WorldWideScience

Sample records for bright galactic sources

  1. MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST

    International Nuclear Information System (INIS)

    Abdo, A. A.; Linnemann, J. T.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.; DeYoung, T.; Dingus, B. L.; Hoffman, C. M.; Ellsworth, R. W.; Gonzalez, M. M.; Hays, E.; McEnery, J. E.; Huentemeyer, P. H.; Morgan, T.

    2009-01-01

    We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.

  2. A SOUTHERN SKY AND GALACTIC PLANE SURVEY FOR BRIGHT KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Sheppard, Scott S.; Udalski, Andrzej; Kubiak, Marcin; Pietrzynski, Grzegorz; Poleski, Radoslaw; Soszynski, Igor; Szymanski, Michal K.; Ulaczyk, Krzysztof; Trujillo, Chadwick

    2011-01-01

    About 2500 deg 2 of sky south of declination -25 0 and/or near the Galactic Plane were surveyed for bright outer solar system objects. This survey is one of the first large-scale southern sky and Galactic Plane surveys to detect dwarf planets and other bright Kuiper Belt Objects in the trans-Neptunian region. The survey was able to obtain a limiting R-band magnitude of 21.6. In all, 18 outer solar system objects were detected, including Pluto which was detected near the Galactic center using optimal image subtraction techniques to remove the high stellar density background. Fourteen of the detections were previously unknown trans-Neptunian objects, demonstrating that the southern sky had not been well searched to date for bright outer solar system objects. Assuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets. Combining this survey with previous surveys from the northern hemisphere suggests that the Kuiper Belt is nearly complete to around 21st magnitude in the R band. All the main dynamical classes in the Kuiper Belt are occupied by at least one dwarf-planet-sized object. The 3:2 Neptune resonance, which is the innermost well-populated Neptune resonance, has several large objects while the main outer Neptune resonances such as the 5:3, 7:4, 2:1, and 5:2 do not appear to have any large objects. This indicates that the outer resonances are either significantly depleted in objects relative to the 3:2 resonance or have a significantly different assortment of objects than the 3:2 resonance. For the largest objects (H < 4.5 mag), the scattered disk population appears to have a few times more objects than the main Kuiper Belt (MKB) population, while the Sedna population could be several times more than that of the MKB.

  3. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  4. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    Science.gov (United States)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  5. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    International Nuclear Information System (INIS)

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  6. The galactic X-ray sources

    International Nuclear Information System (INIS)

    Gursky, H.; Schreier, E.

    1975-01-01

    The current observational evidence on galactic X-ray sources is presented both from an astrophysical and astronomical point of view. The distributional properties of the sources, where they appear in the Galaxy, and certain average characteristics are discussed. In this way, certain properties of the X-ray sources can be deduced which are not apparent in the study of single objects. The properties of individual X-ray sources are then described. The hope is that more can be learnt about neutron stars and black holes, their physical properties, their origin and evolution, and their influence on other galactic phenomena. Thus attention is paid to those elements of data which appear to have the most bearing on these questions. (Auth.)

  7. Graviton mass bounds from an analysis of bright star trajectories at the Galactic Center

    Directory of Open Access Journals (Sweden)

    Zakharov Alexander

    2017-01-01

    Full Text Available In February 2016 the LIGO & VIRGO collaboration reported the discovery of gravitational waves in merging black holes, therefore, the team confirmed GR predictions about an existence of black holes and gravitational waves in the strong gravitational field limit. Moreover, in their papers the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10−22 eV (Abbott et al. 2016. So, the authors concluded that their observational data do not show any violation of classical general relativity. We show that an analysis of bright star trajectories could constrain graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and the estimate is consistent with the one obtained by the LIGO & VIRGO collaboration. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a useful tool to obtain constraints on the fundamental gravity law such as modifications of the Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we obtain bounds on a graviton mass.

  8. Increasing the Brightness of Light Sources

    OpenAIRE

    Fu, Ling

    2006-01-01

    In modern illumination systems, compact size and high brightness are important features. Light recycling allows an increase of the spectral radiance (brightness) emitted by a light source for the price of reducing the total radiant power. Light recycling means returning part of the emitted light to the source where part of it will escape absorption. As a result, the output brightness can be increased in a restricted phase space, ...

  9. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  10. Constraints on Galactic populations from the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M.; Pavlidou, Vasiliki; Brown, Carolyn; Olinto, Angela V.; Fields, Brian D.

    2007-01-01

    A significant fraction of the sources in the third EGRET catalog have not yet been identified with a low-energy counterpart. We evaluate the plausibility of a Galactic population accounting for some or all of the unidentified EGRET sources by making the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. Rather than focusing on the properties of a specific candidate emitter, we constrain the abundance and spatial distribution of proposed Galactic populations. We find that it is highly improbable that the unidentified EGRET sources contain more than a handful of members of a Galactic halo population, but that current observations are consistent with all of these sources being Galactic objects if they reside entirely in the disk and bulge. We discuss the additional constraints and new insights into the nature of Galactic gamma-ray emitting populations that GLAST is expected to provide

  11. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    Science.gov (United States)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  12. Trajectories of bright stars at the Galactic Center as a tool to evaluate a graviton mass

    Directory of Open Access Journals (Sweden)

    Zakharov Alexander

    2016-01-01

    Full Text Available Scientists worked in Saint-Petersburg (Petrograd, Leningrad played the extremely important role in creation of scientific school and development of general relativity in Russia. Very recently LIGO collaboration discovered gravitational waves [1] predicted 100 years ago by A. Einstein. In the papers reporting about this discovery, the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10−22eV [1, 2]. The authors concluded that their observational data do not show violations of classical general relativity because the graviton mass limit is very small. We show that an analysis of bright star trajectories could bound graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and expected with forthcoming pulsar timing observations for gravitational wave detection. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a tool for an evaluation specific parameters of the black hole and also to obtain constraints on the fundamental gravity law such as a modifications of Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we give a bounds on a graviton mass.

  13. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  14. Recent results on galactic sources with MAGIC telescope

    International Nuclear Information System (INIS)

    De los Reyes, R.

    2009-01-01

    Located at the Canary island of La Palma, the single-dish MAGIC telescope currently has the lowest energy threshold achieved by any Cherenkov telescope, which can be as low as 25 GeV. In the last two years, the MAGIC telescope has detected a significant amount of galactic sources that emit at very high energies (up to several TeV). Here we present the most recent results that have yielded important scientific highlights in astrophysics, which include the first detection of gamma-ray emission from a pulsar, an X-ray binary system and a stellar-mass black hole. We also make a review of the latest results of the MAGIC observations on galactic sources, which will include also γ-ray unidentified sources (TeV J2032+4130), the Galactic Centre, X-ray binaries (LSI +61 303), pulsars (Crab pulsar) and SNRs (IC443).

  15. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    Heise, J.

    1982-01-01

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  16. Three Bright X-ray Sources in NGC 1313

    Science.gov (United States)

    Colbert, E.; Petre, R.; Schlegel, E.

    1992-12-01

    Three bright X-ray sources were detected in a recent (April/May 1991) ROSAT PSPC observation of the nearby (D ~ 4.5 Mpc) face--on barred spiral galaxy NGC 1313. Two of the sources were at positions coincident with X-ray sources detected by Fabbiano & Trinchieri (ApJ 315, 1987) in a previous (Jan 1980) Einstein IPC observation. The position of the brightest Einstein source is near the center of NGC 1313, and the second Einstein source is ~ 7' south of the ``nuclear'' source, in the outskirts of the spiral arms. A third bright X-ray source was detected in the ROSAT observation ~ 7' southwest of the ``nuclear'' source. We present X-ray spectra and X-ray images for the three bright sources found in the ROSAT observation of NGC 1313, and compare with previous Einstein results. Spectral analysis of these sources require them to have very large soft X-ray luminosities ( ~ 10(40) erg s(-1) ) when compared with typical X-ray sources in our Galaxy. Feasible explanations for the X-ray emission are presented. The third X-ray source is positively identified with the recently discovered (Ryder et. al., ApJ 1992) peculiar type-II supernova 1978K.

  17. On the completeness of a sample of bright quasars selected by colour excess in the direction of the North Galactic Pole

    International Nuclear Information System (INIS)

    Warnock, A. III; Usher, P.D.

    1986-01-01

    The Medium Bright Quasar survey (MBQS) shows evidence for a dearth of bright quasars in a Palomar Schmidt field centred on Selected Area (SA) 57 near the North Galactic Pole, compared to similar fields centred on SA 28, 29, 55, and 94. The SA 57 field has been searched again for bright quasar candidates with the held of a second survey plate exposed according to a slightly modified Haro-Luyten three-colour (Tonantzintla) prescription. Candidates so selected have both a blue and ultraviolet excess (B-UVX). The main result of the paper is that there appear to be no B-UVX quasars in the SA 57 field that are brighter than B=17.25 mag. The significance of this apparent anomaly is briefly discussed. (author)

  18. Detection of extended galactic sources with an underwater neutrino telescope

    International Nuclear Information System (INIS)

    Leisos, A.; Tsirigotis, A. G.; Tzamarias, S. E.; Lenis, D.

    2014-01-01

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects

  19. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  20. Spectral Index Changes with Brightness for γ-Ray Loud Blazars J. H. ...

    Indian Academy of Sciences (India)

    spectral index changes depending on γ-ray brightness is obtained. ... the γ-ray band. Key words. Active galactic nuclei (AGN): blazars: γ-ray emission: spectral index. 1. Introduction. Generally, the spectrum of one source changes with its .... Pearl River Scholar Funded Scheme (GDUPS) (2009), Yangcheng Scholar Funded.

  1. X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey

    Science.gov (United States)

    Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji

    2018-01-01

    We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.

  2. Extreme Ultraviolet Explorer Bright Source List

    Science.gov (United States)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  3. Galactic distribution of X-ray burst sources

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Hoffman, J.A.; Doty, J.; Clark, G.W.; Swank, J.H.; Becker, R.H.; Pravdo, S.H.; Serlemitsos, P.J.

    1977-01-01

    It is stated that 18 X-ray burst sources have been observed to date, applying the following definition for these bursts - rise times of less than a few seconds, durations of seconds to minutes, and recurrence in some regular pattern. If single burst events that meet the criteria of rise time and duration, but not recurrence are included, an additional seven sources can be added. A sky map is shown indicating their positions. The sources are spread along the galactic equator and cluster near low galactic longitudes, and their distribution is different from that of the observed globular clusters. Observations based on the SAS-3 X-ray observatory studies and the Goddard X-ray Spectroscopy Experiment on OSO-9 are described. The distribution of the sources is examined and the effect of uneven sky exposure on the observed distribution is evaluated. It has been suggested that the bursts are perhaps produced by remnants of disrupted globular clusters and specifically supermassive black holes. This would imply the existence of a new class of unknown objects, and at present is merely an ad hoc method of relating the burst sources to globular clusters. (U.K.)

  4. X-ray bursters and the X-ray sources of the galactic bulge

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Joss, P.C.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In this article we shall discuss the observed X-ray, optical, infrared and radio properties of the galactic bulge sources, with an emphasis on those that produce type I X-ray bursts. There is persuasive evidence that these burst sources and many other galactic bulge sources are neutron stars in low-mass, close-binary stellar systems. (orig./WL)

  5. Discovery of a GeV Blazar Shining Through the Galactic Plane

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J.; Buehler, R.; Ajello, M.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bellini, A.; /Padua U., Astron. Dept. /Baltimore, Space Telescope Sci.; Bolte, M.; /UC, Santa Cruz; Cheung, C.C.; /Naval Research Lab, Wash., D.C. /NAS, Washington, D.C.; Civano, F.; /Smithsonian Astrophys. Observ.; Donato, D.; /NASA, Goddard; Fuhrmann, L.; /Bonn, Max Planck Inst., Radioastron.; Funk, S.; Healey, S.E.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Hill, A.B.; /Joseph Fourier U.; Knigge, C.; /Southampton U.; Madejski, G.M.; Romani, R.W.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Santander-Garcia, M.; /IAC, La Laguna /Isaac Newton Group /Laguna U., Tenerife; Shaw, M.S.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Steeghs, D.; /Warwick U.; Torres, M.A.P.; /Smithsonian Astrophys. Observ.; Van Etten, A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Texas U., Astron. Dept.

    2011-08-11

    The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = -1.2{sup o}) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. We report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck LRIS observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray obsorption, and multi-band variability indicate that this new Gev source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width > 5 {angstrom}, this blazar belongs in the flat-spectrum radio quasar category.

  6. A 1420 MHz Catalog of Compact Sources in the Northern Galactic Plane

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A. R. [Inter-University Institute for Data Intensive Astronomy, and Department of Astronomy, University of Cape Town Department of Physics, University of the Western Cape (South Africa); Leahy, D. A.; Sunstrum, C. [Department of Physics and Astronomy, University of Calgary (Canada); Tian, W. W. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing Shi (China); Kothes, R.; Landecker, T. L.; Ransom, R. R; Higgs, L. A. [Dominion Radio Astrophysical Observatory, Herzberg Programs in Astronomy and Astrophysics National Research Council of Canada (Canada)

    2017-03-01

    We present a catalog of compact sources of radio emission at 1420 MHz in the northern Galactic plane from the Canadian Galactic Plane Survey. The catalog contains 72,758 compact sources with an angular size less than 3′ within the Galactic longitude range 52° <  ℓ  < 192° down to a 5 σ detection level of ∼1.2 mJy. Linear polarization properties are included for 12,368 sources with signals greater than 4 σ{sub QU} in the Canadian Galactic Plane Survey (CGPS) Stokes Q and U images at the position of the total intensity peak. We compare CGPS flux densities with cataloged flux densities in the Northern VLA Sky Survey catalog for 10,897 isolated unresolved sources with CGPS flux density greater than 4 mJy to search for sources that show variable flux density on timescales of several years. We identify 146 candidate variables that exhibit high fractional variations between the two surveys. In addition, we identify 13 candidate transient sources that have CGPS flux density above 10 mJy but are not detected in the Northern VLA Sky Survey.

  7. Far infrared observations of the galactic center

    International Nuclear Information System (INIS)

    Gatley, I.

    1977-01-01

    Maps of a region 10' in diameter around the galactic center made simultaneously in three wavelength bands at 30 μm, 50 μm, and 100 μm with approximately 1' resolution are presented, and the distribution of far infrared luminosity and color temperature across this region is derived. The position of highest far infrared surface brightness coincides with the peak of the late-type stellar distribution and with the H II region Sgr A West. The high spatial and temperature resolution of the data is used to identify features of the far infrared maps with known sources of near infrared, radio continuum, and molecular emission. The emission mechanism and energy sources for the far infrared radiation are anslyzed qualitatively, and it is concluded that all of the observed far infrared radiation from the galactic center region can be attributed to thermal emission from dust heated both by the late-type stars and by the ultraviolet sources which ionize the H II regions. A self-consistent model for the far infrared emission from the galactic center region is presented. It is found that the visual extinction across the central 10 pc of the galaxy is only about 3 magnitudes, and that the dust density is fairly uniform in this region. An upper limit of 10 7 L/sub mass/ is set on the luminosity of any presently unidentified source of 0.1 to 1 μm radiation at the galactic center. Additional maps in the vicinity of the source Sgr B2 and observations of Sgr C bring the total number of H II regions within 1 0 of the galactic center studied by the present experiment to nine. The far infrared luminosity, color temperature and optical depth of these regions and the ratio of infrared flux to radio continuum flux lie in the range characteristic of spiral arm H II regions. The far infrared results are therefore consistent with the data that the galactic center H II regions are ionized by luminous, early type stars

  8. Newly discovered IRAS QSO close to the Galactic plane

    International Nuclear Information System (INIS)

    Strauss, M.A.; Kirhakos, S.D.; Yahil, A.

    1988-01-01

    CCD observations of the IRAS QSO candidate I09149-6206 performed at CTIO during December 1987 are reported, including 564-806-nm spectroscopy obtained with the 1.5-m telescope and direct UVBRI imaging obtained with the 0.91-m telescope. The data are presented in tables and graphs and characterized in detail. It is found that the source is surrounded by a faint fuzz with low surface brightness and strong forbidden O III lines. Parameters determined include redshift z = 0.0571, Galactic latitude -9.2 deg, V magnitude 13.55, Galactic reddening E(B-V) = about 0.23, and absolute V magnitude about -24.87. 33 references

  9. Limb darkening of a K giant in the galactic bulge : Planet photometry of MACHO 97-BLG-28

    NARCIS (Netherlands)

    Albrow, MD; Beaulieu, JP; Caldwell, JAR; Dominik, M; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Pel, JW; Pollard, K; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A; Sahu, MS

    1999-01-01

    We present the PLANET photometric data set(10) for the binary-lens microlensing event MACHO 97-BLG-28, consisting of 696 I- and V-band measurements, and analyze it to determine the radial surface brightness profile of the Galactic bulge source star. The microlensed source, demonstrated to be a K

  10. Unperturbed moderator brightness in pulsed neutron sources

    International Nuclear Information System (INIS)

    Batkov, K.; Takibayev, A.; Zanini, L.; Mezei, F.

    2013-01-01

    The unperturbed neutron brightness of a moderator can be defined from the number of neutrons leaving the surface of a moderator completely surrounded by a reflector. Without openings for beam extraction, it is the maximum brightness that can be theoretically achieved in a moderator. The unperturbed brightness of a cylindrical cold moderator filled with pure para-H 2 was calculated using MCNPX; the moderator dimensions were optimised, for a fixed target and reflector geometry corresponding to the present concept for the ESS spallation source. This quantity does not depend on openings for beam extraction and therefore can be used for a first-round optimisation of a moderator, before effects due to beam openings are considered. We find that such an optimisation yields to a factor of 2 increase with respect to a conventional volume moderator, large enough to accommodate a viewed surface of 12×12 cm 2 : the unperturbed neutron brightness is maximum for a disc-shaped moderator of 15 cm diameter, 1.4 cm height. The reasons for this increase can be related to the properties of the scattering cross-section of para-H 2 , to the added reflector around the exit surface in the case of a compact moderator, and to a directionality effect. This large optimisation gain in the unperturbed brightness hints towards similar potentials for the perturbed neutron brightness, in particular in conjunction with advancing the optical quality of neutron delivery from the moderator to the sample, where by Liouville theorem the brightness is conserved over the beam trajectory, except for absorption and similar type losses

  11. FIRST EXPERIMENTAL RESULTS FROM DEGAS, THE QUANTUM LIMITED BRIGHTNESS ELECTRON SOURCE

    International Nuclear Information System (INIS)

    Zolotorev, Max S.; Commins, Eugene D.; Oneill, James; Sannibale, Fernando; Tremsin, Anton; Wan, Weishi

    2008-01-01

    The construction of DEGAS (DEGenerate Advanced Source), a proof of principle for a quantum limited brightness electron source, has been completed at the Lawrence Berkeley National Laboratory. The commissioning and the characterization of this source, designed to generate coherent single electron 'bunches' with brightness approaching the quantum limit at a repetition rate of few MHz, has been started. In this paper the first experimental results are described

  12. Brightness distribution data on 2918 radio sources at 365 MHz

    International Nuclear Information System (INIS)

    Cotton, W.D.; Owen, F.N.; Ghigo, F.D.

    1975-01-01

    This paper is the second in a series describing the results of a program attempting to fit models of the brightness distribution to radio sources observed at 365 MHz with the Bandwidth Synthesis Interferometer (BSI) operated by the University of Texas Radio Astronomy Observatory. Results for a further 2918 radio sources are given. An unresolved model and three symmetric extended models with angular sizes in the range 10--70 arcsec were attempted for each radio source. In addition, for 348 sources for which other observations of brightness distribution are published, the reference to the observations and a brief description are included

  13. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Santhana Raman, P. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Xu, X.; Pang, R.; Kan, J. A. van, E-mail: phyjavk@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-02-15

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  14. Progress in extremely high brightness LED-based light sources

    Science.gov (United States)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick

    2017-09-01

    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  15. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    International Nuclear Information System (INIS)

    Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.

    2017-01-01

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.

  16. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Larchenkova, Tatiana I. [ASC of P.N.Lebedev Physical Institute, Leninskiy prospect 53, Moscow 119991 (Russian Federation); Lutovinov, Alexander A.; Lyskova, Natalya S. [Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation)

    2017-01-20

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.

  17. Theoretical galactic cosmic ray electron spectrum obtained for sources of varying geometry

    International Nuclear Information System (INIS)

    Cohen, M.E.

    1969-01-01

    Jokipii and Meyer have recently obtained an electron density energy spectrum of the cosmic rays, originating in the Galaxy, using integral solutions of the steady state transfer equations, by considering a circular cylindric galactic disc as source and approximating the resulting fourth order integral. In this report, we present general results, obtained by using an arbitrary circular cylindric source, without restricting ourselves to the galactic disc. The integrals are treated exactly. The conclusions of Jokipii and Meyer form special cases of these results. We also obtain an exponential energy variation which, at the moment, is not observed experimentally. The second part of this work deals with more complicated, but perhaps more realistic models of elliptic cylindric and ellipsoidal galactic disc sources. One may also note that a very large source concentrated in a very small region gives a spectrum not unlike that for a small source distributed throughout a large volume. Finally, it may be remarked that the model adopted is much less restrictive than the artificial conception of 'leakage time' followed by other workers. (author) [fr

  18. INTEGRAL/IBIS observations of the Galactic center region at the epoch of the short Fermi/LAT flare

    DEFF Research Database (Denmark)

    Fiocchi, M.; Sanchez-Fernandez, C.; Natalucci, L.

    2011-01-01

    , the second one was selected because the source position was most optimal, i.e., about 6-8 degrees off-axis, the closest to the Galactic center region. The second slot is only a few hours apart from the Swift/XRT observation of SAX J1747.0-2853 (ATEL #3163), during which very bright emission from this source...

  19. Galactic Sources Detected in the NuSTAR Serendipitous Survey

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A.; Clavel, Maïca; Chiu, Jeng-Lun [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Lansbury, George B.; Aird, James [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Rahoui, Farid [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Fornasini, Francesca M.; Hong, JaeSub; Grindlay, Jonathan E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Alexander, David M. [Centre for Extragalactic Astronomy, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Bodaghee, Arash [Georgia College and State University, Milledgeville, GA 31061 (United States); Hailey, Charles J.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Harrison, Fiona A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Krivonos, Roman A. [Space Research Institute of the Russian Academy of Sciences, Profsoyuznaya Str. 84/32, 117997, Moscow (Russian Federation); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-06-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) provides an improvement in sensitivity at energies above 10 keV by two orders of magnitude over non-focusing satellites, making it possible to probe deeper into the Galaxy and universe. Lansbury and collaborators recently completed a catalog of 497 sources serendipitously detected in the 3–24 keV band using 13 deg{sup 2} of NuSTAR coverage. Here, we report on an optical and X-ray study of 16 Galactic sources in the catalog. We identify 8 of them as stars (but some or all could have binary companions), and use information from Gaia to report distances and X-ray luminosities for 3 of them. There are 4 CVs or CV candidates, and we argue that NuSTAR J233426–2343.9 is a relatively strong CV candidate based partly on an X-ray spectrum from XMM-Newton . NuSTAR J092418–3142.2, which is the brightest serendipitous source in the Lansbury catalog, and NuSTAR J073959–3147.8 are low-mass X-ray binary candidates, but it is also possible that these 2 sources are CVs. One of the sources is a known high-mass X-ray binary (HMXB), and NuSTAR J105008–5958.8 is a new HMXB candidate that has strong Balmer emission lines in its optical spectrum and a hard X-ray spectrum. We discuss the implications of finding these HMXBs for the surface density (log N –log S ) and luminosity function of Galactic HMXBs. We conclude that with the large fraction of unclassified sources in the Galactic plane detected by NuSTAR in the 8–24 keV band, there could be a significant population of low-luminosity HMXBs.

  20. A new non-thermal galactic radio source with a possible binary system

    International Nuclear Information System (INIS)

    Fuerst, E.; Reich, W.; Reich, P.; Sofue, Y.; Handa, T.

    1985-01-01

    A galactic object [G18.95-1.1], detected recently in a galactic plane survey, may belong to a new class of non-thermal radio sources that originate in accreting binary systems. The data on integrated flux density spectral index and the polarization, proves the non-thermal nature of the source. The morphology defies any classification as a supernova remnant. The authors suggest that the object is a binary system containing a compact component. (U.K.)

  1. Cosmic ray injection spectrum at the galactic sources

    Science.gov (United States)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  2. VizieR Online Data Catalog: FIR data of IR-bright dust-obscured galaxies (DOGs) (Toba+, 2017)

    Science.gov (United States)

    Toba, Y.; Nagao, T.; Wang, W.-H.; Matsuhara, H.; Akiyama, M.; Goto, T.; Koyama, Y.; Ohyama, Y.; Yamamura, I.

    2017-11-01

    We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, (i-[22])AB>7.0. Combining an IR-bright DOG sample with the flux at 22μm>3.8mJy discovered by Toba & Nagao (2016ApJ...820...46T) with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07DOGs and (2) the contribution of the active galactic nucleus to IR luminosity increases with IR luminosity. By comparing the stellar mass and SFR relation for our DOG sample and the literature, we found that most of the IR-bright DOGs lie significantly above the main sequence of star-forming galaxies at similar redshift, indicating that the majority of IRAS- or AKARI-detected IR-bright DOGs are starburst galaxies. (1 data file).

  3. TeV Gamma Rays From Galactic Center Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP

    2017-05-25

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requires a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.

  4. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, R. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Malkan, M., E-mail: rickedelson@gmail.com [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095-1547 (United States)

    2012-05-20

    We have developed the ''S{sub IX}'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S{sub IX} < 0 have a {approx}>95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S{sub IX} < 0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J {approx}< 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg{sup 2}, permitting construction of AGN samples in any sufficiently large region of sky.

  5. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    International Nuclear Information System (INIS)

    Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Brown, W.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; Kuba, J.; LaSage, G.P.; Rosenzweig, J.B.; Slaughter, D.R.; Springer, P.T.; Tremaine, A.M.

    2003-01-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10 20 photons/s/0.1% bandwidth/mm 2 /mrad 2 . Initial results are reported and compared to theoretical calculations

  6. A MID-INFRARED CENSUS OF STAR FORMATION ACTIVITY IN BOLOCAM GALACTIC PLANE SURVEY SOURCES

    International Nuclear Information System (INIS)

    Dunham, Miranda K.; Robitaille, Thomas P.; Evans, Neal J. II; Schlingman, Wayne M.; Cyganowski, Claudia J.; Urquhart, James

    2011-01-01

    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3712 of 8358) of the BGPS sources contain at least one mid-IR source, including 2457 of 5067 (49%) within the area where all surveys overlap (10 deg. s tarlessBGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the 'starless' BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H 2 column density also increase with probability of star formation activity.

  7. Minimum-phase distribution of cosmic source brightness

    International Nuclear Information System (INIS)

    Gal'chenko, A.A.; Malov, I.F.; Mogil'nitskaya, L.F.; Frolov, V.A.

    1984-01-01

    Minimum-phase distributions of brightness (profiles) for cosmic radio sources 3C 144 (the wave lambda=21 cm), 3C 338 (lambda=3.5 m), and 3C 353 (labda=31.3 cm and 3.5 m) are obtained. A real possibility for the profile recovery from module fragments of its Fourier-image is shown

  8. Supernova Remnants as the Sources of Galactic Cosmic Rays

    NARCIS (Netherlands)

    Vink, J.

    2013-01-01

    The origin of cosmic rays holds still manymysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate

  9. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    Directory of Open Access Journals (Sweden)

    Sahakyan N.

    2016-01-01

    Full Text Available The recent results from ground based γ-ray detectors (HESS, MAGIC, VERITAS provide a population of TeV galactic γ-ray sources which are potential sources of High Energy (HE neutrinos. Since the γ-rays and ν-s are produced from decays of neutral and charged pions, the flux of TeV γ-rays can be used to estimate the upper limit of ν flux and vice versa; the detectability of ν flux implies a minimum flux of the accompanying γ-rays (assuming the internal and the external absorption of γ-rays is negligible. Using this minimum flux, it is possible to find the sources which can be detected with cubic-kilometer telescopes. I will discuss the possibility to detect HE neutrinos from powerful galactic accelerators, such as Supernova Remnants (SNRs and Pulsar Wind Nebulae (PWNe and show that likely only RX J1713.7-3946, RX J0852.0-4622 and Vela X can be detected by current generation of instruments (IceCube and Km3Net. It will be shown also, that galactic binary systems could be promising sources of HE ν-s. In particular, ν-s and γ-rays from Cygnus X-3 will be discussed during recent gamma-ray activity, showing that in the future such kind of activities could produce detectable flux of HE ν-s.

  10. Galactic supernova remnants: radio evolution and population characteristics

    International Nuclear Information System (INIS)

    Caswell, J.L.; Lerche, I.

    1979-01-01

    Shell SNRs show a systematic gradient of radio surface brightness normal to the galactic plane, and a measured scale height for this effect has been obtained. The progenitor distribution and birth rate are significantly modified when allowance is made for the effect. The galactic height dependence of radio surface brightness satisfactorily accounts for the otherwise anomalous high-latitude SNR AD1006. It also provides a crucial clue to the origin of the radio emission, suggesting that the interstellar magnetic field is dominant over internally generated fields in shell SNRs. The same conclusion is reached from a consideration of the cumulative number count of shell SNRs

  11. Flux and brightness calculations for various synchrotron radiation sources

    International Nuclear Information System (INIS)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring

  12. Insights into the Galactic Cosmic-ray Source from the TIGER Experiment

    Science.gov (United States)

    Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.; hide

    2009-01-01

    We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  13. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  14. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  15. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  16. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  17. Powerful warm infrared sources in early-type galaxies

    International Nuclear Information System (INIS)

    Dressel, L.L.

    1988-01-01

    IRAS far-infrared sources have been identified with 129 S0, Sa, Sb, and Sc galaxies in a statistically complete sample of 738 galaxies brighter than 14.5 mag and smaller than 4.0 arcmin. In most cases, the far-IR colors and the ratios of far-IR flux to radio flux density are those of normal galactic disks and/or starbursts. The most powerful far-IR sources in S0 and Sa galaxies are just as powerful as the strongest far-IR sources in Sb and Sc galaxies. Bright-IR sources in S0 and Sa galaxies are warm; those in Sc galaxies are cool. Sb galaxies have both warm and cool IR sources. Bright warm IR sources occur much more frequently in barred galaxies than in galaxies without bars for types S0, Sa, and Sb. Bright, cool IR sources are found with increasing frequency along the Hubble sequence, regardless of the presence or absence of a bar. At least some S0 galaxies with warm, bright IR sources have peculiar morphologies and ambiguous classifications. 22 references

  18. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    International Nuclear Information System (INIS)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, Yoon-Jae; Park, Man-Jin; Moon, Dae Won

    2012-01-01

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m 2 SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  19. X-ray spectral models of Galactic bulge sources - the emission-line factor

    International Nuclear Information System (INIS)

    Vrtilek, S.D.; Swank, J.H.; Kallman, T.R.

    1988-01-01

    Current difficulties in finding unique and physically meaningful models for the X-ray spectra of Galactic bulge sources are exacerbated by the presence of strong, variable emission and absorption features that are not resolved by the instruments observing them. Nine Einstein solid state spectrometer (SSS) observations of five Galactic bulge sources are presented for which relatively high resolution objective grating spectrometer (OGS) data have been published. It is found that in every case the goodness of fit of simple models to SSS data is greatly improved by adding line features identified in the OGS that cannot be resolved by the SSS but nevertheless strongly influence the spectra observed by SSS. 32 references

  20. A radio/infrared/optical study of candidate supernova remnants from the Clark Lake 30.9 MHz Galactic plane survey

    International Nuclear Information System (INIS)

    Gorham, P.W.

    1990-01-01

    In this paper, it is shown that more than half of the SNR candidates from the first Galactic quadrant in the Clark Lake 30.9 MHz survey show independent evidence of being associated with SNRs. In most cases, these appear to be low surface brightness SNRs which have escaped detection in the past. About a fifth of the candidates should be strongly considered for classification as new SNRs, and a third of these are also probable IR sources, consistent with the detected fraction of known Galactic SNRs seen in a recent IR survey. Two of the confirmed candidates share the characteristic of appearing considerably larger at 30.9 MHz than they do at centimeter or optical wavelengths. This characteristic suggests the possibility of extended, low surface brightness emission that may extend considerably beyond the nominal boundaries of some SNRs. 27 refs

  1. Contribution of field effects to the achievement of higher brightness ion sources

    International Nuclear Information System (INIS)

    Sudraud, P.; Walle, J. van de; Colliex, C.; Castaing, R.

    1978-01-01

    The use of field effects for the delivery of high brightness ion beams is considered. Two solutions have been experimentally investigated, which are intended to increase the supply function in a field ion microscope: a liquid fed field ionization source and a field desorption source. Their performances and characteristics have been compared and they suggest two different regimes of emission. The field desorption source seems however more likely to produce reliable results. Brightnesses on the source side of the order of 10 8 to 10 9 A/cm 2 sr are expected but much care must be devoted to the design of the electrostatic transfer optics of the gun to take full benefit of the intrinsic properties of such large solid angle emitters. (Auth.)

  2. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    International Nuclear Information System (INIS)

    Pyo, Jeonghyun; Jeong, Woong-Seob; Matsumoto, Toshio; Matsuura, Shuji

    2012-01-01

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 μm, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 μm) are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 μm), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 ± 0.23 nW m –2 sr –1 or 0.05% of the brightness at 24 μm and at least 0.47 ± 0.14 nW m –2 sr –1 or 0.02% at 18 μm. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2σ error into account.

  3. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  4. Bright focused ion beam sources based on laser-cooled atoms

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J. J.; Wilson, T. M. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Steele, A. V.; Knuffman, B.; Schwarzkopf, A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); zeroK NanoTech, Gaithersburg, Maryland 20878 (United States); Twedt, K. A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  5. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Sloan, G. C. [Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia); Jones, O. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Egan, M. P., E-mail: kathleen.kraemer@bc.edu, E-mail: sloan@astro.cornell.edu, E-mail: wood@mso.anu.edu.au, E-mail: michael.p.egan@nga.mil [National Geospatial Intelligence Agency, 7500 GEOINT Drive, Springfield, VA 22150 (United States)

    2017-01-10

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  6. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-01-01

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  7. A high brightness source for nano-probe secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.S. [Oregon Physics LLC, 2704 SE 39th Loop, Suite 109, Hillsboro, OR 97123 (United States)], E-mail: n.smith@oregon-physics.com; Tesch, P.P.; Martin, N.P.; Kinion, D.E. [Oregon Physics LLC, 2704 SE 39th Loop, Suite 109, Hillsboro, OR 97123 (United States)

    2008-12-15

    The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.

  8. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Yoon-Jae [Samsung Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Park, Man-Jin [Research Institute of Nano Manufacturing System, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Moon, Dae Won [Nanobio Fusion Research Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2012-02-15

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  9. OSO-7 observations of high galactic latitude x-ray sources

    International Nuclear Information System (INIS)

    Markert, T.H.; Canizares, C.R.; Clark, G.W.; Li, F.K.; Northridge, P.L.; Sprott, G.F.; Wargo, G.F.

    1976-01-01

    Six hundred days of observations by the MIT X-ray detectors aboard OSO-7 have been analyzed. All-sky maps of X-ray intensity have been constructed from these data. A sample map is displayed. Seven sources with galactic latitude vertical-barb/subi//subi/vertical-bar>10degree, discovered during the mapping process, are reported, and upper limits are set on other high-latitude sources. The OSO-7 results are compared with those of Uhuru and an implication of this comparison, that many of the high-latitude sources may be variable, is discussed

  10. COBE diffuse infrared background experiment observations of the galactic bulge

    Science.gov (United States)

    Weiland, J. L.; Arendt, R. G.; Berriman, G. B.; Dwek, E.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Mitra, M.; Moseley, S. H.

