nanoscale Silicon Waveguides

    CERN Document Server

    Shin, Heedeuk; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    While nanoscale modal confinement radically enhances a variety of nonlinear light-matter interactions within silicon waveguides, traveling-wave stimulated Brillouin scattering nonlinearities have never been observed in silicon nanophotonics. Through a new class of hybrid photonic-phononic waveguides, we demonstrate tailorable traveling-wave forward stimulated Brillouin scattering in nanophotonic silicon waveguides for the first time, yielding 3000 times stronger forward SBS responses than any previous waveguide system. Simulations reveal that a coherent combination of electrostrictive forces and radiation pressures are responsible for greatly enhanced photon-phonon coupling at nano-scales. Highly tailorable Brillouin nonlinearities are produced by engineering the structure of a membrane-suspended waveguide to yield Brillouin resonances from 1 to 18 GHz through high quality-factor (>1000) phonon modes. Such wideband and tailorable stimulated Brillouin scattering in silicon photonics could enable practical real...

  18. The Einstein-Brillouin Action Quantization for Dirac Fermions

    Science.gov (United States)

    Onorato, P.

    The Einstein-Brillouin-Keller semiclassical quantization and the topological Maslov index are used to compute the electronic structure of carbon based nanostructures with or without transverse magnetic field. The calculation is based on the Dirac Fermions approach in the limit of strong coupling for the pseudospin. The electronic bandstructure for carbon nanotubes and graphene nanoribbons are discussed, focusing on the role of the chirality and of the unbonded edges configuration respectively. The effects of a transverse uniform magnetic field are analyzed, the different kinds of classical trajectories are discussed and related to the corresponding energies. The development is concise, transparent, and involves only elementary integral calculus and provides a conceptual and intuitive introduction to the quantum nature of carbon nanostructures.

  19. Variable delay using stationary and localized Brillouin dynamic gratings

    Science.gov (United States)

    Antman, Yair; Primerov, Nikolay; Sancho, Juan; Thévenaz, Luc; Zadok, Avi

    2012-03-01

    Reflections from movable, dynamic acoustic gratings in polarization maintaining (PM) fibers are employed in the long variable delay of periodic, isolated pulses. The gratings are introduced by stimulated Brillouin scattering (SBS) interaction between two counter-propagating pump waves, which are spectrally detuned by the Brillouin frequency shift of the PM fiber and are both polarized along one of its principal axes. The gratings are interrogated by the reflections of read-out signals that are polarized along the orthogonal principal axis. High-rate phase modulation of both pump waves by a pseudo-random binary sequence introduces dynamic gratings that are both localized and stationary, at specific locations in which the modulated pumps are correlated. The separation between adjacent correlation peaks can be made arbitrarily long. Long variable delays are readily obtained by scanning the grating along the fiber, via changing either the length or the rate of the modulation sequence. At the same time, the short length of the gratings, on the order of a cm, accommodates the delay of broadband pulses. The technique is therefore free of the delay-times-bandwidth product limitation that undermines the performance of SBS-based 'slow light' delay: we report the delay 1-ns long pulses by as much as 770 ns. In addition, the combined reflections from two dynamic gratings with a variable separation are used to implement radio-frequency photonic filters of tunable free spectral range. At the current stage, the technique is restricted by noise from residual scattering that takes place outside of the correlation peaks. Hence, it is thus far limited to the processing of repetitive signals, for which the noise may be effectively averaged out.

  20. Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime silicate glass

    OpenAIRE

    H. Tran; Clément, S.; Vialla, R.; Vandembroucq, D.; Rufflé, B.

    2012-01-01

    High-resolution Brillouin scattering is used to achieve 3-dimensional maps of the longitudinal acoustic mode frequency shift in soda-lime silicate glasses subject to Vickers indentations. Assuming that residual stress-induced effects are simply proportional to density changes, residual densification fields are obtained. The density gradient is nearly isotropic, confirming earlier optical observations made on a similar glass. The results show that Brillouin micro-spectroscopy opens the way to ...

  1. Effects of electric field on acoustic properties of 0.83Pb(Mg1/3Nb2/3) -0.17PbTiO3 single crystals studied by Brillouin light scattering

    Science.gov (United States)

    Kim, Tae Hyun; Ko, Jae-Hyeon; Kojima, Seiji

    2013-03-01

    Relaxor-based ferroelectric Pb[(Mg1/3Nb2/3)1-x Tix]O3 (PMN-xPT) single crystals have attracted great attention because of their exceptionally strong piezoelectric properties. This peculiar characteristic was attributed to the rotation of polarization directions and structural complexity. In this study, the phase transition behaviors of PMN-17PT single crystals have been investigated under an electric field applied along [001] by micro-Brillouin scattering. PMN-17PT single crystals were grown by the modified Bridgeman method. The two (001) surfaces were Au-coated to apply the electric field, and the coating was thin enough to allow the incident beam to transmit without much loss. The electric field of different values was applied to the sample along the [001] direction, and the Brillouin scattering spectrum was measured under both field-heating (FH) and field-cooling (FC) conditions. The electric field of 1kV/cm induced a new longitudinal acoustic (LA) mode component along with a broad Brillouin peak evolving continuously from the paraelectric phase during both FC and FH processes. This was attributed to the remnant polar nanoregions that were not aligned under the electric field due to quenched random fields. However, the splitting of the LA mode did not appear when the electric field was over 2kV/cm indicating a clear structural phase transition. This research was supported in part by the Marubun Research Promotion Foundation and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010497).

  2. Spectrum parameter estimation in Brillouin scattering distributed temperature sensor based on cuckoo search algorithm combined with the improved differential evolution algorithm

    Science.gov (United States)

    Zhang, Yanjun; Yu, Chunjuan; Fu, Xinghu; Liu, Wenzhe; Bi, Weihong

    2015-12-01

    In the distributed optical fiber sensing system based on Brillouin scattering, strain and temperature are the main measuring parameters which can be obtained by analyzing the Brillouin center frequency shift. The novel algorithm which combines the cuckoo search algorithm (CS) with the improved differential evolution (IDE) algorithm is proposed for the Brillouin scattering parameter estimation. The CS-IDE algorithm is compared with CS algorithm and analyzed in different situation. The results show that both the CS and CS-IDE algorithm have very good convergence. The analysis reveals that the CS-IDE algorithm can extract the scattering spectrum features with different linear weight ratio, linewidth combination and SNR. Moreover, the BOTDR temperature measuring system based on electron optical frequency shift is set up to verify the effectiveness of the CS-IDE algorithm. Experimental results show that there is a good linear relationship between the Brillouin center frequency shift and temperature changes.

  3. Cascaded forward Brillouin scattering to all Stokes orders

    CERN Document Server

    Wolff, Christian; Eggleton, Benjamin J; Steel, Michael J; Poulton, Christopher G

    2016-01-01

    Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we...

  4. Stimulated Raman-Brillouin scattering processes in magnetoactive semiconductor plasma

    International Nuclear Information System (INIS)

    A simple analytical treatment based on hydrodynamic model of plasma is developed to study both steady-state and transient stimulated Raman and Brillouin scattering processes (SRS and SBS) in centrosymmetric or weakly non centrosymmetric semiconductors. Gain constants, threshold-pump intensities, and optimum-pulse durations for the onset of Raman and Brillouin instabilities are estimated. Authors have also addressed themselves to the question of behaviour of the transient gain factors (Raman and Brillouin) as function of different physical parameters such as external magnetic field, pump pulse durations etc. The quantitative behaviour of transient gain factors is found to be in agreement with the experimental and other theoretical observations. The analysis explain satisfactorily the competition between stimulated Raman and Brillouin processes in the short and long pulse duration regimes. The highlight of present theory is that both SRS and SBS (steady-state as well as transient) can be studied in centrosymmetric or weakly non centrosymmetric dielectrics using simple classical treatment. (author)

  5. Variable delay using stationary and localized Brillouin dynamic gratings

    OpenAIRE

    Antman, Yair; Primerov, Nikolay; Sancho Dura, Juan; Thévenaz, Luc; Zadok, Avinoam

    2012-01-01

    Reflections from movable, dynamic acoustic gratings in polarization maintaining (PM) fibers are employed in the long variable delay of periodic, isolated pulses. The gratings are introduced by stimulated Brillouin scattering (SBS) interaction between two counter-propagating pump waves, which are spectrally detuned by the Brillouin frequency shift of the PM fiber and are both polarized along one of its principal axes. The gratings are interrogated by the reflections of read-out signals that ar...

  6. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides

    OpenAIRE

    Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H.; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2013-01-01

    While nanoscale modal confinement radically enhances a variety of nonlinear light-matter interactions within silicon waveguides, traveling-wave stimulated Brillouin scattering nonlinearities have never been observed in silicon nanophotonics. Through a new class of hybrid photonic-phononic waveguides, we demonstrate tailorable traveling-wave forward stimulated Brillouin scattering in nanophotonic silicon waveguides for the first time, yielding 3000 times stronger forward SBS responses than any...

  7. Unconventional physical mechanisms between stimulated Brillouin scattering and backward stimulated Raman scattering in liquid water

    International Nuclear Information System (INIS)

    In this paper, the stimulated Brillouin scattering (SBS) and the backward stimulated Raman scattering (BSRS) excited by a focused Gaussian laser in liquid water with different attenuation coefficients are investigated experimentally. Experimental results indicate that the relationships between SBS and BSRS are not merely competitive; the former has an obvious amplifying effect on the latter. Also, two different physical mechanisms were discussed in order to explain these phenomena

  8. High-resolution Brillouin fiber sensing using random phase coding of the pump and probe waves

    OpenAIRE

    Antman, Yair; Primerov, Nikolay; Thévenaz, Luc; Zadok, Avinoam

    2012-01-01

    Distributed temperature measurements with 1.2 cm resolution based on stimulated Brillouin scattering (SBS) in standard fibers are reported. High resolution is achieved by phase-coding both pump and probe waves with a high-rate, pseudo-random binary phase code. The SBS interaction is effectively confined to narrow correlation peaks. The separation between adjacent peaks, signifying the unambiguous measurement range, scales with the length of the modulation code and can therefore be made arbitr...

  9. Local analysis of stimulated Brillouin interaction in installed fiber optics cables

    OpenAIRE

    Nikles, M.; Thévenaz, Luc; Salina, P.; Robert, P. A.

    1996-01-01

    Brillouin gain spectrum measurement along an optical fiber has recently gained a lot of interests owing to its potentiality for strain monitoring in installed telecom cables. The purpose of the paper is to show that this potentiality is now effective, since field measurements of installed fiber optics cables currently in operation are demonstrated. A portable instrument has been developed, based on an original experimental configuration developed in our Institute which is briefly described

  10. Systematic Brillouin light scattering study of the elastic properties of porous silicon superlattices

    International Nuclear Information System (INIS)

    Brillouin light scattering spectroscopy was used to determine elastic properties of porous silicon films and superlattices. The film elastic properties were compared with previously published results and also used as input for an effective elastic medium model (M Grimsditch and F Nizzoli 1986, Phys. Rev. B 33 5891) to predict the elastic constants of porous silicon superlattices with constituent layers comprised of thin copies of the films. Values of superlattice elastic constants c33 and c44 obtained from the model show reasonably good agreement with those determined directly from superlattice Brillouin data while constants c11 and c13 show crude agreement. This partial agreement suggests that the model holds promise as a means for accurately predicting the elastic properties of p-Si SLs. The results of this study show that it is possible to tailor porous silicon superlattices for custom applications as well as further fundamental studies. (paper)

  11. Low-noise Brillouin random fiber laser with a random grating-based resonator.

    Science.gov (United States)

    Xu, Yanping; Gao, Song; Lu, Ping; Mihailov, Stephen; Chen, Liang; Bao, Xiaoyi

    2016-07-15

    A novel Brillouin random fiber laser (BRFL) with the random grating-based Fabry-Perot (FP) resonator is proposed and demonstrated. Significantly enhanced random feedback from the femtosecond laser-fabricated random grating overwhelms the Rayleigh backscattering, which leads to efficient Brillouin gain for the lasing modes and reduced lasing threshold. Compared to the intensity and frequency noises of the Rayleigh feedback resonator, those of the proposed random laser are effectively suppressed due to the reduced resonating modes and mode competition resulting from the random grating-formed filters. Using the heterodyne technique, the linewidth of the coherent random lasing spike is measured to be ∼45.8  Hz. PMID:27420494

  12. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    International Nuclear Information System (INIS)

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF2) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF2 resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics

  13. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    CERN Document Server

    Lin, Guoping; Saleh, Khaldoun; Martinenghi, Romain; Beugnot, Jean-Charles; Sylvestre, Thibaut; Chembo, Yanne K

    2015-01-01

    We report the observation of stimulated Brillouin scattering and lasing at 1550~nm in barium fluoride (BaF$_2$) crystal. Brillouin lasing was achieved with ultra-high quality ($Q$) factor monolithic whispering gallery mode (WGM) mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from $8.2$ GHz up to $49$ GHz have been generated through cascaded Brillouin lasing. BaF$_2$ resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  14. Brillouin spectroscopy on doped SmS

    International Nuclear Information System (INIS)

    SmS becomes intermediate valent at an applied pressure of about 6.5 kbar. On the other hand, SmS doped with La or Tm is already intermediate valent at normal pressure and room temperature. The doping atoms (depending on their concentration) create new occupied states in the SmS gap which lead to the typical hybridised 4fi/4fi-1-5d1-states. The La-cation is always trivalent in LaS, whereas the Tm-cation has a valence between 2 and 3. Therefore, we expect to see a difference in the intermediate valent behaviour. A strong evidence of intermediate valence is a negative C12 and a negative Poisson's ratio. Using high-resolution Brillouin-spectroscopy we measured the phase velocity of the surface acoustic waves in the (100)-plane of Sm1-xLaxS and Sm1-xTmxS. Applying a standard fit-algorithm we calculated all three elastic constants (C11, C12 and C44) from the angular dispersion relation. To get more reliable results the compression-moduli also have been determined and linked to the elastic constants C11 and C12 in the fit model. (orig.)

  15. Nonstationary stimulated Brillouin scattering in laser plasma

    International Nuclear Information System (INIS)

    Stimulated Brillouin scattering (SBS) is a known phenomenon observed in many laser plasma experiments. In spite of enormous amount of experimental and theoretical works there are some properties of SBS that have no ambiguous interpretation yet. Here we try to explain some characteristic features of SBS taking place in the high intensity laser plasma interaction. Here we compare numerical results with experimental data obtained with use of CO2 laser facility TIR-1. Experiments have been performed under the next parameters of the laser system: energy of up to 100 J, pulse length (FWHM) of 3 ns, contrast ratio larger than 107, wavelength of 10.591 mkm. The NaCl aspherical lens was used to focus the laser beam on the plane massive target. Intensity distribution in the focal plate had near Gaussian distribution with diameter (1/e) of 65 mkm, maximum intensity being 5.*1014 W/cm2. One of the most characteristic features of SBS in these experiments is its nonstationarity. (author) 4 refs., 3 figs

  16. Acoustic confinement and Stimulated Brillouin Scattering in integrated optical waveguides

    CERN Document Server

    Poulton, Christopher G; Eggleton, Benjamin J

    2013-01-01

    We examine the effect of acoustic mode confinement on Stimulated Brillouin Scattering in optical waveguides that consist of a guiding core embedded in a solid substrate. We find that SBS can arise due to coupling to acoustic modes in three different regimes. First, the acoustic modes may be guided by total internal reflection; in this case the SBS gain depends directly on the degree of confinement of the acoustic mode in the core, which is in turn determined by the acoustic V-parameter. Second, the acoustic modes may be leaky, but may nevertheless have a sufficiently long lifetime to have a large effect on the SBS gain; the lifetime of acoustic modes in this regime depends not only on the contrast in acoustic properties between the core and the cladding, but is also highly dependent on the waveguide dimensions. Finally SBS may occur due to coupling to free modes, which exist even in the absence of acoustic confinement; we find that the cumulative effect of coupling to these non-confined modes results in signi...

  17. Impact of nonlinear loss on Stimulated Brillouin Scattering

    CERN Document Server

    Wolff, Christian; Steel, Michael J; Eggleton, Benjamin J; Poulton, Christopher G

    2015-01-01

    We study the impact of two-photon absorption (2PA) and fifth-order nonlinear loss such as 2PA-induced free-carrier absorption in semiconductors on the performance of Stimulated Brillouin Scattering devices. We formulate the equations of motion including effective loss coefficients, whose explicit expressions are provided for numerical evaluation in any waveguide geometry. We find that 2PA results in a monotonic, algebraic relationship between amplification, waveguide length and pump power, whereas fifth-order losses lead to a non-monotonic relationship. We define a figure of merit for materials and waveguide designs in the presence of fifth-order losses. From this, we determine the optimal waveguide length for the case of 2PA alone and upper bounds for the total Stokes amplification for the case of 2PA as well as fifth-order losses. The analysis is performed analytically using a small-signal approximation and is compared to numerical solutions of the full nonlinear modal equations.

  18. Modeling of stimulated Brillouin scattering in expanding plasmas

    Science.gov (United States)

    Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Labaune, C.; Bandulet, H.

    2008-05-01

    Numerical simulations of mm-size expanding plasmas have been performed in comparison with recent experiments at the LULI facility. The features of Stimulated Brillouin Scattering (SBS) are studied for an intense mono-speckle laser beam in continuation of previous work on optically smoothed laser beams. Very good agreement between the theoretical-numerical modeling and the experimental results is found, in particular concerning the SBS activity in the plasma and the backscatter level. The results underline the importance of nonlocal transport effects affecting the onset of self-focusing for temperatures below 1keV. The simulations with the monospeckle beam allow to identify the resonant filament instability [1] and the subsequent loss of coherence of the laser beam as the reason of the observed low-level backscatter levels measured in the experiments. To achieve reliable numerical modeling, a good characterisation of the plasma profiles and the timing with respect to the laser pulse shape, prior to simulations, proves to be extremely important.

  19. Modeling of stimulated Brillouin scattering in expanding plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hueller, S; Masson-Laborde, P E; Pesme, D [Centre de Physique Theorique, CNRS UMR7644, ecole Polytechnique, Palaiseau (France); Labaune, C; Bandulet, H [LULI, CNRS UMR7605, ecole Polytechnique, Palaiseau (France)], E-mail: hueller@cpht.polytechnique.fr

    2008-05-15

    Numerical simulations of mm-size expanding plasmas have been performed in comparison with recent experiments at the LULI facility. The features of Stimulated Brillouin Scattering (SBS) are studied for an intense mono-speckle laser beam in continuation of previous work on optically smoothed laser beams. Very good agreement between the theoretical-numerical modeling and the experimental results is found, in particular concerning the SBS activity in the plasma and the backscatter level. The results underline the importance of nonlocal transport effects affecting the onset of self-focusing for temperatures below 1keV. The simulations with the monospeckle beam allow to identify the resonant filament instability and the subsequent loss of coherence of the laser beam as the reason of the observed low-level backscatter levels measured in the experiments. To achieve reliable numerical modeling, a good characterisation of the plasma profiles and the timing with respect to the laser pulse shape, prior to simulations, proves to be extremely important.

  20. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    Science.gov (United States)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  1. Photonic-phononic orbital angular momentum in Brillouin parametric conversion

    CERN Document Server

    Zhu, Zhihan; Mu, Chunyuan; Li, Hongwei

    2014-01-01

    Orbital angular momentum (OAM) is a fundamental photonic degree of freedom, showed by Allen and co-workers. Its most attractive feature is an inherently infinite dimensionality, which in recent years has obtained several ground-breaking demonstrations for high information-density communication and processing, both in classical and quantum. Here, by seeking the reason for photonic OAM non-conservation in stimulated Brillouin amplification, we report the first demonstration of the evolution law for OAM in Brillouin process. The parameter of OAM can conveniently transfer between the phonons and different polarized photons due to the photonic spin angular momentum conservation. Our results have revealed a parametric conversion mechanism of Brillouin process for Photonic-phononic OAM, demonstrated the role of phononic OAM and the vortex acoustic wave in this process, and suggested this mechanism may find important applications in OAM-based information communication and processing.

  2. Brillouin filtering of optical combs for narrow linewidth frequency synthesis

    Science.gov (United States)

    Galindo-Santos, Juan; Velasco, Aitor V.; Carrasco-Sanz, Ana; Corredera, Pedro

    2016-05-01

    We report a tunable monochromatic source generation scheme, based on Brillouin filtering of a self-referenced optical frequency comb. The system benefits from the high stability and mode linewidth of the frequency comb, significantly improving the performance of the original laser source used as Brillouin pump. A synthesized frequency with stability under 4×10-11 and a linewidth under 75 kHz was experimentally demonstrated for two separate pump lasers in the C-band. The proposed monochromatic source can be tuned with high precision in a very broad band by combining a coarse control with the pumping source and a fine control with the optical frequency comb references. In our experimental setup, coarse and fine tuning resolutions were 4 MHz and 20 Hz, respectively. Influence of Brillouin pump fluctuations in the synthesized signal stability were also analyzed for observation times up to 104 s.

  3. A new configuration of multi-wavelength Brillouin fiber laser

    International Nuclear Information System (INIS)

    A multi-wavelength laser is demonstrated using stimulated Brillouin scattering in a single-mode fiber with a feedback loop using two couplers and an optical circulator. This Brillouin fiber laser can operate at any wavelength depending on the Brillouin pump (BP) wavelength used. With a BP of 14 dBm, approximately 8 to 10 BFL lines are obtained in both forward and backward directions respectively with a line spacing of 0.16 nm. The use of the 99/1 coupler and 50/50 coupler gives the highest power and number of lines for the forward and backward outputs respectively. The maximum Stokes power obtained is approximately 8.0 dBm. The anti-Stokes lines are also obtained due to four wave mixing and bidirectional operation. The combination of forward and backward output can generate a larger number of lines with channel spacing of 0.08 nm

  4. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    OpenAIRE

    Lin, Guoping; Diallo, Souleymane; Saleh, Khaldoun; Martinenghi, Romain; Beugnot, Jean-Charles; Sylvestre, Thibaut; Chembo, Yanne K.

    2015-01-01

    We report the observation of stimulated Brillouin scattering and lasing at 1550~nm in barium fluoride (BaF$_2$) crystal. Brillouin lasing was achieved with ultra-high quality ($Q$) factor monolithic whispering gallery mode (WGM) mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from $8.2$ GHz up to $49$ GHz have been gen...

  5. Multibeam seeded brillouin sidescatter in inertial confinement fusion experiments.

    Science.gov (United States)

    Turnbull, D; Michel, P; Ralph, J E; Divol, L; Ross, J S; Berzak Hopkins, L F; Kritcher, A L; Hinkel, D E; Moody, J D

    2015-03-27

    We present the first observations of multibeam weakly seeded Brillouin sidescatter in indirect-drive inertial confinement fusion (ICF) experiments. Two seeding mechanisms have been identified and quantified: specular reflections ("glint") from opposite hemisphere beams, and Brillouin backscatter from neighboring beams with a different angle of incidence. Seeded sidescatter can dominate the overall coupling losses, so understanding this process is crucial for proper accounting of energy deposition and drive symmetry. Glint-seeded scattered light could also be used to probe hydrodynamic conditions inside ICF targets. PMID:25860748

  6. Brillouin amplification and processing of the Rayleigh scattered signal.

    Science.gov (United States)

    Mermelstein, David; Shacham, Eliashiv; Biton, Moran; Sternklar, Shmuel

    2015-07-15

    Brillouin amplification of Rayleigh scattering is demonstrated using two different configurations. In the first technique, the Rayleigh scattering and amplification occurs simultaneously in the same fiber. In the second technique, the amplification takes place in a second fiber. The differences between the two techniques are delineated. Using the second technique, we demonstrate single-sideband off-resonant Brillouin amplification of the Rayleigh signal. This technique is shown to enhance the SNR of a signal that is due to vibration-induced strain on the fiber. PMID:26176464

  7. Alternative implementation of simplified Brillouin optical correlation-domain reflectometry

    CERN Document Server

    Hayashi, Neisei; Nakamura, Kentaro

    2014-01-01

    We developed an alternative configuration of simplified Brillouin optical correlation-domain reflectometry, which can overcome the drawbacks of the original configuration. This system uses, as reference light, the light that is Fresnel reflected at a partial reflection point artificially produced near an optical circulator. We show that the influence of the 0th correlation peak fixed at the partial reflection point can be suppressed by replacing the nearby fibers with other fibers having different Brillouin frequency shift values (here, multi-mode fibers are used). Finally, we demonstrate a distributed measurement for detecting a 1.46-m-long strained section with a high signal-to-noise ratio.

  8. [A Brillouin Scattering Spectrum Feature Extraction Based on Flies Optimization Algorithm with Adaptive Mutation and Generalized Regression Neural Network].

    Science.gov (United States)

    Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2015-10-01

    According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively. PMID:26904844

  9. Photonic methods of millimeter-wave generation based on Brillouin fiber laser

    Science.gov (United States)

    Al-Dabbagh, R. K.; Al-Raweshidy, H. S.

    2016-05-01

    In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.

  10. Relativistic Brillouin flow in the high ν/γ diode

    International Nuclear Information System (INIS)

    Relativistic Brillouin solutions have been derived for electron flow in crossed electric and magnetic fields. The application of these solutions to the high ν/γ diode is discussed and an approximate analytical expression for the anode current is derived. Measurements of diode current are compared to the theoretical and empirical expressions for diode current which have been developed

  11. Nonlinear stimulated Brillouin scattering based photonic signal processors

    Energy Technology Data Exchange (ETDEWEB)

    Minasian, Robert A. [School of Electrical and Information Engineering, Institute of Photonics and Optical Science, University of Sydney, NSW, Sydney, 2006 (Australia)

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  12. Nonlinear stimulated Brillouin scattering based photonic signal processors

    International Nuclear Information System (INIS)

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing

  13. Brillouin limit for electron plasmas confined on magnetic surfaces

    International Nuclear Information System (INIS)

    As is well known, the density of pure electron plasmas that are confined by a magnetic field is limited by the Brillouin density, nB ε0B2/2me. However, the electron density can be limited to a much lower value when the electrons are confined on magnetic surfaces, such as the surfaces produced by a stellarator. If the electron temperature is a spatial constant, the electron force-balance equation, me/e ν-→ ∇-→ν + ∇-→p / en = ∇-→Φ-ν-→xB-→, can be rewritten as ∇-→Φ* = ν-→xB-→*. The effective electric potential and the effective magnetic field are Φ* Φ - me/2eν2 - Tln(n) and B-→* B-→ - me/e ∇ x ν-→. The electron density for magnetic confinement in a cylinder with B-→ = Bz-circumflex is bounded by the Brillouin limit. If one assumes the electrons are pressureless and have a spatially constant density n0, then Φ = (en0/4ε0)r2. Both B-→* and Φ* vanish when n0 = nB, and the equation ∇-→Φ* = ν-→ x B-→* has no solutions for n0 > nB. The confinement of electrons on magnetic surfaces is lost when the field lines of the effective magnetic field B-→* leave the confinement region and strike the chamber walls. If the magnetic surfaces of the true field B-→ are described by the toroidal flux, ψt that they enclose, so B-→ ∇-→ψt = 0, then confinement is easily lost when ∇-→ψt ∇-→ x ν-→ has Fourier terms that resonate with the rotational transform of B-→, for then the B-→* surfaces are split by islands. The resonant Fourier terms are given by (B-→ x ∇-→ψt) ∇-→(ν||/B). In other words, resonant Fourier terms in the parallel flow of the electrons can cause a break up of the surfaces of the B-→* field. The parallel flow is determined by the condition that ∇-→ (nν-→) = 0, which implies B-→ ∇-→(v||/B) = -∇-→ (nν-→perpendicular).When n0B, the divergence of the perpendicular flow is given by ∇-→ (nν-→perpendicular) = (B-→ x ∇-→Φ) ∇-→(n/B2) . Variations

  14. Stimulated Brillouin Scattering Damage of Large-Aperture Fused Silica Grating

    Institute of Scientific and Technical Information of China (English)

    HAN Wei; ZHENG Wan-Guo; HUANG Wan-Qing; LI Ke-Yu; WANG Fang; FENG Bin; JIA Huai-Ting; LI Fu-Quan; XIANG Yong; JING Feng

    2010-01-01

    @@ Laser induced damage experiment fs carried out on a large aperture laser facility.Severe damage is observed on a large-aperture fused silica grating which presents dense craters on the front surface and six cracks alternatively located at the front and the rear surface.The bizarre fact about the damage on the grating is that,unlike other optics,the damage craters are almost on the front surface.According to observation,damage phenomenon is due to the stimulated Brillouin scattering(SBS)effect occurring in the grating,which includes the transverse SBS,the back SBS and the zigzag SBS.

  15. Four-Reference State-Specific Brillouin-Wigner Coupled-Cluster Method: Study of the IBr Molecule

    Directory of Open Access Journals (Sweden)

    Ivan Hubač

    2001-12-01

    Full Text Available We implemented the state-specific Brillouin–Wigner coupled-cluster method for the complete model space spanned by four reference configurations generated by two electrons in two active orbitals. We applied the method (together with the previously suggested a posteriori size-extensivity correction to the calculation of spectroscopic constants of the IBr molecule, using averaged relativistic effective core potential.

  16. Four-Reference State-Specific Brillouin-Wigner Coupled-Cluster Method: Study of the IBr Molecule

    OpenAIRE

    Ivan HubaÄÂ; Petr Čársky; Ondřej Demel; Jiří Pittner

    2001-01-01

    We implemented the state-specific Brillouin–Wigner coupled-cluster method for the complete model space spanned by four reference configurations generated by two electrons in two active orbitals. We applied the method (together with the previously suggested a posteriori size-extensivity correction) to the calculation of spectroscopic constants of the IBr molecule, using averaged relativistic effective core potential.

  17. Stimulated Brillouin scatter in a magnetized ionospheric plasma.

    Science.gov (United States)

    Bernhardt, P A; Selcher, C A; Lehmberg, R H; Rodriguez, S P; Thomason, J F; Groves, K M; McCarrick, M J; Frazer, G J

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f(CI)) or an electrostatic ion cyclotron (EIC) wave just above f(CI) can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency. PMID:20482059

  18. Stimulated Brillouin Scatter in a Magnetized Ionospheric Plasma

    International Nuclear Information System (INIS)

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.

  19. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  20. A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths

    CERN Document Server

    Gu, Ziyu; van Duijn, Eric-Jan; Ubachs, Wim; 10.1063/1.4721272

    2012-01-01

    A spectrometer for the measurement of spontaneous Rayleigh-Brillouin scattering line profiles at ultraviolet wavelengths from gas phase molecules has been developed, employing a high-power frequency-stabilized UV laser with narrow bandwidth (2 MHz). The UV light from a frequency-doubled titanium:sapphire laser is further amplified in an enhancement cavity, delivering a 5 Watt UV-beam propagating through the interaction region inside a scattering cell. The design of the RB-scattering cell allows for measurements at gas pressures in the range 0-4 bar and at stably controlled temperatures from -30 to 70 degree Celsius. A scannable Fabry-Perot analyzer with instrument resolution of 232 MHz probes the Rayleigh-Brillouin profiles. Measurements on N2 and SF6 gases demonstrate the high signal-to-noise ratio achievable with the instrument, at the 1% level at the peak amplitude of the scattering profile.

  1. A New Approach to Cascaded Stimulated Brillouin Scattering

    CERN Document Server

    Dong, Mark

    2015-01-01

    We present a novel approach to cascaded stimulated Brillouin scattering and frequency comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields are described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here are sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test the new approach on some published experiments and find excellent agreement with the results.

  2. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    Science.gov (United States)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  3. Quasi distributed hybrid Brillouin fiber laser sensor system

    International Nuclear Information System (INIS)

    A hybrid quasi distributed sensing system combining point fiber Bragg gratings and long integral Brillouin scattering transducers is presented. It is able to measure global temperature changes along the sensing line as well as punctual changes at the critical locations of the structure. A 20 km proof-of-concept system has been experimentally demonstrated with a temperature resolution of 0.47 °C. (paper)

  4. Brillouin-Wigner perturbation theory in open electromagnetic systems

    OpenAIRE

    Muljarov, E. A.; Langbein, W; R. Zimmermann(Physikalisches Institut, University of Bonn, Bonn, Germany)

    2012-01-01

    A Brillouin-Wigner perturbation theory is developed for open electromagnetic systems which are characterised by discrete resonant states with complex eigenenergies. Since these states are exponentially growing at large distances, a modified normalisation is introduced that allows a simple spectral representation of the Green's function. The perturbed modes are found by solving a linear eigenvalue problem in matrix form. The method is illustrated on exactly solvable one- and three-dimensional ...

  5. Brillouin distributed sensing using localized and stationary dynamic gratings

    OpenAIRE

    Primerov, Nikolay; Antman, Yair; Sancho Dura, Juan; Zadok, Avinoam; Thévenaz, Luc

    2012-01-01

    In this work, we apply a recent technique for the generation of stimulated Brillouin scattering (SBS) dynamic gratings that are both localized and stationary to realize high-resolution distributed temperature sensing. The gratings generation method relies on the phase modulation of two pump waves by a common pseudo-random bit sequence (PRBS), with a symbol duration that is much shorter than the acoustic lifetime. This way the acoustic wave can efficiently build up in the medium at discrete lo...

  6. Distributed sensing employing stimulated Brillouin scattering in optical fibers

    OpenAIRE

    Antman, Yair; Thévenaz, Luc; Zadok, Avinoam

    2012-01-01

    Disclosed are methods and devices for distributed sensing of a measurable parameter employing stimulated Brillouin scattering in an optical fiber. A frequency-modulated or phase-modulated light wave is transmitted into the optical fiber. A scattered light wave in the optical fiber is monitored for sensing a measurable parameter. In some embodiments, the calculating step may include calculating a distance of a sensed location along the optical fiber using the monitored time of arrival.

  7. All-optical signal processing using dynamic Brillouin gratings

    Science.gov (United States)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  8. Brillouin-Wigner perturbation theory in open electromagnetic systems

    CERN Document Server

    Muljarov, E A; Zimmermann, R; 10.1209/0295-5075/92/50010

    2012-01-01

    A Brillouin-Wigner perturbation theory is developed for open electromagnetic systems which are characterised by discrete resonant states with complex eigenenergies. Since these states are exponentially growing at large distances, a modified normalisation is introduced that allows a simple spectral representation of the Green's function. The perturbed modes are found by solving a linear eigenvalue problem in matrix form. The method is illustrated on exactly solvable one- and three-dimensional examples being, respectively, a dielectric slab and a microsphere.

  9. Stimulated Brillouin scattering enhancement in silicon inverse opal waveguides

    OpenAIRE

    Smith, M. J. A.; Wolff, C; Sterke, C. Martijn de; Lapine, M.; Kuhlmey, B. T.; Poulton, C. G.

    2016-01-01

    Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for Stimulated Brillouin Scattering (SBS). We theoretically show that silicon inverse opals exhibit a strongly improved acoustic performance that enhances the bulk SBS gain coefficient by more than two orders of magnitude. We also design a waveguide that incorporates silicon inverse opals and which has SBS gain values that are ...

  10. What is the Brillouin Zone of an Anisotropic Photonic Crystal?

    CERN Document Server

    Sivarajah, P; Ofori-Okai, B K; Nelson, K A

    2015-01-01

    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment, we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest bandgap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ - defined as the Wigner-Seitz cell in the reciprocal lattice - is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic 2D PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigne...

  11. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    Science.gov (United States)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  12. High-extinction VIPA-based Brillouin spectroscopy of turbid biological media

    CERN Document Server

    Fiore, Antonio; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-01-01

    Brillouin microscopy has recently emerged as powerful technique to characterize the mechanical properties of biological tissue, cell and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we developed a spectrometer composed of a two VIPA stages and a multi-pass Fabry-Perot interferometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 microns deep within chicken muscle tissue.

  13. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guoping, E-mail: guoping.lin@femto-st.fr; Diallo, Souleymane; Saleh, Khaldoun; Martinenghi, Romain; Beugnot, Jean-Charles; Sylvestre, Thibaut; Chembo, Yanne K. [Optics Department, FEMTO-ST Institute (CNRS UMR6174), 25030 Besançon (France)

    2014-12-08

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  14. Measurement error analysis of Brillouin lidar system using F-P etalon and ICCD

    Science.gov (United States)

    Yao, Yuan; Niu, Qunjie; Liang, Kun

    2016-09-01

    Brillouin lidar system using Fabry-Pérot (F-P) etalon and Intensified Charge Coupled Device (ICCD) is capable of real time remote measuring of properties like temperature of seawater. The measurement accuracy is determined by two key parameters, Brillouin frequency shift and Brillouin linewidth. Three major errors, namely the laser frequency instability, the calibration error of F-P etalon and the random shot noise are discussed. Theoretical analysis combined with simulation results showed that the laser and F-P etalon will cause about 4 MHz error to both Brillouin shift and linewidth, and random noise bring more error to linewidth than frequency shift. A comprehensive and comparative analysis of the overall errors under various conditions proved that colder ocean(10 °C) is more accurately measured with Brillouin linewidth, and warmer ocean (30 °C) is better measured with Brillouin shift.

  15. High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber.

    Science.gov (United States)

    Bao, Yi; Chen, Genda

    2016-07-15

    The effect of annealing is experimentally studied for a fused silica, fully distributed fiber optic sensor based on the pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). Within a heating rate of 4.3°C/min and 30.6°C/min, and a sustained peak temperature for 120 and 240 min, annealing extended the sensor's upper operation temperature from 800°C to 1000°C and reduced the sensor's measurement variability over a temperature range of 22°C to 1000°C with a maximum Brillouin frequency variation of 1%. The annealed sensor had a linearly decreasing Brillouin frequency sensitivity from 1.349×10-3  GHz/°C at 22°C to 0.419×10-3  GHz/°C at 1000°C. The time required to achieve a stable annealing effect decayed exponentially with annealing temperature. PMID:27420489

  16. Signal Processing for Fibre-optic Distributed Sensing Techniques Employing Brillouin Scattering

    Institute of Scientific and Technical Information of China (English)

    XIAO Shang-hui; LI Li

    2009-01-01

    As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures, Brillouin-based distributed scattering sensing techniques represent a new physical approach for structures health monitoring, which seems extremely promising and is receiving most attentions. This paper comprehensively presents some methods of signal interrogation for fibre optic Brillouin-based distributed scattering sensing technology, especially establishes an accurate Pseudo-Voigt model of Brillouin gain spectrum and gives some results on spectrum analysis and data processing.

  17. Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection.

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2015-10-01

    Spectral analysis is essential for measuring and monitoring advanced optical communication systems and the characterization of active and passive devices like amplifiers, filters and especially frequency combs. Conventional devices have a limited resolution or tuning range. Therefore, the true spectral shape of the signal remains hidden. In this work, a small part of the signal under test is preselected with help of the polarization pulling effect of stimulated Brillouin scattering where all unwanted spectral components are suppressed. Subsequently, this part is analyzed more deeply through heterodyne detection. Thereby, the local oscillator is generated from a narrow linewidth fiber laser which acts also as pump wave for Brillouin scattering. By scanning the pump wave together with the local oscillator through the signal spectrum, the whole signal is measured. The method is tunable over a broad wavelength range, is not affected by unwanted mixing products and utilizes a conventional narrow bandwidth photo diode. First proof of concept experiments show the measurement of the power spectral density function with a resolution in the attometer or lower kilohertz range at 1550 nm. PMID:26480198

  18. Gamma radiation influence on silica optical fibers measured by optical backscatter reflectometry and Brillouin sensing technique

    Science.gov (United States)

    Wosniok, A.; Sporea, D.; Neguţ, D.; Krebber, K.

    2016-05-01

    We have studied the influence of gamma rays on physical properties of different commercially available silica optical fibers stepwise irradiated up to a total dose of 100 kGy. The detection of radiation-induced changes in silica glass offers the possibility of using selected optical fibers as distributed radiation sensors. The measurements performed by us were based on optical backscatter reflectometry and Brillouin distributed sensing. The measurement methods enable an analysis of radiation-induced modification of the group refractive index and density of the optical fibers. The most distinct physical effect observed by us concerns the increase of the optical attenuation with rising total radiation doses. Quantitative measurement results indicate a crucial impact of fiber dopants on radiation-induced physical and sensory characteristics of silica optical fibers affected by differences in fiber fabrication techniques. Based on the obtained results, the suitability of distributed Brillouin sensing for dosimetry applications seems to be improved by modifying the refractive index profile of the fiber core.

  19. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    Science.gov (United States)

    Loh, William; Becker, Joe; Cole, Daniel C.; Coillet, Aurelien; Baynes, Fred N.; Papp, Scott B.; Diddams, Scott A.

    2016-04-01

    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6 mm diameter microrod resonator used in our experiments has a large optical mode area of ∼100 μm2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2 Hz‑1. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.

