WorldWideScience

Sample records for brightness plasma sputter

  1. Numerical Simulation of Cold Dense Plasma Sputtering with VORPAL

    Science.gov (United States)

    Zhou, Chuandong; Stoltz, Peter; Veitzer, Seth

    2009-10-01

    Sputtering is an evaporation process that physically removes atoms from a solid target material. This process takes place under bombardment of the target surface by energetic ions. Sputtering is widely applied in material processing and coating, such as etching and thin film deposition. Numerical simulation of sputtering process requires both accurate models of nuclear stopping in materials, particle dynamics and consistent electromagnetic fields. The particle in cell code VORPAL can simulate cold dense plasma under many different electromagnetic configurations. The dynamics of both incident particles and sputtered neutral atoms are simulated in VORPAL, and the sputtering yield is calculated from a standalone numerical library for a variety of materials that are commonly used in industrial applications. Numerical simulation of the spatial distribution of sputtering resulting from a cold dense plasma under externally applied magnetic field and self-consistent electric field is presented.

  2. Characterization of reactive magnetron sputtering plasma during thin film deposition

    Science.gov (United States)

    Gordon, Rylan; Mahabaduge, Hasitha

    Reactive magnetron sputtering is used extensively as a thin film deposition technique. During sputtering, a plasma is generated. The evolution of the plasma dictates the thin film composition and structure. The residence time of a reactive gas molecule, the mean time it remains in the process chamber before being pumped away also plays an important role in reactive sputtering. We simulated the residence time and partial pressure of the respective reactive gasses in magnetron sputtering environment using Matlab. Using Optical Emission Spectroscopy we confirmed the trend in mean residence time of the reactive gasses. The thin film properties of reactively sputtered aluminum-doped zinc oxide will be presented along with the correlation to the plasma properties during the deposition.

  3. Plasma properties of RF magnetron sputtering system using Zn target

    Energy Technology Data Exchange (ETDEWEB)

    Nafarizal, N.; Andreas Albert, A. R.; Sharifah Amirah, A. S.; Salwa, O.; Riyaz Ahmad, M. A. [Microelectronic and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2012-06-29

    In the present work, we investigate the fundamental properties of magnetron sputtering plasma using Zn target and its deposited Zn thin film. The magnetron sputtering plasma was produced using radio frequency (RF) power supply and Argon (Ar) as ambient gas. A Langmuir probe was used to collect the current from the plasma and from the current intensity, we calculate the electron density and electron temperature. The properties of Zn sputtering plasma at various discharge conditions were studied. At the RF power ranging from 20 to 100 W and gas pressure 5 mTorr, we found that the electron temperature was almost unchanged between 2-2.5 eV. On the other hand, the electron temperature increased drastically from 6 Multiplication-Sign 10{sup 9} to 1 Multiplication-Sign 10{sup 10}cm{sup -3} when the discharge gas pressure increased from 5 to 10 mTorr. The electron microscope images show that the grain size of Zn thin film increase when the discharge power is increased. This may be due to the enhancement of plasma density and sputtered Zn density.

  4. Plasma diagnostics during magnetron sputtering of aluminum doped zinc oxide

    DEFF Research Database (Denmark)

    Stamate, Eugen; Crovetto, Andrea; Sanna, Simone

    2016-01-01

    Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity...

  5. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  6. Measurement of sputtered beryllium yield and angular distribution during nanostructure growth in a helium plasma

    Science.gov (United States)

    Hollmann, E. M.; Alegre, D.; Baldwin, M. J.; Chrobak, C. P.; Doerner, R. P.; Miyamoto, M.; Nishijima, D.

    2017-09-01

    The angular distribution and sputtering yield of beryllium exposed to helium plasma are estimated from analysis of line-integrated 2D imaging of Be-I line emission in a steady-state linear plasma device. As the surface nanostructure forms during plasma exposure on a ˜100 s timescale (corresponding to a fluence of order 1020/cm2) from nearly mono-energetic ion bombardment, a narrowing of the beryllium sputtering angle and a significant (˜5×) drop in sputtering yield are observed. These trends are found to be qualitatively consistent with modeling taking into account the effect of the surface morphology on sputtering yield and angular distribution.

  7. Improvement in brightness of multicusp-plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Q.; Jiang, X.; King, T-J.; Leung, K-N.; Standiford, K.; Wilde, S.B.

    2002-05-24

    The beam brightness of a multicusp-plasma ion source has been substantially improved by optimizing the source configuration and extractor geometry. The current density of a 2 keV He{sup +} beam extracted from a 7.5-cm-diameter source operating at 2.5 kW RF power is {approx}100 mA/cm{sup 2}, which is {approx}10 times larger than that of a beam extracted from a 5-cm-diameter source operating at 1 kW RF power. A smaller focused beam spot size is achieved with a counter-bored extractor instead of a conventional (''through-hole'') extractor, resulting another order of magnitude improvement in beam current density. Measured brightness can be as high as 440 A/cm{sup 2}Sr, which represents a 30 times improvement over prior work.

  8. Bright Spots in X-pinch Plasmas at 6 MA

    Science.gov (United States)

    Sinars, D. B.; Ampleford, D. J.; Yu, E. P.; Jennings, C. A.; Cuneo, M. E.; Wenger, D. F.; Pikuz, S. A.; Shelkovenko, T. A.; Bland, S. N.; Chittenden, J. P.

    2008-11-01

    Bright, ˜1 μm, 10-100 ps x-ray sources with extreme plasma parameters are routinely created using X-pinch plasmas driven by 0.2 MA. Modeling suggests that even more extreme plasma parameters might be possible at higher current. We present data from the first 6 MA X-pinch experiments on the SATURN facility at Sandia National Laboratories. The mass required to pinch near peak current was surprisingly low (˜14 mg/cm vs. ˜3 mg/cm at 1 MA) and the smallest x-ray source measured was ˜60 μm in size. Following up on recent work by Pikuz et al. at 1 MA, experiments in September will use nested-array X-pinch implosions to improve the symmetry.

  9. Production of fullerene ions by combining of plasma sputtering with laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K., E-mail: yamada.keisuke@jaea.go.jp; Saitoh, Y.; Yokota, W. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    We have produced C{sub 60} ion beams by combining plasma sputtering and laser ablation. A C{sub 60} sample was placed in an electron cyclotron resonance type ion source, negatively biased and sputtered by argon plasma. The beam current of C{sub 60}{sup +} decreased rapidly, but it was transiently recovered by a single laser shot that ablates the thin sample surface on the sputtered area. Temporal variations in beam current are reported in response to laser shots repeated at intervals of a few minutes.

  10. Preparation of Bismuth Titanate Films by Electron Cyclotron Resonance Plasma Sputtering-Chemical Vapor Deposition

    OpenAIRE

    Masumoto, H.; Hirai, T.

    1995-01-01

    Bismuth titanate (Bi4Ti3O12 : BIT) thin films were prepared on the Pt courted MgO(100) substrate by electron cyclotron resonance plasma sputtering-chemical vapor deposition (ECR plasma sputtering-CVD). Bi2O3 was used as a sputtering target and tetra-isopropoxy-titanium [Ti(i-C3H7O)4] as a CVD source. The composition of films was controlled by changing RF power (PRF) of Bi2O3 target and Ti source temperature (TTi). The stoichiometric BIT film was prepared under the condition of PRF=500W, TTi=6...

  11. View factor modeling of sputter-deposition on micron-scale-architectured surfaces exposed to plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, C. E., E-mail: cesar@seas.ucla.edu; Matlock, T. S.; Wirz, R. E. [University of California, Los Angeles, California 90095 (United States)

    2016-03-21

    The sputter-deposition on surfaces exposed to plasma plays an important role in the erosion behavior and overall performance of a wide range of plasma devices. Plasma models in the low density, low energy plasma regime typically neglect micron-scale surface feature effects on the net sputter yield and erosion rate. The model discussed in this paper captures such surface architecture effects via a computationally efficient view factor model. The model compares well with experimental measurements of argon ion sputter yield from a nickel surface with a triangle wave geometry with peak heights in the hundreds of microns range. Further analysis with the model shows that increasing the surface pitch angle beyond about 45° can lead to significant decreases in the normalized net sputter yield for all simulated ion incident energies (i.e., 75, 100, 200, and 400 eV) for both smooth and roughened surfaces. At higher incident energies, smooth triangular surfaces exhibit a nonmonotonic trend in the normalized net sputter yield with surface pitch angle with a maximum yield above unity over a range of intermediate angles. The resulting increased erosion rate occurs because increased sputter yield due to the local ion incidence angle outweighs increased deposition due to the sputterant angular distribution. The model also compares well with experimentally observed radial expansion of protuberances (measuring tens of microns) in a nano-rod field exposed to an argon beam. The model captures the coalescence of sputterants at the protuberance sites and accurately illustrates the structure's expansion due to deposition from surrounding sputtering surfaces; these capabilities will be used for future studies into more complex surface architectures.

  12. The synthesis and characteristics of polymer nanoballs by plasma polymerization cooperating with DC plasma sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Zhongqing, E-mail: zhongqingjiang@hotmail.co [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu Xinyao; Shi Yicai; Meng Yuedong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-09-01

    Multi-composition of the polymer nanoball carrying sulfonic acid groups, silicon oxide and pyridine groups with diameter of {approx} 25 nm was made from a plasma polymerization of 2-vinylpyridine and trifluoromethanesulfonic acid cooperating with direct current (DC) plasma sputtering of methyl etheneyl silicone rubber in a low-frequency after-glow capacitively coupled plasma (CCP) discharge apparatus. It is concluded that the size and composition of the core-polymerized polymer nanoball can be controlled by altering the partial pressure ratio of trifluoromethanesulfonic acid and 2-vinylpyridine. Pyridine groups tethered to the polymer backbone can act as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups of proton exchange membrane, and a polymeric form of silicon oxide in polymer nanoball can improve water retention. Thus, doping these polymer nanoballs into polymer membranes as a proton transport facilitator for polymer electrolyte membrane fuel cells seems promising.

  13. A novel remote plasma sputtering technique for depositing high-performance optical thin films

    Science.gov (United States)

    Bu, Y. K.; Liu, Z.; Dutson, J. D.; Thwaites, M. J.; Chen, N.; Cai, Z. P.

    2011-02-01

    This paper describes a novel remote plasma sputtering technique for depositing optical thin films. This technology is based on generating intensive plasma remotely from the target and then magnetically steering the plasma to the target to realize the sputter deposition. It overcomes several of inherent limitations in conventional sputtering techniques and realizes the fully uniform erosion over the surface of the target and less target poison. This allows a uniform reaction in the plasma phase when performing reactive sputtering, leading to the formation and deposition of material with a uniform stoichiometry and gives pseudo-independence of target current and voltage. This pseudo-independence offers a great deal of flexibility with regard to the control of growth conditions and film properties, the benefits include control of stress, very low deposition rates for ultra thin films. By remote reactive sputtering, dense metal-oxide optical thin films (SiO2, Ta2O5, Nb2O5) with a high deposition rate, excellent optical properties are achieved. High process stability shows an excellent time terminating accuracy for multilayer coating thickness control. Typically, thin film thickness control to coating, including anti-reflection, dichroic mirror and 2μm laser mirrors are presented.

  14. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Stamate, Eugen; Thydén, Karl Tor Sune

    2015-01-01

    The nitrogen dissociation and plasma parameters during radio frequency sputtering of lithium phosphorus oxynitride thin films in nitrogen gas are investigated by mass appearance spectrometry, electrostatic probes and optical emission spectroscopy, and the results are correlated with electrochemical...... properties and microstructure of the films. Low pressure and moderate power are associated with lower plasma density, higher electron temperature, higher plasma potential and larger diffusion length for sputtered particles. This combination of parameters favors the presence of more atomic nitrogen, a fact...... that correlates with a higher ionic conductivity. Despite of lower plasma density the film grows faster at lower pressure where the higher plasma potential, translated into higher energy for impinging ions on the substrate, resulted in a compact and smooth film structure. Higher pressures showed much less...

  15. Thin Film Formation of Gallium Nitride Using Plasma-Sputter Deposition Technique

    Directory of Open Access Journals (Sweden)

    R. Flauta

    2003-06-01

    Full Text Available The formation of gallium nitride (GaN thin film using plasma-sputter deposition technique has beenconfirmed. The GaN film deposited on a glass substrate at an optimum plasma condition has shown x-raydiffraction (XRD peaks at angles corresponding to that of (002 and (101 reflections of GaN. The remainingmaterial on the sputtering target exhibited XRD reflections corresponding to that of bulk GaN powder. Toimprove the system’s base pressure, a new UHV compatible system is being developed to minimize theimpurities in residual gases during deposition. The sputtering target configuration was altered to allow themonitoring of target temperature using a molybdenum (Mo holder, which is more stable against Gaamalgam formation than stainless steel.

  16. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering

    Science.gov (United States)

    Kozak, A. O.; Porada, O. K.; Ivashchenko, V. I.; Ivashchenko, L. A.; Scrynskyy, P. L.; Tomila, T. V.; Manzhara, V. S.

    2017-12-01

    This paper reports on the results of comparative investigations of Si-C-N films prepared by using both plasma enhanced chemical vapor deposition (PECVD) and DC magnetron sputtering (MS) at different nitrogen flow rates (FN2). The films were characterized by an atomic force microscope, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nanoindentation and photoluminescence spectroscopy. All the deposited films were X-ray amorphous. For the PECVD films, nanohardness (H) and elastic module (E) increase with FN2, which can be assigned to decreasing the hydrogen content. On the contrary, for the films, deposited by magnetron sputtering, the values of H and E decrease, when FN2 increases. The latter is supposed to be due to decreasing a number of strong Si-C bonds and to increasing a number of weak Sisbnd N and Csbnd N bonds. The surface roughness of two types of the films is smaller compared to that of silicon substrates. An increase in nitrogen flow rate causes the smoothing of the film surfaces. The PECVD films deposited at high FN2 exhibit bright photoemission with the main peak at ∼440 nm. The intensity of this peak increases with increasing nitrogen content.

  17. Hydrophobization of track membrane surface by ion-plasma sputtering method

    Science.gov (United States)

    Kuklin, I. E.; Khlebnikov, N. A.; Barashev, N. R.; Serkov, K. V.; Polyakov, E. V.; Zdorovets, M. V.; Borgekov, D. B.; Zhidkov, I. S.; Cholakh, S. O.; Kozlovskiy, A. L.

    2017-09-01

    This article reviews the possibility of applying inorganic coatings of metal compounds on PTM by ion-plasma sputtering. The main aim of this research is to increase the contact angle of PTM surfaces and to impart the properties of a hydrophobic material to it. After the modification, the initial contact angle increased from 70° to 120°.

  18. Plasma density transition trapping as a possible high-brightness electron beam source

    Directory of Open Access Journals (Sweden)

    M. C. Thompson

    2004-01-01

    Full Text Available Plasma density transition trapping is a recently proposed self-injection scheme for plasma wakefield accelerators. This technique uses a sharp downward plasma density transition to trap and accelerate background plasma electrons in a plasma wakefield. This paper examines the quality of electron beams captured using this scheme in terms of emittance, energy spread, and brightness. Two-dimensional particle-in-cell simulations show that these parameters can be optimized by manipulating the plasma density profile. We also develop, and support with simulations, a set of scaling laws that predicts how the brightness of transition trapping beams scales with the plasma density of the system. These scaling laws indicate that transition trapping can produce beams with brightness ≥5×10^{14}   A/(mrad^{2}. A proof-of-principle transition trapping experiment is planned for the near future. The proposed experiment is described in detail.

  19. High plasma-flux elevated temperature sputtering of Cu-Li alloys

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A.R.; Gruen, D.M.; Mendelsohn, M.H.; Conn, R.; Goebel, D.; Hirooka, Y.; Leung, K.

    1986-01-01

    Copper-lithium alloys ranging in composition from 3 to 12 at. % Li have been exposed to sputtering by 3 x 10/sup 16/ - 6 x 10/sup 17/ 100 eV He+/cm/sup 2/-sec at temperatures of 300 to 500/sup 0/C at the UCLA PISCES plasma device. Weight loss and optical spectroscopy techniques were used to determine the sputtering-induced erosion of the binary alloys relative to pure copper. It was found that the weight loss of the alloy and the amount of copper in the plasma as measured by emission spectroscopy never exceeded that of pure copper and in some cases was reduced by a factor of five or more. Post-irradiation analysis by Auger electron spectroscopy and scanning electron microscopy show a correlation between lithium surface depletion, surface roughening, weight loss, and partial erosion yields as measured by plasma emission spectroscopy.

  20. Radioactive ion beams of 111In using ECR plasma sputtering method

    Science.gov (United States)

    Naik, Vaishali; Bhattacharjee, Mahuwa; Kumar, D. Lavanya; Karmakar, Prasanta; Das, S. K.; Banerjee, Debashis; Chattopadhyay, Sankha; Barua, Luna; Das, Sujata Saha; Pal, Asit Kumar; Bandyopadhyay, Arup; Chakrabarti, Alok

    2017-06-01

    Radioactive ion beams of 111In (indium-111, half-life 2.8 days) have been produced using the plasma sputtering method in an electron cyclotron resonance (ECR) ion source at the Variable Energy Cyclotron Centre RIB facility. Indium isotopes were first produced by bombarding a natural silver target with a 32 MeV, 40 μ A alpha particle beam from the K-130 cyclotron. After radio-chemical separation, about 25 mCi In-chloride was deposited on an aluminum electrode and inserted in the plasma chamber of the ECR. Indium ions produced by ion induced sputtering in the plasma were extracted from the ion source, isotopically separated, and a pure 111In beam was measured at the focal plane of the separator. The measured 111In beam intensity was 2.67 × 105 particles/s for a beam energy of 5 keV.

  1. Plasma"anti-assistance" and"self-assistance" to high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-30

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contra-productive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  2. Sputtering of the 1020 AISI steel in abnormal glow discharge

    Science.gov (United States)

    García Zúñiga, J. A.; Sarmiento Santos, A.; Álvarez Luna, B.

    2017-12-01

    In all material treated in Sbnormal Glow Discharge (AGD) the phenomenon of sputtering occurs. In this work we study the sputtering suffered at different temperatures by AISI 1020 steel subjected to a DC discharge in two types of atmospheres. The steel samples were previously sanded until obtaining mirror brightness and subjected to the AGD plasma in the gaseous atmospheres of H2 and Ar. The temperature for each sputtering process was set in the range of 420°C to 600°C. In these samples the mass variation was measured and the yield sputtering processes was determined. Next, the simulation of the sputtering process was performed in the SRIM/TRIM 2008 software, by adjusting sputtering yield computational computations to those experimentally measured, in order to determine the energy with which the responsible ions of the sputtering collide with studied target.

  3. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Tamulevičius, Tomas, E-mail: Tomas.Tamulevicius@ktu.lt; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-15

    Highlights: • CF{sub 4}/O{sub 2} dry etching of DLC:Ag films revealed the embedded Ag nanoparticles. • Plasma processed samples with more than 5 at.% Ag demonstrated Ostwald ripening. • 4 μm period patterns in aluminum and photoresist were imposed in the DLC:Ag film. • Different micro patterns are formed depending on the selected processing route. - Abstract: We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF{sub 4}/O{sub 2} plasma chemical etching and Ar{sup +} sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar{sup +} in C{sub 2}H{sub 2} gas atmosphere. Films with different silver content (0.6–12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet–visible light (UV–VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF{sub 4}/O{sub 2} mixture plasma for 2–6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C{sub 2}H{sub 2}/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF{sub 4}/O{sub 2} mixture plasma chemical etching, direct Ar{sup +} sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF{sub 4}/O{sub 2} gas mixture with

  4. ERO modeling of Cr sputtering in the linear plasma device PSI-2

    Science.gov (United States)

    Eksaeva, A.; Borodin, D.; Kreter, A.; Nishijima, D.; Pospieszczyk, A.; Schlummer, T.; Ertmer, S.; Terra, A.; Unterberg, B.; Kirschner, A.; Romazanov, J.; Brezinsek, S.; Rasinski, M.; Henderson, S.; O’Mullane, M.; Summers, H.; Bluteau, M.; Marenkov, E.

    2017-12-01

    The prediction of the first wall deterioration and possible plasma contamination by impurities is a high priority task for ITER. 3D Monte-Carlo code ERO is a tool for modeling of eroded impurity transport and spectroscopy in plasma devices useful for experiment interpretation. Chromium (Cr) is a fusion-relevant reactor wall element (e.g. component of RAFM steels expected for use in DEMO). Linear plasma devices including PSI-2 are effective tools for investigations of plasma-surface interaction effects, allowing continuous plasma operation and good control over irradiation parameters. Experiments on Cr sputtering were conducted at PSI-2. In these experiments the Cr erosion was measured by three techniques: mass loss of the sample, quartz micro-balance of deposited impurities at a distance from it and optical emission spectroscopy. Experiments were modeled with the 3D Monte-Carlo code ERO, previously validated by application to similar experiments with tungsten (W). The simulations are demonstrated to reproduce the main experimental outcomes proving the quality of the sputtering data used. A significant focuses of the paper is the usage and validation of atomic data (resent metastable-resolved dataset from ADAS) for interpretation of Cr spectroscopy. Initial population of quasi-metastable state was fitted by matching the modeling with the experimental line intensity profiles.

  5. Effect of Wall Material on H– Production in a Plasma Sputter-Type Ion Source

    Directory of Open Access Journals (Sweden)

    Y. D. M. Ponce

    2004-12-01

    Full Text Available The effect of wall material on negative hydrogen ion (H– production was investigated in a multicusp plasma sputter-type ion source (PSTIS. Steady-state cesium-seeded hydrogen plasma was generated by a tungsten filament, while H– was produced through surface production using a molybdenum sputter target. Plasma parameters and H– yields were determined from Langmuir probe and Faraday cup measurements, respectively. At an input hydrogen pressure of 1.2 mTorr and optimum plasma discharge parameters Vd = –90 V and Id = –2.25 A, the plasma parameters ne was highest and T–e was lowest as determined from Langmuir probe measurements. At these conditions, aluminum generates the highest ion current density of 0.01697 mA/cm2, which is 64% more than the 0.01085 mA/cm2 that stainless steel produces. The yield of copper, meanwhile, falls between the two materials at 0.01164 mA/cm2. The beam is maximum at Vt = –125 V. Focusing is achieved at VL = –70 V for stainless steel, Vt = –60 V for aluminum, and Vt = –50 V for copper. The results demonstrate that proper selection of wall material can greatly enhance the H– production of the PSTIS.

  6. Towards a consistent modelling of plasma edge turbulence in mean field transport codes: Focus on sputtering and plasma fluctuations

    Directory of Open Access Journals (Sweden)

    Y. Marandet

    2017-08-01

    Full Text Available Transport codes are the main workhorses for global edge studies and modern divertor design. These tools do not resolve turbulent fluctuations responsible for the bulk of cross-field transport in the Scrape-off Layer (SOL, and solve mean field equations instead. Turbulent fluxes are modelled by diffusive transport along the gradients of the mean fields. Improvements of this description, on the basis of approaches developed in computational fluid dynamics are discussed, broadening the outlook given in Bufferand et al. (2016 [10]. This contribution focuses on additional closure issues related to non-linearities in sources/sinks from plasma-wall interactions, here sputtered fluxes from the plasma facing components. “Fluctuation dressed” sputtering yields Yeff are introduced and calculated from turbulence simulations. Properly taking fluctuations into account is shown to lead to higher sputtering at sub-threshold energies compared to mean field predictions. As a first step towards an implementation in a transport code, the possibility of parametrizing Yeff in terms of the mean fields is tentatively investigated.

  7. WO.sub.3./sub. thin films prepared by sedimentation and plasma sputtering

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Brunclíková, Michaela; Kment, Š.; Hubička, Zdeněk; Kmentová, N.; Kšírová, Petra; Čada, Martin; Zlámal, M.; Krýsa, J.

    2017-01-01

    Roč. 318, Jun (2017), s. 281-288 ISSN 1385-8947 R&D Projects: GA TA ČR(CZ) TF01000084; GA ČR(CZ) GA15-00863S; GA TA ČR TA03010743; GA ČR GAP108/12/2104 Institutional support: RVO:68378271 Keywords : WO 3 * thin films * water splitting * pulsed magnetron sputtering * sedimentation * photo-electro-chemistry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 6.216, year: 2016

  8. Non-uniform plasma distribution in dc magnetron sputtering: origin, shape and structuring of spokes

    Science.gov (United States)

    Panjan, Matjaž; Loquai, Simon; Ewa Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2015-12-01

    Non-homogeneous plasma distribution in the form of organized patterns called spokes was first observed in high power impulse magnetron sputtering (HiPIMS). In the present work we investigate the spoke phenomenon in non-pulsed low-current dc magnetron sputtering (DCMS). Using a high-speed camera the spokes were systematically studied with respect to discharge current, pressure, target material and magnetic field strength. Increase in the discharge current and/or gas pressure resulted in the sequential formation of two, then three and more spokes. The observed patterns were reproducible for the same discharge conditions. Spokes at low currents and pressures formed an elongated arrowhead-like shape and were commonly arranged in symmetrical patterns. Similar spoke patterns were observed for different target materials. When using a magnetron with a weaker magnetic field, spokes had an indistinct and diffuse shape, whereas in stronger magnetic fields spokes exhibited an arrowhead-like shape. The properties of spokes are discussed in relation to the azimuthally dependent electron-argon interactions. It is suggested that a single spoke is formed due to local gas breakdown and subsequent electron drift in the azimuthal direction. The spoke is self-sustained by electrons drifting in complex electric and magnetic fields that cause and govern azimuthally dependent processes: ionization, sputtering, and secondary electron emission. In this view plasma evolves from a single spoke into different patterns when discharge conditions are changed either by the discharge current, pressure or magnetic field strength. The azimuthal length of the spoke is associated with the electron-Ar collision frequency which increases with pressure and results in shortening of spoke until an additional spoke forms at a particular threshold pressure. It is proposed that the formation of additional spokes at higher pressures and discharge currents is, in part, related to the increased transport of

  9. Deposition and sputtering yields on EUV collector mirror from Laser Plasma Extreme Ultraviolet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Wu Tao [Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Rao Zhiming [Depart of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi (China); Wang Shifang, E-mail: flatime@163.com [School of Physics and Electric Information, Hubei University of Education 1 Nanhuan Road, Wuhan East High-Tech. Zone, Wuhan 430205, Hubei (China)

    2011-02-01

    Based on the self-similar solution of gas dynamic equations, spherical expansion of the highly ionized plasma with limited mass into a vacuum is investigated for the droplet target laser-produced plasma extreme ultraviolet (LPP-EUV) sources. Using partially numerical and partially analytical technology, the velocity, the temperature and the density profiles in the plume versus ionization degree, adiabatic index and initial conditions are presented. Furthermore, the spatial thickness variations of the deposited substrate witness and ion sputtering yields for Ru, Mo, and Si under Sn ion bombardment are theoretically calculated, which can be useful to enable LPP-EUV sources suppliers to estimate collector lifetime and improve debris mitigation systems.

  10. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Bolbasov, E.N.; Shesterikov, E.V. [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Antonova, L.V.; Golovkin, A.S.; Matveeva, V.G. [Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Disease, 6 Sosnovy Blvd, Kemerovo 650002 (Russian Federation); Petlin, D.G.; Anissimov, Y.G. [Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222 (Australia)

    2015-02-28

    Highlights: • The treatment by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering improves the biocompatibility of PLLA surface. • The treatment significantly increases the roughness of PLLA surface. • The formation of rough highly porous surface is due to the etching and crystallization processes on PLLA surface during treatment. • Maximum concentration of the ions from the sputtered target is achieved at 60 s of the plasma treatment. - Abstract: Surface modification of polylactic acid (PLLA) by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering was investigated. Increased biocompatibility was demonstrated using studies with bone marrow multipotent mesenchymal stromal cells. Atomic force microscopy demonstrates that the plasma treatment modifies the surface morphology of PLLA to produce rougher surface. Infrared spectroscopy and X-ray diffraction revealed that changes in the surface morphology are caused by the processes of PLLA crystallization. Fluorescent X-ray spectroscopy showed that the plasma treatment also changes the chemical composition of PLLA, enriching it with ions of the sputtered target: calcium, phosphorus and oxygen. It is hypothesized that these surface modifications increase biocompatibility of PLLA without increasing toxicity.

  11. Origins of ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) plasma discharge

    Science.gov (United States)

    Hecimovic, A.; Burcalova, K.; Ehiasarian, A. P.

    2008-05-01

    The ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) discharges was studied by plasma sampling energy-resolved mass spectroscopy. HIPIMS of chromium (Cr), titanium (Ti) and carbon (C) targets in argon (Ar) atmosphere was analysed. Singly and doubly charged ions of both the target and the gas were detected. Time-averaged IEDFs were measured for all detected ions at the substrate position at a distance of 150 mm from the target. The effects of target current and discharge pressure on the IEDF were investigated. Measurements were done at two pressures and for three peak discharge currents. The IEDF of both the target and the gas ions was found to comprise two Maxwellian distributions. Quantitative analysis of target IEDFs at a low pressure showed that the main peak had a lower average energy with an approximate value of EAV = 1 eV which is attributed to collisions with thermalized gas atoms and ions. The higher energy distribution has a tail extending up to 70 eV, which is assumed to originate from a Thompson distribution of sputtered metal atoms which, due to collisions, are thermalized and appear as a Maxwell distribution. The proportion of high energy IEDFs for metal ions increases monotonically as a function of Id. The effective ion temperature kBT, extracted from the main low energy peak, showed a weak dependence on peak current. The effective ion temperature extracted from the high energy tail showed a strong correlation with the change in Id. The IEDF at high pressure shows that a proportion of high energy IEDFs was very low and dominated by a low energy main peak. The gas IEDF at high pressure was completely thermalized. The metal-ion-to-gas-ion ratio was found to increase with Id and with the sputtering yield of the target material.

  12. Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method

    Science.gov (United States)

    Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.

    2016-02-01

    In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).

  13. Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings

    Energy Technology Data Exchange (ETDEWEB)

    Cavarroc, M.; Ennadjaoui, A. [MID Dreux Innovation, CAdD, 4 Rue Albert Caquot-28500 Vernouillet (France); Mougenot, M.; Brault, P.; Escalier, R.; Tessier, Y. [Groupe de Recherches sur l' Energetique des Milieux Ionises, CNRS Universite d' Orleans, BP6744, 14 rue d' Issoudun, 45067 Orleans (France); Durand, J.; Roualdes, S. [Institut Europeen des Membranes, ENSCM, UM2, CNRS, Universite Montpellier 2, CC047, Place Eugene Bataillon, 34095 Montpellier cedex 5 (France); Sauvage, T. [Conditions Extremes et Materiaux, Haute Temperature et Irradiation, UPR3079 CNRS, Site Cyclotron, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France); Coutanceau, C. [Laboratoire de Catalyse en Chimie Organique, UMR6503 Universite de Poitiers, CNRS, 86022, Poitiers (France)

    2009-04-15

    Ultra-low Pt content PEMFC electrodes have been manufactured using magnetron co-sputtering of carbon and platinum on a commercial E-Tek {sup registered} uncatalyzed gas diffusion layer in plasma fuel cell deposition devices. Pt loadings of 0.16 and 0.01 mg cm{sup -2} have been realized. The Pt catalyst is dispersed as small clusters with size less than 2 nm over a depth of 500 nm. PEMFC test with symmetric electrodes loaded with 10 {mu}g cm{sup -2} led to maximum reproducible power densities as high as 0.4 and 0.17 W cm{sup -2} with Nafion {sup registered} 212 and Nafion {sup registered} 115 membranes, respectively. (author)

  14. Plasma potential of a moving ionization zone in DC magnetron sputtering

    Science.gov (United States)

    Panjan, Matjaž; Anders, André

    2017-02-01

    Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10 eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the Ez × B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -Ez × B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.

  15. Effects of adsorption and roughness upon the collision processes at the convertor surface of a plasma sputter negative ion sourcea)

    Science.gov (United States)

    Kenmotsu, T.; Wada, M.

    2012-02-01

    Atomic collision processes associated with surface production of negative hydrogen ions (H-) by particle reflection at molybdenum surface immersed in hydrogen plasma have been investigated. To calculate sputtering yields of Cs, as well as energy spectra and angular distributions of reflected hydrogen atoms from molybdenum surface by H+ ion and Cs+ ion bombardments, a Monte Carlo simulation code ACAT (Atomic Collision in Amorphous Target) was run with the corresponding surface conditions. A fractal surface model has been developed and adopted to ACAT for evaluating the effect due to roughness of target material. The results obtained with ACAT have indicated that the retention of hydrogen atoms leads to the reduction in sputtering yields of Cs, and the surface roughness does largely affect the sputtering yields of Cs.

  16. Spatial and temporal evolution of ion energies in high power impulse magnetron sputtering plasma discharge

    Science.gov (United States)

    Hecimovic, A.; Ehiasarian, A. P.

    2010-09-01

    High power impulse magnetron sputtering (HIPIMS) is a novel deposition technology successfully implemented on full scale industrial machines. HIPIMS utilizes short pulses of high power delivered to the target in order to generate high amount of metal ions. The life-span of ions between the pulses and their energy distribution could strongly influence the properties and characteristics of the deposited coating. In modern industrial coating machines the sample rotates on a substrate holder and changes its position and distance with regard to the magnetron. Time resolved measurements of the ion energy distribution function (IEDF) at different distances from the magnetron have been performed to investigate the temporal evolution of ions at various distances from target. The measurements were performed using two pressures, 1 and 3 Pa to investigate the influence of working gas pressure on IEDF. Plasma sampling energy-resolved mass spectroscopy was used to measure the IEDF of Ti1+, Ti2+, Ar1+, and Ar2+ ions in HIPIMS plasma discharge with titanium (Ti) target in Ar atmosphere. The measurements were done over a full pulse period and the distance between the magnetron and the orifice of the mass spectrometer was changed from 25 to 215 mm.

  17. Non-contact temperature measurement of silicon substrate in sputtering plasma using optical interferometer

    Science.gov (United States)

    Ohta, Takayuki; Hattori, Katsuhiro; Oda, Akinori; Kousaka, Hiroyuki

    2015-09-01

    The substrate temperature is one of important parameters to control the plasma processing and involve the film properties or the chemistry of gas phase. High power impulse magnetron sputtering (HIPIMS) realizes a very significant fraction of the ionized species and which induced onto the substrate and heated it. It is essential to analyze the substrate temperature and the heating mechanisms. In this study, we have measured the silicon substrate temperature in HiPIMS by using the optical low-coherence interferometry. The reflected light from the front surface interferes that from back surface. The optical path length of Si wafer is obtained by the inverse Fourier transform of spectral interferogram and varies with the change in the silicon temperature. The silicon temperatures with various resistivities were measured and the change in the optical thickness increased with decreasing the resistivity owing to the carrier density of the silicon substrate. The time variation of Si substrate temperatures at various applied voltages in the HiPIMS using the titanium target was measured and the silicon temperatures increased with increasing the applied voltage.

  18. High-brightness VUV sources based on plasma-dynamic magnetoplasma compressor discharges in gases

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Protasov, Iu. S.; Shashkovskii, S. G.

    1989-02-01

    The paper is concerned with the physical and technical aspects of the use of plasma-dynamic methods for generating high-power electromagnetic pulses over a wide spectral region, particularly in the UV and VUV spectral bands. In the experimental studies reviewed here, these methods are implemented by using high-current discharges of an erosion-type magnetoplasma compressor in gases. Approaches to the optimization of the energy and spectral-brightness characteristics of such discharges are discussed. The development of high power (1.5 GW) open-type plasma sources with a tunable emission spectrum and a light efficiency of 40-60 percent which can operate in the repetitively pulsed mode is reported.

  19. Physics of Plasma-Based Ion Implantation&Deposition (PBIID)and High Power Impulse Magnetron Sputtering (HIPIMS): A Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2007-08-28

    The emerging technology of High Power Impulse MagnetronSputtering (HIPIMS) has much in common with the more establishedtechnology of Plasma Based Ion Implantation&Deposition (PBIID):both use pulsed plasmas, the pulsed sheath periodically evolves andcollapses, the plasma-sheath system interacts with the pulse-drivingpower supply, the plasma parameters are affected by the power dissipated,surface atoms are sputtered and secondary electrons are emitted, etc.Therefore, both fields of science and technology could learn from eachother, which has not been fully explored. On the other hand, there aresignificant differences, too. Most importantly, the operation of HIPIMSheavilyrelies on the presence of a strong magnetic field, confiningelectrons and causing their ExB drift, which is closed for typicalmagnetron configurations. Second, at the high peak power levels used forHIPIMS, 1 kW/cm2 or greater averaged over the target area, the sputteredmaterial greatly affects plasma generation. For PBIID, in contrast,plasma generation and ion processing of the surface (ion implantation,etching, and deposition) are considered rela-tively independentprocesses. Third, secondary electron emission is generally considered anuisance for PBIID, especially at high voltages, whereas it is a criticalingredient to the operation of HIPIMS. Fourth, the voltages in PBIID areoften higher than in HIPIMS. For the first three reasons listed above,modelling of PBIID seems to be easier and could give some guidance forfuture HIPIMS models, which, clearly, will be more involved.

  20. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  1. BN/BNSiO2 sputtering yield shape profiles under stationary plasma thruster operating conditions

    Directory of Open Access Journals (Sweden)

    M. Ranjan

    2016-09-01

    Full Text Available Quartz Crystal Microbalance (QCM is used to measure the volumetric and total sputtering yield of Boron Nitride (BN and Boron Nitride Silicon Dioxide (BNSiO2 bombarded by Xenon ions in the energy range of 100 eV to 550 eV. Sputtering yield shape profiles are reported at various angles of incidence 0-85° with surface normal and compared with modified Zhang model. The yield shape profile is found to be symmetric at normal incidence and asymmetric at oblique incidence. Both the materials show a sudden jump in the sputtering yield above 500 eV and at an angle of incidence in the range of 45-65°. Erosion of BN at as low as 74 eV ion energy is predicted using generalized Bohdansky model. BNSiO2 show a marginally higher sputtering yield compare to BN.

  2. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  3. Generating high brightness electron beams using density down ramp injection in nonlinear plasma wakefields

    Science.gov (United States)

    Dalichaouch, Thamine; Xu, Xinlu; Davidson, Asher; Yu, Peicheng; An, Weiming; Joshi, Chan; Zhang, Chaojie; Mori, Warren; Li, Fei; Lu, Wei; Fonseca, Ricardo

    2017-10-01

    In the past few decades, there has been much progress in theory, simulation, and experiment towards using Plasma wakefield acceleration (PWFA) and Laser wakefield acceleration (LWFA) as the basis for designing and building compact x-ray free-electron-lasers (XFEL) as well as a next generation linear collider. Recently, ionization injection and density downramp injection have been proposed and demonstrated as controllable injection schemes for generating high quality relativistic electron beams. We present the concepts and full 3D simulation results using OSIRIS which show that downramp injection can generate electron beams with unprecedented brightnesses. However, full-3D simulations of plasma-based acceleration can be computationally intensive, sometimes taking millions of cpu-hours. Due to the near azimuthal symmetry in PWFA and LWFA, quasi-3D simulations using a cylindrical geometry are computationally more efficient than 3D Cartesian simulations since only the first few harmonics are needed in ϕ to capture the 3D physics of most problems. We also present results from the quasi-3D approach on downramp injection and compare the results against full 3D simulations. Work supported by NSF and DOE.

  4. Copper deposition on fabrics by rf plasma sputtering for medical applications

    Science.gov (United States)

    Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz Vargas, S., VI; Chaves, J.

    2015-03-01

    The present work is about preparation and characterization of RF sputtered Cu films on cotton by the usage of a Magnetron Sputter Source and 99.995% purity Cu target at room temperature. Cotton fabric samples of 1, 2 and 4 min of sputtering time at discharge pressure of 1×10-2 Torr and distance between target and sample of 8 cm were used. The main goal was to qualitatively test the antimicrobial action of copper on fabrics. For that purpose, a reference strain of Escherichia Coli ATCC 35218 that were grown in TSA plates was implemented. Results indicated a decrease in the growth of bacteria by contact with Cu; for fabric samples with longer sputtering presented lower development of E. coli colonies. The scope of this research focused on using these new textiles in health field, for example socks can be made with this textile for the treatment of athlete's foot and the use in pajamas, sheets, pillow covers and robes in hospital setting for reducing the spread of microorganisms.

  5. Far-and mid-infrared properties of carbon layers elaborated by plasma sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Benoit, E-mail: benoit.rousseau@univ-nantes.fr [Université de Nantes, CNRS, LTN UMR6607, La Chantrerie, Rue Christian Pauc, B.P. 50609, F-44306 Nantes Cedex 3 (France); Ammar, Mohamed Ramzi; Bormann, Denis; Simon, Patrick [CNRS, CEMHTI UPR3079, Université d' Orléans, F-55071 (France); Rabat, Hervé; Brault, Pascal [Université d' Orléans, CNRS, GREMI UMR7344, BP 6744, F-45067 Orléans Cedex 2 (France)

    2016-12-30

    Highlights: • Magnetron sputtering deposition of columnar, disordered carbon films. • Sputtered carbon films infrared properties are dependent on the local order. • Film texture at the micro-nanoscale explains difference of optical properties. - Abstract: The far-and mid-infrared reflectivity spectra of two carbon layers deposited on pure (100) silicon substrates by DC magnetron sputtering were investigated at room temperature in the 10–5000 cm{sup −1} wavenumber range. Their structural and textural features were also studied by combining Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), X-Ray Reflectivity (XRR) and Rutherford Backscattering Spectroscopy (RBS). The set of results was used to discuss afterwards the influence of the texture on the infrared properties at varying length scale. Thereby, the two layers were found to be heterogeneous as assessed by RBS, XRR and FESEM and their thicknesses had been measured by XRR and FESEM. The information on the structural organization and “crystallite” size was given by Raman spectroscopy. The influence of both the textural and structural parameters on the measured infrared reflectivity spectra was discussed. Finally, a methodology was proposed to recover the intrinsic index of refraction and the intrinsic index of absorption of each layer.

  6. Nano-Particles and Films of Carbon Nitride Prepared by Using the Simple Plasma Sputtering Deposition Techniques

    Science.gov (United States)

    Yang, B. Q.; Li, H. Y.; Shi, Y. C.; Feng, P. X.

    Nanoscale particles and films of carbon nitride (CN) were synthesized on Si(100) substrates at room temperature by using simple plasma sputtering deposition techniques based on DC Glow Discharge with Hollow Cathode electrodes. The bonding structures of the films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. G and D bands in Raman spectra of the samples were identified. Following an increase of the precursor nitrogen pressure, the intensity of the D band in Raman spectra of the sample became strong. Similar phenomenon was also observed with an increase of the bias voltage. Scanning electron microscope images of the samples indicated that smooth and uniform CNx films were obtained at low bias voltages. Whereas, setting a pulsed bias voltage up to 5 kV, several groups of nanoparticles were observed. Each group of nanoparticles showed "sunflower" type of distribution.

  7. Photoluminescence Properties of β-Ga2O3 Thin Films Produced by Ion-Plasma Sputtering

    Science.gov (United States)

    Bordun, O. M.; Bordun, B. O.; Kukharskyy, I. Yo.; Medvid, I. I.

    2017-03-01

    Photoluminescence and photoexcitation spectra of β-Ga2O3 thin films prepared by high-frequency ion-plasma sputtering in an Ar atmosphere were investigated. Photoluminescence spectra were deconvoluted by the Alentsev—Fock method into ultimate constituents. The nature of two strong bands with maxima at 2.95 and 3.14 eV and two weak bands with maxima at 3.90 and 4.25 eV was discussed. The two strong bands were attributed to an associate originating from the interaction of oxygen and gallium vacancies; the weak ones, recombination of excitons in quantum wells formed by acceptor clusters. It was found that the damping time constant for the 3.14-eV band was 105 μs; for the 2.95-eV band, 114 μs. The similarity of the decay time constants for these bands confirmed their relationship to a common associate.