    1994-01-01

    Low angular resolution maps of the Galactic bulge at 1.25, 2.2, 3.5, and 4.9 micrometers obtained by the Diffuse Infrared Background Experiment (DIRBE) onboard NASA's Cosmic Background Explorer (COBE) are presented. After correction for extinction and subtraction of an empirical model for the Galactic disk, the surface brightness distribution of the bulge resembles a flattened ellipse with a minor-to-major axis ratio of approximately 0.6. The bulge minor axis scale height is found to be 2.1 deg +/- 0.2 deg for all four near-infrared wavelengths. Asymmetries in the longitudinal distribution of bulge brightness contours are qualitatively consistent with those expected for a triaxial bar with its near end in the first Galactic quadrant (0 deg less than l less than 90 deg). There is no evidence for an out-of-plane tilt of such a bar.

  11. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    Science.gov (United States)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  12. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    Science.gov (United States)

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Esources for energies Esource luminosity in units of 10^{44} erg/s.

  13. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    Science.gov (United States)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  14. Einstein Observations of Galactic supernova remnants

    Science.gov (United States)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  15. High Brightness Neutron Source for Radiography. Final report

    International Nuclear Information System (INIS)

    Cremer, J.T.; Piestrup, Melvin A.; Gary, Charles K.; Harris, Jack L.; Williams, David J.; Jones, Glenn E.; Vainionpaa, J.H.; Fuller, Michael J.; Rothbart, George H.; Kwan, J.W.; Ludewigt, B.A.; Gough, R.A.; Reijonen, Jani; Leung, Ka-Ngo

    2008-01-01

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  16. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. III. THE GALACTIC HALO X-RAY EMISSION

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.

    2013-01-01

    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ∼4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 × 10 6 K, interquartile range = 0.63 × 10 6 K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude (∼(0.4-7) × 10 –3 cm –6 pc and ∼(0.5-7) × 10 –12 erg cm –2 s –1 deg –2 , respectively, with median detections of 1.9 × 10 –3 cm –6 pc and 1.5 × 10 –12 erg cm –2 s –1 deg –2 , respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper

  17. Very-High-Brightness Picosecond Electron Source

    International Nuclear Information System (INIS)

    Bluem, H.

    2003-01-01

    Bright, RF photocathode electron guns are the source of choice for most high-performance research accelerator applications. Some of these applications are pushing the performance boundaries of the present state-of-the-art guns. Advanced Energy Systems is developing a novel photocathode RF gun that shows excellent promise for extending gun performance. Initial gun simulations with only a short booster accelerator easily break the benchmark emittance of one micron for 1 nC of bunch charge. The pulse length in these simulations is less than 2 ps. It is expected that with more detailed optimization studies, the performance can be further improved. The performance details of the gun will be presented. In addition, we will discuss the present design concept along with the status of the project

  18. Neutral hydrogen in the galaxy and the galactic shocks

    International Nuclear Information System (INIS)

    Sawa, T.

    1978-01-01

    To discriminate the galactic shock theory from the linear density-wave theory in comparison with neutral hydrogen data in the Galaxy, model-line profiles and Tsub(b)(l, γ) (brightness temperature) diagrams of 21-cm line are calculated both for the two theories in the longitude range 15 0 0 . It is shown that major differences between the two models appear in the tangential directions of spiral arms and of inter-arm regions. The inter-arm region appears as a trough of the brightness temperature in the shock model. An observed trough on a Tsub(b)(l, γ) diagram at l = 80 0 -100 0 , γ = -20 km s -1 is reproduced reasonably well by the shock model, while the linear model fails to reproduce it. Effects of the galactic shocks on the terminal velocity is also discussed. (Auth.)

  19. Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope.

    Science.gov (United States)

    Börrnert, Felix; Renner, Julian; Kaiser, Ute

    2018-05-21

    The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).

  20. Evaluation of parameters of Black Hole, stellar cluster and dark matter distribution from bright star orbits in the Galactic Center

    Science.gov (United States)

    Zakharov, Alexander

    It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).

  1. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  2. Interstellar scattering, the North Polar Spur, and a possible new class of compact galactic radio sources

    International Nuclear Information System (INIS)

    Rickard, J.J.; Cronyn, W.M.

    1979-01-01

    A reanalysis of the Cambridge interplanetary scintillation (IPS) catalog of angular sizes of radio sources reveals that there is no statistically significant evidence for increased interstellar angular broadening in the galactic plane, in conflict with previous studies. There is a significant contribution to the decrease in the ratios of scintillators/nonscintillators and strong/weak scintillators near the plane from galactic supernova remnants which were included in previous studies of source counts. Using the catalog angular sizes, we show there is no lack of small sources of any size in the plane. However, we do find a 500 deg 2 region near the North Polar Spur (NPS) radio feature, a suspected supernova remnant, where there seems to be a true deficit of small sources. This deficit may be caused by enhanced broadening associated with the NPS. Our conclusion about the apparent absence of angular broadening in the plane conflicts with estimates of broadening based upon the geometrical relationship between time delay and angular size applied to pulsar coherence bandwidths and pulse decay times. To explain this discrepancy, we suggest two alternatives: (1) Large angular broadening of extragalactic sources in the plane may indeed exist so that sources exhibiting IPS (i.e., of small angular diameter) must be galactic in nature. Properties of this possible new class of sources--called scintars--are discussed, and 42 scintar candidates are identified. (2) There is little angular broadening of extragalactic sources, and the pulsar data are being misinterpreted

  3. The 1.4-2.7 micron spectrum of the point source at the galactic center

    Science.gov (United States)

    Treffers, R. R.; Fink, U.; Larson, H. P.; Gautier, T. N., III

    1976-01-01

    The spectrum of the 2-micron point source at the galactic center is presented over the range from 1.4 to 2.7 microns. The two-level-transition CO band heads are seen near 2.3 microns, confirming that the radiation from this source is due to a cool supergiant star. The heliocentric radial velocity is found to be - 173 (+ or -90) km/s and is consistent with the star being in orbit about a dense galactic nucleus. No evidence is found for Brackett-gamma emission, and no interstellar absorption features are seen. Upper limits for the column densities of interstellar H2, CH4, CO, and NH3 are derived.

  4. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality

    NARCIS (Netherlands)

    Jöns, K.D.; Schweickert, L.S.; Versteegh, M.A.M.; Dalacu, Dan; Poole, Philip J.; Gulinatti, Angelo; Giudice, Andrea; Zwiller, V.G.; Reimer, M.E.

    2017-01-01

    Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has

  5. Bright and durable field emission source derived from refractory taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  6. Considerations for high-brightness electron sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are now used in many areas of physics research and in industrial and medical applications. New uses are being studied to address major societal needs in energy production, materials research, generation of intense beams of radiation at optical and suboptical wavelengths, treatment of various kinds of waste, and so on. Many of these modern applications require a high intensity beam at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. Considerations for ion and electron accelerators are often different, but there are also many commonalties, and in fact, techniques derived for one should perhaps more often be considered for the other as well. We discuss some aspects of high-brightness electron sources here from that point of view. 6 refs

  7. Discovery of a Nonblazar Gamma-Ray Transient Source Near the Galactic Plane: GRO J1838-04

    Science.gov (United States)

    Tavani, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in 1995 June with a peak intensity of approx. (4 +/- 1) x 10(exp -6) photons/sq cm s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in 1995 late September detected the source at a flux smaller than its peak value by a factor of approx. 7. We determine that no radio-loud spectrally flat blazar is within the error box of GRO J1838-04. We discuss the origin of the gamma-ray transient source and show that interpretations in terms of active galactic nuclei or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.

  8. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A.; Byun, Do-Young; Kang, Sincheol; Kim, Soon-Wook; Kino, Motoki [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Trippe, Sascha [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Miyazaki, Atsushi [Japan Space Forum, 3-2-1, Kandasurugadai, Chiyoda-ku, Tokyo 101-0062 Japan (Japan); Kim, Jeong-Sook, E-mail: sslee@kasi.re.kr [National Astronomical Observatory of Japan, 2211 Osawa, Mitaka, Tokyo 1818588 (Japan)

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).

  9. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    Science.gov (United States)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  10. TANAMI: Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry. II. Additional sources

    Science.gov (United States)

    Müller, C.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Ros, E.; Carpenter, B.; Angioni, R.; Blanchard, J.; Böck, M.; Burd, P. R.; Dörr, M.; Dutka, M. S.; Eberl, T.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Katz, U.; Krauß, F.; Lovell, J. E. J.; Natusch, T.; Nesci, R.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J. F. H.; Stevens, J.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.

    2018-02-01

    Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of - 30° declination including high-resolution very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch8.4 GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (> 100 TeV) neutrino events have been found. Aims: We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Methods: TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile, New Zealand, and South Africa. Results: Our observations yield the first images of many jets below - 30° declination at milliarcsecond resolution. We find that γ-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the > 100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in

  11. IRAS variables as galactic structure tracers - Classification of the bright variables

    Science.gov (United States)

    Allen, L. E.; Kleinmann, S. G.; Weinberg, M. D.

    1993-01-01

    The characteristics of the 'bright infrared variables' (BIRVs), a sample consisting of the 300 brightest stars in the IRAS Point Source Catalog with IRAS variability index VAR of 98 or greater, are investigated with the purpose of establishing which of IRAS variables are AGB stars (e.g., oxygen-rich Miras and carbon stars, as was assumed by Weinberg (1992)). Results of the analysis of optical, infrared, and microwave spectroscopy of these stars indicate that, out of 88 stars in the BIRV sample identified with cataloged variables, 86 can be classified as Miras. Results of a similar analysis performed for a color-selected sample of stars, using the color limits employed by Habing (1988) to select AGB stars, showed that, out of 52 percent of classified stars, 38 percent are non-AGB stars, including H II regions, planetary nebulae, supergiants, and young stellar objects, indicating that studies using color-selected samples are subject to misinterpretation.

  12. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morris, Mark R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Goss, W. M., E-mail: jzhao@cfa.harvard.edu [NRAO, P.O. Box O, Socorro, NM 87801 (United States)

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized

  13. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-01-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no

  14. Determining the nature of faint X-ray sources from the ASCA Galactic center survey

    Science.gov (United States)

    Lutovinov, A. A.; Revnivtsev, M. G.; Karasev, D. I.; Shimansky, V. V.; Burenin, R. A.; Bikmaev, I. F.; Vorob'ev, V. S.; Tsygankov, S. S.; Pavlinsky, M. N.

    2015-05-01

    We present the results of the the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AX J173548-3207, AX J173628-3141, AX J1739.5-2910, AX J1740.4-2856, AX J1740.5-2937, and AX J1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AX J173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AX J1739.5-2910, AX J1740.5-2937, AX J1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AX J1740.4-2856) is an M dwarf, and another one (AX J173548-3207) most likely a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band (0.5-10 keV) have been estimated; analysis of deep INTEGRAL Galactic center observations has not revealed a statistically significant flux at energies >20 keV from any of them.

  15. High brightness ion source

    International Nuclear Information System (INIS)

    Dreyfus, R.W.; Hodgson, R.T.

    1975-01-01

    A high brightness ion beam is obtainable by using lasers to excite atoms or molecules from the ground state to an ionized state in increments, rather than in one step. The spectroscopic resonances of the atom or molecule are used so that relatively long wavelength, low power lasers can be used to obtain such ion beam

  16. The XMM deep survey in the CDF-S. X. X-ray variability of bright sources

    Science.gov (United States)

    Falocco, S.; Paolillo, M.; Comastri, A.; Carrera, F. J.; Ranalli, P.; Iwasawa, K.; Georgantopoulos, I.; Vignali, C.; Gilli, R.

    2017-12-01

    Aims: We aim to study the variability properties of bright hard X-ray selected active galactic nuclei (AGN) in the redshift range between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long ( 3 Ms) XMM observation. Methods: Taking advantage of the good count statistics in the XMM CDFS, we search for flux and spectral variability using the hardness ratio (HR) techniques. We also investigate the spectral variability of different spectral components (photon index of the power law, column density of the local absorber, and reflection intensity). The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. Results: The flux variability is significant in all the sources investigated. The HRs in general are not as variable as the fluxes, in line with previous results on deep fields. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source at 99% confidence level. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15% of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. Conclusions: X-ray flux fluctuations are ubiquitous in AGN, though in some cases the data quality does not allow for their detection. In general, the significant flux variations are not associated with spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from three to six and a half years). Photon index variability is

  17. Plans to increase source brightness of NSLS x-ray ring

    International Nuclear Information System (INIS)

    Safranek, J.; Krinsky, S.

    1993-01-01

    We discuss plans to increase the NSLS X-Ray ring source brightness by an order of magnitude. Proposed improvements include doubling current from 250 mA to 500 mA, reducing vertical emittance by a factor of 6 and reducing insertion device gaps and periods by up to a factor of two. Experimental results are reported which indicate we have succeeded in reducing the vertical emittance below 2 Angstrom

  18. Studies on a laser driven photoemissive high-brightness electron source and novel photocathodes

    International Nuclear Information System (INIS)

    Geng Rongli; Song Jinhu; Yu Jin

    1997-01-01

    A laser driven photoemissive high-brightness electron source at Beijing University is reported. Through a DC accelerating gap of 100 kV voltage, the device is capable of delivering high-brightness electron beam of 35-100 ps pulse duration when irradiated with a mode-locked YAG laser. The geometry of the gun is optimized with the aid of simulation codes EGUN and POISSON. The results of experimental studies on ion implanted photocathode and cesium telluride photocathode are given. The proposed laser driven superconducting RF gun is also discussed

  19. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Johnston, S. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Bhat, N. D. R. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Burgay, M.; Possenti, A.; Tiburzi, C. [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Burke-Spolaor, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Champion, D.; Ng, C. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Levin, L., E-mail: epetroff@astro.swin.edu.au [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  20. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.

    2014-01-01

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts

  1. Interpretation of the galactic radio-continuum and gamma-ray emission

    International Nuclear Information System (INIS)

    Beuermann, K.P.

    1974-01-01

    An analysis is performed of the nonthermal radio-continuum and gamma-ray emission of the galactic disc, using a spiral-arm model of the Galaxy. The results for the 408 MHz brightness temperature and the >100 MeV gamma-ray line intensity as a function of galactic longitude at bsup(II)=0 deg are presented. The observational implications, as well as the uncertainties in the calculations, are briefly discussed. An estimate of the possible range of the inverse Compton contribution to the observed gamma-ray flux is made

  2. Providing Bright-Hard X-ray Beams from a Lower Energy Light Source

    Science.gov (United States)

    Robin, David

    2002-04-01

    At the Advanced Light Source (ALS) there had been an increasing demand for more high brightness harder X-ray sources in the 7 to 40 KeV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than the 1.3 Tesla bends, making them excellent sources of harder x-rays for protein crystallography and other harder x-ray applications. At the same time the Superbends do not compromise the performance of the facility in the UV and Soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new x-ray beam lines greatly enhancing the facility's capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since the ring was commissioned in 1993. In this paper we present, a history of the project, details of the magnet, installation, commissioning, and resulting performance of the ALS with Superbends.

  3. Hard X-ray emission mechanism of active galactic nuclei sources

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Within the framework of unsaturated Compton disk accretion onto a supermassive black hole as model for power-law active galactic nuclei X-ray sources (as opposed to the synchro-Compton model), we compare the hot inner disk model of Shapiro, Lightman, and Eardley and the disk corona model with balanced conduction and Compton losses. Both can generate electron temperatures > or approx. =10 9 K in the supermassive case but promise other observable distinctions. The sandwich configuration of the disk corona provides a natural explanation of why Comptonization is unsaturated

  4. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    International Nuclear Information System (INIS)

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-01-01

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100°-117°, within 30° of the Galactic plane. For |b| –2 and –62 ± 5 rad m –2 in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 μG (7 μG) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  5. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi -Large Area Telescope Pass 8 Data above 10 GeV

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Caragiulo, M.; Bloom, E. D.; Bottacini, E.; Cameron, R. A.; Bonino, R.; Brandt, T. J.; Castro, D.; Bregeon, J.; Bruel, P.; Caraveo, P. A.; Cavazzuti, E.

    2017-01-01

    The spatial extension of a γ -ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ -ray sources is greatly improved by the newly delivered Fermi -Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi -LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi -LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.

  6. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi -Large Area Telescope Pass 8 Data above 10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E.; Caragiulo, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bloom, E. D.; Bottacini, E.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J.; Castro, D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, F-34095 Montpellier (France); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Cavazzuti, E., E-mail: jcohen@astro.umd.edu, E-mail: elizabeth.a.hays@nasa.gov [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Roma (Italy); and others

    2017-07-10

    The spatial extension of a γ -ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ -ray sources is greatly improved by the newly delivered Fermi -Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi -LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi -LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.

  7. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  8. Visibility of Active Galactic Nuclei in the Illustris Simulation

    Science.gov (United States)

    Hutchinson-Smith, Tenley; Kelley, Luke; Moreno, Jorge; Hernquist, Lars; Illustris Collaboration

    2018-01-01

    Active galactic nuclei (AGN) are the very bright, luminous regions surrounding supermassive black holes (SMBH) located at the centers of galaxies. Supermassive black holes are the source of AGN feedback, which occurs once the SMBH reaches a certain critical mass. Almost all large galaxies contain a SMBH, but SMBH binaries are extremely rare. Finding these binary systems are important because it can be a source of gravitational waves if the two SMBH collide. In order to study supermassive black holes, astronomers will often rely on the AGN’s light in order to locate them, but this can be difficult due to the extinction of light caused by the dust and gas surrounding the AGN. My research project focuses on determining the fraction of light we can observe from galactic centers using the Illustris simulation, one of the most advanced cosmological simulations of the universe which was created using a hydrodynamic code and consists of a moving mesh. Measuring the fraction of light observable from galactic centers will help us know what fraction of the time we can observe dual and binary AGN in different galaxies, which would also imply a binary SMBH system. In order to find how much light is being blocked or scattered by the gas and dust surrounding the AGN, we calculated the density of the gas and dust along the lines of sight. I present results including the density of gas along different lines of sight and how it correlates with the image of the galaxy. Future steps include taking an average of the column densities for all the galaxies in Illustris and studying them as a function of galaxy type (before merger, during merger, and post-merger), which will give us information on how this can also affect the AGN luminosity.

  9. Study of the spectral characteristics of unidentified galactic EGRET sources. Are they pulsar-like?

    Science.gov (United States)

    Merck, M.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Fichtel, C. E.; Fierro, J. M.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Muecke, A.; Mukherjee, R.; Nolan, P. L.; Pohl, M.; Schneid, E.; Sreekumar, P.; Thompson, D. J.; Willis, T. D.

    1996-12-01

    A spectral study of unidentified galactic EGRET sources was performed. The derived spectra are compared to the spectra of pulsars to test the hypothesis, that a significant fraction of these sources are Geminga like radio-quiet pulsars (Yadigaroglu & Romani 1995ApJ...449..211Y). Most of the sources show significantly different spectra than expected under this hypothesis. Of those with spectra consistent with typical pulsar spectra, four are positionally consistent with young spin-powered radio pulsars leaving only very few Geminga type candidates in the sample.

  10. FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bisello, D.; Baughman, B. M.; Belli, F.

    2010-01-01

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  11. The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering

    Science.gov (United States)

    Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.

    2018-03-01

    The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.

  12. The emittance and brightness characteristics of negative ion sources suitable for MeV ion implantation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1987-01-01

    This paper provides the description and beam properties of ion sources suitable for use with ion implantation devices. Particular emphasis is placed on the emittance and brightness properties of state-of-the-art, high intensity, negative ion sources based on the cesium ion sputter principle

  13. The Galactic O-Star Catalog (GOSC) and the Galactic O-Star Spectroscopic Survey (GOSSS): current status

    Science.gov (United States)

    Maíz Apellániz, J.; Alonso Moragón, A.; Ortiz de Zárate Alcarazo, L.; The Gosss Team

    2017-03-01

    We present the updates of the Galactic O-Star Catalog (GOSC) that we have undertaken in the last two years: new spectral types, more objects, additional information, and coordination with CDS. We also present updates for the Galactic O-Star Spectroscopic Survey (GOSSS). A new paper (GOSSS-III) has been published and ˜ 1000 targets have been observed since 2014. Four new setups have been added to our lineup and for two of them we have already obtained over 100 spectra: with OSIRIS at the 10.4 m GTC we are observing northern dim stars and with FRODOspec at the 2.0 m Liverpool Telescope we are observing northern bright stars. Finally, we also make available new versions of MGB, the spectral classification tool associated with the project, and of the GOSSS grid of spectroscopic standards.

  14. Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band

    Science.gov (United States)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.

    2004-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.

  15. High-brightness electron guns for linac-based light sources

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    Most proposed linac-based light sources, such as single-pass free-electron lasers and energy-recovery-linacs, require very high-brightness electron beams in order to achieve their design performance. These beam requirements must be achieved not on an occasional basis, but rather must be met by every bunch produced by the source over extended periods of time. It is widely assumed that the beam source will be a photocathode electron gun; the selection of accelerator technique (e.g., dc or rf) for the gun is more dependent on the application.The current state of the art of electron beam production is adequate but not ideal for the first generation of linac-based light sources, such as the Linac Coherent Light Source (LCLS) x-ray free-electron laser (X-FEL). For the next generation of linac-based light sources, an order of magnitude reduction in the transverse electron beam emittance is required to significantly reduce the cost of the facility. This is beyond the present state of the art, given the other beam properties that must be maintained. The requirements for current and future linac-based light source beam sources are presented here, along with a review of the present state of the art. A discussion of potential paths towards meeting future needs is presented at the conclusion.

  16. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Bonn (Germany); Dept. of Phys. and Astron., Univ. of Bonn (Germany); Dept. of Phys. and Astr., Univ. of Alabama, Tuscaloosa, AL (United States); Dept. of Phys., Univ. of Alabama at Huntsville, AL (United States); Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Becker, Julia K. [Institution foer Fysik, Goeteborgs Univ. (Sweden); Dept. of Phys., Univ. Dortmund, Dortmund (Germany); Caramete, Laurentiu [MPI for Radioastronomy, Bonn (Germany); Institute for Space Studies, Bucharest (Romania); Curutiu, Alex [MPI for Radioastronomy, Bonn (Germany); Engel, Ralph [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Falcke, Heino [Dept. of Astrophys., IMAP, Radboud Univ., Nijmegen (Netherlands); ASTRON, Dwingeloo (Netherlands); Gergely, Laszlo A. [Dept. Appl. Sci., London South Bank University (United Kingdom); Dept. of Theoret. and Exp. Phys., Univ. of Szeged, Szeged (Hungary); Isar, P. Gina [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Institute for Space Studies, Bucharest (Romania); Maris, Ioana C. [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Meli, Athina [Physik. Inst. Univ. Erlangen-Nuernberg (Germany); Kampert, Karl-Heinz [Phys. Dept., Univ. Wuppertal (Germany); Stanev, Todor [Bartol Research Inst., Univ. of Delaware, Newark, DE (United States); Tascau, Oana [Phys. Dept., Univ. Wuppertal (Germany); Zier, Christian [MPI for Radioastronomy, Bonn (Germany); Raman Res. Inst., Bangalore (India)

    2009-05-15

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  17. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    International Nuclear Information System (INIS)

    Biermann, Peter L.; Becker, Julia K.; Caramete, Laurentiu; Curutiu, Alex; Engel, Ralph; Falcke, Heino; Gergely, Laszlo A.; Isar, P. Gina; Maris, Ioana C.; Meli, Athina; Kampert, Karl-Heinz; Stanev, Todor; Tascau, Oana; Zier, Christian

    2009-01-01

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  18. Heat sources for bright-rimmed molecular clouds: CO observations of NGC 7822

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Dickinson, D.F.; Lada, C.J.

    1978-01-01

    Observations of the 2.6 mm carbon monoxide line in the bright rim NGC 7822 reveal that the peak excitation and column density of the molecule lie in a ridge ahead of the ionization front. Several possibilities for the excitation of this ridge are discussed. Cosmic rays are shown to provide an excellent heat source for Bok globules, but they can account for only approx.20% of the required heating in NGC 7822. Direct shock or compressional heating of the gas could be adequate only if the pressure inside the cloud is much larger than the thermal pressure. If, in fact, this internal pressure is determined by the source of line broadening (e.g., magnetic fields or turbulence), then shock or compressional heating could be important, and pressure equilibrium may exist between the neutral cloud and the bright rim. Heating by warm grains or by the photoelectric effect is also considered, but such mechanisms are probably not important if the only source of radiation is external to the cloud. This is primarily a result of the low cloud density (approx.10 3 cm -3 ) inferred from our observations. The extent to which unknown embedded stars may provide the required gaseous heating cannot be estimated from our observations of NGC 7822.An interesting and new heat source is suggested which may have important applications to bright-rimmed clouds or to any other predominantly neutral clouds that may have undergone some recent compression. We suggest that the heat input to neutral gas due to the relaxation of internal magnetic fields will be greatly enhanced during cloud compression (with or without a shock). We show that the power input to the gas will increase more with increasing density than will the cooling rate. As a result, cloud compression can lead to an increase in the gas temperature for a period lasting several million years, which is the decay time of the compressed field. The observed ridge in NGC 7822 may be due to stimulated release of internal magnetic energy

  19. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  20. Study with the sigma data base of the galactic bulge hard x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Vargas, Marielle

    1997-01-01

    The Sigma coded-mask telescope on board the Granat spacecraft produces sky images in the hard X-ray and soft gamma-ray energy domain (30-1300 keV) with an angular resolution of 15 arc minutes. The observations of the 18 Angstroms x 17 Angstroms region around the Galactic Center, performed with Sigma regularly during seven years, allowed the detection of a cluster of 17 sources showing activity beyond 40 ke V. This cluster is identified with the Galactic Bulge and its core coincides with the Galactic Center. Each of these sources reveals matter accretion by a collapse star in binary system. Its nature is determined by the luminosity and the spectral behavior recorded beyond 40 keV. Three accreting black holes show peculiar transient activities and comparable flare luminosities providing a criterion to evaluate distance of other specimens located elsewhere in the Galaxy. No sign of activity has been detected from the very center of the Galaxy where a supermassive black hole would be placed and would accrete the surrounding matter. (author) [fr

  1. Radio Wavelength Studies of the Galactic Center Source N3, Spectroscopic Instrumentation For Robotic Telescope Systems, and Developing Active Learning Activities for Astronomy Laboratory Courses

    Science.gov (United States)

    Ludovici, Dominic Alesio

    2017-08-01

    The mysterious radio source N3 appears to be located within the vicinity of the Radio Arc region of the Galactic Center. To investigate the nature of this source, we have conducted radio observations with the VLA and the VLBA. Continuum observations between 2 and 50 GHz reveal that N3 is an extremely compact and bright source with a non-thermal spectrum. Molecular line observations with the VLA reveal a compact molecular cloud adjacent to N3 in projection. The properties of this cloud are consistent with other galactic center clouds. We are able to rule out several hypotheses for the nature of N3, though a micro-blazar origin cannot be ruled out. Robotic Telescope systems are now seeing widespread deployment as both teaching and research instruments. While these systems have traditionally been able to produce high quality images, these systems have lacked the capability to conduct spectroscopic observations. To enable spectroscopic observations on the Iowa Robotic Observatory, we have developed a low cost (˜ 500), low resolution (R ˜ 300) spectrometer which mounts inside a modified filter wheel and a moderate cost (˜ 5000), medium resolution (R ˜ 8000) fiber-fed spectrometer. Software has been developed to operate both instruments robotically and calibration pipelines are being developed to automate calibration of the data. The University of Iowa offers several introductory astronomy laboratory courses taken by many hundreds of students each semester. To improve student learning in these laboratory courses, we have worked to integrate active learning into laboratory activities. We present the pedagogical approaches used to develop and update the laboratory activities and present an inventory of the current laboratory exercises. Using the inventory, we make observations of the strengths and weaknesses of the current exercises and provide suggestions for future refinement of the astronomy laboratory curriculum.

  2. Simple, compact, high brightness source for x-ray lithography and x-ray radiography

    International Nuclear Information System (INIS)

    Hawryluk, A.M.

    1986-01-01

    A simple, compact, high brightness x-ray source has recently been built. This source utilizes a commercially available, cylindrical geometry electron beam evaporator, which has been modified to enhance the thermal cooling to the anode. Cooling is accomplished by using standard, low-conductivity laboratory water, with an inlet pressure of less than 50 psi, and a flow rate of approx.0.3 gal/min. The anode is an inverted cone geometry for efficient cooling. The x-ray source has a measured sub-millimeter spot size (FWHM). The anode has been operated at 1 KW e-beam power (10 KV, 100 ma). Higher operating levels will be investigated. A variety of different x-ray lines can be obtained by the simple interchange of anodes of different materials. Typical anodes are made from easily machined metals, or materials which are vacuum deposited onto a copper anode. Typically, a few microns of material is sufficient to stop 10 KV electrons without significantly decreasing the thermal conductivity through the anode. The small size and high brightness of this source make it useful for step and repeat exposures over several square centimeter areas, especially in a research laboratory environment. For an aluminum anode, the estimated Al-K x-ray flux at 10 cms from the source is 70 μW/cm 2

  3. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  4. Observation of Galactic Sources of Very High Energy γ-RAYS with the Magic Telescope

    Science.gov (United States)

    Bartko, H.

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.

  5. Is there dust in galactic haloes

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Ferrini, F.; Pisa Univ.; Barsella, B.; Aiello, S.

    1987-01-01

    The ubiquitous presence of dust within the disks of spiral galaxies is well established. The authors predict that the presence of dust in these regions may be revealed in bright edge-on galaxies, especially by using the polarization of the scattered light from the symmetric lanes. The detection of scattered light above the galactic plane may be an indicator that the parent galaxy has not suffered close encounters with other galaxies at least within the timescale required to establish the dust layers. (author)

  6. VERITAS Galactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gareth

    2013-06-15

    We report on recent Galactic results and discoveries made by the VERITAS collaboration. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma-ray observatory, located in southern Arizona, able to detect gamma rays of energies from 100 GeV up to 30 TeV. VERITAS has been fully operational since 2007 and its current sensitivity enables the detection of a 1% Crab Nebula flux at 5 sigma in under 30 hours. The observatory is well placed to view large parts of the galactic plane including its center, resulting in a strong galactic program. Objects routinely observed include Pulsars, Pulsar Wind Nebula, X-ray binaries and sources with unidentified counterparts in other wavelengths.

  7. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    International Nuclear Information System (INIS)

    Kruit, P.; Bezuijen, M.; Barth, J.E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ''brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed

  8. SKY BRIGHTNESS AND TRANSPARENCY IN THE i-BAND AT DOME A, ANTARCTICA

    International Nuclear Information System (INIS)

    Zou Hu; Zhou Xu; Jiang Zhaoji; Hu Jingyao; Ma Jun; Ashley, M. C. B.; Luong-Van, D. M.; Storey, J. W. V.; Cui Xiangqun; Feng Longlong; Gong Xuefei; Kulesa, C. A.; Lawrence, J. S.; Liu Genrong; Moore, A. M.; Pennypacker, C. R.; Travouillon, T.; Qin Weijia; Sun Bo; Shang Zhaohui

    2010-01-01

    The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope Array. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec -2 in the SDSS i band at the south celestial pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec -2 . There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae.

  9. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    International Nuclear Information System (INIS)

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-01

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  10. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  11. DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F.; Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Baldini, L.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J.; Buson, S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: isabelle.grenier@cea.fr, E-mail: casandjian@cea.fr [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2016-04-01

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.

  12. On the nature of the galactic 2CG γ-ray sources

    International Nuclear Information System (INIS)

    Buccheri, R.; Morini, M.; Sacco, B.

    1981-01-01

    The identification of two γ-ray sources of the COS-B catalogue with radio pulsars is used as an important hint for the identification of the rest of the population. The relevant distributions of γ-ray pulsars visible at the Sun within the limiting sensitivity of COS-B are derived on the following assumptions: (i) the γ-ray luminosity is a decreasing power law of the pulsar age, as indicated by current models; (ii) the scale height of pulsars at creation is equal to that of the supernova remnants; (iii) the pulsars' birth rate and spatial distribution are those published by Taylor and Manchester (1977). As a preliminary result it is shown that 10 to 20 γ-ray pulsars may be visible from the Earth with distributional parameters not distinguishable from those of the 2CG γ-ray sources. It is suggested therefore that a significant fraction of the unidentified galactic γ-ray sources are pulsars. (author)

  13. Source Plane Reconstruction of the Bright Lensed Galaxy RCSGA 032727-132609

    Science.gov (United States)

    Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Koester, Benjamin P.; Bayliss, Matthew B.; Barrientos, L. Felipe

    2011-01-01

    We present new HST/WFC3 imaging data of RCS2 032727-132609, a bright lensed galaxy at z=1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100-pc scale structures in a high redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially-resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  14. The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, L. R. [Einstein Fellow, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI, 53706 (United States); Mon, B.; Haggard, D. [McGill Space Institute, McGill University, 3550 University Street, Montreal, QC, H3A 2A7 (Canada); Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Garmire, G. [Huntingdon Institute for X-ray Astronomy, 10677 Franks Road Huntingdon, PA, 16652 (United States); Degenaar, N. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, M. [University of Michigan, 1085 S. University, 311 West Hall, Ann Arbor, MI 48109 (United States)

    2017-04-20

    We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.

  15. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    Science.gov (United States)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  16. The distances of the Galactic Novae

    Science.gov (United States)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  17. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  18. Using the Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points

    Science.gov (United States)

    Adams, Mitzi L.; Tennant, A.; Cirtain, J. M.

    2009-01-01

    This poster details a technique of bright point identification that is used to find sources in Chandra X-ray data. The algorithm, part of a program called LEXTRCT, searches for regions of a given size that are above a minimum signal to noise ratio. The algorithm allows selected pixels to be excluded from the source-finding, thus allowing exclusion of saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon counting statistics, whereas solar telescopes typically integrate a flux. Thus the calculated signal-to-noise ratio is incorrect, but we find we can scale the number to get reasonable results. For example, Nakakubo and Hara (1998) find 297 bright points in a September 11, 1996 Yohkoh image; with judicious selection of signal-to-noise ratio, our algorithm finds 300 sources. To further assess the efficacy of the algorithm, we analyze a SOHO/EIT image (195 Angstroms) and compare results with those published in the literature (McIntosh and Gurman, 2005). Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle.

  19. An unusually strong Einstein ring in the radio source PKS1830-211

    International Nuclear Information System (INIS)

    Jauncey, D.L.

    1991-01-01

    RADIO observations of the strong, flat-spectrum radio source PKS1830-211 revealed a double structure, with a separation of 1 arcsec, suggesting that it might be a gravitationally lensed object. We have now obtained high-resolution radio images of PKS1830-211 from several interferometric radiotelescope networks, which show an unusual elliptical ring-like structure connecting the two brighter components. The presence of the ring, and the similarity of the two brighter spots, argue strongly that this is indeed a gravitationally lensed system, specifically an Einstein ring in which lens and lensed object are closely aligned. Although the source is close to the galactic plane, it seems that both the lens and background (lensed) object are extragalactic. This object is one hundred times brighter than either of the two previously discovered radio Einstein rings, and is among the six brightest flat-spectrum sources in the sky. Its brightness makes it a peculiar object: it must involve either a chance alignment of a lensing object with an unusually bright background source, or an alignment with a less bright object but amplified to an unusual degree. (author)

  20. The galactic contribution to IceCube's astrophysical neutrino flux

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Peter B. [Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Marfatia, Danny [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Rd., Honolulu, HI 96822 (United States); Weiler, Thomas J., E-mail: peterbd1@gmail.com, E-mail: dmarf8@hawaii.edu, E-mail: tom.weiler@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235 (United States)

    2017-08-01

    High energy neutrinos have been detected by IceCube, but their origin remains a mystery. Determining the sources of this flux is a crucial first step towards multi-messenger studies. In this work we systematically compare two classes of sources with the data: galactic and extragalactic. We assume that the neutrino sources are distributed according to a class of Galactic models. We build a likelihood function on an event by event basis including energy, event topology, absorption, and direction information. We present the probability that each high energy event with deposited energy E {sub dep}>60 TeV in the HESE sample is Galactic, extragalactic, or background. For Galactic models considered the Galactic fraction of the astrophysical flux has a best fit value of 1.3% and is <9.5% at 90% CL. A zero Galactic flux is allowed at <1σ.