  20. [INVITED] State of the art of Brillouin fiber-optic distributed sensing

    Science.gov (United States)

    Motil, Avi; Bergman, Arik; Tur, Moshe

    2016-04-01

    Fiber-optic distributed sensing, employing the Brillouin effect, is already a commercially available measurement technique for the accurate estimation of the static strain/temperature fields along tens of kilometers with a spatial resolution of the order of a meter. Furthermore, relentless research efforts are paving the way to even much wider usability of the technique through recently achieved enhanced performance in each of its critical dimensions: measurement range has been extended to hundreds of kilometers; spatial resolution is of the order of a centimeter or less, signal to noise ratio has been significantly improved; fast dynamic events can be captured at kHz's sampling rates; and a much better understanding of the underlying physics has been obtained, along with the formulation of figures of merit, and the preparation and early adoption of appropriate standards and guidelines. This paper describes the basics, as well as the state of the art, of the leading Brillouin interrogation methods, with emphasis on the significant progress made in the last 3 years. It also includes a short introduction to coding, which has proven instrumental in many of the recently obtained performance records.

  1. ``Bloch wave'' modification of stimulated Raman by stimulated Brillouin scattering

    Science.gov (United States)

    Dodd, E. S.; Vu, H. X.; DuBois, D. F.; Bezzerides, B.

    2013-03-01

    Using the reduced-description particle-in-cell (RPIC) method, we study the coupling of backward stimulated Raman scattering (BSRS) and backward stimulated Brillouin scattering (BSBS) in regimes where the reflectivity involves the nonlinear behavior of particles trapped in the daughter plasma waves. The temporal envelope of a Langmuir wave (LW) obeys a Schrödinger equation where the potential is the periodic electron density fluctuation resulting from an ion-acoustic wave (IAW). The BSRS-driven LWs in this case have a Bloch wave structure and a modified dispersion due to the BSBS-driven spatially periodic IAW, which includes frequency band gaps at kLW˜kIAW/2˜k0 (kLW, kIAW, and k0 are the wave number of the LW, IAW, and incident pump electromagnetic wave, respectively). This band structure and the associated Bloch wave harmonic components are distinctly observed in RPIC calculations of the electron density fluctuation spectra and this structure may be observable in Thomson scatter. Bloch wave components grow up in the LW spectrum, and are not the result of isolated BSRS. Self-Thomson scattered light from these Bloch wave components can have forward scattering components. The distortion of the LW dispersion curve implies that the usual relationship connecting the frequency shift of the BSRS-scattered light and the density of origin of this light may become inaccurate. The modified LW frequency results in a time-dependent frequency shift that increases as the IAW grows, detunes the BSRS frequency matching condition, and reduces BSRS growth. A dependence of the BSRS reflectivity on the IAW Landau damping results because this damping determines the levels of IAWs. The time-dependent reflectivity in our simulations is characterized by bursts of sub-picosecond pulses of BSRS alternating with multi-ps pulses of BSBS, and BSRS is observed to decline precipitously as soon as SBS begins to grow from low levels. In strong BSBS regimes, the Bloch wave effects in BSRS are

  2. Metamaterial control of stimulated Brillouin scattering

    CERN Document Server

    Smith, M J A; de Sterke, C Martijn; Wolff, C; Lapine, M; Poulton, C G

    2016-01-01

    Using full opto-acoustic numerical simulations, we demonstrate enhancement and suppression of the SBS gain coefficient in a metamaterial comprising a subwavelength cubic array of dielectric spheres suspended in a dielectric background material. We develop a general theoretical framework and present several numerical examples for technologically important material combinations. For As$_2$S$_3$ spheres suspended in silicon, we achieve an enhancement of more than one order of magnitude in the SBS gain coefficient compared to pure silicon, and for GaAs spheres in silicon, perfect suppression of SBS is obtained. The gain coefficient for As$_2$S$_3$ glass can also be strongly suppressed by introducing a suspension of amorphous silica spheres. Effective photonic and acoustic parameters are shown to depend in a complex way on the filling fraction, and each have varying influence on the effective gain coefficient of the metamaterial. For the studied combinations of materials, electrostriction is the dominant effect be...

  3. Threshold level and gain of forward stimulated Brillouin scattering in a forward pumped s-band discrete DCF fibers Raman amplifier

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-feng; ZHANG Zai-xuan; DAI Bi-zhi; LI Chen-xia; INSOO S.KIM

    2006-01-01

    Amplification effect of forward stimulated Brillouin scattering (SBS) lines on the forward pumped s-band discrete DCF fiber Raman amplifier (FRA) has been studied.Pump threshold power of the forward first order Stokes SBS (FSB1- ),second order Stokes SBS (FSB2-) and third order SBS (FSB3-) in the forward pumped FRA are 1.5 mW,1.4 mW and 1.7 mW,respectively.The Stokes SBS lines are amplified by FRA and fiber Brillouin amplifier (FBA) at the same time.Gain of amplification is given as GA=GR·GB,where GR is Raman gain and GB is Brillouin gain.Saturation gain of FSB1-,FSB2- and FSB3- are about 52 dB,65 dB and 65 dB,respectively.The saturation Raman gain of 10 km DCF forward FRA is about 14 dB,so Brillouin gain of FSB1-,FSB2- and FSB3- are about 38 dB,51 dB and 51 dB,respectively.The forward cascaded SBS lines have been observed.

  4. Zonas de Brillouin de los grupos de capa

    OpenAIRE

    García Santos, Laura

    2016-01-01

    La base de datos de las zonas de Brillouin de los grupos de capa del Bilbao Crystallographic Server incluye tablas de vectores de onda y figuras que forman la base para la clasificación de las representaciones de los grupos de capa. Las propiedades de simetría de los vectores de onda se determinan por los llamados grupos del espacio recíproco y esta clasificación se compara con la que recoge el libro “Character Tables and Compatibility Relations of The Eighty Layer Groups and Seventeen Plane ...

  5. Stimulated Brillouin scattering enhancement in silicon inverse opal waveguides

    CERN Document Server

    Smith, M J A; de Sterke, C Martijn; Lapine, M; Kuhlmey, B T; Poulton, C G

    2016-01-01

    Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for Stimulated Brillouin Scattering (SBS). We theoretically show that silicon inverse opals exhibit a strongly improved acoustic performance that enhances the bulk SBS gain coefficient by more than two orders of magnitude. We also design a waveguide that incorporates silicon inverse opals and which has SBS gain values that are comparable with chalcogenide glass waveguides. This research opens new directions for opto-acoustic applications in on-chip material systems.

  6. Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies

    Science.gov (United States)

    Meng, Zhaokai; Basagaoglu, Berkay; Yakovlev, Vladislav V.

    2015-02-01

    Atherosclerosis, the development of intraluminal plaque, is a fundamental pathology of cardiovascular system and remains the leading cause of morbidity and mortality worldwide. Biomechanical in nature, plaque rupture occurs when the mechanical properties of the plaque, related to the morphology and viscoelastic properties, are compromised, resulting in intraluminal thrombosis and reduction of coronary blood flow. In this report, we describe the first simultaneous application of confocal Brillouin and Raman microscopies to ex-vivo aortic wall samples. Such a non-invasive, high specific approach allows revealing a direct relationship between the biochemical and mechanical properties of atherosclerotic tissue.

  7. Brillouin scattering from collective spin waves in magnetic superlattices (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrands, B.; Boufelfel, A.; Falco, C.M.; Baumgart, P.; Guentherodt, G.; Zirngiebl, E.; Thompson, J.D.

    1988-04-15

    We report on the observation and the analysis of collective magnetostatic spin-wave excitations in magnetic superlattices. The influence of interface anisotropies, which can become dominant for small modulation wavelengths, is discussed. For the system Fe/Pd we show that Brillouin spectroscopy experiments in combination with the measurement of the saturation magnetization by a SQUID magnetometer give evidence for a magnetic polarization of the Pd spacer layers, as well as for a small negative out-of-plane interface anisotropy constant of K/sub s/ = -0.15 erg/cm/sup 2/.

  8. Brillouin scattering from collective spin waves in magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrands, B.; Boufelfel, A.; Falco, C.M.; Baumgart, P.; Guentherodt, G.; Zirngiebl, E.; Thompson, J.D.

    1987-01-01

    We report on the observation and the analysis of collective magnetostatic spin-wave excitations in magnetic superlattices. The influence of interface anisotropies, which can become dominant for small modulation wavelengths, is discussed. For the system Fe/Pd we show that Brillouin spectroscopy experiments in combination with the measurement of the saturation magnetization by a SQUID magnetometer give evidence for a magnetic polarization of the Pd spacer layers, as well as for a small negative out-of-plane interface anisotropy constant of K/sub s/ = -0.15 erg/cm/sup 2/. 22 refs., 5 figs., 1 tab.

  9. Magnetostatic wave device characterization by Brillouin light scattering

    Science.gov (United States)

    Patton, Carl E.; Srinivasan, Gopalan

    1989-02-01

    This final report summarizes the important results of the Brillouin light scattering investigations of magnetic excitations in magnetostatic wave (MSW) devices which were carried out under the RADC contract. The key accomplishments were the observation and characterization of surface waves, forward volume waves, backward volume waves, parametric spin waves, and a new type of evanescent surface wave in yttrium iron garnet film MSW devices. The propagation characteristics for surface wave in Fe, Co-Cr, and Ni-Fe films were also examined, in order to investigate the possible use of such films in MSW devices. Details on technical publications and participating personnel during this contract period are also provided.

  10. Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers

    OpenAIRE

    Sancho J.; Chin S.; Sagues M.; Loayssa A.; Lloret J.; Gasulla I.; Sales S.; Thevenaz L.; Capmany J.

    2010-01-01

    Dynamic reconfiguration of a microwave photonic filter by tuning its basic delay based on stimulated Brillouin scattering-induced slow light and optical phase shift of the optical carrier is experimentally implemented. The measurements confirm that the free spectral range of the filter changes when a Brillouin pump is applied. These results demonstrate the potential of the separate carrier technique in microwave photonics applications.

  11. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  12. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre.

    Science.gov (United States)

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s(-1) and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  13. Spectral shape of stimulated Brillouin scattering in crystals

    Science.gov (United States)

    Ohno, S.; Sonehara, T.; Tatsu, E.; Koreeda, A.; Saikan, S.

    2015-12-01

    We derived a formula to describe the stimulated Brillouin spectral shape in crystals for various temperatures ranging from room temperature to liquid-helium temperature. We modeled a sample as a one-dimensional system with a finite thickness in which the optically induced phonon propagates, partly interacting with the pump and probe laser beams. When the sample length is shorter than the propagation distance (i.e., the mean free path) of phonons, the spectral shape becomes multipeaked due to the multiple phonon reflections in the sample. Such a situation can be realized in a thin film or a bulk sample at low temperatures. We experimentally measured the Brillouin gain spectra with a multipeak structure in TeO2 and PbMoO4 crystals at low temperatures. We found that these spectra were reproduced by our formula for both the coaxial and off-axis phonon propagations with respect to the laser beams. It was revealed that our formula is very useful in estimating the phonon attenuation coefficient from the observed spectra, which gradually change from Lorentzian shape to a multipeak spectrum with decreasing temperature.

  14. Brillouin distributed sensing using localized and stationary dynamic gratings

    Science.gov (United States)

    Primerov, Nikolay; Antman, Yair; Sancho, Juan; Zadok, Avi; Thevenaz, Luc

    2012-04-01

    In this work, we apply a recent technique for the generation of stimulated Brillouin scattering (SBS) dynamic gratings that are both localized and stationary to realize high-resolution distributed temperature sensing. The gratings generation method relies on the phase modulation of two pump waves by a common pseudo-random bit sequence (PRBS), with a symbol duration that is much shorter than the acoustic lifetime. This way the acoustic wave can efficiently build up in the medium at discrete locations only, where the phase difference between the two waves does not temporarily vary. The separation between neighboring correlation peaks can be made arbitrarily long. Using the proposed method, we experimentally demonstrate distributed temperature sensing with 5 cm resolution, based on modifications to both the local birefringence and the local Brillouin frequency shift in polarization maintaining fibers. The localization method does not require wideband detection and can generate the grating at any random position along the fiber, with complete flexibility. The phase-coding method is equally applicable to high-resolution SBS distributed sensing over standard fibers.

  15. Brillouin scattering of light by spin waves in ferromagnetic nanorods

    International Nuclear Information System (INIS)

    We report the investigations of spin wave modes of arrays of Ni and Co nanorods using Brillouin light scattering. We have revealed the significant influence of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical–analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in nanorod metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic artificial materials are important class of active metamaterials needed for prospective data storage and signal processing applications.

  16. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    Science.gov (United States)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  17. Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers

    CERN Document Server

    Zhong, Wenjia Elser née; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd

    2015-01-01

    By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.

  18. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  19. The damage of the optical components induced by the stimulated Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    Ge Zi-Ming; Lü Zhi-Wei; Cai Jun-Wei; Ao Shu-Yan; Luo You-Hua

    2006-01-01

    A theory of excitation of ultrasonic waves in the stimulated Brillouin scattering (SBS) process is presented in this paper. By using several reasonable approximations, a numerical calculation of the transient longitudinal SBS shows that large amplitude of acoustic waves can be built up by the nanosecond pulse of high-power laser, which may result in the damage of optical glasses. The maximal density change and the maximal acoustic wave intensity in optical glasses of 5 cm in thickness are calculated by using different parameters of the high-energy laser, such as the intensity, the pulse width, and the wave length. The damage threshold of the optical glasses is about 80 GW/cm2 when using a 1064 nm laser. The dynamic mechanism of SBS is the electrostriction effect of the components coupling with the high-power laser.

  20. Optical cable fault locating using Brillouin optical time domain reflectometer and cable localized heating method

    International Nuclear Information System (INIS)

    A novel optical cable fault location method, which is based on Brillouin optical time domain reflectometer (BOTDR) and cable localized heating, is proposed and demonstrated. In the method, a BOTDR apparatus is used to measure the optical loss and strain distribution along the fiber in an optical cable, and a heating device is used to heat the cable at its certain local site. Actual experimental results make it clear that the proposed method works effectively without complicated calculation. By means of the new method, we have successfully located the optical cable fault in the 60 km optical fiber composite power cable from Shanghai to Shengshi, Zhejiang. A fault location accuracy of 1 meter was achieved. The fault location uncertainty of the new optical cable fault location method is at least one order of magnitude smaller than that of the traditional OTDR method

  1. Optical cable fault locating using Brillouin optical time domain reflectometer and cable localized heating method

    Science.gov (United States)

    Lu, Y. G.; Zhang, X. P.; Dong, Y. M.; Wang, F.; Liu, Y. H.

    2007-07-01

    A novel optical cable fault location method, which is based on Brillouin optical time domain reflectometer (BOTDR) and cable localized heating, is proposed and demonstrated. In the method, a BOTDR apparatus is used to measure the optical loss and strain distribution along the fiber in an optical cable, and a heating device is used to heat the cable at its certain local site. Actual experimental results make it clear that the proposed method works effectively without complicated calculation. By means of the new method, we have successfully located the optical cable fault in the 60 km optical fiber composite power cable from Shanghai to Shengshi, Zhejiang. A fault location accuracy of 1 meter was achieved. The fault location uncertainty of the new optical cable fault location method is at least one order of magnitude smaller than that of the traditional OTDR method.

  2. Widely tunable single bandpass microwave photonic filter based on Brillouin-assisted optical carrier recovery.

    Science.gov (United States)

    Wang, Wen Ting; Liu, Jian Guo; Sun, Wen Hui; Wang, Wei Yu; Wang, Sun Long; Zhu, Ning Hua

    2014-12-01

    A widely tunable single bandpass microwave photonic filter (MPF) based on Brillouin-assisted optical carrier recovery in a highly nonlinear fiber (HNLF) with only one optical filter is proposed and experimentally demonstrated. The fundamental principle lies in the fact that the suppressed optical carrier of the phase modulated optical signal could be recovered by the stimulated Brillouin scattering (SBS) amplification effect. When phase modulated optical signals go through an optical filter with a bandpass response, the optical carrier and the upper sidebands suffer from the suppression of the optical filter because they fall in the stopband of that. In our system, the optical carrier could be recovered by the SBS operation around 38 dB. The MPF is achieved by one-to-one mapping from the optical domain to the electrical domain only when one of phase modulated sidebands lies in the bandpass of the optical filter. It shows an excellent selectivity with a 3-dB bandwidth of 170 MHz over a tuning frequency range of 9.5-32.5 GHz. The out-of-band suppression of the MPF is more than 20 dB. Moreover, the MPF shows an excellent shape factor with 10-dB bandwidth of only 520 MHz. The frequency response of the MPF could be widely tuned by changing the frequency difference between the frequency of the optical carrier and the center frequency of the bandpass of the optical filter. A proof-of-concept experiment is carried out to verify the proposed approach. PMID:25606864

  3. Robust, Brillouin Active Embedded Fiber-Is-The-Sensor System in Smart Composite Structures

    Science.gov (United States)

    Yu, Chung

    1996-01-01

    Extensive review of our proposed sensing scheme, based mainly on the forward Guided Acoustic Wave Brillouin Scattering (GAWBS) with backward stimulated Brillouin scattering (sBs) as an auxiliary scheme for system fault tolerance has been completed during this project period. This preliminary study is conducted for a number of reasons. The most significant reasons lie in the essential capability of the system to measure temperature and pressure. These two measurands have been proposed to be sensed by sBs in our proposal. Temperature and pressure/strain are important measurands in structural monitoring, so that the effectiveness of sensing by sBs needs to be further examined. It has been pointed out initially that sBs shift will be dependent on temperature and pressure/strain simultaneously. The shift versus temperature or strain is linear. Now, the question is how can these two measurands be separated when sBs is used to sense an environment, in which both temperature and strain are changing simultaneously. Typical sBs shift plotted versus strain and varying temperature is shown in Fig. 1. As is clear, a fiber initially stressed will relax with rising temperature. This is verified by a displacement to the right with rising temperature of the sBs shift vs strain curves in the figure. A way to circumvent this ambiguity is by employing two fibers, one pre-stressed and the other is a free fiber. The latter will measure temperature and subtracting data in the latter fiber from those of the former will give us net strain readings. This is a laborious approach, since it involves the use of two identical fibers, and this is hard to accomplish, especially when many sensors are needed. Additional multiplexing of the data stream for data subtraction becomes a necessity.

  4. Protein dynamics in Brillouin light scattering: Termal denaturation of hen egg white lysozyme

    Science.gov (United States)

    Svanidze, A. V.; Lushnikov, S. G.; Kojima, S.

    2009-09-01

    Thermal denaturation of hen egg white lysozyme has been investigated by Brillouin light scattering in the temperature range from 297 to 350 K. Anomalies in the temperature dependences of velocity and damping of hypersound and also in the behavior of the intensity of Brillouin components for the lysozyme solution at thermal denaturation have been revealed. These anomalies are attributable to phase transformations of the protein in the high-temperature region. It has been shown that Brillouin light scattering is a suitable tool for studying the structural evolution of proteins.

  5. A tunable multiwavelength Brillouin fiber laser with a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    A multiwavelength Brillouin fiber laser with wavelength tunability using a semiconductor optical amplifier (SOA) and a birefringence fiber loop mirror has been demonstrated. The inhomogeneous broadening, and flat and broad gain in the SOA make the proposed multiwavelength laser comparatively stable and have the potential to generate a large number of Brillouin lasing wavelengths. A stable multiwavelength output with a spectral spacing of the Brillouin frequency shift of 0.08 nm and a wavelength number of more than 91 has been successfully produced. Moreover, wavelength tuning over a 21 nm wavelength range has been achieved. (paper)

  6. Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers.

    Science.gov (United States)

    Mamdem, Y Sikali; Burov, E; de Montmorillon, L-A; Jaouën, Y; Moreau, G; Gabet, R; Taillade, F

    2012-01-16

    Residual stresses inside optical fibers can impact significantly on Brillouin spectrum properties. We have analyzed the importance of internal stresses on the Brillouin Gain Spectrum (BGS) for a conventional G.652 fiber and compared modeling results to measurements. Then the residual internal stresses have been investigated for a set of trench-assisted fibers: fibers are coming from a single preform with different draw tensions. Numerical modeling based on measured internal stresses profiles are compared with corresponding BGS experimental results. Clearly, Brillouin spectrum is shifted linearly versus draw tension with a coefficient of -20MHz/100g and its linewidth increases. PMID:22274523

  7. A new approach to measure the ocean temperature using Brillouin lidar

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Zhiwei Lü; Yongkang Dong; Weiming He

    2006-01-01

    @@ An approach of lidar measurements of ocean temperature through measuring the spectral linewidth of the backscattered Brillouin lines is presented. An empirical equation for the temperature as a function of Brillouin linewidth and salinity is derived. Theoretical results are in good agreement with the experimental data. The equation also reveals the dependence of the temperature on the salinity and Brillouin linewidth.It is shown that the uncertainty of the salinity has very little impact on the temperature measurement.The uncertainty of this temperature measurement methodology is approximately 0.02 ℃.

  8. YAG laser performance improved by stimulated Brillouin scattering phase conjugation mirror in thomson scattering diagnostics at JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hidetsugu; Nakatsuka, Masahiro [Osaka Univ., Institute of Laser Engineering, Suita, Osaka (Japan); Hatae, Takaki; Kitamura, Shigeru; Kashiwabara, Tsuneo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-02-01

    An improvement of the output energy of a multistage YAG laser system by using a stimulated Brillouin scattering (SBS) phase conjugation mirror (PCM) was achieved. The phase conjugation of the optically nonlinear SBS process in a liquid material effectively compensated thermal degradation at an average/peak power amplifier, resulting in an average power increase from 1.5 J at 30 Hz repetition rate to 2.6 J at 50 Hz drive. The beam quality was also recovered without wave front deformation and depolarization resulting in a transfer-limited divergence with a good flat-top pattern in a near field. (author)

  9. YAG laser performance improved by stimulated Brillouin scattering phase conjugation mirror in thomson scattering diagnostics at JT-60

    International Nuclear Information System (INIS)

    An improvement of the output energy of a multistage YAG laser system by using a stimulated Brillouin scattering (SBS) phase conjugation mirror (PCM) was achieved. The phase conjugation of the optically nonlinear SBS process in a liquid material effectively compensated thermal degradation at an average/peak power amplifier, resulting in an average power increase from 1.5 J at 30 Hz repetition rate to 2.6 J at 50 Hz drive. The beam quality was also recovered without wave front deformation and depolarization resulting in a transfer-limited divergence with a good flat-top pattern in a near field. (author)

  10. Brillouin lasing in whispering gallery micro-resonators

    Science.gov (United States)

    Sturman, B.; Breunig, I.

    2015-12-01

    Thresholds of stimulated Brillouin scattering (SBS) in solid-state whispering gallery mode (WGM) microresonators are analyzed. It is shown that the SBS interaction is substantially different here from that known in the bulk case and in the case of water droplet resonators. The reason is the absence of pure longitudinal acoustic WGMs owing to strong coupling of the longitudinal (l) and transverse (t) acoustic displacements at the surface of the resonator. As a result, a considerable increase of the SBS thresholds takes place, and the lowest thresholds correspond to the hybrid tl-modes with very large radial indices. Nevertheless, the thresholds lie in the μW range of the pump power. Dependence of the SBS power thresholds on the modal numbers and the possibility of self-tuning to the SBS resonance are analyzed.

  11. Beyond the Brillouin limit with the Penning Fusion Experiment

    International Nuclear Information System (INIS)

    Several years ago, it was proposed that a dense non-neutral plasma could be produced in a Penning trap. Nonneutral plasmas have excellent confinement, and such a dense plasma might produce simultaneously high density and good confinement. Recently, this theoretical conjecture has been demonstrated in a small (3 mm radius) electron experiment, PFX (Penning Fusion Experiment). Densities up to 35 times the Brillouin density (limiting number density in a static trap) have been inferred from the observed strong (100:1) spherical focusing. Electrons are injected at low energy from a single pole of the sphere. A surprising observation is the self-organization of the system into a spherical state, which occurs precisely when the trap parameters are adjusted to produce a spherical well. This organization is caused by a bootstrapping mechanism which produces a hysteresis. Observations of energy-scattered electrons confirm the existence of a dense spherical focus. copyright 1997 American Institute of Physics

  12. Bunching of temporal cavity solitons via forward Brillouin scattering

    CERN Document Server

    Erkintalo, Miro; Jang, Jae K; Coen, Stéphane; Murdoch, Stuart G

    2015-01-01

    We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.

  13. Dual-microcavity narrow-linewidth Brillouin laser

    CERN Document Server

    Loh, William; Baynes, Frederick; Cole, Daniel; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry; Papp, Scott; Diddams, Scott

    2014-01-01

    Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to $7.8\\times10^{-14} 1/\\sqrt{Hz}$ at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our du...

  14. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    CERN Document Server

    Wolff, Christian; Steel, Michael J; Eggleton, Benjamin J; Poulton, Christopher G

    2015-01-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the resonance width and shape of stimulated Brillouin scattering (SBS) in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Our results can be tra...

  15. Coherent Rayleigh-Brillouin scattering as a flow diagnostic technique

    Energy Technology Data Exchange (ETDEWEB)

    Graul, J. S.; Lilly, T. C. [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918 (United States)

    2014-12-09

    Broadband coherent Rayleigh-Brillouin scattering (CRBS) was used to measure translational gas temperatures for nitrogen at the ambient pressure of 0.8 atm using a purpose-built Fabry-Perot etalon spectrometer. Temperatures derived from the CRBS spectral analysis were compared with experimentally-measured temperatures, and were found to be, on average, within 2% of the experimentally-measured value. Axial flow velocities from a double jet at a pressure ratio of 0.38 were also measured by looking at the Doppler shift of the CRBS line shape. With recent developments in chirped laser technology and the capacity of CRBS to simultaneously provide thermodynamic and bulk flow information, the CRBS line shape acquisition and analysis technique presented here may allow for future time-resolved, characterization of aerospace flows.

  16. Stable and tunable self-seeded multiwavelength Brillouin-erbium fiber laser with higher OSNR

    Science.gov (United States)

    Zou, Hui; Yang, Ruilan; Shen, Xiao; Wei, Wei

    2016-07-01

    A stable and tunable self-seeded multiwavelength Brillouin-erbium fiber laser (BEFL) is designed and demonstrated based on a Single-Mode-Multimode-Single-Mode (SMS) fiber filter. The SMS filter is fabricated by splicing a 15 cm long multimode fiber between two single mode fibers. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber. By applying axial strain (from 0 to 466.7 μɛ) to the SMS filter with the same step of 66.7 μɛ , the multiwavelength of the output laser is tuned from 1553.58 to 1559.79 nm correspondingly, and the tunable range is 6.21 nm. The generation of up to 16 Brillouin Stokes wavelengths with 30 dB optical signal to noise ratio (OSNR) are obtained.

  17. Long Variable Delay and Distributed Sensing Using Stationary and Localized Brillouin Dynamic Gratings

    OpenAIRE

    Antman, Yair; Primerov, Nikolay; Sancho Dura, Juan; Thévenaz, Luc; Zadok, Avinoam

    2012-01-01

    Stationary and localized Brillouin dynamic gratings are generated using phase modulation of both pump waves by a pseudo-random bit sequence. The gratings are applied to long variable delay of pulses and to cm-level distributed sensing

  18. True Time Delay on tunable Microwave Photonic Filter based on Stimulated Brillouin Scattering in fibers

    OpenAIRE

    Sancho J.; Chin S.; Sagues M.; Loayssa A.; Lloret J.; Gasulla I.; Sales S.; Thevenaz L.; Capmany J.

    2010-01-01

    A dynamically reconfigurable Microwave Photonic Filter based on True Time Delay generated by Stimulated Brillouin Scattering in optical fibers and separate phase shift of the optical carrier has been experimentally demonstrated, resulting in a flexible tunable Free Spectral Range.

  19. Brillouin shifted third harmonic generation of a laser in a plasma

    International Nuclear Information System (INIS)

    The process of Brillouin shifted resonant third harmonic generation of an intense laser of finite spot size in a plasma is investigated. The laser of frequency ω0 and wave number k-vector0 excites an ion acoustic wave of frequency ω≅kcs and wave number k-vector≅2k-vector0, where cs is the ion acoustic speed, in the primary stimulated Brillouin scattering process. The laser also exerts a second harmonic ponderomotive force on electrons. This imparts them an oscillatory velocity v2ω0,2k0. This velocity beats with the electron density perturbation associated with the ion acoustic wave to produce a density perturbation at Brillouin shifted second harmonic. This perturbation couples with the oscillatory velocity vω0,k0 due to the laser to produce Brillouin shifted third harmonic current density and the radiation field. The phase matching is satisfied when plasma density is two third critical.

  20. Self-Advanced Propagation of Light Pulse in an Optical Fiber Based on Brillouin Scattering

    OpenAIRE

    Chin, Sanghoon; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2007-01-01

    We propose a novel method to realize self-induced fast light and signal advancement with no distinct pump source in optical fibers, based on stimulated Brillouin scattering. This scheme will be helpful for real application systems.

  1. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar

    International Nuclear Information System (INIS)

    A method for simultaneously obtaining the ocean temperature and salinity based on dual-wavelength Brillouin lidar is proposed in this letter. On the basis of the relationships between the temperature and salinity and the Brillouin shifts, a retrieval model for retrieving the temperature and salinity is established. By using the retrieval model, the ocean temperature and salinity can be simultaneously obtained through the Brillouin shifts. Simulation based on dual-wavelength Brillouin lidar is also carried out for verification of the accuracy of the retrieval model. Results show that the errors of the retrieval model for temperature and salinity are ±0.27 °C and ±0.33‰. (letter)

  2. Stimulated Brillouin scattering of an electromagnetic wave in weakly magnetized plasma with variably charged dust particles

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2009-10-01

    We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.

  3. All-optical calculus based on dynamic Brillouin grating reflectors in optical fibers

    OpenAIRE

    Primerov, Nikolay; Chin, Sang Hoon; Thévenaz, Luc; Ursini, Leonora; Santagiustina, Marco

    2011-01-01

    We experimentally demonstrate that all-optical signal calculus can be realized based on dynamic Brillouin gratings in optical fibers. Temporal integration and first-order differentiation were performed for optical pulse with various waveforms.

  4. Suppression of stimulated Brillouin scattering in high power fibre lasers and amplifiers

    OpenAIRE

    Hernandez-Solis, Vladimir

    2009-01-01

    Fibre sources in high power devices have significant advantages over conventional gas and solid state lasers. However, for applications that require the so-called singlefrequency sources with narrow linewidths, the output power is low mainly because of the problem of the stimulated Brillouin scattering (SBS). A model that accounts for the SBS in dual-clad fibre lasers and amplifiers is presented. This was carried out in order to study the key parameters that affect the Brillouin threshold...

  5. Multi-zone temperature sensor using a multi-wavelength Brillouin fiber ring laser

    OpenAIRE

    Galíndez Jamioy, Carlos Augusto; Madruga Saavedra, Francisco Javier; Ullán Nieto, Ángel; López Amo, Manuel; López Higuera, José Miguel

    2009-01-01

    A simple system for sensing temperature in multiple zones based on a multi-wavelength Brillouin fiber laser ring is presented. Optical fiber reels are serially concatenated and divided in zones (one per sensing area). Setting the Brillouin lasing in each spool of fiber generates a characteristic wavelength that depends on the fiber properties and the temperature in the zone. Thus, it is possible to measure temperature independently and accurately through heterodyne detection between two narro...

  6. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel;

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  7. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps

    OpenAIRE

    Antman, Yair; Primerov, Nikolay; Sancho Dura, Juan; Thévenaz, Luc; Zadok, Avinoam

    2012-01-01

    A novel technique for the localization of stimulated Brillouin scattering (SBS) interaction is proposed, analyzed and demonstrated experimentally. The method relies on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS), these waves being spectrally detuned by the Brillouin frequency shift. The PRBS symbol duration is much shorter than the acoustic lifetime. The interference between the two modulated waves gives rise to an acoustic grati...

  8. High-resolution Brillouin analysis in a carbon-fiber-composite unmanned aerial vehicle model wing

    Science.gov (United States)

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Shlomi, Orel; Silbiger, Maayan; Adler, Gadi; Zadok, Avi

    2016-05-01

    Standard optical fibers are successfully embedded within a model wing of an unmanned aerial vehicle, constructed of carbon fiber and epoxy, during its production. Time-gated Brillouin optical correlation domain analysis along the embedded optical fibers is performed with a spatial resolution of 4 cm. Tests were carried out using a portable measurement setup prototype. The results represent an important step towards applications of high-resolution Brillouin analysis outside the research laboratory.

  9. Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding

    OpenAIRE

    Soto, M. A.; Bolognini, G.; Di Pasquale, F.

    2009-01-01

    In this work, we propose the use of optical pulse coding techniques for simultaneous strain and temperature sensing based on spontaneous Brillouin scattering. Optical pulse coding provides a significant receiver signal-to-noise ratio enhancement, allowing for accurate Brillouin intensity and frequency shift measurements at low peak power levels. Due to the cross-sensitivity of these two parameters on both temperature and strain, optical pulse coding improves the temperature and strain resolut...

  10. Detection of cracks in a reinforced concrete beam using distributed Brillouin fibre sensors

    International Nuclear Information System (INIS)

    This paper presents the results of using distributed Brillouin fibre sensors to detect crack formation in a simply supported reinforced concrete beam subjected to four-point loading. A Brillouin multiple-peak fitting method was used to enhance the spatial and strain resolutions of the measurements. By doing this, the distributed strain profile along the beam was determined with a 5 cm read-out resolution in comparison with the 15 cm spatial resolution of the fibres. The location of the cracks was identified by locating the positions in the strain profile where the strain suddenly changes, by searching for the maximum compressive or tensile peaks in the Brillouin frequency spectrum, as opposed to conventional strain reading, which focuses solely on the maximum Brillouin peak. The amplitude of the Brillouin peak for the suddenly changed strain (crack) was found to be smaller than half of the amplitude of the maximum Brillouin peak at the maximum strain location corresponding to the average strain of the material, which would have been neglected by standard peak or area fitting methods, especially for fine cracks or the initial crack build-up period

  11. Theoretical analysis of the relationship between the Brillouin gain coefficient and the strain in the optical-fiber sensors

    Institute of Scientific and Technical Information of China (English)

    DONG Wu-qin; JIA Zhen-hong

    2008-01-01

    The relation between the power of the Brillouin signal and the swain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Brillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of thep arameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.

  12. Experimental analysis on the rapid measurement of a high precision Brillouin scattering spectrum in water using a Fabry-Pérot etalon

    Science.gov (United States)

    Zhou, Bo; Fan, Qiming; Ma, Yong; Yao, Yuan; Li, Hao; Huang, Jun; Liang, Kun

    2016-05-01

    The Brillouin lidar system with a Fabry-Pérot (F-P) etalon has been widely used in remote sensing to study ocean characteristics such as temperature, sound speed, etc. In this system, the measurement error stemming from the spectral broadening of an F-P etalon was typically neglected in applications where high measurement accuracy was not essential. In this paper, an integration method on radius and a convolution method on frequency are proposed to remove the broadening effect and improve the measurement accuracy, respectively. Experiments of underwater Brillouin scattering show that both fitting methods effectively reduce the measurement error due to the transmission function of an F-P etalon. A temperature accuracy of 0.1 °C and a salinity accuracy of 0.5‰ were achieved. Moreover, with the convolution method, the computational cost was reduced to 3 s, which enables rapid measurement of Brillouin shift and linewidth and makes the on-line remote sensing applications possible.

  13. Beyond the Brillouin limit with the Penning fusion experiment

    International Nuclear Information System (INIS)

    Several years ago, it was proposed that a dense nonneutral plasma could be produced in a Penning trap. Nonneutral plasmas have excellent confinement. Thus, such a dense plasma might produce simultaneously high density and good confinement (as needed for fusion). Recently, this theoretical conjecture has been demonstrated in a small (3 mm radius) electron experiment (PFX). Densities up to 35 times the Brillouin density (limiting number density in a static trap) have been inferred from the observed strong (100:1) spherical focussing. Electrons are injected at low energy from a single pole of the sphere. A surprising observation is the self-organization of the system into a spherical state, which occurs precisely when the trap parameters are adjusted to produce a spherical well. This organization is observed by a bootstrapping which produces a hysteresis. Additional observations which confirm the dense spherical focus are energy-scattered electrons and deflections of an electron probe beam by the space charge of the central focus

  14. Microresonator Brillouin Laser Stabilization Using a Microfabricated Rubidium Cell

    CERN Document Server

    Loh, William; Leopardi, Holly F; Fortier, Tara M; Quinlan, Frank; Kitching, John; Papp, Scott B; Diddams, Scott A

    2016-01-01

    We frequency stabilize the output of a miniature stimulated Brillouin scattering (SBS) laser to rubidium atoms in a microfabricated cell to realize a laser system with frequency stability at the $10^{-11}$ level over seven decades in averaging time. In addition, our system has the advantages of robustness, low cost and the potential for integration that would lead to still further miniaturization. The SBS laser operating at 1560 nm exhibits a spectral linewidth of 820 Hz, but its frequency drifts over a few MHz on the 1 hour timescale. By locking the second harmonic of the SBS laser to the Rb reference, we reduce this drift by a factor of $10^3$ to the level of a few kHz over the course of an hour. For our combined SBS and Rb laser system, we measure a frequency noise of $4\\times10^4$ $Hz^2/Hz$ at 10 Hz offset frequency which rapidly rolls off to a level of 0.2 $Hz^2/Hz$ at 100 kHz offset. The corresponding Allan deviation is $\\leq2\\times10^{-11}$ for averaging times spanning $10^{-4}$ to $10^3$ s. By optical...

  15. Angular selection of incident waves by photonic crystals with position-varying Dirac points at the Brillouin zone boundary

    Science.gov (United States)

    Xu, Changqing; Fang, Anan; Chu, Hongchen; Luo, Jie; Chan, C. T.; Hang, Zhi Hong; Lai, Yun

    2016-06-01

    We demonstrate the angular selection of incident electromagnetic waves using photonic crystals (PCs) composed of a square lattice of dielectric rods which exhibit position-varying Dirac conical dispersion at the Brillouin zone boundary. At the frequency of the Dirac point, the transmittance can reach unity at a particular incident angle associated with the Dirac dispersion, while for all other incident angles the waves are reflected due to the existence of a directional photonic band gap. By changing the size of the dielectric rods, the position of the Dirac point at the Brillouin zone boundary is variable, which makes the unity transmission angle customizable. Interestingly, we show that such a scheme of angular selection is almost independent of the refractive index of the background medium, as long as it is not too large so that a diffraction effect emerges. By investigating the PC being sandwiched by two different types of media, we find it actually acts as an optical 0 or π phase modulator at that particular incident angle. By attaching a metasurface to the PC, angular selection in the reflection geometry can also be achieved. Our work establishes a systematic and efficient method to achieve angular selection of arbitrary incident waves based on Dirac dispersions.

  16. Study of a dynamical plasma response in laser filamentation induced in silica glasses in presence of stimulated Brillouin scattering and in KDP crystals

    International Nuclear Information System (INIS)

    This thesis deals with the role of an inertial plasma response produced by laser pulses in self-focusing regime. This phenomenon is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses and excites various ionization channels for femtosecond pulses. We start by deriving the propagation equations accounting for filamentation due to optical Kerr effect and stimulated Brillouin scattering in the presence of a dynamical plasma response. Then, we present numerical results on the nonlinear propagation of large-scaled laser beams. These results validate the anti-Brillouin system adopted on the MegaJoule laser (LMJ). Next, we present numerical and theoretical results on filamentation of nanosecond light pulses operating in the ultraviolet and infrared range in fused silica. Emphasis is put on the action of a dynamical plasma response. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistationary balance breaks up through modulational instabilities induced by plasma feedback on the pump wave. We show that phase modulations suppress both stimulated Brillouin scattering and plasma instabilities. Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Secondly, we compare the filamentation dynamics in silica and KDP crystal. The ionization model for KDP crystals takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power for self-focusing. (author)

  17. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission.

    Science.gov (United States)

    Cohen, Raphael; London, Yosef; Antman, Yair; Zadok, Avi

    2014-05-19

    A new technique for Brillouin scattering-based, distributed fiber-optic measurements of temperature and strain is proposed, analyzed, simulated, and demonstrated. Broadband Brillouin pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier, providing high spatial resolution. The reconstruction of the position-dependent Brillouin gain spectra along 5 cm of a silica single-mode fiber under test, with a spatial resolution of 4 mm, is experimentally demonstrated using a 25 GHz-wide amplified spontaneous emission source. A 4 mm-long localized hot spot is identified by the measurements. The uncertainty in the reconstruction of the local Brillouin frequency shift is ± 1.5 MHz. The single correlation peak between the pump and signal is scanned along a fiber under test using a mechanical variable delay line. The analysis of the expected spatial resolution and the measurement signal-to-noise ratio is provided. The measurement principle is supported by numerical simulations of the stimulated acoustic field as a function of position and time. Unlike most other Brillouin optical correlation domain analysis configurations, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators, microwave synthesizers, or pattern generators. Resolution is scalable to less than one millimeter in highly nonlinear media. PMID:24921326

  18. Iterative universal state selective correction for the Brillouin-Wigner multireference coupled-cluster theory.

    Science.gov (United States)

    Banik, Subrata; Ravichandran, Lalitha; Brabec, Jiří; Hubač, Ivan; Kowalski, Karol; Pittner, Jiří

    2015-03-21

    As a further development of the previously introduced a posteriori Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011); J. Brabec et al., ibid. 136, 124102 (2012)], we suggest an iterative form of the USS correction by means of correcting effective Hamiltonian matrix elements. We also formulate USS corrections via the left Bloch equations. The convergence of the USS corrections with excitation level towards the full configuration interaction (FCI) limit is also investigated. Various forms of the USS and simplified diagonal USS corrections at the singles and doubles and perturbative triple levels are numerically assessed on several model systems and on the ozone and tetramethyleneethane molecules. It is shown that the iterative USS correction can successfully replace the previously developed a posteriori Brillouin-Wigner coupled cluster size-extensivity correction, while it is not sensitive to intruder states and performs well also in other cases when the a posteriori one fails, like, e.g., for the asymmetric vibration mode of ozone. PMID:25796230

  19. Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures

    CERN Document Server

    Gu, Ziyu; van de Water, Willem; Ubachs, Wim

    2013-01-01

    Rayleigh Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earth's atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The measurements performed at a wavelength of 366.8 nm detect spontaneous RB scattering at a 90 degree scattering angle from a sensitive intracavity setup, delivering scattering profiles at a 1 percent rms noise level or better. The elusive transport coefficient, the bulk viscosity, is effectively derived by a comparing the measurements to the model, yielding an increased trend. The calculated (Tenti S6) line shapes are consistent with experimental data at the level of 2 percent, meeting the requirements for the future RB scattering LIDAR missions in the Earth's atmosphere. However, the systematic 2 percent deviation may imply that the model has a limit to describe the finest details of RB scattering in air. Finally, it...