  8. Plasma deposition of piezoelectric ZnO layers by rf sputtering, SolGel and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Waetje, Kerstin; Ebbecke, Jens; Wixforth, A. [Institut fuer Physik der Universitaet Augsburg, Experimentalphysik I, Universitaetsstrasse 1, 86135 Augsburg (Germany); Thorwarth, Goetz; Ven, Mark van de [Institut fuer Physik der Universitaet Augsburg, Experimentalphysik IV, Universitaetsstrasse 1, 86135 Augsburg (Germany)

    2008-07-01

    As ''lab-on-a-chip-devices'' suited for analyses of least amounts of liquids are emerging from prototype status, cost-effective materials for mass production of these devices are sought. For handling and mixing components, surface acoustic waves generated by piezoelectric elements are routinely employed; however, the LiNbO{sub 3} single crystals used in such units are a significant cost factor. As an alternative, zinc oxide layers deposited onto the glass substrates hold the promise of cheaper production and easier integration into the assembly. In the present study, experiments regarding the deposition of such layers using different plasma processes are presented. Film synthesis was performed using rf magnetron sputtering, pulsed laser deposition and plasma based ion bombardment of Sol-Gel films on crystalline and amorphous substrates. The impacts of significant deposition parameters are discussed. At optimum deposition parameters, excellent columnar growth in the preferred c-axis orientation could be observed. The suitability of such films for the desired application is substanciated through first mixing experiments using optically lithographed interdigital transducers (IDTs). (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Javid, Amjed [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Textile Processing, National Textile University, Faisalabad 37610 (Pakistan); Kumar, Manish, E-mail: manishk@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Jeon Geon, E-mail: hanjg@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-01-15

    Highlights: • Pure and N-doped nanocrystallie carbon films are synthesized by ICP assisted pulsed DC plasma process. • ICP power induces the increase in average graphitic crystallite size from 4.86 nm to 6.42 nm. • Beneficial role of ICP source assistance to achieve high sputtering throughput (deposition rate ∼55 nm/min). • Post-sterilization electron-transport study shows N-doped carbon films having promising stability. - Abstract: Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31–55 nm/min), electrical resistivity (4–72 Ωcm) and water contact angle (45.12°–54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  10. The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus

    Energy Technology Data Exchange (ETDEWEB)

    Opretzka, J [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Benedikt, J [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Awakowicz, P [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany); Keudell, A von [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2007-05-07

    The inactivation of bacteria by plasma discharges offers the unique benefits of short treatment times, minimal damage to the objects being sterilized and minimal use of hazardous chemicals. Plasmas produce reactive fluxes of ions, atoms and UV photons from any given precursor gas and are expected to be a viable method for such sterilization applications. The plasma based inactivation of harmful biological systems is, however, not yet widely used, because any validation is hampered by the limited knowledge about the interaction mechanisms at the interface between a plasma and a biological system. By using quantified beams of hydrogen atoms, argon ions and UV photons, the treatment of bacteria in a typical argon-hydrogen plasma is mimicked in a very controlled manner. As an example the inactivation of endospores of Bacillus atrophaeus is studied. It is shown that the impact of H atoms alone causes no inactivation of bacteria. Instead, the simultaneous impact of atoms and low energy ions causes a perforation of the endosporic shell. The same process occurs during plasma treatment and explains the efficient inactivation of bacteria.

  11. The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus

    Science.gov (United States)

    Opretzka, J.; Benedikt, J.; Awakowicz, P.; Wunderlich, J.; von Keudell, A.

    2007-05-01

    The inactivation of bacteria by plasma discharges offers the unique benefits of short treatment times, minimal damage to the objects being sterilized and minimal use of hazardous chemicals. Plasmas produce reactive fluxes of ions, atoms and UV photons from any given precursor gas and are expected to be a viable method for such sterilization applications. The plasma based inactivation of harmful biological systems is, however, not yet widely used, because any validation is hampered by the limited knowledge about the interaction mechanisms at the interface between a plasma and a biological system. By using quantified beams of hydrogen atoms, argon ions and UV photons, the treatment of bacteria in a typical argon-hydrogen plasma is mimicked in a very controlled manner. As an example the inactivation of endospores of Bacillus atrophaeus is studied. It is shown that the impact of H atoms alone causes no inactivation of bacteria. Instead, the simultaneous impact of atoms and low energy ions causes a perforation of the endosporic shell. The same process occurs during plasma treatment and explains the efficient inactivation of bacteria.

  12. Solar selective absorber coating for high service temperatures, produced by plasma sputtering

    Science.gov (United States)

    Lanxner, Michael; Elgat, Zvi

    1990-08-01

    Spectrally selective absorber coatings, deposited on engineering material substrates such as stainless steel, have been developed for service as efficient solar photothermal energy converters. The selective solar absorber is based on a multilayer of thin films, produced by sputtering. The main solar absorber is a metal/ceramic (cermet) composite, such as, Mo/Al2th or Mo/Si02, with a graded metal concentration. Such a cermet layer, strongly absorbs radiation over most of the range of the solar spectrum but is transparent to longer wavelength radiation. The cermet layer is deposited on a highly reflecting infrared metal layer. Two more layers were added: An AhO diffusion barrier layer which is deposited first on the substrate and an AI2O or a Si02 antireflection layer which is deposited on the top of the cermet film. In order to better understand the spectral reflectivity of the multilayered selective coating, a procedure for the calculation of the optical properties was developed. After the R&D development phase was successfully completed, a full scale production coating machine was constructed. The production machine is a linear in line coater. The selective coating is deposited on stainless steel tubes, translating in the coating machine while rotating about their axes, along their axial direction. Measurements of reflectance, solar absorptivity, a, thermal emissivity, C, and high temperature durability, are all parts of the quality control routine. The results show values of a in the range 0.96 - 0.98. The thermal emissivity at 350CC is in the range 0.16 - 0.18. Thermal durability tests, show no degradation of the coating when subjected to up to 65O in vacuum for one month and when passed through a temperature cycling test which includes 1200 cycles between temperatures of 150CC and 450CCfor a period of two months.

  13. [Study on friction and abrasion behavior of TiN film on dental NiCr alloy by plasma magnetron reactive sputter deposition].

    Science.gov (United States)

    Yan, Xiao-dong; Mao, Zhao; Tang, Cheng-zhong; Mei, Jian-ping

    2008-12-01

    To investigate the effect of TiN film deposited by plasma magnetron reactive sputter deposition technique on the fiction and abrasion behavior of dental NiCr alloy. TiN film was deposited on the surface of dental NiCr alloy by plasma magnetron reactive sputter deposition technique. Surface topography of TiN film was observed by electron microscope. The frictional coefficient and abrasive loss in weight were measured by friction and abrasive apparatus. SPSS11.0 software package was used for Student's t test. The surface topography of TiN film was tiny diffusion and homogeneous distribution common burreed tuber structure. The average frictional coefficient of NiCr of none deposition was 0.651 while 0.525 after TiN deposited (Pabrasive loss in weight of none deposition was 0.0113g while 0.0007g after TiN deposited (Pabrasion behavior of NiCr with TiN film deposited by plasma magnetron reactive sputter deposition technique is better.

  14. Plasma-wall interactions in the presence of plasma fluctuations—interpretation of line emission from sputtered tungsten in PSI-2

    Science.gov (United States)

    Reiser, D.; Borodin, D.; Brezinsek, S.; Eksaeva, A. A.; Kirschner, A.; Kreter, A.; Romazanov, J.; Schlummer, T.

    2017-12-01

    The analysis in this work essentially addresses the general question to what extent the temporal average of a particular quantity which is a highly nonlinear function of fluctuating quantities can be approximated by using the averages of the fluctuating quantities for its evaluation. The concrete case considered is the line emission intensity from sputtered impurities being a function of fluctuating electron density and temperature in a plasma beam of the PSI-2 device. A three-dimensional fluid model is employed to study the impact of plasma fluctuations on the distribution of particles and line emission in PSI-2 discharges and its interpretation in long-term measurements. In the model presented the solution of a vorticity equation to obtain a self-consistent electric field is avoided and a synthetic turbulent velocity field is included instead. This approach is based on a Langevin model including advection and allows numerically efficient parameter scans by controlling amplitude, correlation length and correlation time of plasma fluctuations known from extended 3D simulations and/or experiment. The synthetic turbulence model considered is an extension of established stochastic models used for studies of passive scalar advection and therefore, it is described in detail in a general framework. Numerical examples of PSI-2 applications show that a double log-normal probability density function for the electrons and impurity ions is likely to occur and that this supports the conclusion that very high levels of intermittency are required to find a significant impact on the experimental evaluation method which is based on temporal averages only. Consequently, for typical PSI-2 experiments the method of evaluation based on averaged plasma parameters is justified.

  15. The use of segmented cathodes to determine the spoke current density distribution in high power impulse magnetron sputtering plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Poolcharuansin, Phitsanu [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); The Technological Plasma Research Unit, Department of Physics, Mahasarakham University, Maha Sarakham 44150 (Thailand); Estrin, Francis Lockwood; Bradley, James W., E-mail: j.w.bradley@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ (United Kingdom)

    2015-04-28

    The localized target current density associated with quasi-periodic ionization zones (spokes) has been measured in a high power impulse magnetron sputtering (HiPIMS) discharge using an array of azimuthally separated and electrical isolated probes incorporated into a circular aluminum target. For a particular range of operating conditions (pulse energies up to 2.2 J and argon pressures from 0.2 to 1.9 Pa), strong oscillations in the probe current density are seen with amplitudes up to 52% above a base value. These perturbations, identified as spokes, travel around the discharge above the target in the E×B direction. Using phase information from the angularly separated probes, the spoke drift speeds, angular frequencies, and mode number have been determined. Generally, at low HiPIMS pulse energies E{sub p} < 0.8 J, spokes appear to be chaotic in nature (with random arrival times), however as E{sub p} increases, coherent spokes are observed with velocities between 6.5 and 10 km s{sup −1} and mode numbers m = 3 or above. At E{sub p} > 1.8 J, the plasma becomes spoke-free. The boundaries between chaotic, coherent, and no-spoke regions are weakly dependent on pressure. During each HiPIMS pulse, the spoke velocities increase by about 50%. Such an observation is explained by considering spoke velocities to be determined by the critical ionization velocity, which changes as the plasma composition changes during the pulse. From the shape of individual current density oscillations, it appears that the leading edge of the spoke is associated with a slow increase in local current density to the target and the rear with a more rapid decrease. The measurements show that the discharge current density associated with individual spokes is broadly spread over a wide region of the target.

  16. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available A novel plasma-driven catalysis (PDC reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2 film prepared by radiofrequency (RF magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  17. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering

    Science.gov (United States)

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas. PMID:23560062

  18. Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma

    Science.gov (United States)

    Kakati, H.; M. Borah, S.

    2015-12-01

    In order to make sufficient use of reactive cylindrical magnetron plasma for depositing compound thin films, it is necessary to characterize the hysteresis behavior of the discharge. Cylindrical magnetron plasmas with different targets namely titanium and aluminium are studied in an argon/oxygen and an argon/nitrogen gas environment respectively. The aluminium and titanium emission lines are observed at different flows of reactive gases. The emission intensity is found to decrease with the increase of the reactive gas flow rate. The hysteresis behavior of reactive cylindrical magnetron plasma is studied by determining the variation of discharge voltage with increasing and then reducing the flow rate of reactive gas, while keeping the discharge current constant at 100 mA. Distinct hysteresis is found to be formed for the aluminium target and reactive gas oxygen. For aluminium/nitrogen, titanium/oxygen and titanium/nitrogen, there is also an indication of the formation of hysteresis; however, the characteristics of variation from metallic to reactive mode are different in different cases. The hysteresis behaviors are different for aluminium and titanium targets with the oxygen and nitrogen reactive gases, signifying the difference in reactivity between them. The effects of the argon flow rate and magnetic field on the hysteresis are studied and explained. Project supported by the Department of Science and Technology, Government of India and Council of Scientific and Industrial Research, India.

  19. Characterization and modelling of microwave multi dipole plasmas. Application to multi dipolar plasma assisted sputtering; Caracterization et modelisation des plasmas micro-onde multi-dipolaires. Application a la pulverisation assistee par plasma multi-dipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tan Vinh [Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2006-07-01

    the magnet has also shown a better radial confinement with magnets exhibiting high length over diameter ratios. In addition, the numerical study corroborates the results of the experimental study, i.e. an ECR coupling region close to the equatorial plane of the magnet and not near the end of the coaxial microwave line. Finally, these results have been successfully applied to plasma assisted sputtering of targets allowing, in particular, their uniform erosion. (author)

  20. Role of hydrogen addition in the plasma phase in determining the structural and chemical properties of RF sputtered ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Gottardi, Gloria, E-mail: ggottard@fbk.eu [Fondazione Bruno Kessler, Center for Materials and Microsystems, PAM Unit, via Sommarive 18, I - 38123 Povo, Trento (Italy); Bartali, Ruben; Micheli, Victor; Laidani, Nadhira [Fondazione Bruno Kessler, Center for Materials and Microsystems, PAM Unit, via Sommarive 18, I - 38123 Povo, Trento (Italy); Avi, Damiano [University of Trento, Physics Department, Atomic and Molecular Physics Lab., Via Sommarive 14, I - 38123 Povo, Trento (Italy)

    2011-05-16

    Research highlights: {yields} Effects of H in corporation on ZnO thin films growth and properties. {yields} Modification of the sputtering mechanism according to H{sub 2} percentage in the plasma. {yields} Structural changes turns up with variations of the surface and bulk oxide chemistry. {yields} Development of an hydroxide component due to atomic H incorporation. - Abstract: In the present work, ZnO thin films were RF sputtered from a pure ZnO target, without external heating, in H{sub 2}:Ar plasma at different H{sub 2} concentrations (0-50%). Aim of the study was the identification of the effects of H incorporation on the film growth and properties. During the deposition experiments, optical emission (OES) spectra were recorded to monitor any variation in the plasma chemical species relative to different process or gas mixture settings. X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier-transformed infrared spectroscopy (ATR-FTIR) were used to study the bulk and surface chemical composition of the films, while X-ray diffraction (XRD) analysis allowed lattice structure and grain size determination. The introduction of hydrogen in the plasma phase appears to strongly affect the structural and chemical properties of ZnO films. Both FTIR spectra and X-ray diffraction patterns showed that all the films crystallized in the hexagonal wuertzite form. Nevertheless, while samples deposited in pure Ar plasma are highly textured, presenting just one dominant preferred orientation along the [0 0 2] axis, films sputtered in H{sub 2}:Ar atmosphere exhibit multiple growth directions with crystallites of noticeably reduced dimensions. Such a structural modification turns up together with clear variations in the films surface chemical state which appears to deviate from the pure oxide (Zn-O). By combining XPS, ATR-FTIR and OES data we could correlate such variations with the process induced H incorporation in the crystal structure in the form of

  1. Electrical and Structural Properties of Copper Thin Films Deposited by Novel RF Magnetized Plasma Sputtering with Gyratory Square-Shaped Arrangement by Bar Permanent Magnets

    Science.gov (United States)

    Hossain, Md Amzad; Ohtsu, Yasunori

    2016-09-01

    Rotating square-shaped arrangement by bar permanent magnets has been proposed for uniform target utilization in high-density radio frequency (RF) magnetized sputtering plasma. In this work, copper thin films are grown on unheated Si wafer by RF sputtering technique. The experiments are done in stainless-steel cylindrical vacuum chamber with outer diameter of 235 mm, inner diameter of 160 mm and 195 mm in height, whereas argon (Ar) gas pressure of 1.03 [Pa], rotating the iron yoke with speed of 40 [rpm,] sputtering time of 1.5 [h], and RF input power of 100 [W] at 13.56 [MHz] are realized. The deposited copper film thickness, electrical, structural properties and plasma density are investigated for case (a) without iron cover and case (b) with iron cover, respectively placed on the contact zone between the N-pole and the S-pole magnets. Radial profiles of the deposited copper thin film thickness and resistivity for case (b) are more uniform than case (a). It is found that the resistivities of deposited copper thin film for case (a) and (b) are approximately 7.89 × 10-8 Ω -m and 4.33 × 10-8 Ω -m, respectively at r = 30 mm. From AFM analysis, the uniformity of thin films grown throughout surface is better case (b) than case (a). The roughness of radial profile of the film thickness for case (a) and case (b) are 22.3% and 6.55%, respectively.

  2. In situ UV–vis investigation of growth of gold nanoparticles prepared by solution plasma sputtering in NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Tsuyoshi, E-mail: mizutani.tsuyoshi@g.mbox.nagoya-u.ac.jp [Division of Quantum Science and Energy Engineering, Department of Materials, Physics and Energy Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ogawa, Satoshi [Division of Quantum Science and Energy Engineering, Department of Materials, Physics and Energy Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Murai, Takaaki; Nameki, Hirofumi [Aichi Center for Industry and Science Technology, Onda, Kariya, Aichi 448-0013 (Japan); Yoshida, Tomoko; Yagi, Shinya [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-11-01

    Highlights: • In situ UV–vis measurement reveals diameters of gold nanoparticles and concentrations of gold. • Ostwald ripening of gold nanoparticles occurs in NaCl solution. • We estimate equilibrium diameters of gold nanoparticles in various concentrations of NaCl solution. - Abstract: Gold nanoparticles are prepared in various concentrations of NaCl solutions by solution plasma sputtering. The absorption spectra of these solutions during and after the plasma process are measured by in situ ultraviolet–visible (UV–vis) spectroscopy to estimate the particle diameters and concentrations of gold. The distributions of particle diameters are obtained by transmission electron microscope (TEM) observations. These experiments indicate the gold nanoparticles with about 2.2 nm are directly formed by plasma phase and the diameters are increasing over time. These increases of particle diameters are caused by Ostwald ripening of gold nanoparticles in NaCl solution. We estimate the equilibrium diameter at which the gold nanoparticles are not solved in NaCl solution using in situ UV–vis spectroscopy. These diameters are about 5, 7 and 10 nm in 3, 5 and 10 mM NaCl solution, respectively. We make it possible to control the diameter of gold nanoparticles prepared by solution plasma sputtering in NaCl solution.

  3. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    Science.gov (United States)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  4. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    Science.gov (United States)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  5. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    Science.gov (United States)

    Javid, Amjed; Kumar, Manish; Han, Jeon Geon

    2017-01-01

    Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31-55 nm/min), electrical resistivity (4-72 Ωcm) and water contact angle (45.12°-54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  6. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.

    Science.gov (United States)

    Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S

    2016-01-11

    Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.

  7. Catalytic activity and stability of nanometic Rh overlayers prepared by pulsed arc-plasma deposition and r.f. magnetron-sputtering

    Science.gov (United States)

    Misumi, Satoshi; Matsumoto, Akinori; Yoshida, Hiroshi; Sato, Tetsuya; Machida, Masato

    2018-01-01

    50 μm-thick Fe-Cr-Al metal foils covered by 7 nm-thick Rh overlayers were prepared by pulsed arc-plasma (AP) and r.f. magnetron sputtering technique to compare their catalytic activities. As-prepared metal foil catalysts were wrapped into a honeycomb structure with a density of 900 cells per square inches and the stoichiometric NO-CO-C3H6-O2 reaction was performed at space velocity of 1.2 × 105 h-1. During temperature ramp at 10 °C min-1, honeycomb catalysts showed steep light-off of NO, CO, and C3H6 at above 200 °C and their conversions soon reached to almost 100%. Both catalysts exhibited high turnover frequencies close to or more than 50-fold greater compared with those for a reference Rh/ZrO2 powder-coated cordierite honeycomb prepared using a conventional slurry coating. When the temperature ramping was repeated, however, the catalytic activity was decreased to the different extent depending on the preparation procedure. Significant deactivation occurred only when prepared by sputtering, whereas the sample prepared by AP showed no signs of deactivation. The deactivation is associated with the formation of passivation layers consisting of Fe, Cr, and Al oxides, which covered the surface and decreased the surface concentration of Rh. The Rh overlayer formed by AP was found to be thermally stable because of the strong adhesion to the metal foil surface, compared to the sample prepared by sputtering.

  8. Reduced Phase-Advance of Plasma Melatonin after Bright Morning Light in the Luteal, but not Follicular, Menstrual Cycle Phase in Premenstrual Dysphoric Disorder: An Extended Study

    Science.gov (United States)

    Parry, Barbara L.; Meliska, Charles J.; Sorenson, Diane L.; Martínez, L. Fernando; López, Ana M.; Elliott, Jeffrey A.; Hauger, Richard L.

    2011-01-01

    We previously observed blunted phase-shift responses to morning bright light in women with Premenstrual Dysphoric Disorder (PMDD). The aim of this study was to determine if we could replicate these findings using a higher intensity, shorter duration light pulse and to compare these results with the effects of an evening bright light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, we measured plasma melatonin at 30 minute intervals from 18:00–10:00 h in dim (phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6,000 vs. 3,000 lux) light pulse for a shorter duration (3 vs. 6 h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal phase subsensitivity or an increased resistance to morning bright light cues which are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD. PMID:21721857

  9. Measurement of absolute density of N atom in sputtering plasma for epitaxial growth ZnO films via nitrogen mediated crystallization

    Science.gov (United States)

    Ide, Tomoaki; Matsushima, Koichi; Takasaki, Toshiyuki; Takeda, Keigo; Hori, Masaru; Yamashita, Daisuke; Seo, Hyuwoong; Koga, Kazunori; Shiratani, Masaharu; Itagaki, Naho

    2015-09-01

    ZnO has attracted attention as a potential alternative to GaN in light emitting diodes because of the wide band gap and large exciton binding energy. Recently, we have developed a fabrication method of ZnO by sputtering, nitrogen mediated crystallization (NMC), enabling us to make epitaxial films with low defect density. By utilizing the buffer layers fabricated by NMC method, we have succeeded in fabrication of single crystalline ZnO films even on 18% lattice mismatched substrates. Here, aiming to clarify effects of nitrogen during NMC process, we measured absolute density of N atom in sputtering plasma by means of vacuum ultra violet absorption spectroscopy. First, NMC-ZnO buffer layers were deposited in Ar/N2 atmosphere. Then, ZnO films were deposited in Ar/O2 atmosphere. With increasing N2 flow rate ratio from 4 to 12%, the N density increases from 3.2 × 1010 to 1.4 × 1011 cm-3. By utilizing the NMC-ZnO buffer layer fabricated at under these conditions, single crystalline ZnO films are grown. However, large number of pits are observed on the surface of ZnO films under N-rich conditions, indicating that N density is of importance in controlling the morphology of ZnO films. This work was supported in part by Japan Society for the Promotion of Science KAKENHI Grant Number 15H05431.

  10. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chao [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Dan; Yang, Chi [Department of Pharmacy, Nantong University, Nantong 226001 (China); Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2016-05-05

    In this study, ZnO nanorods-Au nanoparticles (ZnO NRs-Au NPs) hybrids were prepared using an in-situ plasma sputtering-assisted method without any template. Characterization results from scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy showed that Au NPs are highly dispersed and tightly anchored on the surface of ZnO NRs. The size and surface coverage of Au NPs were well controlled by plasma sputtering time. Moreover, the hybrids exhibited excellent electrocatalytic properties towards oxidation of ascorbic acid (AA) and uric acid (UA) due to large surface area of Au NPs and ZnO NRs, and thus can be used as electrochemical sensors. Differential pulse voltammetry results showed that AA and UA could be detected simultaneously by ZnO NRs-Au NPs hybrids modified glassy carbon electrode. The linear ranges for AA and UA are 0.1 to 4 mM and 0.01 to 0.4 mM, respectively. The results suggest promising future applications in clinical diagnosis. - Highlights: • ZnO nanorods-Au nanoparticles were synthesized by in-situ plasma sputtering method. • Influence of sputtering time on the formation of Au nanoparticles was studied. • It exhibited a strong electrocatalytic activity toward the oxidation of ascorbic acid and uric acid. • A portable and cheap approach for simultaneous detection of ascorbic acid and uric acid was developed.

  11. Near-Infrared Spectroscopy for Zeeman Spectra of Ti I in Plasma Using a Facing Target Sputtering System

    Science.gov (United States)

    Kobayashi, Shinji; Nishimiya, Nobuo; Suzuki, Masao

    2017-10-01

    The saturated absorption lines of neutral titanium were measured in the region of 9950-14380 cm-1 using a Ti:sapphire ring laser. A facing target sputtering system was used to obtain the gaseous state of a Ti I atom. The Zeeman splitting of 38 transitions was observed under the condition that the electric field component of a linearly polarized laser beam was parallel to the magnetic field. The gJ factors of the odd parity states were determined for 28 states belonging to 3d24s4p and 3d34p using those of the even parity states reported by Stachowska in 1997. The gJ factors of z5P1,2,3 levels were newly determined. gJ of y3F2, y3D2, z3P2, and z5S2 levels were refined.

  12. Investigation of high-temperature bright plasma X-ray sources produced in 5-MA X-pinch experiments.

    Science.gov (United States)

    Sinars, D B; McBride, R D; Pikuz, S A; Shelkovenko, T A; Wenger, D F; Cuneo, M E; Yu, E P; Chittenden, J P; Harding, E C; Hansen, S B; Peyton, B P; Ampleford, D J; Jennings, C A

    2012-10-12

    Using solid, machined X-pinch targets driven by currents rising from 0 to 5-6 MA in 60 ns, we observed bright spots of 5-9-keV continuum radiation from 5±2-μm diameter regions. The >6-keV radiation is emitted in about 0.4 ns, and the bright spots are roughly 75 times brighter than the bright spots measured at 1 MA. A total x-ray power of 10 TW peak and yields of 165±20 kJ were emitted from a 3-mm height. The 3-5-keV continuum radiation had a 50-90-GW peak power and 0.15-0.35-kJ yield. The continuum is plausibly from a 1275±75-eV blackbody or alternatively from a 3500±500-eV bremsstrahlung source.

  13. Reaction of turbulence at the edge and in the center of the plasma column to pulsed impurity injection caused by the sputtering of the wall coating in L-2M stellarator

    Science.gov (United States)

    Batanov, G. M.; Berezhetskii, M. S.; Borzosekov, V. D.; Vasilkov, D. G.; Vafin, I. Yu.; Grebenshchikov, S. E.; Grishina, I. A.; Kolik, L. V.; Konchekov, E. M.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Malakhov, D. V.; Meshcheryakov, A. I.; Petrov, A. E.; Sarksian, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.; Kharchevskii, A. A.; Kholnov, Yu. V.; Shchepetov, S. V.

    2017-08-01

    Impurity injection into plasma caused by the sputtering of the wall coating in the L-2M stellarator during auxiliary electron cyclotron resonance heating leads to a change in the level of plasma density fluctuations with frequencies above 0.25 MHz: suppression of long-wavelength ( k ⊥ = 2 cm-1) density fluctuations in the edge plasma, intensification of short-wavelength ( k ⊥ = 30 cm-1) and long-wavelength ( k ⊥ = 1 cm-1) fluctuations at the midradius of the plasma column, and intensification of short-wavelength fluctuations ( k ⊥ = 20 cm-1) in the plasma center (including the gyroresonance region). At the same time, the level of fluctuations with frequencies below 0.25 MHz remains unchanged. In the edge plasma, a decrease in the plasma potential and suppression of its fluctuations is observed during impurity injection, which also causes an increase in MHD activity.

  14. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    Science.gov (United States)

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.

    2015-05-01

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  15. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K., E-mail: mklei@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-05-28

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  16. Influence of substrate pre-treatments by Xe{sup +} ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vales, S., E-mail: sandra.vales@usp.br [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Brito, P., E-mail: ppbrito@gmail.com [Pontifícia Universidade Católica de Minas Gerais (PUC-MG), Av. Dom José Gaspar 500, 30535-901 Belo Horizonte, MG (Brazil); Pineda, F.A.G., E-mail: pipe8219@gmail.com [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Ochoa, E.A., E-mail: abigail_ochoa@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Droppa, R., E-mail: roosevelt.droppa@ufabc.edu.br [Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP CEP 09210-580 (Brazil); Garcia, J., E-mail: jose.garcia@sandvik.com [Sandvik Coromant R& D, Lerkrogsvägen 19, SE-12680, Stockholm (Sweden); Morales, M., E-mail: monieriz@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Alvarez, F., E-mail: alvarez@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); and others

    2016-07-01

    In this paper the influence of pre-treating a 100Cr6 steel surface by Xe{sup +} ion bombardment and plasma nitriding at low temperature (380 °C) on the roughness, wear resistance and residual stresses of thin TiN coatings deposited by reactive IBAD was investigated. The Xe{sup +} ion bombardment was carried out using a 1.0 keV kinetic energy by a broad ion beam assistance deposition (IBAD, Kaufman cell). The results showed that in the studied experimental conditions the ion bombardment intensifies nitrogen diffusion by creating lattice imperfections, stress, and increasing roughness. In case of the combined pre-treatment with Xe{sup +} ion bombardment and subsequent plasma nitriding, the samples evolved relatively high average roughness and the wear volume increased in comparison to the substrates exposed to only nitriding or ion bombardment. - Highlights: • Effect of Xe ion bombardment and plasma nitriding on TiN coatings was investigated. • Xe ion bombardment with 1.0 KeV increases nitrogen retention in plasma nitriding. • 1.0 KeV ion impact energy causes sputtering, thus increasing surface roughness. • TiN coating wear is minimum after plasma nitriding due to lowest roughness.

  17. Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques

    Science.gov (United States)

    Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu

    2007-04-01

    The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.

  18. Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering.

    Science.gov (United States)

    Popa, A C; Stan, G E; Husanu, M A; Pasuk, I; Popescu, I D; Popescu, A C; Mihailescu, I N

    2013-12-01

    Radio-frequency Plasma Enhanced Chemical Vapour Deposition (in different methane dilutions) was used to synthesize adherent and haemocompatible diamond-like carbon (DLC) films on medical grade titanium substrates. The improvement of the adherence has been achieved by interposing a functional buffer layer with graded composition TixTiC1-x (x = 0-1) synthesized by magnetron co-sputtering. Bonding strength values of up to ~67 MPa have been measured by pull-out tests. Films with different sp(3)/sp(2) ratio have been obtained by changing the methane concentration in the deposition chamber. Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction were employed for the physical-chemical characterization of the samples. The highest concentration of sp(3)-C (~87 %), corresponding to a lower DLC surface energy (28.7 mJ/m(2) ), was deposited in a pure methane atmosphere. The biological response of the DLC films was assayed by a state-of-the-art biological analysis method (surface enhanced laser desorption/ionization-time of flight mass spectroscopy), in conjunction with other dedicated testing techniques: Western blot and partial thromboplastin time. The data support a cause-effect relationship between sp(3)-C content, surface energy and coagulation time, as well as between platelet-surface adherence properties and protein adsorption profiles.

  19. Nonlinear Dynamics of High-Brightness Electron Beams and Beam-Plasma Interactions: Theories, Simulations, and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Bohn (deceased), P. Piot and B. Erdelyi

    2008-05-31

    According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.

  20. New High-Speed Combination of Spectroscopic And Brightness Pyrometry For Studying Particles Temperature Distribution In Plasma Jets

    Directory of Open Access Journals (Sweden)

    Igor P. Gulyaev

    2014-03-01

    Full Text Available Up-to-date methods and devices for temperature of dispersed phase control in high-temperature flows are considered. Possibilities of building pyrometric systems using available modern equipment are discussed. The new pyrometric method based on registration of a wide spectral range of radiation is proposed and implemented. Results of particles temperature measurements during plasma treatment of zirconia powders are presented.

  1. In vivo examination of the local inflammatory response after implantation of Ti6Al4V samples with a combined low-temperature plasma treatment using pulsed magnetron sputtering of copper and plasma-polymerized ethylenediamine.

    Science.gov (United States)

    Hoene, Andreas; Patrzyk, Maciej; Walschus, Uwe; Straňák, Vítězslav; Hippler, Rainer; Testrich, Holger; Meichsner, Jürgen; Finke, Birgit; Rebl, Henrike; Nebe, Barbara; Zietz, Carmen; Bader, Rainer; Podbielski, Andreas; Schlosser, Michael

    2013-03-01

    Copper (Cu) could serve as antibacterial coating for Ti6Al4V implants. An additional cell-adhesive layer might compensate Cu cytotoxicity. This study aimed at in vitro and in vivo evaluation of low-temperature plasma treatment of Ti6Al4V plates with Ti/Cu magnetron sputtering (Ti6Al4V-Ti/Cu), plasma-polymerized ethylenediamine (Ti6Al4V-PPEDA), or both (Ti6Al4V-Ti/Cu-PPEDA). Ti6Al4V-Ti/Cu and Ti6Al4V-Ti/Cu-PPEDA had comparable in vitro Cu release and antibacterial effectiveness. Following intramuscular implantation of Ti6Al4V-Ti/Cu, Ti6Al4V-PPEDA, Ti6Al4V-Ti/Cu-PPEDA and Ti6Al4V controls for 7, 14 and 56 days with 8 rats/day, peri-implant tissue was immunohistochemically examined for different inflammatory cells. Ti6Al4V-PPEDA had more mast cells and NK cells than Ti6Al4V, and more tissue macrophages, T lymphocytes, mast cells and NK cells than Ti6Al4V-Ti/Cu-PPEDA. Ti6Al4V-Ti/Cu had more mast cells than Ti6Al4V and Ti6Al4V-Ti/Cu-PPEDA. Results indicate that PPEDA-mediated cell adhesion counteracted Cu cytotoxicity. Ti6Al4V-Ti/Cu-PPEDA differed from Ti6Al4V only for mast cells on day 56. Altogether, implants with both plasma treatments had antibacterial properties and did not increase inflammatory reactions.

  2. Plasma characterization in reactive sputtering processes of Ti in Ar/O2 mixtures operated in metal, transition and poisoned modes: a comparison between direct current and high-power impulse magnetron discharges

    Science.gov (United States)

    Haase, Fabian; Kersten, Holger; Lundin, Daniel

    2017-10-01

    Two reactive sputtering techniques have been studied: direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS), operated in various Ar/O2 gas mixtures using a Ti target. The processes were characterized during different modes of operation including pure argon, metallic, transition and compound mode. Energy flux data as well as data on electron density and temperature were combined to obtain knowledge about the trends and changes in the investigated internal process plasma properties for the different modes investigated. Although there is a large reduction of the mass deposition rate (a factor 10 in DCMS and a factor 14 in HiPIMS), when transiting from the metal to compound mode, we detect no significant decrease of the total energy flux in DCMS and only a minor decrease in HiPIMS ( <20%). Such a result is surprising considering that the neutral flux contribution to the total energy flux is known to be significant. Instead, we find that the reduction of the neutral component is compensated by an increase in the electron and ion flux components, which is experimentally detected as an increase of the effective electron temperature and a slightly increasing (DCMS) or essentially constant (HiPIMS) electron density with increasing oxygen flow rate.

  3. Erosion of nanostructured tungsten by laser ablation, sputtering and arcing

    Directory of Open Access Journals (Sweden)

    Dogyun Hwangbo

    2017-08-01

    Full Text Available Mass loss of nanostructured tungsten, which was formed by helium plasma irradiation, due to laser ablation, sputtering, and arcing was investigated. Below the helium sputtering energy threshold (200eV. Reduction in sputtering on nanostructured surface was observed. Arcing was initiated using laser pulses, and the erosion rate by arcing was measured. The erosion rate increased with arc current, while the erosion per Coulomb was not affected by arc current.

  4. Characterization and modeling of multi-dipolar microwave plasmas: application to multi-dipolar plasma assisted sputtering; Caracterisation et modelisation des plasmas micro-onde multi-dipolaires: application a la pulverisation assistee par plasma multi-dipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.V

    2006-12-15

    The scaling up of plasma processes in the low pressure range remains a question to be solved for their rise at the industrial level. One solution is the uniform distribution of elementary plasma sources where the plasma is produced via electron cyclotron resonance (ECR) coupling. These elementary plasma sources are made up of a cylindrical permanent magnet (magnetic dipole) set at the end of a coaxial microwave line. Although of simple concept, the optimisation of these dipolar plasma sources is in fact a complex problem. It requires the knowledge, on one hand, of the configurations of static magnetic fields and microwave electric fields, and, on the other hand, of the mechanisms of plasma production in the region of high intensity magnetic field (ECR condition), and of plasma diffusion. Therefore, the experimental characterisation of the operating ranges and plasma parameters has been performed by Langmuir probes and optical emission spectroscopy on different configurations of dipolar sources. At the same time, in a first analytical approach, calculations have been made on simple magnetic field configurations, motion and trajectory of electrons in these magnetic fields, and the acceleration of electrons by ECR coupling. Then, the results have been used for the validation of the numerical modelling of the electron trajectories by using a hybrid PIC (particle-in-cell) / MC (Monte Carlo) method. The experimental study has evidenced large operating domains, between 15 and 200 W of microwave power, and from 0.5 to 15 mtorr argon pressure. The analysis of plasma parameters has shown that the region of ECR coupling is localised near the equatorial plane of the magnet and dependent on magnet geometry. These characterizations, applied to a cylindrical reactor using 48 sources, have shown that densities between 10{sup 11} and 10{sup 12} cm{sup -3} could be achieved in the central part of the volume at a few mtorr argon pressures. The modelling of electron trajectories near

  5. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  6. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  7. Photonometers for coating and sputtering machines

    Directory of Open Access Journals (Sweden)

    Václavík J.

    2013-05-01

    Full Text Available The concept of photonometers (alternative name of optical monitor of a vacuum deposition process for coating and sputtering machines is based on photonometers produced by companies like SATIS or HV Dresden. Photometers were developed in the TOPTEC centre and its predecessor VOD (Optical Development Workshop of Institut of Plasma Physics AS CR for more than 10 years. The article describes current status of the technology and ideas which will be incorporated in next development steps. Hardware and software used on coating machines B63D, VNA600 and sputtering machine UPM810 is presented.

  8. Deposition of SiOx thin films on Y-TZP by reactive magnetron sputtering: influence of plasma parameters on the adhesion properties between Y-TZP and resin cement for application in dental prosthesis

    Directory of Open Access Journals (Sweden)

    José Renato Calvacanti de Queiroz

    2011-01-01

    Full Text Available In this paper SiOx thin films were deposited on Y-TZP ceramics by reactive magnetron sputtering technique in order to improve the adhesion properties between Y-TZP and resin cement for applications in dental prosthesis. For fixed cathode voltage, target current, working pressure and target-to-substrate distance, SiOx thin films were deposited at different oxygen concentrations in the Ar+O2 plasma forming gas. After deposition processes, SiOx thin films were characterized by profilometry, energy dispersive spectroscopy (EDS, optical microscopy and scanning electron microscopy (SEM. Adhesion properties between Y-TZP and resin cement were evaluated by shear testing. Results indicate that films deposited at 20%O2 increased the bond strength to (32.8 ± 5.4 MPa. This value has not been achieved by traditional methods.

  9. Thermal Improvement and Stability of Si3N4/GeNx/p- and n-Ge Structures Prepared by Electron-Cyclotron-Resonance Plasma Nitridation and Sputtering at Room Temperature

    Science.gov (United States)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Izumi, Kohei; Otani, Yohei; Ishizaki, Hiroki; Ono, Toshiro

    2012-09-01

    This paper reports on the thermal improvement of Si3N4/GeNx/Ge structures. After the Si3N4 (5 nm)/GeNx (2 nm) stacks were prepared on Ge substrates by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature, they were thermally annealed in atmospheric N2 + 10% H2 ambient at temperatures from 400 to 600 °C. It was demonstrated that the electronic properties of the GeNx/Ge interfaces were thermally improved at temperatures of up to 500 °C with a minimum interface trap density (Dit) of ˜1×1011 cm-2 eV-1 near the Ge midgap, whereas the interface properties were slightly degraded after annealing at 600 °C with a minimum Dit value of ˜4×1011 cm-2 eV-1.

  10. Discharge Physics of High Power Impulse Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2010-10-13

    High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

  11. Fluence-dependent sputtering yield of micro-architectured materials

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Christopher S.R.; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu; Li, Gary Z.; Matlock, Taylor S.; Goebel, Dan M.; Dodson, Chris A.; Wirz, Richard E.

    2017-06-15

    Highlights: • Sputtering yield is shown to be transient and heavily dependent on surface architecture. • Fabricated nano- and Microstructures cause geometric re-trapping of sputtered material, which leads to a self-healing mechanism. • Initially, the sputtering yield of micro-architectured Mo is approximately 1/2 the value as that of a planar surface. • The study demonstrates that the sputtering yield is a dynamic property, dependent on the surface structure of a material. • A developed phenomenological model mathematically describes the transient behavior of the sputtering yield as a function of plasma fluence. - Abstract: We present an experimental examination of the relationship between the surface morphology of Mo and its instantaneous sputtering rate as function of low-energy plasma ion fluence. We quantify the dynamic evolution of nano/micro features of surfaces with built-in architecture, and the corresponding variation in the sputtering yield. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed, and re-growth of surface layers is confirmed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. A variety of material characterization techniques are used to show that the sputtering yield is not a fundamental property, but that it is quantitatively related to the initial surface architecture and to its subsequent evolution. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is roughly 1/2 of the corresponding value for flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22 ± 5%, converging to 0.4 ± 5% at high fluence. The sputtering yield exhibits a transient behavior as function of the integrated ion fluence, reaching a steady-state value that is independent of initial surface conditions. A phenomenological model is proposed to explain the observed transient sputtering phenomenon, and to

  12. Sputtered Thin Film Research

    Science.gov (United States)

    1974-11-01

    and Idonllly hy block numbor) Reactive Sputtering, Heteroepitaxy, Thin Films Single Crystal Zinc Oxide, Titanium Dioxide, Aluminum Nitride, Gallium...Conditions were determined for the deposition of amorphous neodymium ultra- phosphate films. This material holds the potential for the fabrication...reaching the substrate at any time during sputtering. A 17.2 cm diameter quartz plate was covered with a thin coating of zinc sulflde and placed on

  13. BrightFocus Foundation

    Science.gov (United States)

    ... sooner. More science news Help us find a cure. Give to BrightFocus BrightFocus Updates BrightFocus Foundation Lauds Bill Gates Alzheimer’s Initiative “BrightFocus Foundation lauds today’s historic announcement by ...

  14. Quantitative evaluation of high-energy O- ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target

    Science.gov (United States)

    Suyama, Taku; Bae, Hansin; Setaka, Kenta; Ogawa, Hayato; Fukuoka, Yushi; Suzuki, Haruka; Toyoda, Hirotaka

    2017-11-01

    O- ion flux from the indium tin oxide (ITO) sputter target under Ar ion bombardment is quantitatively evaluated using a calorimetry method. Using a mass spectrometer with an energy analyzer, O- energy distribution is measured with spatial dependence. Directional high-energy O- ion ejected from the target surface is observed. Using a calorimetry method, localized heat flux originated from high-energy O- ion is measured. From absolute evaluation of the heat flux from O- ion, O- particle flux in order of 1018 m-2 s-1 is evaluated at a distance of 10 cm from the target. Production yield of O- ion on the ITO target by one Ar+ ion impingement at a kinetic energy of 244 eV is estimated to be 3.3  ×  10-3 as the minimum value.

  15. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    Science.gov (United States)

    Anders, André

    2017-05-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

  16. Sputtering of indium-tin oxide

    Science.gov (United States)

    Howson, R. P.; Safi, I.; Hall, G. W.; Danson, N.

    1997-01-01

    In this paper we have brought together investigations by ourselves of the sputtering of thin films of Indium-Tin Oxide (ITO), onto substrates which are at ambient temperature, in which we sought to produce films with the highest electrical conductivity and visible transparancy. The work included investigations of the optimum alloy ratio, stoichiometry control techniques and different reactive sputtering systems. These continuously operating systems are compared with new ion-assisted, successive-layer anodisation processes for their preparation. Our investigations of the optimum doping of the indium oxide with tin have demonstrated that the addition of any tin will result in a loss of performance, compared to that achieved with stoichiometry control through the amount of oxygen incorporated into the pure indium oxide. The sputtering of a compacted oxide target was the easiest, only a small amount of non-critically controlled oxygen had to be added to the sputtering atmosphere to give adequate electrically conducting and visible-transmitting films. Better films could be made more quickly reactively from metal targets but were much more critical in the control of the conditions which they required. The use of alloy targets and successive ion-assisted plasma anodisation techniques made this a much less critical process.

  17. Adhesion of Sputtered Nickel Films on Polycarbonate Substrates

    Science.gov (United States)

    Qian, Xueqiang; Pang, Xiaolu; Gao, Kewei; Yang, Huisheng; Jin, Jie; Volinsky, Alex A.