  1. THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. I. THE W51 REGION IN CO AND 13CO J = 2-1 EMISSION

    International Nuclear Information System (INIS)

    Bieging, John H.; Peters, William L.; Kang, Miju

    2010-01-01

    We present 38'' resolution maps of the CO and 13 CO J = 2-1 lines in the molecular clouds toward the H II region complex W51. The maps cover a 1. 0 25 x 1 0 section of the galactic plane and span +30 to +85 km s -1 (LSR) in velocity. The spectral resolution is ∼1.3 km s -1 . The velocity range of the images includes all the gas in the Sagittarius spiral arm. Color figures display the peak line brightness temperature, the velocity-integrated intensity, and 2 km s -1 channel-averaged maps for both isotopologs, and also the CO/ 13 CO J = 2-1 line intensity ratio as a function of velocity. The CO and 13 CO line intensity image cubes are made available in standard FITS format as electronically readable tables. We compare our molecular line maps with the 1.1 mm continuum image from the BOLOCAM Galactic Plane Survey. From our 13 CO image cube, we derive kinematic information for the 99 BGPS sources in the mapped field in the form of Gaussian component fits. The integrated 13 CO line intensity and the 1.1 mm source flux density show only a modest degree of correlation for the 99 sources, likely due to a range of dust and gas physical conditions within the sources. However, the 1.1 mm continuum surface brightness and the integrated 13 CO line intensity for small regions containing single BGPS sources and molecular clouds show very good correlations in many cases. Differences in the shapes of these correlations from one spatial region to another probably result from different physical conditions or structure in the clouds.

  2. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic Cold Clumps

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and contained 915 high S/N sources. It is based on the Planck 48 months mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 545, 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC so...

  3. Planck intermediate results. XII: Diffuse Galactic components in the Gould Belt System

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    We perform an analysis of the diffuse low-frequency Galactic components in the Southern part of the Gould Belt system (130^\\circ\\leq l\\leq 230^\\circ and -50^\\circ\\leq b\\leq -10^\\circ). Strong ultra-violet (UV) flux coming from the Gould Belt super-association is responsible for bright diffuse...

  4. Development of a high brightness ion source for IFMIF and preliminary test results

    International Nuclear Information System (INIS)

    Iga, Takashi; Okumura, Yoshikazu; Kashiwagi, Mieko

    2001-05-01

    Development of a high brightness ion source for the 40MeV/250mA deuteron beam accelerator, IFMIF, is in progress at JAERI. A prototype ion source using hot filament cathodes has been developed. This ion source consists of a multi-cusp plasma generator and a two-stage accelerator. Beam optics has been investigated at the energy of up to 60keV. Experimental results of the beam optics agreed well with the simulation by assuming that the equivalent ion mass is 2.38. Ion beam of 60keV/100mA H+, which corresponds to ion beam of 100keV/220mA D+, was obtained with optimum perveance (minimum divergence). This result indicates that the current requirement for the IFMIF ion source would be satisfied with this ion source. (author)

  5. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  6. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    Science.gov (United States)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  7. The H.E.S.S. Galactic plane survey

    Science.gov (United States)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carrigan, S.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Malyshev, D.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible

  8. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  9. Modal evaluation of the anthropogenic night sky brightness at arbitrary distances from a light source

    International Nuclear Information System (INIS)

    Bará, Salvador; Ribas, Salvador J; Kocifaj, Miroslav

    2015-01-01

    The artificial emissions of light contribute to a high extent to the observed brightness of the night sky in many places of the world. Determining the all-sky radiance of anthropogenic origin requires solving the radiative transfer equation for ground-level light sources, generally resorting to a double-scattering approximation in order to account for the observed radiance patterns with a reasonable degree of accuracy. Since the all-sky radiance distribution produced by an elementary light source depends on the distance to the observer in a way that is not immediately obvious, the contributions of sources located at different distances have to be computed on an individual basis, solving for each one the corresponding scattering integrals. In this paper we show that these calculations may be significantly alleviated by using a modal approach, whereby the hemispheric night-sky radiance is expanded in terms of a convenient basis of two-dimensional (2D) orthogonal functions. Since the modal coefficients of this expansion do vary smoothly with the distance to the observer, the all-sky brightness distributions produced by light sources located at arbitrary intermediate distances can be efficiently estimated by interpolation, provided that the coefficients at a discrete set of distances are accurately determined beforehand. (paper)

  10. Search for the sources of the solar wind in the 9.1 cm brightness temperature

    International Nuclear Information System (INIS)

    George, R.G.

    1975-01-01

    The sources of solar wind streams have been the object of intensive research for many years, but the various ideas of where and how streams originate on the sun are still incomplete and contradictory. The present study is an attempt to find the solar wind sources by mathematically approximating the 9.1 cm brightness temperature which would be expected at the foot of spacecraft-measured solar wind streams and by then comparing it with actual radio brightness temperature measurements. Several significant results were found from an analysis of the correlation results. Most plasma emanating from the sun was found to come from high solar latitudes and to deviate significantly from the normally expected east-west path in the low corona. Magnetic channelng causes correlation studies to fail when the sun's magnetic configuration is unstable. The travel time of the plasma from the sun's 9.1 cm emission level to the earth is often more than a month

  11. Model-independent requirements to the source of positrons in the galactic centre

    International Nuclear Information System (INIS)

    Aharonyan, F.A.

    1986-01-01

    The main requirements, following from the observational data in a wide range of electromagnetic waves, to positron source in the galactic centre are formulated. The most probable mechanism providing an efficiency of positron production of 10% is the pair production at photon-photon collisions. This mechanism can be realized a) in a thermal e + e - pair-dominated weak-relativistic plasma and b) at the development of a nonthermal electromagnetic cascade initiated by relativistic particles in the field of X-rays. Gamma-astronomical observations in the region of E γ ≥ 10 11 eV can be crucial in the choice of the model

  12. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    International Nuclear Information System (INIS)

    Edelson, R.; Malkan, M.

    2012-01-01

    We have developed the ''S IX '' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S IX 95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S IX 2 , permitting construction of AGN samples in any sufficiently large region of sky.

  13. A bright single-photon source based on a photonic trumpet

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël

    Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application to the r......Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application...... to the realization of bright sources of quantum light and, reversibly, provide an efficient interface between propagating photons and the QD. For a wire diameter ∼ λ/n (λ is the operation wavelength), the fraction of QD SE coupled to the fundamental guided mode exceeds 90%. The collection of the photons can...... be brought close to unity with a proper engineering of the wire ends. In particular, a tapering of the top wire end is necessary to achieve a directive far-field emission pattern [1]. Recently, we have realized a single-photon source featuring a needle-like taper. The source efficiency, though record...

  14. A study of faint radio sources near the North Galactic Pole

    International Nuclear Information System (INIS)

    Benn, C.R.

    1981-09-01

    A large amount of observational data has been obtained on faint radio sources in a small area of sky near the North Galactic Pole (the 5C 12 area). This provides a new perspective (3 decades in flux density from the 3CR catalogue) on the physical properties and cosmological evolution of extragalactic radio sources. Chapter 1 introduces the problem and concludes that faint-object cosmology is best served by intensive investigation of sources in a small area of sky. An optimum area is chosen, at right ascension 12sup(h) 58sup(m) 43sup(s) and declination 35 0 14' 00'' (1950.0). Chapter 2 describes the 5C12 radio survey (complete to 9mJy apparent flux density at 408MHz) conducted with the One Mile Telescope at Cambridge. Chapter 4 describes a 4.85GHz survey to 20mJy of the area, conducted at Effelsberg. In chapter 5, a program of optical identification for the sources is described, using deep (msub(g) = 22.5, msub(y) = 20.7) Schmidt plates taken at Hale Observatories. A statistical algorithm is developed to cope with the problems of optical confusion due to radio positional errors. Chapter 6 draws on data from the previous 4, and presents results concerning radio source counts, spectral index distributions, optical identifications and clustering. (author)

  15. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    Science.gov (United States)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  16. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    International Nuclear Information System (INIS)

    Puehlhofer, Gerd

    2009-01-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula.Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population.Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  17. Hard X-ray balloon observations of compact galactic and extragalactic X-ray sources

    International Nuclear Information System (INIS)

    Staubert, R.; Kendziorra, E.; Pietsch, W.; Proctor, R.J.; Reppin, C.; Steinle, H.; Truemper, J.; Voges, W.

    1981-01-01

    A balloon program in hard X-ray astronomy (20-200 keV) is jointly pursued by the Astronomisches Institut der Universitaet Tuebingen (AIT) and the Max Planck-Institut fuer Extraterrestrische Physik in Garching (MPE). Since 1973 nine succussful balloon flights have been performed from Texas and Australia. Here results on Centaurus A and on several galactic binary X-ray sources are summarized. In particular the high energy photon spectrum of Hercules X-1 and the evidence for the cyclotron line feature which was discovered by us in 1976 is reviewed. (orig.)

  18. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  19. TESTING THE GLOBAL STAR FORMATION RELATION: AN HCO+ (3-2) MAPPING STUDY OF RED MSX SOURCES IN THE BOLOCAM GALACTIC PLANE SURVEY

    International Nuclear Information System (INIS)

    Schenck, David E.; Shirley, Yancy L.; Reiter, Megan; Juneau, Stephanie

    2011-01-01

    We present an analysis of the relation between the star formation rate (SFR) and mass of dense gas in Galactic clumps and nearby galaxies. Using the bolometric luminosity as a measure of SFR and the molecular line luminosity of HCO + (3-2) as a measure of dense gas mass, we find that the relation between SFR and M dense is approximately linear. This is similar to published results derived using HCN (1-0) as a dense gas tracer. HCO + (3-2) and HCN (1-0) have similar conditions for excitation. Our work includes 16 Galactic clumps that are in both the Bolocam Galactic Plane Survey and the Red MSX Source Survey, 27 water maser sources from the literature, and the aforementioned HCN (1-0) data. Our results agree qualitatively with predictions of recent theoretical models which state that the nature of the relation should depend on how the critical density of the tracer compares with the mean density of the gas.

  20. Galactic structure and gamma radiation

    International Nuclear Information System (INIS)

    Casse, Michel; Cesarsky, Catherine; Paul Jacques

    1977-01-01

    A model of spiral structure of the Galaxy is outlined from radiosynchrotron and gamma observations. The most interesting observations in the galactic context, obtained by the SAS II American satellite are concerned with the distribution of the γ photoemission at energies higher than 10 8 eV, along the galactic equator. The model proposed is in quantitative agreement with the present ideas on the spiral structure of the Galaxy, the galactic magnetic field, and the confinement of cosmic rays by the magnetic field and of the magnetic field by matter. Following the American era, the European COS-B satellite opens the European phase towards an identification of the discrete gamma radiation sources [fr

  1. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    International Nuclear Information System (INIS)

    Rupke, David S. N.; Veilleux, Sylvain

    2013-01-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z –1 , and the highest velocities (2000-3000 km s –1 ) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  2. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    Science.gov (United States)

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. CO Spectral Line Energy Distributions in Galactic Sources: Empirical Interpretation of Extragalactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Bergin, E. A. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Goicoechea, J. R.; Cernicharo, J. [Grupo de Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (CSIC) E-28049 Madrid (Spain); Gerin, M.; Gusdorf, A. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, F-75005, Paris (France); Lis, D. C. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014, Paris (France); Schilke, P., E-mail: nindriolo@stsci.edu [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2017-02-10

    The relative populations in rotational transitions of CO can be useful for inferring gas conditions and excitation mechanisms at work in the interstellar medium. We present CO emission lines from rotational transitions observed with Herschel /HIFI in the star-forming cores Orion S, Orion KL, Sgr B2(M), and W49N. Integrated line fluxes from these observations are combined with those from Herschel /PACS observations of the same sources to construct CO spectral line energy distributions (SLEDs) from 5≤ J{sub u} ≤ 48. These CO SLEDs are compared to those reported in other galaxies, with the intention of empirically determining which mechanisms dominate excitation in such systems. We find that CO SLEDs in Galactic star-forming cores cannot be used to reproduce those observed in other galaxies, although the discrepancies arise primarily as a result of beam filling factors. The much larger regions sampled by the Herschel beams at distances of several megaparsecs contain significant amounts of cooler gas, which dominate the extragalactic CO SLEDs, in contrast to observations of Galactic star-forming regions, which are focused specifically on cores containing primarily hot molecular gas.

  4. Prospects for identifying the sources of the Galactic cosmic rays with IceCube

    International Nuclear Information System (INIS)

    Halzen, Francis; Kappes, Alexander; O Murchadha, Aongus

    2008-01-01

    We quantitatively address whether IceCube, a kilometer-scale neutrino detector under construction at the South Pole, can observe neutrinos pointing back at the accelerators of the Galactic cosmic rays. The photon flux from candidate sources identified by the Milagro detector in a survey of the TeV sky is consistent with the flux expected from a typical cosmic-ray generating supernova remnant interacting with the interstellar medium. We show here that IceCube can provide incontrovertible evidence of cosmic-ray acceleration in these sources by detecting neutrinos. We find that the signal is optimally identified by specializing to events with energies above 30 TeV where the atmospheric neutrino background is low. We conclude that evidence for a correlation between the Milagro and IceCube sky maps should be conclusive after several years.

  5. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris

    2015-01-01

    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness but a...

  6. Hunting for treasures among the Fermi unassociated sources: A multiwavelength approach

    International Nuclear Information System (INIS)

    Acero, F.; Ojha, R.; Donato, D.; Ferrara, E.; Stevens, J.; Edwards, P. G.; Blanchard, J.; Lovell, J. E. J.; Thompson, D. J.

    2013-01-01

    The Fermi Gamma-Ray Space Telescope has been detecting a wealth of sources where the multiwavelength counterpart is either inconclusive or missing altogether. We present a combination of factors that can be used to identify multiwavelength counterparts to these Fermi unassociated sources. This approach was used to select and investigate seven bright, high-latitude unassociated sources with radio, UV, X-ray, and γ-ray observations. As a result, four of these sources are candidates to be active galactic nuclei, and one to be a pulsar, while two do not fit easily into these known categories of sources. The latter pair of extraordinary sources might reveal a new category subclass or a new type of γ-ray emitter. These results altogether demonstrate the power of a multiwavelength approach to illuminate the nature of unassociated Fermi sources.

  7. GASS: THE PARKES GALACTIC ALL-SKY SURVEY. I. SURVEY DESCRIPTION, GOALS, AND INITIAL DATA RELEASE

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Calabretta, M. R.; Ford, H. Alyson; Newton-McGee, K.

    2009-01-01

    The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (H I) emission in the Southern sky covering declinations δ ≤ 1 0 using the Parkes Radio Telescope. The survey covers 2π steradians with an effective angular resolution of ∼16', at a velocity resolution of 1.0 km s -1 , and with an rms brightness temperature noise of 57 mK. GASS is the most sensitive, highest angular resolution survey of Galactic H I emission ever made in the Southern sky. In this paper, we outline the survey goals, describe the observations and data analysis, and present the first-stage data release. The data product is a single cube at full resolution, not corrected for stray radiation. Spectra from the survey and other data products are publicly available online.

  8. Diffuse γ-ray emission from galactic pulsars

    International Nuclear Information System (INIS)

    Calore, F.; Di Mauro, M.; Donato, F.

    2014-01-01

    Millisecond pulsars (MSPs) are old fast-spinning neutron stars that represent the second most abundant source population discovered by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). As guaranteed γ-ray emitters, they might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT (i.e., the Isotropic Diffuse γ-Ray Background (IDGRB)), which is believed to arise from the superposition of several components of galactic and extragalactic origin. Additionally, γ-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. In this manuscript we aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. To this end, we model the MSPs' spatial distribution in the Galaxy and the γ-ray emission parameters by considering observational constraints coming from the Australia Telescope National Facility pulsar catalog and the Second Fermi-LAT Catalog of γ-ray pulsars. By simulating a large number of MSP populations through a Monte Carlo simulation, we compute the average diffuse emission and the anisotropy 1σ upper limit. We find that the emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10° in latitude. The 1σ upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30°. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude γ-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes (e.g., blazars, misaligned active galactic nuclei, or star-forming galaxies). Nevertheless, because MSPs are more concentrated toward the

  9. Magnetic braking in galactic flows

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1982-01-01

    The nuclear fireworks of active galaxies are believed to derive their power from the kinetic energy of gas falling onto a massive central objects; mass shed from evolving galactic stars is an obvious source of fuel for this process. But this ejected material shares the galactic rotation, and a centrifugal barrier will prevent it from reaching the nucleus, if its angular momentum is not removed. This paper shows that, if the large-scale galactic magnetic field has a strong enough radial component, magnetic torques can act to spin down the infalling matter. Rotation of the interstellar gas induces a toroidal magnetic field, and Maxwell stresses remove angular momentum from the flow; gas can then fall inward to the galactic center. In this way, the monster in the nucleus can be fed on gas from a galaxy's own stars. The magnetic fields in M87 and NGC 1275, giant elliptical galaxies which are accreting from an intracluster medium, appear to be strong enough to allow magnetic braking

  10. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  11. THE BOLOCAM GALACTIC PLANE SURVEY. IX. DATA RELEASE 2 AND OUTER GALAXY EXTENSION

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, Adam; Glenn, Jason; Ellsworth-Bowers, Timothy P.; Battersby, Cara; Bally, John; Stringfellow, Guy [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, AB T6G 2E1 (Canada); Dunham, Miranda [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Merello, Manuel; Evans II, Neal J. [Department of Astronomy, The University of Texas, 2515 Speedway, Stop C1400 Austin, TX 78712-1205 (United States); Shirley, Yancy [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, James, E-mail: Adam.Ginsburg@colorado.edu [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2013-10-01

    We present a re-reduction and expansion of the Bolocam Galactic Plane Survey (BGPS), first presented by Aguirre et al. and Rosolowsky et al. The BGPS is a 1.1 mm survey of dust emission in the Northern galactic plane, covering longitudes –10° < l < 90° and latitudes |b| < 0.°5 with a typical 1σ rms sensitivity of 30-100 mJy in a ∼33'' beam. Version 2 of the survey includes an additional ∼20 deg{sup 2} of coverage in the third and fourth quadrants and ∼2 deg{sup 2} in the first quadrant. The new data release has improved angular recovery, with complete recovery out to ∼80'' and partial recovery to ∼300'', and reduced negative bowls around bright sources resulting from the atmospheric subtraction process. We resolve the factor of 1.5 flux calibration offset between the v1.0 data release and other data sets and determine that there is no offset between v2.0 and other data sets. The v2.0 pointing accuracy is tested against other surveys and is demonstrated to be accurate and an improvement over v1.0. We present simulations and tests of the pipeline and its properties, including measurements of the pipeline's angular transfer function. The Bolocat cataloging tool was used to extract a new catalog, which includes 8594 sources, with 591 in the expanded regions. We have demonstrated that the Bolocat 40'' and 80'' apertures are accurate even in the presence of strong extended background emission. The number of sources is lower than in v1.0, but the amount of flux and area included in identified sources is larger.

  12. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  13. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  14. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Davenport, James R. A.; Ivezić, Željko; Burnett, T. H.; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-01-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ∼30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales σ-circumflex. Imposing cuts on minimum τ and σ-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E ≥ 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ∼3 years in the rest frame of the jet, in contrast with the ∼320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  15. Atmospheric extinction coefficients and night sky brightness at the Xuyi Observation Station

    International Nuclear Information System (INIS)

    Zhang Hui-Hua; Liu Xiao-Wei; Zhang Hua-Wei; Xiang Mao-Sheng; Yuan Hai-Bo; Zhao Hai-Bin; Yao Jin-Sheng

    2013-01-01

    We present measurements of the optical broadband atmospheric extinction coefficients and the night sky brightness at the Xuyi Observation Station of Purple Mountain Observatory. The measurements are based on CCD imaging data taken in the Sloan Digital Sky Survey's g, r and i bands with the Xuyi 1.04/1.20 m Schmidt Telescope for the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC), the photometric part of the Digital Sky Survey of the Galactic Anti-center (DSS-GAC). The data were collected during more than 140 winter nights from 2009 to 2011. We find that the atmospheric extinction coefficients for the g, r and i bands are 0.69, 0.55 and 0.38 mag/airmass, respectively, based on observations taken on several photometric nights. The night sky brightness determined from images with good quality has median values of 21.7, 20.8 and 20.0 mag arcsec −2 and reaches 22.1, 21.2 and 20.4 mag arcsec −2 under the best observing conditions for the g, r and i bands, respectively. The relatively large extinction coefficients compared with other good astronomical observing sites are mainly due to the relatively low elevation (i.e. 180 m) and high humidity at the station.

  16. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  17. Positron Transport and Annihilation in the Galactic Bulge

    Directory of Open Access Journals (Sweden)

    Fiona Helen Panther

    2018-03-01

    Full Text Available The annihilation of positrons in the Milky Way Galaxy has been observed for ∼50 years; however, the production sites of these positrons remains hard to identify. The observed morphology of positron annihilation gamma-rays provides information on the annihilation sites of these Galactic positrons. It is understood that the positrons responsible for the annihilation signal originate at MeV energies. The majority of sources of MeV positrons occupy the star-forming thin disk of the Milky Way. If positrons propagate far from their sources, we must develop accurate models of positron propagation through all interstellar medium (ISM phases in order to reveal the currently uncertain origin of these Galactic positrons. On the other hand, if positrons annihilate close to their sources, an alternative source of MeV positrons with a distribution that matches the annihilation morphology must be identified. In this work, I discuss the various models that have been developed to understand the origin of the 511 keV line from the direction of the Galactic bulge, and the propagation of positrons in the ISM.

  18. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    Science.gov (United States)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  19. The INTEGRAL Galactic bulge monitoring program: the first 1.5 years

    NARCIS (Netherlands)

    Kuulkers, E.; Shaw, S.E.; Paizis, A.; Chenevez, J.; Brandt, S.; Courvoisier, T.J.L.; Domingo, A.; Ebisawa, K.; Kretschmar, P.; Markwardt, C.B.; Mowlavi, N.; Oosterbroek, T.; Orr, A.; Rísquez, D.; Sanchez-Fernandez, C.; Wijnands, R.

    2007-01-01

    Aims.The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in the Galactic bulge region regularly and frequently, i.e., about every three days, with the instruments onboard INTEGRAL. Thanks to the large field of

  20. TH-CD-207B-01: BEST IN PHYSICS (IMAGING): Development of High Brightness Multiple-Pixel X-Ray Source Using Oxide Coated Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Kandlakunta, P; Pham, R; Zhang, T [Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source control and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.

  1. TH-CD-207B-01: BEST IN PHYSICS (IMAGING): Development of High Brightness Multiple-Pixel X-Ray Source Using Oxide Coated Cathodes

    International Nuclear Information System (INIS)

    Kandlakunta, P; Pham, R; Zhang, T

    2016-01-01

    Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source control and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm 2 . The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm 2 . Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.

  2. X-Ray Processing of ChaMPlane Fields: Methods and Initial Results for Selected Anti-Galactic Center Fields

    Science.gov (United States)

    Hong, JaeSub; van den Berg, Maureen; Schlegel, Eric M.; Grindlay, Jonathan E.; Koenig, Xavier; Laycock, Silas; Zhao, Ping

    2005-12-01

    We describe the X-ray analysis procedure of the ongoing Chandra Multiwavelength Plane (ChaMPlane) Survey and report the initial results from the analysis of 15 selected anti-Galactic center observations (90degusing custom-developed analysis tools appropriate for Galactic sources but also of general use: optimum photometry in crowded fields using advanced techniques for overlapping sources, rigorous astrometry and 95% error circles for combining X-ray images or matching to optical/IR images, and application of quantile analysis for spectral analysis of faint sources. We apply these techniques to 15 anti-Galactic center observations (of 14 distinct fields), in which we have detected 921 X-ray point sources. We present logN-logS distributions and quantile analysis to show that in the hard band (2-8 keV) active galactic nuclei dominate the sources. Complete analysis of all ChaMPlane anti-Galactic center fields will be given in a subsequent paper, followed by papers on sources in the Galactic center and bulge regions.

  3. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  4. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    Science.gov (United States)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  5. NuSTAR Observations of the Compton-Thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    DEFF Research Database (Denmark)

    Annuar, A.; Gandhi, P.; Alexander, D. M.

    2015-01-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband s...

  6. Detection of a Very Bright Source Close to the LMC Supernova SN 1987A: Erratum

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1988-01-01

    In the Letter "Detection of a Very Bright Source Close to the LMC Supernova SN 1987A" by P. Nisenson, C. Papaliolios, M. Karovska, and R. Noyes (1987 Ap. J. [Letters], 320, L15), two of the figure labels for Figure 1 were inadvertently transposed in the production process. A corrected version of the figure appears as Plate L4. The Journal regrets the error.

  7. A 24 μm point source catalog of the galactic plane from Spitzer/MIPSGAL

    Energy Technology Data Exchange (ETDEWEB)

    Gutermuth, Robert A.; Heyer, Mark [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-02-01

    In this contribution, we describe the applied methods to construct a 24 μm based point source catalog derived from the image data of the MIPSGAL 24 μm Galactic Plane Survey and the corresponding data products. The high quality catalog product contains 933,818 sources, with a total of 1,353,228 in the full archive catalog. The source tables include positional and photometric information derived from the 24 μm images, source quality and confusion flags, and counterpart photometry from matched 2MASS, GLIMPSE, and WISE point sources. Completeness decay data cubes are constructed at 1′ angular resolution that describe the varying background levels over the MIPSGAL field and the ability to extract sources of a given magnitude from this background. The completeness decay cubes are included in the set of data products. We present the results of our efforts to verify the astrometric and photometric calibration of the catalog, and present several analyses of minor anomalies in these measurements to justify adopted mitigation strategies.

  8. Investigation of some galactic and extragalactic gravitational phenomena

    Directory of Open Access Journals (Sweden)

    Jovanović P.

    2012-01-01

    Full Text Available Here we present a short overview of the most important results of our investigations of the following galactic and extragalactic gravitational phenomena: supermassive black holes in centers of galaxies and quasars, supermassive black hole binaries, gravitational lenses and dark matter. For the purpose of these investigations, we developed a model of a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, a model of a bright spot in an accretion disk and three different models of gravitational microlenses. All these models enabled us to study physics, spacetime geometry and effects of strong gravity in the vicinity of supermassive black holes, variability of some active galaxies and quasars, different effects in the lensed quasars with multiple images, as well as the dark matter fraction in the Universe. We also found an observational evidence for the first spectroscopically resolved sub-parsec orbit of a supermassive black hole binary system in the core of active galaxy NGC 4151. Besides, we studied applications of one potential alternative to dark matter in the form of a modified theory of gravity on Galactic scales, to explain the recently observed orbital precession of some S-stars, which are orbiting around a massive black hole at the Galactic center. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe

  9. Galactic Astronomy in the Ultraviolet

    Science.gov (United States)

    Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.

    2017-12-01

    We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.

  10. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  11. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  12. THE BOLOCAM GALACTIC PLANE SURVEY. II. CATALOG OF THE IMAGE DATA

    International Nuclear Information System (INIS)

    Rosolowsky, Erik; Dunham, Miranda K.; Evans, Neal J.; Harvey, Paul; Ginsburg, Adam; Bally, John; Battersby, Cara; Glenn, Jason; Stringfellow, Guy S.; Bradley, E. Todd; Aguirre, James; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Walawender, Josh; Williams, Jonathan P.

    2010-01-01

    We present a catalog of 8358 sources extracted from images produced by the Bolocam Galactic Plane Survey (BGPS). The BGPS is a survey of the millimeter dust continuum emission from the northern Galactic plane. The catalog sources are extracted using a custom algorithm, Bolocat, which was designed specifically to identify and characterize objects in the large-area maps generated from the Bolocam instrument. The catalog products are designed to facilitate follow-up observations of these relatively unstudied objects. The catalog is 98% complete from 0.4 Jy to 60 Jy over all object sizes for which the survey is sensitive ( -2.4±0.1 and that the mean Galactic latitude for sources is significantly below the midplane: (b) = (-0. 0 095 ± 0. 0 001).

  13. X-ray spectra and time variability of active galactic nuclei

    International Nuclear Information System (INIS)

    Mushotzky, R.F.

    1984-02-01

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales

  14. High brightness--multiple beamlets source for patterned X-ray production

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Ji, Qing [Albany, CA; Barletta, William A [Oakland, CA; Jiang, Ximan [El Cerrito, CA; Ji, Lili [Albany, CA

    2009-10-27

    Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

  15. Effects of thermal plasma on self-absorbed synchrotron sources in active galactic nuclei

    International Nuclear Information System (INIS)

    De Kool, M.; Begelman, M.C.

    1989-01-01

    The observable effects of a thermal background plasma in a self-absorbed synchrotron source are reviewed, in the context of a model for the central engine of an active galactic nucleus (AGN). Considering the effects of free-free absorption and emission, Thomson and Compton scattering, and spatial stratification, it is found that the observations set an upper limit on the thermal electron scattering optical depth in the central synchrotron-emitting region of an AGN. The upper limit, tau(max) about 1, results mainly from the apparent absence of induced Compton scattering and inverse thermal Comptonization effects. The low value of tau(max) poses some problems for nonthermal models of the AGN continuum that can be partly resolved by assuming a thin disk or layer-like geometry for the source, with (h/R) less than about 0.01. A likely site for the synchrotron-producing region seems to be the surface of an accretion disk or torus. 20 refs

  16. Observation of galactic gamma radiation

    International Nuclear Information System (INIS)

    Paul, J.A.

    1982-09-01

    A complete and deep survey of the galactic high-energy gamma radiation is now available, thanks to the gamma-ray telescopes on board of the SAS-2 and COS-B spacecrafts. A comparison of the COS-B gamma-ray survey with a fully sampled CO survey together with an Hsub(I) survey is used to show that a simple model, in which uniformly distributed cosmic rays interact with the interstellar gas, can account for almost all the gamma-ray emission observed in the first galactic quadrant. At medium galactic latitudes, it is shown that a relationship exists between the gamma radiation and the interstellar absorption derived from galaxy counts. Therefore gamma rays from the local galactic environment can be used as a valuable probe of the content and structure of the local interstellar medium. The large scale features of the local interstellar gas are revealed, in particular wide concentrations of nearby molecular hydrogen. On a smaller scale, the detection of numerous localized gamma-ray sources focuses the attention on some particular phases of clusters of young and massive stars where diffuse processes of gamma-ray emission may also be at work

  17. Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses

    DEFF Research Database (Denmark)

    Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui

    2013-01-01

    We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good...... efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual......-output synchronized ultrafast lasers....

  18. Brightness of synchrotron radiation from wigglers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2014-12-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called 'depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. In the geometrical optics limit computations can be performed analytically. Within this limit, we restrict ourselves to the case of the beam size-dominated regime, which is typical for synchrotron radiation facilities in the X-ray wavelength range. We give a direct demonstration of the fact that the apparent horizontal source size is broadened in proportion to the beamline opening angle and to the length of the wiggler. While this effect is well-understood, a direct proof appears not to have been given elsewhere. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in literature.

  19. Cosmic gamma-ray bursts from BATSE - Another great debate

    Science.gov (United States)

    Hartmann, Dieter H.; The, Lih-Sin; Clayton, Donald D.; Schnepf, Neil G.; Linder, Eric V.

    1992-01-01

    The BATSE detectors aboard Compton Observatory record about one cosmic gamma-ray burst (GRB) per day. Preliminary data analysis shows a highly isotropic sky map and a nonuniform brightness distribution. Anisotropies expected from a Galactic neutron star population, the most frequently considered source model, did not emerge from the data. Taken at face value, the data seem to suggest a heliocentric solution of the GRB puzzle. The observed isotropy can be achieved if sources are either very near or extragalactic. Pop I neutron stars in the disk do not simultaneously fit sky and brightness distributions. A possibility are sources in an extended Galactic halo with scale length large enough to avoid strong anisotropies due to the solar offset from the Galactic center. If GRBs are located in an extended halo we ask whether the neutron star paradigm can survive. We show that the recently discovered high velocity radio pulsars may provide a natural source population for GRBs. If these pulsars formed in the halo, as suggested by the radio data, the possibility arises that GRBs and high velocity pulsars are two related phenomena that provide observational evidence of the dark Galactic corona. We also discuss cosmological redshift constraints that follow from the observed brightness distribution.

  20. Development and Utilization of Bright Tabletop Sources of Coherent Soft X-Ray Radiation

    International Nuclear Information System (INIS)

    Rocca, Jorge J.

    2005-01-01

    This project investigated aspects of the development and utilization of compact XUV sources based on fast capillary discharges and high order harmonic up conversion. These sources are very compact, yet can generate soft x-ray radiation with peak spectral brightness several orders of magnitude larger than a synchrotron beam lines. The work has included the characterization of some of the important parameters that enable the use of these sources in unique applications, such as the degree of spatial coherence and the wavefront characteristics that affect their focusing capabilities. In relation to source development, they have recently completed preliminary work towards exploring the generation of high harmonics in a pre-ionized medium created by a capillary discharge. Since ions are more difficult to ionize than neutral atoms, the use of pre-ionized nonlinear media may lead to the generation of coherent light at > 1 KeV photon energy. Recent application results include the first study of the damage threshold and damage mechanism of XUV mirrors exposed to intense focalized 46.9 nm laser radiation, and the study of the ablation of polymers with soft x-ray laser light

  1. Linking optical and infrared observations with gravitational wave sources through transient variability

    International Nuclear Information System (INIS)

    Stubbs, C W

    2008-01-01

    Optical and infrared observations have thus far detected more celestial cataclysms than have been seen in gravity waves (GW). This argues that we should search for gravity wave signatures that correspond to transient variables seen at optical wavelengths, at precisely known positions. There is an unknown time delay between the optical and gravitational transient, but knowing the source location precisely specifies the corresponding time delays across the gravitational antenna network as a function of the GW-to-optical arrival time difference. Optical searches should detect virtually all supernovae that are plausible gravitational radiation sources. The transient optical signature expected from merging compact objects is not as well understood, but there are good reasons to expect detectable transient optical/IR emission from most of these sources as well. The next generation of deep wide-field surveys (for example PanSTARRS and LSST) will be sensitive to subtle optical variability, but we need to fill the 'blind spots' that exist in the galactic plane, and for optically bright transient sources. In particular, a galactic plane variability survey at λ∼ 2 μm seems worthwhile. Science would benefit from closer coordination between the various optical survey projects and the gravity wave community

  2. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S R{sub V} {approx} 2.5 EXTINCTION CURVE

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, David M.; Gould, Andrew; Johnson, Jennifer A.; Skowron, Jan [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Fouque, Pascal [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Gonzalez, Oscar A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Udalski, Andrzej; Szymanski, Michal K.; Kubiak, Marcin; Pietrzynski, Grzegorz; Soszynski, Igor; Ulaczyk, Krzysztof; Wyrzykowski, Lukasz; Poleski, Radoslaw, E-mail: nataf@astronomy.ohio-state.edu [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2013-06-01

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - K{sub s} ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation A{sub I} = 0.7465 Multiplication-Sign E(V - I) + 1.3700 Multiplication-Sign E(J - K{sub s} ), or, equivalently, A{sub I} = 1.217 Multiplication-Sign E(V - I)(1 + 1.126 Multiplication-Sign (E(J - K{sub s} )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an R{sub V} Almost-Equal-To 2.5 extinction curve with a dispersion {sigma}{sub R{sub V}}{approx}0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M{sub I,RC},{sigma}{sub I,RC,0}, (V-I){sub RC,0},{sigma}{sub (V-I){sub R{sub C}}}, (J-K{sub s}){sub RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt {alpha} Almost-Equal-To 40 Degree-Sign between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} Almost-Equal-To 25 Degree-Sign . The number of RC stars suggests a total stellar mass for the Galactic bulge of {approx}2.3 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a canonical Salpeter initial mass function (IMF), or {approx}1.6 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a bottom-light Zoccali IMF.