  20. Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments

    Science.gov (United States)

    Cohen, Bruce I.; Baldis, Hector A.; Berger, Richard L.; Estabrook, Kent G.; Williams, Edward A.; Labaune, Christine

    2001-02-01

    Multiple laser beam experiments with plastic target foils at the Laboratoire pour L'Utilisation des Lasers Intenses (LULI) facility [Baldis et al., Phys. Rev. Lett. 77, 2957 (1996)] demonstrated anticorrelation of stimulated Brillouin and Raman backscatter (SBS and SRS). Detailed Thomson scattering diagnostics showed that SBS always precedes SRS, that secondary electron plasma waves sometimes accompanied SRS appropriate to the Langmuir Decay Instability (LDI), and that, with multiple interaction laser beams, the SBS direct backscatter signal in the primary laser beam was reduced while the SRS backscatter signal was enhanced and occurred earlier in time. Analysis and numerical calculations are presented here that evaluate the influences on the competition of SBS and SRS, of local pump depletion in laser hot spots due to SBS, of mode coupling of SBS and LDI ion waves, and of optical mixing of secondary and primary laser beams. These influences can be significant. The calculations take into account simple models of the laser beam hot-spot intensity probability distributions and assess whether ponderomotive and thermal self-focusing are significant. Within the limits of the model, which omits several other potentially important nonlinearities, the calculations suggest the effectiveness of local pump depletion, ion wave mode coupling, and optical mixing in affecting the LULI observations.

  1. Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide.

    Science.gov (United States)

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang; Xie, Heng; Gao, Ya; Feng, Danqi; Xiong, Huang

    2014-12-29

    We propose a scheme for on-chip all optical mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide. To describe the mode conversion the theoretical model of the FSBS is established by taking into account the radiation pressure and the electrostriction force simultaneously. The numerical simulation is carried out for the mode conversion from the fundamental mode E11x to the higher-order mode E21x. The results indicate that the mode conversion efficiency is affected by the waveguide length and the input pump light power, and the highest efficiency can reach upto 88% by considering the influence of optical and acoustic absorption losses in the hybrid waveguide. Additionally, the conversion bandwidth with approximate 12.5 THz can be achieved in 1550nm communication band. This mode converter on-chip is a promising device in the integrated optical systems, which can effectively increase the capacity of silicon data busses for on-chip optical interconnections. PMID:25607172

  2. Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, G.; Schluck, F.; Spatschek, K. H. [Institut fuer Theoretische Physik, Heinrich-Heine-Universitaet Duesseldorf, D-40225 Duesseldorf (Germany)

    2012-09-15

    Parametric plasma processes received renewed interest in the context of generating ultraintense and ultrashort laser pulses up to the exawatt-zetawatt regime. For Brillouin scattering and seed pulse amplification at high intensities, the strong coupling regime is of special interest. The intensity-driven low-frequency modes depend on the amplitudes of the laser fields. It is investigated here how these modes develop in the relativistic regime. Then, a unified treatment of Raman and Brillouin processes becomes necessary. Assuming circular polarization, it is shown that with increasing intensity an overlap of the originally different Raman, Brillouin, and modulational instability branches occurs. Numerical simulations with a linearized Maxwell-fluid code confirm the analytically predicted behavior.

  3. Fiber-Optic Interferometry Using Narrowband Light Source and Electrical Spectrum Analyzer: Influence on Brillouin Measurement

    CERN Document Server

    Mizuno, Yosuke; Nakamura, Kentaro

    2014-01-01

    We observe an interference pattern using a simple fiber-optic interferometer consisting of an electrical spectrum analyzer and a narrowband light source, which is commonly employed for observing the Brillouin gain spectrum. This interference pattern expands well beyond the frequency range corresponding to the Brillouin frequency shift in silica fibers (approximately 11 GHz at 1550 nm). Using both silica single-mode and polymer optical sensing fibers, we then experimentally prove that the distinctive noise in a self-heterodyne-based Brillouin measurement with an unoptimized polarization state originates from the interference between the reference light and the Fresnel-reflected light. This noise can be almost completely suppressed by employing a delay line that is longer than the coherence length of the light source and by artificially applying a high loss near the open end of the sensing fiber.

  4. Exploiting the self-similar nature of Raman and Brillouin amplification

    Science.gov (United States)

    Trines, R.; Alves, E. P.; Fonseca, R. A.; Silva, L. O.; Webb, E.; Fiuza, F.; Cairns, R. A.; Bingham, R.; Norreys, P.

    2015-11-01

    Raman and Brillouin amplification are two schemes for amplifying and compressing short laser pulses in plasma. Depending on the laser and plasma configurations, these schemes could potentially deliver the high-energy high-power pulses needed for inertial confinement fusion, especially fast-ignition fusion. Analytical self-similar models for both Raman and Brillouin amplification have already been derived, but the consequences of this self-similar behavior are little known and hardly ever put to good use. In this talk, we will give an overview of the self-similar laws that govern the evolution of the probe pulse in Raman and Brillouin amplification, and show how these laws can be exploited, in particular regarding the parameters of the initial probe pulse, to control the properties of the final amplified probe and improve the efficiency of the process.

  5. Wave front reversal during nonstationary stimulated Mandel'shtam-Brillouin scattering of focused beams

    Science.gov (United States)

    Betin, A. A.; Vasilev, A. F.; Kulagin, O. V.; Manishin, V. G.; Iashin, V. E.

    1985-09-01

    Consideration is given to the conditions for the existence and observation of wave front reversal in focused light beams due to nonstationary stimulated Mandel'shtam-Brillouin scattering. Experimental observations were carried out for light beams having small scale spatial inhomogeneities at a wavelength of 1.05 microns. The precision of the wave front reversal is determined, and the reflection coefficients of the Mandel'shtam-Brillouin scattering mirrors are measured with respect to quasi-homogeneous light beams under saturation conditions. The relative duration of the light pulses was t sub i/T2 = 0.15-1 (where T2 is the hypersound relaxation time). It is shown that the maximum duration of the pulses, which were reflected by a stimulated Mandel'shtam-Brillouin mirror, was limited by competing nonlinear breakdown and self-focusing processes. The accuracy of a correction for wave front reversal is also determined.

  6. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean.

    Science.gov (United States)

    Fry, E S; Emery, Y; Quan, X; Katz, J W

    1997-09-20

    There are five mutually dependent variables relevant to Brillouin lidar measurements of temperature and sound speed in the ocean; they are (1) the Brillouin shift, (2) the sound speed, (3) the index of refraction, (4) the temperature, and (5) the salinity. We use three well-known relations to analyze rigorously the interdependence of these five variables. Clearly, a Brillouin shift measurement does not provide a stand-alone determination of temperature or sound speed; one more variable or one more relation must be known. The use of mean values of salinity that have been obtained by an analysis of a large set of historical in situ data is considered for this additional relation. PMID:18259560

  7. Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction

    Science.gov (United States)

    Lehmann, G.; Schluck, F.; Spatschek, K. H.

    2012-09-01

    Parametric plasma processes received renewed interest in the context of generating ultraintense and ultrashort laser pulses up to the exawatt-zetawatt regime. For Brillouin scattering and seed pulse amplification at high intensities, the strong coupling regime is of special interest. The intensity-driven low-frequency modes depend on the amplitudes of the laser fields. It is investigated here how these modes develop in the relativistic regime. Then, a unified treatment of Raman and Brillouin processes becomes necessary. Assuming circular polarization, it is shown that with increasing intensity an overlap of the originally different Raman, Brillouin, and modulational instability branches occurs. Numerical simulations with a linearized Maxwell-fluid code confirm the analytically predicted behavior.

  8. Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction

    International Nuclear Information System (INIS)

    Parametric plasma processes received renewed interest in the context of generating ultraintense and ultrashort laser pulses up to the exawatt-zetawatt regime. For Brillouin scattering and seed pulse amplification at high intensities, the strong coupling regime is of special interest. The intensity-driven low-frequency modes depend on the amplitudes of the laser fields. It is investigated here how these modes develop in the relativistic regime. Then, a unified treatment of Raman and Brillouin processes becomes necessary. Assuming circular polarization, it is shown that with increasing intensity an overlap of the originally different Raman, Brillouin, and modulational instability branches occurs. Numerical simulations with a linearized Maxwell-fluid code confirm the analytically predicted behavior.

  9. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    CERN Document Server

    Sarabalis, Christopher J; Safavi-Naeini, Amir H

    2016-01-01

    We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50,000 1/(Wm) for backward and forward Brillouin scattering, respectively.

  10. Brillouin study of phonons, magnons and magnetoelastic coupling in the antiferromagnet KNiF3

    Science.gov (United States)

    Ganot, F.; Dugautier, S.; Moch, P.; Nouet, J.

    1981-03-01

    Brillouin scattering by magnons and acoustic phonons in KNiF3 has been studied as function of the temperature. At low temperature, we observe unusually large splittings of the phonon Brillouin lines, related to the multidomains structure of the samples. Using our determination of the anisotropy constant, K = 1.1×104 erg/cm3, we calculate from the splitting of the longitudinal [1, 1, 0] phonon a magnetoelastic coefficient ‖b2‖ = 3.3×107 erg/cm3. We also study the domains reorientation under an applied magnetic field.

  11. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire.

    Science.gov (United States)

    Casas-Bedoya, Alvaro; Morrison, Blair; Pagani, Mattia; Marpaung, David; Eggleton, Benjamin J

    2015-09-01

    We demonstrate the first, to the best of our knowledge, functional signal processing device based on stimulated Brillouin scattering in a silicon nanowire. We use only 1 dB of on-chip stimulated Brillouin scattering gain to create an RF photonic notch filter with 48 dB of suppression, 98 MHz linewidth, and 6 GHz frequency tuning. This device has potential applications in on-chip microwave signal processing and establishes the foundation for the first CMOS-compatible high-performance RF photonic filter. PMID:26368735

  12. Diagnostic techniques for photonic materials based on Raman and Brillouin spectroscopies

    Institute of Scientific and Technical Information of China (English)

    M. Mattarelli; M. Ferrari; Y. Jestin; G. Nunzi Conti; S. Pelli; G.C. Righini; S.Caponi; A. Chiappini; M. Montagna; E. Moser; F. Rossi; C.Tosello; C. Armellini; A. Chiasera

    2007-01-01

    The elastic and vibrational properties of a material, bulk or planar waveguide, are studied by Brillouin and Raman spectroscopy to follow the process of nanocrystals growth in glass-ceramics. The nanoparticles cause the appearance, in the low frequency Raman spectrum, of characteristic peaks, whose position depends on the size of the crystals. At the same time, sharp crystal peaks, due to optical phonons, appear in the Raman spectra, allowing the determination of the nucleated phase, and a frequency shift of the Brillouin peaks is observed.

  13. Determination of the elastic constants of portlandite by Brillouin spectroscopy

    KAUST Repository

    Speziale, S.

    2008-10-01

    The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young\\'s modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson\\'s ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.

  14. Size-dependent magnetization dynamics in individual Ni80Fe20 disk using micro-focused Brillouin Light Scattering spectroscopy

    Science.gov (United States)

    Shimon, G.; Adeyeye, A. O.

    2015-09-01

    A direct and systematic investigation of the magnetization dynamics in individual circular Ni80Fe20 disk of diameter (D) in the range from 300 nm to 1 μm measured using micro-focused Brillouin Light Scattering (μ-BLS) spectroscopy is presented. At high field, when the disks are in a single domain state, the resonance frequency of the uniform center mode is observed to reduce with reducing disk's diameter. For D = 300 nm, additional edge and end-domains resonant modes are observed due to size effects. At low field, when the disks are in a vortex state, a systematic increase of resonant frequency of magnetostatic modes in a vortex state with the square root of the disks' aspect ratio (thickness divided by radius) is observed. Such dependence diminishes for disks with larger aspect ratio due to an increasing exchange energy contribution. Micromagnetic simulations are in excellent agreement with the experiments.

  15. Mechanical properties of low- and high-k dielectric thin films: A surface Brillouin light scattering study

    Science.gov (United States)

    Zizka, J.; King, S.; Every, A. G.; Sooryakumar, R.

    2016-04-01

    Surface Brillouin light scattering measurements are used to determine the elastic constants of nano-porous low-k SiOC:H (165 nm) and high-k HfO2 (25 nm) as well as BN:H (100 nm) films grown on Si substrates. In addition, the study investigates the mechanical properties of ultra-thin (25 nm) blanket TiN cap layers often used as hard masks for patterning, and their effects on the underlying low-k dielectrics that support a high level of interconnected porosity. Depending on the relative material properties of individual component layers, the acoustic modes manifest as confined, propagating, or damped resonances in the light scattering spectra, thereby enabling the mechanical properties of the ultra-thin films to be determined.

  16. Micromagnetic study of CoPt-SiO2 granular films by spin-wave Brillouin scattering

    International Nuclear Information System (INIS)

    A spin-wave Brillouin scattering study of a CoPt-SiO2 granular magnetic recording medium was made. This film contains ferromagnetic CoPt particles in a SiO2 matrix, and has an extremely low medium noise property due to little exchange coupling between magnetic grains. Spin waves of both the propagating surface mode and standing wave mode were found to be excited in granular magnetic films with various microstructures. A possible origin of the spin wave is a magnetostatic coupling between regularly ordered CoPt grains, as reported for artificially patterned magnetic thin films. This result shows two promising features of the CoPt-SiO2 granular film for high density recording medium: It is an ordered media obtained in a self-organizing manner, and it is less influenced by the thermal fluctuation effect, which is a serious problem for current high density magnetic recording. (c) 2000 American Institute of Physics

  17. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach

    International Nuclear Information System (INIS)

    A 1D steady-state model is developed to deal with stimulated scattering processes. The volume and boundary noise sources for scattered light are discussed in detail. Our results indicate that the boundary noise sources may play a significant role in estimating the reflectivity of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). With the capability of our model to deal with broadband scattered light, we find that pump depletion could be the main reason to the anti-correlation between SBS and SRS versus electron density observed in experiments. A simple method is proposed to phenomenologically include the effect of nonlinear saturation mechanisms in our model and reasonable results are obtained

  18. Experimental Studies of the Stimulated Brillouin Scattering Instability in the Saturated Regime

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D

    2002-10-29

    An experimental study of the stimulated Brillouin scattering (SBS) instability has investigated the effects of velocity gradients and kinetic effects on the saturation of ion-acoustic waves in a plasma. For intensities less than I < 1.5 x 10{sup 15} W cm{sup -2}, the SBS instability is moderated primarily by velocity gradients, and for intensities above this threshold, nonlinear trapping is invoked to saturate the instability. We report direct evidence of detuning of SBS by a velocity gradient which was achieved by directly measuring the frequency shift of the SBS driven acoustic wave relative to the local resonant acoustic frequency. Furthermore, a novel use of Thomson scattering has allowed us to gather direct evidence of kinetic effects associated with the SBS process. Specifically, a measured two-fold increase of the ion temperature has been linked with laser beam excitation of ion-acoustic waves to large amplitudes by the SBS instability. Ion-acoustic waves were excited to large amplitude with a 2{omega} 1.2-ns long interaction beam with intensities up to 5 x 10{sup 15} W cm{sup -2}. The local frequency, amplitude, and spatial range of these waves were measured with a 3{omega} 200ps Thomson-scattering probe beam. These detailed and accurate measurements in well-characterized plasma conditions allow for the first time a direct test of non-linear models of the saturation of SBS. The measured two-fold increase of the ion temperature and its correlation with SBS reactivity measurements is the first quantitative evidence of hot ions created by ion trapping in laser plasmas.

  19. THE INTERFACE POLYCARBONATE-GLASS : A THEORETICAL STUDY OF BRILLOUIN SPECTRA AND PHOTOELASTIC PROPERTIES

    OpenAIRE

    Nizzoli, F.; A Franchini; Santoro, G.

    1984-01-01

    We present calculations of surface waves and Brillouin scattering intensity for polycarbonate films supported by a pyrex substrate in the thickness range 0-0.6 µm. Comparison between calculated and experimental spectra shows that it is possible to obtain accurate information concerning the thickness of the film and the value and sign of the photoelastic constants.

  20. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.

    Science.gov (United States)

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2013-01-01

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048

  1. High-coherence light extraction through a compact Brillouin/erbium fiber laser

    Science.gov (United States)

    Chen, Mo; Wang, Jianfei; Chen, Wei; Sun, Shilin; Meng, Zhou

    2016-05-01

    High-coherence light is stringently demanded in high-accuracy interferometric optical fiber sensors, where the phase noise of the light source greatly affects the sensitivity of the whole system. Distributed-feedback laser diodes with a phase noise of -80 ~ -90 dB/Hz1/2 at 1 kHz (with 1 m optical path difference) is now easily obtained, but the interferometric fiber sensors requires the laser source with the phase noise lower than -100 dB/Hz1/2. Lasers with ultra-low-noise usually require complicated and sophisticated techniques. We propose a novel structure to realize high-coherence light extraction through a compact Brillouin/erbium fiber laser (BEFL) which uses a length of 4 m erbium-doped fiber as both the Brillouin and linear gain media. The phase noise of the Brillouin pump light is greatly smoothed and suppressed after being transferred to the Brillouin Stokes light. High-coherence light with the phase noise of about -104 dB/Hz1/2 at 1 kHz is extracted through the compact BEFL from a commercialized laser diode with the phase noise of about -89 dB/Hz1/2. The capability of phase noise suppression in the compact BEFL presents much importance especially in large-array interferometric fiber sensor systems.

  2. Monitoring of large structures for safety issues using Brillouin distributed sensing

    OpenAIRE

    Thévenaz, Luc; Chang, Ki-Tae; Niklès, Marc

    2003-01-01

    Brillouin time-domain analysis in optical fibres is a novel technique making possible a distributed measurement of temperature and strain over long distance and will deeply modify our view about monitoring large structures, such as dams, bridges, tunnels and pipelines.

  3. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    Science.gov (United States)

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated. PMID:19714043

  4. 100km distributed temperature sensor based on coherent detection of spontaneous Brillouin back-scatter

    OpenAIRE

    Alahbabi, M.; CHO, Y. T.; Newson, T.P.

    2003-01-01

    We report the longest distributed temperature sensor based on microwave heterodyne detection of the frequency of the anti-Stokes Brillouin signal. At a sensing range of 100km, the temperature accuracy was 8degC, with a spatial resolution of 50m.

  5. Stimulated Brillouin scattering phase-locking using a transient acoustic standing wave excited through an optical interference field

    International Nuclear Information System (INIS)

    Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.

  6. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis.

    Science.gov (United States)

    Elooz, David; Antman, Yair; Levanon, Nadav; Zadok, Avi

    2014-03-24

    A new scheme for distributed Brillouin sensing of strain and temperature in optical fibers is proposed, analyzed and demonstrated experimentally. The technique combines between time-domain and correlation-domain analysis. Both Brillouin pump and signal waves are repeatedly co-modulated by a relatively short, high-rate phase sequence, which introduces Brillouin interactions in a large number of discrete correlation peaks. In addition, the pump wave is also modulated by a single amplitude pulse, which leads to a temporal separation between the generation of different peaks. The Brillouin amplification of the signal wave at individual peak locations is resolved in the time domain. The technique provides the high spatial resolution and long range of unambiguous measurement offered by correlation-domain Brillouin analysis, together with reduced acquisition time through the simultaneous interrogation of a large number of resolution points. In addition, perfect Golomb codes are used in the phase modulation of the two waves instead of random sequences, in order to reduce noise due to residual, off-peak Brillouin interactions. The principle of the method is supported by extensive numerical simulations. Using the proposed scheme, the Brillouin gain spectrum is mapped experimentally along a 400 m-long fiber under test with a spatial resolution of 2 cm, or 20,000 resolution points, with only 127 scans per choice of frequency offset between pump and signal. Compared with corresponding phase-coded, Brillouin correlation domain analysis schemes with equal range and resolution, the acquisition time is reduced by a factor of over 150. A 5 cm-long hot spot, located towards the output end of the pump wave, is properly identified in the measurements. The method represents a significant advance towards practical high-resolution and long range Brillouin sensing systems. PMID:24663994

  7. Distributed fiber Brillouin strain and temperature sensor with centimeter spatial resolution by coherent probe-pump technique

    Science.gov (United States)

    Zou, Lufan; Bao, Xiaoyi; Wan, Yidun; Ravet, Fabien; Chen, Liang

    2005-05-01

    We present a sensing principle of the distributed fiber Brillouin strain and temperature sensor by coherent probe-pump technique that offers a new method to achieve centimeter spatial resolution with high frequency resolution. A combination of continuous wave (cw) and pulse source as the probe (Stokes) beam and cw laser as the pump beam have resulted in stronger Brillouin interaction of Stokes and pump inside the pulse-length in the form of cw-pump and pulse-pump interactions. We find that the coherent portion inside the pulse-length of these two interactions due to the same phase has a very high Brillouin amplification. The Brillouin profile originating from the coherent interaction of pulse-pump with cw-pump results in high temperature and strain accuracy with centimeter resolution, which has been verified by successfully detecting 1.5 cm out-layer crack on an optical ground wire (OPGW) cable.

  8. Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG

    Science.gov (United States)

    Dragic, P. D.; Pamato, M. G.; Iordache, V.; Bass, J. D.; Kucera, C. J.; Jones, M.; Hawkins, T. W.; Ballato, J.

    2016-01-01

    An all-glass optical fiber derived from single-crystal LuAG is investigated for its potential use in athermal Brillouin distributed strain sensors. Such sensor systems are comprised of fiber whose Brillouin frequency shift is independent of temperature, but not independent of strain. Bulk Brillouin spectroscopy measurements on the precursor LuAG crystal are performed to gain insight into the crystal-to-glass transition. Results suggest that both the mass density and acoustic velocity are reduced relative to the crystal phase, in common with the other rare earth aluminosilicates. Advantages of the LuAG derived fiber over other rare earth garnet-derived fibers for the sensing application are a stronger strain response and larger Brilloun gain with narrower Brillouin spectral width.

  9. Photonic crystal fiber-based multi-wavelength Brillouin fiber laser with dual-pass amplification configuration

    Institute of Scientific and Technical Information of China (English)

    R. Parvizi; S. W. Harun; N. M. Ali; N. S. Shahabuddin; H. Ahmad

    2011-01-01

    @@ A simple technique for achieving a stable, room temperature and multi-wavelength lasing with narrow linewidth is demonstrated using Brillouin fiber laser (BFL) with a 100-m-long photonic crystal fiber (PCF) in conjunction with a dual-pass configuration. A broadband fiber Bragg grating (FBG) operating in the C-band region is incorporated at the end side of the setup to allow a dual-pass operation. The proposed BFL can operate at any wavelength depending on the Brillouin pump wavelength and the FBG's reflection region used. With a Brillouin pump (BP) of 15.7 dBm, approximately 7 Stokes and 4 anti-Stokes lines are obtained with a line spacing of 0.08 nm.%A simple technique for achieving a stable, room temperature and multi-wavelength lasing with narrow linewidth is demonstrated using Brillouin fiber laser (BFL) with a 100-m-long photonic crystal fiber (PCF) in conjunction with a dual-pass configuration. A broadband fiber Bragg grating (FBG) operating in the C-band region is incorporated at the end side of the setup to allow a dual-pass operation. The proposed BFL can operate at any wavelength depending on the Brillouin pump wavelength and the FBG's reflection region used. With a Brillouin pump (BP) of 15.7 dBm, approximately 7 Stokes and 4 anti-Stokes lines are obtained with a line spacing of 0.08 nm.

  10. Tunable and reconfigurable single passband filter using stimulated Brillouin scattering and intensity modulation

    Science.gov (United States)

    Hu, Shuling; Xiao, Zeyu; Wang, Huanhuan

    2015-07-01

    A tunable and reconfigurable single passband microwave photonic filter based on stimulated Brillouin scattering (SBS) and intensity modulation is presented and theoretically analyzed. Three Brillouin pumps with equal intensity are generated by selecting appropriate bias voltages and modulation indices. Then a reconfigurable passband can be achieved by superposition of the three pumps. Simulation results demonstrate that the proposed filter has a 22-GHz continuous tuning range with a high out-of-band rejection ratio above 40 dB. The -3-dB bandwidth can be tuned from 12 to 95 MHz, and the flatness is less than 1.5 dB. This technique uses a low-frequency (0 to 35 MHz) modulation signal to realize passband reshaping, and has potential applications in communication and radar systems.

  11. Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation

    Science.gov (United States)

    Dong, Mark; Winful, Herbert G.

    2016-04-01

    We present a unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields is described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here is sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test this approach on some published experiments and find excellent agreement with the results.

  12. Nonstationary Mandelstam-Brillouin stimulated scattering of focused light beams under conditions of saturation

    Science.gov (United States)

    Andreev, N. F.; Bespalov, V. I.; Dvoretskii, M. A.; Pasmanik, G. A.

    1983-10-01

    It is shown that with nonstationary Mandelstam-Brillouin stimulated scattering in SF6 (p = 16 atm), wave front reversal occurs over a wide range of changes in the energy of the laser radiation (0.3 to 3 J). The reversal has a large reflectivity (approximately 0.9-0.95) and high precision (approximately 0.95). It is found that the nonstationariness of the Mandelstam-Brillouin scattering leads to time variation in the spatial distribution of the hypersound and laser radiation intensities in the bulk of the nonlinear medium. With a sufficiently high energy of laser radiation, the characteristic region of its attenuation from the scattering by the hypersound into an oncoming Stokes wave is localized near the entrance to the nonlinear medium. As a result, the intensity of the radiation passing through the focal instability decreases sharply, and this aids in eliminating the optical breakdown.

  13. Pressure and temperature dependences of the acoustic behaviors of biocompatible silk studied by using Brillouin spectroscopy

    Science.gov (United States)

    Lee, Byoung Wan; Ryeom, Junho; Ko, Jae-Hyeon; Kim, Dong Wook; Park, Chan Hum; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo

    2016-07-01

    The elastic properties of a biocompatible silk film were investigated under temperature and pressure variations by using Brillouin spectroscopy. The Brillouin frequency shift decreased monotonically upon heating and showed a sudden change at the glass transition temperature. The existence of water molecules in the film increased the longitudinal modulus by approximately 10% and induced a relaxation peak in the hypersonic damping at ~60 ◦ C. The pressure dependences of the sound velocities of the longitudinal and the transverse acoustic modes and the refractive index were determined for the first time at pressures up to ~15.5 GPa. All these properties increased upon compression; these changes indicated that the free volume in the silk film collapsed at a pressure of about 3 GPa.

  14. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    OpenAIRE

    Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; S. J. Briczinski; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; J. M. Ruohoniemi

    2015-01-01

    Published version. Source at http://doi.org/10.5194/angeo-33-983-2015. Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the S...

  15. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers

    OpenAIRE

    Sancho Durá, Juan; Sales Maicas, Salvador; Primerov, N.; Chin, S; Antman, Y.; Zadok, A; Thevenaz, L.

    2012-01-01

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations co...

  16. Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rax, J. M., E-mail: jean-marcel.rax@polytechnique.edu [Université de Paris XI and LOA, ENSTA–Ecole Polytechnique, 91128 Palaiseau (France); Fruchtman, A. [HIT, Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel); Gueroult, R.; Fisch, N. J. [PPPL, Princeton University, Princeton, New Jersey 08540 (United States)

    2015-09-15

    The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed.

  17. Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal

    OpenAIRE

    Wilts, Bodo D; MICHIELSEN, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2011-01-01

    The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin and air assemblies inside the scales as domains of a single-network diamond (Fd3m) photonic crystal. We visualized the topology of the first Brillouin zone (FBZ) by imaging scatterometry, and we re...

  18. Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas

    International Nuclear Information System (INIS)

    The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed

  19. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  20. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  1. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a Silicon nanowire

    OpenAIRE

    Casas-Bedoya, Alvaro; Morrison, Blair; Pagani, Mattia; Marpaung, David; Eggleton, Benjamin J.

    2015-01-01

    We demonstrate the first functional signal processing device based on stimulated Brillouin scattering in a silicon nanowire. We use only 1 dB of on-chip SBS gain to create an RF photonic notch filter with 48 dB of suppression, 98 MHz linewidth, and 6 GHz frequency tuning. This device has potential applications in on-chip microwave signal processing and establishes the foundation for the first CMOS-compatible high performance RF photonic filter.

  2. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire

    Science.gov (United States)

    Casas-Bedoya, Alvaro; Morrison, Blair; Pagani, Mattia; Marpaung, David; Eggleton, Benjamin J.

    2015-09-01

    We demonstrate the first functional signal processing device based on stimulated Brillouin scattering in a silicon nanowire. We use only 1 dB of on-chip SBS gain to create an RF photonic notch filter with 48 dB of suppression, 98 MHz linewidth, and 6 GHz frequency tuning. This device has potential applications in on-chip microwave signal processing and establishes the foundation for the first CMOS-compatible high performance RF photonic filter.

  3. An ultrawide tunable range single passband microwave photonic filter based on stimulated Brillouin scattering.

    Science.gov (United States)

    Xiao, Yongchuan; Guo, Jing; Wu, Kui; Qu, Pengfei; Qi, Huajuan; Liu, Caixia; Ruan, Shengping; Chen, Weiyou; Dong, Wei

    2013-02-11

    A single passband microwave photonic filter with ultrawide tunable range based on stimulated Brillouin scattering is theoretically analyzed. Combining the gain and loss spectrums, tuning range with 44GHz is obtained without crosstalk by introducing two pumps. Adding more pumps, Tuning range multiplying with the multiplication factor equaling to the total quantity of pump can be achieved, which has potential application in microwave and millimeter wave wireless communication systems. PMID:23481728

  4. Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens

    OpenAIRE

    Reiß, Stephan; Burau, Gerolf; Stachs, Oliver; Guthoff, Rudolf; Stolz, Heinrich

    2011-01-01

    Presbyopia is closely associated with the loss of accommodation, and hence with a decline in the viscoelastic properties of the human eye lens. In this article we describe a method for obtaining spatially resolved in vivo measurements of the rheological properties of the eye lens, based on the spectroscopic analysis of spontaneous Brillouin scattering using a virtually imaged phased array (VIPA). The multi-pass configuration enhances resolution to the extent that measurements are possible in ...

  5. Wide-range wavevector selectivity of magnon gases in Brillouin light scattering spectroscopy

    OpenAIRE

    Sandweg, C. W.; Jungfleisch, M. B.; Vasyuchka, V I; Serga, A. A.; Clausen, P.; Schultheiss, H.; Hillebrands, B.; Kreisel, A.(University of Colorado, 80309, Boulder, Colorado, USA); Kopietz, P.

    2010-01-01

    Brillouin light scattering spectroscopy is a powerful technique for the study of fast magnetization dynamics with both frequency- and wavevector resolution. Here, we report on a distinct improvement of this spectroscopic technique towards two-dimensional wide-range wavevector selectivity in a backward scattering geometry. Spin-wave wavevectors oriented perpendicular to the bias magnetic field are investigated by tilting the sample within the magnet gap. Wavevectors which are oriented parallel...

  6. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    Science.gov (United States)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  7. Stimulated Brillouin scattering for generating an acoustic wave in optical fibers

    Czech Academy of Sciences Publication Activity Database

    Holík, M.; Mikel, Břetislav; Urban, F.

    Bellingham : SPIE, 2012, 86971I:1-6. ISBN 978-0-8194-9481-8. [CPS 2012. Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics /18./. Ostravice (CZ), 03.09.2012-07.09.2012] R&D Projects: GA TA ČR TA01010995 Institutional support: RVO:68081731 Keywords : stimulated Brillouin scattering * acoustic wave * optical fiber Subject RIV: BH - Optics, Masers, Laser s

  8. Observation of stimulated brillouin scattering in a microwave plasma interaction emperiment

    International Nuclear Information System (INIS)

    Stimulated Brillouin scattering of microwave radiation is investigated in an underdense laboratory plasma. The energy and momentum selection rules are seen to be satisfied for a variety of incident wavelengths (lambda0 = 3 approx. 10 cm) and ion species (He, Ne, Ar and Kr). The threshold power, growth rate and scattered power appear to be consistent with the finite interaction length theory. Saturation of the backscatter is observed and compared with existing theories

  9. Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin S.; Bass, Jay D. [Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhu, Gaohua [Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan 48105 (United States)

    2015-06-15

    We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  10. Impact of dither-based Electro-Optic Modulator bias control on distributed Brillouin sensing system

    Science.gov (United States)

    Sun, Qiao; Tu, Xiaobo; Sun, Shilin; Hu, Xiaoyang; Meng, Zhou

    2015-10-01

    In most distributed Brillouin sensing systems, it is crucial to keep the long-term stability of the electro-optic modulator (EOM) operating point. The dither-tone based bias control methods are widely adopted in this kind of systems for its robustness and reliability, but the low frequency dither tone (a few kilohertz) added into the dc bias port of the EOM may have a detrimental impact on the sensing performance of the Brillouin sensing system. Experimental results show that the dither frequency should not be set around quarter of the pulse repetition rate or its multiples, and the employed dither amplitude should be in the range of 0.003Vπ to 0.015Vπ (Vπ is the RF half-wave voltage of the EOM), in order to overcome the limitation of dither tone based bias control techniques in BOTDA systems. These results will provide guidelines to improve the performance of the Brillouin sensing systems using dither-based EOM bias control method.

  11. Exploiting the locality of periodic subsystem density-functional theory: efficient sampling of the Brillouin zone.

    Science.gov (United States)

    Genova, Alessandro; Pavanello, Michele

    2015-12-16

    In order to approximately satisfy the Bloch theorem, simulations of complex materials involving periodic systems are made n(k) times more complex by the need to sample the first Brillouin zone at n(k) points. By combining ideas from Kohn-Sham density-functional theory (DFT) and orbital-free DFT, for which no sampling is needed due to the absence of waves, subsystem DFT offers an interesting middle ground capable of sizable theoretical speedups against Kohn-Sham DFT. By splitting the supersystem into interacting subsystems, and mapping their quantum problem onto separate auxiliary Kohn-Sham systems, subsystem DFT allows an optimal topical sampling of the Brillouin zone. We elucidate this concept with two proof of principle simulations: a water bilayer on Pt[1 1 1]; and a complex system relevant to catalysis-a thiophene molecule physisorbed on a molybdenum sulfide monolayer deposited on top of an α-alumina support. For the latter system, a speedup of 300% is achieved against the subsystem DTF reference by using an optimized Brillouin zone sampling (600% against KS-DFT). PMID:26596499

  12. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q

    International Nuclear Information System (INIS)

    We describe a Brillouin spectroscopy system integrated with CO2 laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  13. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q

    Science.gov (United States)

    Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua

    2015-06-01

    We describe a Brillouin spectroscopy system integrated with CO2 laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ˜13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (˜141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm).

  14. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    International Nuclear Information System (INIS)

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range

  15. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis

    Science.gov (United States)

    Bao, Yi; Chen, Genda

    2016-06-01

    This paper reports a distributed temperature and strain sensor based on pulse pre-pump Brillouin optical time domain analysis. An uncoated, telecom-grade fused silica single-mode fiber as a distributed sensor was calibrated for its sensitivity coefficients under various strains and temperatures up to 800 °C. The Brillouin frequency of fiber samples changed nonlinearly with temperature and linearly with strain. The temperature sensitivity decreased from 1.113 to 0.830 MHz /°C in the range of 22–800 °C. The strain sensitivity was reduced from 0.054 to 0.042 MHz /με as the temperature increased from 22 to 700 °C and became unstable at higher temperatures due to creep effect. The strain measurement range was reduced from 19 100 to 6000 με in the temperature range of 22–800 °C due to fused silica’s degradation. The calibrated fiber optic sensor demonstrated adequate accuracy and precision for strain and temperature measurements and stable performance in heating–cooling cycles. It was validated in an application setting.

  16. “Bloch wave” modification of stimulated Raman by stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Using the reduced-description particle-in-cell (RPIC) method, we study the coupling of backward stimulated Raman scattering (BSRS) and backward stimulated Brillouin scattering (BSBS) in regimes where the reflectivity involves the nonlinear behavior of particles trapped in the daughter plasma waves. The temporal envelope of a Langmuir wave (LW) obeys a Schrödinger equation where the potential is the periodic electron density fluctuation resulting from an ion-acoustic wave (IAW). The BSRS-driven LWs in this case have a Bloch wave structure and a modified dispersion due to the BSBS-driven spatially periodic IAW, which includes frequency band gaps at kLW∼kIAW/2∼k0 (kLW, kIAW, and k0 are the wave number of the LW, IAW, and incident pump electromagnetic wave, respectively). This band structure and the associated Bloch wave harmonic components are distinctly observed in RPIC calculations of the electron density fluctuation spectra and this structure may be observable in Thomson scatter. Bloch wave components grow up in the LW spectrum, and are not the result of isolated BSRS. Self-Thomson scattered light from these Bloch wave components can have forward scattering components. The distortion of the LW dispersion curve implies that the usual relationship connecting the frequency shift of the BSRS-scattered light and the density of origin of this light may become inaccurate. The modified LW frequency results in a time-dependent frequency shift that increases as the IAW grows, detunes the BSRS frequency matching condition, and reduces BSRS growth. A dependence of the BSRS reflectivity on the IAW Landau damping results because this damping determines the levels of IAWs. The time-dependent reflectivity in our simulations is characterized by bursts of sub-picosecond pulses of BSRS alternating with multi-ps pulses of BSBS, and BSRS is observed to decline precipitously as soon as SBS begins to grow from low levels. In strong BSBS regimes, the Bloch wave effects in BSRS are

  17. Improvement of thomson scattering diagnostics using stimulated-Brillouin-scattering-based phase conjugate mirrors

    International Nuclear Information System (INIS)

    In order to improve the measurement performance of incoherent Thomson scattering diagnostics, a high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) is applied to a Thomson scattering system for the first time in the JT-60U tokamak. We have demonstrated that a SBS-PCM which uses heavy-fluorocarbon liquid showed a high reflectivity of 95% at a high input-power of 145 W. Using the SBS-PCM, two newly developed methods were employed to increase the amount of scattered light. In the first method, we first developed a new optical design to provide a double-pass scattering scheme with the SBS-PCM. In this new optical design, a laser beam passing through the plasma is reflected by the SBS-PCM, and the reflected beam is returned via the same path by means of the phase conjugate effect, and is then passed through the plasma again, in order to increase the scattered light. A double-pass Thomson scattering scheme using the SBS-PCM was demonstrated in JT-60U ohmic plasma, resulting in an increase of the scattered light by a factor of 1.6, and the reduction of relative error by 2/3 for electron temperature measurement in contrast to single-pass scattering. A multi-pass Thomson scattering scheme is also proposed based on the results of double-pass scattering. It is estimated that multi-pass scattering allows the generation of several times the amount of scattered light, and the reduction of the relative error for electron temperature measurement by 37% in contrast to single-pass scattering. Regarding the second method, a high average-power of YAG laser system was developed by applying the SBS-PCM to a existent diagnostic laser. As a result, the average-power was increased by over 8 times in contrast to the average power of the original system, achieving up to 368 W (7.4 J x 50 Hz). (author)

  18. Design of small core tellurite photonic crystal fiber for slow-light-based application using stimulated Brillouin scattering

    Science.gov (United States)

    Cherif, Rim; Salem, Amine Ben; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra K.; Zghal, Mourad

    2015-07-01

    Stimulated Brillouin scattering (SBS) performances of small core tellurite photonic crystal fibers (PCF) are rigorously studied. We propose a design of tellurite PCF that is used for slow-light-based applications. We developed a two-dimensional finite element mode solver to numerically study the acoustic and optical properties of complex refractive index profiles including tellurite PCF. Our results include the calculation of Brillouin gain spectrum, Brillouin gain coefficient (gB) and Brillouin frequency shift by taking into account the contribution of the higher-order acoustic modes. Several simulations were run by varying the air-filling ratio of various PCF structures to enhance the SBS. The real scanning electron microscope image of a small core of highly nonlinear tellurite fiber is considered. Optimized results show a frequency shift of 8.43 GHz and a Brillouin gain of 9.48×10-11 m/W with a time delay between 21 and 140 ns. Such fibers have drawn much interest because of their capacity for increasing and tailoring the SBS gain.