    2014-03-01

    Nickel films were deposited by radio frequency magnetron sputtering on top of polycarbonate substrates. Surface energy of the substrate was measured by means of the contact angle technique. Effects of sputtering parameters on the critical load between the film and the substrate were determined by the universal mechanical testing system. Optimized fabrication parameters and their influence on the critical load between sputtered nickel films and polymer substrate were studied by means of the orthogonal experimental design. Increasing radio frequency power and time improved film critical load. The radio frequency power had a more pronounced effect on critical load than the sputter power. The plasma pretreatment with Ar gas modified the surface, leading to an increased surface energy, improving the chemical bonds between nickel and carbon atoms, and thereby enhanced the critical load. The adhesion mechanism is also discussed in this paper.

  18. Production of high-coercivity materials based on BaFe12O19 by crystallization of plasma-sputtered powders

    Science.gov (United States)

    Lepeshev, A. A.; Karpov, I. V.; Uschakov, A. V.

    2017-11-01

    Ferrite powders BaFe12O19 were studied in the present work after plasma heating and rapid quenching in differentenvironment: in air, in water and on the copper disk. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibration magnetometry (VSM) and Mossbauer spectroscopy (NGR) showed that the powder produced after quenching on the copper disk was in amorphous-crystalline state. The correlation between the annealing temperature and the value of magnetic parameters (coercive field and saturation magnetization) was established. Annealing at 1200 K for 2 h increases the coercive force up to 6.3 kOe. The processes of crystallization from the amorphous phase, that improve the magnetic properties of barium ferrite, are discussed. Highlights We studied the barium ferrite powdersafter plasma heating and rapid quenching. We studied the processes of crystallization from the amorphous phase. We studied theprocesses ofthermal annealing for the barium ferrite.

  19. Discharge current modes of high power impulse magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Zhongzhen Wu

    2015-09-01

    Full Text Available Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  20. Reactive sputtering of electrically conducting tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Howson, R.P. (Univ. of Tech., Loughborough (UK)); Barankova, H. (Inst. of Chemical Tech., Prague (Czechoslovakia)); Spencer, A.G. (Vacuum Coating Group, Loughborough Consultants Ltd. (UK))

    1991-02-15

    Tin was sputtered from a d.c. planar magnetron target in a confined volume. Stability was maintained in the reactive sputtering by controlling the oxygen partial pressure through observation of the light emitted by the oxygen in the plasma of the magnetron. The material deposited on the walls of the chamber was used to getter the system of impurities. The oxygen consumption at the set point was a good indication of the approach to stoichiometry of the film. It was observed that transparent conducting films were prepared at the point where the oxygen consumption indicated a break from full incorporation into the growing film. Films there had a resistivity of 100 {mu}{Omega} m for a 600 {Omega}/square sheet resistance, a thickness of about 150 nm. (orig.).

  1. Magnetron sputtering system stabilisation for high rate desposition of AlN films

    DEFF Research Database (Denmark)

    Fomin, A; Akhmatov, Vladislav; Selishchev, S

    1998-01-01

    The stabilisation of a planar magnetron sputtering system for reactive sputtering of AlN in a gaseous mixture of Ar and highly active NH3 was examined. The helical instability in the cathode plasma sheath was observed and methods for its damping were proposed. It was found that the deposition of c...

  2. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  3. Particle-in-Cell Modeling of Magnetron Sputtering Devices

    Science.gov (United States)

    Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.

    2017-10-01

    In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.

  4. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

    DEFF Research Database (Denmark)

    Matic, S.; Geisler, D.A.; Møller, I.M.

    2005-01-01

    remained intact, as indicated by an unaffected tonoplast proton gradient. Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes...

  5. Particle contamination formation and detection in magnetron sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Selwyn, G.S. [Los Alamos National Lab., NM (United States); Weiss, C.A. [Materials Research Corp., Congers, NY (United States). Sputtering Systems Div.; Sequeda, F.; Huang, C. [Seagate Peripherals Disk Div., Milpitas, CA (United States)

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  6. RF Reactive Magnetron Sputter Deposition of Silicon Sub-Oxides

    NARCIS (Netherlands)

    Hattum, E.D. van

    2007-01-01

    RF reactive magnetron plasma sputter deposition of silicon sub oxide E.D. van Hattum Department of Physics and Astronomy, Faculty of Sciences, Utrecht University The work described in the thesis has been inspired and stimulated by the use of SiOx layers in the direct inductive printing technology,

  7. Sputtering in supported cluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Sáez, J.C., E-mail: jc.jimenez@upm.es [Dept. Física Aplicada a la Ingeniería Aeronáutica y Naval, ETSIAE, Universidad Politécnica de Madrid (UPM), 28040 Madrid (Spain); Pérez-Martín, A.M.C.; Jiménez-Rodríguez, J.J. [Dept. Física Aplicada III, Facultad de Ciencias Físicas, Universidad Complutense de Madrid (UCM), 28040 Madrid (Spain)

    2015-06-01

    Bombardment of periodical arrays formed by Co nanoislands deposited on a Cu(0 0 1) substrate with 1-keV argon ions is simulated by using molecular dynamics. Sputtering yield is analyzed distinguishing between particles sputtered across the supported cluster surface and across the flat substrate surface without nanoparticle above. The dependence of this magnitude on the height and the periodical spacing between nanoislands has been investigated. Results show that this dependence for the sputtering across the nanoislands and across the substrate is different. In the case of the total sputtering, the “substrate” effect prevails since the behavior of this magnitude is approximately analogous to the sputtering across the substrate. The more probable causes are analyzed in this article.

  8. [Spectrum diagnostics for optimization of experimental parameters in thin films deposited by magnetron sputtering].

    Science.gov (United States)

    Guo, Qing-Lin; Cui, Yong-Liang; Chen, Jian-Hui; Zhang, Jin-Ping; Huai, Su-Fang; Liu, Bao-Ting; Chen, Jin-Zhong

    2010-12-01

    The plasma emission spectra generated during the deposition process of Si-based thin films by radio frequency (RF) magnetron sputtering using Cu and Al targets in an argon atmosphere were acquired by the plasma analysis system, which consists of a magnetron sputtering apparatus, an Omni-lambda300 series grating spectrometer, a CCD data acquisition system and an optical fiber transmission system. The variation in Cu and Al plasma emission spectra intensity depending on sputtering conditions, such as sputtering time, sputtering power, the target-to-substrate distance and deposition pressure, was studied by using the analysis lines Cu I 324. 754 nm, Cu I 327. 396 nm, Cu I 333. 784 nm, Cu I 353. 039 nm, Al I 394. 403 nm and Al I 396. 153 nm. Compared with the option of experimental parameters of thin films deposited by RF magnetron sputtering, it was shown that emission spectra analysis methods play a guiding role in optimizing the deposition conditions of thin films in RF magnetron sputtering.

  9. Multi-GeV electron beam and high brightness betatron x-ray generation in recent Texas Petawatt laser-driven plasma accelerator experiments

    Science.gov (United States)

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Zhang, Xi; Henderson, Watson; Chang, Yen-Yu; Korzekwa, Rick; Tsai, H.-E.; Quevedo, Hernan; Dyer, Gilliss; Gaul, Erhard; Martinez, Mikael; Bernstein, Aaron; Spinks, Michael; Gordan, Joseph; Donovan, Michael; Khudik, Vladimir; Shvets, Gennady; Ditmire, Todd; Downer, Michael

    2014-10-01

    Compact laser-plasma accelerators (LPAs) driven by petawatt (PW) lasers have produced highly collimated, quasi-monoenergetic multi-GeV electron bunches with ~100 pC charge, which are promising sources of ultrafast x-rays. Here we report three recent advances in PW-LPA performance brought about by optimizing the focal volume of the Texas PW laser with a deformable mirror. First, we accelerated electrons up to 3 GeV with hundreds of pC over 1 GeV and 1 GeV, 10% >2 GeV). Third, by introducing a double-peaked laser focus, creating a ``double bubble'' that subsequently merged, we significantly increased electron charge (0.5 nC) above 1 GeV, while producing brighter (1022photon/mm2/rad/0.1%), harder (up to 30 keV) betatron x-rays, characterized by a multi-metal filter pack and phase-contrast imaging. We observe evidence of dimuon production by irradiating a high-Z target with this high-charge, GeV electron beam.

  10. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  11. Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak

    Science.gov (United States)

    Ou, Jing; Xiang, Nong; Men, Zongzheng

    2018-01-01

    The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.

  12. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  13. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI.The data suggest that perceptions of brightness represent a robust

  14. Deuterium sputtering of Li and Li-O films

    Science.gov (United States)

    Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce

    2017-10-01

    Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.

  15. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  16. Antibacterial Study of Silver, Copper, Gold, and Titanium Dioxide Nanoparticles Prepared by DC and RF Magnetron Sputtering

    OpenAIRE

    Mohammed K. Khalaf; Husham K.Oudah; Amal A. Halob; Sabri J. Mohammed; Mohammed J. Dathan

    2017-01-01

    In this work, the antibacterial activity of nanomaterial’s copper, silver, gold and titanium dioxide sportily was investigated on both gram positive and negative bacteria. Nanoparticles of Cu, Ag, Au and TiO2 films were grown on glass substrates by dc and RF magnetron sputtering techniques. Nanoparticles films deposition were carried out at optimized argon pressure of 5.5×10-2mbar, sputtering plasma power of 30 Watt for Cu, Ag and Au samples and pressure of 1×10-3 mbar, plasma sputtering powe...

  17. R. f. -sputtered luminescent rare earth and yttrium oxysulphide films

    Energy Technology Data Exchange (ETDEWEB)

    Sella, C.; Martin, J.C.; Charreire, Y.

    1982-04-16

    The rare earth and yttrium oxysulphides form a family of highly luminescent materials and are of practical importance for cathode ray tubes and other visual display devices. The conventional screens are composed of a phosphor powder and have limited brightness, resolution and contrast. The brightness is limited by heating of the phosphor and poor thermal conductivity between the particles and the substrate. The resolution is limited by the particle size. The contrast is reduced by a high diffuse reflectivity of ambient light. Continuous thin films are not subject to these limitations. In previous attempts to produce such films by classical evaporation or sputtering techniques most of the luminous efficiency of the material was lost. When r.f. sputtering was carried out in standard vacuum equipment (10/sup -6/ Torr), a sulphur deficiency in the films was observed owing to the residual oxygen pressure. To overcome these difficulties, we used a new sputtering system designed for high purity deposition and mounted in an ultrahigh vacuum unit. Two methods were used to prepare Y/sub 2/O/sub 2/S and La/sub 2/O/sub 2/S luminescent films activated by Eu/sup 3 +/ (red) and by Tb/sup 3 +/ (green): (1) deposition from a pure oxysulphide target with subsequent treatment in H/sub 2/S between 700 and 850/sup 0/C; (2) deposition from a mixed sulphide-oxysulphide target with subsequent treatment in argon or an Ar-H/sub 2/ mixture between 500 and 850/sup 0/C. All films were investigated by X-ray diffraction, scanning and transmission electron microscopies, cathodoluminescence and photoluminescence excited with a pulsed laser.

  18. Elementary surface processes during reactive magnetron sputtering of chromium

    Energy Technology Data Exchange (ETDEWEB)

    Monje, Sascha; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von [Research Group Reactive Plasmas, Ruhr-University Bochum, Universitystr. 150, 44801 Bochum (Germany)

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  19. HI Surface brightness mapping

    Science.gov (United States)

    Pen, Ue-Li; Staveley-Smith, Lister; Chang, Tzu-Ching; Peterson, Jeff; Bandura, Kevin

    2008-04-01

    We propose to scan the 2dF survey field with Parkes multibeam in driftscan mode to make a map to cross correlate with galaxy redshifts. This allows a statistical detection of HI large scale structure out to z=0.15. In this cross correlation, the HI in ALL galaxies contributes, not only the bright ones, which significantly boosts the sensitivity. The proposed 40 hours on the fields result in a forecasted 20 sigma detection. The survey volume is 10 million cubic megaparsec, which contain 10^15 solar masses of hydrogen.

  20. High-speed CuBr brightness amplifier beam profile

    Science.gov (United States)

    Evtushenko, G. S.; Torgaev, S. N.; Trigub, M. V.; Shiyanov, D. V.; Evtushenko, T. G.; Kulagin, A. E.

    2017-01-01

    This paper addresses the experimental study of the beam profile of the CuBr brightness amplifier operating at a wide range of pulse repetition frequencies. The use of a medium-size gas discharge tube (2 cm) ensures the operation of the brightness amplifier both at typical PRFs (520 kHz) and at higher PRFs (up to 100 kHz), either with or without HBr additive. The effect of the active additive on the beam profile is demonstrated. The testing results on kinetic modeling of radial processes in the laser (brightness amplifier) plasma are also discussed.

  1. Lightness, brightness, and anchoring.

    Science.gov (United States)

    Anderson, Barton L; Whitbread, Michael; de Silva, Chamila

    2014-08-07

    The majority of work in lightness perception has evaluated the perception of lightness using flat, matte, two-dimensional surfaces. In such contexts, the amount of light reaching the eye contains a conflated mixture of the illuminant and surface lightness. A fundamental puzzle of lightness perception is understanding how it is possible to experience achromatic surfaces as specific achromatic shades in the face of this ambiguity. It has been argued that the perception of lightness in such contexts implies that the visual system imposes an "anchoring rule" whereby a specific relative luminance (the highest) serves as a fixed point in the mapping of image luminance onto the lightness scale ("white"). We conducted a series of experiments to explicitly test this assertion in contexts where this mapping seemed most unlikely-namely, low-contrast images viewed in dim illumination. Our results provide evidence that the computational ambiguity in mapping luminance onto lightness is reflected in perceptual experience. The perception of the highest luminance in a two-dimensional Mondrian display varied monotonically with its brightness, ranging from midgray to white. Similar scaling occurred for the lowest luminance and, by implication, all other luminance values. We conclude that the conflation between brightness and lightness in two-dimensional Mondrian displays is reflected in perception and find no support for the claim that any specific relative luminance value acts as a fixed anchor point in this mapping function. © 2014 ARVO.

  2. Modeling target erosion during reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Strijckmans, K., E-mail: Koen.Strijckmans@ugent.be; Depla, D.

    2015-03-15

    Highlights: • The erosion of a target is simulated with the RSD2013 software during reactive magnetron sputtering. • The influence of redeposition on the target state and on the hysteresis is explained. • The racetrack formation along the hysteresis and as function of the redeposition is quantified. • Comparison of the racetrack and the sputter profile shows clear differences. - Abstract: The influence of the reactive sputter conditions on the racetrack and the sputter profile for an Al/O{sub 2} DC reactive sputter system is studied by modeling. The role of redeposition, i.e. the deposition of sputtered material back on the target, is therefore taken into account. The used model RSD2013 is capable of simulating the effect of redeposition on the target condition in a spatial resolved way. Comparison between including and excluding redeposition in the RSD2013 model shows that the in-depth oxidation profile of the target differs. Modeling shows that it is important to distinguish between the formed racetrack, i.e. the erosion depth profile, and the sputter profile. The latter defines the distribution of the sputtered atoms in the vacuum chamber. As the target condition defines the sputter yield, it does determine the racetrack and the sputter profile of the planar circular target. Both the shape of the racetrack and the sputter profile change as function of the redeposition fraction as well as function of the oxygen flow change. Clear asymmetries and narrowing are observed for the racetrack shape. Similar effects are noticed for the sputter profile but to a different extent. Based on this study, the often heard misconception that the racetrack shape defines the distribution of the sputtered atoms during reactive sputtering is proven to be wrong.

  3. Synthesis of sputtered thin films in low energy ion beams

    Science.gov (United States)

    Howson, R. P.

    1997-01-01

    Magnetron sputtering is a process which gives a highly energetic depositing species. The growing film can be further bombarded with ions of the heavy gas used for sputtering by directing a plasma of it onto the surface. This can be done quite simply by using an unbalanced magnetron. The immersion of an insulating or isolated substrate-film combination in this plasma leads to a self-bias of around 30 V appearing on it's surface and a bombardment of low energy ions of the sputtering gas of several milli-amps per square centimetre. If the residual gas contains a reactive component, to form a compound film, then the gas is made much more reactive and less is needed to form the stoichiometric film. This can take place in a continuously operating system made stable using partial pressure control of the reactive gas with plasma emission monitoring or something similar. It can also be operated when the process of deposition is separated in time from the process of reaction and is repeated to build the film. We have called this process successive-plasma-anodisation (SPA) and it can be achieved by mechanically transferring the substrate between two magnetrons, one to deposit the metal film and one, which is unbalanced, to provide an oxygen plasma. It can also be operated by pulsing the reactive gas under carefully controlled conditions. Examples are given of the synthesis of compound films using low energy ion bombardment with these techniques and it is demonstrated that excellent films of a large range of oxides and nitrides can be made.

  4. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  5. Fuzzy tungsten in a magnetron sputtering device

    Energy Technology Data Exchange (ETDEWEB)

    Petty, T.J., E-mail: tjpetty@liv.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ (United Kingdom); Khan, A. [Pariser Building-G11, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL (United Kingdom); Heil, T. [NiCaL, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool, L69 3GL (United Kingdom); Bradley, J.W., E-mail: j.w.bradley@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ (United Kingdom)

    2016-11-15

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 10{sup 23}–3.0 × 10{sup 24} m{sup −2}, the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 10{sup 24} m{sup −2}, and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ{sup 1/2} relation as opposed to the incubation fluence fit. - Highlights: • Fuzz has been created in a magnetron sputtering device. • Three parameters for fuzz formation have been swept. • A cross-over from pre-fuzz to fully formed fuzz is seen. • Evidence for annealing out at lower temperatures than has been seen before. • Evidence to suggest that fuzz grown in discrete exposures is not consistent with fuzz grown in one long exposure.

  6. Measurement of transient sputtering of Mo and W by Al and B ions injected by laser ablation in PISCES-A

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, E.M., E-mail: ehollmann@ucsd.edu; Nishijima, D.; Doerner, R.P.

    2015-08-15

    The development of a transient sputtering technique in PISCES-A plasmas is reported. A Nd:YAG laser is used to ablate impurities from a sample placed outside the plasma column, delivering a short (∼10 μs) pulse of impurities into the plasma. The injected impurity ions travel down the plasma column and cause a brief (∼10–100 μs) pulse of line emission from sputtered target material. This technique offers some advantages over steady-state sputtering experiments: a wide range of impurity ions can be injected, and incoming impurity ion and sputtered atom velocities can be inferred from time of flight measurements. Measurements of Mo and W sputtering by Al{sup 2+} and B{sup +} ions are presented. The Mo sputtering yields are found to be about 5–10 times lower than expected, consistent with steady state measurements of sputtering of Mo by He{sup +} under the same conditions. W sputtering is also lower than predicted.

  7. Low resistivity of Ni–Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power

    Energy Technology Data Exchange (ETDEWEB)

    Lee, JongWoo [Department of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.N. [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Cho, Y.R., E-mail: yescho@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-02-28

    Ni–Al co-doped ZnO (NiAl:ZnO) thin films were deposited on glass substrates by DC magnetron sputtering in Ar using a single ceramic, spark-plasma-sintered target with 2 wt% Al and 5 wt% Ni. The effects of the sputtering power and gas pressure on the NiAl:ZnO films were studied. The structural, electrical, and optical properties of the films were characterized by X-ray diffraction, field emission scanning electron microscopy, Hall effect measurements and UV–vis transmission spectroscopy. As the sputtering power and gas pressure increased, the crystallinity, electrical properties and optical band gap of the films were improved. The NiAl:ZnO film deposited at 40 W at 6.0 mTorr had the strongest (0 0 2) XRD peak and the lowest resistivity of approximately 2.19 × 10{sup −3} Ω cm with an optical transmittance of 90%.

  8. Plasma Processing of Materials

    Science.gov (United States)

    1985-02-22

    subsequent scrubber and flare treatment. " Production of nitrogen-alloyed steels via plasma injection technique - as a substitute for chrome steels. 0...example, TiO2 ’ films can be deposited by sputtering Ti in 02 or Ar-0 2 mixture; Si 3 N4 films result when Si is sputtered in N2 or NH3 discharges. In...formation of SiN films from plasmas formed in mixtures of SiH4 and NH3 or SiH4 and N2 . Such films can be deposited

  9. Electrical Properties of DC Reactive Magnetron Sputtered ZnO:Al ...

    African Journals Online (AJOL)

    Reactive direct current (DC) sputtered ZnO:Al films were prepared using the plasma emission monitoring (PEM) system. Films were deposited using PEM setpoints ranging from 50 to 80%. Transmittance and reflectance of the films were measured by using the UV-VIS-NIR Lambda 900 double beam spectrophotometer.

  10. Magnetron reactively sputtered Ti-DLC coatings on HNBR rubber : The influence of substrate bias

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Hosson, J.Th.M. De

    2008-01-01

    In this study, Ti-containing diamond-like carbon (Ti-DLC) coatings have been deposited on HNBR (hydrogenated nitrile butadiene) rubber and also on Si wafer as reference via unbalanced magnetroli reactive sputtering from a Ti target in C2H2/Ar plasma. The deposition rates of coatings on rubber and Si

  11. Coronal bright points associated with minifilament eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Yang, Bo; Yang, Dan, E-mail: hjcsolar@ynao.ac.cn [Also at Graduate School of Chinese Academy of Sciences, Beijing, China. (China)

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  12. Optical Characterization of Porous Sputtered Silver Thin Films

    Directory of Open Access Journals (Sweden)

    Olivier Carton

    2013-01-01

    Full Text Available The optical properties of various porous silver films, grown with a commercial DC sputter coater, were investigated and compared for different plasma parameters. Effective Drude models were successfully used for those films whose spectra did not show particular resonance peaks. For the other films, neither an effective Drude model nor effective medium models (Maxwell Garnett, Bruggeman, and Looyenga can describe the optical properties. It turns out that a more general approach like the Bergman representation describes the optical data of these films accurately adopting porosity values consistent with physical measurements.

  13. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  14. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Lewy, Alfred J.

    Eight male subjects were exposed to either bright light or dim light between 0600 and 0900 h for 3 consecutive days each. Relative to the dim light condition, the bright light treatment advanced the evening rise in plasma melatonin and the time of sleep termination (sleep onset was held constant)

  15. Molecular anions sputtered from fluorides

    CERN Document Server

    Gnaser, H

    2002-01-01

    The emission of negatively charged ions from different fluoride samples (LiF, CaF sub 2 , LaF sub 3 and HfF sub 4) induced by sputtering with a 14.5-keV Cs sup + ion beam was studied. Sputtered ions were detected in a high-sensitivity double-focusing mass spectrometer. In particular, the possible existence of small doubly charged negative molecular ions was investigated. But whereas singly charged species of the general type MF sub n sup - (where M represents a metal atom) were detected with high abundances, stable dianions were observed in an unambiguous way only for one molecule: HfF sub 6 sup 2 sup -. The flight time through the mass spectrometer of approx 35 mu s establishes a lower limit with respect to the intrinsic lifetime of this doubly charged ion. For singly charged anions abundance distributions and, in selected cases, emission-energy spectra were recorded. For two ion species (Ca sup - and HfF sub 5 sup -) isotopic fractionation effects caused by the (velocity dependent) ionization process were d...

  16. Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo; Fengler, Franz P. G.; Jordan, Paul M.; Krause, Andreas [NaMLab gGmbH, Nöthnitzerstr. 64, 01187 Dresden (Germany); Tröger, David [Westsächsische Hochschule Zwickau, Fachgruppe Nanotechnologie, Dr.-Friedrichs-Ring 2a, 08056 Zwickau (Germany); Mikolajick, Thomas [NaMLab gGmbH, Nöthnitzerstr. 64, 01187 Dresden, Germany and TU Dresden, Institut für Halbleiter- und Mikrosystemtechnik (IHM), 01062 Dresden (Germany)

    2016-03-15

    Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{sup −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.

  17. An experiment on the dynamics of ion implantation and sputtering of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B. [Plasma Science and Fusion Center, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2014-02-15

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  18. Lightness, brightness, and brightness contrast: 2. Reflectance variation.

    Science.gov (United States)

    Arend, L E; Spehar, B

    1993-10-01

    Changes of annulus luminance in traditional disk-and-annulus patterns can be perceived to be either reflectance or illuminance changes. In the present experiments, we examined the effect of varying annulus reflectance. In Experiment 1, we placed test and standard patch-and-surround patterns in identical Mondrian patchworks. Only the luminance of the test surround changed from trial to trial, appearing as reflectance variation under constant illumination. Lightness matches were identical to brightness matches, as expected. In Experiment 2, we used only the patch and surround (no Mondrian). Instructions said that the illumination would change from trial to trial. Lightness and brightness-contrast data were identical; illumination gradients were indistinguishable from reflectance gradients. In Experiment 3, the patterns were the same, but the instructions said that the shade of gray of the test surround would change from trial to trial. Lightness matches were identical to brightness matches, again confirming the ambiguity of disk-and-annulus patterns.

  19. Nanoscale growth twins in sputtered metal films

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit [Los Alamos National Laboratory; Anderoglu, Osman [Los Alamos National Laboratory; Hoagland, Richard G [Los Alamos National Laboratory; Zhang, X [TEXAS A& M

    2008-01-01

    We review recent studies on the mechanical properties of sputtered Cu and 330 stainless steel films with {l_brace}1 1 1{r_brace} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering and the deformation mechanisms that enable usually high strengths in nanotwinned structures are highlighted. Growth twins in sputtered films possess good thermal stability at elevated temperature, providing an approach to extend the application of high strength nanostructured metals to higher temperatures.

  20. Bright Light Treatment in Psychiatry

    Directory of Open Access Journals (Sweden)

    Pinar Guzel Ozdemir

    2017-06-01

    Full Text Available Bright light treatment is a treatment modality that leads elevation of mood due to attenuation in depressive symptoms, regulation in circadian rhythm activity, increase the effect of antidepressants and amelioration in sleep quality. Bright light treatment is considered among the first-line treatments for seasonal affective disorder because of high response rates. Additionally, bright light treatment being extended to other conditions, including non-seasonal mood disorders, Alzheimer's disease, circadian rhythm sleep disorders, eating disorders, attention deficit hyperactivity disorder and other behavioral syndromes is likely to have a far reached use. Side effects are often temporary and can generally be overcome by reducing exposure time. The central focus on this paper is to review the action mechanisms, efficacy, usage areas, the ways of administration and side effects of the light treatment. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(2.000: 177-188

  1. Network based sky Brightness Monitor

    Science.gov (United States)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  2. Low-energy sputterings with the Monte Carlo Program ACAT

    Science.gov (United States)

    Yamamura, Y.; Mizuno, Y.

    1985-05-01

    The Monte Carlo program ACAT was developed to determine the total sputtering yields and angular distributions of sputtered atoms in physical processes. From computer results of the incident-energy dependent sputterings for various ion-target combinations the mass-ratio dependence and the bombarding-angle dependence of sputtering thresholds was obtained with the help of the Matsunami empirical formula for sputtering yields. The mass-ratio dependence of sputtering thresholds is in good agreement with recent theoretical results. The threshold energy of light-ion sputtering is a slightly increasing function of angle of incidence, while that of heavy-ion sputtering has a minimum value near theta = 60 deg. The angular distributions of sputtered atoms are also calculated for heavy ions, medium ions, and light ions, and reasonable agreements between calculated angular distributions and experimental results are obtained.

  3. Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2015-12-01

    Full Text Available Encouraged by recent studies and considering the well-documented problems occurring during AlN synthesis, we have chosen two diagnostic methods which would enable us to fully control the process of synthesis and characterize the synthesized aluminum nitride films. In our experiment we have compared the results coming from OES measurements of plasma and circulating power characteristics of the power supply with basic features of the deposited layers. The dual magnetron system operating in AC mode was used in our studies. Processes of aluminum target sputtering were carried out in an atmosphere of a mixture of argon and nitrogen. The plasma emission spectra were measured with the use of a monochromator device. Analyses were made by comparing the positions and intensities of spectral lines of the plasma components. The results obtained allowed us to characterize the sputtering process under various conditions of gas mixture compositions as well as power distribution more precisely, which is reported in this work. The measured spectra were related to the deposition rate, the structure morphology of the films and chemical composition. Our work proved that the use of plasma OES and circulating power measurements make possible to control the process of sputtering and synthesis of deposited films in situ.

  4. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  5. Strong blue light emission from Eu-doped SiOC prepared by magnetron sputtering

    Science.gov (United States)

    Lin, Zhenxu; Guo, Yanqing; Wang, Xiang; Song, Chao; Song, Jie; Zhang, Yi; Huang, Rui

    2015-08-01

    The Eu-doped SiOC films were prepared by magnetron sputtering technique at a low temperature of 250°C. The effects of the Eu2O3 deposited power and post-thermal annealing temperature on the PL characteristics of the Eu-doped SiOC films were investigated. It is found that the photoluminescence intensity could be enhanced by more than tenfold by increasing the Eu2O3 deposited power from 20W to 80W. Furthermore, very bright blue light emission can be clearly observed with the naked eye in a bright room for the Eu-doped SiOC films prepared at a Eu2O3 deposited power of 80 W. The improved PL intensity is attributed to the increasing number density of europium silicate clusters as a result of the increasing Eu2O3 deposited power as well as high annealing temperatures.

  6. Deposition of thin films by magnetron sputtering molybdenum in samples of pure copper; Deposicao de filmes finos de molibdenio por magnetron sputtering em amostra de cobre puro

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, N.M.; Almeida, E.O. de; Alves Junior, C. [Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Nova, PPGCEM - Natal, RN (Brazil); Lourenco, J.M. [Instituto Federal de Educacao, Ciencias e Tecnologia do Rio Grande do Norte (IFRN), Natal, RN (Brazil)

    2010-07-01

    The deposition surface is a process of thermochemical treatment, which involves the deposition of a thin film usually about one to two microns on a metallic substrate, which constitutes one of the most important surface engineering techniques. The plasma deposition process with the configuration of magnetron sputtering it is removing material from a solid surface (target) through the impact of energetic particles from plasma. The aim of this study is to characterize the microstructure of the material under study using the techniques of optical microscopy and scanning electron microscopy. (author)

  7. Computer simulation of sputtering of graphite target in magnetron sputtering device with two zones of erosion

    Directory of Open Access Journals (Sweden)

    Bogdanov R.V.

    2015-03-01

    Full Text Available A computer simulation program for discharge in a magnetron sputtering device with two erosion zones was developed. Basic laws of the graphite target sputtering process and transport of sputtered material to the substrate were taken into account in the Monte Carlo code. The results of computer simulation for radial distributions of density and energy flux of carbon atoms on the substrate (at different values of discharge current and pressure of the working gas confirmed the possibility of obtaining qualitative homogeneous films using this magnetron sputtering device. Also the discharge modes were determined for this magnetron sputtering device, in which it was possible to obtain such energy and density of carbon atoms fluxes, which were suitable for deposition of carbon films containing carbon nanotubes and other nanoparticles.

  8. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  9. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  10. Iapetus Bright and Dark Terrains

    Science.gov (United States)

    1990-01-01

    Saturn's outermost large moon, Iapetus, has a bright, heavily cratered icy terrain and a dark terrain, as shown in this Voyager 2 image taken on August 22, 1981. Amazingly, the dark material covers precisely the side of Iapetus that leads in the direction of orbital motion around Saturn (except for the poles), whereas the bright material occurs on the trailing hemisphere and at the poles. The bright terrain is made of dirty ice, and the dark terrain is surfaced by carbonaceous molecules, according to measurements made with Earth-based telescopes. Iapetus' dark hemisphere has been likened to tar or asphalt and is so dark that no details within this terrain were visible to Voyager 2. The bright icy hemisphere, likened to dirty snow, shows many large impact craters. The closest approach by Voyager 2 to Iapetus was a relatively distant 600,000 miles, so that our best images, such as this, have a resolution of about 12 miles. The dark material is made of organic substances, probably including poisonous cyano compounds such as frozen hydrogen cyanide polymers. Though we know a little about the dark terrain's chemical nature, we do not understand its origin. Two theories have been developed, but neither is fully satisfactory--(1) the dark material may be organic dust knocked off the small neighboring satellite Phoebe and 'painted' onto the leading side of Iapetus as the dust spirals toward Saturn and Iapetus hurtles through the tenuous dust cloud, or (2) the dark material may be made of icy-cold carbonaceous 'cryovolcanic' lavas that were erupted from Iapetus' interior and then blackened by solar radiation, charged particles, and cosmic rays. A determination of the actual cause, as well as discovery of any other geologic features smaller than 12 miles across, awaits the Cassini Saturn orbiter to arrive in 2004.

  11. LSST Site: Sky Brightness Data

    Science.gov (United States)

    Burke, Jamison; Claver, Charles

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is an upcoming robotic survey telescope. At the telescope site on Cerro Pachon in Chile there are currently three photodiodes and a Canon camera with a fisheye lens, and both the photodiodes and Canon monitor the night sky continuously. The NIST-calibrated photodiodes directly measure the flux from the sky, and the sky brightness can also be obtained from the Canon images via digital aperture photometry. Organizing and combining the two data sets gives nightly information of the development of sky brightness across a swath of the electromagnetic spectrum, from blue to near infrared light, and this is useful for accurately predicting the performance of the LSST. It also provides data for models of moonlight and twilight sky brightness. Code to accomplish this organization and combination was successfully written in Python, but due to the backlog of data not all of the nights were processed by the end of the summer.Burke was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  12. Sputtering of Lunar Regolith by Solar Wind Protons and Heavy Ions, and General Aspects of Potential Sputtering

    Science.gov (United States)

    Alnussirat, S. T.; Sabra, M. S.; Barghouty, A. F.; Rickman, Douglas L.; Meyer, F.

    2014-01-01

    New simulation results for the sputtering of lunar soil surface by solar-wind protons and heavy ions will be presented. Previous simulation results showed that the sputtering process has significant effects and plays an important role in changing the surface chemical composition, setting the erosion rate and the sputtering process timescale. In this new work and in light of recent data, we briefly present some theoretical models which have been developed to describe the sputtering process and compare their results with recent calculation to investigate and differentiate the roles and the contributions of potential (or electrodynamic) sputtering from the standard (or kinetic) sputtering.

  13. Effect of different methods of preliminary surface treatment and magnetron sputtering on the adhesion of Si coatings

    Science.gov (United States)

    Borisov, D. P.; Slabodchikov, V. A.; Kuznetsov, V. M.

    2017-05-01

    The paper presents research results on the adhesion of Si coatings deposited by magnetron sputtering on NiTi substrates after preliminary surface treatment (cleaning and activation) with low-energy ion beams and gas discharge plasma. The adhesion properties of the coatings obtained by two methods are analyzed and compared using data of scratch and spherical abrasion tests.

  14. Physical sputtering of metallic systems by charged-particle impact

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  15. Sputtering and mixing of supported nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Sáez, J.C., E-mail: jc.jimenez@upm.es [Dept. Física y Química Aplicadas a la Técnica Aeronaútica, ETSIAE, Universidad Politécnica de Madrid (UPM), 28040 Madrid (Spain); Pérez-Martín, A.M.C.; Jiménez-Rodríguez, J.J. [Dept. Física Aplicada III (Electricidad y Electrónica), Facultad de Ciencias Físicas, Universidad Complutense de Madrid (UCM), 28040 Madrid (Spain)

    2013-12-01

    Sputtering and mixing of Co nanoparticles supported in Cu(0 0 1) under 1-keV argon bombardment are studied using molecular-dynamics simulations. Particles of different initial size have been considered. The cluster height decreases exponentially with increasing fluence. In nanoparticles, sputtering yield is significantly enhanced compared to bulk. In fact, the value of this magnitude depends on the cluster height. A theoretical model for sputtering is introduced with acceptable results compared to those obtained by simulation. Discrepancies happen mainly for very small particles. Mixing rate at the interface is quantified; and besides, the influence of border effects for clusters of different initial size is assessed. Mixing rate and border length–surface area ratio for the initial interface show a proportionality relation. The phenomenon of ion-induced burrowing of metallic nanoparticles is analysed.

  16. Control of ruthenium oxide nanorod length in reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Michael W [School of Engineering, Electrical Engineering Program, University of Vermont, Burlington, VT 05405 (United States); Varhue, Walter J [School of Engineering, Electrical Engineering Program, University of Vermont, Burlington, VT 05405 (United States); Hitt, Darren L [School of Engineering, Mechanical Engineering Program, University of Vermont, Burlington, VT 05405 (United States); Adams, Edward [IBM Microelectronics, Essex Junction, VT 05452 (United States)

    2008-01-30

    Ruthenium oxide nanorods have been grown on Si wafer substrates under a variety of pre-existing surface conditions by reactive radio frequency sputtering in an electron cyclotron resonant plasma process. Nanorod formation by this method is fast relative to that observed in other processes reported in the literature, with nucleation being the rate determining step. Growth in the axial direction is limited by the availability of ruthenium precursors which competes with their consumption in the lateral growth of the nanorods. The availability of Ru precursors at the top of the nanorods can be controlled by surface diffusion and therefore substrate temperature. The ultimate length of the nanorods is determined by the mole fraction of oxygen used in the reactor ambient through the production of mobile Ru hyperoxide precursors. The results of this investigation show the way to develop a process for producing a high density field of nanorods with a specified length.

  17. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  18. Thin films preparation of the Ti-Al-O system by rf-sputtering;Preparacion de peliculas delgadas del sistema Ti-Al-O mediante rf-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Montes de Oca, J. A.; Ceballos A, J.; Galaviz P, J. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamaulipas (Mexico); Manaud, J. P.; Lahaye, M. [Centre National de la Recherche Scientifique, Institut de Chimie de la Matiere Condensee, Universite Bordeaux I, 87, Av. du Dr. Schweitzer, F-33608 Pessac-Cedex (France); Munoz S, J., E-mail: jmontedeocacv@ipn.m [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico)

    2010-07-01

    In the present work Ti-Al-O thin films were synthesized by rf-sputtering technique on glass and silicon (Si) substrates using Ti Al and Ti{sub 3}Al targets in a sputtering chamber with an Ar-O{sub 2} atmosphere. Ti-Al-O thin films were obtained varying experimental parameters such as oxygen percent fed to the reaction chamber, plasma power density and substrate temperature. The films deposited on glass substrates were used to evaluate their optical properties, while those deposited on Si substrates were used to evaluate mechanical and morphological properties. The crystalline structure, morphology, chemical composition and optical properties of the films were evaluated by X-ray diffraction, high-resolution scanning electron microscopy, Auger electron microscopy and visible UV spectroscopy. Films thicknesses were measured using a profiler. The roughness and mechanical properties such as hardness and Young modulus were analyzed by atomic force microscopy and nano indentation technique, respectively. (Author)

  19. Collimated Magnetron Sputter Deposition for Mirror Coatings

    DEFF Research Database (Denmark)

    Vickery, A.; Cooper-Jensen, Carsten P.; Christensen, Finn Erland

    2008-01-01

    At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence that a collimat......At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence...

  20. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  1. Metal bonding during sputter film deposition

    NARCIS (Netherlands)

    Shimatsu, T.; Shimatsu, T.; Mollema, R.H.; Monsma, D.J.; Keim, Enrico G.; Lodder, J.C.

    1998-01-01

    We studied the bonding between two flat Si substrates with thin metal films. The bonding was accomplished during thin film sputter deposition on contamination free surfaces of metal films. In this work we used Ti and Pt. Successful bonding of these metal films (each having a thickness of 10–20 nm)

  2. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.

    1992-01-01

    were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...

  3. KRYPTON INCORPORATION IN SPUTTERED SILICON FILMS

    NARCIS (Netherlands)

    GREUTER, MJW; NIESEN, L; HAKVOORT, RA; DEROODE, J; VANVEEN, A; BERNTSEN, AJM; SLOOF, WG

    1993-01-01

    The incorporation of Kr in sputtered a-Si films has been investigated in a systematic way by varying the Kr to Si flux, yielding Kr concentrations up to 5 at %. Compositions were determined with X-ray microanalysis. A model has been applied to describe the composition of the growing film. The layers

  4. Vacuum Sputtered and Ion-Plated Coatings for Wear and Corrosion Protection

    Science.gov (United States)

    Spalvins, T.

    1982-01-01

    The plasma or ion-assisted coating techniques such as sputtering and ion plating are discussed in view of wear and corrosion protection. The basic processes and the unique features of the technique are discussed in regard to the synthesis and development of high reliability wear and corrosion resistant films. The ions of the plasma which transfer energy, momentum, and charge to the substrate and the growing films can be beneficially used. As a result, coating adherence and cohesion is improved. Favorable morphological growth such as high density and porosity-free films can be developed, and residual stresses can be reduced.

  5. Texture of obliquely sputtered ZnO thin films

    Science.gov (United States)

    Červeň, I.; Lacko, T.; Novotný, I.; Tvarožek, V.; Harvanka, M.

    1993-08-01

    A series of ZnO polycrystalline thin films were prepared on Si(100)/SiO 2/TiN substrates by radio frequency (RF) sputtering at various angles between the sputter direction and the substrate normal. The X-ray diffraction θ/2 θ scans confirmed the expected c-orientation of the films, depending at some extent on the angle of sputtering. The limited pole figures, obtained by rocking-curve measurement, show a slight deviation of the texture axis from the substrate normal direction, which increase with the sputtering angle. The texture axis is inclined not toward the sputtering direction, as was expected, but quite opposite.

  6. How Bright Can Supernovae Get?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  7. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis

    OpenAIRE

    Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Lewy, Alfred J.

    1989-01-01

    Eight male subjects were exposed to either bright light or dim light between 0600 and 0900 h for 3 consecutive days each. Relative to the dim light condition, the bright light treatment advanced the evening rise in plasma melatonin and the time of sleep termination (sleep onset was held constant) for on average ~1 h. The magnitude of the advance of the plasma melatonin rise was dependent on its phase in dim light. The reduction in sleep duration was at the expense of rapid-eye-movement (REM) ...

  8. Tungsten erosion at low energy impact under steady state plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, N.V. [Institute of Nuclear Fusion, Russian Research Center `Kurchatov Inst.`, Moscow (Russian Federation); Khripunov, B.I. [Institute of Nuclear Fusion, Russian Research Center `Kurchatov Inst.`, Moscow (Russian Federation); Petrov, V.B. [Institute of Nuclear Fusion, Russian Research Center `Kurchatov Inst.`, Moscow (Russian Federation); Shapkin, V.V. [Institute of Nuclear Fusion, Russian Research Center `Kurchatov Inst.`, Moscow (Russian Federation); Pistunovich, V.I. [Institute of Nuclear Fusion, Russian Research Center `Kurchatov Inst.`, Moscow (Russian Federation)

    1995-04-01

    Tungsten is considered as one of the candidate materials for application in future fusion devices for plasma facing components. The calculated threshold energy of deuterium for physical sputtering of tungsten is rather high [3] (341 eV). Thus one could expect that tungsten surface sputtering would be absent in pure hydrogen edge plasma with low temperature. Continuous deuterium plasma conditions were used in these experiments to investigate the tungsten erosion characteristics. ((orig.)).

  9. Production of Zr-89 using sputtered yttrium coin targets (89)Zr using sputtered yttrium coin targets.

    Science.gov (United States)

    Queern, Stacy Lee; Aweda, Tolulope Aramide; Massicano, Adriana Vidal Fernandes; Clanton, Nicholas Ashby; El Sayed, Retta; Sader, Jayden Andrew; Zyuzin, Alexander; Lapi, Suzanne Elizabeth

    2017-07-01

    An increasing interest in zirconium-89 ((89)Zr) can be attributed to the isotope's half-life which is compatible with antibody imaging using positron emission tomography (PET). The goal of this work was to develop an efficient means of production for (89)Zr that provides this isotope with high radionuclidic purity and specific activity. We investigated the irradiation of yttrium sputtered niobium coins and compared the yields and separation efficiency to solid yttrium coins. The sputtered coins were irradiated with an incident beam energy of 17.5MeV or 17.8MeV providing a degraded transmitted energy through an aluminum degrader of 12.5MeV or 12.8MeV, respectively, with various currents to determine optimal cyclotron conditions for (89)Zr production. Dissolution of the solid yttrium coin took 2h with 50mL of 2M HCl and dissolution of the sputtered coin took 15-30min with 4mL of 2M HCl. During the separation of (89)Zr from the solid yttrium coins, 77.9 ± 11.2% of the activity was eluted off in an average of 7.3mL of 1M oxalic acid whereas for the sputtered coins, 91 ± 6% was eluted off in an average of 1.2mL of 1M oxalic acid with 100% radionuclidic purity. The effective specific activity determined via DFO-SCN titration from the sputtered coins was 108±7mCi/μmol as compared to 20.3mCi/μmol for the solid yttrium coin production. ICP-MS analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178μg of yttrium in the final solution and 99.93-100% of yttrium removed with remaining range of 0-42μg of yttrium in the final solution, respectively. The specific activity calculated for the solid coin and 3 different sputtered coins using the concentration of Zr found via ICP-MS was 140±2mCi/μmol, 300±30mCi/μmol, 410±60mCi/μmol and 1719±5mCi/μmol, respectively. Labeling yields of the (89)Zr produced via sputtered targets for (89)Zr- DFO-trastuzumab were >98%. Overall, these results show the irradiation of yttrium sputtered niobium

  10. Charge ordering in reactive sputtered (1 0 0) and (1 1 1) oriented epitaxial Fe3O4 films

    KAUST Repository

    Mi, Wenbo

    2013-06-01

    Epitaxial Fe3O4 films with (1 0 0) and (1 1 1) orientations fabricated by reactive sputtering present simultaneous magnetic and electrical transitions at 120 and 124 K, respectively. The symmetry decreases from face-centered cubic to monoclinic structure across the Verwey transition. Extra spots with different brightness at different positions appear in selected-area diffraction patterns at 95 K. The extra spots come from the charge ordering of outer-layer electrons of Fe atoms, and should be related to the charge ordering of octahedral B-site Fe atoms. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Brightness and darkness as perceptual dimensions

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2007-01-01

    A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The

  12. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  13. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  14. GaAs Films Prepared by RF-Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    L.H. Ouyang; D.L. Rode; T. Zulkifli; B. Abraham-Shrauner; N. Lewis; M.R. Freeman

    2001-08-01

    The authors reported on the optical absorption, adhesion, and microstructure of RF-magnetron sputtered films of hydrogenated amorphous and microcrystalline GaAs films for the 1 to 25 {micro}m infrared wavelength rate. Sputtering parameters which were varied include sputtering power, temperature and pressure, and hydrogen sputtering-gas concentration. TEM results show a sharp transition from purely amorphous GaAs to a mixture of microcrystalline GaAs in an amorphous matrix at 34 {+-} 2 C. By optimizing the sputtering parameters, the optical absorption coefficient can be decreased below 100 cm{sup -1} for wavelengths greater than about 1.25 {micro}m. These results represent the lowest reported values of optical absorption for sputtered films of GaAs directly measured by spectrophotometry for the near-infrared wavelength region.

  15. Sputtering: A vacuum deposition method for coating material

    Science.gov (United States)

    Spalvins, T.

    1972-01-01

    The sputtering process is described in terms of its features: versatility, momentum transfer, configuration of target, precise controls and the relatively slow deposition rate. Sputtered films are evaluated in terms of adherence, coherence, and internal stresses. The strong adherence is attributed to the high kinetic energies of the sputtered material, sputter etched (cleaned) surface, and the submicroscopic particle size. An illustration is a sputtered solid film lubricant such as MoS2. Friction tests were conducted on a thin, 2000 A deg thick MoS2 film. These films are very dense and without observable pinholes, and the particle to particle cohesion is strong. Tolerances (film thickness) can be controlled to a millionth of a centimeter. Very adherent films of sputtered Teflon can be deposited in a single operation on any type of material (metal, glass, paper) and on any geometrical configuration with a dense adherent film.

  16. Evaluations of different metals for manufacturing mirrors of Thomson scattering system for the LHD divertor plasma

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.; Konovalov, V. [IPP, Kharkov (Ukraine); Motojima, O.; Narihara, K.; Becker, M.; Schunke, B.

    1996-11-01

    We compared various metals which is to be used as Thomson-scattering-laser-guiding mirrors in the Large Helical Device (LHD) plasma, in views of reflectivity, resistance to the long-term sputtering by low energy charge exchange atoms and to multi-shot laser-induced damage. Gold and rhodium mirrors, which are superior in high resistance to sputtering of charge exchange atoms and in high reflectivity, will be destroyed in 10{sup 4} LHD-plasma shots; molybdenum, which is inferior to gold and rhodium in the sputtering resistance and reflectivity, will survive up to 10{sup 6} LHD-plasma shots. (author)

  17. Modeling and stability analysis of the nonlinear reactive sputtering process

    Directory of Open Access Journals (Sweden)

    György Katalin

    2011-12-01

    Full Text Available The model of the reactive sputtering process has been determined from the dynamic equilibrium of the reactive gas inside the chamber and the dynamic equilibrium of the sputtered metal atoms which form the compound with the reactive gas atoms on the surface of the substrate. The analytically obtained dynamical model is a system of nonlinear differential equations which can result in a histeresis-type input/output nonlinearity. The reactive sputtering process has been simulated by integrating these differential equations. Linearization has been applied for classical analysis of the sputtering process and control system design.

  18. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  19. Argon ion sputtering of niobium and niobium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter Francis [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    Polycrystalline niobium was irradiated by a beam of 15-keV argon ions, and the effect of certain metallurgical and environmental conditions was studied. Macroscopic sputtering yields were measured for well-annealed niobium and also for Nb--V and Nb--O alloys, cold-worked and recovered niobium and for sputtering conducted in an oxygen atmosphere. In all cases, the resulting surface topography was characterized by scanning electron microscopy. Selected area electron channeling patterns were used to determine the texture of the annealed niobium and to correlate sputter-induced surface features with grain orientations. The surface chemistry of sputtered targets was checked with a scanning Auger microprobe. Results indicate that ion channeling and surface mobility are important in the 15-keV argon sputtering of niobium. The sputtering yield for annealed niobium was accurately described by modifying a sputtering theory for amorphous solids through use of a correction factor based on ion channeling which was calculated from the experimentally determined texture. The sputter topography was varied and, at times, complex. Surface features were dependent on crystallography, background pressure, temperature and the metallurgical conditions of cold work, recovery, annealing, interstitial solute and precipitation structure. The sputtering yield was also determined to be a function of the metallurgical conditions, the crystallography, and pressure. 62 figures, 10 tables.

  20. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  1. Space Brightness Evaluation for a Daylit Room

    Directory of Open Access Journals (Sweden)

    Takashi Maruyama

    2011-05-01

    Full Text Available One of the most important problems for lighting design is how to reduce an electric energy. One way to solve this problem is use of daylight, but little is known how to perceive a brightness of a room illuminated by daylight come in through a window and artificial light. Although the horizontal illuminance increases because of daylight, we would not perceive the room as bright as brightness estimated by the illuminance. The purpose of this study is to measure the space brightness for daylit room and to propose a evaluation method. The experiment was conducted with a couple of miniature office rooms, standard room and test room. Test room has several types of windows and standard room has no window. Subject was asked to evaluate the brightness of the test room relative to the standard room with method of magnitude estimation. It was found that brightness of daylit room did not increase simply with horizontal illuminance. Subject perceived a daylit room darker than a room illuminated only by the artificial light even if horizontal illuminance of these room was same. The effect of daylight on space brightness would vary with the window size and intensity of daylight or artificial light.

  2. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  3. Optimization of scandium oxide growth by high pressure sputtering on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Feijoo, P.C., E-mail: pedronska@fis.ucm.es; Pampillon, M.A.; San Andres, E.; Lucia, M.L.

    2012-12-30

    This work demonstrates the viability of scandium oxide deposition on silicon by means of high pressure sputtering. Deposition pressure and radio frequency power are varied for optimization of the properties of the thin films and the ScO{sub x}/Si interface. The physical characterization was performed by ellipsometry, Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. Aluminum gate electrodes were evaporated for metal-insulator-semiconductor (MIS) fabrication. From the electrical characterization of the MIS devices, the density of interfacial defects is found to decrease with deposition pressure, showing a reduced plasma damage of the substrate surface for higher pressures. This is also supported by lower flatband voltage shifts in the capacitance versus voltage hysteresis curves. Sputtering at high pressures (above 100 Pa) reduces the interfacial SiO{sub x} formation, according to the infrared spectra. The growth rates decrease with deposition pressure, so a very accurate control of the layer thicknesses could be provided. - Highlights: Black-Right-Pointing-Pointer Scandium oxide is considered as a high permittivity dielectric. Black-Right-Pointing-Pointer Scandium oxide was deposited on Si by high pressure sputtering. Black-Right-Pointing-Pointer Characterization was performed for deposition condition optimization. Black-Right-Pointing-Pointer High deposition pressures showed higher film and interface quality.

  4. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    Science.gov (United States)

    Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang

    2007-05-01

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  5. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaozheng [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing, 100083 (China); Xu Zheng [General Research Institute for Non-ferrous Metals, Beijing 100088 (China); Shen Zhigang [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing, 100083 (China)

    2007-05-07

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  6. High-rate deposition of optical coatings by closed-field magnetron sputtering

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Waddell, E. M.; Walls, J. M.

    2005-09-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in a wide range of optical applications. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to <+/-1% is accomplished simply using time. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. The CFM configuration also allows plasma treatment of surfaces prior to deposition, allowing optimisation of coating adhesion to substrates such as plastics. This paper presents data on optical, durability and environmental properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process for a range of optical applications are described.

  7. Magnetron reactively sputtered Ti-DLC coatings on HNBR rubber: The influence of substrate bias

    OpenAIRE

    Bui, X.L.; Pei, Y.T.; De Hosson, J. Th. M.

    2008-01-01

    In this study, Ti-containing diamond-like carbon (Ti-DLC) coatings have been deposited on HNBR (hydrogenated nitrile butadiene) rubber and also on Si wafer as reference via unbalanced magnetroli reactive sputtering from a Ti target in C2H2/Ar plasma. The deposition rates of coatings on rubber and Si wafer were about the same. Columnar structures resulting from a rough interface were often observed in the coatings deposited on rubbers. Only at a high bias voltage of -300 V the coating on HNBR ...

  8. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  9. Electrical properties of titanium nitride films synthesized by reactive magnetron sputtering

    Science.gov (United States)

    Mohammed, W. M.; Gumarov, A. I.; Vakhitov, I. R.; Yanilkin, I. V.; Kiiamov, A. G.; Kharintsev, S. S.; Nikitin, S. I.; Tagirov, L. R.; Yusupov, R. V.

    2017-11-01

    Reactive dc magnetron sputtering was employed to produce thin films of titanium nitride using titanium metallic target, argon as the plasma gas and nitrogen as the reactive gas. A set of the films was studied deposited on the Si, fused silica and crystalline (001) MgO substrates with various deposition conditions. The films deposited on the Si and SiO2 substrates are polycrystalline while deposited at slow rate to the heated to 600°C MgO substrate are highly epitaxial according both to XRD and LEED data. Electrical resistivity of the films was measured by means of the four-probe van der Pauw method.

  10. A spectroscopic atlas of bright stars

    CERN Document Server

    Martin, Jack

    2009-01-01

    Suitable for amateur astronomers interested in practical spectroscopy or spectrography, this reference book identifies more than 70 (northern hemisphere) bright stars that are suitable observational targets. It provides finder charts for locating these sometimes-familiar stars.

  11. Nimbus-5 ESMR Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  12. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Stranak, V., E-mail: stranak@physik.uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Wulff, H. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Res. Center, Dept. of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Zietz, C. [University of Rostock, Dept. of Orthopaedics, Doberaner Str. 142, 18057 Rostock (Germany); Arndt, K. [University of Rostock, Dept. of Med. Microbiol., Virology and Hygiene, Schillingallee 70, 18057 Rostock (Germany); Bogdanowicz, R. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Res. Center, Dept. of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Bader, R. [University of Rostock, Dept. of Orthopaedics, Doberaner Str. 142, 18057 Rostock (Germany); Podbielski, A. [University of Rostock, Dept. of Med. Microbiol., Virology and Hygiene, Schillingallee 70, 18057 Rostock (Germany); Hubicka, Z. [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 180 00 Prague (Czech Republic); Hippler, R. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2011-10-10

    The antibacterial effect of thin titanium-copper (Ti-Cu) films combined with sufficient growth of human osteoblastic cells is reported in the paper. Thin Ti-Cu films were prepared by three different plasma-assisted magnetron sputtering methods: direct current magnetron sputtering (dc-MS), dual magnetron sputtering (dual-MS) as well as dual high power impulse magnetron sputtering (dual-HiPIMS). The antimicrobial effect is caused by copper released from the metallic Ti-Cu films, which was measured by atomic absorption spectroscopy (AAS). The copper release is influenced by the chemical and physical properties of the deposited films and was investigated by X-ray diffractometry and X-ray reflectometry (GIXD and XR) techniques. It was found that, within the first 24 h the amount of Cu released from dual-HiPIMS films (about 250 {mu}g) was much higher than from dc-MS and dual-MS films. In vitro planktonic growth tests on Ti-Cu surfaces for Staphylococcus epidermidis and S. aureus demonstrated the killing of both bacteria using the Ti-Cu films prepared using the dual-HiPIMS technique. The killing effects on biofilm bacteria were less obvious. After the total release of copper from the Ti-Cu film the vitality of exposed human osteoblast MG-63 cells increased significantly. An initial cytotoxic effect followed by the growth of osteoblastic cells was demonstrated. The cytotoxic effect combined with growth of osteoblastic cells could be used in joint replacement surgery to reduce the possibility of infection and to increase adoption of the implants. Highlights: {yields} Ti-Cu films with significant cytotoxic effect were prepared by dual-HiPIMS technique. {yields} The cytotoxic effect is caused by total release of copper species from thin films. {yields} The copper release is influenced by crystallography and chemical properties of thin films. {yields} Sufficient growth of osteoblastic cells follows after copper release.

  13. Magnetic topological analysis of coronal bright points

    Science.gov (United States)

    Galsgaard, K.; Madjarska, M. S.; Moreno-Insertis, F.; Huang, Z.; Wiegelmann, T.

    2017-10-01

    Context. We report on the first of a series of studies on coronal bright points which investigate the physical mechanism that generates these phenomena. Aims: The aim of this paper is to understand the magnetic-field structure that hosts the bright points. Methods: We use longitudinal magnetograms taken by the Solar Optical Telescope with the Narrowband Filter Imager. For a single case, magnetograms from the Helioseismic and Magnetic Imager were added to the analysis. The longitudinal magnetic field component is used to derive the potential magnetic fields of the large regions around the bright points. A magneto-static field extrapolation method is tested to verify the accuracy of the potential field modelling. The three dimensional magnetic fields are investigated for the presence of magnetic null points and their influence on the local magnetic domain. Results: In nine out of ten cases the bright point resides in areas where the coronal magnetic field contains an opposite polarity intrusion defining a magnetic null point above it. We find that X-ray bright points reside, in these nine cases, in a limited part of the projected fan-dome area, either fully inside the dome or expanding over a limited area below which typically a dominant flux concentration resides. The tenth bright point is located in a bipolar loop system without an overlying null point. Conclusions: All bright points in coronal holes and two out of three bright points in quiet Sun regions are seen to reside in regions containing a magnetic null point. An as yet unidentified process(es) generates the brigh points in specific regions of the fan-dome structure. The movies are available at http://www.aanda.org

  14. Lattice dynamics during electronic sputtering of solid Ne

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1997-01-01

    Electronic sputtering of solid neon has been studied with molecular dynamics. The cavity formation around an excited atom and particle migration in the surface region, as well as the sputtering process have been studied. A single atomic exciton has been observed to produce a desorption of up...

  15. Application of magnetron sputtering for producing bioactive ceramic ...

    Indian Academy of Sciences (India)

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition ...

  16. Sputtering of solid nitrogen by keV helium ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Sørensen, H.

    1993-01-01

    Solid nitrogen has become a standard material among the frozen molecular gases for electronic sputtering. We have combined measurements of sputtering yields and energy spectra from nitrogen bombarded by 4-10 keV helium ions. The data show that the erosion is electronic rather than knockon...

  17. Sputtering of Thick Deuterium Films by KeV Electrons

    DEFF Research Database (Denmark)

    Thestrup Nielsen, Birgitte; Svendsen, Winnie Edith; Schou, Jørgen

    1994-01-01

    Sputtering of thick films of solid deuterium up to several μm by keV electrons is reported for the first time. The sputtering yield increases within a narrow range of thicknesses around 1.6 μm by about 2 orders of magnitude for 1.5 keV electrons. A similar behavior has not been observed for ion...

  18. Fabrication of oriented hydroxyapatite film by RF magnetron sputtering

    Science.gov (United States)

    Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami

    2017-08-01

    Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.

  19. Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method

    Science.gov (United States)

    Angarita, G.; Palacio, C.; Trujillo, M.; Arroyave, M.

    2017-06-01

    Alumina (Al2O3) thin films were deposited on Si (100) by Magnetron Sputtering in reactive conditions between an aluminium target and oxygen 99.99% pure. The plasma was formed employing Argon with an R.F power of 100 W, the dwelling time was 3 hours. 4 samples were produced with temperatures between 350 and 400 ºC in the substrate by using an oxygen flow of 2 and 8 sccm, the remaining parameters of the process were fixed. The coatings and substrates were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) in order to compare their properties before and after deposition. The films thicknesses were between 47 and 70 nm. The results show that at high oxygen flow the alumina structure prevails in the coatings while at lower oxygen flow only aluminum is deposited in the coatings. It was shown that the temperature increases grain size and roughness while decreasing the thicknesses of the coatings.

  20. Effect of Interior Chromaticness on Space Brightness

    Directory of Open Access Journals (Sweden)

    Hidenari Takada

    2011-05-01

    Full Text Available To design a lighting environment, horizontal illuminance is generally used as the brightness of a room. But it is reported that a subjective brightness does not always match the horizontal illuminance. For example, the room furnished with high saturated colored objects is perceived brighter than the room furnished with achromatic objects, even though the horizontal illuminance is the same. To investigate a effect of interior chromaticness on space brightness, we conducted the experiment in four miniature rooms that were different in terms of chromaticness of interior decorating surfaces, but kept lightness of surfaces constant. Subjects were asked to set the illuminance of reference room, that is furnished with achromatic objects, to equate the brightness of the test room, that is with chromatic objects. Four of seven subjects needed less illuminance to get the equality of space brightness if the test room had a saturated objects. The illuminance ratio of test to reference room was about 1.4. Other three subjects set the illuminance of reference room almost equal to test room. Thus, there are differences between individuals so further work would be needed to estimate the quantitative effect of interior chromaticness on space brightness.

  1. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    Science.gov (United States)

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  2. Sputter-deposited fuel cell membranes and electrodes

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  3. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  4. Leo space plasma interactions

    Science.gov (United States)

    Ferguson, Dale C.

    1991-01-01

    Photovoltaic arrays interact with the low earth orbit (LEO) space plasma in two fundamentally different ways. One way is the steady collection of current from the plasma onto exposed conductors and semiconductors. The relative currents collected by different parts of the array will then determine the floating potential of the spacecraft. In addition, these steady state collected currents may lead to sputtering or heating of the array by the ions or electrons collected, respectively. The second kind of interaction is the short time scale arc into the space plasma, which may deplete the array and/or spacecraft of stored charge, damage solar cells, and produce EMI. Such arcs only occur at high negative potentials relative to the space plasma potential, and depend on the steady state ion currents being collected. New high voltage solar arrays being incorporated into advanced spacecraft and space platforms may be endangered by these plasma interactions. Recent advances in laboratory testing and current collection modeling promise the capability of controlling, and perhaps even using, these space plasma interactions to enable design of reliable high voltage space power systems. Some of the new results may have an impact on solar cell spacing and/or coverslide design. Planned space flight experiments are necessary to confirm the models of high voltage solar array plasma interactions. Finally, computerized, integrated plasma interactions design tools are being constructed to place plasma interactions models into the hands of the spacecraft designer.

  5. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Xue [Rice Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230031 (China); Wu, Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China)

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N{sup +} and Ar{sup +} ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  6. On the determination of energy fluxes at plasma-surface processes

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, H.; Rohde, D.; Steffen, H.; Deutsch, H.; Hippler, R. [Greifswald Univ. (Germany). Inst. fuer Physik; Swinkels, G.H.P.M.; Kroesen, G.M.W. [Technische Univ. Eindhoven (Netherlands). Dept. of Physics

    2001-05-01

    A summary is given of different methods for the determination of the energy influx and its influence on the thermal balance and energetic conditions of substrate surfaces during plasma processing. The discussed mechanisms include heat radiation and kinetic and potential energy of charged particles and sputtered neutrals. For a few examples such as magnetron sputtering of a-C:H films, sputter deposition of aluminum on microparticles, and titanium deposition in a hollow-cathode arc evaporation device the energetic balance of substrates during plasma processing is presented. (orig.)

  7. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Nys, G.M.S.; van der Smagt, M.J.; de Haan, E.H.F.

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level

  8. Closed field magnetron sputtering: new generation sputtering process for optical coatings

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Waddell, E. M.; Walls, J. M.

    2008-09-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to <+/-1% is accomplished simply using time, although optical monitoring can be used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. This paper presents data on optical properties for CFM deposited optical coatings, including anti-reflection, thermal control filters, graded coatings, narrowband filters as well as conductive transparent oxides such as indium tin oxide and carbide films. Benefits of the CFM sputter process are described.

  9. Optical Properties Of Sputtered Si: H

    Science.gov (United States)

    Martin, P. M.; Pawlewicz, W. T.; Mann, I. B.

    1982-04-01

    Sputtered Si:H is a very promising material for use in thin-film solar cells, solar selective absorbers and optical coatings for the near infrared region. Optical property-composition relationships have been determined for Si:H coatings having wide ranges of H content and Si-H bonding. The dependence of the optical absorption edge, optical band gap and refractive index at 2 μm wavelength on H content and Si-H bonding is described. Microstructural and topographical features of the films that influence their absorption and scattering characteristics are discussed. Composition and bonding diagrams used to select deposition conditions for the desired optical properties are also presented. Finally, multilayer Si:H/Si02 all-dielectric laser mirrors with reflectances greater than 99% at 1.315, 2.7 and 3.8 μm are described to illustrate the application of these coatings.

  10. Ion Beam Sputtered Coatings of Bioglass

    Science.gov (United States)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  11. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    Science.gov (United States)

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  12. In situ X-Ray reflectivity measurements during DC sputtering of vanadium carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaufholz, Marthe; Krause, Baerbel; Kotapati, Sunil; Baumbach, Tilo [ISS, Karlsruher Institute for Technology (Germany); Ulrich, Sven; Stueber, Michael [IAM-AWP, Karlsruher Institute for Technology (Germany)

    2012-07-01

    Vanadium Carbide (VC) is a promising candidate for new hard coatings used e.g. in medical applications. For optimising the coating properties, the relation between the microstructure formation, deposition conditions and mechanical properties has to be understood. In situ X-Ray Reflectivity (XRR) is a powerful tool to investigate the changes in thickness, electron density and roughness during deposition. In situ XRR measurements during sputtering were performed at ANKA (MPI-Beamline). Several VC films were deposited on Si with different growth conditions. Before and after deposition a full specular XRR curve was taken. During sputtering, the intensity changes e.g. due to the thickness increase were measured at fixed angular position of the detector. For the analysis of the angle - and time-dependent XRR a simulation tool is used based on the Parratt Algorithm. This tool can be adapted to other materials and deposition techniques. First measurements show that the electron density of the thin films depends strongly on the plasma properties during the deposition. This might give the possibility of a controlled growth of layers with different electron density by tuning the plasma conditions.

  13. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture....... Large apertures result in high order transverse modes, filamentation and spatio-temporal instabilities, all of which degrade spatial coherence and therefore brightness. We shall describe a combined assault on three fronts: (1) minimise aperture size required for a given power by maximising the facet...... damage threshold, (2) for a given aperture, minimise self-focusing and filamentation by minimising the effective nonlinear coefficient (the alpha parameter), and (3) for a given aperture and nonlinear coefficient, develop optical cavities and propagation structures to suppress filamentation and high...

  14. On the Brightness of Supernova Ia

    CERN Document Server

    Zheng, Yijia

    2013-01-01

    Before 1998 the universe expansion was thought to be slowing down. After 1998 the universe expansion is thought to be accelerating up. The key evidence came from the observed brightness of high redshift supernovae Ia in 1998. Astronomers found that the observed brightness of high redshift supernovae Ia is fainter than expected. Astronomers believe this means that the universe expansion is accelerating up. In this paper it is argued that if the ionized gas in the universe space is taken into account, then the brightness of the high redshift supernova Ia should be fainter than expected. The universe expansion does not need to be accelerating up. The exotic form of energy (dark energy) does not need to be introduce

  15. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  16. RADIOASTRON OBSERVATIONS OF THE QUASAR 3C273: A CHALLENGE TO THE BRIGHTNESS TEMPERATURE LIMIT

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Y. Y.; Kardashev, N. S.; Voitsik, P. A.; Kovalev, Yu. A.; Lisakov, M. M.; Sokolovsky, K. V. [Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Lobanov, A. P.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Kraus, A. [Max-Planck-Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 (Germany); Johnson, M. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gurvits, L. I. [Joint Institute for VLBI ERIC, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Jauncey, D. L. [CSIRO Astronomy and Space Sciences, Epping, NSW 1710 (Australia); Ghigo, F. [National Radio Astronomy Observatory, Rt. 28/92, Green Bank, WV 24944-0002 (United States); Ghosh, T.; Salter, C. J. [Arecibo Observatory, NAIC, HC3 Box 53995, Arecibo, Puerto Rico, PR 00612 (United States); Petrov, L. Yu. [Astrogeo Center, 7312 Sportsman Drive, Falls Church, VA 22043 (United States); Romney, J. D. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States)

    2016-03-20

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 10{sup 11.5} K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 10{sup 13} K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 10{sup 13} K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  17. Localized traveling ionization zones and their importance for the high power impulse magnetron sputtering process

    Science.gov (United States)

    Maszl, Christian

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) is a technique to deposit thin films with superior quality. A high ionization degree up to 90% and the natural occurence of high energetic metal ions are the reason why HiPIMS exceeds direct current magnetron sputtering in terms of coating quality. On the other hand HiPIMS suffers from a reduced efficiency, especially if metal films are produced. Therefore, a lot of research is done by experimentalists and theoreticians to clarify the transport mechanisms from target to substrate and to identify the energy source of the energetic metal ions. Magnetron plasmas are prone to a wide range of wave phenomena and instabilities. Especially, during HiPIMS at elevated power/current densities, symmetry breaks and self-organization in the plasma torus are observed. In this scenario localized travelling ionization zones with certain quasi-mode numbers are present which are commonly referred to as spokes. Because of their high rotation speed compared to typical process times of minutes their importance for thin film deposition was underestimated at first. Recent investigations show that spokes have a strong impact on particle transport, are probably the source of the high energetic metal ions and are therefore the essence of HiPIMS plasmas. In this contribution we will describe the current understanding of spokes, discuss implications for thin film synthesis and highlight open questions. This project is supported by the DFG (German Science Foundation) within the framework of the Coordinated Research Center SFB-TR 87 and the Research Department ``Plasmas with Complex Interactions'' at Ruhr-University Bochum.

  18. Fe-N-doped carbon catalysts prepared by hybrid PECVD/sputtering system for oxygen reduction reaction

    Science.gov (United States)

    Hotozuka, Kozue; Yoshie, Ryo; Murata, Hidenobu; Tateno, Akira; Ito, Gen; Kawaguchi, Norihito; Matsuo, Takahiro; Ito, Hitomi; Kinoshita, Ikuo; Tachibana, Masaru

    2017-07-01

    A hybrid plasma-enhanced chemical vapor deposition (PECVD)/sputtering system was developed to prepare iron (Fe)-nitrogen (N)-doped carbon catalysts for oxygen reduction reaction (ORR). This hybrid system combines PECVD effective for the synthesis of nanocarbons with sputtering technique for the doping of metals such as Fe where the amount of the doping can be independently controlled during synthesizing nanocarbons. By using this system, Fe-N-doped carbon catalysts are directly synthesized on carbon papers which have been widely used as a gas diffusion layer in fuel cells. The synthesized catalysts with carbon papers exhibit high ORR activity. This is attributed to Fe-N coordination bonds which are stably formed in the synthesized catalysts.

  19. Formation of nanostructured metallic glass thin films upon sputtering

    Directory of Open Access Journals (Sweden)

    Sergey V. Ketov

    2017-01-01

    Full Text Available Morphology evolution of the multicomponent metallic glass film obtained by radio frequency (RF magnetron sputtering was investigated in the present work. Two modes of metallic glass sputtering were distinguished: smooth film mode and clustered film mode. The sputtering parameters, which have the most influence on the sputtering modes, were determined. As a result, amorphous Ni-Nb thin films with a smooth surface and nanoglassy structure were deposited on silica float glass and Si substrates. The phase composition of the target appeared to have a significant influence on the chemical composition of the deposited amorphous thin film. The differences in charge transport and nanomechanical properties between the smooth and nanoglassy Ni-Nb film were also determined.

  20. Sputter-Resistant Materials for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  1. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information

    National Research Council Canada - National Science Library

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan W; Jin, Ke; Du, Yingge; Neeway, James J; Ryan, Joseph V; Hu, Dehong; Zhang, Kelvin H. L; Hong, Mina; Le Guernic, Solenne; Thevuthasan, Suntharampilai; Wang, Fuyi; Zhu, Zihua

    2015-01-01

    The use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials...

  2. Microwave brightness temperature imaging and dielectric properties ...

    Indian Academy of Sciences (India)

    material collected by former Soviet Union robots and Apollo astronauts. With the completion of the first round of lunar exploration by human beings, the study of lunar microwave brightness tempe- rature was completely forgotten. Accompanied by a new upcoming era of lunar exploration and the development of science and ...

  3. Dark matter in low surface brightness galaxies

    NARCIS (Netherlands)

    de Blok, WJG; McGaugh, SS; Persic, M; Salucci, P

    1997-01-01

    Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB

  4. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  5. Simultaneous brightness contrast of foraging Papilio butterflies

    Science.gov (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro

    2012-01-01

    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast. PMID:22179808

  6. Microwave brightness temperature imaging and dielectric properties ...

    Indian Academy of Sciences (India)

    In this paper,we give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 meter Telescope and Siberian Solar Radio Telescope.We also ... Center for Space Science and Applied Research, Chinese Academy of Sciences, P.O. Box 8701, Beijing 100 080, China.

  7. Dark Matter in Low Surface Brightness Galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; McGaugh, S. S.

    1996-01-01

    Abstract: Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that

  8. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Abstract. For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8⋅5 mbar for 18 h. Argon and ...

  9. The nature of solar brightness variations

    Science.gov (United States)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  10. Recent Developments In Reactively Sputtered Optical Thin Films

    Science.gov (United States)

    Pawlewicz, W. T.; Martin, P. M.; Hays, D. D.; Mann, I. B.

    1982-04-01

    Highlights of a multiyear effort to develop new or improved thin-film, optical-coating materials through the use of reactive sputtering techniques are presented. Reactive sputtering is shown to be an extremely versatile technique capable of straightforward synthesis of broad classes of materials. The exceptional utility of sputtering for preparation of hard coatings such as oxides, nitrides and novel materials based on Si and Ge is described. Some of these coating materials cannot be made by conventional evaporative techniques. Reactive sputtering allows precise control of coating composition, microstructure and the resulting optical properties. Supporting data are presented for TiO2, for which record high damage thresholds were obtained, and for Si-based coatings, for which record low infrared absorptance was achieved. Transparent conductive indium tin oxide (ITO) coatings with low sheet resistance and high visible and near infrared transmission can also be made. These coatings have many electro-optic contact and electromagnetic shielding applications. Examples of multilayer coatings such as all-dielectric and dielectric-enhanced mirrors made from reactively sputtered materials are included, and simple yet elegant fabrication techniques are introduced. The reactive sputtering technique and equipment used specifically for optical coatings are briefly described, and comparison is made with the conventional evaporative approach.

  11. Highly-enhanced reflow characteristics of sputter deposited Cu interconnections of large scale integrated devices by optimizing sputtering conditions

    Science.gov (United States)

    Onishi, Takashi; Mizuno, Masao; Yoshikawa, Tetsuya; Munemasa, Jun; Mizuno, Masataka; Kihara, Teruo; Araki, Hideki; Shirai, Yasuharu

    2013-07-01

    Improving the reflow characteristics of sputtered Cu films was attempted by optimizing the sputtering conditions. The reflow characteristics of films deposited under various sputtering conditions were evaluated by measuring their filling level in via holes. It was found that the reflow characteristics of the Cu films are strongly influenced by the deposition parameters. Deposition at low temperatures and the addition of H2 or N2 to the Ar sputtering gas had a significant influence on the reflow characteristics. Imperfections in the Cu films before and after the high-temperature, high-pressure treatments were investigated by positron annihilation spectroscopy. The results showed that low temperature and the addition of H2 or N2 led to films containing a large number of mono-vacancies, which accelerate atomic diffusion creep and dislocation core diffusion creep, improving the reflow characteristics of the Cu films.

  12. A high-brightness repetitively pulsed UV radiation source using a linearly stabilized surface discharge

    Science.gov (United States)

    Bugrimov, S. N.; Kamrukov, A. S.; Kashnikov, G. N.; Kozlov, N. P.; Ovchinnikov, P. A.

    1986-01-01

    A method is proposed for initiating spark plasma discharges on a dielectric surface in the form of strictly rectilinear plasma channels. The method can be implemented using relatively modest (less than 25 kV) working and ignition voltages and does not require any 'hard' electrotechnical loops. Experiments were carried out in order to study the formation dynamics, energy, and spectral brightness characteristics of linearly stabilized surface discharges having linearly stabilized spark channel and the results are discussed. High-speed photographs of the discharges are presented and the spectrum of radiation from the discharges is illustrated in graphic form. It is shown that linearly stabilized discharges can be used to obtain high-power repetitively pulsed sources of CW ultraviolet radiation in the UV region having a brightness temperature of at least 40 K.

  13. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    Science.gov (United States)

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Purpose Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Methods Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10∶14 light∶dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Results Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1∶1 or 7∶7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. Conclusions The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1∶1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical

  14. Quasi-periodic oscillations in bright galactic-bulge X-ray sources

    Science.gov (United States)

    Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.

    1985-01-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks in which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.

  15. Quasi-periodic oscillations in bright galactic-bulge X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, F.K.; Shibazaki, N.; Alpar, M.A.; Shaham, J.

    1985-10-24

    Quasi-periodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and ScoX-1. It is proposed that these sources are weakly magnetic neutron stars accreting from disks in which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk modulates the accretion rate, causing oscillations in the X-ray flux with many of the observed properties.

  16. Quasiperiodic oscillations in bright galactic-bulge x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, F.K.; Shibazaki, N.; Alpar, M.A.; Shaham, J.

    1985-09-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in x-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks in which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the x-ray flux with many of the properties observed.

  17. Quasiperiodic oscillations in bright galactic-bulge X-ray sources

    Science.gov (United States)

    Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.

    1985-01-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.

  18. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  19. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    Science.gov (United States)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  20. Ion beam sputter coatings for laser technology

    Science.gov (United States)

    Ristau, Detlev; Gross, Tobias

    2005-09-01

    The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.

  1. Sputtering of neutral and ionic indium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.; Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.; Von Nagy-Felsobuki, E.I.

    1993-10-01

    Secondary neutral and secondary ion cluster yields were measured during the sputtering of a polycrystalline indium surface by normally incident {approximately}4 keV Ar{sup +} ions. In the secondary neutral mass spectra, indium clusters as large as In{sub 32} were observed. In the secondary ion mass spectra, indium clusters up to In{sub 18}{sup +} were recorded. Cluster yields obtained from both the neutral and ion channel exhibited a power law dependence on the number of constituent atoms, n, in the cluster, with the exponents measured to be {minus}5.6 and {minus}4. 1, respectively. An abundance drop was observed at n=8, 15, and 16 in both the neutral and ion yield distributions suggesting that the stability of the ion (either secondary ion or photoion) plays a significant role in the observed distributions. In addition, our experiments suggest that unimolecular decomposition of the neutral cluster may also plays an important role in the measured yield distributions.

  2. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...... cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  3. Reactive magnetron sputtering of silicon to produce silicon oxide

    Science.gov (United States)

    Howson, R. P.; Danson, N.; Hall, G. W.

    1997-01-01

    Well controlled silicon dioxide films with refractive index 1.400-1.490 have been deposited at rates of up to 0.85 nm/s from a 100 mm diameter polycrystalline silicon cathode, sputtered at 200 W of 40 kHz rectified AC power in a reactive environment. This frequency used with control of the partial pressure of the oxygen in the system from the cathode potential has demonstrated an ability to reactively sputter silicon oxide of high quality. Stress/stoichiometry curves showed a peak in stress at a refractive index of 1.460 indicating both a dense structure and optimised SiO 2. We have demonstrated a pulsing system for the admission of oxygen into the silicon sputtering system which is under the control of a signal derived from the voltage appearing on the cathode when sputtering at constant power. Such a signal indicates the sputtering status of the target as to the degree to which the cathode is covered with oxide i.e. poisoned. By varying combinations of reactive gas flow rate and switching levels, different film compositions could be reproducibly and reliably obtained. The growing films could be subjected to a externally-varied degree of argon-ion bombardment with a simple modification of the geometry of the unbalanced magnetron used for the sputtering. The amount of ion bombardment with such a system was also a function of the argon sputtering pressure that was used. Increased argon-ion bombardment resulted in more compressive stress in the film that was produced.

  4. Companions of Bright Barred Shapley Ames Galaxies

    OpenAIRE

    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson

    2003-01-01

    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  5. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  6. TC4 AMPR BRIGHTNESS TEMPERATURE (TB) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TC4 AMPR Brightness Temperature (TB) dataset consists of brightness temperature data from July 19, 2007 through August 8, 2007. The Tropical Composition, Cloud...

  7. Brightness illusion in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo

    2016-02-01

    A long-standing debate surrounds the issue of whether human and nonhuman species share similar perceptual mechanisms. One experimental strategy to compare visual perception of vertebrates consists in assessing how animals react in the presence of visual illusions. To date, this methodological approach has been widely used with mammals and birds, while few studies have been reported in distantly related species, such as fish. In the present study we investigated whether fish perceive the brightness illusion, a well-known illusion occurring when 2 objects, identical in physical features, appear to be different in brightness. Twelve guppies (Poecilia reticulata) were initially trained to discriminate which rectangle was darker or lighter between 2 otherwise identical rectangles. Three different conditions were set up: neutral condition between rectangle and background (same background used for both darker and lighter rectangle); congruent condition (darker rectangle in a darker background and lighter rectangle in a lighter background); and incongruent condition (darker rectangle in a lighter background and lighter rectangle in a darker background). After reaching the learning criterion, guppies were presented with the illusory pattern: 2 identical rectangles inserted in 2 different backgrounds. Guppies previously trained to select the darker rectangle showed a significant choice of the rectangle that appears to be darker by human observers (and vice versa). The human-like performance exhibited in the presence of the illusory pattern suggests the existence of similar perceptual mechanisms between humans and fish to elaborate the brightness of objects. (c) 2016 APA, all rights reserved).

  8. Effect of sputtering on self-damaged recrystallized W mirror specimens

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.S. [Institute of Plasma Physics, National Scientific Center “KIPT”, 61108 Kharkov (Ukraine); Balden, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Belyaeva, A.I. [National Technical University, “Kharkiv Polytechnical Institute”, 61002 Kharkov (Ukraine); Alimov, V.Kh. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Tyburska-Püschel, B., E-mail: tyburska@engr.wisc.edu [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Galuza, A.A. [Institute of Electrophysics and Radiation Technologies, NAS of Ukraine, 61002 Kharkov (Ukraine); Kasilov, A.A.; Kolenov, I.V. [Institute of Plasma Physics, National Scientific Center “KIPT”, 61108 Kharkov (Ukraine); Konovalov, V.G. [National Technical University, “Kharkiv Polytechnical Institute”, 61002 Kharkov (Ukraine); Skoryk, O.O.; Solodovchenko, S.I. [Institute of Plasma Physics, National Scientific Center “KIPT”, 61108 Kharkov (Ukraine)

    2013-03-15

    The effect of heavy sputtering and of neutron irradiation simulated by displacement damaging with of 20 MeV W{sup 6+} ions on the optical properties of tungsten mirrors was studied. Ar{sup +} ions with 600 eV of energy were used as imitation of charge exchange atoms ejected from fusion plasma. The ion fluence dependence of the surface topography and the optical properties of polycrystalline, recrystallized tungsten (grain size 20–100 μm) were studied by optical microscopy, interferometry, reflectometry and ellipsometry. Furthermore, after sputtering in total a layer of 3.9 μm in thickness, the orientation and the thickness of the eroded layer of many individual grains was determined by electron backscattering diffraction and confocal laser scanning microscopy. Concluding from the obtained data the neutron irradiation, at least at the damage level would be achieved in ITER, has not to make an additional contribution in the processes developing under impact of charge exchange atoms only.

  9. Preparation and characterization of Ag-coated cenospheres by magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaozheng [Beijing Key Laboratory for Powder Technology R and D, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Nanotechnology Industrialization Base of China, Tianjin 300457 (China); Shen Zhigang [Beijing Key Laboratory for Powder Technology R and D, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Nanotechnology Industrialization Base of China, Tianjin 300457 (China)], E-mail: shenzhg@buaa.edu.cn; Xu, Zheng [General Research Institute for Non-ferrous Metals, Beijing 100088 (China)

    2007-12-15

    In this paper, we show the feasibility of the magnetron sputtering deposition technique to grow 10-100-nm thick, uniform, continuous and well adhesive silver films on cenosphere particles so that the properties of the core particles can be suitably modified. Experiments were conducted with a magnetron sputtering deposition system in which a newly designed sample stage equipped with an ultrasonic vibration generator was used for the tumbling of cenosphere particles. The cenosphere particles are characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM) and inductively coupled plasma-atom emission spectrometer (ICP-AES) before and after the coating process. All results show the metal film has been successfully coated onto cenosphere particles. Under the given conditions, up to 3.0 wt.% silver was deposited on cenosphere particles measured by ICP-AES. The FE-SEM results indicate that at the micro-scale the relatively uniform, compact and well adhesive silver films with about 51 nm thickness were successfully deposited on cenosphere particles. The XRD analytic result indicates that the nanometer metal film has a face-centered cubic structure.

  10. Preparation and characterization of Ag-coated cenospheres by magnetron sputtering method

    Science.gov (United States)

    Yu, Xiaozheng; Shen, Zhigang; Xu, Zheng

    2007-12-01

    In this paper, we show the feasibility of the magnetron sputtering deposition technique to grow 10-100-nm thick, uniform, continuous and well adhesive silver films on cenosphere particles so that the properties of the core particles can be suitably modified. Experiments were conducted with a magnetron sputtering deposition system in which a newly designed sample stage equipped with an ultrasonic vibration generator was used for the tumbling of cenosphere particles. The cenosphere particles are characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM) and inductively coupled plasma-atom emission spectrometer (ICP-AES) before and after the coating process. All results show the metal film has been successfully coated onto cenosphere particles. Under the given conditions, up to 3.0 wt.% silver was deposited on cenosphere particles measured by ICP-AES. The FE-SEM results indicate that at the micro-scale the relatively uniform, compact and well adhesive silver films with about 51 nm thickness were successfully deposited on cenosphere particles. The XRD analytic result indicates that the nanometer metal film has a face-centered cubic structure.

  11. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  12. Highly conductive ultrathin Co films by high-power impulse magnetron sputtering

    Science.gov (United States)

    Jablonka, L.; Riekehr, L.; Zhang, Z.; Zhang, S.-L.; Kubart, T.

    2018-01-01

    Ultrathin Co films deposited on SiO2 with conductivities exceeding that of Cu are demonstrated. Ionized deposition implemented by high-power impulse magnetron sputtering (HiPIMS) is shown to result in smooth films with large grains and low resistivities, namely, 14 µΩ cm at a thickness of 40 nm, which is close to the bulk value of Co. Even at a thickness of only 6 nm, a resistivity of 35 µΩ cm is obtained. The improved film quality is attributed to a higher nucleation density in the Co-ion dominated plasma in HiPIMS. In particular, the pulsed nature of the Co flux as well as shallow ion implantation of Co into SiO2 can increase the nucleation density. Adatom diffusion is further enhanced in the ionized process, resulting in a dense microstructure. These results are in contrast to Co deposited by conventional direct current magnetron sputtering where the conductivity is reduced due to smaller grains, voids, rougher interfaces, and Ar incorporation. The resistivity of the HiPIMS films is shown to be in accordance with models by Mayadas-Shatzkes and Sondheimer which consider grain-boundary and surface-scattering.

  13. Electrical Characterization of Ultrathin RF-Sputtered LiPON Layers for Nanoscale Batteries.

    Science.gov (United States)

    Put, Brecht; Vereecken, Philippe M; Meersschaut, Johan; Sepúlveda, Alfonso; Stesmans, Andre

    2016-03-23

    Ultrathin lithium phosphorus oxynitride glass (LiPON) films with thicknesses down to 15 nm, deposited by reactive sputtering in nitrogen plasma, were found to be electronically insulating. Such ultrathin electrolyte layers could lead to high power outputs and increased battery energy densities. The effects of stoichiometry, film thickness, and substrate material on the ionic conductivity were investigated. As the amount of nitrogen in the layers increased, the activation energy of the ionic conductivity decreased from 0.63 to 0.53 eV, leading to a maximum conductivity of 1 × 10(-6) S/cm. No dependence of the ionic conductivity on the film thickness or substrate material could be established. A detailed analysis of the equivalent circuit model used to fit the impedance data is provided. Polarization measurements were performed to determine the electronic leakage in these ultrathin films. A 15-nm LiPON layer on a TiN substrate showed electronically insulating properties with electronic resistivity values around 10(15) Ω·cm. To our knowledge, this is the thinnest RF-sputtered LiPON layer shown to be electronically insulating while retaining good ionic conductivity.

  14. Sputtered titanium oxynitride coatings for endosseous applications: Physical and chemical evaluation and first bioactivity assays

    Energy Technology Data Exchange (ETDEWEB)

    Banakh, Oksana, E-mail: oksana.banakh@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Moussa, Mira, E-mail: mira.moussa@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Matthey, Joel, E-mail: joel.matthey@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Pontearso, Alessandro, E-mail: alessandro.pontearso@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Cattani-Lorente, Maria, E-mail: maria.cattani-lorente@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Sanjines, Rosendo, E-mail: rosendo.sanjines@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Condensed Matter Physics, Station 3, CH-1015 Lausanne (Switzerland); Fontana, Pierre, E-mail: Pierre.Fontana@hcuge.ch [Haemostasis laboratory, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1205 Geneva (Switzerland); Wiskott, Anselm, E-mail: anselm.wiskott@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Durual, Stephane, E-mail: stephane.durual@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland)

    2014-10-30

    Highlights: • Titanium oxynitride coatings (TiN{sub x}O{sub y}) with chemical composition ranging from TiN to TiO{sub 2} were deposited by magnetron sputtering from a metallic Ti target using a mixture of O{sub 2} + N{sub 2}. • The coatings structure as well as physical, chemical and mechanical properties progressively changes as a function of oxygen content in the TiN{sub x}O{sub y.} • All TiN{sub x}O{sub y} coatings show a significantly higher level of bioactivity as compared to bare Ti substrates (1.2 to 1.4 fold increase in cell proliferation). Despite variations in surface chemistry, topography and surface tension observed on films as a function of chemical composition, no significant differences in the films’ biological activity were observed after 3 days of testing. - Abstract: Titanium oxynitride coatings (TiN{sub x}O{sub y}) are considered a promising material for applications in dental implantology due to their high corrosion resistance, their biocompatibility and their superior hardness. Using the sputtering technique, TiN{sub x}O{sub y} films with variable chemical compositions can be deposited. These films may then be set to a desired value by varying the process parameters, that is, the oxygen and nitrogen gas flows. To improve the control of the sputtering process with two reactive gases and to achieve a variable and controllable coating composition, the plasma characteristics were monitored in-situ by optical emission spectroscopy. TiN{sub x}O{sub y} films were deposited onto commercially pure (ASTM 67) microroughened titanium plates by reactive magnetron sputtering. The nitrogen gas flow was kept constant while the oxygen gas flow was adjusted for each deposition run to obtain films with different oxygen and nitrogen contents. The physical and chemical properties of the deposited films were analyzed as a function of oxygen content in the titanium oxynitride. The potential application of the coatings in dental implantology was assessed by

  15. Dynamical simulation of sputtering and reflection from a ternary alloy

    Science.gov (United States)

    Ishida, M.; Yamaguchi, Y.; Yoshinaga, H.; Yamamura, Y.

    The sputtering and the reflection from a Tb0.2Fe0.7Co0.1 alloy due to Ar+ ion bombardment have been investigated by the Monte Carlo simulation code ACAT-DIFFUSE which include the compositional change induced by ion influence. In the Tb-Fe-Co system, Fe atoms are preferentially sputtered. The atomic size of a Tb atom is the largest of these three atoms, and so Tb atoms trap preferentially in vacancies. The steady-state concentration of Tb atoms at the topmost layer is larger than the bulk concentration for the low energy ions due to radiation-induced segregation and preferential sputtering of Fe atoms. As the ion fluence increases, the atomic fractions of sputtered atoms calculated by the ACAT-DIFFUSE code become those of the bulk concentration. The depth profiles of each element at the steady state depend on the incident energy. The total sputtering yield and the reflection coefficient from a Tb-Fe-Co alloy calculated by the ACAT-DIFFUSE code are larger than those by the ACAT code at near-threshold energies, where the ACAT code does not include the ion-influence effect. The energy spectra of back-scattered Ar atoms from the present ternary alloy have very similar profiles to those from a monoatomic Tb target, especially for low-energy Ar+ ions.

  16. Projectile charge state dependent sputtering of solid surfaces

    CERN Document Server

    Hayderer, G

    2000-01-01

    dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...

  17. Sputter deposition for multi-component thin films

    Science.gov (United States)

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  18. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    Science.gov (United States)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  19. High-surface-quality nanocrystalline InN layers deposited on GaN templates by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain); Lahourcade, Lise; Monroy, Eva [Equipe mixte CEA-CNRS-UJF, Nanophysique et Semiconducteurs, INAC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Fernandez, Susana [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)

    2011-01-15

    We report a detailed study of the effect of deposition parameters on optical, structural, and morphological properties of InN films grown by reactive radio-frequency (RF) sputtering on GaN-on-sapphire templates in a pure nitrogen atmosphere. Deposition parameters under study are substrate temperature, RF power, and sputtering pressure. Wurtzite crystallographic structure with c-axis preferred growth orientation is confirmed by X-ray diffraction measurements. For the optimized deposition conditions, namely at a substrate temperature of 450 C and RF power of 30 W, InN films present a root-mean-square surface roughness as low as {proportional_to}0.4 nm, comparable to the underlying substrate. The apparent optical bandgap is estimated at 720 nm (1.7 eV) in all cases. However, the InN absorption band tail is strongly influenced by the sputtering pressure due to a change in the species of the plasma. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Improvement of the homogeneity of high mobility In{sub 2}O{sub 3}:H films by sputtering through a mesh electrode studied by Monte Carlo simulation and thin film analysis

    Energy Technology Data Exchange (ETDEWEB)

    Scherg-Kurmes, Harald; Hafez, Ahmad; Szyszka, Bernd [Technische Universitaet Berlin, Einsteinufer 25, 10587, Berlin (Germany); Siemers, Michael; Pflug, Andreas [Fraunhofer IST, Bienroder Weg 54E, 38108, Braunschweig (Germany); Schlatmann, Rutger [Helmholtz Zentrum Berlin, PVcomB, Schwarzschildstr. 3, 12489, Berlin (Germany); Rech, Bernd [Helmholtz Zentrum Berlin, Institute for Silicon Photovoltaics, Kekulestrasse 5, 12489, Berlin (Germany)

    2016-09-15

    Hydrogen-doped indium oxide (IOH) is a transparent conductive oxide offering great potential to optoelectronic applications because of its high mobility of over 100 cm{sup 2} V{sup -1}s{sup -1}. In films deposited statically by RF magnetron sputtering, a small area directly opposing the target center with a higher resistivity and lower crystallinity than the rest of the film has been found via hall- and XRD-measurements, which we attribute to plasma damage. In order to investigate the distribution of particle energies during the sputtering process we have simulated the RF-sputtering deposition process of IOH by particle-in-cell Monte Carlo (PICMC) simulation. At the surface of ceramic sputtering targets, negatively charged oxygen ions are created. These ions are accelerated toward the substrate in the plasma sheath with energies up to 150 eV. They damage the growing film and reduce its crystallinity. The influence of a negatively biased mesh inside the sputtering chamber on particle energies and distributions has been simulated and investigated. We found that the mesh decreased the high-energetic oxygen ion density at the substrate, thus enabling a more homogeneous IOH film growth. The theoretical results have been verified by XRD X-ray diffractometry (XRD), 4-point probe, and hall measurements of statically deposited IOH films on glass. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Sputter-ion plating of coatings for protection of gas-turbine blades against high-temperature oxidation and corrosion

    Science.gov (United States)

    Coad, J. P.; Restall, J. E.

    1982-01-01

    Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.

  2. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures

    OpenAIRE

    Khomenkova, L.; Lehninger, D.; O. Kondratenko; Ponomaryov, S.; Gudymenko, O.; Tsybrii, Z.; Yukhymchuk, V.; Kladko, V.; von Borany, J.; Heitmann, J.

    2017-01-01

    Ge-rich ZrO2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO2. The ?...

  3. RF magnetron sputtering of thick film amorphous beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Burt, R.J.; Meyer, S.F.; Hsieh, E.J.

    1979-09-19

    Thick film coatings of beryllium, needed for the low-Z ablator layer in proposed laser fusion targets, have been prepared using high rate magnetron rf sputtering. The requirements for these Be coatings include thicknesses from 5 to 50 ..mu..m, complete freedom from surface defects, and an average surface roughness of 100 nm or less. We have sputtered very smooth, dense, thick Be films with surface roughness less than 100 nm. X-ray diffraction analysis of impurity doped films indicates an amorphous-like structure. Impurity stabilized amorphous Be with smooth surfaces is reported on both cooled copper and higher temperature glass substrates. The sputtering parameters (substrate temperature, deposition rate, argon pressure, and impurity gas levels) affecting surface roughness and film structure are discussed in terms of SEM, AES, and x-ray diffraction results.

  4. Composition and structure of sputter deposited erbium hydride thin films

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS,DAVID P.; ROMERO,JUAN A.; RODRIGUEZ,MARK A.; FLORO,JERROLD A.; BANKS,JAMES C.

    2000-05-10

    Erbium hydride thin films are grown onto polished, a-axis {alpha} Al{sub 2}O{sub 3} (sapphire) substrates by reactive ion beam sputtering and analyzed to determine composition, phase and microstructure. Erbium is sputtered while maintaining a H{sub 2} partial pressure of 1.4 x 10{sup {minus}4} Torr. Growth is conducted at several substrate temperatures between 30 and 500 C. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analyses after deposition show that the H/Er areal density ratio is approximately 3:1 for growth temperatures of 30, 150 and 275 C, while for growth above {approximately}430 C, the ratio of hydrogen to metal is closer to 2:1. However, x-ray diffraction shows that all films have a cubic metal sublattice structure corresponding to that of ErH{sub 2}. RBS and Auger electron that sputtered erbium hydride thin films are relatively free of impurities.

  5. Ion beam sputter target and method of manufacture

    Science.gov (United States)

    Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason; Cook, Bruce; Blau, Peter; Jun, Qu; Milner, Robert

    2014-09-02

    A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a main tile also formed in a green state and the assembly can then be compacted and then sintered.

  6. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    OpenAIRE

    Hsing-Cheng Yu; Xie-Hong Tsai; An-Chun Luo; Ming Wu; Sei-Wang Chen

    2015-01-01

    When viewing three-dimensional (3D) images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D) images in order to adjust the 3D-image brightness values. In addition, the ph...

  7. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ababneh, A., E-mail: a.ababneh@lmm.uni-saarland.de [Department of Mechatronics, Saarland University, D-66123 Saarbruecken (Germany); Schmid, U. [Department of Microsystems Technology, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Hernando, J.; Sanchez-Rojas, J.L. [Departamento Ingenieria Electrica, Electronica, Automatica y Comunicaciones, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Seidel, H. [Department of Mechatronics, Saarland University, D-66123 Saarbruecken (Germany)

    2010-09-15

    Aluminium nitride (AlN) reactively sputter-deposited from an aluminium target is an interesting piezoelectric thin film material with high CMOS compatibility. A good c-axis orientation is essential for obtaining high piezoelectric coefficients. Therefore, the influence of different sputtering conditions on the microstructure of AlN thin films with a typical thickness of about 500 nm was investigated. In this study it is demonstrated that highly c-axis oriented AlN thin films can be deposited on nominally unheated (1 0 0) silicon substrates, most preferentially when using a pure nitrogen atmosphere. The degree of c-axis orientation increases with higher nitrogen concentration and with decreasing the sputtering pressure, whereas the influence of plasma power on the microstructure was found to be negligible. A low sputtering pressure is also useful for minimizing the amount of oxygen contaminations in the deposition chamber and hence for reducing the incorporation of impurities into the AlN films. Intrinsic stress values of AlN thin films were determined by wafer bow measurements and were found to be between -3.5 and 750 MPa depending on choice of deposition parameters. Finally, the piezoelectric coefficients d{sub 33} and d{sub 31} were determined experimentally by laser scanning vibrometry in conjunction with a theoretical model. Effective values in c-axis oriented 500 nm films with FWHM of 0.33 deg. are 3.0 and -1.0 pm/V. For a film of 2.4 {mu}m thickness, values of 5.0 and -1.8 pm/V were measured, which are near the bulk values.

  8. High performance ZnO:Al films deposited on PET substrates using facing target sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tingting [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Dong, Guobo, E-mail: wavedong@buaa.edu.cn [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Gao, Fangyuan; Xiao, Yu [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Chen, Qiang [Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Diao, Xungang [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2013-10-01

    ZnO:Al (ZAO) thin films have been deposited on flexible PET substrates using a plasma damage-free facing target sputtering system at room temperature. The structure, surface morphology, electrical and optical properties were investigated as a function of working power. All the samples have a highly preferred orientation of the c-axis perpendicular to the PET substrate and have a high quality surface. With increased working power, the carrier concentration changes slightly, the mobility increases at the beginning and decreases after it reaches a maximum value, in line with electrical conductivity. The figure of merit has been significantly improved with increasing of the working power. Under the optimized condition, the lowest resistivity of 1.3 × 10{sup −3} Ω cm with a sheet resistance of 29 Ω/□ and the relative visible transmittance above 93% in the visible region were obtained.

  9. Structural control in porous/compact multilayer systems grown by magnetron sputtering

    Science.gov (United States)

    Garcia-Valenzuela, A.; Lopez-Santos, C.; Alvarez, R.; Rico, V.; Cotrino, J.; Gonzalez-Elipe, A. R.; Palmero, A.

    2017-11-01

    In this work we analyze a phenomenon that takes place when growing magnetron sputtered porous/compact multilayer systems by alternating the oblique angle and the classical configuration geometries. We show that the compact layers develop numerous fissures rooted in the porous structures of the film below, in a phenomenon that amplifies when increasing the number of stacked layers. We demonstrate that these fissures emerge during growth due to the high roughness of the porous layers and the coarsening of a discontinuous interfacial region. To minimize this phenomenon, we have grown thin interlayers between porous and compact films under the impingement of energetic plasma ions, responsible for smoothing out the interfaces and inhibiting the formation of structural fissures. This method has been tested in practical situations for compact TiO2/porous SiO2 multilayer systems, although it can be extrapolated to other materials and conditions.

  10. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    Science.gov (United States)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  11. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  12. Analysis of a tungsten sputtering experiment in DIII-D and code/data validation of high redeposition/reduced erosion

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.N., E-mail: brooksjn@purdue.edu [Purdue University, West Lafayette, IN (United States); Elder, J.D. [University of Toronto Institute for Aerospace Studies, Toronto (Canada); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Rudakov, D.L. [University of California San Diego, San Diego, CA (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto (Canada); Wampler, W.R. [Sandia National Laboratories, Albuquerque, NM (United States)

    2015-05-15

    We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (∼20 eV, ∼4.5 × 10{sup 19} m{sup −3}), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. The tungsten surfaces are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (∼75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. This study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.

  13. Low-latitude midnight brightness in 630.0 nm limb observations by FORMOSAT-2/ISUAL

    Science.gov (United States)

    Rajesh, P. K.; Chen, C. H.; Lin, C. H.; Liu, J. Y.; Huba, J. D.; Chen, A. B.; Hsu, R. R.; Chen, Y. T.

    2014-06-01

    This paper investigates the intense airglow brightness often observed in the 630.0 nm limb images taken using Imager of Sprites and Upper Atmospheric Lightnings (ISUAL), onboard FORMOSAT-2 satellite, where the tangent plane of the measurement falls in the local midnight sector. Most of the images show only single brightness, but in some cases there could be multiple peaks, which sometimes appears to be centered on geographic equator and in some cases falls on either sides of the magnetic equator. In order to understand such intense emission in the near-midnight hours, the observations are simulated using SAMI2 (SAMI2 is Another Model of the Ionosphere) model parameters based on the ISUAL viewing geometry. The simulations reproduced the measured airglow intensity pattern quite remarkably and suggested that the meridional neutral wind and the resulting plasma distribution are closely related with the observed brightness. The intensity and locations of the airglow brightness peaks could potentially be utilized to infer the strength of meridional neutral wind.

  14. Investigating the Bright End of LSST Photometry

    Science.gov (United States)

    Ojala, Elle; Pepper, Joshua; LSST Collaboration

    2018-01-01

    The Large Synoptic Survey Telescope (LSST) will begin operations in 2022, conducting a wide-field, synoptic multiband survey of the southern sky. Some fraction of objects at the bright end of the magnitude regime observed by LSST will overlap with other wide-sky surveys, allowing for calibration and cross-checking between surveys. The LSST is optimized for observations of very faint objects, so much of this data overlap will be comprised of saturated images. This project provides the first in-depth analysis of saturation in LSST images. Using the PhoSim package to create simulated LSST images, we evaluate saturation properties of several types of stars to determine the brightness limitations of LSST. We also collect metadata from many wide-field photometric surveys to provide cross-survey accounting and comparison. Additionally, we evaluate the accuracy of the PhoSim modeling parameters to determine the reliability of the software. These efforts will allow us to determine the expected useable data overlap between bright-end LSST images and faint-end images in other wide-sky surveys. Our next steps are developing methods to extract photometry from saturated images.This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.Thanks to NSF grant PHY-135195 and the 2017 LSSTC Grant Award #2017-UG06 for making this project possible.

  15. Dark and Bright Ridges on Europa

    Science.gov (United States)

    1998-01-01

    This high-resolution image of Jupiter's moon Europa, taken by NASA's Galileo spacecraft camera, shows dark, relatively smooth region at the lower right hand corner of the image which may be a place where warm ice has welled up from below. The region is approximately 30 square kilometers in area. An isolated bright hill stands within it. The image also shows two prominent ridges which have different characteristics; youngest ridge runs from left to top right and is about 5 kilometers in width (about 3.1 miles). The ridge has two bright, raised rims and a central valley. The rims of the ridge are rough in texture. The inner and outer walls show bright and dark debris streaming downslope, some of it forming broad fans. This ridge overlies and therefore must be younger than a second ridge running from top to bottom on the left side of the image. This dark 2 km wide ridge is relatively flat, and has smaller-scale ridges and troughs along its length.North is to the top of the picture, and the sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 15 kilometers by 20 kilometers (9 miles by 12 miles). The resolution is 26 meters (85 feet) per picture element. This image was taken on December 16, 1997 at a range of 1300 kilometers (800 miles) by Galileo's solid state imaging system.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  16. Some Particularities of Operation of Sputter Ion Pumps and Non-Evaporable Getters

    CERN Document Server

    Nesterov, A V

    2001-01-01

    It is shown that hydrogen is the main component of the residual gases in a sputter ion pump which is not baked after a contact with the atmosphere. This makes it appropriate to use a sputter ion pump and a non-evaporate getter simultaneously. Pumping of a sputter ion pump by a non-evaporate getter followed by their simultaneous operation leads to a considerable decrease in the ultimate pressure of the sputter ion pump.

  17. An exceptionally bright, compact starburst nucleus

    Science.gov (United States)

    Margon, Bruce; Anderson, Scott F.; Mateo, Mario; Fich, Michel; Massey, Philip

    1988-01-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies.

  18. Broadband bright twin beams and their upconversion

    Science.gov (United States)

    Chekhova, Maria V.; Germanskiy, Semen; Horoshko, Dmitri B.; Kitaeva, Galiya Kh.; Kolobov, Mikhail I.; Leuchs, Gerd; Phillips, Chris R.; Prudkovskii, Pavel A.

    2018-02-01

    We report on the observation of broadband (40 THz) bright twin beams through high-gain parametric down-conversion in an aperiodically poled lithium niobate crystal. The output photon number is shown to scale exponentially with the pump power and not with the pump amplitude, as in homogeneous crystals. Photon-number correlations and the number of frequency/temporal modes are assessed by spectral covariance measurements. By using sum-frequency generation on the surface of a non-phasematched crystal, we measure a cross-correlation peak with the temporal width 90 fs.

  19. Magnetostriction of sputtered Sm-Fe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T. (Tokin Corp., Sendai (Japan). Sendai Research Lab.); Hayashi, Y.; Arai, K.I.; Ishiyama, K.; Yamaguchi, M. (Tohoku Univ., Sendai (Japan). Research Institute of Electrical Communication)

    1993-11-01

    The magnetostriction and the magnetic properties of amorphous Sm[sub x]Fe[sub 100[minus]x] thin films prepared by sputtering were investigated at room temperature. The magnetostriction, -[lambda], of these films increased rapidly in low fields (<1kOe) and reached the maximum values of 300--400[times]10[sup [minus]6] at 16kOe for x = 30--40. These results suggest that Sm-Fe thin films could be used for micro-actuators. lie magnetic properties of Sm-Fe thin films did not show clear dependence on the sputtering conditions such as input power, Ar gas pressure, and substrate temperature.

  20. Raman imaging of biofilms using gold sputtered fiber optic probes

    Science.gov (United States)

    Christopher, Christina Grace Charlet; Manoharan, Hariharan; Subrahmanyam, Aryasomayajula; Sai, V. V. Raghavendra

    2016-12-01

    In this work we report characterization of bacterial biofilm using gold sputtered optical fiber probe as substrates for confocal Raman spectroscopy measurements. The chemical composition and the heterogeneity of biofilms in the extracellular polymeric substances (EPS) was evaluated. The spatial distribution of bacterial biofilm on the substrates during their growth phase was studied using Raman imaging. Further, the influence of substrate's surface on bacterial adhesion was investigated by studying growth of biofilms on surfaces with hydrophilic and hydrophobic coatings. This study validates the use of gold sputtered optical fiber probes as SERS substrates in confocal microscopic configuration to identify and characterize clinically relevant biofilms.

  1. Mechanical and structural properties of sputtered Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, M.; Boeni, P.; Tixier, S.; Clemens, D.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Ni/Ti bilayers have been prepared by dc-magnetron sputtering in order to study their mechanical and structural properties. A remarkable reduction of stress is observed when the Ni layers are sputtered reactively in argon with a high partial pressure of air. The high angle x-ray diffraction studies show a tendency towards amorphisation of the Ni layers with increasing air flow. The low angle measurements indicate a substantial reduction of interdiffusion resulting in smoother interfaces with increasing air content. (author) 2 figs., 2 refs.

  2. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan; Jin, Ke; Du, Yingge; Neeway, James J.; Ryan, Joseph V.; Hu, Dehong; Zhang, Hongliang; Hong, Mina; Le Guernic, Solenne; Thevuthasan, Suntharampillai; Wang, Fuyi; Zhu, Zihua

    2015-08-01

    For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputter rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.

  3. R.F. planar magnetron sputtered ZnO films I: structural properties

    NARCIS (Netherlands)

    van de Pol, F.C.M.; van de Pol, F.C.M.; Blom, F.R.; Blom, F.R.; Popma, T.J.A.

    1991-01-01

    The structural properties of r.f. planar magnetron sputtered ZnO films are studied as a function of deposition parameters: substrate type, substrate temperature, sputter gas pressure, growth rate and sputtering power. These films are applied as piezoelectric transducers in micromechanical sensors

  4. Subpicosecond, high-brightness excimer laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.J.; Gosnell, T.R.; Roberts, J.P.; Lester, C.S.; Gibson, R.B.; Harper, S.E.; Tallman, C.R.

    1988-01-01

    Subpicosecond, high-brightness excimer laser systems are being used to explore the interaction of intense coherent ultraviolet radiation with matter. Applications of current systems include generation of picosecond x-ray pulses, investigation of possible x-ray laser pumping schemes, studies of multiphoton phenomena in atomic species, and time-resolved photochemistry. These systems, based on the amplification of subpicosecond pulses in small aperture (/approximately/1 cm/sup 2/) XeCl or KrF amplifiers, deliver focal spot intensities of /approximately/10/sup 17/ W/cm/sup 2/. Scaling to higher intensities, however, will require an additional large aperture amplifier which preserves near-diffraction-limited beam quality and subpicosecond pulse duration. We describe here both a small aperture KrF system which routinely provides intensities >10/sup 17/ W/cm/sup 2/ to several experiments, and a large aperture XeCl system designed to deliver /approximately/1 J subpicosecond pulses and yield intensities on target in excess of 10/sup 19/W/cm/sup 2/. We also discuss the effects of two-photon absorption on large-aperture, high-brightness excimer lasers. 4 refs., 2 figs.

  5. Optical Sky Brightness at Dome C, Antarctica

    Science.gov (United States)

    Kenyon, S.; Storey, J. W. V.; Burton, M. G.

    2006-08-01

    Dome C, Antarctica is a prime site for astronomical observations in terms of climate, wind speeds and turbulence. The infrared and terahertz sky backgrounds are the lowest of any inhabited place on Earth. However, at present little is known about the optical sky brightness and atmospheric extinction. Using a variety of modelling techniques together with data from the South Pole, we estimate the brightness of the night sky including the contributions from scattered sunlight, moonlight, aurorae, airglow, zodiacal light and artificial sources. We compare our results to another prime astronomical site, Mauna Kea. We find moonlight has significantly less effect at Dome C than at Mauna Kea. Aurorae are expected to have a minor impact at both sites, and zodiacal light is expected to be less at Dome C than at Mauna Kea. Airglow emissions at Dome C are expected to be similar to those at temperate sites. With proper planning, artificial sources of light pollution should be non-existent. The overall atmospheric extinction, or opacity, is expected to be the minimum possible. We conclude that Dome C is a very promising site not only for infrared and terahertz astronomy, but for optical astronomy as well..

  6. Sublimation in bright spots on (1) Ceres

    Science.gov (United States)

    Nathues, A.; Hoffmann, M.; Schaefer, M.; Le Corre, L.; Reddy, V.; Platz, T.; Cloutis, E. A.; Christensen, U.; Kneissl, T.; Li, J.-Y.; Mengel, K.; Schmedemann, N.; Schaefer, T.; Russell, C. T.; Applin, D. M.; Buczkowski, D. L.; Izawa, M. R. M.; Keller, H. U.; O'Brien, D. P.; Pieters, C. M.; Raymond, C. A.; Ripken, J.; Schenk, P. M.; Schmidt, B. E.; Sierks, H.; Sykes, M. V.; Thangjam, G. S.; Vincent, J.-B.

    2015-12-01

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5, 6, 7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’, which is the distance from the Sun at which water molecules condense.

  7. On the microstructure and interfacial properties of sputtered nickel ...

    Indian Academy of Sciences (India)

    Administrator

    (Walker et al 1990; Johnson 1991; Fu et al 2004). For a. Ti–Ni thin film to work as micro-device, control over working temperature and compositional tuning during deposition are the prime requisites. Due to inflexibility in composition adjustment, the fabrication of the Ti–Ni thin film by sputter deposition with Ti–Ni alloy target ...

  8. Sputtering of solid neon by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, Ole; Schou, Jørgen; Sørensen, H.

    1986-01-01

    Sputtering of solid Ne with the hydrogen ions H+1, H+2 and H+3 in the energy range 1–10 keV/atom has been studied by means of a quartz microbalance technique. No enhancement in the yield per atom for molecular ions was found. The results for hydrogen ions are compared with data for keV electrons....

  9. Physicochemical model for reactive sputtering of hot target

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, Viktor I., E-mail: vishapovalov@mail.ru; Karzin, Vitaliy V.; Bondarenko, Anastasia S.

    2017-02-05

    A physicochemical model for reactive magnetron sputtering of a metal target is described in this paper. The target temperature in the model is defined as a function of the ion current density. Synthesis of the coating occurs due to the surface chemical reaction. The law of mass action, the Langmuir isotherm and the Arrhenius equation for non-isothermal conditions were used for mathematical description of the reaction. The model takes into consideration thermal electron emission and evaporation of the target surface. The system of eight algebraic equations, describing the model, was solved for the tantalum target sputtered in the oxygen environment. It was established that the hysteresis effect disappears with the increase of the ion current density. - Highlights: • When model is applied for a cold target, hysteresis width is proportional to the ion current density. • Two types of processes of hot target sputtering are possible, depending on the current density: with and without the hysteresis. • Sputtering process is dominant at current densities less than 50 A/m{sup 2} and evaporation can be neglected. • For current densities over 50 A/m{sup 2} the hysteresis width reaches its maximum and the role of evaporation increases.

  10. Modular design of AFM probe with sputtered silicon tip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, Jacob; Bouwstra, Siebe

    2001-01-01

    of the thin films constituting the cantilever. The AFM probe has an integrated tip made of a thick sputtered silicon layer, which is deposited after the probe has been defined and just before the cantilevers are released. The tips are so-called rocket tips made by reactive ion etching. We present probes...

  11. Nanomechanical characterization of bioglass films synthesized by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Popa, A.C. [National Institute of Materials Physics, 077125 Magurele (Romania); Army Centre for Medical Research, 020012 Bucharest (Romania); Department of Cellular and Molecular Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest (Romania); Marques, V.M.F. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Stan, G.E., E-mail: george_stan@infim.ro [National Institute of Materials Physics, 077125 Magurele (Romania); Husanu, M.A.; Galca, A.C.; Ghica, C. [National Institute of Materials Physics, 077125 Magurele (Romania); Tulyaganov, D.U. [Turin Polytechnic University in Tashkent, 100174 Tashkent (Uzbekistan); Lemos, A.F.; Ferreira, J.M.F. [Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2014-02-28

    Bioactive glasses are osteoproductive-type inorganic materials possessing the highest indices of bioactivity in both bulk and thin film forms. The prerequisites for reliable implant-type coatings are both their biological and mechanical performances. Whilst the bioglass films' structural, chemical and biological properties have been studied extensively, information about their mechanical performance is scarce. Here, transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nanoindentation and pull-out measurements were employed to assess the morphological, chemical, structural and mechanical properties of the bioglass films deposited onto Ti substrates by radio-frequency magnetron sputtering (RF-MS). The biological safety of the thin bioglass films was evaluated preliminarily in vitro by investigating the adherence, proliferation and cytotoxicity of fibroblast cells cultivated on their surface. Our study emphasize the versatility of RF-MS, showing how bioglass films' features such as composition, structure, bonding strength, hardness, elastic modulus and biological response can be conveniently adapted by tuning the RF-MS working conditions, and therefore demonstrating the unexplored potential of this deposition technique for preparing quality biomimetic glass coatings. - Highlights: • Adherent bioglass films were synthesized by RF-sputtering on titanium plates. • Different bonding configurations were obtained when tuning sputtering conditions. • Films' biological and mechanical responses vary with their structural arrangement. • Nanomechanical properties were enhanced by allowing O{sub 2} in the sputtering atmosphere.

  12. Optical properties of dc magneto sputtered tantalum and titanium ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 5. Optical properties of d.c. magneto sputtered ... Large changes in both transmission and absorption on loading these films with hydrogen are accompanied by significant phase changes and electronic transformation. Optical photograph shows the colour ...

  13. Particle dynamics during electronic sputtering of solid krypton

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1995-01-01

    We have modeled electronic sputtering of solid krypton by excimer production with molecular dynamics. Both excimer evolution in the solid and deexcitation processes have been incorporated in the simulation. The excimer dynamics in the lattice has been analyzed: the excimers formed near the surface...

  14. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and ...

  15. Development of ion beam sputtering techniques for actinide target preparation

    Science.gov (United States)

    Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.

    1985-06-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.

  16. Transition from linear to nonlinear sputtering of solid xenon

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1995-01-01

    Self-sputtering of solid xenon has been studied with molecular dynamics simulations as a model system for the transition from dominantly linear to strongly nonlinear effects. The simulation covered the projectile energy range from 20 to 750 eV. Within a relatively narrow range from 30 to 250 e...

  17. Sodium tungsten bronze thin films by rf sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Anderegg, J.W.

    1977-03-01

    Polycrystalline Na/sub x/WO/sub 3/ films were produced by rf sputtering. Films of low x-value resulted when co-sputtering WO/sub 3/ on a Na/sub 0.83/WO/sub 3/ target, and Na/sub 0/./sub 83/ on WO/sub 3/ target. Films of high x and of mixed phase were produced by sputtering a powder mixture of Na/sub 2/WO/sub 4/ and WO/sub 3/ on a tungsten target. Of the sputtering parameters studied, the substrate temperature is the most critical with temperatures above 500/sup 0/C producing films which were cubic in structure with only a small amount of Tetragonal I. The presence of oxygen up to 3 percent by volume had minimal effect on film quality or x-value. Auger, electron microprobe, SIMS, SEM, x-ray diffraction, and sheet resistivity techniques were used in characterizing these films. Resistivity of the films was a factor of 10 higher than the bulk crystalline data for Na/sub 0/./sub 83/WO/sub 3/.

  18. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more...

  19. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    Finally, we propose some fundamental modifications of the source to prepare future needs. 2. Description of the negative-ion sputter source. Figure 1 shows the configuration of our 860 ST model negative-ion source. The ion- izer has an elliptical surface made of molybdenum mounted in axial alignment with a. 795 ...

  20. Study of the chemical sputtering in Tore-Supra; Etude de l'erosion chimique dans le tokamak Tore-Supra

    Energy Technology Data Exchange (ETDEWEB)

    Cambe, A

    2002-06-28

    The work presented in this thesis focuses on the interactions between energetic particles coming from thermonuclear plasma and the inner components of a fusion machine. This interaction induces two major problems: erosion of the wall, and tritium retention. This report treats the erosion of carbon based materials. The first part is devoted to chemical sputtering, that appears to be the principal erosion mechanism, compared to physical sputtering and radiation enhanced sublimation that both can be limited. Chemical sputtering has been studied in situ in the tokamak Tore-Supra for ohmic and lower hybrid (LH) heated discharges, by means of mass spectrometry and optical spectroscopy. We have shown that it is necessary to take into account both methane and heavier hydrocarbons (C{sub 2}D{sub x} and C{sub 3}D{sub y}) in the determination of the chemical sputtering yield. It is found that for the ohmic discharges, the sputtering yield of CD{sub 4} (Y{sub CD4}) is highly flux ({phi}) dependent, showing a variation of the form: Y{sub CD4} {proportional_to} {phi}{sup -0.23}. The experimental study also reveals that an increase of the surface temperature induces an augmentation of Y{sub CD4}. The interpretation and the modelling of the experimental results have been performed with a Monte Carlo code (BBQ. In the second part of this work, we have developed and installed an infrared spectroscopy diagnostic in the 0.8-1.6, {mu}m wavelength range dedicated to the measurement of surface temperature, and the identification of atomic and molecular lines emitted during plasma/wall interactions. In the third part, we present the feasibility study of an in situ tungsten deposition process at low temperature(<80 deg C) in order to suppress the chemical sputtering. This study shows that, with this method call Plasma Assisted Chemical Vapor Deposition (PACVD), we are able to coat the whole inner vessel of a tokamak with 1 {mu}m of tungsten. (author)

  1. New Distant Comet Headed for Bright Encounter

    Science.gov (United States)

    1995-08-01

    How Impressive Will Comet Hale-Bopp Become in 1997 ? A very unusual comet was discovered last month, on its way from the outer reaches of the solar system towards the Sun. Although it is still situated beyond the orbit of Jupiter, it is so bright that it can be observed in even small telescopes. It has been named `Hale-Bopp' after the discoverers and is already of great interest to cometary astronomers. No less than seven telescopes have been used at the ESO La Silla observatory for the first observations of the new object. Together with data gathered at other sites, their aim is to elucidate the nature of this comet and also to determine whether there is reason to hope that it will become a bright and beautiful object in the sky from late 1996 and well into 1997. Further observations are now being planned at ESO and elsewhere to monitor closely the behaviour of this celestial visitor during the coming months. Discovery circumstances The comet was discovered on 23 July 1995, nearly simultaneously by two American amateur astronomers, Alan Hale of Cloudcroft (New Mexico) and Thomas Bopp of Glendale (Arizona). Although the chronology is slightly uncertain, it appears that Hale first saw it some 10 - 20 minutes before Bopp, at 06:10 - 06:15 UT on that day. In any case, he informed the IAU Central Bureau for Astronomical Telegrams (CBAT) in Cambridge (Massachussetts) about his discovery by email already at 06:50 UT, while Bopp's message was filed more than 2 hours later, after he had driven back to his home, 140 km from where he had been observing. Upon receipt of these messages, Brian Marsden at the CBAT assigned the designation `1995 O1' (indicating that it is the first comet found in the second half of July 1995). After further sightings had been made by other observers, and according to the venerable astronomical tradition, the new object was named after the discoverers. The magnitude, reported as 10.5 by Hale, is not unusual for a comet that is discovered within

  2. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Philipp, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  3. Mechanical and electrical properties of RF magnetron sputter deposited amorphous silicon-rich silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dergez, D.; Schneider, M., E-mail: michael.schneider@tuwien.ac.at; Bittner, A.; Pawlak, N.; Schmid, U.

    2016-05-01

    Amorphous silicon nitride thin films in a thickness range of 40 to 500 nm are deposited onto (100) silicon wafers using radio frequency magnetron sputter deposition. Analysis of variance techniques are used to determine which deposition parameter has a significant impact on the film properties. The biaxial stress of the layers is found to be compressive independent of the plasma chamber pressure levels and to increase with increasing plasma power. The chemical composition of the films is silicon-rich, resulting in an index of refraction (IOR) of 2.55 independent of deposition conditions. Both IOR and X-ray photoelectron spectroscopy measurements indicate a nitrogen to silicon ratio in the range of 0.71–0.85. The etch rates for HF wet chemical etching and for CF{sub 4}:O{sub 2} reactive ion etching are found to be much higher compared to direct current sputter deposited silicon nitride films with only a weak dependency on the deposition conditions. Temperature dependent leakage current measurements using Au/Cr/SiN{sub x}/Si structures between 25 and 300 °C show two dominating leakage current mechanisms: ohmic conduction dominates at low applied electric field values below 0.1 MV/cm and Poole–Frenkel type conduction above 0.3 MV/cm. The extracted electrical parameters such as the activation energy or the barrier height are found to be nearly unaffected by the deposition parameters. - Highlights: • RF reactive sputter deposited Si-rich silicon nitride thin films are investigated. • Deposition conditions show nearly no impact on film stress or chemical composition. • Wet and dry etch rates decrease with increasing process chamber pressure levels. • Electrical behaviour is dependent on film thickness, but not on deposition conditions.

  4. Sputtering layers of different materials on tungsten surface by light ions of medium energy bombardment

    Science.gov (United States)

    Manukhin, V. V.

    2017-11-01

    There is an analytical formula allows to calculate the sputtering yields of heterogonous solid targets with light ions, based on the model of sputtering layered surfaces with light ions. Of particular interest is the sputtering of layers of different materials with the tungsten surface, which can be a material for the first wall of fusion reactor. The results of the calculations are in good agreement with the data of computer simulation, and show that the sputtering yields layers with a certain thickness, higher than the sputtering yields of homogeneous material layer targets (“mirror effect”).

  5. Bright sneezes and dark coughs, loud sunlight and soft moonlight.

    Science.gov (United States)

    Marks, L E

    1982-04-01

    Synesthetic metaphors (such as "the dawn comes up like thunder") are expressions in which words or phrases describing experiences proper to one sense modality transfer their meanings to another modality. In a series of four experiments, subjects used scales of loudness, pitch, and brightness to evaluate the meanings of a variety of synesthetic (auditory-visual) metaphors. Loudness and pitch expressed themselves metaphorically as greater brightness; in turn, brightness expressed itself as greater loudness and as higher pitch. Although loudness thus shared with brightness a metaphorical connection, pitch and brightness showed a connection that was closer and that applied more generally to different kinds of visual brightness. The ways that people evaluate synesthetic metaphors emulate the characteristics of synesthetic perception, thereby suggesting that synesthesia in perception and synesthesia in language both may emenate from the same source-from a phenomenological similarity in the makeup of sensory experiences of different modalities.

  6. Bright photoluminescent hybrid mesostructured silica nanoparticles.

    Science.gov (United States)

    Miletto, Ivana; Bottinelli, Emanuela; Caputo, Giuseppe; Coluccia, Salvatore; Gianotti, Enrica

    2012-07-28

    Bright photoluminescent mesostructured silica nanoparticles were synthesized by the incorporation of fluorescent cyanine dyes into the channels of MCM-41 mesoporous silica. Cyanine molecules were introduced into MCM-41 nanoparticles by physical adsorption and covalent grafting. Several photoluminescent nanoparticles with different organic loadings have been synthesized and characterized by X-ray powder diffraction, high resolution transmission electron microscopy and nitrogen physisorption porosimetry. A detailed photoluminescence study with the analysis of fluorescence lifetimes was carried out to elucidate the cyanine molecules distribution within the pores of MCM-41 nanoparticles and the influence of the encapsulation on the photoemission properties of the guests. The results show that highly stable photoluminescent hybrid materials with interesting potential applications as photoluminescent probes for diagnostics and imaging can be prepared by both methods.

  7. Bioinspired bright noniridescent photonic melanin supraballs.

    Science.gov (United States)

    Xiao, Ming; Hu, Ziying; Wang, Zhao; Li, Yiwen; Tormo, Alejandro Diaz; Le Thomas, Nicolas; Wang, Boxiang; Gianneschi, Nathan C; Shawkey, Matthew D; Dhinojwala, Ali

    2017-09-01

    Structural colors enable the creation of a spectrum of nonfading colors without pigments, potentially replacing toxic metal oxides and conjugated organic pigments. However, significant challenges remain to achieve the contrast needed for a complete gamut of colors and a scalable process for industrial application. We demonstrate a feasible solution for producing structural colors inspired by bird feathers. We have designed core-shell nanoparticles using high-refractive index (RI) (~1.74) melanin cores and low-RI (~1.45) silica shells. The design of these nanoparticles was guided by finite-difference time-domain simulations. These nanoparticles were self-assembled using a one-pot reverse emulsion process, which resulted in bright and noniridescent supraballs. With the combination of only two ingredients, synthetic melanin and silica, we can generate a full spectrum of colors. These supraballs could be directly added to paints, plastics, and coatings and also used as ultraviolet-resistant inks or cosmetics.

  8. Kappa-effect and brightness oscillations of stars

    Science.gov (United States)

    Zhugzhda, Y. D.; Roth, M.; Herzberg, W.

    2012-12-01

    In this paper the theory of visibility and darkening functions for the brightness oscillations of stars is outlined. For this the non-grey approximation is used and the effect of opacity disturbances on stellar brightness oscillations is explored for different types of stars. An explanation of the Procyon paradox is proposed. Special features of the brightness oscillations are discussed. The effect of opacity fluctuations on the damping of p-mode oscillations is considered. Furthermore, the photospheric kappa-mechanism is discussed.

  9. A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons

    Science.gov (United States)

    Brenning, N.; Gudmundsson, J. T.; Raadu, M. A.; Petty, T. J.; Minea, T.; Lundin, D.

    2017-12-01

    The combined processes of self-sputter (SS)-recycling and process gas recycling in high power impulse magnetron sputtering (HiPIMS) discharges are analyzed using the generalized recycling model (GRM). The study uses experimental data from discharges with current densities from the direct current magnetron sputtering range to the HiPIMS range, and using targets with self-sputter yields Y SS from ≈ 0.1 to 2.6. The GRM analysis reveals that, above a critical current density of the order of J crit ≈ 0.2 A cm‑2, a combination of self-sputter recycling and gas-recycling is generally the case. The relative contributions of these recycling mechanisms, in turn, influence both the electron energy distribution and the stability of the discharges. For high self-sputter yields, above Y SS ≈ 1, the discharges become dominated by SS-recycling, contain few hot secondary electrons from sheath energization, and have a relatively low electron temperature T e. Here, stable plateau values of the discharge current develop during long pulses, and these values increase monotonically with the applied voltage. For low self-sputter yields, below Y SS ≈ 0.2, the discharges above J crit are dominated by process gas recycling, have a significant sheath energization of secondary electrons and a higher T e, and the current evolution is generally less stable. For intermediate values of Y SS the discharge character gradually shifts between these two types. All of these discharges can, at sufficiently high discharge voltage, give currents that increase rapidly in time. For such cases we propose that a distinction should be made between ‘unlimited’ runaway and ‘limited’ runaway: in unlimited runaway the current can, in principle, increase without a limit for a fixed discharge voltage, while in limited runaway it can only grow towards finite, albeit very high, levels. For unlimited runway Y SS > 1 is found to be a necessary criterion, independent of the amount of gas-recycling in the

  10. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu

    2015-10-01

    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  11. The night sky brightness at McDonald Observatory

    Science.gov (United States)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  12. Absolute brightness modeling for improved measurement of electron temperature from soft x-rays on MST

    Science.gov (United States)

    Reusch, L. M.; Franz, P.; Goetz, J. A.; den Hartog, D. J.; Nornberg, M. D.; van Meter, P.

    2017-10-01

    The two-color soft x-ray tomography (SXT) diagnostic on MST is now capable of Te measurement down to 500 eV. The previous lower limit was 1 keV, due to the presence of SXR emission lines from Al sputtered from the MST wall. The two-color technique uses two filters of different thickness to form a coarse spectrometer to estimate the slope of the continuum x-ray spectrum, which depends on Te. The 1.6 - 2.0 keV Al emission lines were previously filtered out by using thick Be filters (400 µm and 800 µm), thus restricting the range of the SXT diagnostic to Te >= 1 keV. Absolute brightness modeling explicitly includes several sources of radiation in the analysis model, enabling the use of thinner filters and measurement of much lower Te. Models based on the atomic database and analysis structure (ADAS) agree very well with our experimental SXR measurements. We used ADAS to assess the effect of bremsstrahlung, recombination, dielectronic recombination, and line emission on the inferred Te. This assessment informed the choice of the optimum filter pair to extend the Te range of the SXT diagnostic. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences program under Award Numbers DE-FC02-05ER54814 and DE-SC0015474.

  13. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  14. Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions

    Science.gov (United States)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest

  15. Reactive bipolar pulsed dual magnetron sputtering of ZrN films: The effect of duty cycle

    Science.gov (United States)

    Rizzo, A.; Valerini, D.; Capodieci, L.; Mirenghi, L.; Di Benedetto, F.; Protopapa, M. L.

    2018-01-01

    Zirconium nitride (ZrN) coatings, due to their inherent high hardness, wear and corrosion resistance, as well as the golden color, can be attractive for a wide range of applications, such as mechanical, optical, decorative and biomedical devices. Reactive Bipolar Pulsed Dual Magnetron Sputtering (BPDMS) operating in mid-frequency range is a powerful technique for the deposition of dense coatings, free from morphological defects, at high deposition rate. In fact, the use of mid-frequency voltage reversals allows suppressing arcs and, as a consequence, stabilizing the reactive sputtering process. Despite the success of the dual bipolar process, there are many aspects of this complex process that are not yet well understood, such as the influence of the target voltage waveforms and plasma parameters on the film growth. In order to fill this lack of knowledge, ZrN films were deposited by BPDMS with different voltage waveforms on the Zr targets and the influence of these deposition parameters on the films' stoichiometry as well as on their structural and mechanical properties is investigated in this paper. In particular, it was found that, for duty cycle values below 33%, the hardness of the coating increases up to 31 GPa. The analysis of the chemical composition, performed by XPS, detects an almost constant value of stoichiometry along the depth-profile of each film and the N:Zr ratio increases from 1.06 to 1.20 as the duty cycle decreases. Therefore, when the N:Zr ratio is 1.06 we got a stoichiometric ZrN compound, while for N:Zr equal to 1.20 we obtained a lack of Zr atoms with respect to N atoms. Raman spectroscopy confirms the results of XPS analyzes, since it showed some features related to the structural disorder in the sample grown with the lowest duty cycle.

  16. Preparation and characterization of tantalum oxide films produced by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ngaruiya, J.M. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); Jomo Kenyatta University of Agric. and Techn., Box 62000, Nairobi (Kenya); Venkataraj, S.; Drese, R.; Kappertz, O.; Leervad Pedersen, T.P. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); Wuttig, M. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); ISG3, Forschungszentrum Juelich, 52428 Juelich (Germany)

    2003-07-01

    We report on the influence of oxygen flow rate on structure, composition, density, deposition stress and optical properties of the as-deposited tantalum oxide thin films. The films were prepared by reactive direct current magnetron sputtering. The sputter current and total pressure were kept constant at 300 mA and 0.8 Pa, respectively. We could deposit fully transparent films at a rate of approximately 6 nm/min. without noticeable substrate warming from the plasma. Grazing angle XRD showed the films to be amorphous at all oxygen flow rates. Simulations to RBS data revealed, within errors, stoichiometric films above 2 sccm oxygen flow. Moreover argon incorporation in the films above 2 sccm oxygen flow was noted. The density was found to steeply decrease upto 2 sccm followed by a very slow linear decrease with oxygen flow as deduced from X-ray reflectometry. The refractive index, the extinction coefficient and the band gap energy were all obtained by optical spectroscopy. A band gap which increased from 4.17 to 4.23 eV with oxygen flow was determined for films in the transparent region. A characteristic of the defects in the film, {gamma}, which is obtained by simulating the optical spectra, was found to decrease from 85 meV at 6 sccm to 60 meV at 15 sccm oxygen flow. There was no significant change in {gamma} above 15 sccm. On the other hand the refractive index and the extinction coefficient were found to slightly decrease with increasing oxygen flow for the transparent films. Stress data revealed the films to be under some compressive stress upon deposition. The stress decreased with increasing oxygen flow and stabilized at roughly -250 MPa above 6 sccm oxygen flow. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  17. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance.

    Science.gov (United States)

    Urquia Edreira, Eva R; Wolke, Joop G C; Aldosari, Abdullah AlFarraj; Al-Johany, Sulieman S; Anil, Sukumaran; Jansen, John A; van den Beucken, Jeroen J J P

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings have been used to enhance the biocompatibility and osteoconductive properties of metallic implants. The chemical composition of these ceramic coatings is an important parameter, which can influence the final bone performance of the implant. In this study, the effect of phase composition of CaP-sputtered coatings was investigated on in vitro dissolution behavior and in vivo bone response. Coatings were prepared by a radio frequency (RF) magnetron sputtering technique; three types of CaP target materials were used to obtain coatings with different stoichiometry and calcium to phosphate ratios (hydroxyapatite (HA), α-tricalciumphosphate (α-TCP), and tetracalciumphosphate (TTCP)) were compared with non-coated titanium controls. The applied ceramic coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma optical emission spectroscopy. The in vitro dissolution/precipitation of the CaP coatings was evaluated using immersion tests in simulated body fluid (SBF). To mimic the in vivo situation, identical CaP coatings were also evaluated in a femoral condyle rabbit model. TCPH and TTCPH showed morphological changes during 4-week immersion in SBF. The results of bone implant contact (BIC) and peri-implant bone volume (BV) showed a similar response for all experimental coatings. An apparent increase in tartrate resistant acid phosphatase (TRAP) positive staining was observed in the peri-implant region with decreasing coating stability. In conclusion, the experimental groups showed different coating properties when tested in vitro and an apparent increase in bone remodeling with increasing coating dissolution in vivo. © 2014 Wiley Periodicals, Inc.

  18. Fabrication of AZO TCO Films by RF-sputtering and Their Physical Properties

    Directory of Open Access Journals (Sweden)

    Jang T.S.

    2016-01-01

    Full Text Available We report on the fabrication of Al-doped ZnO (AZO transparent-conductive oxide (TCO films on glass substrates by RF-sputtering, their physical properties, and the effect of thermal annealing on the AZO TCO films. The AZO films on glass substrates have a preferred orientation of the c-axis, irrespective of deposition conditions, which means that the AZO films have textured structures along the c-axis. The film thickness and surface roughness in the AZO films are proportional to plasma power and deposition time, while they are inverse-proportional to working gas ratio and working pressure. The AZO films have the optical transmittance over 80 % in the wavelength range of 400 – 1000 nm, irrespective of deposition conditions. The plasma power and the deposition time relatively give a large influence on the optical transmittance, compared to the working gas ratio and the working pressure. The AZO films deposited at room temperature have poor electrical properties, while the thermal annealing under Ar ambient significantly improves the electrical conductivity of the AZO films: an as-deposited sample has an electrical resistivity of 87 Wcm and an electron concentration of 1.3´1017 cm−3, while the annealed sample has an electrical resistivity of 3.7´10-2 Wcm and an electron concentration of 1.2´1020 cm−3.

  19. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota Colombia (Colombia); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico)], E-mail: muhl@servidor.unam.mx

    2008-10-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN{sub x} films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N{sub 2} ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV{sub 0.025}. While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV{sub 0.025}. The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics.

  20. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Hung, E-mail: tieamo2002@gmail.com; Wu, Guo-Wei; He, Ju-Liang

    2015-03-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property.

  1. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    And Johnson SB parameters are observed to be best in discriminating the Johnson SB distribution of infrared brightness temperatures of deep convective systems for each season. Due to these properties of Johnson SB function, it can be utilized in the modelling of the histogram of infrared brightness temperature of deep ...

  2. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    It is observed that Johnson SB function is the best continuous distribution function in explaining the histogram of infrared brightness temperatures of the convective clouds. The best fit is confirmed by Kolmogorov–Smirnov statistic. Johnson SB's distribution of histogram of infrared brightness temperatures clearly ...

  3. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Nangle, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simon, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  4. Edge integration and the perception of brightness and darkness

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2006-01-01

    How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the

  5. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  6. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris

    2015-01-01

    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness...

  7. Brightness limitations of cold field emitters caused by Coulomb interactions

    NARCIS (Netherlands)

    Cook, B.J.; Verduin, T.; Hagen, C.W.; Kruit, P.

    2010-01-01

    Emission theory predicts that high brightness cold field emitters can enhance imaging in the electron microscope. This (neglecting chromatic aberration) is because of the large (coherent) probe current available from a high brightness source and is based on theoretically determined values of reduced

  8. Surface photometry of bulge dominated low surface brightness galaxies

    NARCIS (Netherlands)

    Beijersbergen, M; de Blok, WJG; van der Hulst, JM

    1999-01-01

    We present results of broad band BVRI observations of a sample of galaxies with a low surface brightness (LSB) disk and a bulge. These galaxies are well described as exponential disks and exponential bulges with no preferred value for either scale length or central surface brightness. The median B

  9. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    Science.gov (United States)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  10. Method for sputtering with low frequency alternating current

    Science.gov (United States)

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  11. Molecular dynamic simulations of the sputtering of multilayer organic systems

    CERN Document Server

    Postawa, Z; Piaskowy, J; Krantzman, K; Winograd, N; Garrison, B J

    2003-01-01

    Sputtering of organic overlayers has been modeled using molecular dynamics computer simulations. The investigated systems are composed of benzene molecules condensed into one, two and three layers on an Ag left brace 1 1 1 right brace surface. The formed organic overlayers were bombarded with 4 keV Ar projectiles at normal incidence. The development of the collision cascade in the organic overlayer was investigated. The sputtering yield, mass, internal and kinetic energy distributions of ejected particles have been analyzed as a function of the thickness of the organic layer. The results show that all emission characteristics are sensitive to the variation of layer thickness. Although most of the ejected intact benzene molecules originate from the topmost layer, the emission of particles located initially in second and third layers is significant. The analysis indicates that the metallic substrate plays a dominant role in the ejection of intact organic molecules.

  12. Bonding and transferring of carbon nanotube bumps using magnetron sputtering

    Science.gov (United States)

    Fujino, Masahisa; Terasaka, Hidenori; Suga, Tadatomo

    2018-02-01

    Bump-shaped carbon nanotubes (CNTs) are expected as substitutional via/bump structures for electronic devices. Moreover, the resistivity of the interconnect between CNTs and metal is relatively higher than that of conventional interconnects. In this research, CNT bumps were bonded to a Au substrate by surface activated bonding (SAB) with Au magnetron sputtering, and the resistance of the CNT bumps was measured. As a result, the Au sputtered on CNT bumps can reduce the interconnect resistance because of the enlarging contact area of CNT/metal and also their conjugation. Moreover, the interconnect resistance of the SAB-processed CNT and Au substrate could be estimated from the difference between their interconnect structures.

  13. An isolated, bright cusp aurora at Saturn

    Science.gov (United States)

    Kinrade, J.; Badman, S. V.; Bunce, E. J.; Tao, C.; Provan, G.; Cowley, S. W. H.; Grocott, A.; Gray, R. L.; Grodent, D.; Kimura, T.; Nichols, J. D.; Arridge, C. S.; Radioti, A.; Clarke, J. T.; Crary, F. J.; Pryor, W. R.; Melin, H.; Baines, K. H.; Dougherty, M. K.

    2017-06-01

    Saturn's dayside aurora displays a number of morphological features poleward of the main emission region. We present an unusual morphology captured by the Hubble Space Telescope on 14 June 2014 (day 165), where for 2 h, Saturn's FUV aurora faded almost entirely, with the exception of a distinct emission spot at high latitude. The spot remained fixed in local time between 10 and 15 LT and moved poleward to a minimum colatitude of 4°. It was bright and persistent, displaying intensities of up to 49 kR over a lifetime of 2 h. Interestingly, the spot constituted the entirety of the northern auroral emission, with no emissions present at any other local time—including Saturn's characteristic dawn arc, the complete absence of which is rarely observed. Solar wind parameters from propagation models, together with a Cassini magnetopause crossing and solar wind encounter, indicate that Saturn's magnetosphere was likely to have been embedded in a rarefaction region, resulting in an expanded magnetosphere configuration during the interval. We infer that the spot was sustained by reconnection either poleward of the cusp or at low latitudes under a strong component of interplanetary magnetic field transverse to the solar wind flow. The subsequent poleward motion could then arise from either reconfiguration of successive open field lines across the polar cap or convection of newly opened field lines. We also consider the possible modulation of the feature by planetary period rotating current systems.

  14. Intercomparisons of Nine Sky Brightness Detectors

    Directory of Open Access Journals (Sweden)

    Henk Spoelstra

    2011-10-01

    Full Text Available Nine Sky Quality Meters (SQMs have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across the Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from −16% to +20%. Intercalibration reduces this to 0.5%, and −7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m2 on 12 April, and the largest value was 5.94 ± 0.03 mcd/m2 on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  15. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  16. Dark Skies, Bright Kids Year 6

    Science.gov (United States)

    Liss, Sandra; Troup, Nicholas William; Johnson, Kelsey E.; Barcos-Munoz, Loreto D.; Beaton, Rachael; Bittle, Lauren; Borish, Henry J.; Burkhardt, Andrew; Corby, Joanna; Dean, Janice; Hancock, Danielle; King, Jennie; Prager, Brian; Romero, Charles; Sokal, Kimberly R.; Stierwalt, Sabrina; Wenger, Trey; Zucker, Catherine

    2015-01-01

    Now entering our sixth year of operation, Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in central Virginia through fun, hands-on activities that introduce basic Astronomy concepts beyond Virginia's Standards of Learning. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.DSBK has amassed over 15,000 contact hours since 2009 and we continue to broaden our impact. One important step we have taken in the past year is to establish a graduate student led assessment program to identify and implement directed learning goals for DSBK outreach. The collection of student workbooks, observations, and volunteer surveys indicates broad scale success for the program both in terms of student learning and their perception of science. The data also reveal opportunities to improve our organizational and educational practices to maximize student achievement and overall volunteer satisfaction for DSBK's future clubs and outreach endeavors.

  17. Dark Skies, Bright Kids Year 9

    Science.gov (United States)

    Burkhardt, Andrew Michael; Mathews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest

    2018-01-01

    We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.

  18. Bright visible light emission from graphene.

    Science.gov (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Yoo, Yong Shim; Yoon, Duhee; Dorgan, Vincent E; Pop, Eric; Heinz, Tony F; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel

    2015-08-01

    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  19. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  20. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki

    2013-12-01

    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  1. Interface magnetostriction of sputtered Fe/C multilayers

    Science.gov (United States)

    Zuberek, R.; Szymczak, H.; Krihnan, R.; Sella, C.; Kaabouchi, M.

    1993-03-01

    The results of magnetostriction constant λ s of multilayer Fe/C sputtered films are reported. The measurements have been performed at room temperature using strain modulated ferromagnetic resonance method. The structure of films is amorphous, mixture of amorphous and cubic and purely cubic. The magnetostriction constant λ s is different for any phases and depends linearly on the inverse of the Fe layer thickness.

  2. Pd-catalysts for DFAFC prepared by magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Bieloshapka, Igor; Jiříček, Petr; Vorokhta, M.; Tomšík, Elena; Rednyk, A.; Perekrestov, R.; Jurek, Karel; Ukraintsev, Egor; Hruška, Karel; Romanyuk, Olexandr; Lesiak, B.

    2017-01-01

    Roč. 419, Oct (2017), s. 838-846 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015088 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : Pd catalyst * formic acid fuel cell * magnetron sputtering * DFAFC * surface morphology Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  3. Laboratory Plasma Studies

    Science.gov (United States)

    1989-05-23

    Claw ) in the right-hand side of (40). the growth simply depends on An electron at the higher energy state is an emitter for the energy distribution of...oranges at the low levels to bright blues and violets at the highest levels, so the intensities are similar to what would be used for a "gray" scale plot...details of a ], 0 ns). growth rates factors 6 or more than "YMHD. A found in the Crab Nebula (1054 AD). result from laser-plasma experiment was

  4. The crystallization and properties of sputter deposited lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W., E-mail: alan.doolittle@ece.gatech.edu

    2016-06-30

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO{sub 2}) is performed by co-deposition from a lithium oxide (Li{sub 2}O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO{sub 2}. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO{sub 2} films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO{sub 2}) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material.

  5. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    Science.gov (United States)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  6. Sputter deposited Terfenol-D thin films for multiferroic applications

    Directory of Open Access Journals (Sweden)

    K. P. Mohanchandra

    2015-09-01

    Full Text Available In this paper, we study the sputter deposition and crystallization process to produce high quality Terfenol-D thin film (100 nm with surface roughness below 1.5 nm. The Terfenol-D thin film was produced using DC magnetron sputtering technique with various sputtering parameters and two different crystallization methods, i.e. substrate heating and post-annealing. Several characterization techniques including WDS, XRD, TEM, AFM, SQUID and MOKE were used to determine the physical and magnetic properties of the Terfenol-D films. TEM studies reveal that the film deposited on the heated substrate has large grains grown along the film thickness producing undesirable surface roughness while the film crystallized by post-annealing method shows uniformly distributed small grains producing a smooth surface. The Terfenol-D film was also deposited onto (011 cut PMN-PT single crystal substrate. With the application of an electric field the film exhibited a 1553 Oe change in coercivity with an estimated saturation magnetostriction of λs = 910 x 10−6.

  7. Sputter deposition of aluminum and other alloys at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.L.; Wan, C.T.; Susi, G.T.; Taylor, K.A.

    1989-05-01

    Structures of thin films deposited at ambient temperatures are similar to those of the bulk material whereas at lower temperatures films have significantly reduced grain size and may become amorphouslike. A two-stage cryorefrigerator was installed in a sputtering system to allow thin films of aluminum and aluminum--copper alloy to be deposited onto substrates cooled to cryogenic temperatures less than 30 K. Gases used for sputtering were argon, neon, and helium at pressures ranging from 0.40 to 2.0 Pa. A standard planar magnetron cathode was used. Vapor pressure--temperature data for gases show that argon will not cryocondense on substrate surfaces at temperatures greater than 40 K and neon will not cryocondense at temperatures above 11 K. Helium is considered for sputtering at substrate temperatures below 11 K. The purpose of this work is to determine the deposition rates using argon, neon, and helium and microstructure changes occurring when thin films are deposited onto cryogenically cooled substrates. Deposition rates are determined using surface profilometry and microstructure was determined by transmission electron microscopy.

  8. Assessing Reliability of Cold Spray Sputter Targets in Photovoltaic Manufacturing

    Science.gov (United States)

    Hardikar, Kedar; Vlcek, Johannes; Bheemreddy, Venkata; Juliano, Daniel

    2017-10-01

    Cold spray has been used to manufacture more than 800 Cu-In-Ga (CIG) sputter targets for deposition of high-efficiency photovoltaic thin films. It is a preferred technique since it enables high deposit purity and transfer of non-equilibrium alloy states to the target material. In this work, an integrated approach to reliability assessment of such targets with deposit weight in excess of 50 lb. is undertaken, involving thermal-mechanical characterization of the material in as-deposited condition, characterization of the interface adhesion on cylindrical substrate in as-deposited condition, and developing means to assess target integrity under thermal-mechanical loads during the physical vapor deposition (PVD) sputtering process. Mechanical characterization of cold spray deposited CIG alloy is accomplished through the use of indentation testing and adaptation of Brazilian disk test. A custom lever test was developed to characterize adhesion along the cylindrical interface between the CIG deposit and cylindrical substrate, overcoming limitations of current standards. A cohesive zone model for crack initiation and propagation at the deposit interface is developed and validated using the lever test and later used to simulate the potential catastrophic target failure in the PVD process. It is shown that this approach enables reliability assessment of sputter targets and improves robustness.

  9. Interaction of a vacuum arc plasma beam with an obstacle positioned normal to the plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Zarchin, O [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel); Zhitomirsky, V N [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel); Goldsmith, S [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel); Boxman, R L [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel)

    2003-09-21

    The effect of an obstacle positioned normal to a plasma jet produced by a vacuum arc plasma source on the radial distribution of ion flux in the vicinity of the obstacle was studied. This study was motivated by interest in the mutual influence of tightly packed substrates on coatings in industrial vacuum arc deposition systems. The experimental system consisted of a vacuum arc plasma source, a straight plasma duct, and a multi-probe consisting of a removable disc obstacle and a set of ring probes for measuring the radial ion flux. A dc arc discharge was ignited in vacuum between a truncated cone-shaped Cu cathode and an annular anode. The plasma jet produced by cathode spots passed through the anode aperture into the straight plasma duct. An axial magnetic field guided the plasma jet in the duct. The multi-probe consisted of a removable disc obstacle and a set of five ring probes for measuring the radial plasma flux as a function of distance from the disc obstacle. The rings and the disc probes were coaxially arranged on the multi-probe assembly and positioned so that plasma from the source passed through the ring probes and then encountered the disc. The influence of the obstacle was determined by measuring the ring ion currents, both in the presence of the obstacle, and when the disc obstacle was removed. The difference between the measured ion currents with and without the obstacle was interpreted to be the contribution of reflected or sputtered particles from the obstacle to the radial ion flux. The ring probes were biased by -60 V with respect to the grounded anode, to collect the saturated ion current. The multi-probe was connected to a movable stem, and positioned at different distances from the plasma source. A plasma density of {approx}6 x 10{sup 17} m{sup -3} was estimated in this study based on the ion current to the obstacle. The radial ion flux collected by the ring probes increased by 20-25% due to the presence of the obstacle. As the calculated mean

  10. Dark Skies, Bright Kids: Year 2

    Science.gov (United States)

    Carlberg, Joleen K.; Johnson, K.; Lynch, R.; Walker, L.; Beaton, R.; Corby, J.; de Messieres, G.; Drosback, M.; Gugliucci, N.; Jackson, L.; Kingery, A.; Layman, S.; Murphy, E.; Richardson, W.; Ries, P.; Romero, C.; Sivakoff, G.; Sokal, K.; Trammell, G.; Whelan, D.; Yang, A.; Zasowski, G.

    2011-01-01

    The Dark Skies, Bright Kids (DSBK) outreach program brings astronomy education into local elementary schools in central Virginia's Southern Albemarle County through an after-school club. Taking advantage of the unusually dark night skies in the rural countryside, DSBK targets economically disadvantaged schools that tend to be underserved due to their rural locale. The goals of DSBK are to foster children's natural curiosity, demonstrate that science is a fun and creative process, challenge students' conceptions of what a scientist is and does, and teach some basic astronomy. Furthermore, DSBK works to assimilate families into students' education by holding family observing nights at the school. Now in its third semester, DSBK has successfully run programs at two schools with very diverse student populations. Working with these students has helped us to revise our activities and to create new ones. A by-product of our work has been the development of lesson plans, complete with learning goals and detailed instructions, that we make publically available on our website. This year we are expanding our repertoire with our new planetarium, which allows us to visualize topics in novel ways and supplements family observing on cloudy nights. The DSBK volunteers have also created a bilingual astronomy artbook --- designed, written, and illustrated by UVa students --- that we will publish and distribute to elementary schools in Virginia. Our book debuted at the last AAS winter meeting, and since then it has been extensively revised and updated with input from many individuals, including parents, professional educators, and a children's book author. Because the club is currently limited to serving a few elementary schools, this book will be part of our efforts to broaden our impact by bringing astronomy to schools we cannot go to ourselves and reaching out to Spanish-speaking communities at the same time.

  11. Optical microvariability of bright type 2 quasars

    Science.gov (United States)

    Polednikova, Jana; Ederoclite, Alessandro; Cepa, Jordi; de Diego Onsurbe, José Antonio; González-Serrano, José Ignacio

    2014-07-01

    We present results from a project focused on searching optical microvariabilty (also known as ``intra-night'' variability) in type 2 - obscured - quasars. Optical microvariability can be described as very small changes in the flux, typically in the order of hundredths of magnitude, which can be observed on timescales of hours. Such studies have been so far conducted for samples of blazars and type 1, unobscured, AGNs, where the optical microvariability was detected with success. We have focused on obscured targets which would pose a challenge to the AGN standard model. In the present work, however, we have observed a sample of three bright (g mag < 17) type 2 quasar, based on the catalog of type 2 quasars from SDSS of Reyes et al. (2008). The observations were carried out with the 1.5 meter telescope at San Pedro Martir observatory in Mexico. The sample was observed during an observation period of four days in Johnsons V filter, resulting in at least two continuous intervals of observations per target during the observational run. We have obtained differential light curves for our sources as well as for the comparison stars. They were analyzed using one-way analysis of variance statistical test (ANOVA), which has been repeatedly used in the past for studies of unobscured targets. Based on the results from the statistical analysis, we show that at least two out of three observed targets appear to be variable on time scales of hours. So far, this is the first study which confirmed existence of optical microvariability in type 2 quasars.

  12. Visual features underlying perceived brightness as revealed by classification images.

    Directory of Open Access Journals (Sweden)

    Ilmari Kurki

    Full Text Available Along with physical luminance, the perceived brightness is known to depend on the spatial structure of the stimulus. Often it is assumed that neural computation of the brightness is based on the analysis of luminance borders of the stimulus. However, this has not been tested directly. We introduce a new variant of the psychophysical reverse-correlation or classification image method to estimate and localize the physical features of the stimuli which correlate with the perceived brightness, using a brightness-matching task. We derive classification images for the illusory Craik-O'Brien-Cornsweet stimulus and a "real" uniform step stimulus. For both stimuli, classification images reveal a positive peak at the stimulus border, along with a negative peak at the background, but are flat at the center of the stimulus, suggesting that brightness is determined solely by the border information. Features in the perceptually completed area in the Craik-O'Brien-Cornsweet do not contribute to its brightness, nor could we see low-frequency boosting, which has been offered as an explanation for the illusion. Tuning of the classification image profiles changes remarkably little with stimulus size. This supports the idea that only certain spatial scales are used for computing the brightness of a surface.

  13. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  14. Experiments on TFTR supershot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, J.D.; Bell, M.; Janos, A.; Kaye, S.; Kilpatrick, S.; Manos, D.; Mansfield, D.; Mueller, D.; Owens, K; Timberlake, J. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Pitcher, C.S. (Canadian Fusion Fuels Technology Project, Toronto, ON (Canada)); Snipes, J. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center)

    1992-05-01

    Improvements to the TFTR limiter have extended the threshold for carbon blooms (an uncontrolled massive influx of carbon) to greater than 32 MW for 1 sec so that blooms seldom occur in present TFTR Supershot experiments. As a result of the progression from strong blooms to modest blooms to no blooms, improvements in confinement could be correlated with the occurrence of a carbon bloom in the plasma which immediately preceded the supershot. It is speculated that the carbon influx during a carbon bloom results in a limiter surface which has a slightly reduced self=sputtering yield for subsequent discharge. The influence on the supershot plasma seems similar to phenomena obtained by conditioning with lithium pellets.

  15. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Nathan A. [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1376 (United States); Oldinski, Rachael A. [College of Engineering and Mathematical Science, University of Vermont, Burlington, VT 05405 (United States); Dept. of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States); Ma, Hongyan; Bryers, James D. [Dept. of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States); Williams, John D. [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); Popat, Ketul C., E-mail: Ketul.Popat@colostate.edu [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1376 (United States)

    2012-12-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at - 700 eV. For silver-doped films, two concentrations of silver ({approx} 0.5 wt.% and {approx} 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with {approx} 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with {approx} 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: Black-Right-Pointing-Pointer We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. Black-Right-Pointing-Pointer Silver-doped hydroxyapatite thin films on titanium were developed. Black-Right-Pointing-Pointer The

  16. Surface plasma source with saddle antenna radio frequency plasma generatora)

    Science.gov (United States)

    Dudnikov, V.; Johnson, R. P.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.

    2012-02-01

    A prototype RF H- surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H- beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  17. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  18. Noncontact measurement of substrate temperature by optical low-coherence interferometry in high-power pulsed magnetron sputtering

    Science.gov (United States)

    Hattori, Katsuhiro; Ohta, Takayuki; Oda, Akinori; Kousaka, Hiroyuki

    2018-01-01

    Substrate temperature is one of the important parameters that affect the quality of deposited films. The monitoring of the substrate temperature is an important technique of controlling the deposition process precisely. In this study, the Si substrate temperature in high-power pulse magnetron sputtering (HPPMS) was measured by a noncontact method based on optical low-coherence interferometry (LCI). The measurement was simultaneously performed using an LCI system and a thermocouple (TC) as a contact measurement method. The difference in measured value between the LCI system and the TC was about 7.4 °C. The reproducibilities of measurement for the LCI system and TC were ±0.7 and ±2.0 °C, respectively. The heat influx from the plasma to the substrate was estimated using the temporal variation of substrate temperature and increased from 19.7 to 160.0 mW/cm2 with increasing target applied voltage. The major factor for the enhancement of the heat influx would be charged species such as ions and electrons owing to the high ionization degree of sputtered metal particles in HPPMS.

  19. Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Polášek, J., E-mail: xpolasekj@seznam.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Mašek, K. [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Marek, A.; Vyskočil, J. [HVM Plasma Ltd., Na Hutmance 2, Prague 5, CZ-158 00 (Czech Republic)

    2015-09-30

    In this work, we investigated the possibilities of tungsten and tungsten oxide nanoclusters generation by means of non-reactive and reactive magnetron sputtering with gas aggregation. It was found that in pure argon atmosphere, cluster aggregation proceeded in two regimes depending on argon pressure in the aggregation chamber. At the lower pressure, cluster generation was dominated by two-body collisions yielding larger clusters (about 5.5 nm in diameter) at lower rate. At higher pressures, cluster generation was dominated by three-body collisions yielding smaller clusters (3–4 nm in diameter) at higher rate. The small amount of oxygen admixture in the aggregation chamber had considerable influence on cluster aggregation process. At certain critical pressure, the presence of oxygen led to the raise of deposition rate and cluster size. Resulting clusters were composed mostly of tungsten trioxide. The oxygen pressure higher than critical led to the target poisoning and the decrease in the sputtering rate. Critical oxygen pressure decreased with increasing argon pressure, suggesting that cluster aggregation process was influenced by atomic oxygen species (namely, O{sup −} ion) generated by oxygen–argon collisions in the magnetron plasma. - Highlights: • Formation of tungsten and tungsten oxide clusters was observed. • Two modes of cluster aggregation in pure argon atmosphere were found. • Dependence of cluster deposition speed and size on oxygen admixture was observed. • Changes of dependence on oxygen with changing argon pressure were described.

  20. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.

    Science.gov (United States)

    Wang, Jiexi; Zhang, Qiaobao; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xu, Daguo; Zhang, Kaili

    2014-08-14

    To improve the cycle performance of LiMn2O4 at elevated temperature, a graphite layer is introduced to directly cover the surface of a commercial LiMn2O4-based electrode via room-temperature DC magnetron sputtering. The as-modified cathodes display improved capacity retention as compared to the bare LiMn2O4 cathode (BLMO) at 55 °C. When sputtering graphite for 30 min, the sample shows the best cycling performance at 55 °C, maintaining 96.2% capacity retention after 200 cycles. Reasons with respect to the graphite layer for improving the elevated-temperature performance of LiMn2O4 are systematically investigated via the methods of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectrometry, scanning and transmission electron microscopy, X-ray diffraction and inductively coupled plasma-atomic emission spectrometry. The results demonstrate that the graphite coated LiMn2O4 cathode has much less increased electrode polarization and electrochemical impedance than BLMO during the elevated-temperature cycling process. Furthermore, the graphite layer is able to alleviate the severe dissolution of manganese ions into the electrolyte and mitigate the morphological and structural degradation of LiMn2O4 during cycling. A model for the electrochemical kinetics process is also suggested for explaining the roles of the graphite layer in suppressing the Mn dissolution.

  1. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    Science.gov (United States)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  2. Nanoparticle growth in ethanol based plasmas

    Science.gov (United States)

    Labidi, S.; Lecas, T.; Kovacevic, E.; Berndt, J.; Gibert, T.; Mikikian, M.

    2018-01-01

    Nanoparticles are grown in a capacitively-coupled radio-frequency discharge (ccrf) in argon from the sputtering of a carbonaceous film deposited on the electrodes. This brown film was previously formed from the ethanol decomposition obtained in argon/ethanol plasmas. During the nanoparticle growth, optical emission spectroscopy reveals the evolution of some typical carbonaceous molecules. The nanoparticle formation also disturbs the plasma equilibrium and induces several plasma instabilities consisting in some cases in regular plasma rotation at very low frequencies. Once nanoparticles are large enough to be observed, they constitute a dense cloud trapped in between the electrode with one central or two symmetrical voids. Ex-situ analysis by scanning electron microscopy evidences that grown nanoparticles can have original surface stuctures.

  3. Plasma instabilities of a charge breeder ECRIS

    Science.gov (United States)

    Tarvainen, O.; Angot, J.; Izotov, I.; Skalyga, V.; Koivisto, H.; Thuillier, T.; Kalvas, T.; Lamy, T.

    2017-10-01

    Experimental observation of plasma instabilities in a charge breeder electron cyclotron resonance ion source (CB-ECRIS) is reported. It is demonstrated that the injection of 133Cs+ or 85Rb+ ion beam into the oxygen discharge of the CB-ECRIS can trigger electron cyclotron instabilities, which restricts the parameter space available for the optimization of the charge breeding efficiency. It is concluded that the transition from a stable to unstable plasma regime is caused by gradual accumulation and ionization of Cs/Rb and simultaneous change of the discharge parameters in 10-100 ms time scale, not by a prompt interaction between the incident ion beam and the ECRIS plasma. The instabilities lead to loss of ion confinement, which results in the sputtering of the surfaces in contact with the plasma, followed by up to an order of magnitude increase of impurity currents in the extracted n+ ion beam.

  4. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  5. Process monitoring during AlN{sub x}O{sub y} deposition by reactive magnetron sputtering and correlation with the film's properties

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Joel, E-mail: joelborges@fisica.uminho.pt; Vaz, Filipe; Marques, Luis [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martin, Nicolas [Institut FEMTO-ST, Département MN2S, UMR 6174 CNRS, Université de Franche-Comté, ENSMM, UTBM, 32, Avenue de l' Observatoire, 25044 Besançon Cedex (France)

    2014-03-15

    In this work, AlN{sub x}O{sub y} thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N{sub 2}+O{sub 2}) atmosphere. The direct current magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux, and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of nonmetallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.

  6. Improved control techniques for the reactive magnetron sputtering of silicon to produce silicon oxide and the implications for selected film properties

    Energy Technology Data Exchange (ETDEWEB)

    Danson, N. [Loughborough Univ. of Technology (United Kingdom). Dept. of Physics; Hall, G.W. [Loughborough Univ. of Technology (United Kingdom). Dept. of Physics; Howson, R.P. [Loughborough Univ. of Technology (United Kingdom). Dept. of Physics

    1996-11-30

    Silicon oxide films were reactively sputtered to give reproducibly controlled properties with refractive indices between 1400 and 1490. They were deposited at rates of up to 0.85 nm s{sup -1} from a 100 mm diameter polycrystalline silicon cathode, sputtered at 200 W, 40 kHz rectified a.c. power in a reactive environment. This frequency, combined with feedback control of the flow of reactive gas, achieved from a d.c. signal derived from the cathode potential, used directly or with a novel gas pulsing unit, has demonstrated that the process can be controlled with at least as much success as conventional optical emission feedback from the plasma. Stress-stoichiometry curves showed a peak in stress at a refractive index of 1460 indicating both a dense structure and optimized SiO{sub 2}. We have demonstrated a reactive-gas pulsing system which allows stable sputtering conditions to be easily established for the duration of the deposition, which gives rapid recovery from arc disruptions and allows various combinations of reactive gas incorporation into the growing film. (orig.)

  7. Stress evolution in magnetron sputtered Ti-Zr-N and Ti-Ta-N films studied by in situ wafer curvature: Role of energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Abadias, G., E-mail: gregory.abadias@univ-poitiers.f [Laboratoire PHYMAT, UMR 6630, Universite de Poitiers-CNRS, SP2MI, Teleport 2, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope (France); Koutsokeras, L.E. [Laboratoire PHYMAT, UMR 6630, Universite de Poitiers-CNRS, SP2MI, Teleport 2, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope (France); Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Guerin, Ph. [Laboratoire PHYMAT, UMR 6630, Universite de Poitiers-CNRS, SP2MI, Teleport 2, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope (France); Patsalas, P. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2009-12-31

    Stress evolution during reactive magnetron sputtering of binary TiN, ZrN and TaN thin films as well as ternary Ti-Zr-N and Ti-Ta-N solid-solutions was studied using real-time wafer curvature measurements. The energy of the incoming particles (sputtered atoms, backscattered Ar, ions) was tuned by changing either the metal target (M{sub Ti} = 47.9, M{sub Zr} = 91.2 and M{sub Ta} = 180.9 g/mol), the plasma conditions (effect of pressure, substrate bias or magnetron configuration) for a given target or by combining different metal targets during co-sputtering. Experimental results were discussed using the average energy of the incoming species, as calculated using Monte-Carlo simulations (SRIM code). In the early stage of growth, a rapid evolution to compressive stress states is noticed for all films. A reversal towards tensile stress is observed with increasing thickness at low energetic deposition conditions, revealing the presence of stress gradients. The tensile stress is ascribed to the development of a 'zone T' columnar growth with intercolumnar voids and rough surface. At higher energetic deposition conditions, the atomic peening mechanism is predominant: the stress remains largely compressive and dense films with more globular microstructure and smooth surface are obtained.

  8. Millimeter-wave Imaging Radiometer Brightness Temperatures, Wakasa Bay, Japan

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes calibrated brightness temperatures measured over Wakasa Bay in the Sea of Japan in January and February 2003. The MIR was carried on a...

  9. Nimbus-5 ESMR Polar Gridded Brightness Temperatures, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  10. SMEX03 SSM/I Brightness Temperature Data, Alabama

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  11. Binocular Coordination in Reading When Changing Background Brightness

    Directory of Open Access Journals (Sweden)

    Köpsel Anne

    2017-10-01

    Full Text Available Contradicting results concerning binocular coordination in reading have been reported: Liversedge et al. (2006 reported a dominance of uncrossed fixations, whereas Nuthmann and Kliegl (2009 observed more crossed fixations in reading. Based on both earlier and continuing studies, we conducted a reading experiment involving varying brightness of background and font. Calibration was performed using Gabor patches presented on grey background. During the experimental session, text had to be read either on dark, bright, or grey background. The data corroborates former results that showed a predominance of uncrossed fixations when reading on dark background, as well as those showing a predominance of crossed fixations, when reading on bright background. Besides these systematic shifts, the new results show an increase in unsystematic variability when changing the overall brightness from calibration to test. The origins of the effects need to be clarified in future research.

  12. CLPX-Satellite: AVHRR/HRPT Brightness Temperatures and Reflectances

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes AVHRR/HRPT (Advanced Very High Resolution Radiometer/High Resolution Picture Transmission) brightness temperatures and reflectances over the...

  13. SMEX03 SSM/I Brightness Temperature Data, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  14. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of the proposed effort is maximizing the brightness of fiber coupled laser diode pump sources at a minimum cost. The specific innovation proposed is to...

  15. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — NSIDC produces daily gridded brightness temperature data from orbital swath data generated by the Special Sensor Microwave/Imager (SSM/I) aboard the Defense...

  16. CLEMENTINE LWIR BRIGHTNESS TEMPERATURE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This volume contains the archive of Lunar brightness temperature data derived from images acquired by the Clementine Long Wavelength Infrared (LWIR) camera. The LWIR...

  17. SMEX02 SSM/I Brightness Temperature Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — The Special Sensor Microwave/Imager (SSM/I) is a seven-channel, four-frequency, linearly polarized passive microwave radiometric system. Data are brightness...

  18. CLASIC07 PALS Brightness Temperature Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains brightness temperature data obtained by the Passive Active L-band System (PALS) microwave aircraft radiometer instrument as part of the Cloud...

  19. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  20. Visible Color and Photometry of Bright Materials on Vesta

    Science.gov (United States)

    Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].

  1. The Photometric Brightness Variation of Geostationary Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Haingja Seo

    2013-09-01

    Full Text Available Photometric observation is one of the most effective techniques for determining the physical characteristics of unknown space objects and space debris. In this research, we examine the change in brightness of the Communication, Ocean, Meteorological Satellite-1 (COMS-1 Geostationary Orbit Satellite (GEO, and compare it to our estimate model. First, we calculate the maximum brightness time using our calculation method and then derive the light curve shape using our rendering model. The maximum brightness is then calculated using the induced equation from Pogson's formula. For a comparison with our estimation, we carried out photometric observation using an optical telescope. The variation in brightness and the shape of the light curve are similar to the calculations achieved using our model, but the maximum brightness shows a slightly different value from our calculation result depending on the input parameters. This paper examines the photometric phenomenon of the variation in brightness of a GEO satellite, and the implementation of our approach to understanding the characteristics of space objects.

  2. Global View of the Bright Material on Vesta

    Science.gov (United States)

    Zambon, F.; DeSanctis, C.; Schroeder, S.; Tosi, F.; Li, J.-Y.; Longobardo, A.; Ammannito, E.; Blewett, D. T.; Palomba, E.; Capaccioni, F.; hide

    2014-01-01

    At 525 km in mean diameter, Vesta is the second-most massive and one of the brightest asteroids of the main-belt. Here we give a global view of the bright material (BM) units on Vesta. We classified the BMs according to the normal visual albedo. The global albedo map of Vesta allows to be divided the surface into three principal types of terrains: bright regions, dark regions and intermediate regions. The distribution of bright regions is not uniform. The mid-southern latitudes contain the most bright areas, while the northern hemisphere is poor in bright regions. The analysis of the spectral parameters and the normal visual albedo show a dependence between albedo and the strength (depth) of ferrous iron absorption bands, strong bands correspond with high albedo units. Vesta's average albedo is 0.38, but there are bright material whose albedo can exceed 0.50. Only the E-Type asteroids have albedos comparable to those of the BMs on Vesta. The Dawn mission observed a large fraction of Vesta's surface at high spatial resolution, allowing a detailed study of the morphology and mineralogy of it. In particular, reflectance spectra provided by the Visible and InfraRed spectrometer (VIR), confirmed that Vesta's mineralogy is dominated by pyroxenes. All Vesta spectra show two strong absorption bands at approx 0.9 and 1.9 micron, typical of the pyroxenes and associated with the howardite, eucrite and diogenite (HED) meteorites.

  3. Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    Science.gov (United States)

    Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.

    2012-01-01

    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.

  4. On Mars' atmospheric sputtering after MAVEN first two years

    Science.gov (United States)

    Leblanc, F.; Modolo, R.; Curry, S.; Luhmann, J. G.; Lillis, R.; Chaufray, J. Y.; Hara, T.; McFadden, J.; Halekas, J.; Eparvier, F.; Larson, D.; Connerney, J.; Jakosky, B.

    2017-09-01

    Mars may have lost a significant part of its atmosphere into space along its history, in particular since the end of its internal dynamo, 4.1 Gyr ago. The sputtering of the atmosphere by precipitating planetary picked up ions accelerated by the solar wind is one of the processes that could have significantly contributed to this atmospheric escape. We here present a two years base analysis of MAVEN observation of the precipitating flux, in particular the dependency of the precipitating intensity with solar zenith angle and used this measurement to model the expected escape rate and exosphere induced by this precipitation.

  5. Clusters distributions on charges and dimensions at ion metal sputtering

    CERN Document Server

    Matveev, V I

    2001-01-01

    The theory on the metal sputtering in form of large (with the atoms number N >= 5) neutral and charged clusters under the impact of the ion bombardment is considered. The probability of the cluster emission, consisting of the N atoms, is calculated on the basis of the Einstein model. The charge state of the cluster, consisting of the N atoms, is determined. The obtained formulae agree well with the experimental results. It is noted, that the mass-spectra of the neutral clusters slightly depend on the target temperature, whereas the mass-spectra of the single charge clusters essentially depend on the target temperature

  6. Preparation, characterization and properties of sputtered electrochromic and thermochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Sella, C.; Nemraoui, O. [Centre National de la Recherche Scientifique, 92 - Meudon-Bellevue (France). Lab. de Physique des Solides; Maaza, M. [Physics Department, University of the Witwatersrand, Johannesburg (South Africa); Lafait, J. [Laboratoire d`Optique des Solides, Universite de Paris VI-Jussieu, Paris (France); Renard, N. [Dassault Aviation, St Cloud (France); Sampeur, [ICMC Company, Le Mee sur Seine (France)

    1998-01-01

    The interest in electrochromic materials has increased in the last few years because of their applications in a wide variety of optical modulation devices including smart windows for solar control in the architectural and automotive sectors and flat panel displays. Thermochromic coatings which reduce the transmission of solar energy as the temperature rises can prevent overheating and find application in the thermal control of buildings, satellites and spatial equipements. This article reports on the optical and structural properties of RF sputtered thin films of WO{sub 3} and VO{sub 2} for electrochromic and thermochromic devices. (orig.) 4 refs.

  7. Sputter deposition system for controlled fabrication of multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  8. Studies on the reactive pulsed-magnetron sputtering of ITO from metallic targets; Untersuchungen zum reaktiven Pulsmagnetronsputtern von ITO von metallischen Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gnehr, W.M.

    2006-06-15

    The thesis deals with a reactive sputter process for the deposition of ITO- films. In contrast to the usual technique, the sputter targets consists of indium-tin-alloy instead of ceramic ITO. All experiments were conducted on an inline coater with 600 mm target-width. The process is stabilized by a control loop based on optical emission detection. The experiments prove, that this control loop guarantees a long term stability of the outcomes of the coating process.Process parameters, that are crucial for the optical and electrical properties of the deposited thin films are identified and studied. Among them are the flow of oxygen and the substrate temperature but also less obvious parameters such as the distance between target and substrate.Througout the work the focus is on the film deposition with pulsed plasmas. Novel bipolar DC pulse- and pulse package generators are employed for the deposition.In order to shed some light onto the influence of certain pulse parameters on the outcome of a particular coating process, a Monte-Carlo-Simulation of the particle flow in pulsed plasmas is developed. This simulation yields the distribution of particles and their respective energies on deliberately placed planes in the process chamber. Particles under investigation are both sputtered species and neutral sputter gas atoms reflected at the target. The results of this simulation provide an explanation for the influence of certain pulse parameters on the outcome of the coating process. The further investigations deal with the influence of the construction of the process chamber on the coating process. For this purpose, locally resolved optical spectra are recorded. In order to analyse these spectra, a novel connected fit algorithm is developed.This algorithm yields the distribution of certain fitparameters on the substrate. Provided the most complex of the discussed parametrizations of the dielectric function are used, these can be crucial properties such as the carrier

  9. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  10. Conservation of an ion beam brightness. Study of a non brightness disturbing lens; Conservation de la brillance d'un faisceau ionique. Etude d'une lentille ne deteriorant pas cette brillance

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    Experimental studies of ion sources prove that large initial brightnesses can be obtained by using the plasma expansion principle. However these brightnesses are usually spoiled by the beam focusing and accelerating systems. A high intensity focusing set up is first theoretically studied, then numerically determined by use of a 7094 IBM computer. Aberrations have been minimized. It has then been possible to construct a set up conserving the source initial brightness. For a 100 mA beam the focusing voltage is 150 kV, the beam study has been done for 350 keV beam final energy. Given is a discussion of results. (author) [French] L'etude experimentale des sources d'ions, montre que de grandes brillances initiales peuvent etre atteintes en utilisant le principe de l'expansion du plasma. Mais generalement ces brillances sont alterees par la focalisation et l'acceleration du faisceau. Nous presentions une etude theorique, suivie d'une determination numerique utilisant l'ordinateur IBM 7094, d'un montage capable de focaliser des intensites elevees. Nous nous efforcons de reduire au minimum les aberrations. Nous avons pu realiser un systeme conservant la brillance initiale de la source. Pour une intensite de 100 mA la tension de focalisation doit etre de 150 kV. L'etude du faisceau a ete faite a 350 keV. Nous discutons enfin des resultats obtenus. (auteur)

  11. Correlation between Optical Properties and Chemical Composition of Sputter-Deposited Germanium Oxide (GEOX) Films (Postprint)

    Science.gov (United States)

    2014-03-18

    previously, including Radio Frequency (RF) magnetron sputtering [1,3,7,8,11,13,20–22], laser ablation [14], sol–gel deposition [2,9,10], reactive thermal...be a direct result of the decreased sputter yield associated with the covalently bonded compound. The agreement between the deposition rates using the

  12. Fabrication and characterization of dual sputtered pd-Cu alloy films for hydrogen separation membranes

    NARCIS (Netherlands)

    Hoang Thi Hanh, H.T.H.; Tong, D.H.; Gielens, F.C.; Jansen, Henricus V.; Elwenspoek, Michael Curt

    In this paper, submicron thin Pd–Cu alloy films are deposited using a dual sputtering technique, which allows a high composition control of the layer. The composition, surface morphology and phase structure of the sputtered layers are investigated by energy-dispersive spectrometry (EDS), X-ray

  13. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NARCIS (Netherlands)

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to

  14. Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO2 Films

    NARCIS (Netherlands)

    Rafieian Boroujeni, Damon; Driessen, Rick Theodorus; Driessen, Rick T.; Ogieglo, Wojciech; Lammertink, Rob G.H.

    2015-01-01

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during

  15. Effect of Hydrogen on Vacancy Formation in Sputtered Cu Films Studied by Positron Annihilation Spectroscopy

    Science.gov (United States)

    Yabuuchi, Atsushi; Kihara, Teruo; Kubo, Daichi; Mizuno, Masataka; Araki, Hideki; Onishi, Takashi; Shirai, Yasuharu

    2013-04-01

    As a part of the LSI interconnect fabrication process, a post-deposition high-pressure annealing process is proposed for embedding copper into trench structures. The embedding property of sputtered Cu films has been recognized to be improved by adding hydrogen to the sputtering argon gas. In this study, to elucidate the effect of hydrogen on vacancy formation in sputtered Cu films, normal argon-sputtered and argon-hydrogen-sputtered Cu films were evaluated by positron annihilation spectroscopy. As a result, monovacancies with a concentration of more than 10-4 were observed in the argon-hydrogen-sputtered Cu films, whereas only one positron lifetime component corresponding to the grain boundary was detected in the normal argon-sputtered Cu films. This result means monovacancies are stabilized by adding hydrogen to sputtering gas. In the annealing process, the stabilized monovacancies began clustering at around 300 °C, which indicates the dissociation of monovacancy-hydrogen bonds. The introduced monovacancies may promote creep deformation during high-pressure annealing.

  16. High temperature oxidation of Ti–48Al–8Cr–2Ag alloy with sputtered ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Magnetron-sputter deposition was used to produce a Ti–48Al–8Cr–2Ag (at.%) coating on a cast alloy substrate with the same composition. The oxidation behaviour of the cast Ti–48Al–8Cr–2Ag alloy and its sputtered coating was investigated in air at 1000°C. The resulting scale structures were analyzed in great.

  17. Novel matching lens and spherical ionizer for a cesium sputter ion ...

    Indian Academy of Sciences (India)

    Abstract. The beam optics of a multi-sample sputter ion source, based on the NEC MCSNICS, has been modified to accommodate cathode voltages higher than 5 kV and dispenses with the nominal extractor. The cathode voltage in Cs sputter sources plays the role of the classical extractor accom- plishing the acceleration ...

  18. Novel matching lens and spherical ionizer for a cesium sputter ion ...

    Indian Academy of Sciences (India)

    The beam optics of a multi-sample sputter ion source, based on the NEC MCSNICS, has been modified to accommodate cathode voltages higher than 5 kV and dispenses with the nominal extractor. The cathode voltage in Cs sputter sources plays the role of the classical extractor accomplishing the acceleration of beam ...

  19. Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Dai, Wei; Xu, Sheng [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Li, Hongji [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-04-07

    Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Ti interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.

  20. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kezzoula, F., E-mail: kezzoula@usa.com [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Hammouda, A. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Kechouane, M. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Simon, P. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Abaidia, S.E.H. [Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Keffous, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Cherfi, R. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Menari, H.; Manseri, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria)

    2011-09-15

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  1. Estimation of Sputtering Damages on a Magnetron H- Ion Source Induced by Cs+ and H+ Ions

    CERN Document Server

    Pereira, H; Alessi, J; Kalvas, t

    2013-01-01

    An H− ion source is being developed for CERN’s Linac4 accelerator. A beam current requirement of 80 mA and a reliability above 99% during 1 year with 3 month uninterrupted operation periods are mandatory. To design a low-maintenance long life-time source, it is important to investigate and understand the wear mechanisms. A cesiated plasma discharge ion source, such as the BNL magnetron source, is a good candidate for the Linac4 ion source. However, in the magnetron source operated at BNL, the removal of material from the molybdenum cathode and the stainless steel anode cover plate surfaces is visible after extended operation periods. The observed sputtering traces are shown to result from cesium vapors and hydrogen gas ionized in the extraction region and subsequently accelerated by the extraction field. This paper presents a quantitative estimate of the ionization of cesium and hydrogen by the electron and H− beams in the extraction region of BNL’s magnetron ion source. The respective contributions o...

  2. Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets

    Science.gov (United States)

    Miyazaki, Yusuke; Maruyama, Eri; Jia, Junjun; Machinaga, Hironobu; Shigesato, Yuzo

    2017-04-01

    High-quality transparent conductive oxide (TCO) films, Sn-doped In2O3 (ITO) and In2O3-ZnO (IZO), were successfully deposited on either synthetic silica or polyethylene terephthalate (PET) substrates in the “transition region” by reactive dc magnetron sputtering using In-Zn and In-Sn alloy targets, respectively, with a specially designed plasma emission feedback system. The composition, crystallinity, surface morphology, and electrical and optical properties of the films were analyzed. All of the IZO films were amorphous, whereas the ITO films were polycrystalline over a wide range of deposition conditions. The minimum resistivities of the IZO and ITO films deposited on the heated PET substrates at 150 °C were 3.3 × 10-4 and 5.4 × 10-4 Ω·cm, respectively. By applying rf bias to unheated PET substrates, ITO films with a resistivity of 4.4 × 10-4 Ω·cm were deposited at a dc self-bias voltage of -60 V.

  3. Absolute sputtering yields from solid Ne by low energy He+ and Arq+ (1 >= q >= 6) impact

    Science.gov (United States)

    Fujita, Shinya; Tachibana, Takayuki; Koizumi, Tetsuo; Hirayama, Takato

    2009-04-01

    Absolute sputtering yields from the surface of solid Ne by low energy He+ and Arq+ (1 >= q >= 6) impact are measured. Very large sputtering yields (300 atoms/ion for 1 keV He+ impact, and 3000 atoms/ion for 1keV Ar+ impact) have been observed. A significant dependence of the sputtering yields on the chage state, i.e. the potential energy, of the incident ion for Arq+ has not been observed because it is estimated to be much smaller than that of the kinetic sputtering, which suggests that the mechanism of potential sputtering is similar to those known for the electron- and photon-stimulated desorption processes.

  4. Effect of sputtering pressure on some properties of chromium thin films obliquely deposited

    Energy Technology Data Exchange (ETDEWEB)

    Besnard, A; Martin, N; Millot, C; Gavoille, J; Salut, R, E-mail: aurelien.besnard@ens2m.fr [Institut FEMTO-ST, UMR 6174 CNRS, Universite de Franche-Comte, ENSMM, UTBM, 32 avenue de l' observatoire, 25044 Besancon (France)

    2010-06-15

    Oriented columnar thin films provide a wide range of new properties linked to the large panel of available microstructures. The efficiency of the technique and thus the resulting structure, based on an incident flux of particles impinging on the substrate, depends on the distribution of the vapour source. The deposition pressure, which acts on the sputtered particles mean free path, is an important parameter, especially for sputtering processes. This study reports on the effect of different deposition pressures combined to a systematic change of the incidence angle of the sputtered particles, on the structural properties and electrical behaviours of obliquely sputtered chromium thin films. The results revealed higher performances and an enhanced control of the process at low sputtering pressure.

  5. Electronic sputtering of solid O{sub 2} by keV Ne ions

    Energy Technology Data Exchange (ETDEWEB)

    Pedrys, Roman [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Anders, Christian [Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany); Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de [Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany)

    2015-07-01

    Sputtering of a solid oxygen target is studied both by experiment and by computer simulation. Experimental data of the translational energy distributions of sputtered O{sub 2} molecules are measured for 250 and 750 eV Ne impact; this process is also studied using molecular dynamics computer simulation. Translational energy distributions coincide well for high ejection energies; this proves that the collisional part of the sputtering process is well described by computer simulation. Deviations exist at the low-energy side, below around 0.3 eV; these are assigned to electronic excitations and exothermic chemical reactions that have not been included in the computer model. We show that the sputter contribution from electronic excitation is very similar to that found for 2–9 keV H{sub 2} and H{sub 3} impact and for electron impact at sub-keV energies. Our results thus allow us to separate collisional from electronic sputtering.

  6. The bioactivity mechanism of magnetron sputtered bioglass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Berbecaru, C. [University of Bucharest, Faculty of Physics, Bucharest 077125 (Romania); Stan, G.E., E-mail: george_stan@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania); Pina, S. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Tulyaganov, D.U. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Turin Polytechnic University in Tashkent, 700095 Tashkent (Uzbekistan); Ferreira, J.M.F. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer RF-sputtering: an efficient solution for synthesizing bioactive glass thin films. Black-Right-Pointing-Pointer Electrostatic interactions between charged surface and ions from stagnant solution. Black-Right-Pointing-Pointer Heterogeneous-type nucleation of apatite from the SBF solution on the glass surface. Black-Right-Pointing-Pointer Peculiarities of hydroxyapatite nucleation process and biomineralisation kinetics. - Abstract: Smooth and adherent bioactive coatings with {approx}0.5 {mu}m thickness were deposited onto Si substrates by the radiofrequency-magnetron sputtering method at 150 Degree-Sign C under 0.4 Pa of Ar atmosphere using a bioglass powder as target with a composition in the SiO{sub 2}-CaO-MgO-P{sub 2}O{sub 5}-CaF{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O system. The bioactivity of the as-prepared bioglass samples was assessed by immersion in simulated body fluid for different periods of time up to 30 days. Grazing incidence X-ray diffraction, Fourier transform infra-red spectrometry and energy dispersive spectroscopy revealed that important structural and compositional changes took place upon immersing the samples in SBF. Whilst the excellent biomineralisation capability of the BG thin films was demonstrated by the in vitro induction of extensive and homogenous crystalline hydroxyapatite in-growths on their surfaces, a series of bioactivity process kinetics peculiarities (derogations from the classical model) were emphasised and thoroughly discussed.

  7. Reactive sputtering deposition of SiO2 thin films

    Directory of Open Access Journals (Sweden)

    IVAN RADOVIC

    2008-01-01

    Full Text Available SiO2 layers were deposited in a UHV chamber by 1 keV Ar+ ion sputtering from a high purity silicon target, using different values of the oxygen partial pressure (5×10-6–2×10-4 mbar and of the ion beam current on the target (1.67–6.85 mA. The argon partial pressure during operation of the ion gun was 1×10-3 mbar. The substrate temperature was held at 550 °C and the films were deposited to a thickness of 12.5–150 nm, at a rate from 0.0018–0.035 nm s-1. Structural characterization of the deposited thin films was performed by Rutherford backscattering spectrometry (RBS analysis. Reactive sputtering was proved to be efficient for the deposition of silica at 550 °C, an oxygen partial pressure of 2×10-4 mbar (ion beam current on the target of 5 mA or, at a lower deposition rate, ion beam current of 1.67 mA and an oxygen partial pressure of 6×10-5 mbar. One aspect of these investigations was to study the consumption of oxygen from the gas cylinder, which was found to be lower for higher deposition rates.

  8. Electrochromic study on amorphous tungsten oxide films by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan (China); Hung, Ming-Tsung [Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Huang, B.Q. [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China)

    2015-07-31

    Tungsten oxide films under different oxygen flow rates are deposited by DC sputtering. The voltage change at target and analyses for the deposited films by X-ray diffraction, scanning electronic microscope, X-ray photoelectron spectroscopy and ultraviolet–visible-near infrared spectroscopy consistently indicate that low oxygen flow rate (5 sccm) only creates metal-rich tungsten oxide films, while higher oxygen flow rate (10–20 sccm) assures the deposition of amorphous WO{sub 3} films. To explore the electrochromic function of deposited WO{sub 3} films, we use electrochemical tests to perform the insertion of lithium ions and electrons into films. The WO{sub 3} films switch between color and bleach states effectively by both potentiostat and cyclic voltammetry. Quantitative evaluation on electrochemical tests indicates that WO{sub 3} film with composition close to its stoichiometry is an optimal choice for electrochromic function. - Highlights: • Amorphous WO{sub 3} films are deposited by DC sputtering under different O{sub 2} flow rates. • Higher oxygen flow rate (> 10 sccm) assures the deposition of amorphous WO{sub 3} films. • Both potentiostat and cyclic voltammetry make WO{sub 3} films switch its color. • An optimal electrochromic WO{sub 3} is to make films close to its stoichiometry.

  9. Ion fluence dependence of the total sputtering yield and differential angular sputtering yield of bismuth due to 50 keV argon ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Deoli, Naresh T., E-mail: deoli@unt.edu; Phinney, Lucas C.; Weathers, Duncan L.

    2014-08-01

    The dependences of the total sputtering yield of Bi and the differential angular distribution of these sputtered Bi atoms on the fluence of 50 keV Ar{sup +} ions at normal incidence have been experimentally measured. Polycrystalline Bi targets were used for these purposes. The collector technique and accurate current integration methods were adopted for the determination of angular distributions of sputtered Bi atoms. The ion fluence was varied from 1.9 × 10{sup 19} to 3.1 × 10{sup 20} ions/cm{sup 2}. The sputtered atoms were collected on high purity aluminum foils under ultra-high vacuum (∼5 × 10{sup −9} Torr). The collector foils were subsequently analyzed using heavy ion Rutherford backscattering spectroscopy. The shape of the angular distribution of sputtered atoms was found not to change significantly with the fluence, but the sputtering yield increased significantly from 2.2 ± 0.2 to 9.6 ± 0.6 atoms/ion over the fluence range studied.

  10. Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures

    Science.gov (United States)

    Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R.

    2017-05-01

    The microstructural, electrical, and thermoelectric properties of antimony telluride (Sb2Te3) thin films have been investigated for thermoelectric applications. Sb2Te3 thin films were deposited on flexible substrate (polyimide) by radiofrequency (RF) magnetron sputtering from a Sb2Te3 target using different sputtering pressures in the range from 4 × 10-3 mbar to 1.2 × 10-2 mbar. The crystal structure, [Sb]:[Te] ratio, and electrical and thermoelectric properties of the films were analyzed by grazing-incidence x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy (EDS), and Hall effect and Seebeck measurements, respectively. The XRD spectra of the films demonstrated polycrystalline structure with preferred orientation of (015), (110), and (1010). A high-intensity spectrum was found for the film deposited at lower sputtering pressure. EDS analysis of the films revealed the effects of the sputtering pressure on the [Sb]:[Te] atomic ratio, with nearly stoichiometric films being obtained at higher sputtering pressure. The stoichiometric Sb2Te3 films showed p-type characteristics with electrical conductivity, carrier concentration, and mobility of 35.7 S cm-1, 6.38 × 1019 cm-3, and 3.67 cm2 V-1 s-1, respectively. The maximum power factor of 1.07 × 10-4 W m-1 K-2 was achieved for the film deposited at sputtering pressure of 1.0 × 10-2 mbar.

  11. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Han, Y.S. [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China)

    2017-07-15

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  12. Characterization of amorphous and nanocomposite Nb–Si–C thin films deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nedfors, Nils, E-mail: nils.nedfors@kemi.uu.se [Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Tengstrand, Olof [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Flink, Axel [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Impact Coatings AB, Westmansgatan 29, SE-582-16 Linköping (Sweden); Eklund, Per; Hultman, Lars [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Jansson, Ulf [Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden)

    2013-10-31

    Two series of Nb–Si–C thin films of different composition have been deposited using DC magnetron sputtering. In the first series the carbon content was kept at about 55 at.% while the Si/Nb ratio was varied and in the second series the C/Nb ratio was varied instead while the Si content was kept at about 45 at.%. The microstructure is strongly dependent on Si content and Nb–Si–C films containing more than 25 at.% Si exhibit an amorphous structure as determined by X-ray diffraction. Transmission electron microscopy, however, induces crystallisation during analysis, thus obstructing a more detailed analysis of the amorphous structure. X-ray photo-electron spectroscopy suggests that the amorphous films consist of a mixture of chemical bonds such as Nb–Si, Nb–C, and Si–C. The addition of Si results in a hardness decrease from 22 GPa for the binary Nb–C film to 18 – 19 GPa for the Si-containing films, while film resistivity increases from 211 μΩcm to 3215 μΩcm. Comparison with recently published results on DC magnetron sputtered Zr–Si–C films, deposited in the same system using the same Ar-plasma pressure, bias, and a slightly lower substrate temperature (300 °C instead of 350 °C), shows that hardness is primarily dependent on the amount of Si–C bonds rather than type of transition metal. The reduced elastic modulus on the other hand shows a dependency on the type of transition metal for the films. These trends for the mechanical properties suggest that high wear resistant (high H/E and H{sup 3}/E{sup 2} ratio) Me–Si–C films can be achieved by appropriate choice of film composition and transition metal. - Highlights: • Si reduces crystallinity, amorphous structure for films containing > 25 at.% Si. • Electron beam induced crystallization during transmission electron microscopy. • Hardness and resistivity are primarily dependent on the relative amount of C–Si bonds.

  13. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  14. Anti-parallel filament flows and bright dots observed in the EUV with Hi-C

    Science.gov (United States)

    Alexander, C. E.; Regnier, S.; Walsh, R. W.; Winebarger, A. R.; Cirtain, J. W.

    2013-12-01

    The Hi-C instrument imaged the million degree corona at the highest spatial and temporal resolution to date. The instrument imaged a complicated active region which contained several interesting features. Scientists at UCLan in the UK, in collaboration with other members of the Hi-C science team, studied two of these festures: anti-parallel filament flows and bright EUV dots. Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Evidence of ';counter-steaming' flows has previously been inferred from these cool plasma observations but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). We present observations of an active region filament observed with Hi-C that exhibits anti-parallel flows along adjacent filament threads. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70 - 80 km/s) and gives an indication of the resolvable thickness of the individual strands (0.8' × 0.1'). The temperature distribution of the plasma flows was estimated to be log T(K) = 5.45 × 0.10 using EM loci analysis. Short-lived, small brightenings sparkling at the edge of the active region, calle EUV Bright Dots (EBDs) were also investigated. EBDs have a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength, but can however be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA suggesting a temperature between 0.5 and 1.5 MK. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV

  15. PROFFIT: Analysis of X-ray surface-brightness profiles

    Science.gov (United States)

    Eckert, Dominique

    2016-08-01

    PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

  16. A neurodynamical model of brightness induction in v1.

    Directory of Open Access Journals (Sweden)

    Olivier Penacchio

    Full Text Available Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.

  17. Electron sources with a plasma emitter

    Science.gov (United States)

    Kreindel, Iu. E.

    Papers are presented concerning electron guns which utilize plasma emitters involving low-pressure cold-cathode gas discharges. Particular attention is given to the development of high-brightness plasma emitters and the control of their parameters; experimental results on the operating conditions of various types of gas discharges used to obtain continuous and pulsed electron beams of large cross section; and the designs and characteristics of plasma-emitter electron guns. A number of applications are considered, including electron-beam welding, sintering, thin-film technology, and electron-beam diagnostics. No individual items are abstracted in this volume

  18. Bright light therapy of subsyndromal seasonal affective disorder in the workplace: morning vs. afternoon exposure.

    Science.gov (United States)

    Avery, D H; Kizer, D; Bolte, M A; Hellekson, C

    2001-04-01

    Bright light therapy in seasonal affective disorder (SAD) has been studied extensively. However, little attention has been given to subsyndromal seasonal affective disorder (SSAD) or the use of bright light in the workplace. Many patients using bright light boxes complain of the inconvenience of use. Much of this inconvenience involves the often-recommended early timing of the bright light therapy. Patients, who already have difficulty awakening, often have difficulty using the bright light therapy soon after awakening before going to work. If bright light could be used effectively in the workplace, the treatment would be more convenient; the improved convenience would probably improve compliance. In this study, we studied the effectiveness of bright light therapy in subjects with SSAD in the workplace, comparing morning bright light with afternoon bright light. Morning and afternoon bright light treatment (2500 lux) were compared in 30 subsyndromal seasonal affective disorder patients using the bright light therapy in the workplace. Hamilton Depression Ratings and subjective measures of mood, energy, alertness and productivity were assessed before and after 2 weeks of light therapy. Both morning and evening bright light significantly decreased the depression ratings and improved the subjective mood, energy, alertness and productivity scores. However, there were no significant differences between the two times of administration of the bright light treatment. Both bright light treatments were well tolerated. Bright light given in the workplace improves subjective ratings of mood, energy, alertness and productivity in SSAD subjects. Morning and afternoon bright lights resulted in similar levels of improvement.

  19. Bright and Not-So-Bright Prospects for Women in Physics in China-Beijing

    Science.gov (United States)

    Wu, Ling-An; Yang, Zhongqin; Ma, Wanyun

    2009-04-01

    Science in China-Beijing is enjoying a healthy increase in funding year by year, so the prospects for physicists are also bright. However, employment discrimination against women, formerly unthinkable, is becoming more and more explicit as the country evolves toward a market economy. Some recruitment notices bluntly state that only men will be considered, or impose restrictions upon potential female candidates. Female associate professors in many institutions are forced to retire at age 55, compared with 60 for men. This double-pinching discrimination against both younger and older women threatens to lead to a "pincer" effect, more serious than the "scissors" effect. Indeed, the ratio of senior-level women physicists in general has dropped significantly in recent years in China. Ironically, the number of female students applying for graduate studies is on the rise, as it is becoming increasingly difficult for them to compete with men in the job market with just an undergraduate degree. The Chinese Physical Society has made certain efforts to promote the image of women physicists, but it will take time and effort to reverse the trend.

  20. Agglomeration of mesoscopic particles in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Annaratone, B M; Elskens, Y; Arnas, C [PIIM, Universite de Provence, Campus St. Jerome, case 321, F-13397 Marseille (France); Antonova, T; Thomas, H M; Morfill, G E [Max-Planck Institut fuer Extraterrestrische Physik, D-85741 Garching (Germany)], E-mail: bma@mpe.mpg.de

    2009-10-15

    We disclose the basic mechanism of agglomeration of nano-sized particles. While for weakly coupled, mono-dispersed particles the electrostatic agglomeration has always been found to be unlikely, in strongly coupled complex (dusty) plasmas the occupation of positive states for small particles is relevant, leading to electrostatic attraction between differently charged particles. The occupation of positively charged states is further enhanced by dispersed distribution of size. The smaller particles are trapped by the larger, the accretion of which gives a positive feedback on the probability of positively charged small grains and then further accretion. Experiments on growth of carbon particles from sputtered graphite in RF and dc Argon plasma confirm the general theoretical prediction when the energy of the ions corresponds to plasma boundaries.

  1. High-brightness ultra-cold metastable neon-beam

    CERN Document Server

    Shimizu, Fujio

    2015-01-01

    This paper presents detailed characteristics of an ultra-cold bright metastable neon atomic beam which we have been using for atom-interferometric applications. The basis of the device is an atomic beam released from a magneto-optical trap (MOT) which is operated with a high intensity trapping laser, high magnetic quadrupole field, and large laser detuining. Mainly due to the complex structure of three dimensional magnetic field and laser beams, a bright small spot of atoms is formed near the center of the quadrupole magnetic field under an appropriate operating condition. We obtained the minimum trap diameter of 50 micron meter, the atomic density nearly 10^{13}cm^{-3}, and the atomic temperature slightly less than the Doppler limited temperature of 200 micro-K. By releasing trapped atoms we obtained an bright cold atomic beam which is not far from the collision limited atomic density.

  2. A high brightness probe of polymer nanoparticles for biological imaging

    Science.gov (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  3. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  4. On the relation between zenith sky brightness and horizontal illuminance

    Science.gov (United States)

    Kocifaj, M.; Posch, Th.; Solano Lamphar, H. A.

    2015-01-01

    The effects of artificial light at night are an emergent research topic for astronomers, physicists, engineers and biologists around the world. This leads to a need for measurements of the night sky brightness (= diffuse luminance of the night sky) and nocturnal illuminance. Currently, the most sensitive light meters measure the zenith sky brightness in magV/arcsec2 or - less frequently - in cd m-2. However, the horizontal illuminance resulting only from the night sky is an important source of information that is difficult to obtain with common instruments. Here we present a set of approximations to convert the zenith luminance into horizontal illuminance. Three different approximations are presented for three idealized atmospheric conditions: homogeneous sky brightness, an isotropically scattering atmosphere and a turbid atmosphere. We also apply the resulting conversion formulae to experimental data on night sky luminance, obtained during the past three years.

  5. Effects of Bright Light Treatment on Psychomotor Speed in Athletes

    Directory of Open Access Journals (Sweden)

    Mikko Paavo Tulppo

    2014-05-01

    Full Text Available Purpose: A recent study suggests that transcranial brain targeted light treatment via ear canals may have physiological effects on brain function studied by functional magnetic resonance imaging (fMRI techniques in humans. We tested the hypothesis that bright light treatment could improve psychomotor speed in professional ice hockey players. Methods: Psychomotor speed tests with audio and visual warning signals were administered to a Finnish National Ice Hockey League team before and after 24 days of transcranial bright light or sham treatment. The treatments were given during seasonal darkness in the Oulu region (latitude 65 degrees north when the strain on the players was also very high (10 matches during 24 days. A daily 12-min dose of bright light or sham (n = 11 for both treatment was given every morning between 8–12 am at home with a transcranial bright light device. Mean reaction time and motor time were analyzed separately for both psychomotor tests. Analysis of variance for repeated measures adjusted for age was performed. Results: Time x group interaction for motor time with a visual warning signal was p = 0.024 after adjustment for age. In Bonferroni post-hoc analysis, motor time with a visual warning signal decreased in the bright light treatment group from 127 ± 43 to 94 ± 26 ms (p = 0.024 but did not change significantly in the sham group 121 ± 23 vs. 110 ± 32 ms (p = 0.308. Reaction time with a visual signal did not change in either group. Reaction or motor time with an audio warning signal did not change in either the treatment or sham group. Conclusion: Psychomotor speed, particularly motor time with a visual warning signal, improves after transcranial bright light treatment in professional ice-hockey players during the competition season in the dark time of the year.

  6. Preparation and characterization of high-transmittance AZO films using RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian [College of Materials and Chemical Engineering, Collaborative Innovation Center for Energy Equipment of Three Gorges Region, China Three Gorges University, Yichang 443002 (China); Sun, Yihua, E-mail: sunyihua316181@163.com [College of Materials and Chemical Engineering, Collaborative Innovation Center for Energy Equipment of Three Gorges Region, China Three Gorges University, Yichang 443002 (China); Lv, Xin; Li, Derong [Glass Industry Engineering Research Center of Hubei Province, Hubei Sanxia New Building Materials Co., Ltd., Dangyang 444105 (China); Fang, Liang; Wang, Hailin; Sun, Xiaohua; Huang, Caihua; Yu, Haizhou; Feng, Ping [College of Materials and Chemical Engineering, Collaborative Innovation Center for Energy Equipment of Three Gorges Region, China Three Gorges University, Yichang 443002 (China)

    2014-10-30

    Highlights: • We prepared the AZO thin films on soda-lime glass without the substrate heated. • High-transmittance AZO films had been obtained by RF magnetron sputtering using a ceramic target. • The minimum resistivity of 2.55 × 10{sup −3} Ω cm combined with highest transmittance of 91% was obtained at a sputtering power of 400 W. • The resistivity decreased and transmittance improved with the sputtering power increase. - Abstract: Aluminum-doped zinc oxide (AZO) thin films with 250 nm thickness had been prepared on soda-lime glass substrate without heated by RF magnetron sputtering using a ceramic target. The microstructure, surface morphology, electrical and optical properties of AZO thin films had been investigated by X-ray diffraction, scanning electron microscope, four-point probe method and optical transmission spectroscopy. The results indicated that all of the films obtained were polycrystalline with a hexagonal structure and oriented with the c-axis perpendicular to the substrate. The resistivity decreased and transmittance improved with the sputtering power increase. The minimum resistivity of 2.55 × 10{sup −3} Ω cm combined with highest transmittance of 91% was obtained at a sputtering power of 400 W. The optical bandgap at different sputtering power varied among 3.81–4.04 eV.

  7. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  8. Changes in X-ray photoelectron spectra of yttria-tetragonal zirconia polycrystal by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Eiko; Yoshinari, Masao [Tokyo Dental College, Oral Health Science Center, Tokyo, Chiyoda-ku (Japan)

    2016-04-15

    This paper reports changes in X-ray photoelectron spectroscopy spectra of yttria-tetragonal zirconia polycrystal (Y-TZP) brought about by Ar ion sputtering. The changes in the core-level spectra of Y-TZP suggest that preferential sputtering of oxygen occurred. A new peak was observed near 0 eV binding energy accompanied with changes in the core-level spectra by the sputtering. After 18 h in a high vacuum following the sputtering, the spectra changed by the sputtering were returned to their original shapes. In contrast, the color of Y-TZP was changed from white to pale brown by X-ray irradiation and was changed from pale brown to dark gray by ion sputtering. However, when the new peak near 0 eV decreased after 18 h, no color change was observed. Therefore, it is thought that the new peak was mainly derived from electrons trapped in various kinds of oxygen vacancies created by the sputtering in other than color centers. (orig.)

  9. Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes

    Science.gov (United States)

    Versteeg, Ruth I.; Stenvers, Dirk J.; Visintainer, Dana; Linnenbank, Andre; Tanck, Michael W.; Zwanenburg, Gooitzen; Smilde, Age K.; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J.; la Fleur, Susanne E.; Bisschop, Peter H.

    2017-01-01

    Ambient light intensity is signaled directly to hypothalamic areas that regulate energy metabolism. Observational studies have shown associations between ambient light intensity and plasma glucose and lipid levels, but human data on the acute metabolic effects of light are scarce. Since light is the main signal indicating the onset of the diurnal phase of physical activity and food intake in humans, we hypothesized that bright light would affect glucose and lipid metabolism. Therefore, we determined the acute effects of bright light on plasma glucose and lipid concentrations in 2 randomized crossover trials: (1) in 8 healthy lean men and (2) in 8 obese men with type 2 diabetes. From 0730 h, subjects were exposed to either bright light (4000 lux) or dim light (10 lux) for 5 h. After 1 h of light exposure, subjects consumed a 600-kcal mixed meal. Primary endpoints were fasting and postprandial plasma glucose levels. In healthy men, bright light did not affect fasting or postprandial plasma glucose levels. However, bright light increased fasting and postprandial plasma triglycerides. In men with type 2 diabetes, bright light increased fasting and postprandial glucose levels. In men with type 2 diabetes, bright light did not affect fasting triglyceride levels but increased postprandial triglyceride levels. We show that ambient light intensity acutely affects human plasma glucose and triglyceride levels. Our findings warrant further research into the consequences of the metabolic effects of light for the diagnosis and prevention of hyperglycemia and dyslipidemia. PMID:28470119

  10. Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes.

    Science.gov (United States)

    Versteeg, Ruth I; Stenvers, Dirk J; Visintainer, Dana; Linnenbank, Andre; Tanck, Michael W; Zwanenburg, Gooitzen; Smilde, Age K; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J; la Fleur, Susanne E; Bisschop, Peter H

    2017-04-01

    Ambient light intensity is signaled directly to hypothalamic areas that regulate energy metabolism. Observational studies have shown associations between ambient light intensity and plasma glucose and lipid levels, but human data on the acute metabolic effects of light are scarce. Since light is the main signal indicating the onset of the diurnal phase of physical activity and food intake in humans, we hypothesized that bright light would affect glucose and lipid metabolism. Therefore, we determined the acute effects of bright light on plasma glucose and lipid concentrations in 2 randomized crossover trials: (1) in 8 healthy lean men and (2) in 8 obese men with type 2 diabetes. From 0730 h, subjects were exposed to either bright light (4000 lux) or dim light (10 lux) for 5 h. After 1 h of light exposure, subjects consumed a 600-kcal mixed meal. Primary endpoints were fasting and postprandial plasma glucose levels. In healthy men, bright light did not affect fasting or postprandial plasma glucose levels. However, bright light increased fasting and postprandial plasma triglycerides. In men with type 2 diabetes, bright light increased fasting and postprandial glucose levels. In men with type 2 diabetes, bright light did not affect fasting triglyceride levels but increased postprandial triglyceride levels. We show that ambient light intensity acutely affects human plasma glucose and triglyceride levels. Our findings warrant further research into the consequences of the metabolic effects of light for the diagnosis and prevention of hyperglycemia and dyslipidemia.

  11. Bright solitons in non-equilibrium coherent quantum matter.

    Science.gov (United States)

    Pinsker, F; Flayac, H

    2016-01-01

    We theoretically demonstrate a mechanism for bright soliton generation in spinor non-equilibrium Bose-Einstein condensates made of atoms or quasi-particles such as polaritons in semiconductor microcavities. We give analytical expressions for bright (half) solitons as minimizing functions of a generalized non-conservative Lagrangian elucidating the unique features of inter and intra-competition in non-equilibrium systems. The analytical results are supported by a detailed numerical analysis that further shows the rich soliton dynamics inferred by their instability and mutual cross-interactions.

  12. HSV Brightness Factor Matching for Gesture Recognition System

    OpenAIRE

    Mokhtar M. Hasan; Pramod K. Mishra

    2010-01-01

    The main goal of gesture recognition research is to establish a system which can identify specific human gestures and use these identified gestures to be carried out by the machine, In this paper, we introduce a new method for gesture recognition that based on computing the local brightness for each block of the gesture image, the gesture image is divided into 25x25 blocks each of 5x5 block size, and we calculated the local brightness of each block, so, each gesture produces 25x25 features va...

  13. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Prosthodontics and Restorative Science, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO{sub 3}){sub 2} + 3 mM NH{sub 4}H{sub 2}PO{sub 4}. Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings.

  14. A cesium-sputtering negative ion source for AMS investigations

    Science.gov (United States)

    Håkansson, K.; Hellborg, R.; Erlandsson, B.; Skog, G.; Stenström, K.; Wiebert, A.

    1996-02-01

    Accelerator mass spectrometry (AMS) requires ion sources delivering intense negative ion beams of high stability. At the Lund 3 MV Pelletron tandem accelerator a new Cs-sputtering source has therefore been constructed and installed. The source is equipped with a mechanism for automatically cracking the cesium galss ampoule inside the oven when the source is evacuated. The source is also equipped with a multiple sample holder which permits on-line sample changing without disrupting the operation of the electrostatic accelerator. In order to maximise the negative ion beam current the sample holder has a mechanism for moving the sample relative to the cesium beam. By doing this the lifetime of the samples can be increased.

  15. Development of AlInN photoconductors deposited by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Cascajero, Arantzazu; Jimenez-Rodriguez, Marco; Gonzalez-Herraez, Miguel; Naranjo, Fernando B. [Grupo de Ingenieria Fotonica, Departamento de Electronica, Universidad de Alcala, Madrid (Spain); Monroy, Eva [Universite Grenoble-Alpes, Grenoble (France); CEA-Grenoble, INAC-PHELIQS, Grenoble (France)

    2017-09-15

    In this work, we have developed photoconductor devices based on Al{sub 0.39}In{sub 0.61}N layers grown on sapphire by reactive radio-frequency magnetron sputtering. The fabricated devices show a sublinear dependence of the photocurrent as a function of the incident optical power. The above-the-band-gap responsivity reaches 7 W/A for an irradiance of 10 W/m{sup 2} (405 nm wavelength). The response decreases smoothly for below-the-bandgap excitation, dropping by more than an order of magnitude at 633 nm. The devices present persistent photoconductivity effects associated to carrier trapping at grain boundaries. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Structural and electrical properties of DC sputtered molybdenum films

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, G.; Grizalez, M.; Hernandez, L.C. [Laboratorio de Celdas Solares, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    1998-02-27

    A method is described for the fabrication of low-resistivity molybdenum films on soda-lime glass substrates. Films have been deposited using a DC magnetron sputtering system with a S-gun configuration, and have been characterized through X-ray diffraction, electrical conductivity, and Hall mobility measurements. The influence of the deposition parameters on both the resistivity of the Mo and on the contact resistivity of the Mo/CuInSe{sub 2}/Mo structure has been studied. Values of resistivity ranging from 1.2x10{sup -5} to 36x10{sup -5} {Omega} cm and of contact resistivity ranging from 0.025 to 0.15 {Omega} cm{sup 2} were found

  17. Synthesis of Ag2O Films using RF Magnetron Sputtering

    Science.gov (United States)

    Kaiser, Eric; Bonini, John; Fordham, William; Long, Matthew; Natale, Joseph; Redmond, Sean; Westerland, Adam; Yanakas, Michael; Hu, Xiao; Lofland, Samuel; Krchnavek, Robert; Hettinger, Jeffrey

    2013-03-01

    Silver oxide (Ag2O) thin films were successfully grown using reactive RF magnetron sputtering onto SiO2 and Al2O3 substrates at room temperature. Synthesis of these films was achieved in a gaseous mixture of oxygen and argon which was 40% oxygen. X-Ray diffraction tests yielded numerous peak intensities at angles correlating directly to Ag2O. Deposition rates were shown to be a significantly greater on Al2O3 in comparison to SiO2. Understanding this difference is a point of future investigations. ASTM D3359 adhesion tests as well as four terminal conductivity tests were also performed on the films and will be reported.

  18. A bright point source of ultrashort hard x-rays from laser bioplasmas

    CERN Document Server

    Krishnamurthy, M; Lad, Amit D; Ahmad, Saima; Narayanan, V; Rajeev, R; Kundu, M; Kumar, G Ravindra; Ray, Krishanu

    2010-01-01

    Micro and nano structures scatter light and amplify local electric fields very effectively. Energy incident as intense ultrashort laser pulses can be converted to x-rays and hot electrons more efficiently with a substrate that suitably modifies the local fields. Here we demonstrate that coating a plain glass surface with a few micron thick layer of an ubiquitous microbe, {\\it Escherichia coli}, catapults the brightness of hard x-ray bremsstrahlung emission (up to 300 keV) by more than two orders of magnitude at an incident laser intensity of 10$^{16}$ W cm$^{-2}$. This increased yield is attributed to the local enhancement of electric fields around individual {\\it E. coli} cells and is reproduced by detailed particle-in-cell (PIC) simulations. This combination of laser plasmas and biological targets can lead to turnkey, multi-kilohertz and environmentally safe sources of hard x-rays.

  19. Pd-catalysts for DFAFC prepared by magnetron sputtering

    Science.gov (United States)

    Bieloshapka, I.; Jiricek, P.; Vorokhta, M.; Tomsik, E.; Rednyk, A.; Perekrestov, R.; Jurek, K.; Ukraintsev, E.; Hruska, K.; Romanyuk, O.; Lesiak, B.

    2017-10-01

    Samples of a palladium catalyst for direct formic acid fuel cell (DFAFC) applications were prepared on the Elat® carbon cloth by magnetron sputtering. The quantity of Pd was equal to 3.6, 120 and 720 μg/cm2. The samples were tested in a fuel cell for electro-oxidation of formic acid, and were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The XPS measurements revealed a high contribution of PdCx phase formed at the Pd/Elat® surface interface, with carbon concentration in PdCx from x = 9.9-14.6 at.%, resulting from the C substrate and CO residual gases. Oxygen groups, e.g. hydroxyl (-OH), carbonyl (Cdbnd O) and carboxyl (COOH), resulted from the synthesis conditions due to the presence of residual gases, electro-oxidation during the reaction and oxidation in the atmosphere. Because of the formation of CO and CO2 on the catalysts during the reaction, or because of poisoning by impurities containing the -CH3 group, together with the risk of Pd losses due to dissolution in formic acid, there was a negative effect of catalyst degradation on the active area surface. The effect of different loadings of Pd layers led to increasing catalyst efficiency. Current-voltage curves showed that different amounts of catalyst did not increase the DFAFC power to a great extent. One reason for this was the catalyst structure formed on the carbon cloth. AFM and SEM measurements showed a layer-by-layer growth with no significant variations in morphology. The results for electric power recalculated for the Pd loading per 1 mg of catalyst layers in comparison to carbon substrates decorated by Pd nanoparticles showed that there is potential for applying anodes for formic acid fuel cells prepared by magnetron sputtering.

  20. Large area precision optical coatings by pulse magnetron sputtering

    Science.gov (United States)

    Frach, Peter; Gloess, Daniel; Goschurny, Thomas; Drescher, Andy; Hartung, Ullrich; Bartzsch, Hagen; Heisig, Andreas; Grune, Harald; Leischnig, Lothar; Leischnig, Steffen; Bundesmann, Carsten

    2017-05-01

    Pulse magnetron sputtering is very well suited for the deposition of optical coatings. Due to energetic activation during film growth, sputtered films are dense, smooth and show an excellent environmental stability. Films of materials like SiO2, Al2O3, Nb2O5 or Ta2O5 can be produced with very little absorption and scattering losses and are well suited for precision optics. FEP's coating plant PreSensLine, a deposition machine dedicated for the development and deposition of precision optical layer systems will be presented. The coating machine (VON ARDENNE) is equipped with dual magnetron systems (type RM by FEP). Concepts regarding machine design, process technology and process control as well as in situ monitoring are presented to realize the high demands on uniformity, accuracy and reproducibility. Results of gradient and multilayer type precision optical coatings are presented. Application examples are edge filters and special antireflective coatings for the backlight of 3D displays with substrate size up to 300 x 400mm. The machine allows deposition of rugate type gradient layers by rotating a rotary table with substrates between two sources of the dual magnetron system. By combination of the precision drive (by LSA) for the substrate movement and a special pulse parameter variation during the deposition process (available with the pulse unit UBS-C2 of FEP), it is possible to adjust the deposition rate as a function of the substrate position exactly. The aim of a current development is a technology for the uniform coating of 3D-substrates and freeform components as well as laterally graded layers.

  1. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  2. Influence of sputtering power on the optical properties of ITO thin films

    Science.gov (United States)

    K, Aijo John; Kumar, Vineetha V.; M, Deepak; T, Manju

    2014-10-01

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  3. Charge-state related effects in sputtering of LiF by swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Ludwig-Maximilians-Universität München, 85748 Garching (Germany); Ban-d' Etat, B. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Bender, M. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Boduch, P. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Grande, P.L. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Lebius, H.; Lelièvre, D. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Marmitt, G.G. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Rothard, H. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Seidl, T.; Severin, D.; Voss, K.-O. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Toulemonde, M., E-mail: toulemonde@ganil.fr [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Trautmann, C. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2017-02-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. The angular distribution of particles sputtered from the surface of LiF single crystals is composed of a jet-like peak superimposed on a broad isotropic distribution. By using incident ions of fixed energy but different charges states, the influence of the electronic energy loss on both components is probed. We find indications that isotropic sputtering originates from near-surface layers, whereas the jet component may be affected by contributions from depth up to about 150 nm.

  4. On-axis radio frequency magnetron sputtering of stoichiometric BaTiO{sub 3} target: Localized re-sputtering and substrate etching during thin film growth

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, F.A. [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Nouar, R. [Plasmionique Inc., 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Said Bacar, Z.; Higuera, B. [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Porter, R.; Sarkissian, A. [Plasmionique Inc., 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Thomas, R., E-mail: etreji@yahoo.com [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Ruediger, A., E-mail: ruediger@emt.inrs.ca [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada)

    2015-12-01

    BaTiO{sub 3} thin films were prepared on Nb–SrTiO{sub 3} (100) and Pt/Al{sub 2}O{sub 3}/SiO{sub 2}/Si substrates by radio frequency (rf) magnetron sputtering using a stoichiometric BaTiO{sub 3} ceramic target. This on-axis BaTiO{sub 3} thin film growth encountered severe re-sputtering and substrate etching, above a threshold power density (4 W/cm{sup 2}), due to negative ion formation at the target surface and subsequent acceleration towards the substrate. However, the film deposition with reduced or negligible re-sputtering was possible below 4 W/cm{sup 2} of rf-power. The rf-voltage vs. power curve showed two distinct linear regimes with high and low slopes; the change in the slope coincides with substrate etching. Optical emission spectroscopy was employed to establish the link between the onset of excessive re-sputtering and could be used as a control tool. Since, negative oxygen ions (O{sup −}) are responsible for the re-sputtering, additional processing parameters like the oxygen partial pressure [P{sub o} = (O{sub 2} ∕ O{sub 2} + Ar) %] and total pressure were also adjusted to realize target stoichiometry on the grown films. Finally, through optimization steps, as revealed by the X-ray photoelectron spectroscopy, stoichiometric BaTiO{sub 3} films were obtained, at a pressure ≥ 2.7 Pa, power density of 2 W/cm{sup 2} and P{sub o} around 50%. - Highlights: • BaTiO{sub 3} films were grown on Nb–SrTiO{sub 3} (100) and Pt/Al{sub 2}O{sub 3}/SiO{sub 2}/Si by magnetron sputtering. • The on-axis sputtering encountered severe re-sputtering and substrate etching by O{sup −} ions. • Intensity of Ba and Ti in the emission spectra could be used as a deposition control parameter. • Stoichiometric BaTiO{sub 3} films were realized at 20 mTorr and 2 W/cm{sup 2} (10 W) rf-power. • At low power, re-sputtering can be controlled and is imperative for the growth of BaTiO{sub 3} films.

  5. Development of beryllium bonds for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Franconi, E.; Ceccotti, G.C.; Magnoli, L.

    1991-10-01

    The use of graphite as a plasma facing surface is limited due to strong erosion produced by a combination of physical and chemical sputtering, self-sputtering and radiation enhanced sublimation. The most promising alternative material appears to be beryllium which offers a number of potential advantages over graphite: oxygen impurities abatement, reduced tritium retention and reduced sputtering erosion. The greatest advantage seems to be the rapid and economical repair of the surfaces by means of spray deposition. However, a number of questions remain to be answered concerning the use of beryllium in high power tokamaks. Foremost amongst these are melting of the facing during disruptions, controversial data on self-sputtering yields, neutron irradiation effects, high operational thermal stresses and potential safety problems. This paper focuses on the techniques used to bond beryllium to structural and heat sink materials, and the characterization of the bonding material obtained. In tests of Be bonding to stainless steel and copper by the use of brazing alloys, best results were obtained with a silver-copper eutectic alloy. It was noted that the high temperature capability of the materials prepared by this method is limited by the performance of the brazing alloys at the operating temperature. To avoid this problem, a joining process known as solid state reaction bonding is being developed.

  6. The effect of sputtering gas pressure on the structure and optical properties of MgNiO films grown by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wuze; Jiao, Shujie, E-mail: shujiejiao@gmail.com; Wang, Dongbo; Gao, Shiyong; Wang, Jinzhong; Yu, Qingjiang; Li, Hongtao

    2017-05-31

    Highlights: • MgNiO thin films were fabricated by radio frequency magnetron sputtering. • The structure and optical properties of MgNiO films were studied. • The mechanism of phase separation was discussed in detail. • The effect of different sputtering pressure also was discussed. - Abstract: In this study, MgNiO thin films were grown on quartz substrates by radio frequency (RF) magnetron sputtering. The influence of different sputtering pressures on the crystalline and optical properties of MgNiO thin films has been studied. X-ray diffraction measurement indicates that the MgNiO films are cubic structure with (200) preferred orientation. UV–vis transmission spectra show that all the MgNiO thin films show more than 75% transmission at visible region, and the absorption edges of all thin films locate at solar-blind region (220 nm–280 nm). The lattice constant and Mg content of MgNiO samples were calculated using X-ray diffraction and transmission spectra data. The phase separation is observed both in the X-ray diffraction patterns and transmission spectra, and the phase separation is studied in detail based on the crystal growth theory and sputtering process.

  7. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    Directory of Open Access Journals (Sweden)

    C. Anil Kumar

    2015-10-01

    Full Text Available We report irreversible thermochromic behaviour of BaWO4 (BWO films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO3 as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films deposited at 800 °C exhibited pure tetragonal phase. FESEM images revealed that as the average particle sizes of the films are higher as compared with the thickness of the films and is explained based on Avrami type nucleation and growth. The transmittance of the films decreases with an increase in deposition temperature up to 600 °C and increases thereafter. Films deposited at 600 °C show ≤ 20% transmittance, looking at the films deposited at room temperature and 800 °C exhibits 90 and 70%, respectively. The refractive index and extinction coefficient of the films show profound dependence on crystallinity and packing density. The optical bandgap of BWO films increases significantly with an increase in O2% during the deposition. The optical bandgap of the BWO films deposited at different temperatures in pure argon plasma, are in the range of 3.7 to 3.94 eV whereas the films deposited at 600 °C under different O2 plasma are in the range of 3.6 - 4.5 eV. The formations of colour centres are associated with the oxygen vacancies, which are clearly seen from the optical bandgap studies. The observed irreversible thermochromic behaviour in BWO films is attributed to the presence of oxygen vacancies that arises due to the electrons trapped at oxygen vacancies causing an inter valence charge transfer of W5+ to W6+ and is confirmed through the change in the optical density (ΔOD. Further, the Raman spectra are being used to quantify the presence

  8. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea; Naab, Thorsten [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Walch, Stefanie [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Wünsch, Richard [Astronomical Institute, Academy of Sciences of the Czech Republic, Bocni II 1401, 141 31 Prague (Czech Republic); Glover, Simon C. O.; Klessen, Ralf S.; Baczynski, Christian [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Clark, Paul C., E-mail: tpeters@mpa-garching.mpg.de [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alone is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.

  9. Matter-wave bright solitons in effective bichromatic lattice potentials

    Indian Academy of Sciences (India)

    Keywords. Bose–Einstein condensate; optical lattices; inhomogeneous nonlinearity. Abstract. Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and ...

  10. Compact collimators for high brightness blue LEDs using dielectric multilayers

    NARCIS (Netherlands)

    Cornelissen, H.J.; Ma, H.; Ho, C.; Li, M.; Mu, C.

    2011-01-01

    A novel method is presented to inject the light of millimeter-sized high-brightness blue LEDs into light guides of submillimeter thickness. Use is made of an interference filter that is designed to pass only those modes that will propagate in the light guide by total internal reflection. Other modes

  11. Bright and dark soliton solutions of the (3+ 1)-dimensional ...

    Indian Academy of Sciences (India)

    In this paper, we obtain the 1-soliton solutions of the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation and the generalized Benjamin equation. By using two solitary wave ansatz in terms of sech p and tanh p functions, we obtain exact analytical bright and dark soliton solutions for the considered ...

  12. Brightness perception in low resolution images of 3d textures

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan; van der Heijden, Ferdinand; Siteur, J.

    1996-01-01

    A first step towards the analysis of the appearance of 3 dimensional textures is presented in this paper. It is assumed that the scale of the texture is small relative to the resolution of the camera. Therefore, the texture itself is not distinguishable.However, the perceived brightness of the

  13. Reducing Color/Brightness Interaction in Color Television

    Science.gov (United States)

    Marchman, Robert H.

    1987-01-01

    Proposed digitally sampled scan-conversion scheme for color television reduces unwanted interactions between chrominance and luminance signals. New scheme reduces luminance and chrominance bandwidth to increase frequency separation between signals. To avoid proportionally reducing horizontal brightness resolution and horizontal color resolution, horizontal interlace of luminance signal and two color-difference signals used.

  14. The bright optical afterglow of the long GRB 001007

    DEFF Research Database (Denmark)

    Ceron, J.M.C.; Castro-Tirado, A.J.; Gorosabel, J.

    2002-01-01

    We present optical follow up observations of the long GRB 001007 between 6.14 hours and similar to468 days after the event. An unusually bright optical afterglow (OA) was seen to decline following a steep power law decay with index alpha = -2.03 +/- 0.11, possibly indicating a break in the light ...

  15. The star-bright hour : [luuletused] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989

    2006-01-01

    Sisu: The star-bright hour ; Not a dream ; The Piper ; Corals in an ancent river. Luuletused pärinevad kogumikust "Tuulelaeval valgusest on aerud = Windship with Oars of Light. (Tallinn : Huma, 2001). Orig.: Tähetund ; Mitte viirastus, meelepett ; Vilepuhuja ; Korallid Emajões

  16. Time series analysis of bright galactic X-ray sources

    DEFF Research Database (Denmark)

    Priedhorsky, W. C.; Brandt, Søren; Lund, Niels

    1995-01-01

    We analyze 70 to 110 day data sets from eight bright galactic X-ray binaries observed by WATCH/Eureca, in search of periodic variations. We obtain new epochs for the orbital variation of Cyg X-3 and 4U 1700-37, and confirmation of a dip in Cyg X-1 at superior conjunction of the X-ray star. No evi...

  17. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  18. Bright soliton trains of trapped Bose-Einstein condensates

    OpenAIRE

    Al Khawaja, U.; Stoof, H.T C; Hulet, R. G.; Strecker, K. E.; Patridge, G.B.

    2002-01-01

    We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the quantum mechanical phase fluctuations of a one-dimensional condensate.

  19. RESPONSES OF BRIGHT, NORMAL, AND RETARDED CHILDREN TO LEARNING TASKS.

    Science.gov (United States)

    CARRIER, NEIL A.; AND OTHERS

    THE RELATIONSHIPS AMONG THE VARIABLES OF INTELLIGENCE, LEARNING TASK PERFORMANCE, EMOTIONAL TENSION, AND TASK MOTIVATION WERE STUDIED. ABOUT 120 BRIGHT, NORMAL, AND RETARDED CHILDREN PERFORMED SIX TRIALS OF NUMBER LEARNING, CONCEPT FORMATION, PROBLEM SOLVING, PERCEPTUAL-MOTOR COORDINATION, AND VERBAL LEARNING TASKS. DURING THE LEARNING SESSIONS,…

  20. Spectral Index Changes with Brightness for -Ray Loud Blazars

    Indian Academy of Sciences (India)

    Theoretic relation of spectral index changes depending on -ray brightness is obtained. The correlations between the ratio of -ray flux densities and the differences of the -ray spectral indices are discussed for the three subclasses of HBL, LBL and FSRQs. Results show that the ratio is related with the differences for the ...

  1. Bright soliton trains of trapped Bose-Einstein condensates

    NARCIS (Netherlands)

    Al Khawaja, U.; Stoof, H.T.C.; Hulet, R.G.; Strecker, K.E.; Patridge, G.B.

    2002-01-01

    We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the

  2. Henrietta Leavitt - A Bright Star of Astronomy; Resonance June 2001

    Indian Academy of Sciences (India)

    In fact, it was not known then that we live in a galaxy called the Milky Way, and that there were other galaxies in the universe like ours. This big handicap was elegantly removed by a momentous discovery by an American astronomer named Henrietta. Leavitt in 1912. She found a way to determine the actual brightness of a ...

  3. The star-bright hour : [poems] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989

    2003-01-01

    Autori lühitutvustus lk. 231. Sisu: The star-bright hour ; The debt ; Not a dream ; Fog-bound ; Corals in an Ancient river ; Frou-frou 1-3. Orig.: Tähetund ; Vilepuhuja ; Võlg ; "Mitte viirastus, meelepett..." ; Udus ; Korallid Emajões ; Froufrou 1-3

  4. Stability of bright solitons in some physical systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelap, Francois B [Department of Physics, Faculty of Science, University of Dschang, P O Box 69, Dschang (Cameroon); Talla, Pierre K [Department of Physics, Faculty of Science, University of Dschang, P O Box 69, Dschang (Cameroon); Tchitnga, Robert [Department of Physics, Faculty of Science, University of Dschang, P O Box 69, Dschang (Cameroon); Faye, Mansour M [Departement de Physique, Faculte des Sciences et Techniques, Universite Cheikh Anta DIOP de Dakar, BP 5005, Dakar - Fann (Senegal)

    2007-02-15

    Dynamical systems described by the modified quintic complex Ginzburg Landau equation and its derivative forms are considered and the stability of their bright soliton solution is investigated numerically by means of the split-step Fourier method. Some discussions related to the way of ensuring the stability of this solution are presented.

  5. Does bright light have an anxiolytic effect? - an open trial

    Directory of Open Access Journals (Sweden)

    Kripke Daniel F

    2007-10-01

    Full Text Available Abstract Background The aim of this open trial was to examine the influence of acute bright light exposure on anxiety in older and young adults. Methods This study was ancillary to a complex 5-day laboratory experiment testing phase-responses to light at all times of the day. On 3 consecutive days, participants were exposed to bright light (3,000 lux for 3 hours. The Spielberger State-Trait Anxiety Inventory (Form Y1 was administered 5 minutes before and 20 minutes after each treatment. Mean state anxiety before and after treatment were analyzed by age, sex, and time ANOVA. To avoid floor effects, only participants with baseline STAI levels of ≥ 25 were included. Results A significant anxiolytic effect of bright light was found for the mean data, as well as for each of the three days. No significant main effect of age, sex, or interaction of these factors with STAI change were found. Conclusion The results show consistent and significant (albeit modest anxiolytic effects following acute bright light exposure in low anxiety adults. Further randomized, controlled trials in clinically anxious individuals are needed.

  6. Modeling laser brightness from cross porro prism resonators

    CSIR Research Space (South Africa)

    Forbes, A

    2006-07-01

    Full Text Available Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2...

  7. Giant Low Surface Brightness Galaxies: Evolution in Isolation M. Das

    Indian Academy of Sciences (India)

    Abstract. Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but low in ...

  8. Giant Low Surface Brightness Galaxies: Evolution in Isolation

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but ...

  9. Evaluation of brightness temperature from a forward model of ...

    Indian Academy of Sciences (India)

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () ...

  10. Quadrature measurements of a bright squeezed state via sideband swapping

    DEFF Research Database (Denmark)

    Schneider, J.; Glockl, O.; Leuchs, G.

    2009-01-01

    The measurement of an arbitrary quadrature of a bright quantum state of light is a commonly requested action in many quantum information protocols, but it is experimentally challenging with previously proposed schemes. We suggest that the quadrature be measured at a specific sideband frequency of...

  11. The "Brightness Rules" Alternative Conception for Light Bulb Circuits

    Science.gov (United States)

    Bryan, Joel A.; Stuessy, Carol

    2006-01-01

    An alternative conception for the observed differences in light bulb brightness was revealed during an unguided inquiry investigation in which prospective elementary teachers placed identical bulbs in series, parallel, and combination direct current circuits. Classroom observations, document analyses, and video and audio transcriptions led to the…

  12. Protocol of networks using energy sharing collisions of bright solitons

    Indian Academy of Sciences (India)

    Soliton network; coupled nonlinear Schrödinger system; bright soliton; soliton collision. PACS Nos 42.65.Tg; 02.30. .... CNLS equations, we shall explore the dynamics of solitons in simple networks, i.e., PSG. In §4, the conclusion is ...... KS thank the Principal and management of Bishop Heber College for constant support.

  13. SKYMONITOR: A Global Network for Sky Brightness Measurements

    Science.gov (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  14. Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Andrei Shishkin

    2017-01-01

    Full Text Available The coating of hollow alumino-silicate microspheres or cenospheres with thin layers of Cu by means of vibration-assisted magnetron sputtering yields a starting material with considerable potential for the production of new types of metal matrix syntactic foams as well as optimized variants of conventional materials of this kind. This study introduces the coating process and the production of macroscopic samples from the coated spheres via spark plasma sintering (SPS. The influence of processing parameters on the coating itself, and the syntactic foams are discussed in terms of the obtained density levels as a function of sintering temperature (which was varied between 850 and 1080 °C, time (0.5 to 4 min, and surface appearance before and after SPS treatment. Sintering temperatures of 900 °C and above were found to cause breaking-up of the homogeneous sputter coating into a net-like structure. This effect is attributed to wetting behavior of Cu on the alumino-silicate cenosphere shells. Cylindrical samples were subjected to conductivity measurements and mechanical tests, and the first performance characteristics are reported here. Compressive strengths for Cu-based materials in the density range of 0.90–1.50 g/cm3 were found to lie between 8.6 and 61.9 MPa, depending on sintering conditions and density. An approximate relationship between strength and density is suggested based on the well-known Gibson–Ashby law. Density-related strength of the new material is contrasted to similar findings for several types of established metal foams gathered from the literature. Besides discussing these first experimental results, this paper outlines the potential of coated microspheres as optimized filler particles in metal matrix syntactic foams, and suggests associated directions of future research.

  15. Enhanced sputtering yields of carbon due to accumulation of low-energy Xe ions

    Science.gov (United States)

    Kenmotsu, T.; Wada, M.; Hyakutake, T.; Muramoto, T.; Nishida, M.

    2009-05-01

    We have calculated the sputtering yields of carbon and molybdenum under xenon ion bombardment by a Monte Carlo code ACAT which simulates binary collision events in solids. The yields of carbon calculated with ACAT differ from the experimental data below the threshold energy predicted from the semi-empirical formula proposed by Yamamura and Tawara. Meanwhile, the results of ACAT with 14% xenon atoms retained in graphite are in good agreement with the experimental data and the xenon retention in carbon plays an important role in reducing the threshold energy for carbon sputtering. In order to estimate the experimental sputtering yields of carbon, a simplified formula is proposed in the frame of the semi-empirical formula. The formula predicts the yield curve close to the reported sputtering yields of carbon for the condition that carbon target retains 14% xenon atoms.

  16. Effect of sputtering on self-damaged ITER-grade tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.S., E-mail: voitseny@ipp.kharkov.ua [Institute of Plasma Physics, National Scientific Center “Kharkov Institute of Physics and Technology”, 61108 Kharkov (Ukraine); Balden, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Bardamid, A.F. [Taras Shevchenko National University, 01033 Kiev (Ukraine); Belyaeva, A.I. [National Technical University “Kharkov Polytechnical Institute”, 61002 Kharkov (Ukraine); Bondarenko, V.N.; Skoryk, O.O.; Shtan’, A.F.; Solodovchenko, S.I. [Institute of Plasma Physics, National Scientific Center “Kharkov Institute of Physics and Technology”, 61108 Kharkov (Ukraine); Sterligov, V.A. [Institute of Semiconductor Physics, NAS of Ukraine, 03028 Kiev (Ukraine); Tyburska-Püschel, B. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2014-10-15

    Simulation of neutron irradiation and sputtering on ITER-grade tungsten was studied. The effects of neutron-induced displacement damage have been simulated by irradiation of tungsten target with W{sup 6+} ions of 20 MeV energy. Bombardment by Ar{sup +} ions with energy 600 eV was used as imitation of impact of charge exchange atoms in ITER. The sputtering process was interrupted to perform in between measurements of the optical properties of the eroded surface and the mass loss. After sputtering was finished, the surface was thoroughly investigated by different methods for characterizing the surface relief developed due to sputtering. The damaging to, at least, the level that would be achieved in ITER does not lead to a decisive additional contribution to the processes under impact of charge exchange atoms only.

  17. Tuning of magnetization dynamics in sputtered CoFeB thin film by gas pressure

    Science.gov (United States)

    Xu, Feng; Huang, Qijun; Liao, Zhiqin; Li, Shandong; Ong, C. K.

    2012-04-01

    The influences of sputtering gas pressure on the high-frequency magnetization dynamics of as-sputtered CoFeB thin films are studied with permeability spectra based on the Landau-Lifshitz-Gilbert (LLG) equation. Results show that with the pressure increasing, both the anisotropy field and resonance frequency have minimums, while the initial permeability shows a maximum. The damping factor deceases monotonously with the pressure increasing, similar as with the coercivity. The high tunability of the damping factor indicates that controlling sputtering gas pressure could be an effective method in tuning the magnetization dynamics. All these dependences on gas pressure are suggested to be related to the inner stress of these sputtered films.

  18. Fabrication of MgB{sub 2} thin films by co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Fabretti, Savio; Thomas, Patrick; Reiss, Guenter; Thomas, Andy [Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld (Germany)

    2010-07-01

    MgB{sub 2} is an intermetallic compound with a high critical temperature of T{sub c}=40 K. The simple crystal structure, large coherence length and the high critical current density makes thin magnesium diboride films attractive for superconducting applications like Josephson junctions. To fabricate thin MgB{sub 2} films, we used a magnetron co-sputtering system with a Mg and a B target respectively. The films were deposited by dc-magnetron sputtering of Mg and rf-magnetron sputtering of B at a low substrate temperature between 210 {sup circle} C and 260 {sup circle} C without a post annealing process. The differences in vacuum pressure between Mg and B make it essential that the composition ratio is controlled by different sputtering power of each target. The crystal structure was measured by X-ray diffraction and transport investigations at low temperatures were performed.

  19. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    CERN Document Server

    Ellmer, K; Weiss, V; Rossner, H

    2001-01-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3 deg. and 10 deg., is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  20. Sputtering of thin and intermediately thick films of solid deuterium by keV electrons

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Thestrup Nielsen, Birgitte; Schou, Jørgen

    1995-01-01

    Sputtering of films of solid deuterium by keV electrons was studied in a cryogenic set-up. The sputtering yield shows a minimum yield of about 4 D2/electron for 1.5 and 2 keV electrons at a thickness slightly larger than the average projected range of the electrons. We suggest that the yield arou...... the minimum represents the value closest to a bulk-yield induced by electron bombardment. It may also include contributions from the mechanisms that enhance the yield for thin and very thick films.......Sputtering of films of solid deuterium by keV electrons was studied in a cryogenic set-up. The sputtering yield shows a minimum yield of about 4 D2/electron for 1.5 and 2 keV electrons at a thickness slightly larger than the average projected range of the electrons. We suggest that the yield around...

  1. Sputtering of solid nitrogen and oxygen by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Stenum, B.

    1994-01-01

    that for nitrogen. The energy distributions of the sputtered N2 and O2 molecules were measured for hydrogen ions in this energy regime as well. The yields from both solids turn out to depend on the sum of the stopping power of all atoms in the ion. The yield increases as a quadratic function of the stopping power......Electronic sputtering of solid nitrogen and oxygen by keV hydrogen ions has been studied at two low-temperature setups. The yield of the sputtered particles has been determined in the energy regime 4-10 keV for H+, H-2+ and H-3+ ions. The yield for oxygen is more than a factor of two larger than...... for oxygen, but slightly slower for nitrogen. The energy distributions do not exhibit strong features, but are similar to those published earlier for electron sputtering....

  2. Analysis of multilayer film using RBS/channeling, sputtering/RBS and SIMS

    CERN Document Server

    Zhao Guo Qing; Zhou Zhu Ying; Jiang Lei; Song Ling Gen; Yang Yu

    2002-01-01

    RBS/Channeling, Sputtering/RBS and SIMS analysis have been performed on the MBE-grown Si/Ge sub x Si sub 1 sub - sub x multilayer. The thickness, atomic ratio and crystalline perfectness of the epitaxial layer are determined by 2 MeV sup 4 He sup + RBS/Channeling analysis. By sputter etching of the sample with low energy Ar sup + ions, the thickness of epitaxial layer is reduced. Then RBS analysis of 2 MeV sup 4 He sup + ions on the etched sample yields information about the deeper layers, the interface of the multilayer samples and the concerned phenomena induced by sputter etching. The periodical structure of Si/Ge sub x Si sub 1 sub - sub x multilayer samples is clearly identified by the SIMS analysis before and after sputter etching

  3. Electronic sputtering of solid nitrogen and oxygen by keV electrons

    DEFF Research Database (Denmark)

    Ellegaard, Ole; Schou, Jørgen; Sørensen, H.

    1986-01-01

    are very similar in their physical properties. The yields are almost proportional to the electronic stopping power of the primary electrons. Different models for electronic sputtering of solid condensed gases are discussed and compared with the results. For low excitation densities predictions......Sputtering of solid N2 and O2 has been performed with electrons in the keV regime by means of a quartz microbalance technique. Good agreement is found between the sputtering yields obtained with this and the emissivity-change method. O2 sputters more efficiently than N2, although these solids...... are attempted on the basis of a simple collision-cascade model where the low-energy cascades are generated by kinetic energy release from electronic deexcitations....

  4. The effect of sputtering gas pressure on the structure and optical properties of MgNiO films grown by radio frequency magnetron sputtering

    Science.gov (United States)

    Xie, Wuze; Jiao, Shujie; Wang, Dongbo; Gao, Shiyong; Wang, Jinzhong; Yu, Qingjiang; Li, Hongtao

    2017-05-01

    In this study, MgNiO thin films were grown on quartz substrates by radio frequency (RF) magnetron sputtering. The influence of different sputtering pressures on the crystalline and optical properties of MgNiO thin films has been studied. X-ray diffraction measurement indicates that the MgNiO films are cubic structure with (200) preferred orientation. UV-vis transmission spectra show that all the MgNiO thin films show more than 75% transmission at visible region, and the absorption edges of all thin films locate at solar-blind region (220 nm-280 nm). The lattice constant and Mg content of MgNiO samples were calculated using X-ray diffraction and transmission spectra data. The phase separation is observed both in the X-ray diffraction patterns and transmission spectra, and the phase separation is studied in detail based on the crystal growth theory and sputtering process.

  5. Effect of positively charged particles on sputtering damage of organic electro-luminescent diodes with Mg:Ag alloy electrodes fabricated by facing target sputtering

    Directory of Open Access Journals (Sweden)

    Kouji Suemori

    2017-04-01

    Full Text Available We investigated the influence of the positively charged particles generated during sputtering on the performances of organic light-emitting diodes (OLEDs with Mg:Ag alloy electrodes fabricated by sputtering. The number of positively charged particles increased by several orders of magnitude when the target current was increased from 0.1 A to 2.5 A. When a high target current was used, many positively charged particles with energies higher than the bond energy of single C–C bonds, which are typically found in organic molecules, were generated. In this situation, we observed serious OLED performance degradation. On the other hand, when a low target current was used, OLED performance degradation was not observed when the number of positively charged particles colliding with the organic underlayer increased. We concluded that sputtering damage caused by positively charged particles can be avoided by using a low target current.

  6. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  7. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  8. Synthesis of semiconductor polymers by inductive plasma; Sintesis de polimeros semiconductores por plasmas inductivos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, G.; Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Morales, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    When carrying out the synthesis of semiconductor polymers by plasma it is important to consider the electric arrangement of the discharge since this it influences in the distribution of the energy of the particles in the reactor. The main electric arrangements in those that are developed the brightness discharges of radio frequency are resistive, capacitive and inductive. In the Laboratory of Materials processing by plasma of the ININ its have been worked different synthesis of polymers with resistive arrangements with good results. In this work the results of the synthesis and characterization of poly aniline and chlorate polyethylene by inductive plasma are presented. (Author)

  9. Plasma cleaning and analysis of archeological artefacts from Sipan

    Energy Technology Data Exchange (ETDEWEB)

    Saettone, E A O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Matta, J A S da [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Alva, W [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Chubaci, J F O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Fantini, M C A [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Galvao, R M O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Kiyohara, P [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Tabacniks, M H [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil)

    2003-04-07

    A novel procedure using plasma sputtering in an electron-cyclotron-resonance device has been applied to clean archeological MOCHE artefacts, unearthed at the Royal Tombs of Sipan. After successful cleaning, the pieces were analysed by a variety of complementary techniques, namely proton-induced x-ray emission, Rutherford backscattering spectroscopy, x-ray diffraction, electron microscopy, and inductively coupled plasma mass spectroscopy. With these techniques, it has been possible to not only determine the profiles of the gold and silver surface layers, but also to detect elements that may be relevant to explain the gilding techniques skillfully developed by the metal smiths of the MOCHE culture.

  10. A Survey of Xenon Ion Sputter Yield Data and Fits Relevant to Electric Propulsion Spacecraft Integration

    Science.gov (United States)

    Yim, John T.

    2017-01-01

    A survey of low energy xenon ion impact sputter yields was conducted to provide a more coherent baseline set of sputter yield data and accompanying fits for electric propulsion integration. Data uncertainties are discussed and different available curve fit formulas are assessed for their general suitability. A Bayesian parameter fitting approach is used with a Markov chain Monte Carlo method to provide estimates for the fitting parameters while characterizing the uncertainties for the resulting yield curves.

  11. The effect of the molecular mass on the sputtering by electrosprayed nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Borrajo-Pelaez, Rafael; Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu

    2015-07-30

    Highlights: • We study the effect of the molecular mass on nanodroplet sputtering of silicon. • The impact phenomenology is a strong function of the projectile’s molecular mass. • Nanodroplet sputtering intrinsically is a molecular scale phenomenon. - Abstract: Energetic bombardment of covalently bonded materials by electrosprayed nanodroplets causes sputtering and topographic changes on the surface of the target. This work investigates the influence of the projectile's molecular mass on these phenomena by sputtering single-crystal silicon wafers with a variety of liquids (molecular masses between 45.0 and 773.3 amu), and acceleration voltages. The electrosprays are characterized via time of flight to determine the charge to mass ratio of the nanodroplets which, together with the acceleration voltage, yield the impact velocity, the stagnation pressure, and the molecular kinetic energy of the projectile. The estimated range of droplet diameters is 20–79 nm, while the impact velocity, the stagnation pressure and the molecular kinetic energy range between 2.9–10 km/s, 4.7–63 GPa, and 2.1–98 eV. We find that the damage on the surface of the targets strongly depends on the molecular mass of the projectile: liquids with low molecular mass sputter significantly less and produce nanometric indentations and low surface roughness, the latter increasing moderately with stagnation pressure; in contrast, the roughness and sputtering caused by the impacts of droplets with larger molecular mass reach significantly higher values, and exhibit non-monotonic behaviors. The maximum sputtering yields for formamide, EAN, EMI-BF{sub 4}, EMI-Im, TES, and TPP are 0.20, 0.75, 1.20, 2.80, 4.00 and 2.90 silicon atoms per molecule in the projectile. These trends indicate that despite their rather large diameters, the sputtering by electrosprayed nanodroplets is intrinsically a molecular scale phenomenon.

  12. High Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Reactive Co-Sputtering (Postprint)

    Science.gov (United States)

    2016-03-30

    AFRL-RX-WP-JA-2017-0144 HIGH TRANSPARENT CONDUCTIVE ALUMINUM- DOPED ZINC OXIDE THIN FILMS BY REACTIVE CO- SPUTTERING (POSTPRINT...TRANSPARENT CONDUCTIVE ALUMINUM-DOPED ZINC OXIDE THIN FILMS BY REACTIVE CO-SPUTTERING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-16-D-5402-0001 5b. GRANT...ANSI Std. Z39-18 TD.11.pdf Optical Interference Coatings (OIC) 2016 © OSA 2016 1 High Transparent Conductive Aluminum-doped Zinc Oxide Thin

  13. Sputtered Gold as an Effective Schottky Gate for Strained Si/SiGe Nanostructures

    Science.gov (United States)

    Scott, Gavin; Xiao, Ming; Croke, Ed; Yablonovitch, Eli; Jiang, Hongwen

    2007-03-01

    Metallization of Schottky surface gates by sputtering Au on strained Si/SiGe heterojunctions enables the depletion of the two dimensional electron gas (2DEG) at a relatively small voltage while maintaining an extremely low level of leakage current. A fabrication process has been developed to enable the formation of sub-micron Au electrodes sputtered onto Si/SiGe without the need of a wetting layer.

  14. Rapid thermal annealing of sputter-deposited ZnO:Al films for microcrystalline Si thin-film solar cells

    Directory of Open Access Journals (Sweden)

    Hanajiri T.

    2012-06-01

    Full Text Available Rapid thermal annealing of sputter-deposited ZnO and Al-doped ZnO (AZO films with and without an amorphous silicon (a-Si capping layer was investigated using a radio-frequency (rf argon thermal plasma jet of argon at atmospheric pressure. The resistivity of bare ZnO films on glass decreased from 108 to 104–105 Ω cm at maximum surface temperatures Tmaxs above 650 °C, whereas the resistivity increased from 10-4 to 10-3–10-2Ω cm for bare AZO films. On the other hand, the resistivity of AZO films with a 30-nm-thick a-Si capping layer remained below 10-4Ω cm, even after TPJ annealing at a Tmax of 825 °C. The film crystallization of both AZO and a-Si layers was promoted without the formation of an intermixing layer. Additionally, the crystallization of phosphorous- and boron-doped a-Si layers at the sample surface was promoted, compared to that of intrinsic a-Si under the identical plasma annealing conditions. The TPJ annealing of n+-a-Si/textured AZO was applied for single junction n-i-p microcrystalline Si thin-film solar cells.

  15. Characterisation of Plasma Filled Rod Pinch electron beam diode operation

    Science.gov (United States)

    MacDonald, James; Bland, Simon; Chittenden, Jeremy

    2016-10-01

    The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.

  16. Temporal behavior of microwave sheath-voltage combination plasma

    CERN Document Server

    Kar, Satyananda; Raja, Laxminarayan L

    2015-01-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS, results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions and the density is order 10^11 cm^-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition and higher density plasma (10^12 cm^-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). O...

  17. Electronic sputtering of vitreous SiO{sub 2}: Experimental and modeling results

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, M., E-mail: toulemonde@ganil.fr [CIMAP (ENSICAEN, CEA, CNRS, Univ. Caen), Bd H. Becquerel, 14070 Caen (France); Assmann, W. [Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching (Germany); Trautmann, C. [GSI Helmholzzentrum, Planckstr. 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany)

    2016-07-15

    The irradiation of solids with swift heavy ions leads to pronounced surface and bulk effects controlled by the electronic energy loss of the projectiles. In contrast to the formation of ion tracks in bulk materials, the concomitant emission of atoms from the surface is much less investigated. Sputtering experiments with different ions ({sup 58}Ni, {sup 127}I and {sup 197}Au) at energies around 1.2 MeV/u were performed on vitreous SiO{sub 2} (a-SiO{sub 2}) in order to quantify the emission rates and compare them with data for crystalline SiO{sub 2} quartz. Stoichiometry of the sputtering process was verified by monitoring the thickness decreases of a thin SiO{sub 2} film deposited on a Si substrate. Angular distributions of the emitted atoms were measured by collecting sputtered atoms on arc-shaped Cu catcher foils. Subsequent analysis of the number of Si atoms deposited on the catcher foils was quantified by elastic recoil detection analysis providing differential as well as total sputtering yields. Compared to existing data for crystalline SiO{sub 2}, the total sputtering yields for vitreous SiO{sub 2} are by a factor of about five larger. Differences in the sputtering rate and track formation characteristics between amorphous and crystalline SiO{sub 2} are discussed within the frame of the inelastic thermal spike model.

  18. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method

    Science.gov (United States)

    Yu, Xiaozheng; Shen, Zhigang

    2009-09-01

    Ni-coated cenosphere particles were successfully fabricated by an ultrasonic-assisted magnetron sputtering equipment. Their surface morphology and microstructure were analyzed using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results indicate that the Ni films coated by magnetron sputtering are uniform and compact. Ni film uniformity was related with the sputtering power and a large uniform film could be achieved at lower sputtering power. XRD results imply that the Ni film coated on cenospheres was a face-centered cubic (fcc) structure and the crystallization of film sample increases with increasing the sputtering power. The electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-coated cenosphere particles were measured to be 4-27 dB over a frequency range 80-100 GHz, higher than those of uncoated cenosphere particles. The higher sputtering power and Ni film thickness are the higher EMI SE of the specimens. Ni-coated cenosphere particles are most promising alternative candidates for millimeter wave EMI shielding due to their lightweight, low cost, ease of processing, high floating time, good dispersion and tunable conductivities as compared with typical electromagnetic wave countermeasure materials.

  19. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaozheng [Beijing Key Laboratory for Powder Technology R. and D., Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); China National Academy of Nanotechnology and Engineering, Tianjin 300457 (China); Shen Zhigang [Beijing Key Laboratory for Powder Technology R. and D., Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); China National Academy of Nanotechnology and Engineering, Tianjin 300457 (China)], E-mail: shenzhg@buaa.edu.cn

    2009-09-15

    Ni-coated cenosphere particles were successfully fabricated by an ultrasonic-assisted magnetron sputtering equipment. Their surface morphology and microstructure were analyzed using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results indicate that the Ni films coated by magnetron sputtering are uniform and compact. Ni film uniformity was related with the sputtering power and a large uniform film could be achieved at lower sputtering power. XRD results imply that the Ni film coated on cenospheres was a face-centered cubic (fcc) structure and the crystallization of film sample increases with increasing the sputtering power. The electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-coated cenosphere particles were measured to be 4-27 dB over a frequency range 80-100 GHz, higher than those of uncoated cenosphere particles. The higher sputtering power and Ni film thickness are the higher EMI SE of the specimens. Ni-coated cenosphere particles are most promising alternative candidates for millimeter wave EMI shielding due to their lightweight, low cost, ease of processing, high floating time, good dispersion and tunable conductivities as compared with typical electromagnetic wave countermeasure materials.

  20. Solar Wind Sputtering Rates of Small Bodies and Ion Mass Spectrometry Detection of Secondary Ions

    Science.gov (United States)

    Schaible, M. J.; Dukes, C. A.; Hutcherson, A. C.; Lee, P.; Collier, M. R.; Johnson, R. E.

    2017-10-01

    Solar wind interactions with the surfaces of asteroids and small moons eject atoms and molecules from the uppermost several nanometers of regolith grains through a process called sputtering. A small fraction of the sputtered species, called secondary ions, leave the surface in an ionized state, and these are diagnostic of the surface composition. Detection of secondary ions using ion mass spectrometry (IMS) provides a powerful method of analysis due to low backgrounds and high instrument sensitivities. However, the sputtered secondary ion yield and the atomic composition of the surface are not 1-to-1 correlated. Thus, relative yield fractions based on experimental measurements are needed to convert measured spectra to surface composition. Here available experimental results are combined with computationally derived solar wind sputtering yields to estimate secondary ion fluxes from asteroid-sized bodies in the solar system. The Monte Carlo simulation code SDTrimSP is used to estimate the total sputtering yield due to solar wind ion bombardment for a diverse suite of meteorite and lunar soil compositions. Experimentally measured relative secondary ion yields are analyzed to determine the abundance of refractory species (Mg+, Al+, Ca+, and Fe+) relative to Si+, and it is shown that relative abundances indicate whether a body is primitive or has undergone significant geologic reprocessing. Finally, estimates of the sputtered secondary ion fluxes are used to determine the IMS sensitivity required to adequately resolve major element ratios for nominal orbital geometries.