  3. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki

    2013-12-01

    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  4. XMM-Newton Survey of Local O VII Absorption Lines in the Spectra of Galactic X-Ray Sources

    Science.gov (United States)

    Luo, Yang; Fang, Taotao; Ma, Renyi

    2018-04-01

    The detection of highly ionized metal absorption lines in the X-ray spectra of the Galactic X-ray binaries (XRBs) implies the distribution of hot gas along the sightline toward the background sources. However, the origin of this hot gas is still unclear: it can arise in the hot interstellar medium (ISM), or is intrinsic to the XRBs. In this paper, we present an XMM-Newton survey of the O VII absorption lines in the spectra of Galactic XRBs. A total of 33 XRBs were selected, with 29 low-mass XRBs and 4 high-mass XRBs. At a more than 3σ threshold, O VII absorption line was detected in 16 targets, among which 4 were newly discovered in this work. The average line equivalent width is centered around ∼20 mÅ. Additionally, we do not find strong correlations between the O VII EWs and the Galactic neutral absorption N H, the Galactic coordinates, or the distance of background targets. Such non-correlation may suggest contamination of the circumstellar material, or a lack of constraints on the line Doppler-b parameter. We also find that regardless of the direction of the XRBs, the O VII absorption lines are always detected when the flux of the background XRBs reaches a certain level, suggesting a uniform distribution of this hot gas. We estimate a ratio of 0.004–0.4 between the hot and neutral phases of the ISM. This is the second paper in the series following Fang et al. (2015), in which we focused on the local O VII absorption lines detected in the background AGN spectra. Detailed modeling of the hot ISM distribution will be investigated in a future paper.

  5. Bright PanSTARRS Nuclear Transients – what are they?

    Directory of Open Access Journals (Sweden)

    Smartt S.

    2012-12-01

    Full Text Available We present an initial analysis of 49 bright transients occurring in the nuclei of galaxies with no previous known Active Galactic Nucleus (AGN. They have been discovered as part of the PanSTARRs 3π survey, and followed up with the Liverpool Telescope. Based on colours, light curve shape, and a small number with optical spectra, these transients seem to fall into three groups. Red/fast transients are nuclear supernovae of various types. Some bright nuclear transients are blue and decay on a timescale of a few months; these may be candidates for tidal disruption events. However most of the events we have found are blue and are either still rising or decaying slowly, on a timescale of years; the few spectra we have show AGN at z ∼ 1. We argue that these transients are background AGN microlensed by stars in foreground galaxies by a factor 10–100. Monitoring such events gives us very promising prospects for measuring the structure of AGN and so testing current theories.

  6. Study of X-ray and gamma ray sources observed by the SIGNE (Prognoz 6 Satellite) experiment in the regions of the galactic center and anticenter

    International Nuclear Information System (INIS)

    Violes, F.

    1981-12-01

    Characteristics of the SIGNE II MP 6 experiment are reported and procedures to obtain the fluxes detected from all the sources are described. We next present deconvolution method used to isolate the galactic center sources. In the last chapter we present and discuss the photon spectra of the sources observed by the SIGNE II MP 6 experiment [fr

  7. Development of a high brightness, high current SRF photo-electron source for ERL applications

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel [Helmholtz-Zentrum Berlin (Germany); Collaboration: bERLinPro Team

    2016-07-01

    Energy recovery linacs (ERL) offer the potential to combine major beam properties of the two main domains of particle accelerators: The low emittance of linear accelerators and the high average beam current of storage rings, while also allowing to compress to short bunches below the ps regime. This makes among other applications ERLs an ideal candidate for future light sources. The beam properties of the ERL are given by the performance of the injection section and hence of the beam source. Helmholtz-Zentrum Berlin is currently designing and building a high average current all superconducting CW driven ERL as a prototype to demonstrate low normalized beam emittance of 1 mm*mrad at 100 mA and short pulses of about 2 ps. In this contribution we discuss the development of this class of a high brightness, high current SRF photo-electron source and present recent commissioning results. Also, alternative approaches at other laboratories are shortly reviewed.

  8. Apoastron shift constraints on dark matter distribution at the Galactic Center

    International Nuclear Information System (INIS)

    Zakharov, A. F.; Nucita, A. A.; De Paolis, F.; Ingrosso, G.

    2007-01-01

    The existence of dark matter (DM) at scales of a few parsecs down to ≅10 -5 pc around the centers of galaxies and, in particular, in the Galactic Center region has been considered in the literature. Under the assumption that such a DM clump, principally constituted by nonbaryonic matter (like weakly interacting massive particles) does exist at the center of our galaxy, the study of the γ-ray emission from the Galactic Center region allows us to constrain both the mass and the size of this DM sphere. Further constraints on the DM distribution parameters may be derived by observations of bright infrared stars around the Galactic Center. Hall and Gondolo [J. Hall and P. Gondolo, Phys. Rev. D 74, 063511 (2006)] used estimates of the enclosed mass obtained in various ways and tabulated by Ghez et al. [A. M. Ghez et al., Astron. Nachr. 324, 527 (2003); A. M. Ghez et al., Astrophys. J. 620, 744 (2005)]. Moreover, if a DM cusp does exist around the Galactic Center it could modify the trajectories of stars moving around it in a sensible way depending on the DM mass distribution. Here, we discuss the constraints that can be obtained with the orbit analysis of stars (as S2 and S16) moving inside the DM concentration with the present and next generations of large telescopes. In particular, consideration of the S2 star apoastron shift may allow improving limits on the DM mass and size

  9. Recent findings about the galactic gamma-ray sky by MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Strzys, Marcel C. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The TeV sky currently consists of around 150 sources, about half of them situated within our galaxy. This group comprises various types of cosmic accelerators such as supernova remnants, pulsars, pulsar wind nebula, and binaries. From what we have observed in gamma rays so far, these sources can accelerate particles up to several hundred TeV. In this talk I will present recent results from the observation of galactic gamma-ray sources by MAGIC. This includes, among others, latest findings about the brightest, galactic gamma-ray source in the sky, the Crab nebula, results about one of the rare binary systems at TeV energies, insights into a not yet identified enigmatic source, and the discovery of the, so far, faintest PWN.

  10. Galactic structure

    International Nuclear Information System (INIS)

    1989-01-01

    The occurrence of hot, apparently normal, massive stars far from the galactic plane has been a major puzzle in an understanding of galactic structure and evolution. Such stars have been discovered and studied at the South African Astronomical Observatory (SAAO) over a number of years. During 1989 further evidence has been obtained indicating that these stars are normal, massive objects. Other studies of galactic structure conducted by the SAAO have included research on: the central bulge region of our galaxy; populations of M giants in the galaxy; a faint blue object survey; a survey of the galactic plane for distant Cepheid variables; interstellar reddening, and K-type dwarfs as tracers for the gravitational force perpendicular to the galactic plane. 1 fig

  11. Theoretical galactic cosmic ray electron spectrum obtained for sources of varying geometry; Spectre theorique des electrons du rayonnement cosmique dans la galaxie obtenu pour des sources a geometrie variable

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    Jokipii and Meyer have recently obtained an electron density energy spectrum of the cosmic rays, originating in the Galaxy, using integral solutions of the steady state transfer equations, by considering a circular cylindric galactic disc as source and approximating the resulting fourth order integral. In this report, we present general results, obtained by using an arbitrary circular cylindric source, without restricting ourselves to the galactic disc. The integrals are treated exactly. The conclusions of Jokipii and Meyer form special cases of these results. We also obtain an exponential energy variation which, at the moment, is not observed experimentally. The second part of this work deals with more complicated, but perhaps more realistic models of elliptic cylindric and ellipsoidal galactic disc sources. One may also note that a very large source concentrated in a very small region gives a spectrum not unlike that for a small source distributed throughout a large volume. Finally, it may be remarked that the model adopted is much less restrictive than the artificial conception of 'leakage time' followed by other workers. (author) [French] Jokipii et Meyer ont dernierement obtenu un spectre d'energie pour les electrons galactiques dans le rayonnement cosmique, en utilisant les solutions des equations de transfert, a l'etat stationnaire, ces dernieres etant sous forme d'integrales, en prenant une source completement diffusee dans le disque galactique, celui-ci etant hypothetiquement choisi comme circulaire et cylindrique et en faisant une approximation sur l'integrale du quatrieme degre. Dans ce rapport, nous presentons des resultats generaux obtenus en faisant appel a une source, diffusee dans un cylindre circulaire, arbitrairement choisi, c'est-a-dire sans nous restreindre au disque galactique comme source. Les integrales sont traitees d'une maniere exacte. Les conclusions de Jokipii et Meyer constituent des cas speciaux des resultats precedents. Nous obtenons

  12. THE ARECIBO METHANOL MASER GALACTIC PLANE SURVEY. IV. ACCURATE ASTROMETRY AND SOURCE MORPHOLOGIES

    International Nuclear Information System (INIS)

    Pandian, J. D.; Momjian, E.; Xu, Y.; Menten, K. M.; Goldsmith, P. F.

    2011-01-01

    We present accurate absolute astrometry of 6.7 GHz methanol masers detected in the Arecibo Methanol Maser Galactic Plane Survey using MERLIN and the Expanded Very Large Array (EVLA). We estimate the absolute astrometry to be accurate to better than 15 and 80 mas for the MERLIN and EVLA observations, respectively. We also derive the morphologies of the maser emission distributions for sources stronger than ∼1 Jy. The median spatial extent along the major axis of the regions showing maser emission is ∼775 AU. We find a majority of methanol maser morphologies to be complex with some sources previously determined to have regular morphologies in fact being embedded within larger structures. This suggests that some maser spots do not have a compact core, which leads to them being resolved in high angular resolution observations. This also casts doubt on interpretations of the origin of methanol maser emission solely based on source morphologies. We also investigate the association of methanol masers with mid-infrared emission and find very close correspondence between methanol masers and 24 μm point sources. This adds further credence to theoretical models that predict methanol masers to be pumped by warm dust emission and firmly reinforces the finding that Class II methanol masers are unambiguous tracers of embedded high-mass protostars.

  13. MIRIS observation of near-infrared diffuse Galactic light

    Science.gov (United States)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  14. Fossil imprint of a powerful flare at the galactic center along the Magellanic stream

    Energy Technology Data Exchange (ETDEWEB)

    Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Maloney, Philip R. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Sutherland, Ralph S. [Mount Stromlo Observatory, Australia National University, Woden, ACT 2611 (Australia); Madsen, G. J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-11-20

    The Fermi satellite discovery of the gamma-ray emitting bubbles extending 50° (10 kpc) from the Galactic center has revitalized earlier claims that our Galaxy has undergone an explosive episode in the recent past. We now explore a new constraint on such activity. The Magellanic Stream is a clumpy gaseous structure free of stars trailing behind the Magellanic Clouds, passing over the south Galactic pole (SGP) at a distance of at least 50-100 kpc from the Galactic center. Several groups have detected faint Hα emission along the Magellanic Stream (1.1 ± 0.3 × 10{sup –18} erg cm{sup –2} s{sup –1} arcsec{sup –2}) which is a factor of five too bright to have been produced by the Galactic stellar population. The brightest emission is confined to a cone with half angle θ{sub 1/2} ≈ 25° roughly centered on the SGP. Time-dependent models of Stream clouds exposed to a flare in ionizing photon flux show that the ionized gas must recombine and cool for a time interval T{sub o} = 0.6 – 2.9 Myr for the emitted Hα surface brightness to drop to the observed level. A nuclear starburst is ruled out by the low star formation rates across the inner Galaxy, and the non-existence of starburst ionization cones in external galaxies extending more than a few kiloparsecs. Sgr A{sup *} is a more likely candidate because it is two orders of magnitude more efficient at converting gas to UV radiation. The central black hole (M {sub •} ≈ 4 × 10{sup 6} M {sub ☉}) can supply the required ionizing luminosity with a fraction of the Eddington accretion rate (f{sub E} ∼ 0.03-0.3, depending on uncertain factors, e.g., Stream distance) typical of Seyfert galaxies. In support of nuclear activity, the Hα emission along the Stream has a polar angle dependence peaking close to the SGP. Moreover, it is now generally accepted that the Stream over the SGP must be farther than the Magellanic Clouds. At the lower halo gas densities, shocks become too ineffective and are unlikely to

  15. A Green Bank Telescope Survey of Large Galactic H II Regions

    Science.gov (United States)

    Anderson, L. D.; Armentrout, W. P.; Luisi, Matteo; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.

    2018-02-01

    As part of our ongoing H II Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly large Galactic H II regions in radio recombination line (RRL) emission. Our targets are located at a declination of δ > -45^\\circ , which corresponds to 266^\\circ > {\\ell }> -20^\\circ at b=0^\\circ . All sources were selected from the Wide-field Infrared Survey Explorer Catalog of Galactic H II Regions, and have infrared angular diameters ≥slant 260\\prime\\prime . The Galactic distribution of these “large” H II regions is similar to that of the previously known sample of Galactic H II regions. The large H II region RRL line width and peak line intensity distributions are skewed toward lower values, compared with that of previous HRDS surveys. We discover seven sources with extremely narrow RRLs 100 {pc}, making them some of the physically largest known H II regions in the Galaxy. This survey completes the HRDS H II region census in the Northern sky, where we have discovered 887 H II regions and more than doubled the size of the previously known census of Galactic H II regions.

  16. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  17. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  18. Galactic water vapor emission: further observations of variability.

    Science.gov (United States)

    Knowles, S H; Mayer, C H; Sullivan, W T; Cheung, A C

    1969-10-10

    Recent observations of the 1.35-centimeter line emission of water vapor from galactic sources show short-term variability in the spectra of several sources. Two additional sources, Cygnus 1 and NGC 6334N, have been observed, and the spectra of W49 and VY Canis Majoris were measured over a wider range of radial velocity.

  19. IS THERE AN UNACCOUNTED FOR EXCESS IN THE EXTRAGALACTIC COSMIC RADIO BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyan, Ravi [Raman Research Institute, CV Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Cowsik, Ramanath, E-mail: rsubrahm@rri.res.in, E-mail: cowsik@physics.wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University, Campus Box 1105, St. Louis, MO 63130 (United States)

    2013-10-10

    Analyses of the distribution of absolute brightness temperature over the radio sky have recently led to suggestions that there exists a substantial unexplained extragalactic radio background. Consequently, there have been numerous attempts to place constraints on plausible origins of this 'excess'. We suggest here that this expectation of a large extragalactic background, over and above that contributed by the sources observed in the surveys, is based on an extremely simple geometry adopted to model the Galactic emission and the procedure adopted in the estimation of the extragalactic contribution. In this paper, we derive the extragalactic radio background from wide-field radio images using a more realistic modeling of the Galactic emission and decompose the sky maps at 150, 408, and 1420 MHz into anisotropic Galactic and isotropic extragalactic components. The anisotropic Galactic component is assumed to arise from a highly flattened spheroid representing the thick disk, embedded in a spherical halo, both centered at the Galactic center, along with Galactic sources, filamentary structures, and Galactic loops and spurs. All components are constrained to be positive and the optimization scheme minimizes the sky area occupied by the complex filaments. We show that in contrast with simple modeling of Galactic emission as a plane parallel slab, the more realistic modeling yields estimates for the uniform extragalactic brightness that are consistent with expectations from known extragalactic radio source populations.

  20. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  1. Power spectrum analysis of polarized emission from the Canadian galactic plane survey

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, R. A.; Rosolowsky, E. W. [University of British Columbia Okanagan, 3333 University Way, Kelowna BC, V1V 1V7 (Canada); Kothes, R.; Landecker, T. L. [National Research Council Canada, Dominion Radio Astrophysical Observatory, Box 248, Penticton, BC, V2A 6J9 (Canada)

    2014-05-20

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg{sup 2}. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ ≈ 60 to ℓ ≈ 10{sup 4} and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.

  2. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    Science.gov (United States)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  3. THE 37 MONTH MAXI/GSC SOURCE CATALOG OF THE HIGH GALACTIC-LATITUDE SKY

    Energy Technology Data Exchange (ETDEWEB)

    Hiroi, Kazuo; Ueda, Yoshihiro; Hayashida, Masaaki; Shidatsu, Megumi; Sato, Ryosuke; Kawamuro, Taiki [Department of Astronomy, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Sugizaki, Mutsumi; Serino, Motoko; Matsuoka, Masaru; Mihara, Tatehiro [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nakahira, Satoshi; Tomida, Hiroshi; Ueno, Shiro [ISS Science Project Office, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kawai, Nobuyuki; Morii, Mikio [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Nakajima, Motoki [School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 101-8308 (Japan); Negoro, Hitoshi [Department of Physics, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Sakamoto, Takanori [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Tsuboi, Yohko [Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Tsunemi, Hiroshi, E-mail: hiroi@kusastro.kyoto-u.ac.jp [Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); and others

    2013-08-15

    We present a catalog of high Galactic-latitude (|b| > 10 Degree-Sign ) X-ray sources detected in the first 37 months of data of the Monitor of All-sky X-ray Image/Gas Slit Camera (MAXI/GSC). To achieve the best sensitivity, we develop a background model of the GSC that well reproduces the data based on the detailed on-board calibration. Source detection is performed through image fits with a Poisson likelihood algorithm. The catalog contains 500 objects detected with significances of s{sub D,4-10keV} {>=} 7 in the 4-10 keV band. The limiting sensitivity is Almost-Equal-To 7.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} ( Almost-Equal-To 0.6 mCrab) in the 4-10 keV band for 50% of the survey area, which is the highest ever achieved in an all-sky survey mission covering this energy band. We summarize the statistical properties of the catalog and results from cross matching with the Swift/BAT 70 month catalog, the meta-catalog of X-ray detected clusters of galaxies, and the MAXI/GSC 7 month catalog. Our catalog lists the source name (2MAXI), position and its error, detection significances and fluxes in the 4-10 keV and 3-4 keV bands, the hardness ratio, and the basic information of the likely counterpart available for 296 sources.

  4. Monitoring the Galactic - Search for Hard X-Ray Transients

    Science.gov (United States)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  5. B and R CCD surface photometry of selected low surface brightness galaxies in the region of the Fornax cluster

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1990-01-01

    The recent discoveries of large numbers of low surface brightness (LSB) galaxies in clusters and of the extreme LSB giant galaxy Malin 1 are changing our view of the galactic contents of the Universe. In this paper we describe B and R band CCD photometry of a sample of LSB galaxies previously identified from photographic plates of the Fornax cluster. This sample contains some of the lowest surface brightness galaxies known, one having the same central surface brightness as Main 1. The objects in this sample have a wide range of morphologies, and galaxies of similar appearance may have very different (B-R) colours. The range of (B-R) colours for this sample (almost all of which would have been described as dE from their B band morphology alone) is as large as that of the entire Hubble sequence. (author)

  6. A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars

    Science.gov (United States)

    Chen, Wan; White, Richard L.

    1992-01-01

    We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.

  7. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  8. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  9. Detection of a very bright source close to the LMC supernova SN 1987A

    Science.gov (United States)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1987-01-01

    High angular resolution observations of the supernova in the Large Magellanic Cloud, SN 1987A, have revealed a bright source separated from the SN by approximately 60 mas with a magnitude difference of 2.7 at 656 nm (H-alpha). Speckle imaging techniques were applied to data recorded with the CfA two-dimensional photon counting detector on the CTIO 4 m telescope on March 25 and April 2 to allow measurements in H-alpha on both nights and at 533 nm and 450 nm on the second night. The nature of this object is as yet unknown, though it is almost certainly a phenomenon related to the SN.

  10. 'Damn that's bright!' - why ignoring the Eddington limit is so much fun

    Science.gov (United States)

    Middleton, M.

    2017-10-01

    Decades of studying compact objects has led to an explosion in our understanding, yet some puzzles remain unanswered. Whilst the vast majority of Galactic black hole binary systems accrete at a rate below their classical Eddington limit, several appear to exceed it and whilst doing so show the most dramatic of phenomenology including the most powerful ballistic jet events and equatorial outflows. Standing alone as the most extreme example is the Galactic microquasar SS433. Long considered by some to be a Galactic `ultraluminous X-ray source', it is literally shrouded in mystery thanks to an optically thick wind obscuring the central regions. I will discuss these systems and new work which sheds light on SS433 and how it might fit into the growing picture of super-critically accreting sources.

  11. Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite

    International Nuclear Information System (INIS)

    Sanchez, D.

    2010-06-01

    The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion

  12. Classification of X-ray sources in the XMM-Newton serendipitous source catalog: Objects of special interest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Webb, Natalie A.; Barret, Didier, E-mail: dlin@ua.edu [CNRS, IRAP, 9 Avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France)

    2014-01-01

    We analyze 18 sources that showed interesting properties of periodicity, very soft spectra, and/or large long-term variability in X-rays in our project of classification of sources from the 2XMMi-DR3 catalog, but were poorly studied in the literature, in order to investigate their nature. Two hard sources show X-ray periodicities of ∼1.62 hr (2XMM J165334.4–414423) and ∼2.1 hr (2XMM J133135.2–315541) and are probably magnetic cataclysmic variables. One source, 2XMM J123103.2+110648, is an active galactic nucleus (AGN) candidate showing very soft X-ray spectra (kT ∼ 0.1 keV) and exhibiting an intermittent ∼3.8 hr quasi-periodic oscillation. There are six other very soft sources (with kT < 0.2 keV), which might be in other galaxies with luminosities between ∼10{sup 38}-10{sup 42} erg s{sup –1}. They probably represent a diverse group that might include objects such as ultrasoft AGNs and cool thermal disk emission from accreting intermediate-mass black holes. Six highly variable sources with harder spectra are probably in nearby galaxies with luminosities above 10{sup 37} erg s{sup –1} and thus are great candidates for extragalactic X-ray binaries. One of them (2XMMi J004211.2+410429, in M31) is probably a new-born persistent source, having been X-ray bright and hard in 0.3-10 keV for at least four years since it was discovered entering an outburst in 2007. Three highly variable hard sources appear at low galactic latitudes and have maximum luminosities below ∼10{sup 34} erg s{sup –1} if they are in our Galaxy. Thus, they are great candidates for cataclysmic variables or very faint X-ray transients harboring a black hole or neutron star. Our interpretations of these sources can be tested with future long-term X-ray monitoring and multi-wavelength observations.

  13. THE MAGELLANIC STREAM: BREAK-UP AND ACCRETION ONTO THE HOT GALACTIC CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Tepper-García, Thor; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph S. [Mount Stromlo Observatory, Australia National University, Woden, ACT 2611 (Australia)

    2015-11-10

    The Magellanic H i Stream (≈2 × 10{sup 9} M{sub ⊙} [d/55 kpc]{sup 2}) encircling the Galaxy at a distance d is arguably the most important tracer of what happens to gas accreting onto a disk galaxy. Recent observations reveal that the Stream’s mass is in fact dominated (3:1) by its ionized component. Here we revisit the origin of the mysterious Hα recombination emission observed along much of its length that is overly bright (∼150–200 mR) for the known Galactic ultraviolet (UV) background (≈20–40 mR [d/55 kpc]{sup −2}). In an earlier model, we proposed that a slow shock cascade was operating along the Stream due to its interaction with the extended Galactic hot corona. We find that for a smooth coronal density profile, this model can explain the bright Hα emission if the coronal density satisfies 2 × 10{sup −4} < (n/cm{sup −3}) < 4 × 10{sup −4} at d = 55 kpc. But in view of updated parameters for the Galactic halo and mounting evidence that most of the Stream must lie far beyond the Magellanic Clouds (d > 55 kpc), we revisit the shock cascade model in detail. At lower densities, the H i gas is broken down by the shock cascade but mostly mixes with the hot corona without significant recombination. At higher densities, the hot coronal mass (including the other baryonic components) exceeds the baryon budget of the Galaxy. If the Hα emission arises from the shock cascade, the upper limit on the smooth coronal density constrains the Stream’s mean distance to ≲75 kpc. If, as some models indicate, the Stream is even further out, either the shock cascade is operating in a regime where the corona is substantially mass-loaded with recent gas debris, or an entirely different ionization mechanism is responsible.

  14. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    Science.gov (United States)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  15. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  16. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara; Ginsburg, Adam; Bally, John [CASA, University of Colorado, UCB 389, University of Colorado, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics and Astronomy, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Mairs, Steven [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Evans, Neal J. II [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Shirley, Yancy L., E-mail: timothy.ellsworthbowers@colorado.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA) for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular

  17. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI.The data suggest that perceptions of brightness represent a robust

  18. CO LINE EMISSION FROM COMPACT NUCLEAR STARBURST DISKS AROUND ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Armour, J. N.; Ballantyne, D. R., E-mail: jarmour3@gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2012-06-20

    There is substantial evidence for a connection between star formation in the nuclear region of a galaxy and growth of the central supermassive black hole. Furthermore, starburst activity in the region around an active galactic nucleus (AGN) may provide the obscuration required by the unified model of AGNs. Molecular line emission is one of the best observational avenues to detect and characterize dense, star-forming gas in galactic nuclei over a range of redshift. This paper presents predictions for the carbon monoxide (CO) line features from models of nuclear starburst disks around AGNs. These small-scale ({approx}< 100 pc), dense and hot starbursts have CO luminosities similar to scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear starburst disks that exhibit a pc-scale starburst and could potentially act as the obscuring torus show more efficient CO excitation and higher brightness temperature ratios than those without such a compact starburst. In addition, the compact starburst models predict strong absorption when J{sub Upper} {approx}> 10, a unique observational signature of these objects. These findings allow for the possibility that CO spectral line energy distributions (SLEDs) could be used to determine if starburst disks are responsible for the obscuration in z {approx}< 1 AGNs. Directly isolating the nuclear CO line emission of such compact regions around AGNs from galactic-scale emission will require high-resolution imaging or selecting AGN host galaxies with weak galactic-scale star formation. Stacking individual CO SLEDs will also be useful in detecting the predicted high-J features.

  19. Resolving the structure of the Galactic foreground using Herschel measurements and the Kriging technique

    Science.gov (United States)

    Pinter, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Zahorecz, S.; Tóth, L. V.

    2018-05-01

    Investigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.

  20. THE ARECIBO METHANOL MASER GALACTIC PLANE SURVEY. III. DISTANCES AND LUMINOSITIES

    International Nuclear Information System (INIS)

    Pandian, J. D.; Menten, K. M.; Goldsmith, P. F.

    2009-01-01

    We derive kinematic distances to the 86 6.7 GHz methanol masers discovered in the Arecibo Methanol Maser Galactic Plane Survey. The systemic velocities of the sources were derived from 13 CO (J = 2-1), CS (J = 5-4), and NH 3 observations made with the ARO Submillimeter Telescope, the APEX telescope, and the Effelsberg 100 m telescope, respectively. Kinematic distance ambiguities were resolved using H I self-absorption with H I data from the VLA Galactic Plane Survey. We observe roughly three times as many sources at the far distance compared to the near distance. The vertical distribution of the sources has a scale height of ∼ 30 pc, and is much lower than that of the Galactic thin disk. We use the distances derived in this work to determine the luminosity function of 6.7 GHz maser emission. The luminosity function has a peak at approximately 10 -6 L sun . Assuming that this luminosity function applies, the methanol maser population in the Large Magellanic Cloud and M33 is at least 4 and 14 times smaller, respectively, than in our Galaxy.

  1. Complex organic molecules in the Galactic Centre: the N-bearing family

    Science.gov (United States)

    Zeng, S.; Jiménez-Serra, I.; Rivilla, V. M.; Martín, S.; Martín-Pintado, J.; Requena-Torres, M. A.; Armijos-Abendaño, J.; Riquelme, D.; Aladro, R.

    2018-05-01

    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.

  2. Galactic dynamics

    CERN Document Server

    Binney, James

    2008-01-01

    Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many section

  3. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  4. SMM detection of diffuse Galactic 511 keV annihilation radiation

    Science.gov (United States)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Messina, D. C.; Purcell, W. R.

    1988-01-01

    Observations of the 511 keV annihilation line from the vicinity of the Galactic center from October to February for 1980/1981, 1981/1982, 1982/1983, 1984/1985, and 1985/1986 are presented. The measurements were made with the gamma-ray spectrometer on the SMM. The design of the instrument and some of its properties used in the analysis are described, and the methods used for accumulating, fitting, and analyzing the data are outlined. It is shown how the Galactic 511 keV line was separated from the intense and variable background observed in orbit. The SMM observations are compared with previous measurements of annihilation radiation from the Galactic center region, and the astrophysical implications are discussed. It is argued that most of the measurements made to date suggest the presence of an extended Galactic source of annihilation radiation.

  5. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  6. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  7. X-RAY PROPERTIES OF THE NORTHERN GALACTIC CAP SOURCES IN THE 58 MONTH SWIFT/BAT CATALOG

    International Nuclear Information System (INIS)

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Shimizu, Thomas T.; Brandt, William N.; Schneider, Donald P.; Nousek, John; Winter, Lisa M.; Baumgartner, Wayne H.

    2013-01-01

    We present a detailed X-ray spectral analysis of the non-beamed, hard X-ray selected active galactic nuclei (AGNs) in the northern Galactic cap of the 58 month Swift Burst Alert Telescope (Swift/BAT) catalog, consisting of 100 AGNs with b > 50°. This sky area has excellent potential for further dedicated study due to a wide range of multi-wavelength data that are already available, and we propose it as a low-redshift analog to the 'deep field' observations of AGNs at higher redshifts (e.g., CDFN/S, COSMOS, Lockman Hole). We present distributions of luminosity, absorbing column density, and other key quantities for the catalog. We use a consistent approach to fit new and archival X-ray data gathered from XMM-Newton, Swift/XRT, ASCA, and Swift/BAT. We probe to deeper redshifts than the 9 month BAT catalog ((z) = 0.043 compared to (z) = 0.03 for the 9 month catalog), and uncover a broader absorbing column density distribution. The fraction of obscured (log N H ≥ 22) objects in the sample is ∼60%, and 43%-56% of the sample exhibits 'complex' 0.4-10 keV spectra. We present the properties of iron lines, soft excesses, and ionized absorbers for the subset of objects with sufficient signal-to-noise ratio. We reinforce previous determinations of the X-ray Baldwin (Iwasawa-Taniguchi) effect for iron Kα lines. We also identify two distinct populations of sources; one in which a soft excess is well-detected and another where the soft excess is undetected, suggesting that the process responsible for producing the soft excess is not at work in all AGNs. The fraction of Compton-thick sources (log N H > 24.15) in our sample is ∼9%. We find that 'hidden/buried AGNs' (which may have a geometrically thick torus or emaciated scattering regions) constitute ∼14% of our sample, including seven objects previously not identified as hidden. Compton reflection is found to be important in a large fraction of our sample using joint XMM-Newton+BAT fits ((R) = 2.7 ± 0.75), indicating

  8. High Brightness Electron Guns for Next-Generation Light Sources and Accelerators

    International Nuclear Information System (INIS)

    H. Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; I. Ben-Zvi; T. Srinivasan-Rao; P. Colestock; D.C. Nguyen; R.L. Wood; L. Young; D. Janssen; J. Lewellen; G. Neil; H.L. Phillips; J.P. Preble

    2004-01-01

    Advanced Energy Systems continues to develop advanced electron gun and injector concepts. Several of these projects have been previously described, but the progress and status of each will be updated. The project closest to completion is an all superconducting RF (SRF) gun, being developed in collaboration with the Brookhaven National Laboratory, that uses the niobium of the cavity wall itself as the photocathode material. This gun has been fabricated and will shortly be tested with beam. The cavity string for a closely-coupled DC gun and SRF cavity injector that is expected to provide beam quality sufficient for proposed ERL light sources and FELs will be assembled at the Jefferson Laboratory later this year. We are also collaboration with Los Alamos on a prototype CW normal-conducting RF gun with similar performance, that will undergo thermal testing in late 2004. Another CW SRF gun project that uses a high quantum efficiency photocathode, similar to the FZ-Rossendorf approach, has just begun. Finally, we will present the RF design and cold test results for a fully axisymmetric, ultra-high-brightness x-band RF gun

  9. H I Clouds in the Lower Halo. I. The Galactic All-Sky Survey Pilot Region

    International Nuclear Information System (INIS)

    Ford, H. Alyson; McClure-Griffiths, N. M.; Calabretta, M. R.; Lockman, Felix J.; Pisano, D. J.; Bailin, J.; Kalberla, P. M. W.; Murphy, T.

    2008-01-01

    We have detected over 400 H I clouds in the lower halo of the Galaxy within the pilot region of the Galactic All-Sky Survey (GASS), a region of the fourth quadrant that spans 18 deg. in longitude, 40 deg. in latitude, and is centered on the Galactic equator. These clouds have a median peak brightness temperature of 0.6 K, a median velocity width of 12.8 km s -1 , and angular sizes ∼ -1 . A sample of clouds likely to be near tangent points was analyzed in detail. These clouds have radii on the order of 30 pc and a median H I mass of 630 M sun . The population has a vertical scale height of 400 pc and is concentrated in Galactocentric radius, peaking at R = 3.8 kpc. This confined structure suggests that the clouds are linked to spiral features, while morphological evidence that many clouds are aligned with loops and filaments is suggestive of a relationship with star formation. The clouds might result from supernovae and stellar winds in the form of fragmenting shells and gas that has been pushed into the halo rather than from a galactic fountain.

  10. The Split Red Clump of the Galactic Bulge from OGLE-III

    Science.gov (United States)

    Nataf, D. M.; Udalski, A.; Gould, A.; Fouqué, P.; Stanek, K. Z.

    2010-09-01

    The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 plane. The fainter (hereafter "main") component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is ~0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.

  11. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY. I. CLASSIFICATION SYSTEM AND BRIGHT NORTHERN STARS IN THE BLUE-VIOLET AT R ∼ 2500

    International Nuclear Information System (INIS)

    Sota, A.; Maiz Apellaniz, J.; Alfaro, E. J.; Walborn, N. R.; Barba, R. H.; Morrell, N. I.; Gamen, R. C.; Arias, J. I.

    2011-01-01

    We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of MaIz Apellaniz et al. and Sota et al. The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B = 8 and north of δ = -20 0 and includes all of the northern objects in MaIz Apellaniz et al. that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent investigations in Galactic astronomy and stellar astrophysics. In the future, we will publish the rest of the survey, beginning with a second paper that will include most of the southern stars in MaIz Apellaniz et al.

  12. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  13. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    Science.gov (United States)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  14. Observation of near-infrared surface brightness of the large Magellanic cloud

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Koizumi, Yutaka; Matsumoto, Toshio; Murakami, Hiroshi; Uyama, Kiichiro.

    1981-01-01

    The near-infrared surface brightness of the large Magellanic cloud was observed by an infrared telescope carried by a balloon. The balloon flight was made at Australian Balloon Launching Station. The brightness distribution of 2.4 Mu m radiation was obtained. A part of Bar was bright, and the expansion of the contour at the east end of Bar corresponded to the 30 Dor region. Many near-infrared sources distribute in this region. Discussions on the color and brightness of the center of Bar and the 30 Dor region are presented. (Kato, T.)

  15. Neutrino fluxes from the Galactic plane and the ANTARES limit

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2016-01-01

    Full Text Available The existence of cosmic neutrinos has been reported by the IceCube Collaboration. Though this measurement is consistent with an isotropic neutrino flux, a sub-dominant galactic component coming from extended regions such as the Galactic Plane cannot be excluded. The ANTARES detector, located in the Mediterranean Sea, is currently the largest and longest operated under-water neutrino telescope; its effective area and good exposure to the Southern Sky allow to constrain an enhanced muon neutrino emission from extended sources such as the Galactic Plane. ANTARES data from 2007 to 2013 have been analysed and upper limits on the neutrino production from the central region of our galaxy have been set.