  19. Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment

    Science.gov (United States)

    Fuchs, J.; Labaune, C.; Depierreux, S.; Tikhonchuk, V. T.; Baldis, H. A.

    2000-11-01

    Experiments have been conducted at the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) multibeam laser facility to study in detail stimulated Brillouin (SBS) and Raman (SRS) scattering from an intense (mean average intensity up to 1014W/cm2) long (600 ps full width at half-maximum) laser beam interacting with thin exploded plastic foils. The plasmas are well characterized and the vacuum laser intensity distribution is well known due to using either random phase plates or polarization smoothing. Direct and simultaneous Thomson scattering measurements of the associated plasma waves allow us to obtain detailed information about the SBS and SRS temporal evolution and spatial localization. These data are being used to benchmark a statistical model of SBS and SRS from self-focused speckles. The results of this comparison will be presented in a companion paper. The analysis shows that both SBS and SRS are originated from self-focused speckles and reveals that plasma heating has an important effect on speckle self-focusing.

  20. Brillouin optical fiber distributed sensor for settlement monitoring while tunneling the metro line 3 in Cairo, Egypt

    Science.gov (United States)

    Dewynter, V.; Rougeault, S.; Magne, S.; Ferdinand, P.; Vallon, F.; Avallone, L.; Vacher, E.; De Broissia, M.; Canepa, Ch.; Poulain, A.

    2009-10-01

    Safety while tunneling is one of the main challenges for underground constructions, avoiding confinement losses, which remain an important risk for public works, leading to additional delays and high insurance costs. In such applications, usual surface instrumentations cannot be set up because of high building density in many overcrowded cities. Tunnelling deals with the challenge of requiring ground surface undisturbed. One original concept proposed in the framework of the European Tunconstruct project, consists in very early settlement detection close to the tunnel vault and before any detectable effect on the surface. The adopted solution is to set-up a sensing element inserted into a directional drilling excavated above the foreseen tunnel. The methodology is based on the well known Brillouin Optical Time Domain Reflectometry (B-OTDR) in singlemode optical fibres and a special cable design dedicated to bending measurement. Two cables, based on different industrial manufacturing processes, have been developed taking into account the strain sensitivity required, the flexibility and the robustness for borehole installation, a low power attenuation and storage on a drum. Industrial prototypes have been manufactured and validated with tests in open air where settlement profiles geometry can be accurately controlled. Demonstration on job site took place on The Greater Cairo Metro Line 3 (CML3) at the beginning of 2009.

  1. All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror

    OpenAIRE

    Offerhaus, H.L.; Godfried, H.P.; Witteman, W.J.

    1996-01-01

    At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, s...

  2. Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves.

    Science.gov (United States)

    Antman, Yair; Levanon, Nadav; Zadok, Avi

    2012-12-15

    A method for long variable all-optical delay is proposed and simulated, based on reflections from localized and stationary dynamic Brillouin gratings (DBGs). Inspired by radar methods, the DBGs are inscribed by two pumps that are comodulated by perfect Golomb codes, which reduce the off-peak reflectivity. Compared with random bit sequence coding, Golomb codes improve the optical signal-to-noise ratio (OSNR) of delayed waveforms by an order of magnitude. Simulations suggest a delay of 5  Gb/s data by 9 ns, or 45 bit durations, with an OSNR of 13 dB. PMID:23258071

  3. Dual-band bandpass tunable microwave photonic filter based on stimulated Brillouin scattering

    Science.gov (United States)

    Li, Jia-qi; Xiao, Yong-chuan; Dong, Wei; Zhang, Xin-dong

    2016-07-01

    A dual-band bandpass microwave photonic filter (MPF) based on stimulated Brillouin scattering (SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources (TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 dB bandwidth less than 30 MHz and large out-of-band rejection about 40 dB under 25 mW optical pump power are achieved.

  4. Tunable microwave notch filter created by stimulated Brillouin scattering in a silicon chip

    Science.gov (United States)

    Casas-Bedoya, A.; Morrison, Blair; Pagani, Mattia; Marpaung, David; Eggleton, Benjamin J.

    2015-12-01

    We show the first functional signal processing device based on forward stimulated Brillouin scattering from a silicon nanowire. We harness 1dB of SBS gain to create a high performance, energy efficient microwave photonic notch filter. The filter possess 48dB of suppression, 98 MHz linewidth, and is tunable within a 6 GHz bandwidth. This demonstration represents a significant advance in integrated microwave photonics with potential applications in on-chip microwave signal processing and establish the foundation towards the first CMOS-compatible high performance RF photonic filter.

  5. Strongly Enhanced Stimulated Brillouin Backscattering in an Electron-Positron Plasma

    Science.gov (United States)

    Edwards, Matthew R.; Fisch, Nathaniel J.; Mikhailova, Julia M.

    2016-01-01

    Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-positron plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized theory of three-wave coupling between electromagnetic and plasma waves in two-species plasmas with arbitrary mass ratios, confirmed with a comprehensive set of particle-in-cell simulations, reveals violations of commonly held assumptions about the behavior of electron-positron plasmas. Specifically, in the electron-positron limit three-wave parametric interaction between light and the plasma acoustic wave can occur, and the acoustic wave phase velocity differs from its usually assumed value.

  6. Brillouin scattering in glass-forming liquids: q-dependent linewidths and the generalized viscosity

    International Nuclear Information System (INIS)

    Recently, Gomperts, Variyar, and Kivelson [J. Chem. Phys. 98, 31 (1993)] analyzed Brillouin linewidth data for triphenylphosphite and found a striking wave vector dependence which varied strongly with temperature. We present a simple explanation based on a Debye relaxation model from which results similar to theirs are obtained even though the longitudinal viscosity has no intrinsic wave vector dependence. We also explore the quantitative differences between their results and those obtained with the Debye model, and show that these differences can be explained by the two-step structural realaxation dynamics predicted by mode coupling theory and observed in recent neutron- and light-scattering experiments

  7. Triple-resonant Brillouin light scattering in magneto-optical cavities

    CERN Document Server

    Haigh, J A; Ramsay, A J; Ferguson, A J

    2016-01-01

    An enhancement in Brillouin light scattering of optical photons with magnons is demonstrated in magneto-optical whispering gallery mode resonators tuned to a triple resonance point. This occurs when both the input and output optical modes are resonant with those of the whispering gallery resonator, with a separation given by the ferromagnetic resonance (FMR) frequency. The identification and excitation of specific optical modes allows us to gain a clear understanding of the mode-matching conditions. A selection rule due to wavevector matching leads to an intrinsic single-sideband excitation. Strong suppression of one sideband is essential for one-to-one frequency mapping in coherent optical-to-microwave conversion.

  8. Long term structural health monitoring by Brillouin fibre-optic sensing: a real case

    International Nuclear Information System (INIS)

    We report the results of a long term structural health monitoring (SHM) test campaign performed on a concrete bridge. A one-year test campaign was performed by a portable prototype instrument based on stimulated Brillouin scattering in a single-mode optical fibre. The optical fibre sensor was attached along one arch of the bridge using two types of adhesive for comparison purposes. The attached fibre was able to provide the strain distribution along the structure during the one-year test campaign, with a spatial resolution of 1 m. A crack was revealed and correctly localized by the distributed sensor. (paper)

  9. Stimulated-Brillouin-scattering studies in low-density plasmas using microwave sources

    International Nuclear Information System (INIS)

    Observations of stimulated Brillouin scattering (SBS) in microwave interaction with a plasma, as verified by the satisfaction of the frequency and wavelength matching rules and growth rate, are presented. A small amount of chamber reflectivity causes ion fluctuations due to the standing-wave ponderomotive force, which then serve as an enhanced noise level for the initiation of the instability. Saturation of the backscatter is observed and compared with existing theories. The control of SBS using finite-bandwidth comb-type or random-noise-type pumps is also reported. (author)

  10. Pressure dependence of acoustic anomalies of polydimethylsiloxane studied by Brillouin spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seonhyeop [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702, South Korea (Korea, Republic of); Ko, Jae-Hyeon, E-mail: hwangko@hallym.ac.kr [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702, South Korea (Korea, Republic of); Park, Jaehoon [Department of Electronic Engineering, Hallym University, Chuncheon, Gangwondo 200-702 (Korea, Republic of); Ko, Young Ho; Kim, Kwang Joo [4-2-2, Agency for Defense Development, P.O. Box 35, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2015-06-15

    The acoustic properties of polydimethylsiloxane elastomer was investigated as a function of pressure by using a multi-pass Fabry–Perot interferometer and a diamond anvil cell. Pressure dependence of the sound velocity, the Brillouin linewidth, and the refractive index was determined up to ~8.7 GPa. Acoustic properties exhibited a crossover behavior at approximately 1 GPa, which was attributed to the complete collapse of the free volume content in this polymer. The refractive index increased from 1.46 at ambient condition to ~1.63 at 8.67 GPa, which reflected the corresponding increase in density.

  11. Investigation of stimulated Brillouin scattering for broadband KrF laser

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Hui; Lǘ Zhi-Wei; Lin Dian-Yang; Wang Chao; Zhao Xiao-Yan; Tang Xiu-Zhang; Zhang Hai-Feng; Shan Yu-Sheng

    2004-01-01

    Stimulated Brillouin scattering (SBS) numerical mode for broadband multimode KrF laser pump with optical breakdown has been built up in this paper. The basic premises of the model are that KrF spectrum is composed of a number of lines and SBS arises from these lines with coupling to some extent. The broadband SBS threshold strongly depends on pump bandwidth. SBS and optical breakdown occur nearly simultaneously when broadband SBS and breakdown have the same threshold. The decrease of saturation reflectivity for broadband pump radiation is explained with this model. Experimental results agree well with the model.

  12. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    International Nuclear Information System (INIS)

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant Dsw (100.0 ± 4.9 meV.Å2) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  13. Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering

    Science.gov (United States)

    Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji

    2008-11-01

    The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.

  14. High frequency organ-pipe modes in amorphous boron carbide observed using surface Brillouin scattering

    International Nuclear Information System (INIS)

    Amorphous boron carbide films of 2 micron thickness were deposited at room temperature by a thermal deposition process on single-crystal silicon substrates. The elastic constants of an amorphous B4C film have been successfully measured by surface Brillouin scattering as a function of temperature, in the process, revealing a phase transition at about 350 deg.C. Quantized wave-vector components perpendicular to the film surface associated with organ-pipe modes occurring within the film were used in conjunction with elastodynamic Green's function calculations as well as independent measurement of longitudinal frequency from bulk excitations to extract the elastic constants

  15. Elastic properties of boron carbide films via surface acoustic waves measured by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Salas, E.; Jimenez-Villacorta, F.; Jimenez Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Sanchez-Marcos, J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Munoz-Martin, A.; Prieto, J.E.; Joco, V. [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2013-03-15

    Surface acoustic wave (SAW) velocity has been determined by high resolution Brillouin light scattering to study the mechano-elastic properties of boron carbide films prepared by radio frequency (RF) sputtering. The comparison of experimentally observed elastic behaviour with simulations made by considering film composition obtained from elastic recoil detection analysis-time of flight (ERDA-ToF) spectroscopy allows establishing that elastic properties are determined by that of crystalline boron carbide with a lessening of the SAW velocity values due to surface oxidation. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera.

    Science.gov (United States)

    Meng, Zhaokai; Yakovlev, Vladislav V

    2016-08-01

    Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows noninvasive assessment of viscoelastic properties of materials. The use of atomic-molecular absorption cells as ultra-narrow notch filters allows acquisition of Brillouin spectra from turbid samples despite their strong elastic scattering. However, such systems alter the shapes of the Brillouin lines, making the precise determination of the Brillouin shift difficult. In this report, we propose a simple method for analyzing the Brillouin spectrum using a customized least-square fitting algorithm. The absorption spectrum induced by the atomic-molecular cell was taken into consideration. The capability of the method is confirmed by processing experimental spectroscopic data from the pure water at different temperatures. The accuracy of the measurements of ±1 MHz spectral line shift is experimentally demonstrated. PMID:27296309

  17. High-speed elasticity-specific nonlinear Brillouin imaging/sensing via time-resolved optical (BISTRO) measurements

    Science.gov (United States)

    Meng, Zhaokai; Ballman, Charles W.; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-03-01

    Viscoelastic properties of living cells are often directly related to the cell types and their physiological conditions. Unfortunately, all the currently existing methods for analysis of viscoelastic properties of cells, such as micropipette aspiration, atomic force microscopy and optical tweezers are intrinsically slow, limiting their applicability to study large population of cells, which are often needed for either fundamental or clinical studies. In this report, by incorporating the concept of impulsive stimulated Brillouin scattering (ISBS), we report a Brillouin Imaging and Sensing system via Time-Resolved Optical (BISTRO) measurements. We will prove the principle of the BISTRO system by presenting example microscopic measurements and flow/cell cytometry results [1].

  18. Suppression of stimulated Brillouin instability of a beat-wave of two lasers in multiple-ion-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2016-01-15

    Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.

  19. Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser

    Science.gov (United States)

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yao, Yong

    2016-07-01

    Fundamental and harmonic self-pulse generation was experimentally observed on both first order and higher order Stokes components. The generated pulses with the same order harmonic repetition rate are obtained on multiple Stokes components simultaneously. The pulse generation on first order Stokes component can be attributed to periodic pump depletion in Brillouin gain medium. The pulse generation of high order Stokes component can be considered as pulse oscillation pumped by the former order Stokes. With high Erbium pump power, by setting the proper attenuation between Brillouin medium and Faraday rotation mirror, the harmonic pulse generations up to fifth order have been achieved.

  20. A widely tunable double-Brillouin-frequency spaced multiwavelength fiber laser with a 110 nm tuning range

    International Nuclear Information System (INIS)

    A wideband double-Brillouin-frequency spaced multiwavelength Brillouin–erbium fiber laser (MWBEFL) with 110 nm tuning range is demonstrated. The fiber laser utilizes simple compound-ring cavity structures which confine the odd-order Brillouin–Stokes (BS) signals within the right ring and couple out the initial Brillouin pump signal (BP) and even-order BS signals to generate a 0.176 nm spacing multiwavelength. A wavelength- and bandwidth-tunable optical band-pass filter (TBF) is used to manipulate the location of self-lasing cavity and to get a wideband tuning range. All the generated output channels exhibit good stability. (paper)

  1. Mejoras en sensores distribuidos basados en dispersión Brillouin estimulada en fibra óptica

    OpenAIRE

    Iribas Pardo, Haritz

    2015-01-01

    El presente trabajo fin de máster se ha llevado a cabo con el objetivo de desarrollar un sistema sensor de fibra óptica distribuido, capaz de monitorizar la deformación unitaria y variaciones de temperatura, basándose en el efecto de dispersión Brillouin estimulada en fibra óptica. Mejorando y solventando algunas de las limitaciones que manifiestan estos sensores hoy en día. Dado el auge actual en el que se encuentran los sensores Brillouin ópticos basados en el análisis del dominio del tiemp...

  2. Relaxation phenomena in supercooled liquid and glassy acetaminophen studied by dielectric, photon correlation and Brillouin light scattering spectroscopies

    Science.gov (United States)

    Kwon, Hyun-Joung; Kim, Tae Hyun; Ko, Jae-Hyeon; Hwang, Yoon-Hwae

    2013-01-01

    Relaxation phenomena and acoustic properties of acetaminophen in the glassy and supercooled liquid phase were studied by dielectric, photon correlation and Brillouin spectroscopies. Dielectric and photon correlation studies revealed the structural relaxation process while a new relaxation process was found by dielectric measurement in a much lower frequency range. The acoustic anomalies clearly indicated a glass transition at 293 K and some remnant localized motions in the glassy phase that contributed to the acoustic damping. Partial crystallization in the supercooled liquid phase was signified at temperatures above 318 K by drastic changes in the Brillouin spectrum and decrease in the dielectric strength.

  3. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    Energy Technology Data Exchange (ETDEWEB)

    Schluck, F.; Lehmann, G.; Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)

    2015-09-15

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process. First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.

  4. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps.

    Science.gov (United States)

    Antman, Y; Primerov, N; Sancho, J; Thevenaz, L; Zadok, A

    2012-03-26

    A novel technique for the localization of stimulated Brillouin scattering (SBS) interaction is proposed, analyzed and demonstrated experimentally. The method relies on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS), these waves being spectrally detuned by the Brillouin frequency shift. The PRBS symbol duration is much shorter than the acoustic lifetime. The interference between the two modulated waves gives rise to an acoustic grating that is confined to narrow correlation peaks, as short as 1.7 cm. The separation between neighboring peaks, which is governed by the PRBS length, can be made arbitrarily long. The method is demonstrated in the generation and applications of dynamic gratings in polarization maintaining (PM) fibers. Localized and stationary acoustic gratings are induced by two phase modulated pumps that are polarized along one principal axis of the PM fiber, and interrogated by a third, readout wave which is polarized along the orthogonal axis. Using the proposed technique, we demonstrate the variable delay of 1 ns-long readout pulses by as much as 770 ns. Noise due to reflections from residual off-peak gratings and its implications on the potential variable delay of optical communication data are discussed. The method is equally applicable to the modulation of pump and probe waves in SBS over standard fibers. PMID:22453458

  5. Application of Brillouin optical correlation domain analysis for crack identification in concrete structure

    Science.gov (United States)

    Imai, Michio; Miura, Satoru

    2013-12-01

    This paper investigates the application of distributed optical fiber strain sensors to civil engineering structures, because no other tool can satisfactorily detect the location of the unpredictable phenomenon. In fact, the locations of cracks in the concrete structure are unknown a priori; therefore, a fully distributed sensor is necessary to detect them. The Brillouin optical correlation domain analysis (BOCDA), which offers high spatial resolution by using stimulated Brillouin scattering along the whole length of the optical fiber, is used in a wide range of civil engineering applications, and the same has undergone significant development over the last decade. In this paper, it is demonstrated how a BOCDA-based strain sensor can be employed to monitor cracks in concrete. Crack monitoring on the surface of the concrete member provides useful information for evaluating stiffness and durability of the structure, particularly for early detection of tiny cracks, which is essential for preventing crack growth and dispersion. The crack-induced strain distribution was analytically investigated, and it was proved that BOCDA can identify even a small crack before its visual recognition by a beam test. Moreover, periodical crack monitoring was successfully executed on a pedestrian deck for five years.

  6. A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases

    CERN Document Server

    Gu, Ziyu

    2014-01-01

    Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have been performed for a wide range of temperatures and pressures at a wavelength of 403 nm and at a 90 degrees scattering angle. Measurements of the Rayleigh-Brillouin spectral scattering profile were conducted at high signal-to-noise ratio for all three species, yielding high-quality spectra unambiguously showing the small differences between scattering in air, and its constituents N2 and O2. Comparison of the experimental spectra with calculations using the Tenti S6 model, developed in 1970s based on linearized kinetic equations for molecular gases, demonstrates that this model is valid to high accuracy. After previous measurements performed at 366 nm, the Tenti S6 model is here verified for a second wavelength of 403 nm. Values for the bulk viscosity for the gases are derived by optimizing the model to the measurements. It is verified that the bulk viscosity parameters obtained from previous experiments at 366 nm, are valid for wavel...

  7. Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells.

    Science.gov (United States)

    Pérez-Cota, Fernando; Smith, Richard J; Moradi, Emilia; Marques, Leonel; Webb, Kevin F; Clark, Matt

    2015-10-01

    At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells. PMID:26479614

  8. Study on two-cell stimulated Brillouin scattering system with mixture medium

    Institute of Scientific and Technical Information of China (English)

    HASI Wuliji; L(U) ZhiWei; LI Qiang; BA DeXin; HE WeiMing

    2007-01-01

    In this paper, a method of choosing mixture medium in two-cell stimulated Brillouin scattering (SBS) system to improve the system performance is proposed. The Brillouin frequency shift (BFS) of mixture medium varies with the mixing ratio and thus the difference of the BFS between the two cells can be eliminated. The two-cell SBS system with acetone (C3H6O) in its generator cell and mixture liquid of CCl4/C2Cl4 in its amplifier cell is investigated. The C3H6O has a high optical break- down threshold and the mixture liquid of CCl4/C2Cl4 has a small absorption coefficient and the same BFS as that of C3H6O when the volume fraction of CCl4 is 4%. Compared with two-cell SBS system with the same liquid (C2Cl4) or different liquid (C3H6O and C2Cl4) in generator and amplifier cell, the SBS system with mixture liquid (CCl4/C2Cl4) in amplifier cell and C3H6O in generator cell improves the power-load, energy reflectivity (ER), phase conjugation (PC) fidelity and ER stability.

  9. Optimized determination of elastic constants of crystals and their uncertainties from surface Brillouin scattering.

    Science.gov (United States)

    Every, A G; Sumanya, C; Mathe, B A; Zhang, X; Comins, J D

    2016-07-01

    Surface Brillouin scattering of light allows the angular-dependent velocities of Rayleigh surface acoustic waves (SAW), pseudo-SAW and longitudinal lateral waves (L) on the surface of an opaque crystal to be measured, and the elastic constants thereby determined. Closed form expressions exist for the surface wave velocities in high symmetry directions on crystallographic symmetry planes, and these have been exploited in the past for obtaining the values of the elastic constants. This paper describes a procedure for obtaining an optimized set of elastic constants from SAW, pseudo-SAW and L velocities measured in arbitrary directions in the (001) and (110) surfaces of cubic crystals. It does so by affecting a linearization of the numerically determined angular-dependent SAW and pseudo-SAW velocities near the best fit, and using analytic expressions for the L velocity. The method also generates covariance ellipsoids, from which the uncertainties in the determined values of the elastic constants can be read off. The method is illustrated using surface Brillouin scattering data to obtain the room-temperature elastic constants C11, C12 and C44 of the cubic crystals VC0.75 and Rh3Nb. PMID:26899728

  10. Implementation of the multireference Brillouin-Wigner and Mukherjee’s coupled cluster methods with non-iterative triple excitations utilizing reference-level parallelism

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran-Nair, Kiran; Brabec, Jiri; Apra, Edoardo; van Dam, Hubertus JJ; Pittner, Jiri; Kowalski, Karol

    2012-09-07

    In this paper we discuss the performance of the non-iterative State-Specific Mul- tireference Coupled Cluster (SS-MRCC) methods accounting for the effect of triply excited cluster amplitudes. The corrections to the Brillouin-Wigner and Mukherjee MRCC models based on the manifold of singly and doubly excited cluster amplitudes (BW-MRCCSD and Mk-MRCCSD, respectively) are tested and compared with the exact full configuration interaction results (FCI) for small systems (H2O, N2, and Be3). For larger systems (naphthyne isomers and -carotene), the non-iterative BW-MRCCSD(T) and Mk-MRCCSD(T) methods are compared against the results obtained with the single reference coupled cluster methods. We also report on the parallel performance of the non-iterative implementations based on the use of pro- cessor groups.

  11. Dispersion and damping of multi-quantum well polaritons from resonant Brillouin scattering by folded acoustic modes

    OpenAIRE

    Jusserand, B.; Fainstein, A.; Ferreira, R.; Majrab, S.; Lemaitre, A.

    2011-01-01

    We report on confined exciton resonances of acoustic and folded acoustic phonon light scattering in a GaAs/AlAs multi-quantum-well. Significant variations of the line shifts and widths are observed across the resonance and quantitatively reproduced in terms of the polariton dispersion. This high resolution Brillouin study brings new unexpectedly detailed informations on the polariton dynamics in confined systems.

  12. Discontinuous Brillouin strain monitoring of small concrete bridges: comparison between near-to-surface and smart FRP fiber installation techniques

    Science.gov (United States)

    Bastianini, Filippo; Rizzo, Andrea; Galati, Nestore; Deza, Ursula; Nanni, Antonio

    2005-05-01

    Brillouin fiber optic sensing is a promising technology for Structural Health Monitoring (SHM) whose diffusion is however at present reduced by the unavailability of proper sensor products and established installation techniques specifically aimed at the building industry. Due to its intrinsic distributed sensing capability, Brillouin systems can individually measure the deformation of any single segment of considerable lengths of single-mode fiber. In addition, Brillouin retains all the other typical advantages of Fiber Optic Sensors (FOS), such as harsh environment durability and electro-magnetic interference rejection. These advantages, especially considering that the required sensors are really low cost, make the system particularly attractive for periodical ("discontinuous") strain monitoring of unattended infrastructures that might be exposed to ageing and vandalism damages. Despite the high equipment cost, the technique can become economically convenient when the same initial investment can be amortized over a number of applications that can be monitored periodically using the same device. This work presents a comparison between two different Brillouin sensor installation techniques: Near-to-Surface Fiber (NSF) embedding and smart-FRP sensor bonding. Both systems have been experimented in the field on small Reinforced Concrete (RC) bridges subject to a diagnostic load test. The obtained results clearly highlight the advantages of the smart-FRP system, in terms of performance enhancements, installation cost, and time reduction.

  13. 1.5µm Brillouin-based fibre optic distributed temperature sensor with high spatial resolution of 20cm

    OpenAIRE

    Kee, H.H.; Newson, T.P.

    2000-01-01

    We demonstrate a high spatial resolution single-ended spontaneous Brillouin-based distributed temperature sensor for a 500m length of single-mode silica fibre. Using a short pulsewidth laser source at 1.5?m, measurements down to a spatial resolution of 20cm and temperature resolution of 4.4°C were achieved.

  14. The broad Brillouin doublet and CP of KTaO3, second sound vs. Two-phonon difference scattering

    International Nuclear Information System (INIS)

    Complete text of publication follows. Low-T Brillouin spectra of the incipient ferroelectric KTaO3 exhibit a broad central peak (CP) (1), and some additional broad Brillouin doublet (BD) (2), that can both relate to phonon-density fluctuations (3). Starting from extensive new high resolution neutron scattering measurements in pure crystals, low lying phonon sheets were modelled in the central part of Brillouin zone. Such a parameterisation was then used in order to analyse those up-mentioned unusual features in teens of two-phonon mechanisms (4). Numerical evaluations show that transverse acoustic (TA) phonons whose normal damping is faster than the BD frequency (ΓDB > ωDB) may produce hydrodynamic second sound (propagation of heat). Moreover, two-phonon difference scattering from low damping thermal TA phonons ((ΓDB DB) can contribute to the spectra with either a sharp or a broader BD, depending on the phonon group velocity and phonon-sheet anisotropy. The position of the doublet is consistent with both mechanisms, but comparing the computed anisotropies with experimental Brillouin and neutron scattering data, one favours the second process. (author)

  15. An All-Optical Frequency Up/Down-Converter Utilizing Stimulated Brillouin Scattering In A Trf And Dcf For Rof Application

    Directory of Open Access Journals (Sweden)

    N. A. Awang

    2011-09-01

    Full Text Available A frequency up and down conversion is proposed based on stimulated Brillouin scattering (SBS for Radio-over-fiber (RoF system. Microwave frequency up conversion from 2GHz to 12.5GHz and microwave frequency down conversion from 12.5GHz to 1.8GHz with largest Intermediate Frequency (IF power of -32dBm is successfully demonstrated. The up conversion is based on the 1st Stokes of Brillouin fiber laser in Truewave reach fiber (TWF and the down conversion is based on 1st AntiStokes of Brillouin fiber laser in Dispersion compensating fiber (DCF.

  16. An All-Optical Frequency Up/Down-Converter Utilizing Stimulated Brillouin Scattering In A Trf And Dcf For Rof Application

    OpenAIRE

    N. A. Awang; H Ahmad; S. F. Norizan; M.Z. Zulkifli; Z.A. Ghani; S. W. Harun

    2011-01-01

    A frequency up and down conversion is proposed based on stimulated Brillouin scattering (SBS) for Radio-over-fiber (RoF) system. Microwave frequency up conversion from 2GHz to 12.5GHz and microwave frequency down conversion from 12.5GHz to 1.8GHz with largest Intermediate Frequency (IF) power of -32dBm is successfully demonstrated. The up conversion is based on the 1st Stokes of Brillouin fiber laser in Truewave reach fiber (TWF) and the down conversion is based on 1st AntiStokes of Brillouin...

  17. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma

    Science.gov (United States)

    Peng, H.; Wu, Z. H.; Zuo, Y. L.; Zhang, Z. M.; Zhou, K. N.; Su, J. Q.

    2016-07-01

    Laser amplification in plasma, including stimulated Raman scattering amplification and strongly coupled stimulated Brillouin scattering (sc-SBS) amplification, is very promising to generate ultrahigh-power and ultrashort laser pulses. But both are quite complex in experiments: at least three different laser pulses must be prepared; temporal delay and spatial overlap of these three pulses are difficult. We propose a single pulse compression scheme based on sc-SBS in plasma. Only one moderately long laser is applied, the front part of which ionizes the gas to produced plasma, and gets reflected by a plasma mirror at the end of the gas channel. The reflected front quickly depletes the remaining part of the laser by sc-SBS in the self-similar regime. The output laser is much stronger and shorter. This scheme is at first considered theoretically, then validated by using 1D PIC simulations.

  18. Highly precise distributed Brillouin scattering sensor for structural health monitoring of optical ground wire cable

    Science.gov (United States)

    Zou, Lufan; Ravet, Fabien; Bao, Xiaoyi; Chen, Liang

    2004-07-01

    A distributed Brillouin scattering sensor with high special precision has been developed for the measurement of small damages/cracks of 1.5 cm. The out-layer damaged regions in an optical ground wire (OPGW) cable have been identified successfully by measuring the strain distributions every 5 cm using this technology. The stress increased to 127 kN which corresponds to more than 7500 micro-strain in the fibers. The locations of structural indentations comprising repaired and undamaged regions are found and distinguished using their corresponding strain data. The elongation of repaired region increases with time on 127 kN. These results are quantified in terms of the fiber orientation, stress, and behavior relative to undamaged sections.

  19. Elastic properties of bismuth layer-structure perovskite single crystals studied by brillouin scattering

    International Nuclear Information System (INIS)

    Elastic properties of bismuth layered perovskite compounds, LaxBi4-xTi3O12 (LBT-x) and SrBi2Ta2O9 (SBT), were examined at room temperature by Brillouin scattering. Elastic stiffness coefficients, c33 and c44, defined in the pseudotetragonal symmetry, were obtained. The longitudinal sound velocities propagating along the c axis, were 3985 m/s and 3118 m/s for the pure bismuth titanate (BTO) and SBT, respectively. The sound velocity of SBT is very slow and is believed to be related with the weak interlayer bonding of this layer-structure compound. A simple linear chain model showed that the difference in the sound velocity between BTO and SBT is mainly due to the difference in the c axis lattice constant. The sound velocity of LBT-x increased slightly with the increase of x, while c33 seems to be insensitive to x

  20. Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

    International Nuclear Information System (INIS)

    The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. (general)

  1. Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon

    Science.gov (United States)

    Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-03-01

    Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.

  2. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers.

    Science.gov (United States)

    Sancho, J; Primerov, N; Chin, S; Antman, Y; Zadok, A; Sales, S; Thévenaz, L

    2012-03-12

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS). PMID:22418495

  3. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    International Nuclear Information System (INIS)

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission

  4. Surface acoustic waves and elastic constants of InN epilayers determined by Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid (Spain); Cusco, R.; Domenech-Amador, N.; Artus, L. [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Lluis Sole i Sabaris s.n., Barcelona, Catalonia (Spain); Yamaguchi, T.; Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga (Japan)

    2012-06-15

    The surface acoustic wave velocity in InN has been experimentally determined by means of Brillouin scattering experiments on c - and m -face epilayers. From simulations based on the Green's function formalism we determine the shear elastic constants c{sub 66} and c{sub 44} and propose a complete set of elastic constants for wurtzite InN. The analysis of the sagittal and azimuthal dependence of the surface acoustic wave velocity indicates a slightly different elastic behavior of the m -face sample that basically affects the c{sub 44} elastic constant. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Brillouin-backscattering from plasma produced by a long CO2-laser pulse

    International Nuclear Information System (INIS)

    Experimental studies were performed on the interactions of a CO2 laser beam of long pulse duration ( -- 50 ns FWHM) and peak power up to 4 x 1012 W/cm2 with plasma blobs produced by this laser from a massive planar target of aluminum or polyethylene. Special attention was paid to the laser reflectivity (R) due to the stimulated Brillouin backscattering(SBS), in particular to the correlation between the SBS reflectivity and the e-folding scalelength for spatial plasma density variation (Lsub(n)). It is shown that (1) the experimental Lsub(n)-values are consistent with the theoretical ones predicted from an ellipsoidally-expanding self-regulating plasma model, and (2) taking those predicted Lsub(n)-values into account, the experimental R-values agree well with those estimated from an existing simulation model, which is restricted to a relatively low percentage(15-20%)even for longer pulse duration. (author)

  6. Time-dependent filamentation and stimulated Brillouin forward scattering in inertial confinement fusion plasmas

    International Nuclear Information System (INIS)

    Numerical simulations of the temporal evolution of laser light filamentation and stimulated Brillouin forward scattering (SBFS) in plasmas, under conditions that are relevant to laser fusion, are presented and analyzed. Long term unsteady behavior of filaments is observed to be the norm. Temporal and spatial incoherence due to filamentation and SBFS are impressed upon time-independent incident laser beams. The bandwidth and angular divergence imposed upon the beam increase with the strength of the interaction. In addition, the spectrum of the transmitted light is redshifted by an amount that increases with the interaction strength. Spectral analysis of the transmitted light reveals that SBFS plays a role in the generation of the observed temporal incoherence. Incident beams with some spatial incoherence but no temporal smoothing are compared to those with ab initio temporal beam smoothing (TBS). Under typical conditions, TBS beams will undergo far less angular and spectral spreading and far less SBFS than unsmoothed beams

  7. Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device

    International Nuclear Information System (INIS)

    We observe competition between the modulation instability (MI) and stimulated Brillouin scattering (SBS) in a 9.2 GHz broadband SBS slow light device, in which a standard 20 km long single-mode LEAF fibre is used as the SBS medium. We find that MI is dominant and depletes most of the pump power when we use an intense pump beam at ∼ 1.55 µm, where the LEAF fibre is anomalously dispersive. The dominance of the MI in the LEAF-fibre-based system suppresses the SBS gain, degrading the SBS slow light delay and limiting the SBS gain-bandwidth to 125 dB GHz. In a dispersion-shifted highly nonlinear fibre, the SBS slow light delay is improved due to the suppression of the MI, resulting in a gain-bandwidth product of 344 dB GHz, limited by our available pump power of 0.82 W

  8. Beam quality improvement of pulsed Nd:YAG lasers using Brillouin phase conjugation

    Science.gov (United States)

    Eichler, Hans J.; Haase, Andreas; Hermann, S.; Menzel, Ralf; Schumann, D.

    1993-04-01

    Using phaseconjugating mirrors (PCMs) the beam quality of solid state lasers can be improved by compensating the thermal lens of the rods at high average powers. Oscillators with one PCM as a highly reflecting mirror and double-pass amplifiers with PCMs have been investigated. PCMs are realized by stimulated Brillouin scattering (SBS). Nd:YAG and Nd,Cr:GSGG oscillators have been built with pulse repetition rates up to 45 Hz. Stable TEM00-mode operation has been obtained. Average output powers of 10 watts for 15 ns Q-switched pulses of a Nd:YAG laser and 7 watts for Nd,Cr:GSGG have been achieved. In a double pass Nd:YAG amplifier the thermal lens was compensated leading to a nearly diffraction limited beam with a maximum output power of 40 watts.

  9. Beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors

    International Nuclear Information System (INIS)

    The beam combination method using stimulated Brillouin scattering phase conjugate mirrors (SBS-PCMs) is a promising technique for realizing the laser fusion driver with an ultrahigh energy/power laser system operating with a high repetition rate over 10 Hz. For realizing the beam combined laser system, it is necessary to lock/control the phases of SBS beams. In our previous papers, the new phase control technique using the self-generated density modulation was proposed, and its principle has been demonstrated experimentally. However, all the previous works were done without amplifiers. In this work, it has been demonstrated that the phase is stabilized with λ /51 fluctuation by standard deviation during 5,000 laser shots (500 sec.) in the two-beam combination system with amplifiers with 200 mJ total output energy and 10 Hz repletion rate. (author)

  10. Absolute instability of a laser-produced plasma during induced Mandelstam-Brillouin scattering

    International Nuclear Information System (INIS)

    The aim of investigation is to obtain the dependence of increments and frequencies of absolutely growing modes on the main plasma characteristics, laser radiation, as well as the calculation of saturation of the absolute instability of the forced Mandelstam-Brillouin scattering (FMBS) in a laser-produced plasma. A case is considered typical of a laser produced plasma when the primary role is played by density inhomogeneities and recession velocities. Explicit expressions for increments and frequencies of absolute FMBS instabilities in a hot plasma with an inhomogeneous density and recession velocity, are obtained. The absolute instability saturation due to the pumping wave depletion and generation of the second harmonics of ion-acoustic wave is considered

  11. Modeling of the Competition of Stimulated Raman and Brillouin Scattering in LULI Multiple Beam Experiments

    Science.gov (United States)

    Cohen, B. I.; Baldis, H. A.; Berger, R. L.; Williams, E. A.; Labaune, C.

    1999-11-01

    Multiple laser beam experiments with CH target foils at the LULI facility demonstrate anti-correlation of stimulated Brillouin and Raman backscatter (SBS and SRS).(C. Labaune, et al.), Phys. Plasmas 6, 2048 (1999). Detailed Thomson scattering diagnostics show that SBS precedes SRS, that secondary electron plasma waves can accompany SRS appropriate to the Langmuir Decay Instability (LDI), and that with multiple interaction beams the SBS signal in the primary laser beam is reduced while the SRS signal is enhanced and onsets earlier. Analysis and numerical calculations are presented that evaluate the influence of mode coupling (B. Cohen, et al.), Phys. Plasmas 5, 3402 (1998). of SBS and LDI ion waves and local pump depletion in laser hot spots. The modeling suggests that ponderomotive and thermal self-focusing should modify the probability distribution of intense speckles and enhance the local pump depletion and ion wave mode coupling.

  12. Brillouin Light Scattering study of patterned TiN/SiOC:H/Si structures

    Science.gov (United States)

    Zizka, Jonathan; King, Sean; Antonelli, Andy; Sooryakumar, R.

    2015-03-01

    In order to improve device performance of interconnects, the microelectronics industry utilizes low-k dielectric technology in place of traditional SiO2. Furthermore, titanium nitride (TiN) is being widely used as a hard mask to pattern low k materials such as SiOC:H into desired architectures with acoustic excitations and to measure their mode dispersions for incident light with wave-vector components parallel or perpendicular to the TiN wires. The results of measurements performed on samples with a range of wire dimensions (width/depth) will be presented that include the dependence of the Brillouin peak intensities on the incident and scattered light polarization as well as a model of the mode profiles.

  13. Direct detection of magnetostatic wave excitations in magnetostatic wave device structures by Brillouin light scattering

    Science.gov (United States)

    Srinivasan, G.; Patton, C. E.

    1985-10-01

    The technique of Brillouin light scattering has been used to detect magnetostatic wave (MSW) excitations in MSW microwave device structures. The present results are for a signal-to-noise enhancer consisting of a microstrip transmission line in contact with a yttrium iron garnet film with the applied magnetic field parallel to the microstrip line. At low input microwave power levels, the MSW spectra at 4 GHz consisted of surface excitations with wave numbers from about 80 to 470/cm, with the propagation direction perpendicular to the microstrip line. At high power levels, parametric half-frequency MSW excitations were observed, accompanied by a decrease in the scattering of the surface MSW excitations at the pump frequency.

  14. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    International Nuclear Information System (INIS)

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons

  15. Experimental program to elucidate and control stimulated Brillouin and Raman backscattering in long-scale plasmas

    International Nuclear Information System (INIS)

    Laser-plasma instability is a serious concern for indirect-drive inertial confinement fusion (ICF), where laser beams illuminate the interior of a cavity (called a hohlraum) to produce X-rays to drive the implosion of a fusion capsule. Stimulated Raman and Brillouin backscattering (SRS and SBS) could result in unacceptably high laser reflectivities. Unfortunately, it is impossible at present to fully simulate these processes realistically. Our experimental program aims to understand these instabilities by pursuing a dual strategy. (1) We use a gas-filled hohlraum design, which best approaches ignition-hohlraum conditions, on the Nova laser to identify important non linear trends. (2) We are shifting towards more fundamental experiments with a nearly diffraction-limited interaction laser beam illuminating extremely well characterized plasmas on the Trident laser facility at Los Alamos to probe the relevant fundamental processes. (author)

  16. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    Science.gov (United States)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  17. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  18. Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system

    Science.gov (United States)

    Kishida, Kinzo; Yamauchi, Yoshiaki; Guzik, Artur

    2014-03-01

    In this paper, the most recent progress as well as challenges of distributed optical fiber sensing (DOFS) in industrial applications is discussed. Compared to the vast market of sensors used to measure strain or temperature, the success of distributed optical fiber sensing (DOFS) at the industrial level is very limited, at best. One of the reasons for this lack of the wider acceptance is the mismatch between the commercially available systems and actual industrial requirements, especially for the spatial resolution and precision. These requirements are organized and clarified in the paper. It also describes the hybrid Brillouin-Rayleigh system, which exhibits capabilities surpassing those of strain gauges. The principles of the system are illustrated considering the fiber calibration methodology. Formulas required for determining strain, temperature, and hydro-pressure are derived and discussed. Finally, the examples of applications are presented.

  19. Existence of Dirac cones in the Brillouin zone of diperiodic atomic crystals according to group theory.

    Science.gov (United States)

    Damljanović, V; Gajić, R

    2016-03-01

    We have considered non-magnetic materials with weak spin-orbit coupling, that are periodic in two non-collinear directions, and finite in the third, orthogonal direction. In some cases, the combined time-reversal and crystal symmetry of such systems, allows the existence of Dirac cones at certain points in the reciprocal space. We have investigated in a systematic way, all points of the Brillouin zone of all 80 diperiodic groups and have found sufficient conditions for the existence of s  =  1/2 Dirac fermions, with symmetry-provided band touching at the vertex of the Dirac cones. Conversely, complete linear dispersion is forbidden for orbital wave functions belonging to two-dimensional (2D) irreducible representations (irreps) of little groups that do not satisfy certain group theoretical conditions given in this paper. Our results are illustrated by a tight-binding example. PMID:26829015

  20. Bayesian approach to the analysis of neutron Brillouin scattering data on liquid metals

    Science.gov (United States)

    De Francesco, A.; Guarini, E.; Bafile, U.; Formisano, F.; Scaccia, L.

    2016-08-01

    When the dynamics of liquids and disordered systems at mesoscopic level is investigated by means of inelastic scattering (e.g., neutron or x ray), spectra are often characterized by a poor definition of the excitation lines and spectroscopic features in general and one important issue is to establish how many of these lines need to be included in the modeling function and to estimate their parameters. Furthermore, when strongly damped excitations are present, commonly used and widespread fitting algorithms are particularly affected by the choice of initial values of the parameters. An inadequate choice may lead to an inefficient exploration of the parameter space, resulting in the algorithm getting stuck in a local minimum. In this paper, we present a Bayesian approach to the analysis of neutron Brillouin scattering data in which the number of excitation lines is treated as unknown and estimated along with the other model parameters. We propose a joint estimation procedure based on a reversible-jump Markov chain Monte Carlo algorithm, which efficiently explores the parameter space, producing a probabilistic measure to quantify the uncertainty on the number of excitation lines as well as reliable parameter estimates. The method proposed could turn out of great importance in extracting physical information from experimental data, especially when the detection of spectral features is complicated not only because of the properties of the sample, but also because of the limited instrumental resolution and count statistics. The approach is tested on generated data set and then applied to real experimental spectra of neutron Brillouin scattering from a liquid metal, previously analyzed in a more traditional way.

  1. Coherent frequency-modulated continuous wave reflectometry for measuring stationary Brillouin grating induced under uniform pumping by counterpropagating nonmodulated light waves.

    Science.gov (United States)

    Takada, Kazumasa; Yasuno, Takahiro

    2016-05-20

    We describe theoretically and experimentally how valuable information on the distributed Brillouin spectra of an optical waveguide is derived from the stationary Brillouin grating measurement under uniform pumping over the waveguide by using the coherent frequency-modulated continuous wave reflectometry. We upconvert the frequencies of the probe and pumping light waves by the Brillouin frequency with one modulator and detect the Stokes light in the same way that we detect the Fresnel and Rayleigh backreflections in the fiber. The intrinsic coherent spike is reduced by using the lock-in detection and the least squares method to reveal the distributed Brillouin spectra of a short optical fiber consisting of two different fibers spliced together. PMID:27411124

  2. Using Brillouin fiber-optic ring laser to provide base station with uplink optical carrier in a 10 GHz radio over fiber system

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao-shuo; LIN Ru-jian; YE Jia-jun

    2009-01-01

    In this paper, a 10 GHz radio over fiber system is analyzed. The Brillouin fiber-optic ring laser is used in the center station (CS) to suppress the optical carrier for the modulation depth enhancement. Simultaneously, the Stockes waveinduced by the Brillouin amplification injects and locks the Fabry-Perot (FP) laser to output a signal-mode optical source,which works as the uplink optical carrier.

  3. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada)

    2014-07-21

    Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.

  4. Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering (Invited Paper)

    Science.gov (United States)

    Hotate, Kazuo

    2005-05-01

    We have been developing "fiber optic nerve systems" for "smart structures and smart materials", in which an optical fiber acts as sensor to measure distribution of strain along it. The original technology, "Brillouin Optical Correlation Domain Analysis: BOCDA" has been proposed and developed to analyze the distributed strain along the fiber by use of synthesis of correlation characteristics of continuous lightwave. Adopting this technology, "fiber optic nerve systems" with quite a high spatial resolution and measurement speed, have been established.

  5. Incoherent and coherent beam combination for master oscillator/power amplifier system with stimulated Brillouin scattering mirror

    Institute of Scientific and Technical Information of China (English)

    Fu Shi-You; Tian Zhao-Shuo; Shi Xiao-Li; Sun Zheng-He

    2008-01-01

    In this paper,we studied incoherent and coherent beam combining for the master oscillator/power amplifier (MOPA) system with stimulated Brillouin scattering (SBS) mirror.Optic field intensity distributions in the near and fax field are numerically calculated for the two kinds of system.The results show that good beam quality in the far field could be obtained.It provides a theoretical basis for experimental research in the future.

  6. Brillouin distributed temperature sensing system for monitoring of submarine export cables of off-shore wind farms

    Science.gov (United States)

    Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland

    2016-05-01

    For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.

  7. Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells

    Science.gov (United States)

    Pérez-Cota, F.; Smith, R. J.; Moradi, E.; Webb, K.; Clark, M.

    2016-01-01

    Mechanical imaging and characterisation of biological cells has been a subject of interest for the last twenty years. Ultrasonic imaging based on the scanning acoustic microscope (SAM) and mechanical probing have been extensively reported. Large acoustic attenuation at high frequencies and the use of conventional piezo-electric transducers limit the operational frequency of a SAM. This limitation results in lower resolution compared to an optical microscope. Direct mechanical probing in the form of applied stress by contacting probes causes stress to cells and exhibits poor depth resolution. More recently, laser ultrasound has been reported to detect ultrasound in the GHz range via Brillouin oscillations on biological cells. This technique offers a promising new high resolution acoustic cell imaging technique. In this work, we propose, design and apply a thin-film based opto-acoustic transducer for the detection in transmission of Brillouin oscillations on cells. The transducer is used to generate acoustic waves, protect the cells from laser radiation and enhance signal-to-noise ratio (SNR). Experimental traces are presented in water films as well as images of the Brillouin frequency of phantom and fixed 3T3 fibroblast cells.

  8. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation.

    Science.gov (United States)

    Jain, Varsha; Sharma, Shubham; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-09-01

    We theoretically examine two designs of single-mode (i) Er-doped tellurite and (ii) undoped tellurite photonic crystal fiber (PCF) for generation of slow light with tunable features based on stimulated Brillouin scattering. We obtained (i) Brillouin gain up to 91 dB and time delay of ∼145  ns at maximum allowable pump power of ∼775  mW in a 2 m Er-doped tellurite PCF and (ii) Brillouin gain up to ∼88  dB and time delay of ∼154  ns at maximum allowable pump power ∼21  mW in a 100 m undoped tellurite photonic crystal fiber. Simulated results clearly indicate that the doped tellurite PCF with Er enhances the maximum allowable pump power and comparable time delay can be obtained even with reduced photonic crystal fiber length. We believe that the carried out examination and simulation have potential impact on design and development of slow-light-based photonic devices applicable in telecommunication systems, enhancement of optical forces, and quantum computing. PMID:27607250

  9. A Q-switched multi-wavelength Brillouin erbium fiber laser with a single-walled carbon nanotube saturable absorber

    International Nuclear Information System (INIS)

    A Q-switched multi-wavelength Brillouin erbium fiber laser (MWBEFL) is demonstrated using a single-walled carbon nanotube–polyethylene oxide (SWCNT–PEO) saturable absorber (SA). The SA is fabricated by cutting off a small part of the developed SWCNT–PEO film and sandwiching it in between two FC/PC (fiber connector/physical contact) fiber connectors. Multi-wavelength combs with ten lasing lines and spacing of 0.158 nm are obtained by the use of 2 km long dispersion compensating fiber as the Brillouin gain medium and a four-port circulator to isolate and circulate the odd-order Stokes signals. Q-switched pulse trains with a repetition rate of 105.2 kHz and a pulse width of 0.996 μs are obtained in the proposed MWBEFL at a 1480 nm pump power of 120 mW and a Brillouin pump power of 5.4 dBm. (paper)

  10. High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding.

    Science.gov (United States)

    London, Yosef; Antman, Yair; Cohen, Raphael; Kimelfeld, Naama; Levanon, Nadav; Zadok, Avi

    2014-11-01

    A new, hybrid time-domain and correlation-domain Brillouin analysis technique is proposed and demonstrated, providing a large number of high-resolution acquisition points. The method is based on dual-layer hierarchal encoding of both amplitude and phase. The pump and signal waves are co-modulated by a relatively short, high-rate binary phase sequence. The phase modulation introduces Brillouin interactions in a large number of discrete and localized correlation peaks along the fiber under test. In addition, the pump wave is also amplitude-modulated by a slower, carefully synthesized, long on-off-keying sequence. Brillouin interactions at the correlation peaks imprint weak replicas of the pump amplitude sequence on the intensity of the output signal wave. The Brillouin amplifications at individual correlation peaks are resolved by radar-like, matched-filter processing of the output signal, following a recently-proposed incoherent compression protocol. The method provides two significant advantages with respect to previous, pulse-gated correlation-domain analysis schemes, which involved a single pump pulse. First, compression of the extended pulse sequence enhances the measurement signal-to-noise ratio, which is equivalent to that of a large number of averages over repeating single-pulse acquisitions. The acquisition times are potentially much reduced, and the number of resolution points that may be practically interrogated increases accordingly. Second, the peak power level of the pump pulses may be lowered. Hence, the onset of phase pattern distortion due to self-phase modulation is deferred, and the measurement range can be increased. Using the proposed method, the acquisition of Brillouin gain spectra over a 2.2 km-long fiber with a spatial resolution of 2 cm is demonstrated experimentally. The entire set of 110,000 resolution points is interrogated using only 499 position scans per choice of frequency offset between pump and signal. A 5 cm-long hot-spot, located

  11. Observation of the dynamic modes of a magnetic antivortex using Brillouin light scattering

    Science.gov (United States)

    Riley, Grant A.; Liu, H. J. Jason; Asmat-Uceda, Martin A.; Haldar, Arabinda; Buchanan, Kristen S.

    2015-08-01

    The dynamic behavior of magnetic antivortices stabilized in patterned pound-key-like microstructures was studied using microfocus Brillouin light scattering (micro-BLS) at frequencies above the gyrotropic mode (>1 GHz ). Micro-BLS spectra obtained as a function of the frequency of a driving microwave field show an intricate spectrum for the antivortex state for an in-plane driving field. Spatial mode profiles for the strongest antivortex resonance frequencies, obtained for samples in the antivortex as well as the single domain states, show that while the symmetry of one of the observed resonances is relatively insensitive to the spin configuration, the antivortex exhibits a unique mode profile for the other. A comparison with micromagnetic simulations shows that the frequency and symmetry of the latter are consistent with one of the antivortex azimuthal modes. Furthermore, the simulations show that this mode involves coupling between the antivortex spin excitations and propagating spin waves in the structure legs, which may be useful for high-wave-number spin-wave generation.

  12. Brillouin spectroscopy with surface acoustic waves on intermediate valent, doped SmS

    International Nuclear Information System (INIS)

    Brillouin scattering on surface acoustic waves is a very powerful tool to determine the elastic constants of intermediate valent crystals, since the method is non-destructive and no mechanical contact is needed. A strong evidence for intermediate valence is a negative value of Poisson's ratio, which describes the behavior of the volume under uniaxial pressure. SmS by itself makes a semiconductor-metal transition at a pressure of more than 6.5 kbar. When substituting the divalent Sm by a trivalent cation, like Y, La or Tm, SmS can become - depending on the doping concentration - intermediate valent without any applied, external pressure. In this work, we will present measurements of the velocities of the surface acoustic waves and the calculation of the elastic constants of La- and Tm-doped SmS compounds. We found a clear dependence of Poisson's ratio on the doping concentration and on the valence of the materials. Furthermore, we will discuss the mechanism leading to intermediate valence when substituting Sm. Besides the internal, chemical pressure, which is produced by the built in trivalent cations with their smaller ionic radii, we have clear evidence, that the free electrons in the 5d band, induced by the substituting atoms, also play an important role in making doped SmS intermediate valent. (orig.)

  13. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    Science.gov (United States)

    Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.

    2015-08-01

    Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  14. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering

    CERN Document Server

    Long, Xin; Chen, Jianping

    2015-01-01

    Pulse compression processing based on stimulated Brillouin scattering (SBS) in an optical fiber is theoretically and experimentally demonstrated. Broadband microwave signal is electro-optically modulated onto the pump lightwave that is launched into one end of the fiber. Acoustic wave in the fiber inherits the amplitude and phase information of the pump lightwave and thus the coupling between the acoustic wave and pump lightwave leads to the auto-correlated process of the pump lightwave as well as the modulated microwave signal. Derivation of the SBS coupling equations shows that the short-pulse probe lightwave amplified by the pump lightwave possesses the nature of auto-correlation formula. All-optical pulse compression of the broadband microwave signal is implemented after a subtraction between the detected probe pulse with and without SBS. A proof-of-concept experiment is carried out. The pulse compression of a linear frequency-modulated microwave signal with 1 GHz sweep range at the carrier frequency of 4...

  15. Simulation of stimulated Brillouin scattering and stimulated Raman scattering in shock ignition

    Science.gov (United States)

    Hao, L.; Li, J.; Liu, W. D.; Yan, R.; Ren, C.

    2016-04-01

    We study stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in shock ignition by comparing fluid and particle-in-cell (PIC) simulations. Under typical parameters for the OMEGA experiments [Theobald et al., Phys. Plasmas 19, 102706 (2012)], a series of 1D fluid simulations with laser intensities ranging between 2 × 1015 and 2 × 1016 W/cm2 finds that SBS is the dominant instability, which increases significantly with the incident intensity. Strong pump depletion caused by SBS and SRS limits the transmitted intensity at the 0.17nc to be less than 3.5 × 1015 W/cm2. The PIC simulations show similar physics but with higher saturation levels for SBS and SRS convective modes and stronger pump depletion due to higher seed levels for the electromagnetic fields in PIC codes. Plasma flow profiles are found to be important in proper modeling of SBS and limiting its reflectivity in both the fluid and PIC simulations.

  16. Low power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity

    CERN Document Server

    Marpaung, David; Pagani, Mattia; Pant, Ravi; Choi, Duk-Yong; Luther-Davies, Barry; Madden, Steve J; Eggleton, Benjamin J

    2014-01-01

    Highly selective and reconfigurable microwave filters are of great importance in radio-frequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher frequency tuning range than electronic filters. However, all MWP filters to date have been limited by trade-offs between key parameters such as tuning range, resolution, and suppression. This problem is exacerbated in the case of integrated MWP filters, blocking the path to compact, high performance filters. Here we show the first chip-based MWP band-stop filter with ultra-high suppression, high resolution in the MHz range, and 0-30 GHz frequency tuning. This record performance was achieved using an ultra-low Brillouin gain from a compact photonic chip and a novel approach of optical resonance-assisted RF signal cancellation. The results point to new ways of creating energy-efficient and reconfigurable integrated MWP signal processors for wireless communications an...

  17. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering.

    Science.gov (United States)

    Byrnes, Adam; Pant, Ravi; Li, Enbang; Choi, Duk-Yong; Poulton, Christopher G; Fan, Shanhui; Madden, Steve; Luther-Davies, Barry; Eggleton, Benjamin J

    2012-08-13

    We report the first demonstration of a photonic chip based dynamically reconfigurable, widely tunable, narrow pass-band, high Q microwave photonic filter (MPF). We exploit stimulated Brillouin scattering (SBS) in a 6.5 cm long chalcogenide (As2S3) photonic chip to demonstrate a MPF that exhibited a high quality factor of ~520 and narrow bandwidth and was dynamically reconfigurable and widely tunable. It maintained a stable 3 dB bandwidth of 23 ± 2MHz and amplitude of 20 ± 2 dB over a large frequency tuning range of 2-12 GHz. By tailoring the pump spectrum, we reconfigured the 3 dB bandwidth of the MPF from ~20 MHz to ~40 MHz and tuned the shape factor from 3.5 to 2 resulting in a nearly flat-topped filter profile. This demonstration represents a significant advance in integrated microwave photonics with potential applications in on-chip microwave signal processing for RADAR and analogue communications. PMID:23038523

  18. Model and conservation laws of stimulated Brillouin backscattered in an inhomogeneous flowing plasma

    International Nuclear Information System (INIS)

    The physics of momentum transfer from the laser field to the plasma ions is studied in the context of stimulated Brillouin scattering (SBS). In long-pulse regime (>1 ns), the momentum deposition leads to local flow inhomogeneities and density modifications in laser hot spots and changes significantly the physics of interaction. A set of equations that describe the self-consistent evolution of the laser field propagation, the backscattered transverse wave, the longitudinal ion acoustic wave (JAW) and the background plasma hydrodynamic is presented through a fluid description. In standard decay regime, a new three-dimensional paraxial equation describing the excitation of IAW in inhomogeneous flowing plasma is given in quasi-neutral limit. In particular, the rigorous and detailed computations of global momentum conservation involving different approximation levels in our fluid model have been carried out. Thus, the compatibility between the paraxial equation and the momentum conservation law has been checked. A multi-dimensional and parallel code Hera has been used to solve our full set of fluid equations in realistic large-size plasmas (hohlraums, gas jets). The numerical simulations based on such a model have shown to be very efficient in terms of computing time. (authors)

  19. Fermi states and anisotropy of Brillouin zone scattering in the decagonal Al-Ni-Co quasicrystal

    Science.gov (United States)

    Rogalev, V. A.; Gröning, O.; Widmer, R.; Dil, J. H.; Bisti, F.; Lev, L. L.; Schmitt, T.; Strocov, V. N.

    2015-10-01

    Quasicrystals (QCs) are intermetallic alloys that have excellent long-range order but lack translational symmetry in at least one dimension. The valence band electronic structure near the Fermi energy EF in such materials is of special interest since it has a direct relation to their unusual physical properties. However, the Fermi surface (FS) topology as well as the mechanism of QC structure stabilization are still under debate. Here we report the first observation of the three-dimensional FS and valence band dispersions near EF in decagonal Al70Ni20Co10 (d-AlNiCo) QCs using soft X-ray angle-resolved photoemission spectroscopy. We show that the FS, formed by dispersive Al sp-states, has a multicomponent character due to a large contribution from high-order bands. Moreover, we discover that the magnitude of the gap at the FS related to the interaction with Brillouin zone boundary (Hume-Rothery gap) critically differs for the periodic and quasiperiodic directions.

  20. Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber

    CERN Document Server

    Terra, O; Schnatz, H

    2010-01-01

    We describe the use of fiber Brillouin amplification (FBA) for the coherent transmission of optical frequencies over a 480 km long optical fiber link. FBA uses the transmission fiber itself for efficient, bi-directional coherent amplification of weak signals with pump powers around 30 mW. In a test setup we measured the gain and the achievable signal-to-noise ratio (SNR) of FBA and compared it to that of the widely used uni-directional Erbium doped fiber amplifiers (EDFA) and to our recently built bi-directional EDFA. We measured also the phase noise introduced by the FBA and used a new and simple technique to stabilize the frequency of the FBA pump laser. We then transferred a stabilized laser frequency over a wide area network with a total fiber length of 480 km using only one intermediate FBA station. After compensating the noise induced by the fiber, the frequency is delivered to the user end with an uncertainty below 2x10-18 and an instability sigma(tau) = 2x10-14/(tau/second).

  1. Brillouin light scattering on MSW excitations in device structures (invited) (abstract)

    Science.gov (United States)

    Patton, Carl E.

    1987-04-01

    Magnetostatic wave (MSW) propagation in planar magnetic samples has formed the physical basis for most of the MSW device structures which have been developed in recent years. The properties of these waves, however, were accessible only by indirect means, usually in the form of the final device operating characteristics. With the technique of Brillouin light scattering (BLS), it is now possible to measure the dispersion properties and energy flow profiles of MSW excitations in situ in actual device configurations. The technique requires an incident low-power laser beam focused on the surface of the magnetic layer, some collection optics to sample the scattered light, and a sensitive, high-contrast Fabry-Perot interferometer for frequency analysis. In simple terms, one needs simply to ``bounce'' a laser beam off the active magnetic layer in the device in order to probe directly the excitations which make the device work. The technique is noninvasive and independent of any device function which the MSW signals serve. The BLS technique should prove to be a powerful diagnostic tool in the developing technology of MSW devices. The technique is broadband, and is capable of device diagnostics from the low GHz range up to frequencies in the THz regime.

  2. Simulation of Stimulated Brillouin Scattering and Stimulated Raman Scattering In Shock Ignition

    CERN Document Server

    Hao, L; Liu, W D; Yan, R; Ren, C

    2016-01-01

    We study stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in shock ignition by comparing fluid and PIC simulations. Under typical parameters for the OMEGA experiments [Theobald \\emph{et al}., Phys. Plasmas \\textbf{19}, 102706 (2012)], a series of 1D fluid simulations with laser intensities ranging between 2$\\times$10$^{15}$ and 2$\\times$10$^{16}$ W/cm$^2$ finds that SBS is the dominant instability, which increases significantly with the incident intensity. Strong pump depletion caused by SBS and SRS limits the transmitted intensity at the 0.17n$_c$ to be less than 3.5$\\times$10$^{15}$ W/cm$^2$. The PIC simulations show similar physics but with higher saturation levels for SBS and SRS convective modes and stronger pump depletion due to higher seed levels for the electromagnetic fields in PIC codes. Plasma flow profiles are found to be important in proper modeling of SBS and limiting its reflectivity in both the fluid and PIC simulations.

  3. Study on two-cell stimulated Brillouin scattering system with mixture medium

    Institute of Scientific and Technical Information of China (English)

    HASI; Wuliji

    2007-01-01

    In this paper,a method of choosing mixture medium in two-cell stimulated Brillouinscattering(SBS)system to improve the system performance is proposed.The Brillouin frequency shift(BFS)of mixture medium varies with the mixing ratio andthus the difference of the BFS between the two cells can be eliminated.The two-cellSBS system with acetone(C3H6O)in its generator cell and mixture liquid ofCCl4/C2Cl4 in its amplifier cell is investigated.The C3H6O has a high optical breakdown threshold and the mixture liquid of CCl4/C2Cl4 has a small absorption coeffi-cient and the same BFS as that of C3H6O when the volume fraction of CCl4 is 4%.Compared with two-cell SBS system with the same liquid(C2Cl4)or different liquid(C3H6O and C2Cl4)in generator and amplifier cell,the SBS system with mixture liq-uid(CCl4/C2Cl4)in amplifier cell and C3H6O in generator cell improves thepower-load,energy reflectivity(ER),phase conjugation(PC)fidelity and ER stabil-ity.

  4. Disorder-driven nonequilibrium melting studied by electron diffraction, brillouin scattering, and molecular dynamics

    International Nuclear Information System (INIS)

    In the present paper, a brief overview of the electron diffraction, Brillouin scattering and molecular dynamics studies of radiation-induced amorphization of ordered intermetallic compounds is presented. In these studies, measured changes in the velocity of surface acoustic phonons, lattice constant, and the Bragg-Williams long-range order parameter induced by irradiation were compared with the results of computer simulations of defect-induced amorphization. The results indicate that progressive chemical disordering of the superlattice structure during irradiation is accompanied by an expansion of the lattice and a large change in sound velocity corresponding to a ∼ 50% decrease in the average shear modulus. The onset of amorphization occurs when the average shear modulus of the crystalline compound becomes equal to that of the amorphous phase. This elastic softening criterion for the onset of amorphization and the dependence of the average shear modulus on the long-range-order parameter are in excellent agreement with molecular dynamics simulations. Both the experimental observations and computer simulations confirm the predictions of the generalized Lindemann melting criterion which stipulates that thermodynamic melting of a defective crystal occurs when the sum of the dynamic and static mean-square atomic displacements reaches a critical value identical to that for melting of the defect-free crystal. In this broader view of melting, the crystal-to-glass transformation is a disorder-driven nonequilibrium melting process occurring at temperatures below the Kauzmann isentropic glass-transition temperature

  5. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale

    Directory of Open Access Journals (Sweden)

    Thomas eSebastian

    2015-06-01

    Full Text Available Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties.For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions.For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical

  6. Investigation of ionospheric stimulated Brillouin scatter generated at pump frequencies near electron gyroharmonics

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Fu, H.; Briczinski, S. J.; McCarrick, M. J.

    2013-11-01

    Stimulated Electromagnetic Emissions (SEEs), secondary electromagnetic waves excited by high power electromagnetic waves transmitted into the ionosphere, produced by the Magnetized Stimulated Brillouin Scatter (MSBS) process are investigated. Data from four recent research campaigns at the High Frequency Active Auroral Research Program (HAARP) facility is presented in this work. These experiments have provided additional quantitative interpretation of the SEE spectrum produced by MSBS to yield diagnostic measurements of the electron temperature and ion composition in the heated ionosphere. SEE spectral emission lines corresponding to ion acoustic (IA) and electrostatic ion cyclotron (EIC) mode excitation were observed with a shift in frequency up to a few tens of Hz from the pump frequency for heating near the third harmonic of the electron gyrofrequency 3fce. The threshold of each emission line has been measured by changing the pump wave power. The excitation threshold of IA and EIC emission lines originating at the reflection and upper hybrid altitudes is measured for various beam angles relative to the magnetic field. Variation of strength of MSBS emission lines with pump frequency relative to 3fce and 4fce is also studied. A full wave solution has been used to estimate the amplitude of the electric field at the interaction altitude. The estimated instability threshold using the theoretical model is compared with the threshold of MSBS lines in the experiment and possible diagnostic information for the background ionospheric plasma is discussed. Simultaneous formation of artificial field-aligned irregularities (FAIs) and suppression of the MSBS process is investigated. This technique can be used to estimate the growth time of artificial FAIs which may result in determination of plasma waves and physical process involved in the formation of FAIs.

  7. The Laboratoire Léon Brillouin, the French National Neutron Facility

    International Nuclear Information System (INIS)

    The Laboratoire Léon Brillouin is a French research infrastructure supported jointly by the Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) and the Centre National de la Recherche Scientifique (CNRS); it constructs and operates spectrometers around Orphée, a 14 MW reactor operated by the CEA since 1980. The three missions of this national large scale facility are to perform research in its own scientific programs, to promote the use of diffraction and neutron spectroscopy, to welcome and assist experimentalists, subsequently ensuring training and education, and providing access for industrial partners. As a service institute the LLB makes its facilities and expertise available to visiting scientists from France and foreign countries. Every year, about 500 researchers from France (70%) and other countries (30%) visit the LLB and perform their experiments on the 20 operational spectrometers. About 450 experiments selected by a scientific review committee are performed annually. These activities are enduring and complementary to international centers, such as the Institute Laue-Langevin or the future European Spallation Source in Sweden, and cooperation programs with other national centers. As a national facility, its management of beam time is quite flexible, allowing more tests, thoughts and discussions between beginners and experts, the exploration of new areas or experiment preparation, and access to industrial partners. The exceptional situation of the LLB in the southwest of Paris, in the scientific centre of Saclay, nearby faculties, engineering schools and other large scale facilities, such the synchrotron Soleil, promotes external contacts and discussions, and stimulates new collaborations. New objectives in research are at the centre of the instrumental development program CAP2015. The goal of this program is the modernization or construction of nearly half of the laboratory's instruments by 2015, accounting for the needs of the

  8. Toward a new lower limit for the minimum scattering vector on the very small angle neutron scattering spectrometer at Laboratoire Leon Brillouin

    Energy Technology Data Exchange (ETDEWEB)

    Brulet, A.; Thevenot, V.; Lairez, D.; Desert, S. [CEA Saclay, CEA-CNRS, UMR12, Lab Leon Brillouin, F-91191 Gif Sur Yvette (France); Lecommandoux, S.; Agut, W. [Univ Bordeaux 1, ENSCPB CNRS, Lab Chim Polymeres Organ, F-33607 Pessac (France); Armes, S.P.; Du, J. [Univ Sheffield, Dept Chem, Sheffield S3 7HF (United Kingdom)

    2008-07-01

    The main characteristics of the very small angle neutron scattering spectrometer (VSANS) under construction at the Laboratoire Leon Brillouin are a multibeam pinhole collimator converging onto an image plate detector. By combining tiny collimation (diaphragms of around 1 or 2 mm in diameter) with the small pixel size of the detector (0.15 * 0.15 mm), very high resolution measurements can be achieved. The resolution function of the instrument contains a contribution from gravity, which is reduced by the intermediate masks of the collimator. Owing to the relatively short length of the VSANS instrument (around 14 m), this effect remains weak, in good agreement with the predictions. With a prototype multibeam collimator, an incident wavelength of 0.9 nm and the detector located at 6 m from the sample, it is possible to access q values as low as 4 * 10{sup -3} nm{sup -1} with very high q resolution. Promising preliminary experiments with high q resolution are reported, which open up new fields to the SANS technique. (authors)

  9. Peculiar effective elastic anisotropy of nanometric multilayers studied by surface Brillouin scattering

    Science.gov (United States)

    Faurie, D.; Djemia, P.; Castelnau, O.; Brenner, R.; Belliard, L.; Le Bourhis, E.; Goudeau, Ph; Renault, P.-O.

    2015-12-01

    We show in this paper by using a two-scale transition model that the elastic anisotropy of a thin film specimen can be tuned by appropriate stacking design. The anisotropic behaviour is illustrated for two monophase thin films, namely W which is perfectly elastically isotropic and Au which is strongly elastically anisotropic, and for a nanometric W/Au multilayers. The experimental measurements show that the model capture the elastic anisotropy rather well even for a nanometric multilayer stacking (period of 12 nm) and that the elastic anisotropy of W/Au multilayer is more pronounced than the ones of the two components for a fraction of 50%. This enhanced anisotropy is discussed in view of the multilayer microstructure.

  10. Coherent Tiled 4 Beam Combination by Phase Controlled Stimulated Brillouin Scattering Phase Conjugation Mirrors toward the Practical Laser Fusion Driver

    International Nuclear Information System (INIS)

    Full text: The coherent beam combination using the phase controlled stimulated Brillouin scattering phase conjugate mirrors (SBS-PCMs) is one of the promising techniques for the practical laser fusion drivers. Its ability has been demonstrated experimentally through this work. The phase fluctuations of the titled beams are less than 1/25 wavelength even when the amplifiers are inserted and operated in the beam combining system, which means that this new technique can be applied to combine the currently available lasers such as 100 J/ns/10 Hz for a real laser driver module whose output energy is greater than 5 kJ/ns/10 Hz. (author)

  11. Determination of elastic stiffness coefficients of lead zirconate single crystals in the cubic phase by Brillouin light scattering

    International Nuclear Information System (INIS)

    The temperature dependence of the three independent elastic constants of antiferroelectric lead zirconate single crystals was determined in the cubic, paraelectric phase by Brillouin light scattering spectroscopy. Two longitudinal elastic moduli of C11 and (C11 + C12+2 C44)/2 showed softening upon cooling toward the phase transition temperature, indicating the coupling of the acoustic waves to the polarization fluctuations of the precursor polar clusters. Among the two transverse acoustic modes, C44 was almost constant while (C11-C12)/2 showed a noticeable softening in the paraelectric phase. This was attributed to the acoustic instability of lead zirconate toward the orthorhombic ground state

  12. Phase-locked stimulated Brillouin scattering seeded by a transient acoustic wave excited through an optical interference field

    International Nuclear Information System (INIS)

    A mathematical description of an experimentally-verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS) is presented. It is shown that this phase-locking of the SBS process may have its origin in a transient acoustic standing wave initiated by an arising optical interference field, eventually leading to a stationary density modulation of the medium. An appropriate solution was obtained by solving the acoustic wave-equation with electrostriction as a driving force. As a consequence of the damping term being included in this equation, the acoustic standing wave becomes gradually attenuated and, contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon.

  13. Brillouin spectroscopic investigations of LiKSO4 in the temperature range from 20 to 150 K

    International Nuclear Information System (INIS)

    Brillouin spectroscopy has been used to determine the temperature dependence of the velocity of longitudinal acoustic modes in a lithium-potassium sulphate single crystal in the temperature range from 20 to 150 K. Small anomalies were recorded for the modes propagating in [101] and [011] directions. The frequency of the [100] mode is practically temperature independent. The velocity of the [001] mode shows a minimum (relative change, 4.5%) at 52 K which corresponds to the known phase transition temperature in this crystal. The results of two sequential runs performed on the same sample (thermal cycling) are compared and discussed. (author)

  14. Study of low-frequency dynamics of short peptides by Brillouin light scattering and Monte-Carlo global energy minimization

    International Nuclear Information System (INIS)

    Brillouin light scattering studies of the behavior of hypersound velocity in solutions of short peptides Asp-Ser, Glu-Asp-Arg, Ala-Glu-Asp-Leu with widely varying concentrations at temperatures ranging from 295 to 360K are presented. As shown by analysis of experimental data and molecular simulation, the dipeptide Asp-Ser is characterized by formation of dimers which decompose at high temperatures. High-concentration solutions of tri- and tetrapeptides form aggregates at high temperatures which are preserved on cooling

  15. Multi-wavelength Brillouin fiber laser using a holey fiber and a bismuth-oxide based erbium-doped fiber

    International Nuclear Information System (INIS)

    Multi-wavelength Brillouin fiber laser (BFL) is demonstrated using a holey fiber and a Bismuth-oxide based erbium-doped fiber (Bi-EDF) in a simple ring resonator. The proposed BFL is able to generate up to 13 lines including anti-Stokes with a channel spacing of 0.08 nm at the 1574 nm region. The multi-wavelength BFL is stable at room temperature and also compact due to the use of only a 20 m long of holey fiber and a 215 cm long of Bi-EDF

  16. Spacing-adjustable and wavelength-tunable multiwavelength fibre laser with nonlinear Brillouin gain and birefringence fibre loop mirror

    International Nuclear Information System (INIS)

    This paper demonstrates a room-temperature multiwavelength fibre laser with spacing-adjustability and wavelength-tunability. The nonlinear gain of self-excited stimulated Brillouin scattering can suppress mode competition induced by homogeneous broadening of Erbium-doped fibre. With the use of a birefringence fibre loop filter, the wavelength spacing can be adjusted by changing the length of the used birefringence fibre, and the lasing wavelengths can be finely tuned through modifying the filtering profile of the birefringence filter. Multiwavelength output with spectral spacing as small as 0.076 nm and a wavelength number of more than 80 has been successfully produced. (classical areas of phenomenology)

  17. Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique: cm-order spatial resolution and dynamic strain measurement

    Science.gov (United States)

    Hotate, Kazuo; Ong, Sean S.

    2002-09-01

    This paper describes a novel correlation-based technique for fiber optic distributed strain sensors using Brillouin scattering. Conventional Brillouin-based sensors utilize a pulsed-pump similar to that of OTDR and are capable of distributed strain sensing over large distances, but suffer an inherent spatial resolution limit of around 1m. In addition, unlike FBG-based strain sensors which are competent of measuring dynamic strain, the pulse-based Brillouin sensors have large measurement times of several minutes, making them inadequate for dynamic strain measurements. On the other hand, using the correlation-based continuous-wave technique, we have achieved static distributed strain measurements of up to 1cm spatial resolution, and dynamic strain measurements of up to 8.8Hz from a 5cm strained section.

  18. Photon-counting Brillouin optical time-domain reflectometry based on up-conversion detector and fiber Fabry-Perot scanning interferometer

    CERN Document Server

    Xia, Haiyun; Shentu, Guoliang; Wang, Chong; Qiu, Jiawei; Xia, Xiuxiu; Chen, Chao; Zheng, Mingyang; Xie, Xiuping; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2015-01-01

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) is proposed and demonstrated by using an up-conversion single-photon detector and a fiber Fabry-Perot scanning interferometer (FFP-SI). Taking advantage of high signal-to-noise ratio of the detector and high spectrum resolution of the FFP-SI, the Brillouin spectrum along a polarization maintaining fiber (PMF) is recorded on a multiscaler with a small data size directly. In contrast with conventional BOTDR adopting coherent detection, photon-counting BOTDR is simpler in structure and easier in data processing. In the demonstration experiment, characteristic parameters of the Brillouin spectrum including its power, spectral width and frequency center are analyzed simultaneously along a 10 km PMF at different temperature and stain conditions.

  19. Excitonic quantum beat at the mini-Brillouin-zone boundary in a GaAs/AlAs superlattice

    International Nuclear Information System (INIS)

    We have investigated excitonic quantum beats (QBs) at the mini-Brillouin-zone boundary (π-point) in a GaAs (6.8 nm)/AlAs (1.1 nm) superlattice by using a femtosecond reflection-type electro-optic sampling technique. Photoreflectance spectroscopy was adopted to characterize the optical transition energies of the heavy-hole (HH) and light-hole (LH) excitons at the mini-Brillouin-zone center (Γ-point) and the π-point. By systematically changing the pump-pulse energy in the energy region from the Γ-point exciton to the π-point exciton, we have succeeded to observe the QB of the HH and LH excitons at the π-point in addition to the ordinary QB at the Γ-point. The observed frequencies agree with the values estimated from the energy difference between the relevant two excitons. The decay time of the QB signal at the π-point is much shorter than that at the Γ-point. This behavior reflects a very fast relaxation process of the π-point excitons in the miniband dispersion

  20. The phase transitions of ferroelectric Sr2Ta2O7 crystals by MDSC, Brillouin and dielectric spectroscopy

    Science.gov (United States)

    Hushur, A.; Shabbir, G.; Ko, J.-H.; Kojima, S.

    2004-04-01

    The structural phase transitions of Sr2Ta2O7 single crystals have been studied by the modulated temperature differential scanning calorimetry (MDSC), Brillouin scattering and dielectric spectroscopy. The specific heat (Cp) was measured over a wide temperature range from -150°C to 25°C and from 100°C to 210°C. The Cp curve showed an anomaly at To = 166.7°C, indicating the phase transition Cmcm rarr P21/m. The transition enthalpy DgrH, the transition entropy DgrS and specific heat jump DgrCp at To were estimated to be 0.465 J g-1, 1.01 mJ g-1 K-1 and 9.78 mJ g-1 K-1, respectively. The Cp anomaly associated with the ferroelectric phase transition at Tc = -107°C has not been detected. However, both Brillouin and dielectric data showed the anomalies corresponding to the ferroelectric phase transition from P21/m to P21.

  1. The phase transitions of ferroelectric Sr2Ta2O7 crystals by MDSC, Brillouin and dielectric spectroscopy

    International Nuclear Information System (INIS)

    The structural phase transitions of Sr2Ta2O7 single crystals have been studied by the modulated temperature differential scanning calorimetry (MDSC), Brillouin scattering and dielectric spectroscopy. The specific heat (Cp) was measured over a wide temperature range from -150 deg. C to 25 deg. C and from 100 deg. C to 210 deg. C. The Cp curve showed an anomaly at To 166.7 deg. C, indicating the phase transition Cmcm → P21/m. The transition enthalpy ΔH, the transition entropy ΔS and specific heat jump ΔCp at To were estimated to be 0.465 J g-1, 1.01 mJ g-1 K-1 and 9.78 mJ g-1 K-1, respectively. The Cp anomaly associated with the ferroelectric phase transition at Tc = -107 deg. C has not been detected. However, both Brillouin and dielectric data showed the anomalies corresponding to the ferroelectric phase transition from P21/m to P21

  2. The complex mixed Wentzel-Kramers-Brillouin-full-wave approach and its application to the two dimensional mode structure analysis of ion temperature gradient/collisionless trapped electron mode drift waves

    Science.gov (United States)

    Lu, Z. X.

    2015-05-01

    The complex mixed Wentzel-Kramers-Brillouin (WKB)-full-wave approach is applied to the 2D mode structure analysis of ion temperature gradient/collisionless trapped electron mode drift waves in tokamak plasmas. The parallel mode structure is calculated with the full-wave approach, while the radial envelope is calculated with the complex WKB method. The tilting of the global mode structure along radius is demonstrated analytically. The effects of the phase and amplitude variation of the radial envelope on the parallel mode structure are included in terms of a complex radial wave vector in the parallel mode equation. It is shown that the radial equilibrium non-uniformity leads to the asymmetry of the parallel mode structure not only in configuration space but also in spectrum space. The mixed approach provides a practical way to analyze the asymmetric component of the global mode structure due to radial equilibrium non-uniformity.