  16. Measurement of the 0.511 MeV #betta# ray line from the galactic center

    International Nuclear Information System (INIS)

    Jardim, J.O.D.; Benson, J.L.; Jardim, M.V.A.; Martin, I.M.

    1981-02-01

    The detection of the 0.511 MeV electron-positron annihilation line coming from the Galactic Center can provide the means to estimate the rate of positron production and to test some theoretical sources of positrons. The result of the measurements of the 0.511 MeV line flux made in a gamma-ray experiment on board a stratospheric balloon is presented. Thedetector field of view looked at the galactic longitude range-31 0 0 . The observed flux is (6.70 + - 0.85)x10 - 3 photons cm - 2 s - 1 , which is in good agreement with the expected flux when assuming that the Galactic Center is a line source emitting uniformly. (Author) [pt

  17. Five-colour photometry of early-type stars in the direction of galactic X-ray sources

    International Nuclear Information System (INIS)

    Van Paradijs, J.; Van Amerongen, S.; Damen, E.; Van der Woerd, H.

    1986-01-01

    We present the results of five-colour photometry of 551 O- and B-type stars located in 17 fields of a few square degrees around galactic X-ray sources. From a comparison of reddening-free combinations of colour indices with theoretical values, calculated for model atmospheres of Kurucz, we derive effective temperature and surface gravity for these stars. In addition we find their absolute magnitude by combining these parameters with the results of evolutionary calculations of massive stars. These effective temperatures are in good agreement with the temperature scale of Bohm-Vitense for stars of luminosity classes II to V. For the supergiants the effective temperatures are about 40% higher. For stars of luminosity classes III to V the absolute magnitudes we find agree well with the results of independent luminosity calibrations of spectral types, but for brighter stars they deviate systematically. We suspect that the origin of these deviations lies in the failure of present low-gravity model atmospheres to represent supergiant atmospheres. We have used the photometric data to study the interstellar reddening in the direction of the X-ray sources

  18. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  19. THE DISCOVERY OF THE FIRST “CHANGING LOOK” QUASAR: NEW INSIGHTS INTO THE PHYSICS AND PHENOMENOLOGY OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    LaMassa, Stephanie M.; Cales, Sabrina; Urry, C. Megan [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); Moran, Edward C. [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Myers, Adam D. [Department of Physics and Astronomy 3905, University of Wyoming, 1000 E. University, Laramaie, WY 82071 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics, and Institute for Gravitation and the Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Heckman, Timothy M. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Gallo, Luigi [Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 (Canada)

    2015-02-20

    SDSS J015957.64+003310.5 is an X-ray selected, z = 0.31 active galactic nucleus (AGN) from the Stripe 82X survey that transitioned from a Type 1 quasar to a Type 1.9 AGN between 2000 and 2010. This is the most distant AGN, and first quasar, yet observed to have undergone such a dramatic change. We re-observed the source with the double spectrograph on the Palomar 5 m telescope in 2014 July and found that the spectrum is unchanged since 2010. From fitting the optical spectra, we find that the AGN flux dropped by a factor of 6 between 2000 and 2010 while the broad Hα emission faded and broadened. Serendipitous X-ray observations caught the source in both the bright and dim state, showing a similar 2–10 keV flux diminution as the optical while lacking signatures of obscuration. The optical and X-ray changes coincide with g-band magnitude variations over multiple epochs of Stripe 82 observations. We demonstrate that variable absorption, as might be expected from the simplest AGN unification paradigm, does not explain the observed photometric or spectral properties. We interpret the changing state of J0159+0033 to be caused by dimming of the AGN continuum, reducing the supply of ionizing photons available to excite gas in the immediate vicinity around the black hole. J0159+0033 provides insight into the intermittency of black hole growth in quasars, as well as an unprecedented opportunity to study quasar physics (in the bright state) and the host galaxy (in the dim state), which has been impossible to do in a single sources until now.

  20. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    Science.gov (United States)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  1. DISCOVERY OF BRIGHT GALACTIC R CORONAE BOREALIS AND DY PERSEI VARIABLES: RARE GEMS MINED FROM ACVS

    International Nuclear Information System (INIS)

    Miller, A. A.; Richards, J. W.; Bloom, J. S.; Cenko, S. B.; Silverman, J. M.; Starr, D. L.; Stassun, K. G.

    2012-01-01

    We present the results of a machine-learning (ML)-based search for new R Coronae Borealis (RCB) stars and DY Persei-like stars (DYPers) in the Galaxy using cataloged light curves from the All-Sky Automated Survey (ASAS) Catalog of Variable Stars (ACVS). RCB stars—a rare class of hydrogen-deficient carbon-rich supergiants—are of great interest owing to the insights they can provide on the late stages of stellar evolution. DYPers are possibly the low-temperature, low-luminosity analogs to the RCB phenomenon, though additional examples are needed to fully establish this connection. While RCB stars and DYPers are traditionally identified by epochs of extreme dimming that occur without regularity, the ML search framework more fully captures the richness and diversity of their photometric behavior. We demonstrate that our ML method can use newly discovered RCB stars to identify additional candidates within the same data set. Our search yields 15 candidates that we consider likely RCB stars/DYPers: new spectroscopic observations confirm that four of these candidates are RCB stars and four are DYPers. Our discovery of four new DYPers increases the number of known Galactic DYPers from two to six; noteworthy is that one of the new DYPers has a measured parallax and is m ≈ 7 mag, making it the brightest known DYPer to date. Future observations of these new DYPers should prove instrumental in establishing the RCB connection. We consider these results, derived from a machine-learned probabilistic classification catalog, as an important proof-of-concept for the efficient discovery of rare sources with time-domain surveys.

  2. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.

  3. High resolution far-infrared survey of A section of the galactic plane. I. The nature of the sources

    International Nuclear Information System (INIS)

    Jaffe, D.T.; Stier, M.T.; Fazio, G.G.

    1982-01-01

    We have surveyed a 7.5 deg 2 portion of the galactic plane between l/sup II/ = 10 0 and l/sup II/ = 16 0 at 70 μm with a 1' beam. We present far-infrared, radio continuum, and 12 CO and 13 CO line observations of the 42 far-infrared sources in the survey region. The sources range in luminosity from 4 x 10 3 to 3 x 10 6 L/sub sun/. Most are associated with 12 CO peaks. More than half of the sources have associated H 2 O maser emission. Half have associated radio continuum emission at a limit of 100 mJy. Eight sources have radio emission at weaker levels. In a number of cases, the far-infrared source is smaller than its associated radio source. This difference can be explained in the context of the ''blister'' picture of H II regions. One group of sources emits many fewer Lyman continuum photons than expected, given the far-infrared luminosities. We examine a number of possible reasons for this and conclude that the most reasonable explanation is that clusters of early type stars rather than single stars excite the far-infrared sources. We examine the energetics in the molecular clouds surrounding the infrared sources and conclude that the sources could supply the energy to explain the observed temperature structure and velocity field in the molecular gas

  4. Galactic sprinklers

    International Nuclear Information System (INIS)

    Vandeusen, W.

    1984-01-01

    It is believed by many astronomers that gravitation is responsible for holding a strong whirlpool of hot, dense material together at the center of the Milky Way galaxy. However, the galactic-sprinkler model suggests that the whirlpool is not being held together, and that the stars, gas and dust within the spirals are being thrown outward. It is also suggested that much of the ejected material eventually returns to the galactic center, as do stars within our stellar neighborhood. The material is believed to be subjected to extreme changes in the gravitational time rate which may cause it to follow an inbound spiral that is basically similar to the outbound spiral. Radio studies also indicate that the galactic arms on either side of the galactic center move at different velocities and in different directions with respect to our location and that the whole group of stars in the vicinity of the solar system may be moving outward from the galactic center at a velocity of about 40 kps. Through the use of velocity data in kps, and distance data in light years, the radial component of the sun's trajectory can be estimated with respect to time by a parabola. The spiral trajectory of the sun can be calculated and plotted on polar coordinates by combining both the radial component and tangential component (230 kps)

  5. High-brightness beamline for x-ray spectroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Jones, G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (United States)

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  6. Detecting edges in the X-ray surface brightness of galaxy clusters

    Science.gov (United States)

    Sanders, J. S.; Fabian, A. C.; Russell, H. R.; Walker, S. A.; Blundell, K. M.

    2016-08-01

    The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with active galactic nucleus feedback, the Perseus cluster and M 87, and a merging system, A 3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

  7. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Gillard, W.

    2008-01-01

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  8. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  9. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  10. Optical spectral properties of active galactic nuclei and quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1981-01-01

    Four separate investigations dealing with the properties of optical continuum and emission-lines of active galactic nuclei (AGN) and quasars are presented. Multichannel scans of 3CR radio galaxies are decomposed by using a two-component model-an elliptical galaxy and a power-law nonthermal component. It is found that there is a strong correlation between the luminosity of the power-law component and the strength of the Balmer emission-lines. In most cases, by extrapolating to the Lyman continuum, the power-law models derived provide enough ionizing radiation to account for the Balmer line strengths. Extending the study of radio galaxies to include Seyfert galaxies and quasars, it is found that there is a strong continuity between broad-line AGN's and quasars in terms of similarities in the correlations between line luminosities and nonthermal continuum luminosity. Next, a study of the variability of absolute optical energy distribution and emission-lines of the N-galaxies 3C382 and 3C390.3 is made. Lastly, a preliminary study of surface photometry of Markarian Seyfert galaxies are presented. It is found that the properties of the underlying galaxies such as scale-length and surface brightness of the disk, color, and total brightness, do not depart systematically from those of luminous normal spiral galaxies

  11. Recent advances in high-brightness electron guns at AES

    International Nuclear Information System (INIS)

    Bluem, H.; Todd, A.M.M.; Cole, M.D.; Rathke, J.; Schultheiss, T.

    2003-01-01

    We describe a number of active Advanced Energy Systems projects pertaining to the development of advanced, high-brightness electron guns for various applications. These projects include a fully superconducting, CW RF gun, nearing test, that utilizes the niobium surface as the photocathode material. An integrated 100 mA, low emittance DC/SRF gun, ideal as an injector for ERL-type light sources and intended as the injector for a 100 kW FEL, is in late design stage. A parallel high-power, CW, normal-conducting L-band RF gun project has just begun. The early performance analysis for this gun also shows good promise as an injector for ERL-type light sources. Lastly, a fully axisymmetric RF gun, operating in X-band, is being studied as a source of extremely bright electron bunches

  12. High-brightness electron source driven by laser

    International Nuclear Information System (INIS)

    Zhao Kui; Geng Rongli; Wang Lifang

    1996-01-01

    A DC high-brightness laser driven by photo emissive electron gun is being developed at Beijing University, in order to produce 50∼100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathode, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. 100 kV DC high voltage is fed to the anode through a careful designed ceramic insulator. The laser system is a mode locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelength (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is discussed

  13. DENSITY OF WARM IONIZED GAS NEAR THE GALACTIC CENTER: LOW RADIO FREQUENCY OBSERVATIONS

    International Nuclear Information System (INIS)

    Roy, Subhashis

    2013-01-01

    We have observed the Galactic center (GC) region at 0.154 and 0.255 GHz with the Giant Metrewave Radio Telescope. A total of 62 compact likely extragalactic (EG) sources are detected. Their scattering sizes decrease linearly with increasing angular distance from the GC up to about 1°. The apparent scattering sizes of the sources are more than an order of magnitude less than predicted earlier by the NE2001 model of Galactic electron distribution within 359.°5 e is ∼10 cm –3 , which matches the NE2001 model. This model predicts the EG sources to be resolved out from 1.4 GHz interferometric surveys. However, out of 10 EG sources expected in the region, 8 likely EG are present in the 1.4 GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS J = 1-0 emission are found to have a narrow distribution of ∼0.°2 across the Galactic plane. Angular distribution of most EG sources seen through the so-called Hyperstrong Scattering Region are random in b, and typically ∼7 out of 10 sources will not be seen through the dense molecular clouds, which explains why most of them are not scatter broadened at 1.4 GHz

  14. Observations of Galactic gamma-radiation with the SMM spectrometer

    Science.gov (United States)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  15. Supergiants and the Galactic metallicity gradient. II. Spectroscopic abundances for 64 distant F- to M-type supergiants

    International Nuclear Information System (INIS)

    Luck, R.E.; Bond, H.E.

    1989-01-01

    The metallicity gradient in the Galactic disk from in situ stars with visual magnitude ranging from 6 to 10 is analyzed. Atmospheric parameters and detailed chemical abundances for 64 Population I supergiants of spectral types F through M and luminosity classes Ia through II have been determined. The derived Fe/H ratios ranging from -0.5 to + 0.7 show a mean value of +0.13 with an estimated uncertainty of + or - 0.2. A subset of 25 supergiants fainter than 7th magnitude lying in the direction of the Galactic center shows a Fe/H mean of +0.18 + or - 0.04, while a similar sample of 15 faint supergiants lying in the direction of the Galactic anticenter shows a lower Fe/H mean of +0.07 + or - 0.06. For a sample of bright supergiants analyzed by Luck and Lambert (1985), the mean abundance pattern for all 64 stars showed the following: deficient C and O along with enhancement of N, indicating mixing of CNO-cycled material to the stellar surfaces; an apparent Sr enhancement attributed to departures from LTE; and an essentially solar pattern of other chemical elements. 50 refs

  16. Stellar Population and Star Formation History of the Distant Galactic H II Regions NGC 2282 and Sh2-149

    Science.gov (United States)

    Dutta, S.; Mondal, S.; Jose, J.; Das, R. K.

    2017-06-01

    We present here the recent results on two distant Galactic H II regions, namely NGC 2282 and Sh2-149, obtained with multiwavelength observations. Our optical spectroscopic analysis of the bright sources have been used to identify the massive members, and to derive the fundamental parameters such as age and distance of these regions. Using IR color-color criteria and Hα-emission properties, we have identified and classified the candidate young stellar objects (YSOs) in these regions. The 12CO(1-0) continuum maps along with the K-band extinction maps, and spatial distribution of YSOs are used to investigate the structure and morphology of the molecular cloud associated with these H II regions. Overall analysis of these regions suggests that the star formation occurs at the locations of the denser gas, and we also find possible evidences of the induced star formation due to the feedback from massive stars to its surrounding molecular medium.

  17. Planck 2015 results: XXVIII. The Planck Catalogue of Galactic cold clumps

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (E...

  18. Dynamical Processes Near the Super Massive Black Hole at the Galactic Center

    Science.gov (United States)

    Antonini, Fabio

    2011-01-01

    Observations of the stellar environment near the Galactic center provide the strongest empirical evidence for the existence of massive black holes in the Universe. Theoretical models of the Milky Way nuclear star cluster fail to explain numerous properties of such environment, including the presence of very young stars close to the super massive black hole (SMBH) and the more recent discovery of a parsec-scale core in the central distribution of the bright late-type (old) stars. In this thesis we present a theoretical study of dynamical processes near the Galactic center, strongly related to these issues. Using different numerical techniques we explore the close environment of a SMBH as catalyst for stellar collisions and mergers. We study binary stars that remain bound for several revolutions around the SMBH, finding that in the case of highly inclined binaries the Kozai resonance can lead to large periodic oscillations in the internal binary eccentricity and inclination. Collisions and mergers of the binary elements are found to increase significantly for multiple orbits around the SMBH. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution clock to a younger age. This process could serve as an important source of young stars at the Galactic center. We then show that a core in the old stars can be naturally explained in a scenario in which the Milky Way nuclear star cluster (NSC) is formed via repeated inspiral of globular clusters into the Galactic center. We present results from a set of N -body simulations of this process, which show that the fundamental properties of the NSC, including its mass, outer density profile and velocity structure, are also reproduced. Chandrasekhar's dynamical friction formula predicts no frictional force on a test body in a low-density core, regardless of its density, due to the absence of stars moving

  19. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    Science.gov (United States)

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  20. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications

    International Nuclear Information System (INIS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; Van der Zanden, Koen; Napier, Bruce

    2015-01-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described. (paper)

  1. IR Observations of a Complete Unbiased Sample of Bright Seyfert Galaxies

    Science.gov (United States)

    Malkan, Matthew; Bendo, George; Charmandaris, Vassilis; Smith, Howard; Spinoglio, Luigi; Tommasin, Silvia

    2008-03-01

    IR spectra will measure the 2 main energy-generating processes by which galactic nuclei shine: black hole accretion and star formation. Both of these play roles in galaxy evolution, and they appear connected. To obtain a complete sample of AGN, covering the range of luminosities and column-densities, we will combine 2 complete all-sky samples with complementary selections, minimally biased by dust obscuration: the 116 IRAS 12um AGN and the 41 Swift/BAT hard Xray AGN. These galaxies have been extensively studied across the entire EM spectrum. Herschel observations have been requested and will be synergistic with the Spitzer database. IRAC and MIPS imaging will allow us to separate the nuclear and galactic continua. We are completing full IR observations of the local AGN population, most of which have already been done. The only remaining observations we request are 10 IRS/HIRES, 57 MIPS-24 and 30 IRAC pointings. These high-quality observations of bright AGN in the bolometric-flux-limited samples should be completed, for the high legacy value of complete uniform datasets. We will measure quantitatively the emission at each wavelength arising from stars and from accretion in each galactic center. Since our complete samples come from flux-limited all-sky surveys in the IR and HX, we will calculate the bi-variate AGN and star formation Luminosity Functions for the local population of active galaxies, for comparison with higher redshifts.Our second aim is to understand the physical differences between AGN classes. This requires statistical comparisons of full multiwavelength observations of complete representative samples. If the difference between Sy1s and Sy2s is caused by orientation, their isotropic properties, including those of the surrounding galactic centers, should be similar. In contrast, if they are different evolutionary stages following a galaxy encounter, then we may find observational evidence that the circumnuclear ISM of Sy2s is relatively younger.

  2. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.

    1980-01-01

    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  3. Isotopic composition of neon in the galactic cosmic rays: a high resolution measurement

    International Nuclear Information System (INIS)

    Greiner, D.E.; Wiedenbeck, M.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    A measurement of the isotopic composition of galactic cosmic ray neon in the energy range 70 to 260 MeV/amu has been made using the U.C. Berkeley HKH instrument aboard ISEE-3. A combination of high resolution and good statistical accuracy makes possible a precise determination of the local interplanetary neon composition. We find 22 Ne/ 20 Ne = 0.64 +- 0.07 and 21 Ne/ 20 Ne < 0.30 in local interplanetary space. These ratios, when interpreted in using standard galactic propagation and solar modulation models, yield cosmic ray source abundances which are inconsistent with a solar-like source composition

  4. Cosmic far-infrared background at high galactic latitudes

    International Nuclear Information System (INIS)

    Stecker, F.W.; Puget, J.L.; Fazio, G.G.

    1977-01-01

    We predict far-infrared background fluxes from various cosmic sources. These fluxes lie near the high-frequency side of the blackbody radiation spectrum. These sources could account for a significant fraction of the background radiation at frequencies above 400 GHz which might be misinterpreted as a ''Comptonization'' distortion of the blackbody radiation. Particular attention is paid to the possible contributions from external galaxies, from rich clusters of galaxies, and from galactic dust emission

  5. Cosmic far-infrared background at high galactic latitudes

    International Nuclear Information System (INIS)

    Stecker, F.W.; Puget, J.L.; Fazio, G.G.

    1976-12-01

    Far-infrared background fluxes from various cosmic sources are predicted. These fluxes lie near the high-frequency side of the blackbody radiation spectrum. These sources could account for a significant fraction of the background radiation at frequencies above 400 GHz, which might be misinterpreted as a comptonization distortion of the blackbody radiation. Particular attention is paid to the possible contributions from external galaxies, rich clusters of galaxies and from galactic dust emission

  6. Analyzing γ rays of the Galactic Center with deep learning

    Science.gov (United States)

    Caron, Sascha; Gómez-Vargas, Germán A.; Hendriks, Luc; Ruiz de Austri, Roberto

    2018-05-01

    We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV γ rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include γ rays created by the annihilation of dark matter particles and γ rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured γ ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of γ ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.

  7. Galactic models

    International Nuclear Information System (INIS)

    Buchler, J.R.; Gottesman, S.T.; Hunter, J.H. Jr.

    1990-01-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings

  8. A transient, flat spectrum radio pulsar near the Galactic Centre

    Science.gov (United States)

    Dexter, J.; Degenaar, N.; Kerr, M.; Deller, A.; Deneva, J.; Lazarus, P.; Kramer, M.; Champion, D.; Karuppusamy, R.

    2017-06-01

    Recent studies have shown possible connections between highly magnetized neutron stars ('magnetars'), whose X-ray emission is too bright to be powered by rotational energy, and ordinary radio pulsars. In addition to the magnetar SGR J1745-2900, one of the radio pulsars in the Galactic Centre (GC) region, PSR J1746-2850, had timing properties implying a large magnetic field strength and young age, as well as a flat spectrum. All characteristics are similar to those of rare, transient, radio-loud magnetars. Using several deep non-detections from the literature and two new detections, we show that this pulsar is also transient in the radio. Both the flat spectrum and large amplitude variability are inconsistent with the light curves and spectral indices of three radio pulsars with high magnetic field strengths. We further use frequent, deep archival imaging observations of the GC in the past 15 yr to rule out a possible X-ray outburst with a luminosity exceeding the rotational spin-down rate. This source, either a transient magnetar without any detected X-ray counterpart or a young, strongly magnetized radio pulsar producing magnetar-like radio emission, further blurs the line between the two categories. We discuss the implications of this object for the radio emission mechanism in magnetars and for star and compact object formation in the GC.

  9. The Chandra Source Catalog: Source Variability

    Science.gov (United States)

    Nowak, Michael; Rots, A. H.; McCollough, M. L.; Primini, F. A.; Glotfelty, K. J.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Evans, I.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) contains fields of view that have been studied with individual, uninterrupted observations that span integration times ranging from 1 ksec to 160 ksec, and a large number of which have received (multiple) repeat observations days to years later. The CSC thus offers an unprecedented look at the variability of the X-ray sky over a broad range of time scales, and across a wide diversity of variable X-ray sources: stars in the local galactic neighborhood, galactic and extragalactic X-ray binaries, Active Galactic Nuclei, etc. Here we describe the methods used to identify and quantify source variability within a single observation, and the methods used to assess the variability of a source when detected in multiple, individual observations. Three tests are used to detect source variability within a single observation: the Kolmogorov-Smirnov test and its variant, the Kuiper test, and a Bayesian approach originally suggested by Gregory and Loredo. The latter test not only provides an indicator of variability, but is also used to create a best estimate of the variable lightcurve shape. We assess the performance of these tests via simulation of statistically stationary, variable processes with arbitrary input power spectral densities (here we concentrate on results of red noise simulations) at variety of mean count rates and fractional root mean square variabilities relevant to CSC sources. We also assess the false positive rate via simulations of constant sources whose sole source of fluctuation is Poisson noise. We compare these simulations to an assessment of the variability found in real CSC sources, and estimate the variability sensitivities of the CSC.

  10. IGR J17454-2919: a new X-ray transient found by INTEGRAL/JEM-X close to the Galactic Center

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Brandt, Søren; Budtz-Jørgensen, Carl

    2014-01-01

    The JEM-X twin X-ray monitors on board the INTEGRAL satellite have again detected a new X-ray transient during the latest observation of the Galactic Center region. The new source named IGR J17454-2919 is found less than 24 arcmin from the Galactic Center. The source appears in both JEM-X 3-10 ke...

  11. Prospects for Galactic TeV Neutrino Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, Matthew D [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

    2007-03-15

    In just the last few years, the catalog of known Galactic TeV gamma-ray sources has grown dramatically, due to the abilities of current air Cerenkov telescopes to measure both the spectrum and morphology of the TeV emission. While these properties can be very well measured, they are not necessarily sufficient to determine whether the gamma rays are produced by leptonic or hadronic processes. However, if the gamma-ray emission is hadronic, there must be an accompanying flux of neutrinos, which can be determined from the observed gamma-ray spectrum. The upcoming km3 neutrino telescopes will allow for a direct test of the gamma-ray production mechanism and the possibility of examining the highest possible energies, with important consequences for our understanding of Galactic cosmic-ray production.

  12. Prospects for Galactic TeV Neutrino Astronomy

    International Nuclear Information System (INIS)

    Kistler, Matthew D

    2007-01-01

    In just the last few years, the catalog of known Galactic TeV gamma-ray sources has grown dramatically, due to the abilities of current air Cerenkov telescopes to measure both the spectrum and morphology of the TeV emission. While these properties can be very well measured, they are not necessarily sufficient to determine whether the gamma rays are produced by leptonic or hadronic processes. However, if the gamma-ray emission is hadronic, there must be an accompanying flux of neutrinos, which can be determined from the observed gamma-ray spectrum. The upcoming km3 neutrino telescopes will allow for a direct test of the gamma-ray production mechanism and the possibility of examining the highest possible energies, with important consequences for our understanding of Galactic cosmic-ray production

  13. A CATALOG OF NEAR-IR SOURCES FOUND TO BE UNRESOLVED WITH MILLIARCSECOND RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A. [National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Rd., Suthep, Muang, Chiang Mai 50200 (Thailand); Fors, O. [Departament Astronomia i Meteorologia and Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (UB/IEEC), Marti i Franques 1, E-08028 Barcelona (Spain); Cusano, F. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Moerchen, M., E-mail: andrea@narit.or.th [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-12-15

    Calibration is one of the long-standing problems in optical interferometric measurements, particularly with long baselines which demand stars with angular sizes on the milliarcsecond scale and no detectable companions. While systems of calibrators have been generally established for the near-infrared in the bright source regime (K {approx}< 3 mag), modern large interferometers are sensitive to significantly fainter magnitudes. We aim to provide a list of sources found to be unresolved from direct observations with high angular resolution and dynamic range, which can be used to choose interferometric calibrators. To this purpose, we have used a large number of lunar occultations recorded with the ISAAC instrument at the Very Large Telescope to select sources found to be unresolved and without close companions. An algorithm has been used to determine the limiting angular resolution achieved for each source, taking into account a noise model built from occulted and unocculted portions of the light curves. We have obtained upper limits on the angular sizes of 556 sources, with magnitudes ranging from K{sub s} Almost-Equal-To 4 to 10, with a median of 7.2 mag. The upper limits on possible undetected companions (within Almost-Equal-To 0.''5) range from K{sub s} Almost-Equal-To 8 to 13, with a median of 11.5 mag. One-third of the sources have angular sizes {<=}1 mas, and two-thirds have sizes {<=}2 mas. This list of unresolved sources matches well the capabilities of current large interferometric facilities. We also provide available cross-identifications, magnitudes, spectral types, and other auxiliary information. A fraction of the sources are found to be potentially variable. The list covers parts of the Galactic Bulge and in particular the vicinity of the Galactic Center, where extinction is very significant and traditional lists of calibrators are often insufficient.

  14. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    International Nuclear Information System (INIS)

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-01-01

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to ∼70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining ∼30% of optically dull AGNs have anomalously high f X /f O ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  15. The Physics and Applications of High Brightness Electron Beams

    Science.gov (United States)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al

  16. Updated radio Σ−D relation for galactic supernova remnants

    Directory of Open Access Journals (Sweden)

    Pavlović M.Z.

    2014-01-01

    Full Text Available We present the updated empirical radio surface-brightness-to-diameter (Σ − D relation for supernova remnants (SNRs in our Galaxy. Our original calibration sample of Galactic SNRs with independently determined distances (Pavlović et al. 2013, hereafter Paper I is reconsidered and updated with data which became available in the past two years. The orthogonal fitting procedure and probability-density-function-based (PDF method are applied to the calibration sample in the logΣ − logD plane. Non-standard orthogonal regression keeps the Σ−D and D−Σ relations invariant within estimated uncertainties. Our previous Monte Carlo simulations verified that the slopes of the empirical Σ−D relation should be determined by using the orthogonal regression, because of its good performances for data sets with severe scatter. The updated calibration sample contains 65 shell SNRs. 6 new Galactic SNRs are added to the sample from Paper I, one is omitted and distances are changed for 10 SNRs. The slope derived is here slightly steeper (β ≈ 5.2 than the Σ−D slope in Paper I (β ≈ 4.8. The PDF method relies on data points density maps which can provide more reliable calibrations that preserve more information contained in the calibration sample. We estimate distances to five new faint Galactic SNRs discovered for the first time by Canadian Galactic Plane Survey, and obtained distances of 2.3, 4.0, 1.3, 2.9 and 4.7 kiloparsecs for G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8 and G160.1−1.1, respectively. The updated empirical relation is used to estimate distances of 160 shell Galactic SNRs and new results change their distance scales up to 15 per cent, compared to the results from Paper I. The PDF calculation can provide even few times higher or lower values in comparison with the orthogonal fit, as it uses a totally different approach. However, on average, this difference is 32, 24 and 18 per cent for mode, median and mean distances

  17. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  18. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1981-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the galactic plane due to high space velocities imparted to the pulsars at birth. The evidence for this model is described and the various factors involved in estimating the total galactic population and the galactic birthrate of pulsars are discussed. The various estimates of the galactic population which cluster around 5 x 10 5 are seen to be critically dependent upon the cut-off at low luminosities and upon the value of the mean electron density within 500 pc of the Earth. Estimates of the lifetimes of pulsars are available from both the characteristic ages and proper motion measurements and both give values of about 5 million years. The implied birthrate of one in every 10 years is barely compatible with most estimates of the galactic supernova rate. (Auth.)

  19. Examining The Fermi-LAT Third Source Catalog in search of dark matter subhalos

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Bridget [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Linden, Tim, E-mail: bbertoni@stanford.edu, E-mail: dhooper@fnal.gov, E-mail: linden.70@osu.edu [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2015-12-01

    Dark matter annihilations taking place in nearby subhalos could appear as gamma-ray sources without detectable counterparts at other wavelengths. In this study, we consider the collection of unassociated gamma-ray sources reported by the Fermi Collaboration in an effort to identify the most promising dark matter subhalo candidates. While we identify 24 bright, high-latitude, non-variable sources with spectra that are consistent with being generated by the annihilations of ∼ 20–70 GeV dark matter particles (assuming annihilations to b b-bar ), it is not possible at this time to distinguish these sources from radio-faint gamma-ray pulsars. Deeper multi-wavelength observations will be essential to clarify the nature of these sources. It is notable that we do not find any such sources that are well fit by dark matter particles heavier than ∼100 GeV. We also study the angular distribution of the gamma-rays from this set of subhalo candidates, and find that the source 3FGL J2212.5+0703 prefers a spatially extended profile (of width ∼ 0.15°) over that of a point source, with a significance of 4.2σ (3.6σ after trials factor). Although not yet definitive, this bright and high-latitude gamma-ray source is well fit as a nearby subhalo of m{sub χ} ≅ 20–50 GeV dark matter particles (annihilating to b b-bar ) and merits further multi-wavelength investigation. Based on the subhalo distribution predicted by numerical simulations, we derive constraints on the dark matter annihilation cross section that are competitive to those resulting from gamma-ray observations of dwarf spheroidal galaxies, the Galactic Center, and the extragalactic gamma-ray background.

  20. Haro 11: Where is the Lyman Continuum Source?

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, Ryan P.; Oey, M. S. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-10-10

    Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.

  1. Propagation of Galactic Cosmic Rays and Dark Matter indirect Detection

    International Nuclear Information System (INIS)

    Delahaye, Timur

    2010-07-01

    This thesis is dedicated to the study of propagation of cosmic electrons and positrons in the Milky Way and to the indirect detection of dark matter. The existence of dark matter is a hypothesis considered as reasonable from the point of view of cosmology, astrophysics and even particle physics. Nevertheless its detection still eludes us and it is not possible to verify this hypothesis by other means than gravitational one. A possible way to detect dark matter is to look for its annihilation or decay products among Galactic cosmic rays. During the last three years, data concerning cosmic ray electrons and positrons have been accumulated and have reached a remarkable precision. Such a precision requires from us to refine the theoretical models and to quantify the errors. This thesis addresses the study of all the sources of uncertainties affecting predictions of cosmic electrons and positron fluxes, primary and secondary, classical or from exotic origin. The greatest care has been dedicated to the sources and the propagation in the Galactic halo. Moreover a study of gamma and radio emissions associated to these cosmic rays is presented, again with the will of sizing uncertainties. Finally a status of the research for detection of annihilation or decay of Galactic dark matter is presented. (author)

  2. HERSCHEL SURVEY OF GALACTIC OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M.; Falgarone, E. [LERMA, Observatoire de Paris, Ecole Normale Supérieure, PSL Research University, CNRS, UMR8112, F-75014 Paris (France); Schilke, P.; Chambers, E. T.; Ossenkopf, V. [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Benz, A. O. [Institute of Astronomy, ETH Zürich (Switzerland); Winkel, B.; Menten, K. M. [MPI für Radioastronomie, Bonn (Germany); Black, John H.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Bruderer, S.; Van Dishoeck, E. F. [Max Planck Institut für Extraterrestrische Physik, Garching (Germany); Godard, B.; Lis, D. C. [Sorbonne Universités, UPMC Univ. Paris 06, UMR8112, LERMA, F-75005 Paris (France); Goicoechea, J. R. [Instituto de Ciencias de Materiales de Madrid (CSIC), E-28049 Cantoblanco, Madrid (Spain); Gupta, H. [California Institute of Technology, Pasadena, CA 91125 (United States); Sonnentrucker, P. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Van der Tak, F. F. S. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); and others

    2015-02-10

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H{sub 2}. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζ{sub H}) and molecular hydrogen fraction (f{sub H{sub 2}}). We present observations targeting transitions of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH{sup +} and H{sub 2}O{sup +} are detected in absorption in multiple velocity components along every sight line, but H{sub 3}O{sup +} is only detected along 7 sight lines. From the molecular abundances we compute f{sub H{sub 2}} in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH{sup +} and H{sub 2}O{sup +} primarily reside in gas with low H{sub 2} fractions. We also infer ζ{sub H} throughout our sample, and find a lognormal distribution with mean log (ζ{sub H}) = –15.75 (ζ{sub H} = 1.78 × 10{sup –16} s{sup –1}) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H{sub 3}{sup +} observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies.

  3. Simulated Galactic methanol maser distribution to constrain Milky Way parameters

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Reid, M. J.; Green, J. A.

    2017-08-01

    Context. Using trigonometric parallaxes and proper motions of masers associated with massive young stars, the Bar and Spiral Structure Legacy (BeSSeL) survey has reported the most accurate values of the Galactic parameters so far. The determination of these parameters with high accuracy has a widespread impact on Galactic and extragalactic measurements. Aims: This research is aimed at establishing the confidence with which such parameters can be determined. This is relevant for the data published in the context of the BeSSeL survey collaboration, but also for future observations, in particular from the southern hemisphere. In addition, some astrophysical properties of the masers can be constrained, notably the luminosity function. Methods: We have simulated the population of maser-bearing young stars associated with Galactic spiral structure, generating several samples and comparing them with the observed samples used in the BeSSeL survey. Consequently, we checked the determination of Galactic parameters for observational biases introduced by the sample selection. Results: Galactic parameters obtained by the BeSSeL survey do not seem to be biased by the sample selection used. In fact, the published error estimates appear to be conservative for most of the parameters. We show that future BeSSeL data and future observations with southern arrays will improve the Galactic parameters estimates and smoothly reduce their mutual correlation. Moreover, by modeling future parallax data with larger distance values and, thus, greater relative uncertainties for a larger numbers of sources, we found that parallax-distance biasing is an important issue. Hence, using fractional parallax uncertainty in the weighting of the motion data is imperative. Finally, the luminosity function for 6.7 GHz methanol masers was determined, allowing us to estimate the number of Galactic methanol masers.

  4. SDP_wlanger_3: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    Science.gov (United States)

    Langer, W.

    2011-09-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  5. KPOT_wlanger_1: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    Science.gov (United States)

    Langer, W.

    2007-10-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  6. Observation of brightness profiles of the soft X-ray background in Gemini, Orion and Eridanus

    International Nuclear Information System (INIS)

    Zwijnenberg, E.

    1976-01-01

    The instrumentation and the measuring plan of a rocket flight experiment has been described, where the soft X-ray background (0.1-2.0 keV) of the sky near the galactic anti-center is measured. The equipment contains among other things an X-ray focussing instrument with high angular resolution and a large area detection system. Brightness profiles are taken from a number of objects among which are supernova remnants like the crab nebula and IC 443. The hot spot in Eridanus could be attributed to a supernova remnant with more than one shock front. Other objects seen are the Gemini enhancement and the Monoceros nebula

  7. Millisecond Pulsars and the Galactic Center Excess

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice; Ferrara, Elizabeth C.

    2017-08-01

    Various groups including the Fermi team have confirmed the spectrum of the gamma- ray excess in the Galactic Center (GCE). While some authors interpret the GCE as evidence for the annihilation of dark matter (DM), others have pointed out that the GCE spectrum is nearly identical to the average spectrum of Fermi millisecond pul- sars (MSP). Assuming the Galactic Center (GC) is populated by a yet unobserved source of MSPs that has similar properties to that of MSPs in the Galactic Disk (GD), we present results of a population synthesis of MSPs from the GC. We establish parameters of various models implemented in the simulation code by matching characteristics of 54 detected Fermi MSPs in the first point source catalog and 92 detected radio MSPs in a select group of thirteen radio surveys and targeting a birth rate of 45 MSPs per mega-year. As a check of our simulation, we find excellent agreement with the estimated numbers of MSPs in eight globular clusters. In order to reproduce the gamma-ray spectrum of the GCE, we need to populate the GC with 10,000 MSPs having a Navarro-Frenk-White distribution suggested by the halo density of DM. It may be possible for Fermi to detect some of these MSPs in the near future; the simulation also predicts that many GC MSPs have radio fluxes S1400above 10 �μJy observable by future pointed radio observations. We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  8. X-ray polarimetry. [aboard Ariel 5 and OSO 8 for observation of galactic sources

    Science.gov (United States)

    Long, K. S.; Chanan, G. A.; Helfand, D. J.; Ku, W. H.-M.; Novick, R.

    1979-01-01

    The method by which the Bragg-crystal X-ray polarimeters aboard Ariel 5 and OSO 8 operate is briefly described, and some results obtained with these instruments for six Galactic X-ray sources are summarized. A precision measurement of the linear polarization in the Crab Nebula at energies of 2.6 and 5.2 keV is presented. Evidence is given for polarization in Sco X-1, Cyg X-2, Cen X-3, and the X-ray transient A0620-00. The determined or estimated polarizations are approximately 19.2% at 2.6 keV and 19.5% at 5.2 keV for the Crab Nebula, 1.1% at 2.6 keV and 2.4% at 5.2 keV for Sco X-1, 2.5% at 2.6 keV and 9.8% at 5.2 keV for Cyg X-1, an upper limit of 13.5% for A0620-00, an upper limit of 13.5% to the time-averaged polarization of Cen X-3, and an apparent value of about 5% for Cyg X-2.

  9. Soft X-ray focusing Telescope aboard AstroSat

    DEFF Research Database (Denmark)

    Singh, K. P.; Dewangan, G. C.; Chandra, S.

    2017-01-01

    The Soft X-ray focusing Telescope (SXT) is a moderateresolution X-ray imaging spectrometer supplementing the ultraviolet and hard X-ray payloads for broadband studies of cosmic sources with AstroSat. Well suited for observing bright X-ray sources, SXT observations of nearby active galactic nuclei...

  10. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David [American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192 (United States); Moffat, Anthony F. J.; Doyon, Rene [Departement de Physique, Universite de Montreal, CP 6128, Succ. C-V, Montreal, QC, H3C 3J7 (Canada); Gerke, Jill [Department of Astronomy, Ohio State University, Columbus, OH 43210-1173 (United States); Artigau, Etienne; Drissen, Laurent, E-mail: mshara@amnh.org, E-mail: jfaherty@amnh.org, E-mail: dzurek@amnh.org, E-mail: moffat@astro.umontreal.ca, E-mail: doyon@astro.umontreal.ca, E-mail: gerke@astronomy.ohio-state.edu, E-mail: artigau@astro.umontreal.ca, E-mail: ldrissen@phy.ulaval.ca [Departement de Physique, Universite Laval, Pavillon Vachon, Quebec City, QC, G1K 7P4 (Canada)

    2012-06-15

    We are continuing a J, K and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150 Degree-Sign in Galactic longitude and reaches 1 Degree-Sign above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previously known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.

  11. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    International Nuclear Information System (INIS)

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David; Moffat, Anthony F. J.; Doyon, René; Gerke, Jill; Artigau, Etienne; Drissen, Laurent

    2012-01-01

    We are continuing a J, K and narrowband imaging survey of 300 deg 2 of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150° in Galactic longitude and reaches 1° above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previously known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.

  12. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide

    Science.gov (United States)

    Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2018-03-01

    Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.

  13. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    International Nuclear Information System (INIS)

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec

  14. Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses

    Directory of Open Access Journals (Sweden)

    Peter Schnauber

    2015-12-01

    Full Text Available We report on enhancing the photon-extraction efficiency (PEE of deterministic quantum dot (QD microlenses via anti-reflection (AR coating. The AR-coating deposited on top of the curved microlens surface is composed of a thin layer of Ta2O5, and is found to effectively reduce back-reflection of light at the semiconductor-vacuum interface. A statistical analysis of spectroscopic data reveals, that the AR-coating improves the light out-coupling of respective microlenses by a factor of 1.57 ± 0.71, in quantitative agreement with numerical calculations. Taking the enhancement factor into account, we predict improved out-coupling of light with a PEE of up to 50%. The quantum nature of emission from QDs integrated into AR-coated microlenses is demonstrated via photon auto-correlation measurements revealing strong suppression of two-photon emission events with g(2(0 = 0.05 ± 0.02. As such, these bright non-classical light sources are highly attractive with respect to applications in the field of quantum cryptography.

  15. Search for neutrino point sources with an all-sky autocorrelation analysis in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Andrea; Bernhard, Anna; Coenders, Stefan [TU, Munich (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic kilometre scale neutrino telescope located in the Antarctic ice. Its full-sky field of view gives unique opportunities to study the neutrino emission from the Galactic and extragalactic sky. Recently, IceCube found the first signal of astrophysical neutrinos with energies up to the PeV scale, but the origin of these particles still remains unresolved. Given the observed flux, the absence of observations of bright point-sources is explainable with the presence of numerous weak sources. This scenario can be tested using autocorrelation methods. We present here the sensitivities and discovery potentials of a two-point angular correlation analysis performed on seven years of IceCube data, taken between 2008 and 2015. The test is applied on the northern and southern skies separately, using the neutrino energy information to improve the effectiveness of the method.

  16. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31

    NARCIS (Netherlands)

    Middleton, M.J.; Miller Jones, J.C.A.; Markoff, S.; Fender, R.; Henze, M.; Hurley-Walker, N.; Scaife, A.M.M.; Roberts, T.P.; Walton, D.; Carpenter, J.; Macquart, J.-P.; Bower, G.C.; Gurwell, G.; Pietsch, W.; Haberl, F.; Harris, J.; Daniel, M.; Miah, J.; Done, C.; Morgan, J.S.; Dickinson, H.; Charles, P.; Burwitz, V.; Della Valle, M.; Freyberg, M.; Greiner, J.; Hernanz, M.; Hartmann, D.H.; Hatzidimitriou, D.; Riffeser, A.; Sala, G.; Seitz, S.; Reig, P.; Rau, A.; Orio, M.; Titterington, D.; Grainge, K.

    2013-01-01

    A subset of ultraluminous X-ray sources (those with luminosities of less than 1040 erg s−1; ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ~5-20 , probably by means of an accretion disk2, 3. The X-ray and radio emission are coupled in such Galactic sources;

  17. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  18. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    Science.gov (United States)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  19. Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves

    Directory of Open Access Journals (Sweden)

    M. Dwornik

    2017-01-01

    Full Text Available We present a comparative confrontation of both the Bose-Einstein Condensate (BEC and the Navarro-Frenk-White (NFW dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB, 6 Low Surface Brightness (LSB, and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.

  20. THE SPLIT RED CLUMP OF THE GALACTIC BULGE FROM OGLE-III

    International Nuclear Information System (INIS)

    Nataf, D. M.; Gould, A.; Stanek, K. Z.; Udalski, A.; Fouque, P.

    2010-01-01

    The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 < l < 1, b < -5) and (l, b) = (0, + 5.2), i.e., along the bulge minor axis and at least 5 deg off the plane. The fainter (hereafter 'main') component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is ∼0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.

  1. ATLASGAL - Ammonia observations towards the southern Galactic plane

    Science.gov (United States)

    Wienen, M.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Walmsley, C. M.; Csengeri, T.; Koribalski, B. S.; Schuller, F.

    2018-02-01

    Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims: We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods: Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1-0) line was measured with the Mopra telescope. Results: We measured a median NH3 (1, 1) line width of 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions: A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of

  2. Monitoring and Mapping the Galactic Bulge

    Science.gov (United States)

    Markwardt, Craig

    Both neutron star and black hole binary transients are providing some of the most exciting RXTE science, and fortunately many are concentrated in the galactic bulge region. We propose to continue our twice weekly PCA scans of the region, which cover about 500 sq deg. The observations will be sensitive to new sources at the ~1 mCrab level (a factor of 10-60 more sensitive than the ASM in the region). We have had success finding new sources and new types of variability, including three millisecond pulsars, and new increased solid angle will improve the chances of finding more in the final RXTE years. We will continue efforts to search for variability in new and known sources. Companion follow-up proposals would be triggered by the results.

  3. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  4. An extremely luminous and variable ultraluminous X-ray source in the outskirts of Circinus observed with NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Grefenstette, B. W.; Madsen, K. K.; Rana, V. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, M.; Barret, D.; Webb, N. A. [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Bauer, F. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Ptak, A.; Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-20

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ∼5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10{sup 40} erg s{sup –1}). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L∝T {sup 1.70±0.17}, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ∼90 M {sub ☉} for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is

  5. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  6. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  7. The Galactic O-Star Spectroscopic Survey. I. Classification System and Bright Northern Stars in the Blue-violet at R ~ 2500

    Science.gov (United States)

    Sota, A.; Maíz Apellániz, J.; Walborn, N. R.; Alfaro, E. J.; Barbá, R. H.; Morrell, N. I.; Gamen, R. C.; Arias, J. I.

    2011-04-01

    We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R ~ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of Maíz Apellániz et al. and Sota et al. The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B = 8 and north of δ = -20° and includes all of the northern objects in Maíz Apellániz et al. that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent investigations in Galactic astronomy and stellar astrophysics. In the future, we will publish the rest of the survey, beginning with a second paper that will include most of the southern stars in Maíz Apellániz et al. The spectroscopic data in this article were gathered with three facilities: the 1.5 m telescope at the Observatorio de Sierra Nevada (OSN), the 3.5 m telescope at Calar Alto Observatory (CAHA), and the du Pont 2.5 m telescope at Las Campanas Observatory (LCO). Some of the supporting imaging data were obtained with the 2.2 m telescope at CAHA and the NASA/ESA Hubble Space Telescope (HST). The rest were retrieved from the DSS2 and Two Micron All Sky Survey (2MASS) surveys. The HST data were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites

    Science.gov (United States)

    Zolensky, Michael; Chan, Queenie H. S.; Gounelle, Matthieu; Fries, Marc

    2016-01-01

    Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO4•6(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Ceres

  9. High-resolution SMA imaging of bright submillimetre sources from the SCUBA-2 Cosmology Legacy Survey

    Science.gov (United States)

    Hill, Ryley; Chapman, Scott C.; Scott, Douglas; Petitpas, Glen; Smail, Ian; Chapin, Edward L.; Gurwell, Mark A.; Perry, Ryan; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Dunlop, James S.; Farrah, Duncan; Fazio, Giovanni G.; Geach, James E.; Howson, Paul; Ivison, R. J.; Lacaille, Kevin; Michałowski, Michał J.; Simpson, James M.; Swinbank, A. M.; van der Werf, Paul P.; Wilner, David J.

    2018-06-01

    We have used the Submillimeter Array (SMA) at 860 μm to observe the brightest sources in the Submillimeter Common User Bolometer Array-2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). The goal of this survey is to exploit the large field of the S2CLS along with the resolution and sensitivity of the SMA to construct a large sample of these rare sources and to study their statistical properties. We have targeted 70 of the brightest single-dish SCUBA-2 850 μm sources down to S850 ≈ 8 mJy, achieving an average synthesized beam of 2.4 arcsec and an average rms of σ860 = 1.5 mJy beam-1 in our primary beam-corrected maps. We searched our SMA maps for 4σ peaks, corresponding to S860 ≳ 6 mJy sources, and detected 62, galaxies, including three pairs. We include in our study 35 archival observations, bringing our sample size to 105 bright single-dish submillimetre sources with interferometric follow-up. We compute the cumulative and differential number counts, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent S2CLS cumulative number count by 14 ± 6 per cent between 11 and 15 mJy. We estimate the probability that a ≳10 mJy single-dish submillimetre source resolves into two or more galaxies with similar flux densities to be less than 15 per cent. Assuming the remaining 85 per cent of the targets are ultraluminous starburst galaxies between z = 2 and 3, we find a likely volume density of ≳400 M⊙ yr-1 sources to be {˜ } 3^{+0.7}_{-0.6} {× } 10^{-7} Mpc-3. We show that the descendants of these galaxies could be ≳4 × 1011 M⊙ local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star formation.

  10. The end of the galactic cosmic ray spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2007-03-15

    We discuss the region of transition between galactic and extragalactic cosmic rays. The exact shapes and compositions of these two components contains information about important parameters of powerful astrophysical sources and the conditions in extragalactic space as well as for the cosmological evolution of the sources of high energy cosmic rays. Several types of experimental data, including the exact shape of the ultrahigh energy cosmic rays, their chemical composition and their anisotropy, and the fluxes of cosmogenic neutrinos have to be included in the solution of this problem.

  11. ASSOCIATIONS BETWEEN SMALL-SCALE STRUCTURE IN LOCAL GALACTIC NEUTRAL HYDROGEN AND IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, Gerrit L., E-mail: gverschu@naic.edu [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States)

    2015-11-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.

  12. ASSOCIATIONS BETWEEN SMALL-SCALE STRUCTURE IN LOCAL GALACTIC NEUTRAL HYDROGEN AND IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK

    International Nuclear Information System (INIS)

    Verschuur, Gerrit L.

    2015-01-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data

  13. Photocathodes inside superconducting cavities. Studies on the feasibility of a superconducting photoelectron source of high brightness. External report

    International Nuclear Information System (INIS)

    Michalke, A.

    1992-01-01

    We have done studies and experiments to explore the feasibility of a photoemission RF gun with a superconducting accelerator cavity. This concept promises to provide an electron beam of high brightness in continuous operation. It is thus of strong interest for a free-electron-laser or a linear collider based on a superconducting accelerator. In a first step we studied possible technical solutions for its components, especially the material of the photocathode and the geometrical shape of the cavity. Based on these considerations, we developed the complete design for a prototype electron source. The cathode material was chosen to be alkali antimonide. In spite of its sensitivity, it seems to be the best choice for a gun with high average current due to its high quantum efficiency. The cavity shape was at first a reentrant-type single cell of 500 MHz. It is now replaced by a more regular two-and-half cell shape, an independent half cell added for emittance correction. Its beam dynamics properties are investigated by numerical simulations; we estimated a beam brightness of about 5x10 11 A/(m.rad) 2 . But the mutual interactions between alkali antimonide photocathode and superconducting cavity must be investigated experimentally, because they are completely unkown. (orig.)

  14. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  15. A high resolution atlas of the galactic plane at 12 microns and 25 microns

    Science.gov (United States)

    Price, Stephan D.; Korte, Rose M.; Sample, Rebecca S.; Kennealy, John P.; Gonsalves, Robert A.

    1994-01-01

    High resolution images of the 12 micron and 25 micron IRAS survey data from each HCON crossing the Galactic Plane are being created for those regions that the original IRAS processing labeled as confused. This encompasses the area within 100 deg longitude of the Galactic Center and within 3 deg to 10 deg of the Plane. The procedures used to create the images preserve the spatial resolution inherent in the IRAS instrument. The images are separated into diffuse and point source components and candidate sources are extracted from the point source image after non-linear spatial sharpening. Fluxes are estimated by convolving the candidate sources with the point response function and cross-correlating with the original point source image. A source is considered real if it is seen on at least two HCON's with a rather generous flux match but a stringent position criterion. A number of fields spanning a range of source densities from low to high have been examined. Initial analysis indicates that the imaging and extraction works quite well up to a source density of about 100 sources per square degree or down to roughly 0.8 Janskys.

  16. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I.; Palma, T. [Millennium Institute of Astrophysics, Santiago (Chile); Minniti, D. [Departamento de Ciencias Físicas, Universidad Andres Bello, República 220, Santiago (Chile); Hajdu, G.; Alonso-García, J.; Hempel, M.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160 C, Concepción (Chile); Majaess, D. [Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 (Canada)

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentric distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)

  17. Radio observations of a galactic high energy gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Giacani, E.; Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    2001-10-01

    PSR B1706-44 is one of the very few galactic pulsars that has been discovered at TeV energies. PSR B1706-44 has been also detected in the X-ray domain. It has been suggested that the high energy radiation could be due to inverse Compton radiation from a pulsar wind nebula (PWN). It was reported on VLA high-resolution observations of a region around the pulsar PSR B1706-44 at 1.4, 4.8 and 8.4 GHz. The pulsar appears embedded in a synchrotron nebula. It was proposed that this synchrotron nebula is the radio counterpart of the high energy emission powered by the spin-down energy of the pulsar.

  18. On the Feasibility of Very-Low-Density Pure Metal Foams as Bright High-Energy X-ray Sources

    Science.gov (United States)

    Colvin, Jeffrey; Felter, Thomas

    2003-10-01

    We have used the Busquet approximation (M. Busquet, Phys. Fluids B 5(11), 4191 (1993)) to explore calculationally what the possible x-ray conversion efficiencies into the K-band would be from irradiating very-low-density pure metal foams with tens of kilojoules of 1/3-micron laser light. We will discuss the advantages of pure metal foams as bright high-energy x-ray sources, and some results of this calculational study. We will also present our ideas for how to fabricate pure metal foams with densities of a few milligrams per cubic centimeter. This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  19. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-01-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ∼5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P ∼> 3 x 10 24 W Hz -1 ) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ∼30% of the sample and ∼60% of all AGNs, and outnumbering radio-loud AGNs at ∼< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  20. Kiloamp high-brightness beams

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1987-01-01

    Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented

  1. Technological Challenges for High-Brightness Photo-Injectors

    CERN Multimedia

    Suberlucq, Guy

    2004-01-01

    Many applications, from linear colliders to free-electron lasers, passing through light sources and many other electron sources, require high brightness electron beams, usually produced by photo-injectors. Because certain parameters of these applications differ by several orders of magnitude, various solutions were implemented for the design and construction of the three main parts of the photo-injectors: lasers, photocathodes and guns. This paper summarizes the different requirements, how they lead to technological challenges and how R&D programs try to overcome these challenges. Some examples of state-of-the-art parts are presented.

  2. Discovery of a new Galactic bona fide luminous blue variable with Spitzer★

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Berdnikov, L. N.; Langer, N.; Grebel, E. K.; Bestenlehner, J. M.

    2014-11-01

    We report the discovery of a circular mid-infrared shell around the emission-line star Wray 16-137 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of Wray 16-137 with the Southern African Large Telescope revealed a rich emission spectrum typical of the classical luminous blue variables (LBVs) like P Cygni. Subsequent spectroscopic and photometric observations showed drastic changes in the spectrum and brightness during the last three years, meaning that Wray 16-137 currently undergoes an S Dor-like outburst. Namely, we found that the star has brightened by ≈1 mag in the V and Ic bands, while its spectrum became dominated by Fe II lines. Taken together, our observations unambiguously show that Wray 16-137 is a new member of the family of Galactic bona fide LBVs.

  3. EVN observations of low-luminosity flat-spectrum active galactic nuclei

    NARCIS (Netherlands)

    Caccianiga, A; Marcha, MJM; Thean, A; Dennett-Thorpe, J

    2001-01-01

    We present and discuss the results of very-long baseline interferometry (VLBI, EVN) observations of three low-luminosity (P-5GHz <10(25) W Hz(-1)) broad emission line active galactic nuclei (AGNs) carefully selected from a sample of flat-spectrum radio sources (CLASS). Based on the total and the

  4. Search for gamma-ray spectral modulations in Galactic pulsars

    Science.gov (United States)

    Majumdar, Jhilik; Calore, Francesca; Horns, Dieter

    2018-04-01

    Well-motivated extensions of the standard model predict ultra-light and fundamental pseudo-scalar particles (e.g., axions or axion-like particles: ALPs). Similarly to the Primakoff-effect for axions, ALPs can mix with photons and consequently be searched for in laboratory experiments and with astrophysical observations. Here, we search for energy-dependent modulations of high-energy gamma-ray spectra that are tell-tale signatures of photon-ALPs mixing. To this end, we analyze the data recorded with the Fermi-LAT from Galactic pulsars selected to have a line of sight crossing spiral arms at a large pitch angle. The large-scale Galactic magnetic field traces the shape of spiral arms, such that a sizable photon-ALP conversion probability is expected for the sources considered. For the nearby Vela pulsar, the energy spectrum is well described by a smooth model spectrum (a power-law with a sub-exponential cut-off) while for the six selected Galactic pulsars, a common fit of the ALPs parameters improves the goodness of fit in comparison to a smooth model spectrum with a significance of 4.6 σ. We determine the most-likely values for mass ma and coupling gaγγ to be ma=(3.6‑0.2 stat.+0.5 stat.± 0.2syst. ) neV and gaγγ=(2.3‑0.4stat.+0.3 stat.± 0.4syst.)× 10‑10 GeV‑1. In the error budget, we consider instrumental effects, scaling of the adopted Galactic magnetic field model (± 20 %), and uncertainties on the distance of individual sources. The best-fit parameters are by a factor of ≈ 3 larger than the current best limit on solar ALPs generation obtained with the CAST helioscope, although known modifications of the photon-ALP mixing in the high density solar environment could provide a plausible explanation for the apparent tension between the helioscope bound and the indication for photon-ALPs mixing reported here.

  5. Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Funk, Stefan; Digel, Seth

    2009-05-01

    The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.

  6. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    Science.gov (United States)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  7. Liquid-metal-jet anode electron-impact x-ray source

    International Nuclear Information System (INIS)

    Hemberg, O.; Otendal, M.; Hertz, H.M.

    2003-01-01

    We demonstrate an anode concept, based on a liquid-metal jet, for improved brightness in compact electron-impact x-ray sources. The source is demonstrated in a proof-of-principle experiment where a 50 keV, ∼100 W electron beam is focused on a 75 μm liquid-solder jet. The generated x-ray flux and brightness is quantitatively measured in the 7-50 keV spectral region and found to agree with theory. Compared to rotating-anode sources, whose brightness is limited by intrinsic thermal properties, the liquid-jet anode could potentially be scaled to achieve a brightness >100x higher than current state-of-the-art sources. Applications such as mammography, angiography, and diffraction would benefit from such a compact high-brightness source

  8. Consistency between the luminosity function of resolved millisecond pulsars and the galactic center excess

    Energy Technology Data Exchange (ETDEWEB)

    Ploeg, Harrison; Gordon, Chris [Department of Physics and Astronomy, Rutherford Building, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Crocker, Roland [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek (Australia); Macias, Oscar, E-mail: harrison.ploeg@pg.canterbury.ac.nz, E-mail: chris.gordon@canterbury.ac.nz, E-mail: Roland.Crocker@anu.edu.au, E-mail: oscar.macias@vt.edu [Center for Neutrino Physics, Department of Physics, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States)

    2017-08-01

    Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used a Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.

  9. A comment on the emission from the Galactic Center as seen by the Fermi telescope

    International Nuclear Information System (INIS)

    Boyarsky, Alexey; Malyshev, Denys; Ruchayskiy, Oleg

    2011-01-01

    In the recent paper of Hooper and Goodenough (2010) it was reported that γ-ray emission from the Galactic Center region contains an excess compared to the contributions from the large-scale diffuse emission and known point sources. This excess was argued to be consistent with a signal from annihilation of Dark Matter with a power law density profile. We reanalyze the Fermi data and find instead that it is consistent with the “standard model” of diffuse emission and of known point sources. The main reason for the discrepancy with the interpretation of Hooper and Goodenough (2010) is different (as compared to the previous works) spectrum of the point source at the Galactic Center assumed by Hooper and Goodenough (2010) . We discuss possible reasons for such an interpretation.

  10. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    Science.gov (United States)

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  11. Positrons annihilation and the Galactic center

    International Nuclear Information System (INIS)

    Wallyn, Pierre

    1992-01-01

    The Galactic center has been observed in gamma rays, many times since more than two decades and we do not still have a full comprehensive picture of this region. It is fairly well established that the 511 keV annihilation line has two origins: a steady diffuse emission, which follows more or less the type I supernovae distribution along the Galactic plane and a variable emission coming from the positrons emitted by (at least) one compact object and annihilating in a nearby cold molecular cloud. We present here an analysis of the profiles and intensifies of the 511 keV annihilation line observed in the direction of the Galactic center. We find that a warm medium (temperature of 8000 K) can describe the annihilation of positrons from the diffuse component of the line. The high state observations of the 511 keV line can be explained if the time-variable component is coming from the annihilation of the positrons in a cold medium (temperature around 80 K). This constraint on the annihilation medium temperature supports the association with the molecular cloud G-0.86-0.08 in the direction of 1E1740.7-2942. On may 22, 1989, HEXAGONE detected a narrow 511 keV line and also a broad emission around 170 keV in the direction of the Galactic center. Two weeks before, EXITE observed in the same direction a new transient source EXS 1737.9-2952 which showed a bump around 102 keV. We propose a simple semi-quantitative model which can mimic the bumps as well as its time variations and emphasize the strong similarities between EXS1737.9-2952 and Nova Muscae. We study the behaviour of positron annihilation by charge exchange in the cold phase of the interstellar medium. We calculate formula for the slowing-down time before thermalization of positrons of a given initial energy, for different medium densities. Our scenario explains the lack of detection of the recombination lines from positronium and gives new constraints on their possible observation. (author) [fr

  12. A LIMIT ON THE NUMBER OF ISOLATED NEUTRON STARS DETECTED IN THE ROSAT ALL-SKY-SURVEY BRIGHT SOURCE CATALOG

    International Nuclear Information System (INIS)

    Turner, Monica L.; Rutledge, Robert E.; Letcavage, Ryan; Shevchuk, Andrew S. H.; Fox, Derek B.

    2010-01-01

    Using new and archival observations made with the Swift satellite and other facilities, we examine 147 X-ray sources selected from the ROSAT All-Sky-Survey Bright Source Catalog (RASS/BSC) to produce a new limit on the number of isolated neutron stars (INSs) in the RASS/BSC, the most constraining such limit to date. Independent of X-ray spectrum and variability, the number of INSs is ≤48 (90% confidence). Restricting attention to soft (kT eff < 200 eV), non-variable X-ray sources-as in a previous study-yields an all-sky limit of ≤31 INSs. In the course of our analysis, we identify five new high-quality INS candidates for targeted follow-up observations. A future all-sky X-ray survey with eROSITA, or another mission with similar capabilities, can be expected to increase the detected population of X-ray-discovered INSs from the 8-50 in the BSC, to (for a disk population) 240-1500, which will enable a more detailed study of neutron star population models.

  13. Galactic vs. extragalactic origin of the peculiar transient SCP 06F6

    Science.gov (United States)

    Soker, Noam; Frankowski, Adam; Kashi, Amit

    2010-02-01

    We study four scenarios for the SCP 06F6 transient event that was announced recently. Some of these were previously briefly discussed as plausible models for SCP 06F6, in particular with the claimed detection of a z = 0.143 cosmological redshift of a Swan spectrum of a carbon rich envelope. We adopt this value of z for extragalactic scenarios. We cannot rule out any of these models, but can rank them from most to least preferred. Our favorite model is a tidal disruption of a CO white dwarf (WD) by an intermediate-mass black hole (IMBH). To account for the properties of the SCP 06F6 event, we have to assume the presence of a strong disk wind that was not included in previous numerical simulations. If the IMBH is the central BH of a galaxy, this explains the non-detection of a bright galaxy in the direction of SCP 06F6. Our second favorite scenario is a type Ia-like SN that exploded inside the dense wind of a carbon star. The carbon star is the donor star of the exploded WD. Our third favorite model is a Galactic source of an asteroid that collided with a WD. Such a scenario was discussed in the past as the source of dusty disks around WDs, but no predictions exist regarding the appearance of such an event. Our least favorite model is of a core collapse SN. The only way we can account for the properties of SCP 06F6 with a core collapse SN is if we assume the occurrence of a rare type of binary interaction.

  14. ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Elisabeth A. C. [San Jose State University, 1 Washington Square, San Jose, CA 95192 (United States); Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-20

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources of scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.

  15. MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER

    Energy Technology Data Exchange (ETDEWEB)

    Arai, T.; Matsuura, S.; Sano, K.; Matsumoto, T.; Nakagawa, T.; Onishi, Y. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Bock, J.; Lanz, A.; Korngut, P.; Zemcov, M. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Cooray, A.; Smidt, J. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G.; Lee, H. M. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shirahata, M. [National Institutes of Natural Science, National Astronomical Observatory of Japan (NAOJ), Tokyo 181-8588 (Japan); Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai 980-8578 (Japan)

    2015-06-10

    We report measurements of the diffuse galactic light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95–1.65 μm by the Cosmic Infrared Background ExpeRiment. Using the low-resolution spectrometer calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness toward six high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 μm intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurements in the optical and at near-infrared wavelengths longer than 1.8 μm. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.

  16. BrightFocus Foundation

    Science.gov (United States)

    ... About BrightFocus Foundation Featured Content BrightFocus: Investing in Science to Save Mind and Sight We're here to help. Explore ... recognition is very important. Monday, November 6, 2017 New Diagnosis? Managing a mind and sight disease is a journey. And you’ ...

  17. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  18. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Feng, Q.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Fleischhack, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Flinders, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Fortson, L., E-mail: asmith44@umd.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); and others

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.

  19. Comparison of the distribution of galactic γ-radiation and radio synchrotron radiation

    International Nuclear Information System (INIS)

    Haslam, C.G.T.; Stoffel, H.; Kearsey, S.; Osborne, J.L.; Phillipps, S.

    1981-01-01

    The new all-sky survey of continuum radio emission at 408 MHz of Haslam et al. (1981) is used to compare the distribution of radio emission in a band along the galactic equator for b 0 , but a longer tail than a Gaussian, for the combined data from 70 MeV-5 GeV. This has been used to convolve the 408 MHz data, and to produce a contour map and the cuts and averages corresponding to those given by Mayer-Hasselwander. The average intensities along the galactic plane for b 0 are given. The latitude profiles show that in three dimensions the gamma-ray and synchrotron emissivities are not proportional. However, in the Galactic plane the two emissivities can be in approximately constant ratio although there seems to be more structure in the gamma-ray emission. This implies that the square of the galactic magnetic field, B 2 is proportional to gas density under the right conditions. If the emission were dominated by discrete sources their number density would have to follow closely the product of cosmic ray density and B 2 . (U.K.)

  20. Searching for axion-like particles with active-galactic nuclei

    International Nuclear Information System (INIS)

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-12-01

    Strong mixing between photons and axion-like particles in the magnetic fields of clusters of galaxies induces a scatter in the observed luminosities of compact sources in the cluster. This is used to construct a new test for axion-like particles; applied to observations of active galactic nuclei it is strongly suggestive of the existence of a light axion-like particle. (orig.)

  1. Searching for axion-like particles with active-galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Shaw, Douglas J. [Queen Mary Univ. of London (United Kingdom). Astronomy Unit, School of Mathematical Sciences

    2009-12-15

    Strong mixing between photons and axion-like particles in the magnetic fields of clusters of galaxies induces a scatter in the observed luminosities of compact sources in the cluster. This is used to construct a new test for axion-like particles; applied to observations of active galactic nuclei it is strongly suggestive of the existence of a light axion-like particle. (orig.)

  2. Record high-average current from a high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Bruce; Barley, John; Bartnik, Adam; Bazarov, Ivan; Cultrera, Luca; Dobbins, John; Hoffstaetter, Georg; Johnson, Brent; Kaplan, Roger; Karkare, Siddharth; Kostroun, Vaclav; Li Yulin; Liepe, Matthias; Liu Xianghong; Loehl, Florian; Maxson, Jared; Quigley, Peter; Reilly, John; Rice, David; Sabol, Daniel [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States); and others

    2013-01-21

    High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4-5 MeV.

  3. Robust brightness enhancement across a luminance range of the glare illusion.

    Science.gov (United States)

    Tamura, Hideki; Nakauchi, Shigeki; Koida, Kowa

    2016-01-01

    The glare illusion refers to brightness enhancement and the perception of a self-luminous appearance that occurs when a central region is surrounded by a luminance gradient. The center region appears to be a light source, with its light dispersing into the surrounding region. If the luminous edge is critical for generating the illusion, modulating the perceived luminance of the image, and switching its appearance from luminous to nonluminous, would have a strong impact on lightness and brightness estimation. Here, we quantified the illusion in two ways, by assessing brightness enhancement and examining whether the center region appeared luminous. Thus, we could determine whether the two effects occurred jointly or independently. We examined a wide luminance range of center regions, from 0 to 200% relative to background. Brightness enhancement in the illusion was observed for a wide range of luminances (20% to 200% relative to background), while a luminous-white appearance was observed when the center region luminance was 145% of the background. These results exclude the possibility that brightness enhancement occurs because the stimuli appear self-luminous. We suggest that restoring the original image intensity precedes the perceptual process of lightness estimation.

  4. The Galactic Center View with Simbol-X

    Science.gov (United States)

    Raimondi, L.; Malaguti, G.; Angelini, L.; Cappi, M.; Grandi, P.; Palumbo, G. G. C.; Puccetti, S.

    2009-05-01

    The nature of the hard X-ray emission above 3 keV of the Galactic Centre (GC) is still source of controversy. Recent observations with Chandra are consistent with either a population of discrete sources or with a diffuse non thermal emission or, most likely, a combination of the two. The Simbol-X mission will be equipped with a grazing incident telescope imaging up to ~80 keV, providing an improvement of three orders of magnitude in sensitivity and angular resolution compared with the instruments that have operated so far above 10 keV. This capability will enable to directly disentangle between the discrete source versus the diffuse emission scenarios. This is demonstrated by the Simbol-X simulations of the GC shown here, where the input model includes a list of both diffuse and point sources (both resolved and unresolved) using the input spectrum observed with presently operating X-ray telescopes.

  5. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    Science.gov (United States)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  6. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  7. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  8. Dark matter and pulsar model constraints from Galactic center Fermi/LAT γ-ray observations

    Science.gov (United States)

    Gordon, Chris; Macias, Oscar

    2014-05-01

    Employing Fermi/LAT γ-ray observations, several independent groups have found excess extended γ-ray emission at the Galactic center (GC). Both, annihilating dark matter (DM) or a population of ~ 103 unresolved millisecond pulsars (MSPs) are regarded as well motivated possible explanations. However, there is significant uncertainties in the diffuse Galactic background at the GC. We have performed a revaluation of these two models for the extended γ-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We found that a population of several thousand MSPs with parameters consistent with the average spectral shape of Fermi/LAT measured MSPs was able to fit the GC excess emission. For DM, we found that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb with a of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  9. The transition from galactic to extragalactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2007-06-15

    We discuss the region of transition between galactic and extragalactic cosmic rays. The exact shapes and compositions of these two components contain information about important parameters of powerful astrophysical sources and the conditions in extragalactic space. Several types of experimental data, including the exact shape of the ultrahigh energy cosmic rays, their chemical composition and their anisotropy, and the fluxes of cosmogenic neutrinos have to be included in the solution of this problem.

  10. ASGARD: A LARGE SURVEY FOR SLOW GALACTIC RADIO TRANSIENTS. I. OVERVIEW AND FIRST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Peter K. G.; Bower, Geoffrey C.; Croft, Steve; Keating, Garrett K.; Law, Casey J.; Wright, Melvyn C. H., E-mail: pwilliams@astro.berkeley.edu [Department of Astronomy, B-20 Hearst Field Annex 3411, University of California, Berkeley, CA 94720-3411 (United States)

    2013-01-10

    Searches for slow radio transients and variables have generally focused on extragalactic populations, and the basic parameters of Galactic populations remain poorly characterized. We present a large 3 GHz survey performed with the Allen Telescope Array (ATA) that aims to improve this situation: ASGARD, the ATA Survey of Galactic Radio Dynamism. ASGARD observations spanned two years with weekly visits to 23 deg{sup 2} in two fields in the Galactic plane, totaling 900 hr of integration time on science fields and making it significantly larger than previous efforts. The typical blind unresolved source detection limit was 10 mJy. We describe the observations and data analysis techniques in detail, demonstrating our ability to create accurate wide-field images while effectively modeling and subtracting large-scale radio emission, allowing standard transient-and-variability analysis techniques to be used. We present early results from the analysis of two pointings: one centered on the microquasar Cygnus X-3 and one overlapping the Kepler field of view (l = 76 Degree-Sign , b = +13. Degree-Sign 5). Our results include images, catalog statistics, completeness functions, variability measurements, and a transient search. Out of 134 sources detected in these pointings, the only compellingly variable one is Cygnus X-3, and no transients are detected. We estimate number counts for potential Galactic radio transients and compare our current limits to previous work and our projection for the fully analyzed ASGARD data set.

  11. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    Science.gov (United States)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  12. WS1: one more new Galactic bona fide luminous blue variable★

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2015-04-01

    In this Letter, we report the results of spectroscopic and photometric monitoring of the candidate luminous blue variable (LBV) WS1, which was discovered in 2011 through the detection of a mid-infrared circular shell and follow-up optical spectroscopy of its central star. Our monitoring showed that WS1 brightened in the B, V and I bands by more than 1 mag during the last three years, while its spectrum revealed dramatic changes during the same time period, indicating that the star became much cooler. The light curve of WS1 demonstrates that the brightness of this star has reached maximum in 2013 December and then starts to decline. These findings unambiguously proved the LBV nature of WS1 and added one more member to the class of Galactic bona fide LBVs, bringing their number to sixteen (an updated census of these objects is provided).

  13. Space charge and wake field analysis for a high brightness electron source

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    We present a brief overview of the formalism used, and some simulation results for transverse and longitudinal motion of a bunch of particles moving through a cavity (e.g., the Brookhaven National Laboratory high brightness photocathode gun), including effects of the accelerating field, space charge forces (e.g., arising from the interaction of the cavity surface and the self field of the bunch). 3 refs., 12 figs

  14. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  15. Unidentified point sources in the IRAS minisurvey

    Science.gov (United States)

    Houck, J. R.; Soifer, B. T.; Neugebauer, G.; Beichman, C. A.; Aumann, H. H.; Clegg, P. E.; Gillett, F. C.; Habing, H. J.; Hauser, M. G.; Low, F. J.

    1984-01-01

    Nine bright, point-like 60 micron sources have been selected from the sample of 8709 sources in the IRAS minisurvey. These sources have no counterparts in a variety of catalogs of nonstellar objects. Four objects have no visible counterparts, while five have faint stellar objects visible in the error ellipse. These sources do not resemble objects previously known to be bright infrared sources.

  16. A low-latitude southern atlas of galactic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Poeppel, W G.L. [Instituto Argentino de Radioastronomia, Villa Elisa, Buenos Aires, Argentina; Olano, C A [Rio Grande do Sul, Universidade Federal, Porto Alegre, Brazil

    1979-01-01

    An atlas of 21 cm line profiles is described, which was made using a 30 m radio telescope with angular resolution of 0.5 deg, to study the properties of the low latitude H I gas excluding the complexity of the galactic plane. The results of the atlas itself are presented in two sets of diagrams: average profiles for each point, and contour maps. Analyses of the data have centered on an anomalous velocity cloud near galactic longitude (1) equals 349 deg, and latitude (b) equals plus 3 deg, strong kinematic asymmetries of the interstellar gas in the region of 1 between 348 and 12 deg and b between plus 3 and plus 17 deg, with positive radial velocities predominant, caused by a very intense source seemingly identical to Lindblad's (1967) feature A, and a comparative study of optical and radioastronomical data of the section of Gould's belt from 1 equals 300 to 12 deg.

  17. The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc

    Science.gov (United States)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2018-02-01

    Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38

  18. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Directory of Open Access Journals (Sweden)

    Weizhong Lan

    Full Text Available PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8 was kept under office-like illuminance (500 lux at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5, 2 hours (n = 5, 5 hours (n = 4 or 10 hours (n = 4. Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7, 30 minutes (n = 8, 15 minutes (n = 6, 7 minutes (n = 7 or 1 minute (n = 7 periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. RESULTS: Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. CONCLUSIONS: The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  19. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Science.gov (United States)

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  20. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    International Nuclear Information System (INIS)

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R.

    2014-01-01

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H 3 O + rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  1. Simulating Galaxies and Active Galactic Nuclei in the LSST Image Simulation Effort

    NARCIS (Netherlands)

    Pizagno II, Jim; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Chang, C.; Gibson, R. R.; Gilmore, K.; Grace, E.; Hannel, M.; Jernigan, J. G.; Jones, L.; Kahn, S. M.; Krughoff, S. K.; Lorenz, S.; Marshall, S.; Shmakova, S. M.; Sylvestri, N.; Todd, N.; Young, M.

    We present an extragalactic source catalog, which includes galaxies and Active Galactic Nuclei, that is used for the Large Survey Synoptic Telescope Imaging Simulation effort. The galaxies are taken from the De Lucia et. al. (2006) semi-analytic modeling (SAM) of the Millennium Simulation. The LSST

  2. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  3. Structure and content of the galaxy and galactic gamma rays

    International Nuclear Information System (INIS)

    1976-01-01

    The conference included papers on γ-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included

  4. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Nys, G.M.S.; van der Smagt, M.J.; de Haan, E.H.F.

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level

  5. A MULTIWAVELENGTH STUDY OF THE HIGH SURFACE BRIGHTNESS HOT SPOT IN PKS 1421-490

    International Nuclear Information System (INIS)

    Godfrey, L. E. H.; Bicknell, G. V.; Lovell, J. E. J.; Jauncey, D. L.; Gelbord, J.; Schwartz, D. A.; Birkinshaw, M.; Worrall, D. M.; Marshall, H. L.; Georganopoulos, M.; Perlman, E. S.; Murphy, D. W.

    2009-01-01

    Long Baseline Array imaging of the z = 0.663 broadline radio galaxy PKS 1421-490 reveals a 400 pc diameter high surface brightness hot spot at a projected distance of ∼40 kpc from the active galactic nucleus. The isotropic X-ray luminosity of the hot spot, L 2-10keV = 3 x 10 44 ergs s -1 , is comparable to the isotropic X-ray luminosity of the entire X-ray jet of PKS 0637-752, and the peak radio surface brightness is hundreds of times greater than that of the brightest hot spot in Cygnus A. We model the radio to X-ray spectral energy distribution using a one-zone synchrotron self-Compton model with a near equipartition magnetic field strength of 3 mG. There is a strong brightness asymmetry between the approaching and receding hotspots and the hot spot spectrum remains flat (α ∼ 0.5) well beyond the predicted cooling break for a 3 mG magnetic field, indicating that the hotspot emission may be Doppler beamed. A high plasma velocity beyond the terminal jet shock could be the result of a dynamically important magnetic field in the jet. There is a change in the slope of the hotspot radio spectrum at GHz frequencies, which we model by incorporating a cutoff in the electron energy distribution at γ min ∼ 650, with higher values implied if the hotspot emission is Doppler beamed. We show that a sharp decrease in the electron number density below a Lorentz factor of 650 would arise from the dissipation of bulk kinetic energy in an electron/proton jet with a Lorentz factor Γ jet ∼> 5.

  6. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  7. Monitoring and Mapping the Galactic Bulge (core Program)

    Science.gov (United States)

    Both neutron star and black hole binary transients are providing some of the most exciting RXTE science, and fortunately many are concentrated in the galactic bulge region. We propose to continue our twice weekly PCA scans of the region, which cover about 500 sq deg. The observations will be sensitive to new sources at the ~1 mCrab level (a factor of 10-60 more sensitive than the ASM in the region). We have had success finding new sources and new types of variability, including three millisecond pulsars, and new increased solid angle will improve the chances of finding more in the final RXTE years. We will continue efforts to search for variability in new and known sources. Companion follow-up proposals would be triggered by the results.

  8. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  9. The Fermi Galactic Center GeV Excess and Implications for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Blandford, R. D.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, F-34095 Montpellier (France); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Collaboration: (The Fermi LAT Collaboration); and others

    2017-05-01

    The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.

  10. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  11. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations

    Science.gov (United States)

    Gordon, Chris; Macías, Oscar

    2013-10-01

    Employing Fermi-LAT gamma-ray observations, several independent groups have found excess extended gamma-ray emission at the Galactic Center (GC). Both annihilating dark matter (DM) or a population of ˜103 unresolved millisecond pulsars (MSPs) are regarded as well-motivated possible explanations. However, there are significant uncertainties in the diffuse galactic background at the GC. We have performed a revaluation of these two models for the extended gamma-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point-source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar-population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We find that a population of 1000-2000 MSPs with parameters consistent with the average spectral shape of Fermi-LAT measured MSPs is able to fit the GC excess emission. For DM, we find that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb¯ with a ⟨σv⟩ of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  12. Star Formation at the Galactic Center

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  13. Sagittarius A* as an origin of the Galactic PeV cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Yutaka [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Murase, Kohta; Kimura, Shigeo S., E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: murase@psu.edu, E-mail: szk323@psu.edu [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-01

    Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ('Pevatron'). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 10{sup 7} yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.

  14. LSS-GAC - A LAMOST Spectroscopic Survey of the Galactic Anti-center

    Science.gov (United States)

    Liu, X.-W.; Yuan, H.-B.; Huo, Z.-Y.; Deng, L.-C.; Hou, J.-L.; Zhao, Y.-H.; Zhao, G.; Shi, J.-R.; Luo, A.-L.; Xiang, M.-S.; Zhang, H.-H.; Huang, Y.; Zhang, H.-W.

    2014-01-01

    As a major component of the LAMOST Galactic surveys, the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) will survey a significant volume of the Galactic thin/thick disks and halo in a contiguous sky area of ~3,400 sq.deg., centered on the Galactic anti-center (|b| ~ 3 M stars of all colors, uniformly and randomly selected from (r, g - r) and (r, r - i) Hess diagrams obtained from a CCD imaging photometric survey of ~5,400 sq.deg. with the Xuyi 1.04/1.20 m Schmidt Telescope, ranging from r = 14.0 to a limiting magnitude of r = 17.8 (18.5 for limited fields). The survey will deliver spectral classification, radial velocity (V r) and stellar parameters (effective temperature (T eff), surface gravity (log g) and metallicity [Fe/H]) for millions of Galactic stars. Together with Gaia which will provide accurate distances and tangential velocities for a billion stars, the LSS-GAC will yield a unique data set to study the stellar populations, chemical composition, kinematics and structure of the disks and their interface with the halo, identify streams of debris of tidally disrupted dwarf galaxies and clusters, probe the gravitational potential and dark matter distribution, map the 3D distribution of interstellar dust extinction, search for rare objects (e.g. extremely metal-poor or hyper-velocity stars), and ultimately advance our understanding of the assemblage of the Milky Way and other galaxies and the origin of regularity and diversity of their properties. The survey was initiated in the fall of 2012 and expected to complete in the spring of 2017. Hitherto, about 0.4 M spectra of S/N(λ7450) >= 10 per pixel have been accumulated. In addition, bright nights have been used to target stars brighter than 14 mag and have so far generated over 0.4 M spectra, yielding an excellent sample of local stars to probe the solar neighborhood. LSP3, a set of pipelines tailored to the need of LSS-GAC, for spectral flux-calibration, and radial velocity and stellar

  15. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  16. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  17. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  18. Modeling laser brightness from cross Porro prism resonators

    Science.gov (United States)

    Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich

    2006-08-01

    Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.

  19. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  20. Completion of the brightness upgrade of the ALS

    International Nuclear Information System (INIS)

    Steier, C; Madur, A; Bailey, B; Berg, K; Biocca, A; Black, A; Casey, P; Colomb, D; Gunion, B; Li, N; Marks, S; Nishimura, H; Pappas, C; Petermann, K; Portmann, G; Prestemon, S; Rawlins, A; Robin, D; Rossi, S; Scarvie, T

    2014-01-01

    The Advanced Light Source (ALS) at Berkeley Lab remains one of the brightest sources for soft x-rays worldwide. A multiyear upgrade of the ALS is underway, which includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the ALS brightness upgrade [1], which reduces the horizontal emittance from 6.3 to 2.0 nm (2.5 nm effective). Magnets for this upgrade were installed in late 2012 and early 2013 followed by user operation with the reduced emittance.

  1. Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history

    Science.gov (United States)

    Arca-Sedda, Manuel; Kocsis, Bence; Brandt, Timothy D.

    2018-06-01

    The Milky Way centre exhibits an intense flux in the gamma and X-ray bands, whose origin is partly ascribed to the possible presence of a large population of millisecond pulsars (MSPs) and cataclysmic variables (CVs), respectively. However, the number of sources required to generate such an excess is much larger than what is expected from in situ star formation and evolution, opening a series of questions about the formation history of the Galactic nucleus. In this paper we make use of direct N-body simulations to investigate whether these sources could have been brought to the Galactic centre by a population of star clusters that underwent orbital decay and formed the Galactic nuclear star cluster (NSC). Our results suggest that the gamma ray emission is compatible with a population of MSPs that were mass segregated in their parent clusters, while the X-ray emission is consistent with a population of CVs born via dynamical interactions in dense star clusters. Combining observations with our modelling, we explore how the observed γ ray flux can be related to different NSC formation scenarios. Finally, we show that the high-energy emission coming from the galactic central regions can be used to detect black holes heavier than 105M⊙ in nearby dwarf galaxies.

  2. Beam extraction dynamics at the space-charge-limit of the high brightness E-XFEL electron source at DESY-PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ye; Gjonaj, Erion; Weiland, Thomas [TEMF, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2015-07-01

    The physics of the photoemission, as one of the key issues for successful operation of linac based free-electron lasers like the European X-ray Free Electron Laser (E-XFEL) and the Free-electron Laser in Hamburg (FLASH), is playing an increasingly important role in the high brightness DESY-PITZ electron source. We study photoemission physics and discuss full three-dimensional numerical modeling of the electron bunch emission. The beam extraction dynamics at the photocathode has been investigated through the 3D fully electromagnetic (EM) Particle-in-Cell (PIC) solver of CST Particle Studio under the assumption of the photoemission source operating at or close to its space charge limit. PIC simulation results have shown good agreements with measurements on total emitted bunch charge for distinct experimental parameters. Further comparisons showed a general failure for the conventional Poisson solver based tracking algorithm to correctly predict the beam dynamics at the space charge limit. It is furthermore found, that fully EM PIC simulations are also consistent with a simple emission model based on the multidimensional Child-Langmuir law.

  3. Is 4C+29.48 a γ-ray source?

    Science.gov (United States)

    Gabányi, K. É.; Frey, S.; An, T.

    2018-05-01

    Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims: The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a 1'-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods: We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results: According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions: We propose to

  4. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1982-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the plane due to high space velocities imparted to the pulsars at birth. Statistical studies of the properties of large numbers of pulsars and proper motion measurements demonstrate that the effective magnetic dipole moments decay on a timescale of about 8 million years. This work provides a better knowledge of pulsar evolution and ages and shows that a birthrate of one pulsar every 20 to 50 years is required to sustain the observed galactic population of 300,000. This rate is comparable with most recent estimates of the galactic supernova rate, but requires nearly all supernovae to produce active pulsars. (orig.)

  5. Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess.

    Science.gov (United States)

    Bartels, Richard; Krishnamurthy, Suraj; Weniger, Christoph

    2016-02-05

    Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the Inner Galaxy, at energies around a few GeV. This excess resembles remarkably well a signal from dark-matter annihilation. One of the most compelling astrophysical interpretations is that the excess is caused by the combined effect of a previously undetected population of dim γ-ray sources. Because of their spectral similarity, the best candidates are millisecond pulsars. Here, we search for this hypothetical source population, using a novel approach based on wavelet decomposition of the γ-ray sky and the statistics of Gaussian random fields. Using almost seven years of Fermi-LAT data, we detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10.0σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission. We argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation.

  6. THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. II. THE W3 REGION IN CO J = 2-1, 13CO J = 2-1, AND CO J = 3-2 EMISSION

    International Nuclear Information System (INIS)

    Bieging, John H.; Peters, William L.

    2011-01-01

    We present fully sampled 38'' resolution maps of the CO and 13 CO J = 2-1 lines in the molecular clouds toward the H II region complex W3. The maps cover a 2. 0 0 x 1. 0 67 section of the galactic plane and span -70 to -20 km s -1 (LSR) in velocity with a resolution of ∼1.3 km s -1 . The velocity range of the images includes all the gas in the Perseus spiral arm. We also present maps of CO J = 3-2 emission for a 0. 0 5 x 0. 0 33 area containing the H II regions W3 Main and W3(OH). The J = 3-2 maps have velocity resolution of 0.87 km s -1 and 24'' angular resolution. Color figures display the peak line brightness temperature, the velocity-integrated intensity, and velocity channel maps for all three lines, and also the (CO/ 13 CO) J = 2-1 line intensity ratios as a function of velocity. The line intensity image cubes are made available in standard FITS format as electronically readable files. We compare our molecular line maps with the 1.1 mm continuum image from the BOLOCAM Galactic Plane Survey (BGPS). From our 13 CO image cube, we derive kinematic information for the 65 BGPS sources in the mapped field, in the form of Gaussian component fits.

  7. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  8. Do Low Surface Brightness Galaxies Host Stellar Bars?

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-09-20

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  9. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  10. The isotropic radio background revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  11. The isotropic radio background revisited

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2014-01-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky

  12. An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly

    Science.gov (United States)

    Cowie, L. L.; Barger, A. J.

    2008-10-01

    We present an integrated study of star formation and galactic stellar mass assembly from z = 0.05 to 1.5 and galactic metallicity evolution from z = 0.05 to 0.9 using a very large and highly spectroscopically complete sample selected by rest-frame NIR bolometric flux in the GOODS-N. We assume a Salpeter IMF and fit Bruzual & Charlot models to compute the galactic stellar masses and extinctions. We determine the expected formed stellar mass density growth rates produced by star formation and compare them with the growth rates measured from the formed stellar mass functions by mass interval. We show that the growth rates match if the IMF is slightly increased from the Salpeter IMF at intermediate masses (~10 M⊙). We investigate the evolution of galaxy color, spectral type, and morphology with mass and redshift and the evolution of mass with environment. We find that applying extinction corrections is critical when analyzing galaxy colors; e.g., nearly all of the galaxies in the green valley are 24 μm sources, but after correcting for extinction, the bulk of the 24 μm sources lie in the blue cloud. We find an evolution of the metallicity-mass relation corresponding to a decrease of 0.21 +/- 0.03 dex between the local value and the value at z = 0.77 in the 1010-1011 M⊙ range. We use the metallicity evolution to estimate the gas mass of the galaxies, which we compare with the galactic stellar mass assembly and star formation histories. Overall, our measurements are consistent with a galaxy evolution process dominated by episodic bursts of star formation and where star formation in the most massive galaxies (gtrsim1011 M⊙) ceases at z Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Balloon observations of galactic and extragalactic objects at 100 microns.

    Science.gov (United States)

    Hoffmann, W. F.

    1972-01-01

    Recent far-infrared balloon-borne instruments have yielded observations of a number of bright sources at 100 microns. Many of these coincide with HII regions where molecular line emision has been detected. There is some indication of 100 micron emission which does not coincide with radio measurements.

  14. Comparison of Model Prediction With Measurements of Galactic Background Noise at L-Band

    DEFF Research Database (Denmark)

    Le Vine, David M.; Abraham, Saji; Kerr, Yann H.

    2005-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial sources (mostly galactic) is strong in this w...

  15. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, Daniel [Stanford Univ., CA (United States)

    2011-05-01

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  16. Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Goodenough, Lisa; /New York U.

    2010-10-01

    We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10{sup o} around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25{sup o} and 10{sup o} from the Galactic Center is well described by a the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25{sup o} ({approx}175 parsecs) of the Galactic Center, in contrast, cannot be accounted for by these processes or known sources. We find that an additional component of gamma ray emission is clearly present which is highly concentrated around the Galactic Center, but is not point-like in nature. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution ({rho} {proportional_to} r{sup -1.34{+-}0.04}). The observed spectrum of this component, which peaks at energies between 2-4 GeV (in E{sup 2} units), is well fit by that predicted for a 7.3-9.2 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of <{sigma}{nu}> = 3.3 x 10{sup -27} to 1.5 x 10{sup -26} cm{sup 3}/s, depending on how the dark matter distribution is normalized. We discuss other possible sources for this component, but argue that they are unlikely to account for the observed emission.

  17. The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10

    Science.gov (United States)

    Shishkovsky, Laura; Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Tremou, Evangelia; Li, Kwan-Lok; Salinas, Ricardo; Tudor, Vlad; Miller-Jones, James C. A.; Maccarone, Thomas J.; Heinke, Craig O.; Sivakoff, Gregory R.

    2018-03-01

    We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s‑1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual “red straggler” component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities.

  18. Proxy magnetometry of the photosphere: why are G-band bright points so bright?

    NARCIS (Netherlands)

    Rutten, R.J.; Kiselman, Dan; Voort, Luc Rouppe van der; Plez, Bertrand

    2000-01-01

    We discuss the formation of G-band bright points in terms of standard uxtube modeling, in particular the 1D LTE models constructed by Solanki and coworkers. Combined with LTE spectral synthesis they explain observed G-band bright point contrasts quite well. The G-band contrast increase over the

  19. Comment on "Characterizing the population of pulsars in the Galactic bulge with the Fermi large area telescope" [arXiv:1705.00009v1

    Science.gov (United States)

    Bartels, Richard; Hooper, Dan; Linden, Tim; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Slatyer, Tracy R.

    2018-06-01

    The Fermi-LAT Collaboration recently presented a new catalog of gamma-ray sources located within the 40 ° × 40 ° region around the Galactic Center Ajello et al. (2017) - the Second Fermi Inner Galaxy (2FIG) catalog. Utilizing this catalog, they analyzed models for the spatial distribution and luminosity function of sources with a pulsar-like gamma-ray spectrum. Ajello et al. (2017) v1 also claimed to detect, in addition to a disk-like population of pulsar-like sources, an approximately 7 σ preference for an additional centrally concentrated population of pulsar-like sources, which they referred to as a "Galactic Bulge" population. Such a population would be of great interest, as it would support a pulsar interpretation of the gamma-ray excess that has long been observed in this region. In an effort to further explore the implications of this new source catalog, we attempted to reproduce the results presented by the Fermi-LAT Collaboration, but failed to do so. Mimicking as closely as possible the analysis techniques undertaken in Ajello et al. (2017), we instead find that our likelihood analysis favors a very different spatial distribution and luminosity function for these sources. Most notably, our results do not exhibit a strong preference for a "Galactic Bulge" population of pulsars. Furthermore, we find that masking the regions immediately surrounding each of the 2FIG pulsar candidates does not significantly impact the spectrum or intensity of the Galactic Center gamma-ray excess. Although these results refute the claim of strong evidence for a centrally concentrated pulsar population presented in Ajello et al. (2017), they neither rule out nor provide support for the possibility that the Galactic Center excess is generated by a population of low-luminosity and currently largely unobserved pulsars. In a spirit of maximal openness and transparency, we have made our analysis code available at https://github.com/bsafdi/GCE-2FIG.

  20. G25.5 + 0.2: a very young supernova remnant or a galactic planetary nebula?

    International Nuclear Information System (INIS)

    White, R.L.; Becker, R.H.

    1990-01-01

    G25.5 + 0.2, a radio source suggested by previous authors to be a very young galactic supernova remnant, is more likely to be a planetary nebula. Its IRAS colours and fluxes and its radio spectrum and morphology are all consistent with the properties of planetary nebulae; its radio flux and distance imply a large mass of ionized gas, which is expected from a Type I planetary nebula lying in the galactic plane. We suggest some definitive observations which should be able to determine whether this interesting object is a planetary nebula or a supernova remnant. (author)

  1. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different...

  2. PePSS - A portable sky scanner for measuring extremely low night-sky brightness

    Science.gov (United States)

    Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František

    2018-05-01

    A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.

  3. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  4. NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814

    Science.gov (United States)

    Tortosa, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Middei, R.; Piconcelli, E.; Brenneman, L. W.; Cappi, M.; Dadina, M.; De Rosa, A.; Petrucci, P. O.; Ursini, F.; Walton, D. J.

    2018-01-01

    We report on the NuSTAR observations of two bright Seyfert 1 galaxies, namely MCG +8-11-11 (100 ks) and NGC 6814 (150 ks). The main goal of these observations was to investigate the Comptonization mechanisms acting in the innermost regions of an active galactic nucleus (AGN) which are believed to be responsible for the UV/X-ray emission. The spectroscopic analysis of the NuSTAR spectra of these two sources revealed that although they had different properties overall (black hole masses, luminosity and Eddington ratios), they had very similar coronal properties. Both presented a power-law spectrum with a high-energy cut-off at ∼150-200 keV, a relativistically broadened Fe K α line and the associated disc reflection component, plus a narrow iron line likely emitted in Compton thin and distant matter. The intrinsic continuum was well described by Comptonization models that show for MCG +8-11-11 a temperature of the coronal plasma of kTe ∼ 60 keV and an extrapolated optical depth τ = 1.8; for NGC 6814, the coronal temperature was kTe ∼ 45 keV with an extrapolated optical depth of τ = 2.5. We compare and discuss these values to some most common Comptonization models that aim at explaining the energy production and stability of coronae in AGNs.

  5. THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 μM OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Merello, Manuel; Evans II, Neal J. [The University of Texas at Austin, Department of Astronomy, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Shirley, Yancy L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Rosolowsky, Erik [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, AB T6G 2E1 (Canada); Ginsburg, Adam [European Southern Observatory, ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-95748 Garching bei Munchen (Germany); Bally, John [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Battersby, Cara; Dunham, Michael M., E-mail: manuel@astro.as.utexas.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States)

    2015-05-15

    We present 107 maps of continuum emission at 350 μm from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with three additional maps covering star-forming regions in the outer Galaxy. The higher resolution of the SHARC-II images (8.″5 beam) compared with the 1.1 mm images from BGPS (33″ beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 μm maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3 K and mean of 16.3 ± 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH{sub 3} observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than 2 substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 μm compared to the mass of their parental clump is ∼0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm{sup −2}, and 18 (6%) exceed 1.0 g cm{sup −2}, thresholds for massive star formation suggested by theorists.

  6. A COMPARISON OF FAR-IR AND H I AS REDDENING PREDICTORS AT HIGH GALACTIC LATITUDE

    International Nuclear Information System (INIS)

    Peek, J. E. G.

    2013-01-01

    Both the Galactic 21 cm line flux from neutral hydrogen (H I) in interstellar medium and the far-infrared (FIR) emission from Galactic dust grains have been used to estimate the strength of Galactic reddening of distant sources. In this work we use a collection of uniform color distant galaxies as color standards to determine whether the H I method or the FIR method is superior. We find that the two methods both produce reasonably accurate maps, but that both show significant errors as compared to the typical color of the background galaxies. We find that a mixture of the FIR and H I maps in roughly a 2-to-1 ratio is clearly superior to either map alone. We recommend that future reddening maps should use both sets of data, and that well-constructed FIR and H I maps should both be vigorously pursued.

  7. Investigating a population of infrared-bright gamma-ray burst host galaxies

    Science.gov (United States)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-04-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  8. The bright and choked gamma-ray burst contribution to the IceCube and ANTARES low-energy excess

    Science.gov (United States)

    Denton, Peter B.; Tamborra, Irene

    2018-04-01

    The increasing statistics of the high-energy neutrino flux observed by the IceCube Observatory points towards an excess of events above the atmospheric neutrino background in the 30–400 TeV energy range. Such an excess is compatible with the findings of the ANTARES Telescope and it would naturally imply the possibility that more than one source class contributes to the observed flux. Electromagnetically hidden sources have been invoked to interpret this excess of events at low energies. By adopting a unified model for the electromagnetically bright and choked gamma-ray bursts and taking into account particle acceleration at the internal and collimation shock radii, we discuss whether bright and choked bursts are viable candidates. Our findings suggest that, although producing a copious neutrino flux, choked and bright astrophysical jets cannot be the dominant sources of the excess of neutrino events. A fine tuning of the model parameters or distinct scenarios for choked jets should be invoked in order to explain the low-energy neutrino data of IceCube and ANTARES.

  9. OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Łukasz; Rynkiewicz, Alicja E.; Skowron, Jan; Kozłowski, Szymon; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Soszyński, Igor; Pietrzyński, Grzegorz; Poleski, Radosław; Pietrukowicz, Paweł; Pawlak, Michał, E-mail: lw@astrouw.edu.pl [Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2015-01-01

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg{sup 2} toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy.

  10. The galactic distribution of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Hidayat, B.; Supelli, K.; Hucht, K.A. van der

    1982-01-01

    On the basis of the most recent compilation of narrow-band photometry and absolute visual magnitudes of Wolf-Rayet stars, and adopting a normal interstellar extinction law in all directions, the galactic distribution of 132 of the 159 known galactic WR stars is presented and discussed. The spiral structure is found to be more clearly pronounced than in earlier studies. Furthermore the authors find an indication of two spiral arms at r=4 and 6 kpc. There appears to be an asymmetry of the z-distribution of single stars with respect to galactic longitude. The location of the WC8.5 and WC9 stars between 4.5 and 9 kpc from the galactic center is discussed in the context of Maeder's red supergiant to WR star scenario. (Auth.)

  11. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    Science.gov (United States)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  12. VizieR Online Data Catalog: MSX high-contrast IRDCs with NH3 (Chira+,

    Science.gov (United States)

    Chira, R.-A.; Beuther, H.; Linz, H.; Walmsley, C. M.; Menten, K. M.; Bonfman, L.

    2013-02-01

    Based on MSX data, a catalogue of more than 10,000 candidate IRDCs was compiled. From this catalogue we selected a complete sample of northern hemisphere high-contrast IRDCs with Galactic longitudes >=19.27° (and nine exceptions with Galactic longitudes <19°). The sample was observed in ammonia (1,1) and (2,2) inversion transitions with the Effelsberg 100-m telescope. NH3 parameters are derived for 109 sample sources. For each source galactic coordinates, brightness temperatures, line width FWHMs and optical depths of (1,1) and (2,2) inversion lines and LSR velocity of (1,1) inversion line are given. Furthermore, we derived the rotation and kinetic temperatures, ammonia column densities, kinematic distances and virial masses using the NH3 data. In addition, notes about whether the sources being associated with Spitzer sources or not are given. Using ATLASGAL data, the 870 micron flux densities gas masses, virial parameters, H2 column densities and NH3 abundances are given. In addition, we listed the sample sources where no ammonia which did not fulfil our selection criteria. (4 data files).

  13. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  14. Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite; Etude et modelisation des noyaux actifs de galaxie les plus energetiques avec le satellite Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, D.

    2010-06-15

    The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion

  15. Proper Motions and Structural Parameters of the Galactic Globular Cluster M71

    Energy Technology Data Exchange (ETDEWEB)

    Cadelano, M.; Dalessandro, E.; Ferraro, F. R.; Miocchi, P.; Lanzoni, B.; Pallanca, C. [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Massari, D. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2017-02-20

    By exploiting two ACS/ HST data sets separated by a temporal baseline of ∼7 years, we have determined the relative stellar proper motions (PMs; providing membership) and the absolute PM of the Galactic globular cluster M71. The absolute PM has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low-latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations to re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally, we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources.

  16. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    OpenAIRE

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows....

  17. The first fermi-lat catalog of sources above 10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Bernieri, E.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hewitt, J.; Hill, A. B.; Horan, D.; Hughes, R. E.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Kawano, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Massaro, E.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Saz Parkinson, P. M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stawarz, Łukasz; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.

    2013-11-14

    We present a catalog of gamma-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first three years of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10GeV (>25GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27+/-8 % of the isotropic gamma-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based gamma-ray observatories.

  18. Bright luminance from silicon dioxide film with carbon nanotube electron beam exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Woong; Hong, Ji Hwan; Kang, Jung Su; Callixte, Shikili; Park, Kyu Chang, E-mail: kyupark@khu.ac.kr

    2016-02-15

    We observed the bright bluish-white luminescence with naked eye from carbon nanotube electron beam exposed silicon dioxide (SiO{sub 2}) thin film on Si substrate. The luminescence shows a peak intensity at 2.7 eV (460 nm) with wide spread up to 600 nm after the C-beam exposed on SiO{sub 2} thin film. The C-beam exposure system is composed of carbon nanotube emitters as electron beam source. The brightness strongly depend on the exposure condition. Luminescence characteristic was optimized by C-beam adjustment to observe with the naked eye. The cause of luminescence in the C-beam exposed SiO{sub 2} thin film is analyzed by CL microscopy, FT-IR, AFM and ellipsometer. Decrease of Si–O bonding was observed after C-beam exposure, and this reveals that oxygen deficient defects which are irradiation-sensitive cause 2.7 eV peak of luminescence. - Highlights: • We observed bright luminescence for SiO{sub 2} thin film with naked eye by carbon nanotube electron beam (C-beam) exposure technique. • The bright luminance from C-beam exposed SiO{sub 2} film will open novel silicon optoelectronics.

  19. On the contribution of active galactic nuclei to the high-redshift metagalactic ionizing background

    Science.gov (United States)

    D'Aloisio, Anson; Upton Sanderbeck, Phoebe R.; McQuinn, Matthew; Trac, Hy; Shapiro, Paul R.

    2017-07-01

    Motivated by the claimed detection of a large population of faint active galactic nuclei (AGNs) at high redshift, recent studies have proposed models in which AGNs contribute significantly to the z > 4 H I ionizing background. In some models, AGNs are even the chief sources of reionization. If proved true, these models would make necessary a complete revision to the standard view that galaxies dominated the high-redshift ionizing background. It has been suggested that AGN-dominated models can better account for two recent observations that appear to be in conflict with the standard view: (1) large opacity variations in the z ˜ 5.5 H I Ly α forest, and (2) slow evolution in the mean opacity of the He II Ly α forest. Large spatial fluctuations in the ionizing background from the brightness and rarity of AGNs may account for the former, while the earlier onset of He II reionization in these models may account for the latter. Here we show that models in which AGN emissions source ≳50 per cent of the ionizing background generally provide a better fit to the observed H I Ly α forest opacity variations compared to standard galaxy-dominated models. However, we argue that these AGN-dominated models are in tension with constraints on the thermal history of the intergalactic medium (IGM). Under standard assumptions about the spectra of AGNs, we show that the earlier onset of He II reionization heats up the IGM well above recent temperature measurements. We further argue that the slower evolution of the mean opacity of the He II Ly α forest relative to simulations may reflect deficiencies in current simulations rather than favour AGN-dominated models as has been suggested.

  20. Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays

    International Nuclear Information System (INIS)

    Westphal, Andrew J.

    2000-01-01

    Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ∼3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station

  1. The pulsar contribution to the diffuse galactic gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.; Kanbach, G.; Hunter, S.D.

    1997-01-01

    There is active interest in the extent to which unresolved gamma-ray pulsars contribute to the Galactic diffuse emission, and in whether unresolved gamma-ray pulsars could be responsible for the excess of diffuse Galactic emission above 1 GeV that has been observed by EGRET. The diffuse gamma......-ray intensity due to unresolved pulsars is directly linked to the number of objects that should be observed in the EGRET data. We can therefore use our knowledge of the unidentified EGRET sources to constrain model parameters like the pulsar birthrate and their beaming angle. This analysis is based only...... on the properties of the six pulsars that have been identified in the EGRET data and is independent of choice of a pulsar emission model. We find that pulsars contribute very little to the diffuse emission at lower energies, whereas above 1 GeV they can account for 18% of the observed intensity in selected regions...

  2. 2XMM ultraluminous X-ray source candidates in nearby galaxies

    Science.gov (United States)

    Walton, D. J.; Roberts, T. P.; Mateos, S.; Heard, V.

    2011-09-01

    Ultraluminous X-ray sources (ULXs) are some of the most enigmatic X-ray bright sources known to date. It is generally accepted that they cannot host black holes as large as those associated with active galaxies, but they appear to be significantly more luminous than their better understood Galactic X-ray binary (XRB) cousins, while displaying an intriguing combination of differences and similarities with them. Through studying large, representative samples of these sources we may hope to enhance our understanding of them. To this end, we derive a large catalogue of 650 X-ray detections of 470 ULX candidates, located in 238 nearby galaxies, by cross-correlating the 2XMM Serendipitous Survey with the Third Reference Catalogue of Bright Galaxies. The presented dedicated catalogue offers a significant improvement over those previously published in terms of both the number and the contribution of background contaminants, e.g. distant quasars, which we estimate to be at most 24 per cent, but more likely ˜17 per cent. To undertake population studies, we define a 'complete' sub-sample of sources compiled from observations of galaxies with sensitivity limits below 1039 erg s-1. The luminosity function of this sample is consistent with a simple power law of form N(>LX) ∝ L-0.96 ± 0.11X. Although we do not find any statistical requirement for a cut-off luminosity of Lc˜ 1040 erg s-1, as has been reported previously, we are not able to rule out its presence. Also, we find that the number of ULXs per unit galaxy mass, Su, decreases with increasing galaxy mass for ULXs associated with spiral galaxies, and is well modelled with a power law of form Su ∝ M-0.64 ± 0.07. This is in broad agreement with previous results, and is likely to be a consequence of the decrease in specific star formation and increase in metallicity with increasing spiral galaxy mass. Su is consistent with being constant with galaxy mass for sources associated with elliptical galaxies, implying this

  3. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    Science.gov (United States)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  4. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis

    Science.gov (United States)

    Forgan, Duncan H.

    2017-10-01

    The Zoo solution to Fermi's Paradox proposes that extraterrestrial intelligences (ETIs) have agreed to not contact the Earth. The strength of this solution depends on the ability for ETIs to come to agreement, and establish/police treaties as part of a so-called `Galactic Club'. These activities are principally limited by the causal connectivity of a civilization to its neighbours at its inception, i.e. whether it comes to prominence being aware of other ETIs and any treaties or agreements in place. If even one civilization is not causally connected to the other members of a treaty, then they are free to operate beyond it and contact the Earth if wished, which makes the Zoo solution `soft'. We should therefore consider how likely this scenario is, as this will give us a sense of the Zoo solution's softness, or general validity. We implement a simple toy model of ETIs arising in a Galactic Habitable Zone, and calculate the properties of the groups of culturally connected civilizations established therein. We show that for most choices of civilization parameters, the number of culturally connected groups is >1, meaning that the Galaxy is composed of multiple Galactic Cliques rather than a single Galactic Club. We find in our models for a single Galactic Club to establish interstellar hegemony, the number of civilizations must be relatively large, the mean civilization lifetime must be several millions of years, and the inter-arrival time between civilizations must be a few million years or less.

  5. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    Science.gov (United States)

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  6. Galactic Habitable Zone and Astrobiological Complexity

    Science.gov (United States)

    Vukotic, B.

    2012-12-01

    This is a short thesis description and for the sake of brevity most things are left out. For more details, those interested are further directed to the thesis related papers in this article reference list. Thesis itself is available at the University of Belgrade library "Svetozar Markovic" (Serbian version only). In this thesis we study the astrobiological history of the Galactic habitable zone through the means of numerical modeling. First group of simulations are unidimensional (time-axis) toy models examine the influence of global regulation mechanisms (gamma-ray bursts and supernovae) on temporal evolution of Galactic astrobiological complexity. It is shown that under the assumption of global regulation classical anti SETI arguments can be undermined. Second group of simulations are more complex bidimensional probabilistic cellular automata models of the Galactic thin disk. They confirm the findings of the toy models and give some insights into the spatial clustering of astrobiological complexity. As a new emerging multidisciplinary science the basic concepts of astrobiology are poorly understood and although all the simulations present here do not include some basic physics (such as Galactic kinematics and dynamics), the input parameters are somewhat arbitrary and could use a future refinement (such as the boundaries of the Galactic habitable zone). This is the cause for low weight and high uncertainty in the output results of the simulations. However, the probabilistic cellular automata has shown as a highly adaptable modeling platform that can simulate various class of astrobiological models with great ease.

  7. Bright optical synchrotron counterpart of the western hot spot in Pictor A

    International Nuclear Information System (INIS)

    Roeser, H.J.; Meisenheimer, K.; Royal Observatory, Edinburgh, Scotland)

    1987-01-01

    A B = 19.5 mag bright, highly polarized object was detected close to the western hot spot in Pictor A during an optical polarization survey of radio hot spots in classical double radio sources. The unresolved source exhibits a featureless continuum between 400 and 800 nm and is identified as the optical counterpart of the radio hot spot. It is surrounded by optical filaments aligned roughly perpendicular to the source axis. The hot spot is also marginally detected in an Einstein IPC frame. 17 references

  8. Supra-galactic colour patterns in globular cluster systems

    Science.gov (United States)

    Forte, Juan C.

    2017-07-01

    An analysis of globular cluster systems associated with galaxies included in the Virgo and Fornax Hubble Space Telescope-Advanced Camera Surveys reveals distinct (g - z) colour modulation patterns. These features appear on composite samples of globular clusters and, most evidently, in galaxies with absolute magnitudes Mg in the range from -20.2 to -19.2. These colour modulations are also detectable on some samples of globular clusters in the central galaxies NGC 1399 and NGC 4486 (and confirmed on data sets obtained with different instruments and photometric systems), as well as in other bright galaxies in these clusters. After discarding field contamination, photometric errors and statistical effects, we conclude that these supra-galactic colour patterns are real and reflect some previously unknown characteristic. These features suggest that the globular cluster formation process was not entirely stochastic but included a fraction of clusters that formed in a rather synchronized fashion over large spatial scales, and in a tentative time lapse of about 1.5 Gy at redshifts z between 2 and 4. We speculate that the putative mechanism leading to that synchronism may be associated with large scale feedback effects connected with violent star-forming events and/or with supermassive black holes.

  9. Bright X-ray transient in the LMC

    Science.gov (United States)

    Saxton, R.; Read, A. M.; Li, D. Y.

    2018-01-01

    We report a bright X-ray transient in the LMC from an XMM-Newton slew made on 5th January 2018. The source, XMMSL2 J053629.4-675940, had a soft X-ray (0.2-2 keV) count rate in the EPIC-pn detector, medium filter of 1.82+/-0.56 c/s, equivalent to a flux Fx=2.3+/-0.7E-12 ergs/s/cm2 for a nominal spectrum of a power-law of slope 2 absorbed by a column NH=3E20 cm^-2.

  10. Fast radio bursts: the observational case for a Galactic origin

    OpenAIRE

    Maoz, Dan; Loeb, Abraham; Shvartzvald, Yossi; Sitek, Monika; Engel, Michael; Kiefer, Flavien; Kiraga, Marcin; Levi, Amir; Mazeh, Tsevi; Pawlak, Michal; Rich, R. Michael; Tal-Or, Lev; Wyrzykowski, Lukasz

    2015-01-01

    There are by now ten published detections of fast radio bursts (FRBs), single bright GHz-band millisecond pulses of unknown origin. Proposed explanations cover a broad range from exotic processes at cosmological distances to atmospheric and terrestrial sources. Loeb et al. have previously suggested that FRB sources could be nearby flare stars, and pointed out the presence of a W-UMa-type contact binary within the beam of one out of three FRB fields that they examined. Using time-domain optica...

  11. Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data

    Energy Technology Data Exchange (ETDEWEB)

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J. [Department of Physics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628 (United States); Wehrle, Ann E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Unwin, Stephen C., E-mail: revalsm1@tcnj.edu [Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 321-100, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2014-04-10

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ∼2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of –1.5 to –2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ∼15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ∼1%-2%, fluctuations in brightness.

  12. BrightStat.com: free statistics online.

    Science.gov (United States)

    Stricker, Daniel

    2008-10-01

    Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.

  13. A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg.

    Science.gov (United States)

    Aharonian, F. A.; Akhperjanian, A. G.; Beilicke, M.; Bernloehr, K.; Bojahr, H.; Bolz, O.; Boerst, H.; Coarasa, T.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Goetting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Puehlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Roehring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Voelk, H. J.; Wiedner, C. A.; Wittek, W.

    2002-12-01

    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2o < l < 85o) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (φ <= 0.8o). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication of emission from these potential sources. The upper limit for the SNR population is 6.7% of the Crab flux and for the pulsar ensemble is 3.6% of the Crab flux.

  14. Dual Active Galactic Nuclei in Nearby Galaxies

    Science.gov (United States)

    Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul

    2018-04-01

    Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.

  15. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  16. Working group II report: Production and dynamics of high brightness beams

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1996-01-01

    This paper summarizes the main discussions of the Working Group on the Production and Dynamics of High Brightness Beams. The following topics are covered in this paper. Proposed new electron sources and needed research on existing sources is covered. The discussions on issues relating to the description of phase space on non-thermalized electron beam distributions and the theoretical modeling on non-thermalized electron beam distributions is presented. Finally, the present status of the theoretical modeling of beam transport in bends is given

  17. Dark matter substructure modelling and sensitivity of the Cherenkov Telescope Array to Galactic dark halos

    Energy Technology Data Exchange (ETDEWEB)

    Huetten, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Combet, C.; Maurin, D. [Grenoble-Alpes Univ., CNRS/IN2P3, Grenoble (France). LPSC; Maier, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-07-15

    Hierarchical structure formation leads to a clumpy distribution of dark matter in the Milky Way. These clumps are possible targets to search for dark matter annihilation with present and future γ-ray instruments. Many uncertainties exist on the clump distribution, leading to disputed conclusions about the expected number of detectable clumps and the ensuing limits that can be obtained from non-detection. In this paper, we use the CLUMPY code to simulate thousands of skymaps for several clump distributions. This allows us to statistically assess the typical properties (mass, distance, angular size, luminosity) of the detectable clumps. Varying parameters of the clump distributions allows us to identify the key quantities to which the number of detectable clumps is the most sensitive. Focusing our analysis on two extreme clump configurations, yet consistent with results from numerical simulations, we revisit and compare various calculations made for the Fermi-LAT instrument, in terms of number of dark clumps expected and the angular power spectrum for the Galactic signal. We then focus on the prospects of detecting dark clumps with the future CTA instrument, for which we make a detailed sensitivity analysis using open-source CTA software. Based on a realistic scenario for the foreseen CTA extragalactic survey, and accounting for a post-trial sensitivity in the survey, we show that we obtain competitive and complementary limits to those based on long observation of a single bright dwarf spheroidal galaxy.

  18. Dark matter substructure modelling and sensitivity of the Cherenkov Telescope Array to Galactic dark halos

    International Nuclear Information System (INIS)

    Huetten, M.; Combet, C.; Maurin, D.

    2016-07-01

    Hierarchical structure formation leads to a clumpy distribution of dark matter in the Milky Way. These clumps are possible targets to search for dark matter annihilation with present and future γ-ray instruments. Many uncertainties exist on the clump distribution, leading to disputed conclusions about the expected number of detectable clumps and the ensuing limits that can be obtained from non-detection. In this paper, we use the CLUMPY code to simulate thousands of skymaps for several clump distributions. This allows us to statistically assess the typical properties (mass, distance, angular size, luminosity) of the detectable clumps. Varying parameters of the clump distributions allows us to identify the key quantities to which the number of detectable clumps is the most sensitive. Focusing our analysis on two extreme clump configurations, yet consistent with results from numerical simulations, we revisit and compare various calculations made for the Fermi-LAT instrument, in terms of number of dark clumps expected and the angular power spectrum for the Galactic signal. We then focus on the prospects of detecting dark clumps with the future CTA instrument, for which we make a detailed sensitivity analysis using open-source CTA software. Based on a realistic scenario for the foreseen CTA extragalactic survey, and accounting for a post-trial sensitivity in the survey, we show that we obtain competitive and complementary limits to those based on long observation of a single bright dwarf spheroidal galaxy.

  19. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    Science.gov (United States)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  20. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES

    International Nuclear Information System (INIS)

    2005-01-01

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm 2 have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector

  1. The inner 300 parsecs of the Milky Way seen by H.E.S.S.: a Pevatron in the Galactic Centre

    Directory of Open Access Journals (Sweden)

    Moulin Emmanuel

    2017-01-01

    Full Text Available The Galactic Centre region has been observed by the High Energy Stereoscopic System (H.E.S.S. array of ground-based Cherenkov telescopes since 2004 leading to the detection of the very-high-energy γ-ray source HESS J1745-290 spatially coincident with the supermassive black hole Sagittarius A*. Diffuse TeV gamma-ray emission has been detected along the Galactic plane, most likely due to hadronic cosmic-ray interactions with the dense gas of the Central Molecular Zone. The rich 2004-2013 dataset permits detailed spectral and morphological studies of the diffuse emission in the inner 300 pc of the Galactic Centre region. The new results provide an important statement regarding the location and origin of the accelerator of PeV protons. The H.E.S.S. observations of the Pevatron are discussed in the context of the origin of Galactic cosmic rays.

  2. H2O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Science.gov (United States)

    Zhang, J. S.; Liu, Z. W.; Henkel, C.; Wang, J. Z.; Coldwell, G. V.

    2017-02-01

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H2O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 (z ˜ 0.0448), was detected four times during our observations, with a typical maser flux density of ˜30 mJy and a corresponding (very large) luminosity of ˜1135 L ⊙. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H2O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H2O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies. Based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.

  3. H{sub 2}O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. S.; Liu, Z. W. [Center for Astrophysics, Guangzhou University, Guangzhou, 510006 (China); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wang, J. Z. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Coldwell, G. V., E-mail: jszhang@gzhu.edu.cn [FCEFyN-UNSJ-CONICET, San Juan (Argentina)

    2017-02-20

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H{sub 2}O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 ( z ∼ 0.0448), was detected four times during our observations, with a typical maser flux density of ∼30 mJy and a corresponding (very large) luminosity of ∼1135 L {sub ⊙}. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H{sub 2}O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H{sub 2}O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies.

  4. Brightness and transparency in the early visual cortex.

    Science.gov (United States)

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  5. Imaging and polarimetry of the Galactic Centre in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J; Hough, J H; Axon, D J

    1984-06-01

    Infrared images of the Galactic Centre with 2.25 arcsec resolution have been obtained at wavelengths of 1.64 ..mu..m (H), 2.2 ..mu..m (K), 3.8 ..mu..m (L') and 4.8 ..mu..m (M). From these, the positions, magnitudes and colours for 35 sources have been measured. The observed sources can be divided into two classes: those whose colours are typical of reddened stars and those with much redder colours which dominate at 3.8 and 4.8 ..mu..m whose infrared radiation is due to dust emission. Polarization measurements for a number of the brighter sources have been made at J, H, and K. Most of the sources with stellar colours show wavelength dependence typical of interstellar polarization with polarizations at K of about 6 per cent.

  6. Imaging and polarimetry of the Galactic Centre in the near-infrared

    International Nuclear Information System (INIS)

    Bailey, J.; Hough, J.H.; Axon, D.J.

    1984-01-01

    Infrared images of the Galactic Centre with 2.25 arcsec resolution have been obtained at wavelengths of 1.64 μm (H), 2.2 μm (K), 3.8 μm (L') and 4.8 μm (M). From these, the positions, magnitudes and colours for 35 sources have been measured. The observed sources can be divided into two classes: those whose colours are typical of reddened stars and those with much redder colours which dominate at 3.8 and 4.8 μm whose infrared radiation is due to dust emission. Polarization measurements for a number of the brighter sources have been made at J, H, and K. Most of the sources with stellar colours show wavelength dependence typical of interstellar polarization with polarizations at K of about 6 per cent. (author)

  7. Molecular diagnostics of Galactic star-formation regions

    Science.gov (United States)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  8. A synoptic view of galactic processes

    Science.gov (United States)

    Stecker, F. W.

    1981-01-01

    The power of using synoptic galactic surveys in many wavelength bands in order to obtain a more complete picture and a better understanding of the dynamics of the interstellar medium and to study galactic structure and evolution on a large scale is discussed. The implications of the picture presented by mm wave CO, far infrared and X ray surveys of the Galaxy are emphasized.

  9. Record productions establish RF-driven sources as the standard for generating high-duty-factor, high-current H- beams for accelerators (Winner of the ICIS 2017 Brightness Award)

    Science.gov (United States)

    Stockli, Martin P.; Welton, Robert F.; Han, Baoxi

    2018-05-01

    The Spallation Neutron Source operates reliably at 1.2 MW and will gradually ramp to 1.4 MW. This paper briefly recalls some of the struggles when the unprecedented project was started and ramped to 1 MW over a 3½ year period. This was challenging, especially for the H- ion source and the low-energy beam transport system, which make up the H- injector. It took several more years to push the H- injector to the 1.4 MW requirements, and even longer to reach close to 100% injector availability. An additional breakthrough was the carefully staged, successful extension of the H- source service cycle so that disruptive source changes became rare events. More than 7 A.h of extracted H- ions have been demonstrated with a single source without maintenance, more than twice the single-source quantity of ions produced by any other high-current H- accelerator facility. Achieving the 1.4 MW requirements with close to 100% availability and record-breaking source service cycles were the basis for the 2017 Brightness Award.

  10. A ∼ 3.8 hr PERIODICITY FROM AN ULTRASOFT ACTIVE GALACTIC NUCLEUS CANDIDATE

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Irwin, Jimmy A. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Godet, Olivier; Webb, Natalie A.; Barret, Didier, E-mail: dlin@ua.edu [CNRS, IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France)

    2013-10-10

    Very few galactic nuclei are found to show significant X-ray quasi-periodic oscillations (QPOs). After carefully modeling the noise continuum, we find that the ∼3.8 hr QPO in the ultrasoft active galactic nucleus candidate 2XMM J123103.2+110648 was significantly detected (∼5σ) in two XMM-Newton observations in 2005, but not in the one in 2003. The QPO root mean square (rms) is very high and increases from ∼25% in 0.2-0.5 keV to ∼50% in 1-2 keV. The QPO probably corresponds to the low-frequency type in Galactic black hole X-ray binaries, considering its large rms and the probably low mass (∼10{sup 5} M {sub ☉}) of the black hole in the nucleus. We also fit the soft X-ray spectra from the three XMM-Newton observations and find that they can be described with either pure thermal disk emission or optically thick low-temperature Comptonization. We see no clear X-ray emission from the two Swift observations in 2013, indicating lower source fluxes than those in XMM-Newton observations.

  11. Observation of galactic far-infrared ray

    International Nuclear Information System (INIS)

    Maihara, Toshinori; Oda, Naoki; Okuda, Haruyuki; Sugiyama, Takuya; Sakai, Kiyomi.

    1978-01-01

    Galactic far-infrared was observed to study the spatial distribution of interstellar dust. Far-infrared is emitted by interstellar dust distributing throughout the galactic plane. The observation of far-infrared is very important to study the overall structure of the galaxy, that is the structure of the galactic arm and gas distribution. The balloon experiment was conducted on May 25, 1978. The detector was a germanium bolometer cooled by liquid helium. The size of the detector is 1.6 mm in diameter. The geometrical factor was 4 x 10 3 cm 2 sr. The result showed that the longitude distribution of far-infrared at 150 μm correlated with H 166 α recombination line. This indicates that the observed far-infrared is emitted by interstellar dust heated by photons of Lyman continuum. (Yoshimori, M.)

  12. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  13. 143 GHz BRIGHTNESS MEASUREMENTS OF URANUS, NEPTUNE, AND OTHER SECONDARY CALIBRATORS WITH BOLOCAM BETWEEN 2003 AND 2010

    International Nuclear Information System (INIS)

    Sayers, J.; Czakon, N. G.; Golwala, S. R.

    2012-01-01

    Bolocam began collecting science data in 2003 as the long-wavelength imaging camera at the Caltech Submillimeter Observatory. The planets, along with a handful of secondary calibrators, have been used to determine the flux calibration for all of the data collected with Bolocam. Uranus and Neptune stand out as the only two planets that are bright enough to be seen with high signal-to-noise in short integrations without saturating the standard Bolocam readout electronics. By analyzing all of the 143 GHz observations made with Bolocam between 2003 and 2010, we find that the brightness ratio of Uranus to Neptune is 1.027 ± 0.006, with no evidence for any variations over that period. Including previously published results at ≅ 150 GHz, we find a brightness ratio of 1.029 ± 0.006 with no evidence for time variability over the period 1983-2010. Additionally, we find no evidence for time variability in the brightness ratio of either Uranus or Neptune to the ultracompact H II region G34.3 or the protostellar source NGC 2071IR. Using recently published Wilkinson Microwave Anisotropy Probe results we constrain the absolute 143 GHz brightness of both Uranus and Neptune to ≅ 3%. Finally, we present ≅ 3% absolute 143 GHz peak flux density values for the ultracompact H II regions G34.3 and K3-50A and the protostellar source NGC 2071IR.

  14. An Ultra-Bright Pulsed Electron Beam with Low Longitudinal Emittance

    CERN Document Server

    Zolotorev, Max S; Denes, Peter; Heifets, Samuel; Hussain, Zahid; Lebedev, Gennadi; Lidia, Steven M; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Vogel, Robert; Wan, Weishi

    2005-01-01

    We describe a novel scheme for an electron source in the 10 - 100 eV range with the capability of approaching the brightness quantum-limit and of lowering the effective temperature of the electrons orders of magnitude with respect to existing sources. Such a device can open the way for a wide range of novel applications that utilize angstrom-scale spatial resolution and ?eV-scale energy resolution. Possible examples include electron microscopy, electron holography, and investigations of dynamics on a picosecond time scale using pump-probe techniques. In this paper we describe the concepts for such a source including a complete and consistent set of parameters for the construction of a real device based on the presented scheme.

  15. Gamma ray astronomy and the origin of galactic cosmic rays

    International Nuclear Information System (INIS)

    Gabici, Stefano

    2011-01-01

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays. (author)

  16. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS

    1996-01-01

    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  17. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves

    International Nuclear Information System (INIS)

    Mannheim, P.D.; Kazanas, D.

    1989-01-01

    The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology. 9 refs

  18. Dynamics and evolution of galactic nuclei (princeton series in astrophysics)

    CERN Document Server

    Merritt, David

    2013-01-01

    Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the las...

  19. Galactic synchrotron emission from WIMPs at radio frequencies

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10 −26 cm 3 s −1 , and masses M DM ∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined

  20. Planck 2013 results. XIII. Galactic CO emission

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2014-01-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensi...

  1. A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A. [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen (Netherlands); Abreu, P. [Laboratório de Instrumentação e Física Experimental de Partículas—LIP and Instituto Superior Técnico—IST, Universidade de Lisboa—UL, Lisbon (Portugal); Aglietta, M. [INFN, Sezione di Torino, Torino (Italy); Samarai, I. Al [Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris (France); Albuquerque, I. F. M. [Universidade de São Paulo, Inst. de Física, São Paulo (Brazil); Allekotte, I. [Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Almela, A. [Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires (Argentina); Castillo, J. Alvarez [Universidad Nacional Autónoma de México, México, D. F., México (Mexico); Alvarez-Muñiz, J. [Universidad de Santiago de Compostela, La Coruña (Spain); Anastasi, G. A. [Gran Sasso Science Institute (INFN), L’Aquila (Italy); and others

    2017-03-10

    Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p -values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictions of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region.

  2. The optical spectra of 24 mu m galaxies in the cosmos field. I. Spitzer MIPS bright sources in the zCOSMOS-bright 10k catalog

    NARCIS (Netherlands)

    Caputi, K. I.; Lilly, S. J.; Aussel, H.; Sanders, D.; Frayer, D.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Scoville, N.; Carollo, C. M.; Hasinger, G.; Iovino, A.; Le Brun, V.; Le Floc'h, E.; Maier, C.; Mainieri, V.; Mignoli, M.; Salvato, M.; Schiminovich, D.; Silverman, J.; Surace, J.; Tasca, L.; Abbas, U.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Cappi, A.; Cassata, P.; Cimatti, A.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Fumana, M.; Garilli, B.; Halliday, C.; Ilbert, O.; Kampczyk, P.; Kartaltepe, J.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J. F.; Maccagni, D.; Marinoni, C.; McCracken, H.; Meneux, B.; Oesch, P.; Pello, R.; Perez-Montero, E.; Porciani, C.; Ricciardelli, E.; Scaramella, R.; Scarlata, C.; Tresse, L.; Vergani, D.; Walcher, J.; Zamojski, M.; Zucca, E.

    2008-01-01

    We study zCOSMOS-bright optical spectra for 609 Spitzer MIPS 24 mu m-selected galaxies with S-24 (mu m) > 0: 30 mJy and I <22.5 (AB mag) over 1.5 deg(2) of the COSMOS field. From emission-line diagnostics we find the following: (1) SFRs derived from the observed H alpha lambda 6563 and H beta lambda

  3. The Southern HII Region Discovery Survey: The Bright Catalog

    Science.gov (United States)

    Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine

    2018-01-01

    HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.

  4. MN112: a new Galactic candidate luminous blue variable

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.; Sholukhova, O.; Berdnikov, L. N.; Cherepashchuk, A. M.; Zharova, A. V.

    2010-06-01

    We report the discovery of a new Galactic candidate luminous blue variable (cLBV) via detection of an infrared circular nebula and follow-up spectroscopy of its central star. The nebula, MN112, is one of many dozens of circular nebulae detected at 24μm in the Spitzer Space Telescope archival data, whose morphology is similar to that of nebulae associated with known (c)LBVs and related evolved massive stars. Specifically, the core-halo morphology of MN112 bears a striking resemblance to the circumstellar nebula associated with the Galactic cLBV GAL079.29+00.46, which suggests that both nebulae might have a similar origin and that the central star of MN112 is an LBV. The spectroscopy of the central star showed that its spectrum is almost identical to that of the bona fide LBV PCygni, which also supports the LBV classification of the object. To further constrain the nature of MN112, we searched for signatures of possible high-amplitude (>~1mag) photometric variability of the central star using archival and newly obtained photometric data covering a 45-yr period. We found that the B magnitude of the star was constant within error margins, while in the I band the star brightened by ~=0.4mag during the last 17 yr. Although the non-detection of large photometric variability leads us to use the prefix `candidate' in the classification of MN112, we remind the readers that the long-term photometric stability is not unusual for genuine LBVs and that the brightness of PCygni remained relatively stable during the last three centuries. Partially based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF); olga@sao.ru (OS); berdnik@sai.msu.ru (LNB); cher@sai.msu.ru (AMC); alla@sai.msu.ru (AVZ)

  5. Detection of Intrinsic Source Structure at ∼3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*

    Science.gov (United States)

    Lu, Ru-Sen; Krichbaum, Thomas P.; Roy, Alan L.; Fish, Vincent L.; Doeleman, Sheperd S.; Johnson, Michael D.; Akiyama, Kazunori; Psaltis, Dimitrios; Alef, Walter; Asada, Keiichi; Beaudoin, Christopher; Bertarini, Alessandra; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C.; Brinkerink, Christiaan; Broderick, Avery E.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Jason; Dexter, Matt; Falcke, Heino; Freund, Robert; Friberg, Per; Greer, Christopher H.; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Kim, Junhan; Lamb, James; Lindqvist, Michael; Macmahon, David; Marrone, Daniel P.; Martí-Vidal, Ivan; Menten, Karl M.; Moran, James M.; Nagar, Neil M.; Plambeck, Richard L.; Primiani, Rurik A.; Rogers, Alan E. E.; Ros, Eduardo; Rottmann, Helge; SooHoo, Jason; Spilker, Justin; Stone, Jordan; Strittmatter, Peter; Tilanus, Remo P. J.; Titus, Michael; Vertatschitsch, Laura; Wagner, Jan; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Zensus, J. Anton; Ziurys, Lucy M.

    2018-05-01

    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N–S direction, and leads to a spatial resolution of ∼30 μas (∼3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∼4%–13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∼3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.

  6. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Scott, Douglas; Magnelli, Benjamin; Popesso, Paola [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741, Garching (Germany); Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Dannerbauer, Helmut [Universitaet Wien, Institut fuer Astrophysik, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dickinson, Mark; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  7. Phosphorus-bearing molecules in the Galactic Center

    Science.gov (United States)

    Rivilla, V. M.; Jiménez-Serra, I.; Zeng, S.; Martín, S.; Martín-Pintado, J.; Armijos-Abendaño, J.; Viti, S.; Aladro, R.; Riquelme, D.; Requena-Torres, M.; Quénard, D.; Fontani, F.; Beltrán, M. T.

    2018-03-01

    Phosphorus (P) is one of the essential elements for life due to its central role in biochemical processes. Recent searches have shown that P-bearing molecules (in particular PN and PO) are present in star-forming regions, although their formation routes remain poorly understood. In this letter, we report observations of PN and PO towards seven molecular clouds located in the Galactic Center, which are characterized by different types of chemistry. PN is detected in five out of seven sources, whose chemistry is thought to be shock-dominated. The two sources with PN non-detections correspond to clouds exposed to intense UV/X-rays/cosmic ray (CR) radiation. PO is detected only towards the cloud G+0.693-0.03, with a PO/PN abundance ratio of ˜1.5. We conclude that P-bearing molecules likely form in shocked gas as a result of dust grain sputtering, while are destroyed by intense UV/X-ray/CR radiation.

  8. Measures of gamma rays between 0,3 MeV and 3,0 MeV and of the 0,511 MeV annihilation line coming from Galactic Center Region

    International Nuclear Information System (INIS)

    Jardim, M.V.A.

    1982-04-01

    The detection of the flux of the electron-positron annihilation line coming from the Galactic Center direction allows one to estimate the rate of positrons production and the corresponding luminosity. The results of measurements of the annihilation line flux intensity at 0.511 MeV, obtained with a balloon borne experiment to measure gamma rays in the energy interval 0.3 to 3 MeV are presented. The detector looked at the galactic disk in the longitude interval -31 0 0 and observed a flux intensity of (6.70 +- 0.85) x 10 -3 photons cm -2 s -1 , which is in good agreement with the flux value estimated assuming that the Galactic Center is a line source emitting uniformly. Some likely sources of positrons and annhilation regions are also discussed. The results for the continuum spectrum emitted from the Galactic Center in the energy interval 0.3 to 0.67 MeV are presented and compared with measurements had already made. (Author) [pt

  9. Possible existence of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)

    2014-02-15

    Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)

  10. A STATISTICAL APPROACH TO RECOGNIZING SOURCE CLASSES FOR UNASSOCIATED SOURCES IN THE FIRST FERMI-LAT CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Antolini, E.; Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse Cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: monzani@slac.stanford.edu, E-mail: vilchez@cesr.fr, E-mail: salvetti@lambrate.inaf.it, E-mail: elizabeth.c.ferrara@nasa.gov [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2012-07-01

    The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of {gamma}-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit {gamma} rays, 630 of these sources are 'unassociated' (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary {gamma}-ray characteristics for these unassociated sources in an effort to correlate their {gamma}-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source 'classifications' appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to 'probable source classes' for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in {approx}80% of the sources.

  11. A STATISTICAL APPROACH TO RECOGNIZING SOURCE CLASSES FOR UNASSOCIATED SOURCES IN THE FIRST FERMI-LAT CATALOG

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Antolini, E.; Bonamente, E.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.

    2012-01-01

    The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of γ-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit γ rays, 630 of these sources are 'unassociated' (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary γ-ray characteristics for these unassociated sources in an effort to correlate their γ-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source 'classifications' appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to 'probable source classes' for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in ∼80% of the sources.

  12. Galactic synchrotron emission from WIMPs at radio frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Lineros, Roberto A.; Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@ific.uv.es [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10{sup −26} cm{sup 3} s{sup −1}, and masses M{sub DM}∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.

  13. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    Science.gov (United States)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  14. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen [Department of Physics, Xiamen University, Xiamen (China); Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan, E-mail: fangt@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen (China)

    2016-06-20

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  15. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  16. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  17. THE FIRST FERMI-LAT CATALOG OF SOURCES ABOVE 10 GeV

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Atwood, W. B.; Belfiore, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bregeon, J.; Bernieri, E.; Bissaldi, E.; Bonamente, E.; Brandt, T. J.; M. Merlin dell'Università e del Politecnico di Bari, I-70126 Bari (Italy))" data-affiliation=" (Dipartimento di Fisica M. Merlin dell'Università e del Politecnico di Bari, I-70126 Bari (Italy))" >Brigida, M.; Bruel, P.

    2013-01-01

    We present a catalog of γ-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first 3 yr of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10 GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10 GeV (>25 GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27% ± 8% of the isotropic γ-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based γ-ray observatories

  18. A radio monitoring survey of ultra-luminous X-ray sources

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  19. Unusual Metals in Galactic Center Stars

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    while one star is only slightly above solar metallicity, the other is likely more than four times as metal-rich as the Sun.The features in the observed and synthetic spectra generally matched well, but the absorption lines of scandium, vanadium, and yttrium were consistently stronger in the observed spectra than in the synthetic spectra. This led the authors to conclude that these galactic center stars are unusually rich in these metals trace elements that could reveal the formation history of the galactic nucleus.Old Stars, New Trends?Scandium to iron ratio versusiron abundance for stars in the disk of the Milky Way (blue) and the stars in this sample (orange). The value reported for this sample is a 95% lower limit. [Do et al. 2018]For stars in the disk of the Milky Way, the abundance of scandium relative to iron tends to decrease as the overall metallicity increases, but the stars investigated in this study are both iron-rich and anomalously high in scandium. This hints that the nuclear star cluster might represent a distinct stellar population with different metallicity trends.However, its not yet clear what could cause the elevated abundances of scandium, vanadium, and yttrium relative to other metals. Each of these elements is linked to a different source; scandium and vanadium are mainly produced in Type II and Type Ia supernovae, respectively, while yttrium is likely synthesized in asymptotic giant branch stars. Future observations of stars near the center of the Milky Way may help answer this question and further constrain the origin of our galaxys nuclear star cluster.CitationTuan Do et al 2018 ApJL 855 L5. doi:10.3847/2041-8213/aaaec3

  20. Milky Way demographics with the VVV survey. I. The 84-million star colour-magnitude diagram of the Galactic bulge

    Science.gov (United States)

    Saito, R. K.; Minniti, D.; Dias, B.; Hempel, M.; Rejkuba, M.; Alonso-García, J.; Barbuy, B.; Catelan, M.; Emerson, J. P.; Gonzalez, O. A.; Lucas, P. W.; Zoccali, M.

    2012-08-01

    Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Vía Láctea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering ~315 deg2. Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims: We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour - magnitude diagram (CMD) for the entire Galactic bulge. Methods: Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the ~315 deg2 covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results: We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8° -10°, while in the inner part (b ~ -3°) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - Ks) ~ 0.7-0.9 mag and Ks ≳ 14 mag. Conclusions: The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the