  3. The complex mixed Wentzel–Kramers–Brillouin-full-wave approach and its application to the two dimensional mode structure analysis of ion temperature gradient/collisionless trapped electron mode drift waves

    International Nuclear Information System (INIS)

    The complex mixed Wentzel–Kramers–Brillouin (WKB)-full-wave approach is applied to the 2D mode structure analysis of ion temperature gradient/collisionless trapped electron mode drift waves in tokamak plasmas. The parallel mode structure is calculated with the full-wave approach, while the radial envelope is calculated with the complex WKB method. The tilting of the global mode structure along radius is demonstrated analytically. The effects of the phase and amplitude variation of the radial envelope on the parallel mode structure are included in terms of a complex radial wave vector in the parallel mode equation. It is shown that the radial equilibrium non-uniformity leads to the asymmetry of the parallel mode structure not only in configuration space but also in spectrum space. The mixed approach provides a practical way to analyze the asymmetric component of the global mode structure due to radial equilibrium non-uniformity

  4. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    For the first time to our knowledge, distributed impact waves due to the highway traffic on concrete slabs reinforced with FRP bars are monitored in real time using stimulated Brillouin scattering. The impact wave is caused by the traffic passing on the highway pavement at high speed (>100 km h−1), which induced pressure on the concrete slabs, and in turn created a local birefringence change, leading to variation of the local state of polarization change (SOP). The pump and probe waves of the stimulated Brillouin scattering 'see' the SOP change and react with a decrease of the Brillouin gain or loss signal, when the pump and probe waves have the same input polarization state. The frequency difference between the pump and probe waves are locked at the static-strain-related Brillouin frequency. Optical fiber was embedded throughout the concrete pavement continuously reinforced with FRP bars in Highway 40 East, Montréal, Quebec to detect impact waves caused by cars and trucks passing on these pavements at a sampling rate of 10 kHz. A spatial resolution of 2 m was used over a sensing length of 300 m

  5. Implementation of the multireference Brillouin-Wigner and Mukherjee's coupled cluster methods with non-iterative triple excitations utilizing reference-level parallelism

    Czech Academy of Sciences Publication Activity Database

    Bhaskaran-Nair, Kiran; Brabec, Jiří; Apra, E.; van Dam, H. J. J.; Pittner, Jiří

    2012-01-01

    Roč. 137, č. 9 (2012), 094112. ISSN 0021-9606 R&D Projects: GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : multireference methods * molecular applications * Brillouin-Wogner Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012

  6. Experimental investigation of the stimulated Brillouin scattering growth and saturation at 526 and 351 nm for direct drive and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Depierreux, S.; Loiseau, P.; Tassin, V.; Masson-Laborde, P.-E.; Goyon, C. [CEA DAM DIF, F-91297 Arpajon (France); Michel, D. T.; Yahia, V. [CEA DAM DIF, F-91297 Arpajon (France); LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Stenz, C. [CELIA, Universite Bordeaux 1, 351 cours de la Liberation, 33405 Talence cedex (France); Labaune, C. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France)

    2012-01-15

    We have designed experiments to study the effect of the laser wavelength (0.527 versus 0.351 {mu}m) on the coupling efficiency in plasma conditions relevant to compression and shock ignition (SI) schemes in different intensity regimes. A difficult issue was to produce interaction conditions that are equivalent for the two wavelengths. This was obtained by using plasma preformed from a solid target with a plasma-preforming beam at the same wavelength as the interaction beam. This produced an almost exponential density profile from vacuum to the critical density of the interaction beam in which all interaction mechanisms are taken into account. The growth and saturation of stimulated Brillouin scattering (SBS) have been measured at the two wavelengths, in backward as well as in near-backward directions. We have found that the SBS intensity threshold is {approx}1.5 times higher at 3{omega} than at 2{omega} in agreement with the I{lambda} dependence of the SBS gain. The SBS behaviour is very well reproduced by the linear calculations of the postprocessor PIRANAH, giving us confidence that we have a good control of the relevance of the experimental conditions for the study of the laser wavelength effect on laser-plasma coupling. When SBS reaches the saturation regime, same levels of reflectivity are measured at 2 and 3{omega}. Numerical simulations were performed with the paraxial code HERA to study the contribution of the fluid mechanisms in the saturation of SBS, showing that pump depletion and interplay with filamentation are likely to be the most important processes in SBS saturation for these conditions. This scenario also applies to the SBS of shock ignition high-intensity beams.

  7. Irreducible Brillouin conditions and contracted Schroedinger equations for n-electron systems. IV. Perturbative analysis

    International Nuclear Information System (INIS)

    The k-particle irreducible Brillouin conditions IBCk and the k-particle irreducible contracted Schroedinger equations ICSEk for a closed-shell state are analyzed in terms of a Moeller-Plesset-type perturbation expansion. The zeroth order is Hartree-Fock. From the IBC2(1), i.e., from the two-particle IBC to first order in the perturbation parameter μ, one gets the leading correction λ2(1) to the two-particle cumulant λ2 correctly. However, in order to construct the second-order energy E2, one also needs the second-order diagonal correction γD(2) to the one-particle density matrix γ. This can be obtained: (i) from the idempotency of the n-particle density matrix, i.e., essentially from the requirement of n-representability; (ii) from the ICSE1(2); or (iii) by means of perturbation theory via a unitary transformation in Fock space. Method (ii) is very unsatisfactory, because one must first solve the ICSE3(2) to get λ3(2), which is needed in the ICSE2(2) to get λ2(2), which, in turn, is needed in the ICSE1(2) to get γ(2). Generally the (k+1)-particle approximation is needed to obtain Ek correctly. One gains something, if one replaces the standard hierarchy, in which one solves the ICSEk, ignoring λk+1 and λk+2, by a renormalized hierarchy, in which only λk+2 is ignored, and λk+1 is expressed in terms of the λp of lower particle rank via the partial trace relation for λk+2. Then the k-particle approximation is needed to obtain Ek correctly. This is still poorer than coupled-cluster theory, where the k-particle approximation yields Ek+1. We also study the possibility to use some simple necessary n-representability conditions, based on the non-negativity of γ(2) and two related matrices, in order to get estimates for γD(2) in terms of λ2(1). In general these estimates are rather weak, but they can become close to the best possible bounds in special situations characterized by a very sparse structure of λ2 in terms of a localized representation. The

  8. Direct optical transitions at K- and H-point of Brillouin zone in bulk MoS2, MoSe2, WS2, and WSe2

    Science.gov (United States)

    Kopaczek, J.; Polak, M. P.; Scharoch, P.; Wu, K.; Chen, B.; Tongay, S.; Kudrawiec, R.

    2016-06-01

    Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at K point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS2, MoSe2, WS2, and WSe2 crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an AH transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and AH transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (BH transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the BH transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.

  9. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    International Nuclear Information System (INIS)

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications

  10. Transition from hydrodynamic to fast sound in a He-Ne mixture a neutron Brillouin scattering experiment

    CERN Document Server

    Bafile, U; Barocchi, F; Sampoli, M

    2002-01-01

    The presence of a fast-sound mode in the microscopic dynamics of the rare-gas mixture He-Ne, predicted by theoretical studies and molecular-dynamics simulations, was demonstrated by an inelastic neutron scattering experiment. In order to study the transition between the fast and the normal acoustic modes in the hydrodynamic regime, k values lower by about one order of magnitude than in the usual experiments have to be probed. We describe here the results of the first neutron Brillouin scattering experiment performed with this purpose on the same system already investigated at larger k. The results of both experiments, together with those of a new molecular-dynamics simulation, provide a complete and consistent description, still missing so far, of the onset of fast-sound propagation in a binary mixture. (orig.)

  11. Thermally induced amorphous to crystalline transformation of argon ion bombarded GaAs studied with surface Brillouin and Raman scattering

    Science.gov (United States)

    Jakata, K.; Wamwangi, D. M.; Sumanya, C.; Mathe, B. A.; Erasmus, R. M.; Naidoo, S. R.; Comins, J. D.

    2012-09-01

    Surface Brillouin scattering (SBS) and Raman spectroscopy have been used to investigate the recrystallisation of an amorphous layer of GaAs created on single crystal (0 0 1) GaAs by ion bombardment with 100 keV argon ions with a fluence of 5 × 1016 ions/cm2 at a temperature of ˜65 °C. Samples were isochronally annealed and the light scattering measurements were performed after each annealing step. The SBS studies confirm structural changes resulting in continuous stiffening of the layer beginning above 200 °C and finally attaining a maximum value above 500 °C. The Raman studies show evidence of full recrystallisation above 500 °C, with the appearance of both LO and TO peaks indicating that the reformed layer is polycrystalline.

  12. Cascaded gain fibers for increasing output power and the stimulated Brillouin scattering threshold of narrow linewidth fiber Raman amplifiers.

    Science.gov (United States)

    Nagel, J A; Temyanko, V; Dobler, J T; Likhachev, M E; Bubnov, M M; Dianov, E M; Peyghambarian, N

    2016-05-20

    We show both experimentally and theoretically a method to increase the stimulated Brillouin scattering (SBS) threshold and output power of narrow linewidth fiber Raman amplifiers. This method employs two or more fibers with varying concentrations of the Raman gain material dopant such as GeO2 or P2O5 in silicate-based glasses. These fibers are then cascaded to form an amplifier gain stage, disrupting the buildup of SBS that normally occurs in single continuous fibers. The numerical model shown is applicable to arbitrary amplifier systems for gain stage optimization and increased power scaling. We give experimental results for phosphosilicate fibers that agree well with simulation predictions that support the numerical model used. PMID:27411133

  13. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Bublikov, K. V.; Grishin, S. V.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-11-28

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.

  14. The Measurement of Tropospheric Temperature Profiles using Rayleigh-Brillouin Scattering: Results from Laboratory and Atmospheric Studies

    Science.gov (United States)

    Witschas, Benjamin; Reitebuch, Oliver; Lemmerz, Christian; Gomez Kableka, Pau; Kondratyev, Sergey; Gu, Ziyu; Ubachs, Wim

    2016-06-01

    In this letter, we suggest a new method for measuring tropospheric temperature profiles using Rayleigh-Brillouin (RB) scattering. We report on laboratory RB scattering measurements in air, demonstrating that temperature can be retrieved from RB spectra with an absolute accuracy of better than 2 K. In addition, we show temperature profiles from 2 km to 15.3 km derived from RB spectra, measured with a high spectral resolution lidar during daytime. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 K and 1.5 K.

  15. The mixed Wentzel–Kramers–Brillouin-full-wave approach and its application to lower hybrid wave propagation and absorption

    International Nuclear Information System (INIS)

    The mixed Wentzel–Kramers–Brillouin (WKB)-full-wave approach for the calculation of the 2D mode structure in tokamak plasmas is further developed based on our previous work [A. Cardinali and F. Zonca, Phys. Plasmas 10, 4199 (2003) and Z. X. Lu et al., Phys. Plasmas 19, 042104 (2012)]. A new scheme for theoretical analysis and numerical implementation of the mixed WKB-full-wave approach is formulated, based on scale separation and asymptotic analysis. Besides its capability to efficiently investigate the initial value problem for 2D mode structures and linear stability, in this work, the mixed WKB-full-wave approach is extended to the investigation of radio frequency wave propagation and absorption, e.g., lower hybrid waves. As a novel method, its comparison with other approaches, e.g., WKB and beam tracing methods, is discussed. Its application to lower hybrid wave propagation in concentric circular tokamak plasmas using typical FTU discharge parameters is also demonstrated.

  16. Self-focusing induced reduction of Stimulated Brillouin Scattering for the case of monospeckle laser beams interacting with a plasma

    Science.gov (United States)

    Masson-Laborde, Paul-Edouard; Hueller, Stefan; Pesme, Denis; Loiseau, Pascal; Labaune, Christine; Bandulet, Heidi

    2008-11-01

    The mechanism explaining the low level of Stimulated Brillouin Scattering observed in laser-plasma experiments with monospeckle laser beams, carried out at the LULI facility, is studied by means of numerical simulations. For the regime where the beam power is well above the self-focusing critical power, simulations carried out with the codes Harmony2D and HERA-ILP (in 2D and 3D geometry respectively), show time-averaged reflectivities of the order of only a few percent. Because of self-focusing and the filament resonant instability, SBS takes only place in self-focused hot spots located in the low-density front part of the plasma. The shortened hot spot sizes and the steepened flow-profile dramatically reduce SBS. This scenario may also applies to the most intense laser hot spots in a spatially smoothed laser beam.

  17. Degeneracy of spectrum of XXX model in the three-magnon sector at the centre of the Brillouin zone

    International Nuclear Information System (INIS)

    An exact diagonalization of the XXX one-dimensional Heisenberg model a magnet with the single-node 1/2 reveals a specific degeneracy in the sector of r = 3 reversed spins at the centre k = 0 of the Brillouin zone. The degeneracy manifests itself by the second power (i.e. the double degeneracy) of a factor of the characteristic polynomial of the related secular matrix. The factor, treated as a polynomial in the variable x being an eigenenergy, is indecomposable over the field Q of rationals, and its roots correspond to appropriate rigged configurations of strings. The degeneracy is associated with the fact that quasimomenta of the two-string and the one-string are conserved independently each of the other, which is a particular consequence of integrability of the system

  18. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  19. High temperatures and high pressures Brillouin scattering studies of liquid H(2)O+CO(2) mixtures.

    Science.gov (United States)

    Qin, Junfeng; Li, Min; Li, Jun; Chen, Rongyan; Duan, Zhenhao; Zhou, Qiang; Li, Fangfei; Cui, Qiliang

    2010-10-21

    The Brillouin scattering spectroscopy studies have been conducted in a diamond anvil cell for a liquid mixtures composed of 95 mol % H(2)O and 5 mol % CO(2) under high temperatures and pressures. The sound velocity, refractive index, density, and adiabatic bulk modulus of the H(2)O+CO(2) mixtures were determined under pressures up to the freezing point at 293, 453, and 575 K. It is found from the experiment that sound velocities of the liquid mixture are substantially lower than those of pure water at 575 K, but not at lower temperatures. We presented an empirical relation of the density in terms of pressure and temperature. Our results show that liquid H(2)O+CO(2) mixtures are more compressible than water obtained from an existing equation of state of at 453 and 575 K. PMID:20969409

  20. True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light.

    Science.gov (United States)

    Li, Wei; Zhu, Ning Hua; Wang, Li Xian; Wang, Jia Sheng; Liu, Jian Guo; Liu, Yu; Qi, Xiao Qiong; Xie, Liang; Chen, Wei; Wang, Xin; Han, Wei

    2011-06-20

    We experimentally demonstrate a novel tunable true-time delay line with separate carrier tuning using dual-parallel Mach-Zehnder modulator and stimulated Brillouin scattering-induced slow light. The phase of the optical carrier can be continuously and precisely controlled by simply adjusting the dc bias of the dual-parallel Mach-Zehnder modulator. In addition, both the slow light and single-sideband modulation can be simultaneously achieved in the stimulated Brillouin scattering process with three types of configuration. Finally, the true-time delay technique is clearly verified by a two-tap incoherent microwave photonic filter as the free spectral range of the filter is changed. PMID:21716468

  1. Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity.

    Science.gov (United States)

    Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping

    2015-11-20

    In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication. PMID:26836558

  2. Continuous Transition between Brillouin-Wigner and Rayleigh-Schrödinger Perturbation Theory, Generalized Bloch Equation, and Hilbert Space Multireference Coupled Cluster

    Czech Academy of Sciences Publication Activity Database

    Pittner, Jiří

    2003-01-01

    Roč. 118, č. 24 (2003), s. 10876-10889. ISSN 0021-9606 R&D Projects: GA MŠk OC D23.001; GA ČR GA203/99/D009; GA AV ČR IAA4040108 Institutional research plan: CEZ:AV0Z4040901 Keywords : continuous transition * Brillouin-Wigner * Rayleigh-Schrödinger Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.950, year: 2003

  3. Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS) emission lines

    OpenAIRE

    Bernhardt, P. A.; C. A. Selcher; Lehmberg, R. H.; Rodriguez, S; Thomason, J.; M. McCarrick; Frazer, G.

    2009-01-01

    An ordinary mode electromagnetic wave can decay into an ion acoustic wave and a scattered electromagnetic wave by a process called stimulated Brillouin scatter (SBS). The first detection of this process during ionospheric modification with high power radio waves was reported by Norin et al. (2009) using the HAARP transmitter in Alaska. Subsequent experiments have provided additional verification of this process and quantitative interpretation of the scattered wave frequency offsets to yield m...

  4. Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes.

    Science.gov (United States)

    Antman, Yair; Yaron, Lior; Langer, Tomi; Tur, Moshe; Levanon, Nadav; Zadok, Avi

    2013-11-15

    Dynamic Brillouin gratings (DBGs), inscribed by comodulating two writing pump waves with a perfect Golomb code, are demonstrated and characterized experimentally. Compared with pseudo-random bit sequence (PRBS) modulation of the pump waves, the Golomb code provides lower off-peak reflectivity due to the unique properties of its cyclic autocorrelation function. Golomb-coded DBGs allow the long variable delay of one-time probe waveforms with higher signal-to-noise ratios, and without averaging. As an example, the variable delay of return-to-zero, on-off keyed data at a 1 Gbit/s rate, by as much as 10 ns, is demonstrated successfully. The eye diagram of the reflected waveform remains open, whereas PRBS modulation of the pump waves results in a closed eye. The variable delay of data at 2.5 Gbit/s is reported as well, with a marginally open eye diagram. The experimental results are in good agreement with simulations. PMID:24322110

  5. Direct observation of bulk Fermi surface at higher Brillouin zones in a heavily hole-doped cuprate

    Science.gov (United States)

    Al-Sawai, W.; Sakurai, Y.; Itou, M.; Barbiellini, B.; Mijnarends, P. E.; Markiewicz, R. S.; Kaprzyk, S.; Gillet, J.-M.; Wakimoto, S.; Fujita, M.; Basak, S.; Lin, H.; Bansil, A.; Yamada, K.

    2010-03-01

    We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La2-xSrxCuO4 by using Compton scattering. A 2-D momentum density reconstruction [1] from measured Compton profiles, yields a clear FS signature in a higher Brillouin zone centered at p=(1.5,1.5) a.u. The quantitative agreement with density functional theory (DFT) calculations [2] and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. We have also measured the 2-D angular correlation of positron annihilation radiation (2D-ACAR) [3] and noticed a similar quantitative agreement with the DFT simulations. However, 2D-ACAR does not give a clear signature of the FS in the extended momentum space in both theory and experiment. Work supported in part by the US DOE.[1] Y. Tanaka et al., Phys. Rev. B 63, 045120 (2001).[2] S. Sahrakorpi et al., Phys. Rev. Lett. 95, 157601 (2005).[3] L. C. Smedskjaer et al., J. Phys. Chem. Solids 52, 1541 (1991).

  6. Elastic anomaly and order-disorder nature of multiferroic barium sodium niobate studied by broadband brillouin scattering

    International Nuclear Information System (INIS)

    The successive phase transitions of multiferroic barium sodium niobate, Ba2NaNb5O15 (BNN), were studied by Brillouin scattering. The LA, TA modes, and central peak were measured in a large temperature range from room temperature up to 750 °C. In the vicinity of a ferroelectric phase transition at about TC = 585 °C from the prototypic tetragonal 4/mmm to ferroelectric 4mm phases, elastic anomaly was observed for LA and TA modes. In addition, the order-disorder nature was observed by the temperature dependence of a central peak. For further cooling another elastic anomaly was also observed in the vicinity of a ferroelastic incommensurate phase transition at about TIC = 285 °C into orthorhombic 2mm phase with the appearance of incommensurate modulation. The large thermal hysteresis of elastic anomaly near TIC can be attributed the typical feature of the type III incommensurate phase transition predicted recently by Ishibashi and Iwata (2013 J. Phys. Soc. Jpn. 82 044703)

  7. Two-dimensional studies of stimulated Brillouin scattering, filamentation, and self-focusing instabilities of laser light in plasmas

    International Nuclear Information System (INIS)

    The parametric interaction of an intense laser beam with ion plasma modes in a two-dimensional Cartesian geometry has been studied for the first time by avoiding the paraxial optics approximation. This model allows investigation of the competition between forward, sideward, and backward stimulated Brillouin scattering (SBS) along with filamentation and self-focusing instabilities. It is shown that the SBS saturation level, the angular distribution of transmitted and scattered light, and their temporal dependence are governed mainly by two control parameters: the backward SBS gain coefficient G, and the ratio αsf of the incident beam power to its critical value for the onset of self-focusing. In the case of large values of G approx-gt 15, backward SBS dominates and prevents both self-focusing and forward SBS. For smaller values of G, the interaction exhibits a complex oscillatory behavior, which corresponds to the competition between backward and forward SBS for αsf approx-lt 1, and involves also self-focusing for higher beam intensities

  8. Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

    Science.gov (United States)

    Illg, Christian; Haag, Michael; Teeny, Nicolas; Wirth, Jens; Fähnle, Manfred

    2016-03-01

    Scatterings of electrons at quasiparticles or photons are very important for many topics in solid-state physics, e.g., spintronics, magnonics or photonics, and therefore a correct numerical treatment of these scatterings is very important. For a quantum-mechanical description of these scatterings, Fermi's golden rule is used to calculate the transition rate from an initial state to a final state in a first-order time-dependent perturbation theory. One can calculate the total transition rate from all initial states to all final states with Boltzmann rate equations involving Brillouin zone integrations. The numerical treatment of these integrations on a finite grid is often done via a replacement of the Dirac delta distribution by a Gaussian. The Dirac delta distribution appears in Fermi's golden rule where it describes the energy conservation among the interacting particles. Since the Dirac delta distribution is a not a function it is not clear from a mathematical point of view that this procedure is justified. We show with physical and mathematical arguments that this numerical procedure is in general correct, and we comment on critical points.

  9. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    Energy Technology Data Exchange (ETDEWEB)

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P. [CEA, DAM, DIF, F-91297 Arpajon Cedex (France); Hüller, S.; Pesme, D. [Centre de Physique Théorique (CPHT), CNRS, École Polytechnique, 91128 Palaiseau Cedex (France); Labaune, Ch. [LULI, CNRS, Université Pierre et Marie Curie, École Polytechnique, 91128 Palaiseau Cedex (France); Bandulet, H. [Institut National de la Recherche Scientifique (INRS), Varennes, Québec J3X1S2 (Canada)

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incident laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.

  10. On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams

    International Nuclear Information System (INIS)

    In a number of experiments, stimulated Brillouin (SBS) or Raman backscattering (SRS) has been observed to be much more vigorous than the other although the expectations based on linear gain exponents are that they should both be reflecting large amounts of incident light. Multidimensional fluid simulations of the growth and saturation of these two instabilities driven by a nonuniform incident laser beam are presented. On the fast time scale, the nonlinear saturation occurs via an anomalous damping inspired by fundamental studies of Langmuir turbulence [D. F. DuBois et al., Bull. Am. Phys. Soc. 41, 1531 (1996)] and acoustic wave turbulence [B. I. Cohen et al., Phys. Plasmas 4, 956 (1997)]. Over a longer time scale, SRS and SBS are limited by quasilinear processes such as flows induced by the transfer of momentum from the light to the plasma and ion temperature increases caused by a loss of light energy in SBS. The simulations show a reduction of the SBS reflectivity under conditions of strong SRS reflectivity even if the laser energy is not depleted. The recent observations of decreasing SBS reflectivity with increasing plasma density [D. S. Montgomery, Phys. Plasmas 5, 1973 (1998)] are shown to be consistent with linear theory and nonlinear simulations of SBS provided the increasing levels of SRS are included. Because the reflectivity is produced by scattering in intense hotspots, where the local reflectivity can be very large, the SBS and SRS can be anticorrelated even when the total scattering is quite modest. copyright 1998 American Institute of Physics

  11. On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams

    Science.gov (United States)

    Berger, R. L.; Still, C. H.; Williams, E. A.; Langdon, A. B.

    1998-12-01

    In a number of experiments, stimulated Brillouin (SBS) or Raman backscattering (SRS) has been observed to be much more vigorous than the other although the expectations based on linear gain exponents are that they should both be reflecting large amounts of incident light. Multidimensional fluid simulations of the growth and saturation of these two instabilities driven by a nonuniform incident laser beam are presented. On the fast time scale, the nonlinear saturation occurs via an anomalous damping inspired by fundamental studies of Langmuir turbulence [D. F. DuBois et al., Bull. Am. Phys. Soc. 41, 1531 (1996)] and acoustic wave turbulence [B. I. Cohen et al., Phys. Plasmas 4, 956 (1997)]. Over a longer time scale, SRS and SBS are limited by quasilinear processes such as flows induced by the transfer of momentum from the light to the plasma and ion temperature increases caused by a loss of light energy in SBS. The simulations show a reduction of the SBS reflectivity under conditions of strong SRS reflectivity even if the laser energy is not depleted. The recent observations of decreasing SBS reflectivity with increasing plasma density [D. S. Montgomery, Phys. Plasmas 5, 1973 (1998)] are shown to be consistent with linear theory and nonlinear simulations of SBS provided the increasing levels of SRS are included. Because the reflectivity is produced by scattering in intense hotspots, where the local reflectivity can be very large, the SBS and SRS can be anticorrelated even when the total scattering is quite modest.

  12. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, K.S. [Univ. of California, Davis, CA (US)

    1993-02-11

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory`s assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made.

  13. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    International Nuclear Information System (INIS)

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory's assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made

  14. Band structure of silicene on the zirconium diboride (0001) thin film surface - convergence of experiment and calculations in the one-Si-atom Brillouin zone

    OpenAIRE

    Lee, Chi-Cheng; Fleurence, Antoine; Yamada-Takamura, Yukiko; Ozaki, Taisuke; Friedlein, Rainer

    2014-01-01

    So far, it represents a challenging task to reproduce angle-resolved photoelectron (ARPES) spectra of epitaxial silicene by first-principles calculations. Here, we report on the resolution of the previously controversial issue related to the structural configuration of silicene on the ZrB$_2$(0001) surface and its band structure. In particular, by representing the band structure in a large Brillouin zone associated with a single Si atom, it is found that the imaginary part of the one-particle...

  15. Brillouin light scattering study of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al and Co$_{2}$FeAl Heusler compounds

    OpenAIRE

    Gaier, O.; Hamrle, J.; Trudel, S; Parra, A. Conca; Hillebrands, B.; Arbelo, E.; Herbort, C.; Jourdan, M

    2008-01-01

    The thermal magnonic spectra of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) and Co$_2$FeAl were investigated using Brillouin light scattering spectroscopy (BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 $\\mu$erg/cm (203 meV A$^2$), while for Co$_2$FeAl the corresponding values of 1.55 $\\mu$erg/cm (370 meV A$^2$) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrica...

  16. Highly Repetitive Laser Inertial fusion driver with Tiled Coherent Beam Combination Laser using Stimulated Brillouin Scattering Phase Conjugation Mirrors

    International Nuclear Information System (INIS)

    Full text: In these days, the energy problem is serious in the world. It is necessary to develop a new source of the sustainable energy. In these sustainable energy sources, fusion energy is the most promised energy source. Especially, the laser inertial fusion energy is easy to maintain and easy to increase its scale. However, there are 3 hot problems to achieve the laser inertial fusion energy. To achieve the LIFE, it is necessary to develop 2.5 kJ/10 ns at 10 Hz laser. The Second problem is target injection with high repetition rate and high accuracy. We need to inject the fuel target to the centre of a chamber with accuracy to 20 μm after the fusion reaction. The third problem is the target window coating due to debris from the target implosion. The first and the second problems can be resolved simply by coherent beam combination laser using Stimulated Brillouin Scattering Phase Conjugation Mirrors (SBS-PCM). The 4-beam combination system is built to prove its feasibility to laser inertial fusion energy driver. The input energy of the each sub-beam is 1.032 ± 0.027 mJ, and the output energy of sub-beam is 402.3 ± 1.21 mJ. The standard deviations of the phase differences between the reference beam and other beams were measured to be less than λ/13, during 2,500 shots (250 s), and we will get it better than λ/20 soon. The coherent beam combination using SBS-PCM has additional advantages in LIFE reactor system. In the fusion reaction, target injection is one of the serious problems. The repetition rate of the target injection is ∼ 10 Hz, and the target speed is around 400 m/s. We need the accuracy of target position to 20 μm. Because of the turbulent flow after the prior fusion reaction, it is impossible to inject the target with the accuracy to more than 20 μm. This method can give the accuracy to less than 1 μm even when the turbulence exists in the reactor chamber. In this paper, the authors introduce the tiled coherent beam combining laser using SBS

  17. Irreducible Brillouin conditions and contracted Schroedinger equations for n-electron systems. III. Systems of noninteracting electrons

    International Nuclear Information System (INIS)

    We analyze the structure and the solutions of the irreducible k-particle Brillouin conditions (IBCk) and the irreducible contracted Schroedinger equations (ICSEk) for an n-electron system without electron interaction. This exercise is very instructive in that it gives one both the perspective and the strategies to be followed in applying the IBC and ICSE to physically realistic systems with electron interaction. The IBC1 leads to a Liouville equation for the one-particle density matrix γ1=γ, consistent with our earlier analysis that the IBC1 holds both for a pure and an ensemble state. The IBC1 or the ICSE1 must be solved subject to the constraints imposed by the n-representability condition, which is particularly simple for γ. For a closed-shell state γ is idempotent, i.e., all natural spin orbitals (NSO's) have occupation numbers 0 or 1, and all cumulants λk with k≥2 vanish. For open-shell states there are NSO's with fractional occupation number, and at the same time nonvanishing elements of λ2, which are related to spin and symmetry coupling. It is often useful to describe an open-shell state by a totally symmetric ensemble state. If one wants to treat a one-particle perturbation by means of perturbation theory, this mainly as a run-up for the study of a two-particle perturbation, one is faced with the problem that the perturbation expansion of the Liouville equation gives information only on the nondiagonal elements (in a basis of the unperturbed states) of γ. There are essentially three possibilities to construct the diagonal elements of γ: (i) to consider the perturbation expansion of the characteristic polynomial of γ, especially the idempotency for closed-shell states ,(ii) to rely on the ICSE1, which (at variance with the IBC1) also gives information on the diagonal elements, though not in a very efficient manner, and (iii) to formulate the perturbation theory in terms of a unitary transformation in Fock space. The latter is particularly

  18. Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS emission lines

    Directory of Open Access Journals (Sweden)

    P. A. Bernhardt

    2009-12-01

    Full Text Available An ordinary mode electromagnetic wave can decay into an ion acoustic wave and a scattered electromagnetic wave by a process called stimulated Brillouin scatter (SBS. The first detection of this process during ionospheric modification with high power radio waves was reported by Norin et al. (2009 using the HAARP transmitter in Alaska. Subsequent experiments have provided additional verification of this process and quantitative interpretation of the scattered wave frequency offsets to yield measurements of the electron temperatures in the heated ionosphere. Using the SBS technique, electron temperatures between 3000 and 4000 K were measured over the HAARP facility. The matching conditions for decay of the high frequency pump wave show that in addition to the production of an ion-acoustic wave, an electrostatic ion cyclotron wave may also be produced by the generalized SBS processes. Based on the matching condition theory, the first profiles of the scattered wave amplitude are produced using the stimulated Brillouin scatter (SBS matching conditions. These profiles are consistent with maximum ionospheric interactions at the upper-hybrid resonance height and at a region just below the plasma resonance altitude where the pump wave electric fields reach their maximum values.

  19. The phase transitions of ferroelectric Sr{sub 2}Ta{sub 2}O{sub 7} crystals by MDSC, Brillouin and dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hushur, A [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Shabbir, G [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Ko, J-H [Samsung Corning R and D Center, Paldal-gu, Sin-dong 472, 442-390, Suwon-si, Gyeonggi-do Province (Korea, Republic of); Kojima, S [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2004-04-07

    The structural phase transitions of Sr{sub 2}Ta{sub 2}O{sub 7} single crystals have been studied by the modulated temperature differential scanning calorimetry (MDSC), Brillouin scattering and dielectric spectroscopy. The specific heat (C{sub p}) was measured over a wide temperature range from -150 deg. C to 25 deg. C and from 100 deg. C to 210 deg. C. The C{sub p} curve showed an anomaly at T{sub o} 166.7 deg. C, indicating the phase transition Cmcm {yields} P2{sub 1}/m. The transition enthalpy {delta}H, the transition entropy {delta}S and specific heat jump {delta}C{sub p} at T{sub o} were estimated to be 0.465 J g{sup -1}, 1.01 mJ g{sup -1} K{sup -1} and 9.78 mJ g{sup -1} K{sup -1}, respectively. The C{sub p} anomaly associated with the ferroelectric phase transition at T{sub c} = -107 deg. C has not been detected. However, both Brillouin and dielectric data showed the anomalies corresponding to the ferroelectric phase transition from P2{sub 1}/m to P2{sub 1}.

  20. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    International Nuclear Information System (INIS)

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm to 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)

  1. A Brillouin scattering study of La0.77Ca0.23MnO3 across the metal-insulator transition

    International Nuclear Information System (INIS)

    Temperature-dependent Brillouin scattering studies have been carried out on La0.77Ca0.23MnO3 across the paramagnetic insulator-ferromagnetic metal (I-M) transition (TC ∼ 230 K). The spectra show modes corresponding to a surface Rayleigh wave (SRW) and a high velocity pseudo-surface wave (HVPSAW) along with bulk acoustic waves (B1 and B2). The Brillouin shifts associated with the SRW and HVPSAW increase, whereas the B1 and B2 frequencies decrease, below TC. The temperature dependence of the SRW and HVPSAW modes is related to the increase in the elastic constant C11 across the I-M transition. The decrease in frequency across the I-M transition of the bulk modes is understood to be due to enhanced self-energy corrections as a result of increased magnon-phonon interaction across the I-M transition. Correspondingly, these modes show a large increase in the full width at half maximum (FWHM) as the temperature decreases. We also observe a central peak whose width is maximum at TC

  2. In-situ investigation of structure and magnetic properties of the epitaxial system Pd(111)Fe(110) on W(110) by means of Brillouin spectroscopy

    International Nuclear Information System (INIS)

    The in-situ observation of magnetostatic spin waves by Brillouin spectroscopy offers a versatile dynamical probe for the investigation of magnetic properties of thin films. The measured spin wave spectra of thin films contain a variety of information about their magnetic as well as structural properties. The frequency of a spin wave allows to determine, e.g., the g-factor, the magnetic anisotrophy constants and also the saturation magnetization. The spectral line shape allows conclusions about the film quality, i.e., steps or islands. Furthermore, the unidirectional propagation of the surface spin wave with respect to the magnetization allows to measure the coercitivity field of a film. The latter can be used as an additional characterization parameter of a magnetic film. Here the authors report on Brillouin spectroscopy investigations, which have been performed on the epitaxial system Pd(111)/Fe(110) on W(110). Additional detailed investigations of the epitaxy of this system, i.e., of the growth mode, structure and thermal stability have been carried out using LEED and Auger spectroscopy

  3. Effect of the laser incoherence on some parametric instabilities

    International Nuclear Information System (INIS)

    This study is devoted to the laser finite band with effects on the stimulated Raman and Brillouin backscattering, and to the laser spatial incoherence upon the growth of the filamentation instability. The possible reduction of the latter instabilities initiated by a loss of beam coherence is more particularly investigated in the context of the intending Mega joule laser facility. (authors). 15 refs

  4. Superfluid Brillouin Optomechanics

    CERN Document Server

    Kashkanova, A D; Brown, C D; Flowers-Jacobs, N E; Childress, L; Hoch, S W; Hohmann, L; Ott, K; Reichel, J; Harris, J G E

    2016-01-01

    Optomechanical systems couple an electromagnetic cavity to a mechanical resonator which is typically formed from a solid object. The range of phenomena accessible to these systems depends on the properties of the mechanical resonator and on the manner in which it couples to the cavity fields. In both respects, a mechanical resonator formed from superfluid liquid helium offers several appealing features: low electromagnetic absorption, high thermal conductivity, vanishing viscosity, well-understood mechanical loss, and in situ alignment with cryogenic cavities. In addition, it offers degrees of freedom that differ qualitatively from those of a solid. Here, we describe an optomechanical system consisting of a miniature optical cavity filled with superfluid helium. The cavity mirrors define optical and mechanical modes with near-perfect overlap, resulting in an optomechanical coupling rate ~3 kHz. This coupling is used to drive the superfluid; it is also used to observe the superfluid's thermal motion, resolving...

  5. High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror.

    Science.gov (United States)

    Tsubakimoto, Koji; Yoshida, Hidetsugu; Miyanaga, Noriaki

    2016-06-13

    We present a high-average-power green laser based on second harmonic conversion of a laser diode-pumped master oscillator Nd:YAG power amplifier system. The power amplifier chain includes a stimulated Brillouin scattering (SBS) cell that was used a phase-conjugate mirror to double-pass scheme. That suppresses the thermal phase distortion and compresses the pulse duration. The fundamental beam output power was 670 W with a pulse width of 7.9 ns. A second harmonic power of 335 W with a 4.8-ns pulse width and 80-mJ pulse energy was produced using a LiB3O5 (LBO) crystal. PMID:27410277

  6. Development of low-temperature and high-pressure Brillouin scattering spectroscopy and its application to the solid I form of hydrogen sulphide

    International Nuclear Information System (INIS)

    A new experimental system has been developed for low-temperature and high-pressure Brillouin scattering measurements. The new system allows us to investigate the elastic properties of samples in a diamond anvil cell (DAC) down to liquid N2 temperature (∼ 80 K). In contrast to the case in our conventional technique, the optics in the system can be rotated for measuring the direction dependence of acoustic velocities of the samples in the DAC fixed in the cryostat. The new experimental technique was applied to the solid I form of hydrogen sulphide (H2S). As a result, three ratios of elastic constants to density were successfully determined at P = 3.70 GPa, T = 240 K: C11 /ρ = 16.4, C12 /ρ = 12.4, C44 /ρ = 7.57 x 106 m2 s-2. These values are almost the same as those obtained at room temperature

  7. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs{sub 0.91}Sb{sub 0.09}

    Energy Technology Data Exchange (ETDEWEB)

    Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  8. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09

    International Nuclear Information System (INIS)

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs0.91Sb0.09. The wave speed measurements have been used to determine the room temperature values of the elastic constants C11, C12 and C44 of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  9. Brillouin light scattering study of Co2Cr0.6Fe0.4Al and Co2FeAl Heusler compounds

    International Nuclear Information System (INIS)

    The thermal magnonic spectra of Co2Cr0.6Fe0.4Al (CCFA) and Co2FeAl were investigated using Brillouin light scattering (BLS) spectroscopy. For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 ± 0.04 μerg cm-1 (203 ± 16 meV A2), while for Co2FeAl the corresponding values of 1.55 ± 0.05 μerg cm-1 (370 ± 10 meV A2) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co2FeAl film.

  10. Lorentz symmetry breaking effects on relativistic EPR correlations

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2015-09-15

    Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)

  11. An unusual pulse compression of stimulated Brillouin scattering in water%水中受激布里渊散射脉冲的反常压缩

    Institute of Scientific and Technical Information of China (English)

    张磊; 李金增

    2014-01-01

    受激布里渊散射(SBS)具有脉冲压缩的特性,受激布里渊散射的脉冲宽度随着抽运能量的增大而变小,在水中可以达到几百皮秒的量级。本文在实验上观察到一种受激布里渊散射的脉冲宽度随抽运能量增大而变大的现象,这里称之为反常压缩。 SBS的脉冲反常压缩和脉冲压缩与抽运光的强弱会聚情况有关。利用数值模拟,模拟了强弱会聚情况下抽运光在水中的传输规律,强弱会聚情况的抽运光对受激布里渊散射形成的有效增益长度不同:抽运光强会聚时有效增益长度短,形成SBS脉冲宽度的反常压缩;弱会聚时有效增益长度长,也就是正常的SBS脉冲压缩。%Pulse compression is an important property of stimulated Brillouin scattering (SBS), and the SBS pulse duration becomes smaller with the increase of pump energy. An unusual pulse compression was investigated of the stimulated Brillouin scattering in water, it was found that the SBS pulse duration becomes larger as the pump energy increases. The pulse duration of SBS alters differently with the change of pump energy in strong focusing and weak focusing. Numerical simulation of pump light transmission in water cell has been made to explain the unusual pulse compression phenomena. Different real gain lengths in strong and weak focusing make different SBS pulse compression.

  12. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan; Zou, Shiyang [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Yang, Dong; Wang, Feng; Peng, Xiaoshi; Li, Zhichao; Li, Sanwei; Xu, Tao; Wei, Huiyue [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Liu, Zhanjun; Zheng, Chunyang, E-mail: zheng-chunyang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China)

    2014-07-15

    Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, is the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.

  13. Current trends in laser fusion driver and beam combination laser systems using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Laser facilities in the world have been developing flash-lamp-pumped ultrahigh-energy solid-state lasers for fusion research and high-repetition diode-pumped solid-state lasers to act as commercial fusion drivers. A commercial laser fusion driver requires a high-energy beam with a total energy of several megajoules per pulse in several nanoseconds with a ∼10-Hz repetition rate. However, current laser technologies have limitations in raising the beam energy when operating with a high repetition rate, which is necessary for a commercial fusion driver to function properly. The beam combination laser system, which that uses stimulated Brillouin scattering phase conjugate mirrors, is a promising candidate for a fusion driver because it can obtain both a high energy and a high repetition rate with separate amplifications. For the realization of the beam combination laser system, a self-phase control technique was proposed for the coherent beam combined output, and its principle was demonstrated experimentally.

  14. Development of low-temperature and high-pressure Brillouin scattering spectroscopy and its application to the solid I form of hydrogen sulphide

    CERN Document Server

    Murase, S; Sasaki, S; Kume, T; Shimizu, H

    2002-01-01

    A new experimental system has been developed for low-temperature and high-pressure Brillouin scattering measurements. The new system allows us to investigate the elastic properties of samples in a diamond anvil cell (DAC) down to liquid N sub 2 temperature (approx 80 K). In contrast to the case in our conventional technique, the optics in the system can be rotated for measuring the direction dependence of acoustic velocities of the samples in the DAC fixed in the cryostat. The new experimental technique was applied to the solid I form of hydrogen sulphide (H sub 2 S). As a result, three ratios of elastic constants to density were successfully determined at P = 3.70 GPa, T = 240 K: C sub 1 sub 1 /rho = 16.4, C sub 1 sub 2 /rho = 12.4, C sub 4 sub 4 /rho = 7.57 x 10 sup 6 m sup 2 s sup - sup 2. These values are almost the same as those obtained at room temperature.

  15. The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy

    International Nuclear Information System (INIS)

    In this work, ellipsometry, Brillouin spectroscopy and nanoindentation are combined to assess the mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating with high accuracy and precision. The nanocomposite is grown by pulsed laser deposition at either room temperature or 600 °C. The adhesive strength is evaluated by nanoscratch tests. In the room temperature process the coating attains an unusual combination of compactness, strong interfacial bonding, moderate stiffness (E = 195 ± 9 GPa and ν = 0.29 ± 0.02) and significant hardness (H = 10 ± 1 GPa), resulting in superior plastic behavior and a relatively high ratio of hardness to elastic modulus (H/E = 0.049). These features are correlated to the nanostructure of the coating, which comprises a regular dispersion of ultrafine crystalline Al2O3 nanodomains (2–5 nm) in a dense and amorphous alumina matrix, as revealed by transmission electron microscopy. For the coating grown at 600 °C, strong adhesion is also observed, with an increase of stiffness and a significant enhancement of hardness (E = 277 ± 9 GPa, ν = 0.27 ± 0.02 and H = 25 ± 1 GPa), suggesting an outstanding resistance to wear (H/E = 0.091)

  16. Initiation and Saturation of Backward Stimulated Raman and Brillouin Scatter in Single Speckles: Influence of Scattered-Light Seeds and Collisional Heating

    Science.gov (United States)

    Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Finnegan, S. M.

    2009-11-01

    A suite of 2D and 3D PIC simulations of backward stimulated Raman and Brillouin scattering (SRS and SBS) in ICF hohlraum and Trident plasma have been performed on the heterogeneous multi-core supercomputer, Roadrunner. These calculations reveal that the physics governing the nonlinear saturation of SRS in 3D is consistent with that of prior 2D studies [L. Yin, et al. Phys. Rev. Lett., 99, 265004, 2007], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to wavefront bowing of electron plasma waves (EPW), we find that EPW self-focusing also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in higher dimensions increase the side-loss rate of trapped electrons, increase wave damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. The SRS onset threshold is lower if initiated by SRS seeds compared with the onset threshold if SRS is initiated by thermal electron density fluctuations alone. Furthermore, we show that the presence or absence of SBS may be sensitively determined by collisional heating and transverse electron temperature variations.

  17. Online monitoring of the distributed lateral displacement in large AC power generators using a high spatial resolution Brillouin optical fiber sensor

    International Nuclear Information System (INIS)

    We report for the first time, to the best of our knowledge, online monitoring of the distributed lateral displacement in large AC power generators using high spatial resolution differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). To perform the measurement of distributed lateral displacements with periods of only a few cm in large AC power generators, a 2 cm spatial resolution strain measurement is realized using the differential pulse pair of 8/8.2 ns in DPP-BOTDA, and then the lateral displacements are reconstructed according to the strain–displacement relation with the assumption of a sine shape function. Using different fiberglass ripple springs, two types of lateral displacement with periods of 3 and 3.25 cm are demonstrated, obtaining a maximum displacement of 0.43 mm with a measurement accuracy of ∼ 40 µm. This provides the information on the stator coil tightness through online monitoring of the distributed lateral displacement caused by the fiberglass ripple springs, and ensures safe operating conditions for large AC power generators. In addition, the large number of sensing points associated with distributed optical fiber sensors make it economically and technically practical to monitor large numbers of key components in a generator without any interference from the large magnetic and electrical fields

  18. Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic wave bowing, breakup, and laser-seeded two-ion-wave decay

    Science.gov (United States)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Bergen, B.

    2016-03-01

    Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering (SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves (IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of Z Te/Ti conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearing as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. A simple analytic model is provided for how spatial "imprinting" from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.

  19. Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scattering.

    Science.gov (United States)

    Klieber, Christoph; Hecksher, Tina; Pezeril, Thomas; Torchinsky, Darius H; Dyre, Jeppe C; Nelson, Keith A

    2013-03-28

    This paper presents and discusses the temperature and frequency dependence of the longitudinal and shear viscoelastic response at MHz and GHz frequencies of the intermediate glass former glycerol and the fragile glass former tetramethyl-tetraphenyl-trisiloxane (DC704). Measurements were performed using the recently developed time-domain Brillouin scattering technique, in which acoustic waves are generated optically, propagated through nm thin liquid layers of different thicknesses, and detected optically after transmission into a transparent detection substrate. This allows for a determination of the frequency dependence of the speed of sound and the sound-wave attenuation. When the data are converted into mechanical moduli, a linear relationship between longitudinal and shear acoustic moduli is revealed, which is consistent with the generalized Cauchy relation. In glycerol, the temperature dependence of the shear acoustic relaxation time agrees well with literature data for dielectric measurements. In DC704, combining the new data with data from measurements obtained previously by piezo-ceramic transducers yields figures showing the longitudinal and shear sound velocities at frequencies from mHz to GHz over an extended range of temperatures. The shoving model's prediction for the relaxation time's temperature dependence is fairly well obeyed for both liquids as demonstrated from a plot with no adjustable parameters. Finally, we show that for both liquids the instantaneous shear modulus follows an exponential temperature dependence to a good approximation, as predicted by Granato's interstitialcy model. PMID:23556795

  20. Stimulated Brillouin side-scattering of the beat wave excited by two counter-propagating X-mode lasers in magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kanika; Sajal, Vivek, E-mail: vsajal@rediffmail.com; Kumar, Ravindra; Sharma, Navneet K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307, Uttar Pradesh (India); Baliyan, Sweta [Department of Physics, Maitreyi College, University of Delhi, New Delhi 110021 (India)

    2015-06-15

    The stimulated Brillouin scattering (SBS) of nonresonant beat mode in the presence of static magnetic field is investigated in a plasma. Two counter-propagating lasers of frequencies (ω{sub 1} and ω{sub 2}) and wave vectors (k{sub 1} and k{sub 2}) drive a nonresonant space charge beat mode at the phase matching condition of frequency ω{sub 0}≈ω{sub 1}∼ω{sub 2} and wave number k{sup →}{sub 0}≈k{sup →}{sub 1}+k{sup →}{sub 2}. The driver wave parametrically excites a pair of ion acoustic wave (ω,k{sup →}) and a sideband electromagnetic wave (ω{sub 3},k{sup →}{sub 3}). The beat wave couples with the sideband electromagnetic wave to exert a nonlinear ponderomotive force at the frequency of ion acoustic wave. Density perturbations due to ion acoustic wave and ponderomotive force couple with the oscillatory motion of plasma electron due to velocity of beat wave to give rise to a nonlinear current (by feedback mechanism) responsible for the growth of sideband wave at resonance. The growth rate of SBS was reduced (from ∼10{sup 12}s{sup −1} to 10{sup 10}s{sup −1}) by applying a transverse static magnetic field ∼90 T. The present study can be useful for the excitation of fast plasma waves (for the purpose of electron acceleration) by two counter-propagating laser beams.

  1. Brillouin-zone integration scheme for many-body density of states: Tetrahedron method combined with cluster perturbation theory

    Science.gov (United States)

    Seki, K.; Yunoki, S.

    2016-06-01

    By combining the tetrahedron method with the cluster perturbation theory (CPT), we present an accurate method to numerically calculate the density of states of interacting fermions without introducing the Lorentzian broadening parameter η or the numerical extrapolation of η →0 . The method is conceptually based on the notion of the effective single-particle Hamiltonian which can be subtracted in the Lehmann representation of the single-particle Green's function within the CPT. Indeed, we show the general correspondence between the self-energy and the effective single-particle Hamiltonian which describes exactly the single-particle excitation energies of interacting fermions. The detailed formalism is provided for two-dimensional multiorbital systems and a benchmark calculation is performed for the two-dimensional single-band Hubbard model. The method can be adapted straightforwardly to symmetry-broken states, three-dimensional systems, and finite-temperature calculations.

  2. Quantum-size effects on chemisorption properties: CO on Cu ultrathin films

    OpenAIRE

    Mouketo, L.; Binggeli, N.; M'Passi-Mabiala, B.

    2011-01-01

    We address, by means of ab-initio calculations, the origin of the correlation that has been observed experimentally between the chemisorption energy of CO on nanoscale Cu(001) supported films and quantum-size effects. The calculated chemisorption energy shows systematic oscillations, as a function of film thickness, with a periodicity corresponding to that of quantum-well states at the surface-Brillouin-zone center crossing the Fermi energy. We explain this trend based on the oscillations, wi...

  3. Investigation of the Slow- and Fast-Light Effect on the Basis of Stimulated Brillouin Scattering for Application in Optical Communication and Information Systems.

    OpenAIRE

    Henker, Ronny

    2010-01-01

    In today's information age demand for ultra-fast information transfer with ultra-high bandwidths has reached extraordinary levels. Hence, the transmission in the future internet-backbone will be increasingly constrained in the network nodes. At the same time, the power consumption of the network systems will increase to unsustainable levels. To overcome these constraints power-ecient photonic networks which provide ultra-fast all-optical switching and routing are essential. Nowadays, optical ...

  4. CONTROL OF LASER RADIATION PARAMETERS: Stimulated-Brillouin-scattering compression of pulses from an Nd : YAG laser with a short cavity and measurement of the nonradiative relaxation time of the lower active level

    Science.gov (United States)

    Buzelis, R.; Dementjev, Aleksandr S.; Kosenko, E. K.; Murauskas, E.

    1995-06-01

    A short (~11 cm) cavity of an Nd : YAG laser was Q-switched by LiF : \\mathrm F^-_2 and GSGG : Cr3+ : Cr4+ : Nd3+ crystals. This resulted in stable generation of short (~2.5 ns) pulses with energies in excess of 6 mJ. Pulses with ~300 and ~150 mJ energies for the first and second harmonics, respectively, and of ~100 ps duration were obtained at the output of a stimulated-Brillouin-scattering compressor and a three-pass Nd : YAG amplifier. A study of the gain recovery after passage of a short saturating pulse through the active element yielded the upper limit (1 ns) of the nonradiative relaxation time of the 4I11/2 lower active level of the neodymium ion.

  5. Valley Hall effect in disordered monolayer MoS2 from first principles

    DEFF Research Database (Denmark)

    Olsen, Thomas; Souza, Ivo

    2015-01-01

    -space Berry curvature accumulate in each of the two valleys. This is conveniently quantified by the integral of the Berry curvature over a single valley-the valley Hall conductivity. We generalize this definition to include contributions from disorder described with the supercell approach, by mapping...... ("unfolding") the Berry curvature from the folded Brillouin zone of the disordered supercell onto the normal Brillouin zone of the pristine crystal, and then averaging over several realizations of disorder. We use this scheme to study from first principles the effect of sulfur vacancies on the valley Hall...... conductivity of monolayer MoS2. In dirty samples the intrinsic valley Hall conductivity receives gating-dependent corrections that are only weakly dependent on the impurity concentration, consistent with side-jump scattering and the unfolded Berry curvature can be interpreted as a k-space resolved side jump...

  6. Frequency- and phase-tunable optoelectronic oscillator based on a DPMZM and SBS effect

    Science.gov (United States)

    Wu, Beilei; Wang, Muguang; Sun, Jian; Yin, Bin; Chen, Hongyao; Li, Tangjun; Jian, Shuisheng

    2016-03-01

    A novel approach to the optoelectronic oscillator (OEO) for the generation of a microwave signal with simultaneously frequency and phase tunability is proposed and experimentally demonstrated. In the proposed OEO, a carrier phase-shifted double-sideband modulated optical signal generated using a dual-parallel Mach-Zehnder modulator (DPMZM) is split into two parts. For one part, the signal is injected into a photodetector (PD) after passing through a section of high nonlinear fiber and then fed back into the DPMZM to form an OEO loop. The stimulated Brillouin scattering effect is used to select the oscillation frequency which equals to the Brillouin frequency shift. For the other part, a carrier phase-shifted single-sideband modulated signal is achieved by a tunable filter, and then converts to a microwave signal by a second PD. The tunable phase of the generated microwave signal is achieved by controlling the bias voltage of the DPMZM to change the phase difference between the optical carrier and the sideband. Thanks to the wavelength-dependent effect of the Brillouin frequency shift, the tunable frequency is realized by tuning the frequency of the laser source. Microwave signals with a tunable frequency from 8.950 to 9.351 GHz and a tunable phase from 0° to 360° are experimentally generated.

  7. 基于分布式布里渊光学时域反射的光纤腐蚀传感器的实验研究%Experimental research on the fiber corrosion sensor based on dis-tributed Brillouin optical time domain reflection technique

    Institute of Scientific and Technical Information of China (English)

    赵雪峰; 宫鹏; 路杰; 欧进萍

    2011-01-01

    A novel fiber corrosion sensor based on distributed Brillouin optical time domain reflection (BOTDR) bas been developed, which can monitor steel corrosion in concrete structures. The choosing method of valid sampling points on optical fiber was proposed, and furthermore,the evaluation formula was derived to make quantitative assessment of steel corrosion. The properties of BOTDR fiber corrosion sensors embedded in concrete structures were researched in the electrochemical corrosion accelerating testing system,and the degree of steel corrosion was gained through the evaluation formula and data collected by the BOTDR analyzer. The test results show that BOTDR fiber corrosion sensors can monitor steel corrosion in early stage effectively, and can carry out quasi-distributed,real-time and quantitative measurement of steel corrosion. The effective monitoring range of the loss rate of steel mass by the BOTDR fiber corrosion sensor is about 0-0. 1% ,and the resolution is about 1.1× 10-5.%研究开发了一种用于监测钢筋混凝土结构中钢筋腐蚀的基于分布式布里渊光学时域反射(BOTDR)的光纤腐蚀传感器,探讨了布里渊传感技术中有效测点的选择方法,并推导了适用于布里渊光纤腐蚀传感器的钢筋腐蚀定量评价公式.利用电化学加速腐蚀实验系统对埋入混凝土试件中的布里渊光纤腐蚀传感器的性能进行了实验研究,利用推导的钢筋腐蚀定量评价公式和布里渊分析仪采集到的数据对钢筋腐蚀的程度进行了实时监测.实验研究表明,该传感器能够有效监测钢筋的早期腐蚀,并实现了对腐蚀的准分布式、实时和定量测量.布里渊光纤腐蚀传感器对钢筋质量损失率艿的有效监测范围约为0.0~0.1%,分辨率约为1.1×10-5.

  8. Soil-embedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system

    Science.gov (United States)

    Lanticq, V.; Bourgeois, E.; Magnien, P.; Dieleman, L.; Vinceslas, G.; Sang, A.; Delepine-Lesoille, S.

    2009-03-01

    A soil-embedded optical fiber sensing cable is evaluated for an embedded cavity detection and sinkhole warning system in railway tunnels. Tests were performed on a decametric structure equipped with an embedded 110 m long fiber optic cable. Both Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) sensing techniques were used for cable interrogation, yielding results that were in good qualitative agreement with finite-element calculations. Theoretical and experimental comparison enabled physical interpretation of the influence of ground properties, and the analysis of embedded cavity size and position. A 5 mm embedded cavity located 2 m away from the sensing cable was detected. The commercially available sensing cable remained intact after soil collapse. Specificities of each technique are analyzed in view of the application requirements. For tunnel monitoring, the OFDR technique was determined to be more viable than the B-OTDR due to higher spatial resolution, resulting in better detection and size determination of the embedded cavities. Conclusions of this investigation gave outlines for future field use of distributed strain-sensing methods under railways and more precisely enabled designing a warning system suited to the Ebersviller tunnel specificities.

  9. Sound velocities of YBa sub 2 Cu sub 3 O sub 7-. delta. and Bi sub 2 Sr sub 2 CaCu sub 2 O sub x single crystals measured by Brillouin spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, P.; Blumenroeder, S.; Erle, A.; Hillebrands, B.; Splittgerber, P.; Guentherodt, G. (2. Physikalisches Inst., RWTH Aachen (Germany, F.R.)); Schmidt, H. (DLR, Koeln (Germany, F.R.))

    1989-12-01

    The sound velocities of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} single crystals have been measured using Brillouin spectroscopy. The Rayleigh surface mode and the surface resonance of the longitudinal acoustic phonon mode have been observed for wavevectors perpendicular as well as parallel to the crystallographic c-axis. In the case of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, we determined the elastic constants C{sub 11}=211{plus minus}15 GPa and C{sub 33}=159{plus minus}12 GPa. C{sub 44} is estimated to be about 33-36 GPa. We find an anisotropy of 25% for the longitudinal elastic modes perpendicular and parallel to the crystallographic c-axis. For Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} we measured the sound velocity of the Rayleigh mode and of the longitudinal surface phonon at 300 K. (orig.).

  10. Brillouin light scattering study of Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al and Co{sub 2}FeAl Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gaier, O; Hamrle, J; Trudel, S; Conca Parra, A; Hillebrands, B [Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse 56, D-67663 Kaiserslautern (Germany); Arbelo, E; Herbort, C; Jourdan, M, E-mail: gaier@physik.uni-kl.d [Institut fuer Physik, Johannes-Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55099 Mainz (Germany)

    2009-04-21

    The thermal magnonic spectra of Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al (CCFA) and Co{sub 2}FeAl were investigated using Brillouin light scattering (BLS) spectroscopy. For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 {+-} 0.04 {mu}erg cm{sup -1} (203 {+-} 16 meV A{sup 2}), while for Co{sub 2}FeAl the corresponding values of 1.55 {+-} 0.05 {mu}erg cm{sup -1} (370 {+-} 10 meV A{sup 2}) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co{sub 2}FeAl film.

  11. Unified theory of effective interaction

    Science.gov (United States)

    Takayanagi, Kazuo

    2016-09-01

    We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh-Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin-Wigner, and Bloch-Horowitz theories on the formal side, and the extended Krenciglowa-Kuo and the extended Lee-Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbative and nonperturbative theories on the basis of the main frame expansion.

  12. Quantum Hall effect in momentum space

    Science.gov (United States)

    Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-05-01

    We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.

  13. Unfolding and effective bandstructure calculations as discrete real- and reciprocal-space operations

    Science.gov (United States)

    Boykin, Timothy B.; Ajoy, Arvind; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard

    2016-06-01

    In recent years, alloy electronic structure calculations based on supercell Brillouin zone unfolding have become popular. There are a number of formulations of the method which on the surface might appear different. Here we show that a discrete real-space description, based on discrete Fourier transforms, is fully general. Furthermore, such an approach can more easily show the effects of alloy scattering. We present such a method for treating the random alloy problem. This treatment features straightforward mathematics and a transparent physical interpretation of the calculated effective (i.e., approximate) energy bands.

  14. Effects of periodic kicking on dispersion and wave packet dynamics in graphene

    Science.gov (United States)

    Agarwala, Adhip; Bhattacharya, Utso; Dutta, Amit; Sen, Diptiman

    2016-05-01

    We study the effects of δ -function periodic kicks on the Floquet energy-momentum dispersion in graphene. We find that a rich variety of dispersions can appear depending on the parameters of the kicking: at certain points in the Brillouin zone, the dispersion can become linear but anisotropic, linear in one direction and quadratic in the perpendicular direction, gapped with a quadratic dispersion, or completely flat (called dynamical localization). We show all these results analytically and demonstrate them numerically through the dynamics of wave packets propagating in graphene. We propose experimental methods for producing these effects.

  15. An important effect of filamentation instability on laser fusion physical processes

    Institute of Scientific and Technical Information of China (English)

    Zunqi; Lin; Anle; Lei; Wei; Fan; Shenlei; Zhou; Li; Wang

    2013-01-01

    The process of high power laser interaction with the large scale length corona plasma produced by the leading edge of the laser pulse has been investigated. Early experimental results are re-analyzed and conclusions drawn. In particular,studies of the close connection of unstable filamentation instability with – mainly – two-plasmon decay and – partly –stimulated Raman scattering, stimulated Brillouin scattering, and resonance absorption are carried out in this paper. The positive and negative effects of filamentation instability are also discussed.

  16. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    Science.gov (United States)

    Patil, S. D.; Takale, M. V.

    2016-05-01

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  17. Effects of counterion valency on the damping of phonons propagating along the axial direction of liquid-crystalline DNA

    Science.gov (United States)

    Liu, Yun; Chen, Sow-Hsin; Berti, Debora; Baglioni, Piero; Alatas, Ahmet; Sinn, Harald; Alp, Ercan; Said, Ayman

    2005-12-01

    The phonon propagation and damping along the axial direction of films of aligned 40wt% calf-thymus DNA rods are studied by inelastic x-ray scattering (IXS). The IXS spectra are analyzed with the generalized three effective eigenmode theory, from which we extract the dynamic structure factor S (Q,E) as a function of transferred energy E =ℏω, and the magnitude of the transferred wave vector Q. S (Q,E) of a DNA sample typically consists of three peaks, one central Rayleigh scattering peak, and two symmetric Stokes and anti-Stokes Brillouin side peaks. By analyzing the Brillouin peaks, the phonon excitation energy and damping can be extracted at different Q values from about 4 to 30nm-1. A high-frequency sound speed is obtained from the initial slope of the linear portion of the dispersion relation below Q =4nm-1. The high-frequency sound speed obtained in this Q range is 3100m /s, which is about twice faster than the ultrasound speed of 1800m/s, measured by Brillouin light scattering at Q ˜0.01nm-1 at the similar hydration level. Our observations provide further evidence of the strong coupling between the internal dynamics of a DNA molecule and the dynamics of the solvent. The effect on damping and propagation of phonons along the axial direction of DNA rods due to divalent and trivalent counterions has been studied. It is found that the added multivalent counterions introduce stronger phonon damping. The phonons at the range between ˜12.5 and ˜22.5nm-1 are overdamped by the added counterions according to our model analyses. The intermediate scattering function is extracted and it shows a clear two-step relaxation with the fast relaxation time ranging from 0.1 to 4ps.

  18. Anomalies in the sound velocities of [011]-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals studied by using Brillouin light scattering

    Science.gov (United States)

    Kim, Tae Hyun; Kojima, Seiji; Ko, Jae-Hyeon

    2016-06-01

    The acoustic properties of [011]-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals were studied by using Brillouin spectroscopy over a wide temperature range under unpoled and poled conditions. Poling the crystal along the [011] direction induced significant changes in the sound velocity and the acoustic attenuation coefficient of both the longitudinal and the transverse acoustic modes at several characteristic temperatures. These acoustic anomalies could be attributed to changes in the polar character from macroscopic ferroelectric domains to mesoscopic polar regions along with quasi-static polar nanoregions and then to dynamic polar nanoregions upon heating the poled crystal.

  19. Effect of pressure on the phonon properties of europium chalcogenides

    Indian Academy of Sciences (India)

    U K Sakalle; P K Jha; S P Sanyal

    2000-06-01

    Lattice vibrational properties of europium chalcogenides have been investigated at high pressure by using a simple lattice dynamical model theory viz. the three-body force rigid ion model (TRIM) which includes long range three-body interaction arising due to charge transfer effects. The dispersion curves for the four Eu-chalcogenides agree reasonably well with the available experimental data. Variation of LO, TO, LA and TA phonons with pressure have also been studied at the symmetry points of the brillouin zone (BZ) for Euchalcogenides for the first time by using a lattice dynamical model theory. We have also calculated the one phonon density of states and compared them with the first order Raman scattering results. The calculation of one phonon density of states for Eu-chalcogenides has also been extended up to the phase transition pressure. We observed a pronounced shift in phonon spectrum as pressure is increased.

  20. Strain induced Chiral Magnetic Effect in Weyl semimetals

    CERN Document Server

    Cortijo, Alberto; Landsteiner, Karl; Vozmediano, María A H

    2016-01-01

    We argue that strain applied to a time-reversal and inversion breaking Weyl semi-metal in a magnetic field can induce an electric current via the chiral magnetic effect. A tight binding model is used to show that strain generically changes the locations in the Brillouin zone but also the energies of the band touching points (tips of the Weyl cones). Since axial charge in a Weyl semi-metal can relax via inter-valley scattering processes the induced current will decay with a timescale given by the lifetime of a chiral quasiparticle. We estimate the strength and lifetime of the current for typical material parameters and find that it should be experimentally observable.

  1. An effective medium theory for predicting the existence of surface states

    CERN Document Server

    Xiao, Meng; Fang, Anan; Chan, C T

    2015-01-01

    We build an effective medium theory for two-dimensional photonic crystals comprising a rectangular lattice of dielectric cylinders with the incident electric field polarized along the axis of the cylinders. In particular, we discuss the feasibility of constructing an effective medium theory for the case where the Bloch wave vector is far away from the center of Brillouin zone, where the optical response of the photonic crystal is necessarily anisotropic and hence the effective medium description becomes inevitability angle dependent. We employ the scattering theory and treat the two-dimensional system as a stack of one-dimensional arrays. We consider only the zero-order interlayer diffraction and all the higher order diffraction terms of interlayer scattering are ignored. This approximation works well when the higher order diffraction terms are all evanescent waves and the interlayer distance is far enough for them to decay out. Scattering theory enables the calculation of transmission and reflection coeffici...

  2. Nonideal Quantum Measurement Effects on the Switching Currents Distribution of Josephson Junctions

    CERN Document Server

    Pierro, Vincenzo

    2016-01-01

    The quantum character of Josephson junctions is ordinarily revealed through the analysis of the switching currents, i.e. the current at which a finite voltage appears: A sharp rise of the voltage signals the passage (tunnel) from a trapped state (the zero voltage solution) to a running state (the finite voltage solution). In this context, we investigate the probability distribution of the Josephson junctions switching current taking into account the effect of the bias sweeping rate and introducing a simple nonideal quantum measurements scheme. The measurements are modelled as repeated voltage samplings at discrete time intervals, that is with repeated projections of the time dependent quantum solutions on the static or the running states, to retrieve the probability distribution of the switching currents. The distribution appears to be immune of the quantum Zeno effect, and it is close to, but distinguishable from, the Wentzel-Kramers-Brillouin approximation. For energy barriers comparable to the quantum fund...

  3. Interacting Dirac fermions under a spatially alternating pseudomagnetic field: Realization of spontaneous quantum Hall effect

    Science.gov (United States)

    Venderbos, Jörn W. F.; Fu, Liang

    2016-05-01

    Both topological crystalline insulator surfaces and graphene host multivalley massless Dirac fermions which are not pinned to a high-symmetry point of the Brillouin zone. Strain couples to the low-energy electrons as a time-reversal-invariant gauge field, leading to the formation of pseudo-Landau-levels (PLLs). Here we study periodic pseudomagnetic fields originating from strain superlattices. We study the low-energy Dirac PLL spectrum induced by the strain superlattice and analyze the effect of various polarized states. Through self-consistent Hartree-Fock calculations we establish that, due to the strain superlattice and PLL electronic structure, a valley-ordered state spontaneously breaking time reversal and realizing a quantum Hall phase is favored, while others are suppressed. Our analysis applies to both topological crystalline insulators and graphene.

  4. Large spin-wave bullet in a ferrimagnetic insulator driven by spin Hall effect.

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, M. B.; Zhang, W.; Sklenar, J.; Ding, J.; Jiang, W.; Chang, Houchen; Fradin, F. Y.; Pearson, J. E.; Ketterson, J. B.; Novosad, V.; Wu, Mingzhong; Hoffmann, A.

    2016-02-01

    Due to its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y3Fe5O12 based on the excitation and detection by SHEs. The driven spin dynamics in Y3Fe5O12 is directly imaged by spatially-resolved microfocused Brillouin light scattering (BLS) spectroscopy. Previously, ST-FMR experiments assumed a uniform precession across the sample, which is not valid in our measurements. A strong spin-wave localization in the center of the sample is observed indicating the formation of a nonlinear, self-localized spin-wave `bullet'.

  5. Large Spin-Wave Bullet in a Ferrimagnetic Insulator Driven by the Spin Hall Effect

    Science.gov (United States)

    Jungfleisch, M. B.; Zhang, W.; Sklenar, J.; Ding, J.; Jiang, W.; Chang, H.; Fradin, F. Y.; Pearson, J. E.; Ketterson, J. B.; Novosad, V.; Wu, M.; Hoffmann, A.

    2016-02-01

    Because of its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y3 Fe5 O12 based on the excitation and detection by SHEs. The driven spin dynamics in Y3 Fe5 O12 is directly imaged by spatially resolved microfocused Brillouin light scattering spectroscopy. Previously, ST-FMR experiments assumed a uniform precession across the sample, which is not valid in our measurements. A strong spin-wave localization in the center of the sample is observed indicating the formation of a nonlinear, self-localized spin-wave "bullet".

  6. Large Spin-Wave Bullet in a Ferrimagnetic Insulator Driven by the Spin Hall Effect.

    Science.gov (United States)

    Jungfleisch, M B; Zhang, W; Sklenar, J; Ding, J; Jiang, W; Chang, H; Fradin, F Y; Pearson, J E; Ketterson, J B; Novosad, V; Wu, M; Hoffmann, A

    2016-02-01

    Because of its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y_{3}Fe_{5}O_{12} based on the excitation and detection by SHEs. The driven spin dynamics in Y_{3}Fe_{5}O_{12} is directly imaged by spatially resolved microfocused Brillouin light scattering spectroscopy. Previously, ST-FMR experiments assumed a uniform precession across the sample, which is not valid in our measurements. A strong spin-wave localization in the center of the sample is observed indicating the formation of a nonlinear, self-localized spin-wave "bullet". PMID:26894733

  7. Competition between inverse piezoelectric effect and deformation potential mechanism in undoped GaAs revealed by ultrafast acoustics

    Directory of Open Access Journals (Sweden)

    Pezeril T.

    2013-03-01

    Full Text Available By using the picosecond ultrasonics technique, piezoelectric effect in GaAs undoped sample at both faces (A[111] and B[-1-1-1] is experimentally studied. We demonstrate that piezoelectric generation of sound can dominate in GaAs material over the deformation potential mechanism even in the absence of static externally applied or built-in electric field in the semiconductor material. In that case, the Dember field, caused by the separation of photo-generated electrons and holes in the process of supersonic diffusion, is sufficient for the dominance of the piezoelectric mechanism during the optoacoustic excitation. The experimental results on the sample at both faces reveal that in one case (A face, the two mechanisms, piezoelectric effect and deformation potential, can compensate each other leading to a large decrease of the measured Brillouin oscillation magnitude.

  8. Atomic displacements effects on the electronic properties of Bi2Sr2Ca2Cu3O10

    International Nuclear Information System (INIS)

    The displacements effects of the oxygen atom associated to the Sr-plane (O3) in the electronic properties of Bi2Sr2Ca2Cu3O10 (Bi-2223), have been investigated using density functional theory. We determined intervals of the O3 atomic positions for which the band structure calculations show that the Bi-O bands, around the high symmetry point M in the irreducible Brillouin zone, emerge towards higher energies avoiding its contribution at Fermi level, as experimentally has been reported. This procedure does not introduce foreign doping elements into the calculation. Our calculations present a good agreement with the angle-resolved photoemission spectroscopy and nuclear magnetic resonance (NMR) experiments. The two options found differ in character (metallic or nonmetallic) of the Bi-O plane. The are not any experiments, to the best of our knowledge, which determine this character for Bi-2223. (Author)

  9. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect.

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel

    2016-01-01

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.

  10. Effect of Fe on the Elastic Constants of Magnesiowustite [(Mg,Fe)O] at Ambient Conditions and High Pressure

    Science.gov (United States)

    Sinogeikin, S. V.; Reichmann, H. J.; Bass, J. D.; Mackwell, S. J.; Jacobsen, S. D.

    2001-12-01

    Magnesiowustite is a major mineral in the lower mantle of the Earth. While the effect of temperature and pressure on the elasticity of MgO is well constrained, the effect of Fe on the elastic constants and their pressure derivatives is still uncertain, especially for compositions close to the Mg end-member. Here we present the Brillouin spectroscopy measurements of the single-crystal elastic constants of magnesiowustite at ambient conditions ( ~5.8 mol.% Fe) and to high pressures up to about 10 GPa ( ~1.3 mol.% Fe). The single-crystal samples were prepared by Mg:Fe interdiffusion between periclase single crystals and magnesiowustite powders with carefully controlled oxygen fugacity. The Brillouin scattering measurements were performed in platelet symmetric geometry, which significantly increases the accuracy, and is calibrated with respect to standard periclase sample. High-pressure measurements were performed in a large optical opening Merrill-Basset type diamond anvil cell with Methanol-Ethanol-Water mixture as a pressure-transmitting medium. The new results confirm earlier single-crystal ultrasonic measurements (gigahertz interferometry) which indicated that the behavior of the elastic moduli of magnesiowustite are highly nonlinear in Mg-rich end. A pronounced decrease in acoustic velocities with increasing Fe content is especially obvious in samples with Fe contents of <10 mol. %. The pressure derivatives of the elastic moduli of the sample with XFe = 1.3 mol % are equal to those of periclase within the experimental uncertainties, although the Fe content of the sample may be too small to allow compositional trends to be clearly identified.

  11. Conductivity-independent Fano Effect of the Ba (Ag) Phonon in R0.5Pr0.5Ba2Cu3O7

    International Nuclear Information System (INIS)

    The Fano effect of the Ba (Ag) line is clearly pronounced and remains nearly the same through the whole series R0.5Pr0.5Ba2Cu3O7 (R=Lu, Yb, Tm, Er, Ho, Y, Dy, Gd, Eu, Sm, Nd, Pr, La) which undergoes a superconductor-to-nonsuperconductor transition between R = Dy and Gd. The scattering background that interfere with the Ba (Ag) phonon is therefore not related to the carriers responsible for the superconductivity. Rather, the continuum of electronic transitions near EF between or within the 'plane' bands of mainly O4 (apex oxygen) character in the vicinity of the S point of the Brillouin zone have to be considered. (author)

  12. Atomic displacements effects on the electronic properties of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Camargo M, J. A. [Fundacion Universitaria Internacional del Tropico Americano, Grupo de Investigacion en Ciencias Basicas, Aplicacion e Innovacion, Carrera 19 No. 39-40, Yopal, Yopal (Colombia); Espitia, D.; Baquero, R., E-mail: jcamargo@unitropico.edu.co [Instituto Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Av. IPN 2508, 07360 Mexico D. F. (Mexico)

    2015-07-01

    The displacements effects of the oxygen atom associated to the Sr-plane (O3) in the electronic properties of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223), have been investigated using density functional theory. We determined intervals of the O3 atomic positions for which the band structure calculations show that the Bi-O bands, around the high symmetry point M in the irreducible Brillouin zone, emerge towards higher energies avoiding its contribution at Fermi level, as experimentally has been reported. This procedure does not introduce foreign doping elements into the calculation. Our calculations present a good agreement with the angle-resolved photoemission spectroscopy and nuclear magnetic resonance (NMR) experiments. The two options found differ in character (metallic or nonmetallic) of the Bi-O plane. The are not any experiments, to the best of our knowledge, which determine this character for Bi-2223. (Author)

  13. Magnetooptical study of Zeeman effect in Mn modulation-doped InAs/InGaAs/InAlAs quantum well structures

    International Nuclear Information System (INIS)

    We report on a magneto-photoluminescence (PL) study of Zeeman effect in Mn modulation-doped InAs/InGaAs/InAlAs quantum wells (QW). Two PL lines corresponding to the radiative recombination of photoelectrons with free and bound-on-Mn holes have been observed. In the presence of a magnetic field applied in the Faraday geometry, both lines split into two circularly polarized components. While temperature and magnetic field dependence of the splitting are well described by the Brillouin function, providing an evidence for exchange interaction with spin polarized manganese ions, the value of the splitting exceeds by two orders of magnitude the value of the giant Zeeman splitting estimated for the average Mn density in QW obtained by the secondary ion mass spectroscopy

  14. Brillouin function characteristics for La-Co substituted barium hexaferrites

    International Nuclear Information System (INIS)

    La-Co substituted barium hexaferrites with the chemical formula of Ba1−xLaxFe12−xCoxO19 (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f1, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ωbf2, ωkf1, ωaf1, ωkf2, and ωbk of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f1, 4f2, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ωbf2 and ωaf1 decrease constantly, while the molecular-field coefficients ωkf1, ωkf2, and ωbk show a slight change

  15. Brillouin function characteristics for La-Co substituted barium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chuanjian, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yang, Yan [Department of Communication and Engineering, Chengdu Technological University, Chengdu 611730 (China)

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.

  16. Microwave synthesizer using an on-chip Brillouin oscillator

    OpenAIRE

    Li, Jiang; Lee, Hansuek; Vahala, Kerry J.

    2013-01-01

    Low-phase-noise microwave oscillators are important to a wide range of subjects, including communications, radar and metrology. Photonic-based microwave-wave sources now provide record, close-to-carrier phase-noise performance, and compact sources using microcavities are available commercially. Photonics-based solutions address a challenging scaling problem in electronics, increasing attenuation with frequency. A second scaling challenge, however, is to maintain low phase noise...

  17. Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas

    Czech Academy of Sciences Publication Activity Database

    Weber, Stefan A.; Riconda, C.; Lancia, L.; Marquès, J.-R.; Mourou, G.A.; Fuchs, J.

    2013-01-01

    Roč. 111, č. 5 (2013), "055004-1"-"055004-5". ISSN 0031-9007 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0087 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : compression * generation * scattering * intensity * extreme * regime * optics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 7.728, year: 2013

  18. Unified Drain Current Model of Armchair Graphene Nanoribbons with Uniaxial Strain and Quantum Effect

    Directory of Open Access Journals (Sweden)

    EngSiew Kang

    2014-01-01

    Full Text Available A unified current-voltage I-V model of uniaxial strained armchair graphene nanoribbons (AGNRs incorporating quantum confinement effects is presented in this paper. The I-V model is enhanced by integrating both linear and saturation regions into a unified and precise model of AGNRs. The derivation originates from energy dispersion throughout the entire Brillouin zone of uniaxial strained AGNRs based on the tight-binding approximation. Our results reveal the modification of the energy band gap, carrier density, and drain current upon strain. The effects of quantum confinement were investigated in terms of the quantum capacitance calculated from the broadening density of states. The results show that quantum effect is greatly dependent on the magnitude of applied strain, gate voltage, channel length, and oxide thickness. The discrepancies between the classical calculation and quantum calculation were also measured and it has been found to be as high as 19% drive current loss due to the quantum confinement. Our finding which is in good agreement with the published data provides significant insight into the device performance of uniaxial strained AGNRs in nanoelectronic applications.

  19. Dynamical and anharmonic effects on the electron-phonon coupling and the zero-point renormalization of the band structure

    Science.gov (United States)

    Antonius, Gabriel; Poncé, Samuel; Lantagne-Hurtubise, Étienne; Auclair, Gabriel; Côté, Michel; Gonze, Xavier

    2015-03-01

    The electron-phonon coupling in solids renormalizes the band structure, reducing the band gap by several tenths of an eV in light-atoms semiconductors. Using the Allen-Heine-Cardona theory (AHC), we compute the zero-point renormalization (ZPR) as well as the quasiparticle lifetimes of the full band structure in diamond, BN, LiF and MgO. We show how dynamical effects can be included in the AHC theory, and still allow for the use of a Sternheimer equation to avoid the summation over unoccupied bands. The convergence properties of the electron-phonon coupling self-energy with respect to the Brillouin zone sampling prove to be strongly affected by dynamical effects. We complement our study with a frozen-phonon approach, which reproduces the static AHC theory, but also allows to probe the phonon wavefunctions at finite displacements and include anharmonic effects in the self-energy. We show that these high-order components tend to reduce the strongest electron-phonon coupling elements, which affects significantly the band gap ZPR.

  20. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film

    Science.gov (United States)

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-05-01

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large

  1. Effect of annealing temperature on exchange stiffness of CoFeB thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehun; Jung, Jinyong; Cho, Shin-Yong; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr

    2015-12-01

    We investigate the exchange stiffness constants of 28-nm-thick CoFeB film using Brillouin light scattering. Series of CoFeB films are prepared on the MgO(001) substrate with or without additional 5-nm thick MgO buffer layer, the effect of the annealing temperature on the exchange stiffness constants are studied. We found that the exchange stiffness constant of 400 °C annealed sample with MgO buffer increased by 10% form the 200 °C annealed sample (=0.73±0.01×10{sup −11} J/m), while the exchange stiffness constant of without MgO buffer layer sample increase by 6% from the as-grown sample (=1.11±0.02×10{sup −11} J/m). - Highlights: • We investigate the exchange stiffness constants of CoFeB film using BLS. • The exchange stiffness constant of without MgO buffer layer increase by 6%. • The exchange stiffness constant of annealed sample with MgO increased by 10%. • The exchange stiffness constants are varied with buffer and annealing conditions.

  2. Comparison of Aspect Angle Effect on Stimulated Electromagnetic Emissions using HAARP and EISCAT facilities

    Science.gov (United States)

    Fu, H.; Scales, W.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.

    2012-12-01

    A high power HF heating transmitter can excite a broad spectrum of Stimulated Electromagnetic Emission (SEE) lines by O-mode and X-mode heating. These emissions can provide useful diagnostics during modification of the ionosphere. The HAARP 3.6MW transmitter beam angle has been confirmed as an important factor for exciting ion acoustic (IA) and electrostatic ion cyclotron waves (EIC) by Magnetized Stimulated Brillouin Scatter (MSBS). The newly observed associated SEE spectral emissions by the MSBS process are considered to originate from cascading processes at the upper hybrid resonance region. These beam angle effects on SEE features have been observed during second electron gyro-harmonic heating experiments. These will be studied and described in much greater detail with a systematic investigation here using two facilities using both the EISCAT facility in Tromso, Norway as well as the HAARP facility. It will be shown that both MSBS emissions and ion Bernstein SEE emissions are observed simultaneously with the pump frequency near the third and second electron gyro harmonic and show important systematic variation with beam angle that can be exploited for important diagnostic purposes. At the EISCAT heating facility, SEE features studied near the third and fourth electron gyro-harmonic with simultaneous electron temperature measurement were observed with strong field aligned irregularities. Importance of the proximity of the pump frequency to the gyro-harmonic on the narrowband SEE spectrum will be compared between both facilities as well.

  3. Effect of magnetized phonons on electrical and thermal conductivity of neutron star crust

    Science.gov (United States)

    Baiko, D. A.

    2016-05-01

    We study electrical and thermal conductivities of degenerate electrons emitting and absorbing phonons in a strongly magnetized crystalline neutron star crust. We take into account modification of the phonon spectrum of a Coulomb solid of ions caused by a strong magnetic field. Boltzmann transport equation is solved using a generalized variational method. The ensuing 3D integrals over the transferred momenta are evaluated by two different numerical techniques, the Monte Carlo method and a regular integration over the first Brillouin zone. The results of the two numerical approaches are shown to be in a good agreement. An appreciable growth of electrical and thermal resistivities is reported at quantum and intermediate temperatures T ≲ 0.1Tp (Tp is the ion plasma temperature) in a wide range of chemical compositions and mass densities of matter even for moderately magnetized crystals ωB ˜ ωp (ωB and ωp are the ion cyclotron and plasma frequencies). This effect is due to an appearance of a soft (ω ∝ k2) phonon mode in the magnetized ion Coulomb crystal, which turns out to be easier to excite than acoustic phonons characteristic of the field-free case. These results are important for modelling magneto-thermal evolution of neutron stars.

  4. Three-dimensional band structure of layered TiTe2: Photoemission final-state effects

    International Nuclear Information System (INIS)

    Three-dimensional band structure of unoccupied and occupied states of the prototype layered material TiTe2 is determined focusing on the ΓA line of the Brillouin zone. Dispersions and lifetimes of the unoccupied states, acting as the final states in the photoemission process, are determined from a very-low-energy electron diffraction experiment supported by first-principles calculations based on a Bloch waves treatment of multiple scattering. The experimental unoccupied states of TiTe2 feature dramatic non-free-electron effects such as multiband composition and nonparabolic dispersions. The valence band layer-perpendicular dispersions are then determined from a photoemission experiment consistently interpreted on the basis of the experimental final states to achieve control over the three-dimensional wave vector. The experimental results demonstrate the absence of the Te 4pz* Fermi surface pocket at the Γ point and significant self-energy renormalization of the valence band dispersions. Photoemission calculations based on a Bloch waves formalism within the one-step theory reveal limitations of understanding photoemission from layered materials such as TiTe2 in terms of direct transitions

  5. Deformation effects on cluster decays of radium isotopes

    International Nuclear Information System (INIS)

    We systematically investigate the influence of nuclear deformations of the cluster and daughter nuclei on the half-lives of 4He, 8,10Be, 12,14,16C and 16,18,20,22O cluster decays from 210–226Ra. The Wentzel–Kramers–Brillouin (WKB) method and Bohr–Sommerfeld quantization condition with the deformed squared Woods–Saxon and Cosh potentials are used phenomenologically in order to compute the half-lives. The calculations are performed for the spherical cluster and deformed daughter, deformed cluster and spherical daughter and deformed cluster and daughter cases. The half-lives for different orientation angles as well as over all angles are calculated, in order to show the deformation effects on the systems. In cases where the deformation of both cluster and daughter effect the result, it is found that the deformation of the cluster is more important than the deformation of the daughter. Furthermore, it is also found that taking into account the orientation angles of the daughter and cluster also improves the results when compared to experiment. However, the results for a Cosh potential with certain parameters without any deformation are found to be more compatible with both the results obtained by the Coulomb and proximity potential model (CPPM) and the universal formula for cluster decay (UNIV), as well as the experimental values for 4He and 14C decays. The results provide a useful method for estimating the unknown experimental half-lives of possible exotic decays from Ra isotopes

  6. Electronic contribution to the isotope effects in PdHsub(x), pdDsub(x) and PdTsub(x)

    International Nuclear Information System (INIS)

    The relaxation times for electron scattering (Dingle temperatures) and the concentration dependence of extremal cross-sectional areas A of the Fermi surface of dilute palladium-tritium alloys (PdTsub(x) with 0<=x<=0.0011) are obtained from de Haas-van Alphen experiments in fields up to 11 T at temperatures down to 1.4 K. The relative changes in extremal cross-sectional areas of the Fermi surface d ln A/dx induced by tritium in Pd are 0.31 for the [001] orbit on the GAMMA centred electron sheet, -2.5 for orbits on the X-hole pockets and -11 for the L-hole pocket. Furthermore, for the first time the concentration dependence of one of the extremal cross-sectional areas of the fifth band jungle gym is measured in dilute palladium-hydrogen and palladium-deuterium alloys. The results of these experiments show that the intriguing isotope effects observed previously are confined to states on the hole ellipsoids at points X and L of the Brillouin zone. As the density of states associated with these Fermi surface sheets represents only 3% of the total density of states at the Fermi energy, isotope effects in macroscopic quantities such as magnetic susceptibility and electronic specific heat are too small to be observed. This is in agreement with recent measurements by Blaurock and Wicke. (author)

  7. Multi-scale nonlinear effects in whispering-gallery mode resonators

    Science.gov (United States)

    Lin, Guoping; Diallo, Souleymane; Chembo, Yanne K.

    2016-03-01

    Whispering gallery mode resonators have been the focus of many research works in recent years. They allow to study the light-matter interactions induced by the confinement of photons in nonlinear media. In particular, Brillouin Raman and Kerr nonlinearities excite the resonator at the lattice, molecular and electronic scale. This difference in spatial scales give to whispering gallery-mode resonators the potential to be central photonic components in microwave photonics, quantum optics and optoelectronics. We discuss in this communication some of the key challenges that have to be met for the understanding of Kerr, Raman and Brillouin interactions that can take place in these resonators.

  8. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    International Nuclear Information System (INIS)

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered

  9. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhen, Jian-Ping [Nanjing Artillery Academy, Nanjing 211132 (China)

    2014-03-15

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered.

  10. Effective impedance for predicting the existence of surface states

    Science.gov (United States)

    Xiao, Meng; Huang, Xueqin; Fang, Anan; Chan, C. T.

    2016-03-01

    We build an effective impedance for two-dimensional (2D) photonic crystals (PCs) comprising a rectangular lattice of dielectric cylinders with the incident electric field polarized along the axis of the cylinders. In particular, we discuss the feasibility of constructing an effective impedance for the case where the Bloch wave vector is far away from the center of Brillouin zone, where the optical response of the PC is necessarily anisotropic, and hence the effective description becomes inevitably angle dependent. We employ the scattering theory and treat the 2D system as a stack of 1D arrays. We consider only the zero-order interlayer diffraction, and all the higher order diffraction terms of interlayer scattering are ignored. This approximation works well when the higher order diffraction terms are all evanescent waves and the interlayer distance is far enough for them to decay out. Scattering theory enables the calculation of transmission and reflection coefficients of a finite-sized slab, and we extract the effective parameters such as the effective impedance (Ze) and the effective refractive index (ne) using a parameter retrieval method. We note that ne is uniquely defined only in a very limited region of the reciprocal space. (nek0a ≪1 , where k0 is the wave vector inside the vacuum and a is thickness of the slab for retrieval), but Ze is uniquely defined and has a well-defined meaning inside a much larger domain in the reciprocal space. For a lossless system, the effective impedance Ze is purely real for the pass band and purely imaginary in the band gaps. Using the sign of the imaginary part of Ze, we can classify the band gaps into two groups, and this classification explains why there is usually no surface state on the boundary of typical fully gapped PCs composed of a lattice of dielectric cylinders. This effective medium approach also allows us to predict the dispersion of surface states even when the surface wave vectors are well beyond the zone

  11. Band structure and charge doping effects of the potassium-adsorbed FeSe /SrTiO3 system

    Science.gov (United States)

    Zheng, Fawei; Wang, Li-Li; Xue, Qi-Kun; Zhang, Ping

    2016-02-01

    We theoretically study, through combining the density functional theory and an unfolding technique, the electronic band structure and the charge doping effects for the deposition of potassium on multilayer FeSe films grown on SrTiO3 (001) surface. These results form a theoretical baseline for further detailed studies of low-temperature electronic properties and their multiway quantum engineering of FeSe thin films. We explain the Fermi-surface topology observed in experiment and formulate the amount of doped electrons as a function of atomic K coverage. We show that the atomic K deposition efficiently dopes electrons to the top layer of FeSe. Both checkerboard- and pair-checkerboard-antiferromagnetic (AFM) FeSe layers show electron pockets at the M point and no Fermi pocket at the Γ point with moderate atomic K coverage. The electron transfer from the K adsorbate to the FeSe film introduces a strong electric field, which leads to a double-Weyl-cone structure at the M point in the Brillouin zone of checkerboard-AFM FeSe. We demonstrate that with experimentally accessible heavy-electron doping, an electronlike Fermi pocket will emerge at the Γ point, which should manifest itself in modulating the high-temperature superconductivity of FeSe thin films.

  12. Shubnikov-de Haas Effect and Angular-Dependent Magnetoresistance in Layered Organic Conductor β''-(ET)(TCNQ)

    Science.gov (United States)

    Yasuzuka, Syuma; Uji, Shinya; Konoike, Takako; Terashima, Taichi; Graf, David; Choi, Eun Sang; Brooks, James S.; Yamamoto, Hiroshi M.; Kato, Reizo

    2016-08-01

    This paper reports the experimental results of the Shubnikov-de Haas (SdH) effect and angular-dependent magnetoresistance oscillation (AMRO) for the organic conductor β''-(ET)(TCNQ). We observed several two dimensional (2D) SdH frequencies, whose cross-sectional areas of the Fermi surfaces (FSs) correspond to only a few percent of the first Brillouin zone. Such small 2D FSs are not predicted by band-structure calculations, suggesting that these FS pockets are created by an imperfect nesting of FSs at low temperatures. It is found that the AMRO consists of a long-period oscillation and a short-period one. The long-period oscillation is associated with the Yamaji oscillation corresponding to the α orbit, whose shape and area are consistent with previous magneto-optical measurement. The short-period oscillation is not caused by peaks instead but dips. The dip structure is discussed in terms of the AMRO of a quasi-2D electron system with a periodic potential caused by the possible density-wave related to the ET layers or the 4kF charge-density-wave associated with the TCNQ layers.

  13. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    International Nuclear Information System (INIS)

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices

  14. Effects of Pb doping on structural and electronic properties of Bi2Sr2Ca2Cu3O10

    Science.gov (United States)

    Camargo-Martínez, J. A.; Baquero, R.

    2016-02-01

    Pb doping effect in the Bi2Sr2Ca2Cu3O10 compound (Bi2223) on the structural and electronic properties were investigated, using the Local Density (LDA) and Virtual Crystal (VCA) approximations within the framework of the Density Functional Theory (DFT), taking as reference the procedure implemented by Lin et al. (2006) in the Bi2212 compound. Results show that, the incorporation of Pb-dopant in Bi2223 lead a rigid displacement of the Bi/Pb-O bands toward higher energies, with a null contribution at the Fermi level, around the high symmetry point M bar in the irreducible Brillouin zone, for Pb doping concentration equal to or more than 26%, avoiding the presence of the so-called Bi-O pockets in the Fermi surface, in good agreement with angle-resolved photoemission spectroscopy (ARPES) and nuclear magnetic resonance (NMR) experiments, although a slight metallic character of the Bi-O bonds is still observed which would disagree with some experimental reports. The calculations show that the changes on the structural properties are associated to the presence or absence of the Bi-O pockets in the Fermi surface.

  15. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    Science.gov (United States)

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel

    2016-02-01

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.

  16. Aging effect in parent phase and martensitic transformation in Au-47.5at.%Cd alloys

    International Nuclear Information System (INIS)

    Au-Cd alloy is one of the typical alloys which shows martensitic transformation. There are two martensites close to the 1:1 composition: one is γ'2 martensite and the other is ζ'2 martensite. When the phonon dispersion curve was measured in the composition for Au-47.5at.%Cd which produces γ'2 martensite, phonon softening was observed at the Brillouin zone boundary and at ζ=0.35 of the [ζζ0]TA2 branch and a peculiar behavior was observed. One is that the Ms temperature determined in this experiment was lower than the ordinary value. The other is the time dependence of the 1/3 elastic reflection, which was observed prior to the martensitic transformation. Electrical resistance measurements were performed in this alloy in order to clarify this peculiar behavior. A decrease of the Ms temperature was observed after aging at 393 K, in the parent phase. The lower Ms observed in neutron experiments can be explained by an aging effect in the parent phase. There are two possibilities of explaining the time-dependence of the 1/3 reflection; one is the transformation with diffusion (bainite transformation above Ms) and the other is embryo growing. (orig.)

  17. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B., E-mail: jungfleisch@anl.gov; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Sklenar, Joseph [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2016-02-01

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni{sub 80}Fe{sub 20}/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.

  18. Applicability of effective medium description to photonic crystals in higher bands: Theory and numerical analysis

    Science.gov (United States)

    Markel, Vadim A.; Tsukerman, Igor

    2016-06-01

    We consider conditions under which photonic crystals (PCs) can be homogenized in the higher photonic bands and, in particular, near the Γ point. By homogenization we mean introducing some effective local parameters ɛeff and μeff that describe reflection, refraction, and propagation of electromagnetic waves in the PC adequately. The parameters ɛeff and μeff can be associated with a hypothetical homogeneous effective medium. In particular, if the PC is homogenizable, the dispersion relations and isofrequency lines in the effective medium and in the PC should coincide to some level of approximation. We can view this requirement as a necessary condition of homogenizability. In the vicinity of a Γ point, real isofrequency lines of two-dimensional PCs can be close to mathematical circles, just like in the case of isotropic homogeneous materials. Thus, one may be tempted to conclude that introduction of an effective medium is possible and, at least, the necessary condition of homogenizability holds in this case. We, however, show that this conclusion is incorrect: complex dispersion points must be included into consideration even in the case of strictly nonabsorbing materials. By analyzing the complex dispersion relations and the corresponding isofrequency lines, we have found that two-dimensional PCs with C4 and C6 symmetries are not homogenizable in the higher photonic bands. We also draw a distinction between spurious Γ -point frequencies that are due to Brillouin-zone folding of Bloch bands and "true" Γ -point frequencies that are due to multiple scattering. Understanding of the physically different phenomena that lead to the appearance of spurious and "true" Γ -point frequencies is important for the theory of homogenization.

  19. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li2O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author)

  20. Effect of tunnel injection through the Schottky gate on the static and noise behavior of GaInAs/AlInAs high electron mobility transistor

    International Nuclear Information System (INIS)

    By using a Monte Carlo simulator, the influence of the tunnel injection through the Schottky contact at the gate electrode of a GaInAs/AlInAs High Electron Mobility Transistor (HEMT) has been studied in terms of the static and noise performance. The method used to characterize the quantum tunnel current has been the Wentzel-Kramers-Brillouin (WKB) approach. The possibility of taking into account the influence of the image charge effect in the potential barrier height has been included as well. Regarding the static behavior, tunnel injection leads to a decrease in the drain current ID due to an enhancement of the potential barrier controlling the carrier transport through the channel. However, the pinch-off is degraded due to the tunneling current. Regarding the noise behavior, since the fluctuations in the potential barrier height caused by the tunnel-injected electrons are strongly coupled with the drain current fluctuations, a significant increase in the drain-current noise takes place, even when the tunnel effect is hardly noticeable in the static I-V characteristics, fact that must be taken into account when designing scaled HEMT for low-noise applications. In addition, tunnel injection leads to the appearance of full shot noise in the gate current

  1. B-cation effect on the electronic and magnetic properties of CeBO3 (B=Ga, In) compounds from first principles study

    International Nuclear Information System (INIS)

    The ab initio APW+lo method is used to study the cation effect on the electronic structure of CeBO3 (B=Ga, In) compounds. High-pressure structural behavior, magnetic phase stabilities and electronic properties of both materials have been investigated. The observed most stable phases are the orthorhombic (Pnma) and hexagonal (P63cm) for CeGaO3 and CeInO3, respectively. It is shown that the ferromagnetic (FM) state in CeGaO3 is energetically more favorable than the anti-ferromagnetic (AFM) one, unlike CeInO3 where the AFM-III configuration is the lowest in energy. LSDA+U calculation shows that the valence band maximum is located at T point and the conduction band minimum is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.6 eV in the ferromagnetic ordering CeGaO3 which is typical of semiconductor with large gap. CeInO3 compound keeps the metallic character using DFT+U calculation.

  2. B-cation effect on the electronic and magnetic properties of CeBO{sub 3} (B=Ga, In) compounds from first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Hasni, W. [Modelling and Simulation in Materials Science Laboratory, Physics Department, Djillali Liabes University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Boukortt, A. [Elaboration Characterization Physico-Mechanics of Materials and Metallurgical Laboratory ECP3M, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000 (Algeria); Bekkouche, B. [Signals and Systems Laboratory, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000 (Algeria); Kacimi, S., E-mail: kacimi200x@yahoo.fr [Modelling and Simulation in Materials Science Laboratory, Physics Department, Djillali Liabes University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Djermouni, M.; Zaoui, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, Djillali Liabes University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria)

    2012-03-01

    The ab initio APW+lo method is used to study the cation effect on the electronic structure of CeBO{sub 3} (B=Ga, In) compounds. High-pressure structural behavior, magnetic phase stabilities and electronic properties of both materials have been investigated. The observed most stable phases are the orthorhombic (Pnma) and hexagonal (P6{sub 3}cm) for CeGaO{sub 3} and CeInO{sub 3}, respectively. It is shown that the ferromagnetic (FM) state in CeGaO{sub 3} is energetically more favorable than the anti-ferromagnetic (AFM) one, unlike CeInO{sub 3} where the AFM-III configuration is the lowest in energy. LSDA+U calculation shows that the valence band maximum is located at T point and the conduction band minimum is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.6 eV in the ferromagnetic ordering CeGaO{sub 3} which is typical of semiconductor with large gap. CeInO{sub 3} compound keeps the metallic character using DFT+U calculation.

  3. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  4. Multireference F12 coupled cluster theory: The Brillouin-Wigner approach with single and double excitations

    Czech Academy of Sciences Publication Activity Database

    Kedžuch, S.; Demel, Ondřej; Pittner, Jiří; Ten-no, S.; Noga, J.

    2011-01-01

    Roč. 511, 4-6 (2011), s. 418-423. ISSN 0009-2614 R&D Projects: GA ČR GAP208/11/2222 Institutional research plan: CEZ:AV0Z40400503 Keywords : Brilluin-Wigner approach * perturbation- theory * model systems Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2011

  5. Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal

    NARCIS (Netherlands)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin

  6. The nonrelativistic limit of Dirac-Fock codes: the role of Brillouin configurations

    OpenAIRE

    Indelicato, Paul; Lindroth, Eva; Desclaux, Jean-Paul

    2004-01-01

    We solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method (MCDF). We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-$Z$, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We show that only large scale calculations that include all single excitations, even th...

  7. Wentzel-Kramers-Brillouin method in the Bargmann representation. [of quantum mechanics

    Science.gov (United States)

    Voros, A.

    1989-01-01

    It is demonstrated that the Bargmann representation of quantum mechanics is ideally suited for semiclassical analysis, using as an example the WKB method applied to the bound-state problem in a single well of one degree of freedom. For the harmonic oscillator, this WKB method trivially gives the exact eigenfunctions in addition to the exact eigenvalues. For an anharmonic well, a self-consistent variational choice of the representation greatly improves the accuracy of the semiclassical ground state. Also, a simple change of scale illuminates the relationship of semiclassical versus linear perturbative expansions, allowing a variety of multidimensional extensions.

  8. Investigation of nonlinear processes associated with stimulated Brillouin scattering in an underdense and extended plasma

    International Nuclear Information System (INIS)

    In our experiment, the plasma was performed by means of a Z-pinch. Although a plasma near or above the critical density could have been produced, our experiment was deliberately restricted to underdense plasma as a) our interest was to investigate similar situations as encountered in the large extended coronal region of laser-pellet interaction which may endanger the prospects of laser fusion, b) it is readily accessible to various diagnostic methods, and, c) there is sufficient experimental data and theory availabe for comparison. After a brief introduction of the subject, the theory of laser-induced parametric instabilities, as well as various saturation mechanisms are discussed in the second chapter. The third Chapter contains the experimental details of the complete CO2 laser system, the Z-pinch, and the laser plasma interaction experiment. Experimental results are reported in the next Chapter and are analyzed in the light of predictions discussed in the second Chapter. A comparison of our results with other experiments is made in Chapter 5, and the discrepancies are explained on the basis of a simple model. The last Chapter sums up the entire work. For a better understanding of the subject, the physics of the laser has been given in Appendix. (orig./HT)

  9. Massively parallel implementation of the multireference Brillouin-Wigner CCSD method

    Czech Academy of Sciences Publication Activity Database

    Brabec, Jiří; Krishnamoorthy, S.; van Dam, H. J. J.; Kowalski, K.; Pittner, Jiří

    2011-01-01

    Roč. 514, 4-6 (2011), s. 347-351. ISSN 0009-2614 R&D Projects: GA ČR GAP208/11/2222 Institutional research plan: CEZ:AV0Z40400503 Keywords : coupled-cluster theory * singlet-triplet separation * general-model-space Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2011

  10. Iterative universal state selective correction for the Brillouin-Wigner multireference coupled-cluster theory

    Czech Academy of Sciences Publication Activity Database

    Banik, Subrata; Ravichandran, Lalitha; Brabec, J.; Hubač, I.; Kowalski, K.; Pittner, Jiří

    2015-01-01

    Roč. 142, č. 11 (2015), s. 114106. ISSN 0021-9606 R&D Projects: GA MŠk LH13117; GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : QUADRUPLY EXCITED CLUSTER S * QUASI-DEGENERATE STATES * DOUBLE-EXCITATION MODEL Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  11. The Wentzel-Kramers-Brillouin approximation method applied to the Wigner function

    Science.gov (United States)

    Tosiek, J.; Cordero, R.; Turrubiates, F. J.

    2016-06-01

    An adaptation of the Wentzel-Kramers-Brilluoin method in the deformation quantization formalism is presented with the aim to obtain an approximate technique of solving the eigenvalue problem for energy in the phase space quantum approach. A relationship between the phase σ ( r →) of a wave function exp (" separators=" /i ħ σ ( r →)) and its respective Wigner function is derived. Formulas to calculate the Wigner function of a product and of a superposition of wave functions are proposed. Properties of a Wigner function of interfering states are also investigated. Examples of this quasi-classical approximation in deformation quantization are analysed. A strict form of the Wigner function for states represented by tempered generalised functions has been derived. Wigner functions of unbound states in the Poeschl-Teller potential have been found.

  12. Disorder effects in cuprates

    Science.gov (United States)

    Vobornik, I.; Grioni, M.; Berger, Helmuth; Forro, Laszlo; Pavuna, Davor; Margaritondo, Giorgio; Karkin, A.; Kelley, Ronald J.; Onellion, Marshall

    2000-09-01

    We report on ab-plane resistivity ((rho) ) and angle-resolved photoemission (ARPES) spectra for Bi2Sr2CaCu2O8+x single crystals irradiated with neutrons or electron-beam irradiation. Both the normal and superconducting states were measured with angle-resolved photoemission. Electron-beam irradiation leads to an increase in the residual resistivity, and a decrease in the superconducting transition temperature (Tc). The resistivity data does not indicate any pseudogap; the resistivity is linear from Tc to 300 K for all levels of disorder, and the slope (d(rho) /dT) is the same for all levels of disorder. The superconducting state ARPES data exhibits no change in the binding energy of the 'peak' for Brillouin zone locations near the (O,(pi) ) point. The peak spectral intensity decreases with increasing disorder, the gap fills in, but the peak neither shifts nor broadens. The normal state exhibits a pseudogap developing with disorder; the size of the pseudogap increases as the residual resistivity increases. The pseudogap is anisotropic, largest near the (O,(pi) ) point and zero in the direction. Neutron-beam irradiation causes an increase in the residual resistivity. The resistivity data exhibit a change of slope and indications of a pseudogap for neutron irradiation. For normal state ARPES data of neutron-beam irradiated samples, there is also an anisotropic pseudogap; it is also zero in the direction and large near the (O,(pi) ) point. We discuss implications of these data.

  13. Extra condition is necessary to have a unique cluster wave vectors set in the periodic cluster approximations

    OpenAIRE

    Moradian, Rostam

    2009-01-01

    We added an extra condition, original lattice symmetry of chosen cluster around cluster central site, to the cluster approximation methods with periodic boundary condition such as dynamical cluster approximation (DCA), effective medium approximation (EMSCA) and nonlocal coherent potential approximation (NLCPA). For each cluster size, this condition leads to a unique cluster wave vectors set in the first Brillouin zone (FBZ) where they preserve full symmetry of first Brillouin zone around ${\\b...

  14. Effect of Symmetry Breaking on Electronic Band Structure: Gap Opening at the High Symmetry Points

    Directory of Open Access Journals (Sweden)

    Guillaume Vasseur

    2013-12-01

    Full Text Available Some characteristic features of band structures, like the band degeneracy at high symmetry points or the existence of energy gaps, usually reflect the symmetry of the crystal or, more precisely, the symmetry of the wave vector group at the relevant points of the Brillouin zone. In this paper, we will illustrate this property by considering two-dimensional (2D-hexagonal lattices characterized by a possible two-fold degenerate band at the K points with a linear dispersion (Dirac points. By combining scanning tunneling spectroscopy and angle-resolved photoemission, we study the electronic properties of a similar system: the Ag/Cu(111 interface reconstruction characterized by a hexagonal superlattice, and we show that the gap opening at the K points of the Brillouin zone of the reconstructed cell is due to the symmetry breaking of the wave vector group.

  15. Effects of substitution, pressure, and temperature on the phonon mode in layered-rocksalt-type Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lijie; Hu, Qiwei; Lei, Li, E-mail: lei@scu.edu.cn; Jiang, Xiaodong; Gao, Shangpan; He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, 610065 Chengdu (China)

    2015-11-14

    ZnO-based semiconductor alloys, Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) with a layered-rocksalt-type structure, have been prepared under high pressure. The composition, pressure, and temperature dependence of phonons have been studied by Raman spectroscopy. We observe two disorder-activated Raman (DAR) modes when the Zn composition x increases: a broad Raman peak at ca. 400 cm{sup −1} and a left-shoulder peak at ca. 530 cm{sup −1} on the low-frequency side of A{sub 1g} mode at ca. 580 cm{sup −1}, which can be explained by reference to the phonon density of states for rocksalt-type ZnO. With the increase of the pressure and temperature, the left-shoulder DAR mode induced by substitution does not change at the same pace with the A{sub 1g} mode at Brillouin-zone center. We find that ion substitution can be seen as a kind of chemical pressure, and the chemical pressure caused by internal substitution and the physical pressure caused by external compression have equivalent effects on the shortening of correlation length, the distortion of crystal lattice, and the change of atomic occupation.

  16. The Voigt effects in the anisotropic photonic band gaps of three-dimensional magnetized plasma photonic crystals doped by the uniaxial material

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin; Li, Bing-Xiang

    2013-10-01

    In this paper, the properties of photonic band gaps (PBGs) for three-dimensional magnetized plasma photonic crystals (MPPCs) composed of anisotropic dielectric (the uniaxial material) spheres immersed in homogeneous magnetized plasma background with simple-cubic lattices are theoretically investigated by the plane wave expansion (PWE) method, as the Voigt effects of magnetized plasma are considered. The equations for calculating the anisotropic PBGs in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and two flatband regions can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency and plasma cyclotron frequency on the characteristics of anisotropic PBGs for the three-dimensional MPPCs are studied in detail and some corresponding physical explanations are also given. The numerical results show that the anisotropy can open partial band gaps in simple-cubic lattices and the complete PBGs can be found compared to the conventional three-dimensional MPPCs doped by the isotropic material. The bandwidths of PBGs can be enlarged by introducing the magnetized plasma into three-dimensional PCs containing the uniaxial material. It is also shown that the anisotropic PBGs can be manipulated by the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency and plasma cyclotron frequency. The locations of flatband regions cannot be tuned by any parameters except for the plasma frequency and plasma cyclotron frequency. Introducing the uniaxial material in three-dimensional magnetized plasma-dielectric photonic crystals can enlarge the PBGs and also provide a way to obtain the complete PBGs as the three-dimensional MPPCs with high symmetry.

  17. Analysis and application of nonlinear amplification effects in single-mode optical fibers

    OpenAIRE

    Chiarello, Fabrizio

    2014-01-01

    This thesis focuses on all-optical signal generation and processing through nonlinear amplification phenomena in single-mode fibers. Three different nonlinear fiber optical oscillators are investigated and experimentally demonstrated. A continuous-wave pump for fiber Raman amplifiers, developed with the goal of achieving high degree of polarization, tunability and suppression of stimulated Brillouin scattering, is presented, discussed and used to achieve nonlinear polarization attraction....

  18. Side Effects

    Science.gov (United States)

    Home Fact Sheet Categories Internet Bookmarks on AIDS Have Questions? Printing & ... Effects WHAT ARE SIDE EFFECTS? WHO GETS SIDE EFFECTS? HOW TO DEAL WITH SIDE EFFECTS WHICH SIDE EFFECTS ARE THE MOST ...

  19. Band anticrossing effects in highly mismatched semiconductor alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junqiao

    2002-09-09

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between

  20. Chemotherapy Effects

    Science.gov (United States)

    ... saved articles window. My Saved Articles » My ACS » Chemotherapy Side Effects Chemotherapy drugs are powerful medicines that can cause side ... on the side effects most commonly caused by chemotherapy, this is a good place to start. Managing ...

  1. Placebo Effect

    Science.gov (United States)

    ... David C. Spencer, MD Steven Karceski, MD The placebo effect Joseph H. Friedman, MD Richard Dubinsky, MD ... truly effective, it is often compared to a placebo. WHAT IS A PLACEBO? Placebos are usually thought ...

  2. Two-beam-combined 7.4J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics

    International Nuclear Information System (INIS)

    The phase conjugation of the optically nonlinear stimulated Brillouin scattering (SBS) process using heavy-fluorocarbon materials effectively compensated thermal degradation at two amplifier lines, resulting in an output energy of 7.4J at 50 Hz. When combining two beams, the beat wave generation caused by the temporal coherence between the two beams can be prevented because the two beams leave at intervals longer than the coherence length of the pulse. The use of different Brillouin frequencies of reflection from different SBS substances can also be effective in preventing the interference effect caused by the spatial coherence between the two beams. (author)

  3. Systems effectiveness

    CERN Document Server

    Habayeb, A R

    1987-01-01

    Highlights three principal applications of system effectiveness: hardware system evaluation, organizational development and evaluation, and conflict analysis. The text emphasizes the commonality of the system effectiveness discipline. The first part of the work presents a framework for system effectiveness, partitioning and hierarchy of hardware systems. The second part covers the structure, hierarchy, states, functions and activities of organizations. Contains an extended Appendix on mathematical concepts and also several project suggestions.

  4. Picosecond ultrasonics in single cells: Interface step motion for thin animal cells and Brillouin scattering for thick vegetal cells

    Science.gov (United States)

    Ducousso, M.; Dehoux, T.; Audoin, B.; Zouani, O.; Chollet, C.; Durrieu, M. C.

    2011-01-01

    The measurement of the mechanical properties of single biological cells using a picosecond laser-ultrasonic method is proposed. A pump-probe set-up based on ultrafast laser (100 fs pulses) is used to generate and detect acoustic frequencies in the GHz range in a cell on a metallic substrate. The time resolution is about 1 ps and the laser focusing allows a 1 μm lateral resolution. We carry out experiments in both animal and vegetal cells. A semi-analytical simulation model of the physical phenomena involved in experiments is presented. The coupled heat and stress equations are solved including a thermal boundary resistance at the cell/substrate interface and strong acoustic absorption. The optical detection resulting from the interaction between the acoustic wave and the laser light is also modelled. Simulations allow the analysis of experimental signals in both vegetal and animal cells. The results support the potentialities of the non-invasive technique for bioengineering and medical applications.

  5. Application of Multiscale Fiber Optical Sensing Network Based on Brillouin and Fiber Bragg Grating Sensing Techniques on Concrete Structures

    OpenAIRE

    Xuefeng Zhao; Jie Lu; Ruicong Han; Xianglong Kong; Yanhong Wang; Le Li

    2012-01-01

    The paper reports the application of the distributed optical fiber sensing technology and the FBG sensing technology in bridge strain monitoring; the overall changeable characteristics of the whole structure can be obtained through the distributed optical fiber sensing technology (BOTDA), meanwhile the accurate information of local important parts of the structure can be obtained through the optical fiber Bragg grating sensor (FBG), which can improve the accuracy of the monitoring. FBG sensor...

  6. A new chopper spectrometer for neutron Brillouin scattering and low-angle neutron inelastic scattering: PHAROS (Phase 1)

    International Nuclear Information System (INIS)

    Phase I of PHAROS, the new chopper spectrometer at LANSCE, is described in detail. The main components are a water moderator, a 60-Hz double-bladed T-zero chopper, a 600Hz magnetic-bearing Fermi chopper, a 6m-long vacuum vessel with thin aluminium-alloy vacuum window and a 1.2m2 array of linear position-sensitive detectors

  7. Interacting Dirac fermions under spatially alternating pseudo-magnetic field: Realization of spontaneous quantum Hall effect

    OpenAIRE

    Venderbos, Jörn W. F.; Fu, Liang

    2015-01-01

    Both topological crystalline insulators surfaces and graphene host multi-valley massless Dirac fermions which are not pinned to a high-symmetry point of the Brillouin zone. Strain couples to the low-energy electrons as a time-reversal invariant gauge field, leading to the formation of pseudo-Landau levels (PLL). Here we study periodic pseudo-magnetic fields originating from strain superlattices. We study the low-energy Dirac PLL spectrum induced by the strain superlattice and analyze the effe...

  8. Effect of Spin on Thermodynamical Quantities around Reissner-Nordstrom Black Holes

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-Heng

    2005-01-01

    @@ Using the quantization procedure involving in the Boulware vacuum state and Killing time t, we evaluate the entropy density, energy density, pressure and equation of state around the Reissner-Nordstrom black hole by the Wentzel-Kramers-Brillouin approximation on the Teukolsky-type master equation. We find that, near the event horizon, there exist subleading order terms with spin dependence beyond the expected Minkowskian hightemperature contribution. In particular, the terms are important and cannot be neglected for near-extremal black hole cases. At large r, the Boulware state approaches the Minkowski vacuum and the theory agrees with that performed in Minkowski spacetime.

  9. Valley Hall effect in disordered monolayer MoS2 from first principles

    OpenAIRE

    Olsen, Thomas; Souza, Ivo

    2015-01-01

    Electrons in certain two-dimensional crystals possess a pseudospin degree of freedom associated with the existence of two inequivalent valleys in the Brillouin zone. If, as in monolayer MoS2, inversion symmetry is broken and time-reversal symmetry is present, equal and opposite amounts of k-space Berry curvature accumulate in each of the two valleys. This is conveniently quantified by the integral of the Berry curvature over a single valley-the valley Hall conductivity. We generalize this def...

  10. "Further Effects"

    Science.gov (United States)

    Kinigstein, Steven Michael

    In writing Further Effects, I intended to illustrate the benefits that are to be had from the use of effects - processing, when applied at the compositional level, rather than as a post-compositional afterthought. When effects are used creatively in the compositional stage, they will influence the very nature of a piece. They are capable of expressing rhythmic and metric ideas. They can alter the natural timbre of an instrument. This can be done on levels of abstraction ranging from discreet subtlety to disguise beyond recognition. There is one effect (known as "pitch shift.") that allows an instrument to play pitches that are well outside of its range. In Further Effects, I direct the performers to use a volume pedal (which I view as a tool, rather than an effect) for the broadened creative use of dynamics that it so efficiently grants. The use of an effects processor and volume pedal creates a need for ancillary equipment. An amplifier, cables, and an electric hook-up (a microphone or a pickup) will be required for each instrument. While an amplifier serves to project the processed sound, there must also be a device or method to suppress unprocessed sound. A great deal of thought and work goes into the use of effects; yet I feel it is wasteful to use this musical resource merely as post-compositional decoration.

  11. Nonlinear propagation of a spatially incoherent laser beam: self-induced smoothing and reduction of scattering instabilities

    International Nuclear Information System (INIS)

    It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)

  12. Biological effects

    International Nuclear Information System (INIS)

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH)

  13. Effective Parenting

    Science.gov (United States)

    ... come, like your child's school play and his soccer games. Your Current Parenting Experiences Spend some time ... and be unable to handle the tasks of running a family as effectively. Take a moment to ...

  14. Stress effects

    International Nuclear Information System (INIS)

    This chapter reviews the manner in which the influence of stress on a composite Cu/Ti-Nb superconductor brings about a deterioration of its electrical properties and those of the magnet wound from it. Training and electrical fatigue are considered. Static and dynamic stress effects are discussed as are dynamic stress effects -- repeated tension. The authors also examine dynamic stress effects--tension-compression. Several extensive case studies have been undertaken of the effects of both static and dynamic tensile and compressive stresses on the current-carrying properties of composite superconductors. Single-core and multi-filamentary Cu- or Al-stabilized monoliths, as well as cables, have been investigated and several representative studies are reviewed

  15. Effective Programming

    DEFF Research Database (Denmark)

    Frost, Jacob

    To investigate the use of VTLoE as a basis for formal derivation of functional programs with effects. As a part of the process, a number of issues central to effective formal programming are considered. In particular it is considered how to develop a proof system suitable for pratical reasoning......, how to implement this system in the generic proof assistant Isabelle and finally how to apply the logic and the implementation to programming....

  16. Facebook Effect

    OpenAIRE

    STOICA, Anamaria

    2011-01-01

    This research paper is intended to understand the effects that Facebook, the social networking site has upon us, whether it influences our lives in a good or in a bad way. In order to understand the Facebook Effect we are trying to see how it impacts our lives at economic level,social level, political level, terminology level , psychological level and cultural level . Starting from the question : What does Facebook want? we found several answers consisting in pros and cons of this phenomenon ...

  17. Effective nonvanishing, effective global generation

    CERN Document Server

    De Cataldo, M A A

    1997-01-01

    We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.

  18. Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances

    International Nuclear Information System (INIS)

    The impact of Raman amplification and Simplex coding is studied in combination with differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA) to achieve sub-meter spatial resolution over very long sensing distances. An optimization of the power levels for the Raman pumps, Brillouin pump and signal has been carried out through numerical simulations, maximizing the signal levels and avoiding at the same time nonlinear effects and pump depletion. A reduction of acoustic-wave-induced distortions in the Brillouin gain spectrum down to negligible levels has also been achieved by numerical optimization of the pulse width and duty cycle of return-to-zero Simplex coding, providing significant signal-to-noise ratio enhancement. Strain–temperature sensing over 93 km standard SMF is achieved with a strain/temperature accuracy of 34µε/1.7 °C, and 50 cm spatial resolution throughout the fiber length. (paper)

  19. Treatment Effects

    DEFF Research Database (Denmark)

    Heckman, James J.; Lopes, Hedibert F.; Piatek, Rémi

    2014-01-01

    This paper contributes to the emerging Bayesian literature on treatment effects. It derives treatment parameters in the framework of a potential outcomes model with a treatment choice equation, where the correlation between the unobservable components of the model is driven by a low-dimensional v......This paper contributes to the emerging Bayesian literature on treatment effects. It derives treatment parameters in the framework of a potential outcomes model with a treatment choice equation, where the correlation between the unobservable components of the model is driven by a low...... observe the same person in both the treated and untreated states, but it also turns out to be straightforward to implement. Formulae are provided to compute mean treatment effects as well as their distributional versions. A Monte Carlo simulation study is carried out to illustrate how the methodology can...

  20. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.;

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy...