WorldWideScience

Sample records for bright field cell

  1. Super-resolved 3-D imaging of live cells organelles from bright-field photon transmission micrographs

    CERN Document Server

    Rychtarikova, Renata; Shi, Kevin; Malakhova, Daria; Machacek, Petr; Smaha, Rebecca; Urban, Jan; Stys, Dalibor

    2016-01-01

    Current biological and medical research is aimed at obtaining a detailed spatiotemporal map of a live cell's interior to describe and predict cell's physiological state. We present here an algorithm for complete 3-D modelling of cellular structures from a z-stack of images obtained using label-free wide-field bright-field light-transmitted microscopy. The method visualizes 3-D objects with a volume equivalent to the area of a camera pixel multiplied by the z-height. The computation is based on finding pixels of unchanged intensities between two consecutive images of an object spread function. These pixels represent strongly light-diffracting, light-absorbing, or light-emitting objects. To accomplish this, variables derived from R\\'{e}nyi entropy are used to suppress camera noise. Using this algorithm, the detection limit of objects is only limited by the technical specifications of the microscope setup--we achieve the detection of objects of the size of one camera pixel. This method allows us to obtain 3-D re...

  2. A possible explanation of the low-level brightness-contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells.

    Science.gov (United States)

    Ghosh, Kuntal; Sarkar, Sandip; Bhaumik, Kamales

    2006-02-01

    The low-level brightness-contrast illusions constitute a special class within visual illusions. Speculations exist that these illusions may be processed through the filtering action of the retinal ganglion cells without necessitating much intervention from higher order processes of visual perception. Concept of the classical receptive field of the ganglion cell, derived from early physiological studies, prompted the idea that a Difference of Gaussian (DoG) model might explain the low-level illusions. In spite of its many successes, the DoG model fails to explain some of these illusions. It has been shown in this paper that it is possible to simulate those illusions with a model that takes into cognizance the role of the extended classical receptive field.

  3. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...... cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  4. Brightness limitations of cold field emitters caused by Coulomb interactions

    NARCIS (Netherlands)

    Cook, B.J.; Verduin, T.; Hagen, C.W.; Kruit, P.

    2010-01-01

    Emission theory predicts that high brightness cold field emitters can enhance imaging in the electron microscope. This (neglecting chromatic aberration) is because of the large (coherent) probe current available from a high brightness source and is based on theoretically determined values of reduced

  5. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Science.gov (United States)

    Hernández Candia, Carmen Noemí; Gutiérrez-Medina, Braulio

    2014-01-01

    In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive) objects if the corresponding phase (or absorptive) impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments) serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  6. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  7. Graphical Methods for Quantifying Macromolecules through Bright Field Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hang; DeFilippis, Rosa Anna; Tlsty, Thea D.; Parvin, Bahram

    2008-08-14

    Bright ?eld imaging of biological samples stained with antibodies and/or special stains provides a rapid protocol for visualizing various macromolecules. However, this method of sample staining and imaging is rarely employed for direct quantitative analysis due to variations in sample fixations, ambiguities introduced by color composition, and the limited dynamic range of imaging instruments. We demonstrate that, through the decomposition of color signals, staining can be scored on a cell-by-cell basis. We have applied our method to Flbroblasts grown from histologically normal breast tissue biopsies obtained from two distinct populations. Initially, nuclear regions are segmented through conversion of color images into gray scale, and detection of dark elliptic features. Subsequently, the strength of staining is quanti?ed by a color decomposition model that is optimized by a graph cut algorithm. In rare cases where nuclear signal is significantly altered as a result of samplepreparation, nuclear segmentation can be validated and corrected. Finally, segmented stained patterns are associated with each nuclear region following region-based tessellation. Compared to classical non-negative matrix factorization, proposed method (i) improves color decomposition, (ii) has a better noise immunity, (iii) is more invariant to initial conditions, and (iv) has a superior computing performance

  8. Cell structure imaging with bright and homogeneous nanometric light source.

    Science.gov (United States)

    Fukuta, Masahiro; Ono, Atsushi; Nawa, Yasunori; Inami, Wataru; Shen, Lin; Kawata, Yoshimasa; Terekawa, Susumu

    2017-04-01

    Label-free optical nano-imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label-free macrophage receptor with collagenous structure-expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal-to-noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    Science.gov (United States)

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-06-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system "UPMC Cam," to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system.

  10. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming.

    Science.gov (United States)

    Wagner, Julia A; Rosario, Maximillian; Romee, Rizwan; Berrien-Elliott, Melissa M; Schneider, Stephanie E; Leong, Jeffrey W; Sullivan, Ryan P; Jewell, Brea A; Becker-Hapak, Michelle; Schappe, Timothy; Abdel-Latif, Sara; Ireland, Aaron R; Jaishankar, Devika; King, Justin A; Vij, Ravi; Clement, Dennis; Goodridge, Jodie; Malmberg, Karl-Johan; Wong, Hing C; Fehniger, Todd A

    2017-11-01

    NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15-based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1-, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy.

  11. An Accurate Perception Method for Low Contrast Bright Field Microscopy in Heterogeneous Microenvironments

    Directory of Open Access Journals (Sweden)

    Keshav Rajasekaran

    2017-12-01

    Full Text Available Automated optical tweezers-based robotic manipulation of microscale objects requires real-time visual perception for estimating the states, i.e., positions and orientations, of the objects. Such visual perception is particularly challenging in heterogeneous environments comprising mixtures of biological and colloidal objects, such as cells and microspheres, when the popular imaging modality of low contrast bright field microscopy is used. In this paper, we present an accurate method to address this challenge. Our method combines many well-established image processing techniques such as blob detection, histogram equalization, erosion, and dilation with a convolutional neural network in a novel manner. We demonstrate the effectiveness of our processing pipeline in perceiving objects of both regular and irregular shapes in heterogeneous microenvironments of varying compositions. The neural network, in particular, helps in distinguishing the individual microspheres present in dense clusters.

  12. Variable multimodal light microscopy with interference contrast and phase contrast; dark or bright field.

    Science.gov (United States)

    Piper, T; Piper, J

    2014-07-01

    Using the optical methods described, specimens can be observed with modified multimodal light microscopes based on interference contrast combined with phase contrast, dark- or bright-field illumination. Thus, the particular visual information associated with interference and phase contrast, dark- and bright-field illumination is joined in real-time composite images appearing in enhanced clarity and purified from typical artefacts, which are apparent in standard phase contrast and dark-field illumination. In particular, haloing and shade-off are absent or significantly reduced as well as marginal blooming and scattering. The background brightness and thus the range of contrast can be continuously modulated and variable transitions can be achieved between interference contrast and complementary illumination techniques. The methods reported should be of general interest for all disciplines using phase and interference contrast microscopy, especially in biology and medicine, and also in material sciences when implemented in vertical illuminators. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  13. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  14. Bright and durable field emission source derived from refractory taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  15. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    Science.gov (United States)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  16. Bright-field Nanoscopy: Visualizing Nano-structures with Localized Optical Contrast Using a Conventional Microscope.

    Science.gov (United States)

    Suran, Swathi; Bharadwaj, Krishna; Raghavan, Srinivasan; Varma, Manoj M

    2016-04-26

    Most methods for optical visualization beyond the diffraction limit rely on fluorescence emission by molecular tags. Here, we report a method for visualization of nanostructures down to a few nanometers using a conventional bright-field microscope without requiring additional molecular tags such as fluorophores. The technique, Bright-field Nanoscopy, is based on the strong thickness dependent color of ultra-thin germanium on an optically thick gold film. We demonstrate the visualization of grain boundaries in chemical vapour deposited single layer graphene and the detection of single 40 nm Ag nanoparticles. We estimate a size detection limit of about 2 nm using this technique. In addition to visualizing nano-structures, this technique can be used to probe fluid phenomena at the nanoscale, such as transport through 2D membranes. We estimated the water transport rate through a 1 nm thick polymer film using this technique, as an illustration. Further, the technique can also be extended to study the transport of specific ions in the solution. It is anticipated that this technique will find use in applications ranging from single-nanoparticles resolved sensing to studying nanoscale fluid-solid interface phenomena.

  17. Motion and Magnetic Flux Changes of Coronal Bright Points Relative to Supergranular Cell Boundaries

    Science.gov (United States)

    Yousefzadeh, M.; Safari, H.; Attie, R.; Alipour, N.

    2016-01-01

    To calculate the magnetic flux and the horizontal movement of coronal bright points (CBPs) in relation to supergranular cell boundaries, the time series of the SDO/HMI visible-light continuum images and SDO/AIA EUV images for 13 February 2011 have been studied. The supergranular lanes were detected in HMI continuum images using the automatic supergranular cell recognition method. The automatic identification and tracking method was applied for detecting the CBPs in AIA 193 Å images. By applying the ball-tracking method on HMI continuum images, the underlying flow fields were determined. By using the velocity fields and the automatic supergranular cell recognition method, the lanes and boundaries were detected. The locations of CBPs were projected on the photospheric co-spatial and co-temporal images. We found that about 90 % of the locations of CBPs correspond to the lane of the supergranular cell boundaries (network CBPs or NCBPs) of which about 40 % of them appeared at junctions. The remaining 10 % appeared within the supergranular regions (internetwork CBPs or INCBPs). The horizontal velocities for NCBPs and INCBPs were about 1.6±0.1 km s^{-1} and 1.7±0.1 km s^{-1}, respectively. Using the magnetic field extrapolation, we were able to detect the bipoles underlying CBPs, and we studied their magnetic evolution. The orientation of CBPs observed in the 171, 193, and 211 Å images and the orientation of their magnetic bipoles are positively correlated. For out of 50 INCBPs, 54 % showed cancellation, 32 % emergence, and 12 % complex flux changes. Out of 90 NCBPs, 60 % presented cancellation, 20 % showed emergence, and 20 % showed complex flux changes.

  18. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope

    Science.gov (United States)

    Alexeev, Evgeny M.; Catanzaro, Alessandro; Skrypka, Oleksandr V.; Nayak, Pramoda K.; Ahn, Seongjoon; Pak, Sangyeon; Lee, Juwon; Sohn, Jung Inn; Novoselov, Kostya S.; Shin, Hyeon Suk; Tartakovskii, Alexander I.

    2017-09-01

    Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridisation of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The colour and brightness in such images are used here to identify mono- and few-layer crystals, and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in mechanically exfoliated flakes as well as a function of the twist angle in atomic layers grown by chemical vapour deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterisation of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

  19. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope.

    Science.gov (United States)

    Alexeev, Evgeny M; Catanzaro, Alessandro; Skrypka, Oleksandr V; Nayak, Pramoda K; Ahn, Seongjoon; Pak, Sangyeon; Lee, Juwon; Sohn, Jung Inn; Novoselov, Kostya S; Shin, Hyeon Suk; Tartakovskii, Alexander I

    2017-09-13

    Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

  20. Variable phase bright-field contrast--an alternative illumination technique for improved imaging in transparent specimens.

    Science.gov (United States)

    Piper, Timm; Piper, Jörg

    2013-02-01

    In variable phase bright-field contrast, a bright-field image based on axial or concentric-peripheral light is optically superimposed with a phase-contrast image, so that typical details that are imminent in one or the other technique contribute to the resulting composite image. In particular, complex structured specimens consisting of high-density light absorbing details and additional low-density phase shifting components can be observed with improved clarity. As both partial images interfere with each other, fine details within thin specimens can be highlighted further by additional contrast effects based on interference. Haloing and shade-off are significantly reduced when compared with phase contrast carried out stand-alone. Our method is characterized by several technical means that are relevant for the high image quality that can be achieved: both illuminating light components associated with bright field and phase contrast are filtered at different colors and separated from each other so that they meet the specimen at different angles of incidence. The intensities of the phase-contrast- and bright-field-producing light can be selectively regulated so that the final image can be dominated by phase contrast or bright field, or be equalized. The condenser aperture diaphragm can be used for modulations of the image's appearance.

  1. Spatially Multiplexed Micro-Spectrophotometry in Bright Field Mode for Thin Film Characterization

    Science.gov (United States)

    Pini, Valerio; Kosaka, Priscila M.; Ruz, Jose J.; Malvar, Oscar; Encinar, Mario; Tamayo, Javier; Calleja, Montserrat

    2016-01-01

    Thickness characterization of thin films is of primary importance in a variety of nanotechnology applications, either in the semiconductor industry, quality control in nanofabrication processes or engineering of nanoelectromechanical systems (NEMS) because small thickness variability can strongly compromise the device performance. Here, we present an alternative optical method in bright field mode called Spatially Multiplexed Micro-Spectrophotometry that allows rapid and non-destructive characterization of thin films over areas of mm2 and with 1 μm of lateral resolution. We demonstrate an accuracy of 0.1% in the thickness characterization through measurements performed on four microcantilevers that expand an area of 1.8 mm2 in one minute of analysis time. The measured thickness variation in the range of few tens of nm translates into a mechanical variability that produces an error of up to 2% in the response of the studied devices when they are used to measure surface stress variations. PMID:27338398

  2. Spatially Multiplexed Micro-Spectrophotometry in Bright Field Mode for Thin Film Characterization

    Directory of Open Access Journals (Sweden)

    Valerio Pini

    2016-06-01

    Full Text Available Thickness characterization of thin films is of primary importance in a variety of nanotechnology applications, either in the semiconductor industry, quality control in nanofabrication processes or engineering of nanoelectromechanical systems (NEMS because small thickness variability can strongly compromise the device performance. Here, we present an alternative optical method in bright field mode called Spatially Multiplexed Micro-Spectrophotometry that allows rapid and non-destructive characterization of thin films over areas of mm2 and with 1 μm of lateral resolution. We demonstrate an accuracy of 0.1% in the thickness characterization through measurements performed on four microcantilevers that expand an area of 1.8 mm2 in one minute of analysis time. The measured thickness variation in the range of few tens of nm translates into a mechanical variability that produces an error of up to 2% in the response of the studied devices when they are used to measure surface stress variations.

  3. Rapidly Rotating, X-Ray Bright Stars in the Kepler Field

    Science.gov (United States)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia; Smith, Krista Lynne; Gelino, Dawn M.

    2016-01-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  4. Blue Laser Imaging-Bright Improves Endoscopic Recognition of Superficial Esophageal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Akira Tomie

    2016-01-01

    Full Text Available Background/Aims. The aim of this study was to evaluate the endoscopic recognition of esophageal squamous cell carcinoma (ESCC using four different methods (Olympus white light imaging (O-WLI, Fujifilm white light imaging (F-WLI, narrow band imaging (NBI, and blue laser imaging- (BLI- bright. Methods. We retrospectively analyzed 25 superficial ESCCs that had been examined using the four different methods. Subjective evaluation was provided by three endoscopists as a ranking score (RS of each image based on the ease of detection of the cancerous area. For the objective evaluation we calculated the color difference scores (CDS between the cancerous and noncancerous areas with each of the four methods. Results. There was no difference between the mean RS of O-WLI and F-WLI. The mean RS of NBI was significantly higher than that of O-WLI and that of BLI-bright was significantly higher than that of F-WLI. Moreover, the mean RS of BLI-bright was significantly higher than that of NBI. Furthermore, in the objective evaluation, the mean CDS of BLI-bright was significantly higher than that of O-WLI, F-WLI, and NBI. Conclusion. The recognition of superficial ESCC using BLI-bright was more efficacious than the other methods tested both subjectively and objectively.

  5. Variability in diagnosis of clue cells, lactobacillary grading and white blood cells in vaginal wet smears with conventional bright light and phase contrast microscopy.

    Science.gov (United States)

    Donders, G G G; Larsson, P G; Platz-Christensen, J J; Hallén, A; van der Meijden, W; Wölner-Hanssen, P

    2009-07-01

    Study the reproducibility of wet smear interpretation of clue cells, lactobacillary grades and leukocyte dominance with conventional bright light and phase contrast microscopy. Sets of vaginal specimens were taken from unselected consecutive women attending an outpatient gynaecology clinic. Air-dried vaginal fluid on a microscope slide was rehydrated with isotonic saline before examination by six independent international investigators. Some investigators initially used a conventional bright light microscope, followed by phase contrast technique. Using phase contrast microscopy, an excellent inter-observer agreement was obtained among all investigators for clue cells detection (Kappa values from 0.69 to 0.94) and lactobacillary grades (Kappa 0.73-0.93). When conventional light microscopes were used, poor agreement was obtained for these criteria (Kappa index 0.37-0.72 and 0.80, respectively), but switching to phase contrast microscopy by the same investigators, improved Kappa to 0.83-0.85 and 0.88, respectively. The inter-observer agreement for estimation of the leukocyte/epithelial cell ratio (Kappa index 0.17-0.67) was poor, irrespective of the type of microscopy applied. Intra-observer agreement of clue cell detection and lactobacillary grading was also found to be excellent if phase contrast microscopy was used (Kappa 0.87-0.93), and poor with conventional bright light microscopy (Kappa 0.45-0.66). Clue cells and the lactobacillary grades are reliably identified by phase contrast microscopy in wet smears, with excellent intra- and inter-observer reproducibility agreement, and better than when simple bright light microscopy was used. Evaluation of leukocyte grading, on the other hand, was inconsistent among the different microscopists, irrespective of the type of microscope used. We propose to grade the leukocytes in a different way than searching for leukocyte dominance over epithelial cells, namely by counting them per high power field and per epithelial cell.

  6. Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope

    Science.gov (United States)

    Miller, Andrew R.; Davis, Gregory L.; Oden, Z. Maria; Razavi, Mohamad Reza; Fateh, Abolfazl; Ghazanfari, Morteza; Abdolrahimi, Farid; Poorazar, Shahin; Sakhaie, Fatemeh; Olsen, Randall J.; Bahrmand, Ahmad Reza; Pierce, Mark C.; Graviss, Edward A.; Richards-Kortum, Rebecca

    2010-01-01

    This study describes the design and evaluation of a portable bright-field and fluorescence microscope that can be manufactured for $240 USD. The microscope uses a battery-operated LED-based flashlight as the light source and achieves a resolution of 0.8 µm at 1000× magnification in fluorescence mode. We tested the diagnostic capability of this new instrument to identify infections caused by the human pathogen, Mycobacterium tuberculosis. Sixty-four direct, decontaminated, and serially diluted smears were prepared from sputa obtained from 19 patients suspected to have M. tuberculosis infection. Slides were stained with auramine orange and evaluated as being positive or negative for M. tuberculosis with both the new portable fluorescence microscope and a laboratory grade fluorescence microscope. Concordant results were obtained in 98.4% of cases. This highly portable, low cost, fluorescence microscope may be a useful diagnostic tool to expand the availability of M. tuberculosis testing at the point-of-care in low resource settings. PMID:20694194

  7. Portable, battery-operated, low-cost, bright field and fluorescence microscope.

    Science.gov (United States)

    Miller, Andrew R; Davis, Gregory L; Oden, Z Maria; Razavi, Mohamad Reza; Fateh, Abolfazl; Ghazanfari, Morteza; Abdolrahimi, Farid; Poorazar, Shahin; Sakhaie, Fatemeh; Olsen, Randall J; Bahrmand, Ahmad Reza; Pierce, Mark C; Graviss, Edward A; Richards-Kortum, Rebecca

    2010-08-04

    This study describes the design and evaluation of a portable bright-field and fluorescence microscope that can be manufactured for $240 USD. The microscope uses a battery-operated LED-based flashlight as the light source and achieves a resolution of 0.8 microm at 1000x magnification in fluorescence mode. We tested the diagnostic capability of this new instrument to identify infections caused by the human pathogen, Mycobacterium tuberculosis. Sixty-four direct, decontaminated, and serially diluted smears were prepared from sputa obtained from 19 patients suspected to have M. tuberculosis infection. Slides were stained with auramine orange and evaluated as being positive or negative for M. tuberculosis with both the new portable fluorescence microscope and a laboratory grade fluorescence microscope. Concordant results were obtained in 98.4% of cases. This highly portable, low cost, fluorescence microscope may be a useful diagnostic tool to expand the availability of M. tuberculosis testing at the point-of-care in low resource settings.

  8. Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilities.

    Science.gov (United States)

    Schaefer, Samuel; Boehm, Stephen A; Chau, Kenneth J

    2012-05-10

    Optical microscopy is a simple, yet essential, imaging technology. Conventional laboratory-grade optical microscopes are bulky and costly, confining their use to within laboratory settings and restricting their accessibility in regions of limited resources. With the aim of overcoming these limitations, we have realized a portable, low-cost, and highly automated optical microscope that integrates mass-manufactured components, including light-emitting diodes, a web camera, optical disk drives, and a microcontroller. Our implementation is capable of bright-field and fluorescence imaging with micrometer-scale resolution and controlled mechanical actuation of both the lens and sample. We interface the lighting, image capture, and mechanical actuators of the microscope into a single software environment, enabling automation of common microscope operations, such as image focusing and large-area sample visualization. Combination of mechanical actuation and software automation into a compact, low-cost microscope system is an important initial step toward the goal of making optical microscopy universally accessible, portable, and easy to use.

  9. Real-Time Digital Bright Field Technology for Rapid Antibiotic Susceptibility Testing.

    Science.gov (United States)

    Canali, Chiara; Spillum, Erik; Valvik, Martin; Agersnap, Niels; Olesen, Tom

    2018-01-01

    Optical scanning through bacterial samples and image-based analysis may provide a robust method for bacterial identification, fast estimation of growth rates and their modulation due to the presence of antimicrobial agents. Here, we describe an automated digital, time-lapse, bright field imaging system (oCelloScope, BioSense Solutions ApS, Farum, Denmark) for rapid and higher throughput antibiotic susceptibility testing (AST) of up to 96 bacteria-antibiotic combinations at a time. The imaging system consists of a digital camera, an illumination unit and a lens where the optical axis is tilted 6.25° relative to the horizontal plane of the stage. Such tilting grants more freedom of operation at both high and low concentrations of microorganisms. When considering a bacterial suspension in a microwell, the oCelloScope acquires a sequence of 6.25°-tilted images to form an image Z-stack. The stack contains the best-focus image, as well as the adjacent out-of-focus images (which contain progressively more out-of-focus bacteria, the further the distance from the best-focus position). The acquisition process is repeated over time, so that the time-lapse sequence of best-focus images is used to generate a video. The setting of the experiment, image analysis and generation of time-lapse videos can be performed through a dedicated software (UniExplorer, BioSense Solutions ApS). The acquired images can be processed for online and offline quantification of several morphological parameters, microbial growth, and inhibition over time.

  10. Reduced CD26bright expression of peripheral blood CD8+ T-cell subsets in psoriatic patients.

    NARCIS (Netherlands)

    Lingen, R.G. van; Kerkhof, P.C.M. van de; Jong, E.M.G.J. de; Seyger, M.M.B.; Boezeman, J.B.M.; Erp, P.E.J. van

    2008-01-01

    Background: T cells have been shown to be highly relevant in psoriasis. CD26 is a novel T-cell activation marker involved in various T-cell functions, e.g. (i) co-stimulation, (ii) migration and (iii) T-cell memory response. In particular, CD26bright peripheral blood T cells have been shown to be

  11. Diviner lunar radiometer gridded brightness temperatures from geodesic binning of modeled fields of view

    Science.gov (United States)

    Sefton-Nash, E.; Williams, J.-P.; Greenhagen, B. T.; Aye, K.-M.; Paige, D. A.

    2017-12-01

    An approach is presented to efficiently produce high quality gridded data records from the large, global point-based dataset returned by the Diviner Lunar Radiometer Experiment aboard NASA's Lunar Reconnaissance Orbiter. The need to minimize data volume and processing time in production of science-ready map products is increasingly important with the growth in data volume of planetary datasets. Diviner makes on average >1400 observations per second of radiance that is reflected and emitted from the lunar surface, using 189 detectors divided into 9 spectral channels. Data management and processing bottlenecks are amplified by modeling every observation as a probability distribution function over the field of view, which can increase the required processing time by 2-3 orders of magnitude. Geometric corrections, such as projection of data points onto a digital elevation model, are numerically intensive and therefore it is desirable to perform them only once. Our approach reduces bottlenecks through parallel binning and efficient storage of a pre-processed database of observations. Database construction is via subdivision of a geodesic icosahedral grid, with a spatial resolution that can be tailored to suit the field of view of the observing instrument. Global geodesic grids with high spatial resolution are normally impractically memory intensive. We therefore demonstrate a minimum storage and highly parallel method to bin very large numbers of data points onto such a grid. A database of the pre-processed and binned points is then used for production of mapped data products that is significantly faster than if unprocessed points were used. We explore quality controls in the production of gridded data records by conditional interpolation, allowed only where data density is sufficient. The resultant effects on the spatial continuity and uncertainty in maps of lunar brightness temperatures is illustrated. We identify four binning regimes based on trades between the

  12. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population.

    Directory of Open Access Journals (Sweden)

    Kazuyo Yasuda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiaiting cells (CICs are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDH(Br cells from ovarian cancer cells. Both SP cells and ALDH(Br cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2, than those of main population (MP cells and ALDH(Low cells, respectively. We analyzed an SP and ALDH(Br overlapping population (SP/ALDH(Br, and the SP/ALDH(Br population exhibited higher tumor-initiating ability than that of SP cells or ALDH(Br cells, enabling initiation of tumor with as few as 10(2 cells. Furthermore, SP/ADLH(Br population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDH(Low, MP/ALDH(Br and MP/ALDH(Low cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDH(Br population was detected in several gynecological cancer cells with ratios of 0.1% for HEC-1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDH(Br overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.

  13. How to Increase Brightness of Near-Infrared Fluorescent Proteins in Mammalian Cells.

    Science.gov (United States)

    Shemetov, Anton A; Oliinyk, Olena S; Verkhusha, Vladislav V

    2017-06-22

    Numerous near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial photoreceptors but lack of their systematic comparison makes researcher's choice rather difficult. Here we evaluated side-by-side several modern NIR FPs, such as blue-shifted smURFP and miRFP670, and red-shifted mIFP and miRFP703. We found that among all NIR FPs, miRFP670 had the highest fluorescence intensity in various mammalian cells. For instance, in common HeLa cells miRFP703, mIFP, and smURFP were 2-, 9-, and 53-fold dimmer than miRFP670. Either co-expression of heme oxygenase or incubation of cells with heme precursor weakly affected NIR fluorescence, however, in the latter case elevated cellular autofluorescence. Exogenously added chromophore substantially increased smURFP brightness but only slightly enhanced brightness of other NIR FPs. mIFP showed intermediate, while monomeric miRFP670 and miRFP703 exhibited high binding efficiency of endogenous biliverdin chromophore. This feature makes them easy to use as GFP-like proteins for spectral multiplexing with FPs of visible range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany

    Science.gov (United States)

    Jechow, Andreas; Hölker, Franz; Kolláth, Zoltán; Gessner, Mark O.; Kyba, Christopher C. M.

    2016-09-01

    We report luminance measurements of the summer night sky at a field site on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the amount of artificial skyglow from nearby and distant towns in the context of a planned study on light pollution. The site is located about 70 km north of Berlin in a rural area possibly belonging to one of the darkest regions in Germany. Continuous monitoring of the zenith sky luminance between June and September 2015 was conducted utilizing a Sky Quality Meter. With this device, typical values for clear nights in the range of 21.5-21.7 magSQM/arcsec2 were measured, which is on the order of the natural sky brightness during starry nights. On overcast nights, values down to 22.84 magSQM/arcsec2 were obtained, which is about one third as bright as on clear nights. The luminance measured on clear nights as well as the darkening with the presence of clouds indicates that there is very little influence of artificial skyglow on the zenith sky brightness at this location. Furthermore, fish-eye lens sky imaging luminance photometry was performed with a digital single-lens reflex camera on a clear night in the absence of moonlight. The photographs unravel several distant towns as possible sources of light pollution on the horizon. However, the low level of artificial skyglow makes the field site at Lake Stechlin an excellent location to study the effects of skyglow on a lake ecosystem in a controlled fashion.

  15. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    Science.gov (United States)

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biofeedback systems for stress reduction : Towards a bright future for a revitalized field

    NARCIS (Netherlands)

    Broek, E.L. van den; Westerink, J.H.D.M.

    2012-01-01

    Stress has recently been baptized as the black death of the 21st century, which illustrates its threat to current health standards. This article proposes biofeedback systems as a means to reduce stress. A concise state-of-the-art introduction on biofeedback systems is given. The field of mental

  17. Biofeedback systems for stress reduction: Towards a Bright Future for a Revitalized Field

    NARCIS (Netherlands)

    van den Broek, Egon; Westerink, Joyce H.D.M.; Conchon, E.; Correia, C.; Fred, A.; Gamboa, H.

    2012-01-01

    Stress has recently been baptized as the black death of the 21st century, which illustrates its threat to current health standards. This article proposes biofeedback systems as a means to reduce stress. A concise state-ofthe-art introduction on biofeedback systems is given. The field of mental

  18. Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing.

    Science.gov (United States)

    Chica, Manuel

    2012-11-01

    A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited. Copyright © 2012 Wiley Periodicals, Inc.

  19. Natural killer cell cytokine response to M. bovis BCG Is associated with inhibited proliferation, increased apoptosis and ultimate depletion of NKp44(+CD56(bright cells.

    Directory of Open Access Journals (Sweden)

    Damien Portevin

    Full Text Available Mycobacterium bovis BCG, a live attenuated strain of M. bovis initially developed as a vaccine against tuberculosis, is also used as an adjuvant for immunotherapy of cancers and for treatment of parasitic infections. The underlying mechanisms are thought to rely on its immunomodulatory properties including the recruitment of natural killer (NK cells. In that context, we aimed to study the impact of M. bovis BCG on NK cell functions. We looked at cytotoxicity, cytokine production, proliferation and cell survival of purified human NK cells following exposure to single live particles of mycobacteria. We found that M. bovis BCG mediates apoptosis of NK cells only in the context of IL-2 stimulation during which CD56(bright NK cells are releasing IFN-γ in response to mycobacteria. We found that the presence of mycobacteria prevented the IL-2 induced proliferation and surface expression of NKp44 receptor by the CD56(bright population. In summary, we observed that M. bovis BCG is modulating the functions of CD56(bright NK cells to drive this subset to produce IFN-γ before subsequent programmed cell death. Therefore, IFN-γ production by CD56(bright cells constitutes the main effector mechanism of NK cells that would contribute to the benefits observed for M. bovis BCG as an immunotherapeutic agent.

  20. Fast, wide-field and distortion-free telescope with curved detectors for surveys at ultralow surface brightness.

    Science.gov (United States)

    Muslimov, Eduard; Valls-Gabaud, David; Lemaître, Gérard; Hugot, Emmanuel; Jahn, Wilfred; Lombardo, Simona; Wang, Xin; Vola, Pascal; Ferrari, Marc

    2017-11-01

    We present the design of an all-reflective, bifolded Schmidt telescope aimed at surveys of extended astronomical objects with extremely low surface brightness. The design leads to a high image quality without any diffracting spider, a large aperture and field of view (FoV), and a small central obstruction that barely alters the point spread function (PSF). As an example, we design a high-quality, 36 cm diameter, fast (f/2.5) telescope working in the visible with a large FoV (1.6°×2.6°). The telescope can operate with a curved detector (or with a flat detector with a field flattener) and a set of filters. The entrance mirror is anamorphic and replaces the classical Schmidt entrance corrector plate. We show that this anamorphic primary mirror can be manufactured through stress polishing, avoiding high spatial frequency errors, and testing with a simple interferometer scheme. This prototype is intended to serve as a fast-track scientific and technological pathfinder for the future space-based MESSIER mission.

  1. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    Science.gov (United States)

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  2. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z.

    1993-05-01

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included.

  3. CD3(bright)CD56(+) T cells associate with pegylated interferon-alpha treatment nonresponse in chronic hepatitis B patients.

    Science.gov (United States)

    Guo, Chuang; Shen, Xiaokun; Fu, Binqing; Liu, Yanyan; Chen, Yongyan; Ni, Fang; Ye, Ying; Sun, Rui; Li, Jiabin; Tian, Zhigang; Wei, Haiming

    2016-05-13

    Chronic hepatitis B (CHB) infection is a serious and prevalent health concern worldwide, and the development of effective drugs and strategies to combat this disease is urgently needed. Currently, pegylated interferon-alpha (peg-IFNα) and nucleoside/nucleotide analogues (NA) are the most commonly prescribed treatments. However, sustained response rates in patients remain low, and the reasons are not well understood. Here, we observed that CHB patients preferentially harbored CD3(bright)CD56(+) T cells, a newly identified CD56(+) T cell population. Patients with this unique T cell population exhibited relatively poor responses to peg-IFNα treatment. CD3(bright)CD56(+) T cells expressed remarkably high levels of the inhibitory molecule NKG2A as well as low levels of CD8. Even if patients were systematically treated with peg-IFNα, CD3(bright)CD56(+) T cells remained in an inhibitory state throughout treatment and exhibited suppressed antiviral function. Furthermore, peg-IFNα treatment rapidly increased inhibitory TIM-3 expression on CD3(bright)CD56(+) T cells, which negatively correlated with IFNγ production and might have led to their dysfunction. This study identified a novel CD3(bright)CD56(+) T cell population preferentially shown in CHB patients, and indicated that the presence of CD3(bright)CD56(+) T cells in CHB patients may be useful as a new indicator associated with poor therapeutic responses to peg-IFNα treatment.

  4. Simultaneous Bright-Field and Dark-Field Scanning Transmission Electron Microscopy in Scanning Electron Microscopy: A New Approach for Analyzing Polymer System Morphology

    Science.gov (United States)

    Patel, Binay S.

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-IN-SEM) is a convenient technique for polymer characterization. Utilizing the lower accelerating voltages, larger field of view and, exclusion of post-specimen projection lens in an SEM; STEM-IN-SEM has shown results comparable to transmission electron microscopy (TEM) observation of polymer morphology. Various specimen-holder geometries and detector arrangements have been used for bright field (BF) STEM-IN-SEM imaging. To further the characterization potential of STEM-IN-SEM a new specimen holder has been developed to facilitate simultaneous BF and dark field (DF) STEM-IN-SEM imaging. A new specimen holder and a new microscope configuration were designed for this new imaging technique. BF and DF signals were maximized for optimal STEM-IN-SEM imaging. BF signal intensities were found to be twice as large as DF signal intensities. BF and DF STEM-IN-SEM imaging spatial resolutions are limited to 1.8 nm and approximately 5 nm, respectively. Simultaneous BF & DF STEM-IN-SEM imaging is applicable to both industrial and academic research environments. Examples of commodity and engineering polymer morphology characterization are provided. Results are comparable to TEM observation and may serve as a suitable precursor to STEM characterization of polymer systems. Finally, future developments of various accessories for this technique are discussed.

  5. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane.

    Science.gov (United States)

    Hellriegel, Christian; Caiolfa, Valeria R; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-09-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.

  6. Interferon-γ production by tubulointerstitial human CD56(bright) natural killer cells contributes to renal fibrosis and chronic kidney disease progression.

    Science.gov (United States)

    Law, Becker M P; Wilkinson, Ray; Wang, Xiangju; Kildey, Katrina; Lindner, Mae; Rist, Melissa J; Beagley, Kenneth; Healy, Helen; Kassianos, Andrew J

    2017-07-01

    Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3(-)CD56(+)) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56(dim) NK cell subset and particularly the CD56(bright) NK cell subset were elevated in fibrotic kidney tissue. However, only CD56(bright) NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56(bright) NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56(bright) NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56(bright) NK cells (NKp46(+) CD117(+)) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56(bright) NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. Cell separation using electric fields

    Science.gov (United States)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  8. Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes.

    Science.gov (United States)

    Green, Ori; Eilon, Tal; Hananya, Nir; Gutkin, Sara; Bauer, Christoph R; Shabat, Doron

    2017-04-26

    Chemiluminescence probes are considered to be among the most sensitive diagnostic tools that provide high signal-to-noise ratio for various applications such as DNA detection and immunoassays. We have developed a new molecular methodology to design and foresee light-emission properties of turn-ON chemiluminescence dioxetane probes suitable for use under physiological conditions. The methodology is based on incorporation of a substituent on the benzoate species obtained during the chemiexcitation pathway of Schaap's adamantylidene-dioxetane probe. The substituent effect was initially evaluated on the fluorescence emission generated by the benzoate species and then on the chemiluminescence of the dioxetane luminophores. A striking substituent effect on the chemiluminescence efficiency of the probes was obtained when acrylate and acrylonitrile electron-withdrawing groups were installed. The chemiluminescence quantum yield of the best probe was more than 3 orders of magnitude higher than that of a standard, commercially available adamantylidene-dioxetane probe. These are the most powerful chemiluminescence dioxetane probes synthesized to date that are suitable for use under aqueous conditions. One of our probes was capable of providing high-quality chemiluminescence cell images based on endogenous activity of β-galactosidase. This is the first demonstration of cell imaging achieved by a non-luciferin small-molecule probe with direct chemiluminescence mode of emission. We anticipate that the strategy presented here will lead to development of efficient chemiluminescence probes for various applications in the field of sensing and imaging.

  9. Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency.

    Science.gov (United States)

    Tang, Shi; Sandström, Andreas; Lundberg, Petter; Lanz, Thomas; Larsen, Christian; van Reenen, Stephan; Kemerink, Martijn; Edman, Ludvig

    2017-10-30

    The light-emitting electrochemical cell promises cost-efficient, large-area emissive applications, as its characteristic in-situ doping enables use of air-stabile electrodes and a solution-processed single-layer active material. However, mutual exclusion of high efficiency and high brightness has proven a seemingly fundamental problem. Here we present a generic approach that overcomes this critical issue, and report on devices equipped with air-stabile electrodes and outcoupling structure that deliver a record-high efficiency of 99.2 cd A-1 at a bright luminance of 1910 cd m-2. This device significantly outperforms the corresponding optimized organic light-emitting diode despite the latter employing calcium as the cathode. The key to this achievement is the design of the host-guest active material, in which tailored traps suppress exciton diffusion and quenching in the central recombination zone, allowing efficient triplet emission. Simultaneously, the traps do not significantly hamper electron and hole transport, as essentially all traps in the transport regions are filled by doping.

  10. Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells

    Directory of Open Access Journals (Sweden)

    Shinya eTakahashi

    2015-04-01

    Full Text Available Ultraviolet (UV-B irradiation leads to DNA damage, cell cycle arrest, growth inhibition, and cell death. To evaluate the UV-B stress–induced changes in plant cells, we developed a model system based on tobacco Bright Yellow-2 (BY-2 cells. Both low-dose UV-B (low UV-B: 740 J m−2 and high-dose UV-B (high UV-B: 2960 J m−2 inhibited cell proliferation and induced cell death; these effects were more pronounced at high UV-B. Flow cytometry showed cell cycle arrest within 1 day after UV-B irradiation; neither low- nor high-UV-B–irradiated cells entered mitosis within 12 h. Cell cycle progression was gradually restored in low-UV-B–irradiated cells but not in high-UV-B–irradiated cells. UV-A irradiation, which activates cyclobutane pyrimidine dimer (CPD photolyase, reduced inhibition of cell proliferation by low but not high UV-B and suppressed high-UV-B–induced cell death. UV-B induced CPD formation in a dose-dependent manner. The amounts of CPDs decreased gradually within 3 days in low-UV-B–irradiated cells, but remained elevated after 3 days in high-UV-B–irradiated cells. Low UV-B slightly increased the number of DNA single-strand breaks detected by the comet assay at 1 day after irradiation, and then decreased at 2 and 3 days after irradiation. High UV-B increased DNA fragmentation detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay 1 and 3 days after irradiation. Caffeine, an inhibitor of ataxia telangiectasia mutated (ATM and ataxia telangiectasia and Rad3-related (ATR checkpoint kinases, reduced the rate of cell death in high-UV-B–irradiated cells. Our data suggest that low-UV-B–induced CPDs and/or DNA strand-breaks inhibit DNA replication and proliferation of BY-2 cells, whereas larger contents of high-UV-B–induced CPDs and/or DNA strand-breaks lead to cell death.

  11. Monocytes inhibit hepatitis C virus-induced TRAIL expression on CD56bright NK cells.

    Science.gov (United States)

    Mele, Dalila; Mantovani, Stefania; Oliviero, Barbara; Grossi, Giulia; Lombardi, Andrea; Mondelli, Mario U; Varchetta, Stefania

    2017-12-01

    Natural killer (NK) cells play an important role in the pathogenesis of hepatitis C virus (HCV) infection. We have previously shown that culture-derived HCV (HCVcc) enhance tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) expression on healthy NK cells, but not on those from patients infected with HCV, which was likely dependent on accessory cells. Here we sought to elucidate the mechanisms involved in altered TRAIL upregulation in this setting. Peripheral blood mononuclear cells (PBMC) from controls and patients infected with HCV were exposed to HCVcc. Cell depletions were performed to identify cells responsible for NK cell activation. Flow cytometry and ELISA were used to identify the cytokines involved in the NK activation process. In patients infected with HCV, soluble factors secreted by control PBMC restored the ability of NK cells to express TRAIL. Of note, CD14+ cell depletion had identical effects upon virus exposure and promoted increased degranulation. Moreover, increased concentrations of interleukin (IL)-18 binding protein a (IL-18BPa) and IL-36 receptor antagonist (IL-36RA) were observed after PBMC exposure to HCVcc in patients with HCV. HCVcc-induced NK cell TRAIL expression was inhibited by IL-18BPa and IL-36RA in control subjects. There were statistically significant correlations between IL-18BPa and indices of liver inflammation and fibrosis, supporting a role for this protein in the pathogenesis of chronic HCV infection. During chronic HCV infection, monocytes play a key role in negative regulation of NK cell activation, predominantly via secretion of inhibitors of IL-18 and IL-36. Coordination and collaboration between immune cells are essential to fight pathogens. Herein we show that during HCV infection monocytes secrete IL-18 and IL-36 inhibitory proteins, reducing NK cell activation, and consequently inhibiting their ability to express TRAIL and kill target cells. Copyright © 2017 European Association for the Study of the

  12. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis

    Science.gov (United States)

    Rampazzo, Enrico; Voltan, Rebecca; Petrizza, Luca; Zaccheroni, Nelsi; Prodi, Luca; Casciano, Fabio; Zauli, Giorgio; Secchiero, Paola

    2013-08-01

    Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2

  13. Bright fluorescent Streptococcus pneumoniae for live cell imaging of host-pathogen interactions

    NARCIS (Netherlands)

    Kjos, M.; Aprianto, R.; Fernandes, V.E.; Andrew, P.W.; Strijp, van J.A.G.; Nijland, R.; Veening, J.W.

    2015-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people, but at the same time one of the major causes of infectious diseases such as pneumonia, meningitis and sepsis. The shift from commensal to pathogen and its interaction with host cells is poorly understood. One of the

  14. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    NARCIS (Netherlands)

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.|info:eu-repo/dai/nl/074307053; Nijland, Reindert; Veening, Jan-Willem

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the

  15. Electromagnetic fields stress living cells.

    Science.gov (United States)

    Blank, Martin; Goodman, Reba

    2009-08-01

    Electromagnetic fields (EMF), in both ELF (extremely low frequency) and radio frequency (RF) ranges, activate the cellular stress response, a protective mechanism that induces the expression of stress response genes, e.g., HSP70, and increased levels of stress proteins, e.g., hsp70. The 20 different stress protein families are evolutionarily conserved and act as 'chaperones' in the cell when they 'help' repair and refold damaged proteins and transport them across cell membranes. Induction of the stress response involves activation of DNA, and despite the large difference in energy between ELF and RF, the same cellular pathways respond in both frequency ranges. Specific DNA sequences on the promoter of the HSP70 stress gene are responsive to EMF, and studies with model biochemical systems suggest that EMF could interact directly with electrons in DNA. While low energy EMF interacts with DNA to induce the stress response, increasing EMF energy in the RF range can lead to breaks in DNA strands. It is clear that in order to protect living cells, EMF safety limits must be changed from the current thermal standard, based on energy, to one based on biological responses that occur long before the threshold for thermal changes.

  16. HI Surface brightness mapping

    Science.gov (United States)

    Pen, Ue-Li; Staveley-Smith, Lister; Chang, Tzu-Ching; Peterson, Jeff; Bandura, Kevin

    2008-04-01

    We propose to scan the 2dF survey field with Parkes multibeam in driftscan mode to make a map to cross correlate with galaxy redshifts. This allows a statistical detection of HI large scale structure out to z=0.15. In this cross correlation, the HI in ALL galaxies contributes, not only the bright ones, which significantly boosts the sensitivity. The proposed 40 hours on the fields result in a forecasted 20 sigma detection. The survey volume is 10 million cubic megaparsec, which contain 10^15 solar masses of hydrogen.

  17. Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A

    DEFF Research Database (Denmark)

    Nielsen, Natasja; Ødum, Niels; Ursø, Birgitte

    2012-01-01

    the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56(dim) and CD56(bright) NK cell-mediated elimination of activated autologous CD4(+) T cells, which potentially may provide an opportunity for therapeutic treatment...

  18. Bright mono-aqua europium complexes based on triazacyclononane that bind anions reversibly and permeate cells efficiently.

    Science.gov (United States)

    Butler, Stephen J; McMahon, Brian K; Pal, Robert; Parker, David; Walton, James W

    2013-07-15

    A series of five europium(III) complexes has been prepared from heptadentate N5O2 ligands that possess a brightness of more than 10 mM(-1) cm(-1) in water, following excitation over the range λ=330-355 nm. Binding of several oxy anions has been assessed by emission spectral titrimetric analysis, with the binding of simple carboxylates, lactate and citrate involving a common ligation mode following displacement of the coordinated water. Selectivity for bicarbonate allows the rapid determination of this anion in human serum, with K(d)=37 mM (295 K). The complexes are internalised quickly into mammalian cells and exhibit a mitochondrial localisation at early time points, migrating after a few hours to reveal a predominant lysosomal distribution. Herein, we report the synthesis and complexation behaviour of strongly emissive europium (III) complexes that bind oxy-anions in aqueous media with an affinity and selectivity profile that is distinctively different from previously studied systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. BrightFocus Foundation

    Science.gov (United States)

    ... sooner. More science news Help us find a cure. Give to BrightFocus BrightFocus Updates BrightFocus Foundation Lauds Bill Gates Alzheimer’s Initiative “BrightFocus Foundation lauds today’s historic announcement by ...

  20. Oxidative stress and mitochondrial dysfunctions are early events in narciclasine-induced programmed cell death in tobacco Bright Yellow-2 cells.

    Science.gov (United States)

    Lu, Hongxia; Wan, Qi; Wang, Huahua; Na, Xiaofan; Wang, Xiaomin; Bi, Yurong

    2012-01-01

    Narciclasine (NCS) is a plant growth inhibitor isolated from the secreted mucilage of Narcissus tazetta bulbs. It is a commonly used anticancer agent in animal systems. In this study, we provide evidence to show that NCS also acts as an agent in inducing programmed cell death (PCD) in tobacco Bright Yellow-2 (TBY-2) cell cultures. NCS treatment induces typical PCD-associated morphological and biochemical changes, namely cell shrinkage, chromatin condensation and nuclear DNA degradation. To investigate possible signaling events, we analyzed the production of reactive oxygen species (ROS) and the function of mitochondria during PCD induced by NCS. A biphasic behavior burst of hydrogen peroxide (H(2)O(2)) was detected in TBY-2 cells treated with NCS, and mitochondrial transmembrane potential (MTP) loss occurred after a slight increase. Pre-incubation with antioxidant catalase (CAT) and N-acetyl-L-cysteine (NAC) not only significantly decreased the H(2)O(2) production but also effectively retarded the decrease of MTP and reduced the percentage of cells undergoing PCD after NCS treatment. In conclusion, our results suggest that NCS induces PCD in plant cells; the oxidative stress (accumulation of H(2)O(2)) and the MTP loss play important roles during NCS-induced PCD. Copyright © Physiologia Plantarum 2011.

  1. H-Band dropouts in the deepest CANDELS field. A new population of bright massive galaxies at z >3

    Science.gov (United States)

    Alcalde Pampliega, B.; Pérez-González, P. G.; Domínguez Sánchez, H.; Esquej, P.; Eliche-Moral, M. C.; Barro, G.

    2015-05-01

    The recent increase in depth, spatial and wavelength coverage of extragalactic surveys has improved dramatically our understanding of galaxy formation and evolution and is revealing a new population of galaxies at high redshift. That is consistent with a downsizing (Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839; Heavens, A., Panter, B., Jiménez, R., & Dunlop, J. 2004, Nature, 428, 625; Juneau, S., et al. 2005, ApJ, 619, L135; Bauer, A. E., Drory, N., Hill, G. J., & Feulner, G. 2005, ApJ, 621, L89; Pérez-González et al. 2008, ApJ, 675, 234) scenario, which implies that the most massive galaxies formed early in the history of the universe and evolved quickly. Red color criteria and the analysis of deep mid-IR, has been proven to very useful to identify high-z extremely red galaxies as shown in (Caputi, K. et al. 2012, ApJ, 750, L20 and Huang, J.-S., Zheng, X. Z., Rigopoulou, D. et al., 2011, ApJ, 742, L13). We present our analysis of the deepest near-infrared (F160W/H-band from CANDELS) and mid-infrared (IRAC from GOODS) data taken by HST and Spitzer (in the GOODS fields) to select sources only detected by IRAC and with no CANDELS counterpart (i.e., H>27, [3.6]≤25). These H-Band dropouts constitute a previously unknown population of dust-enshrouded and/or quiescent massive red galaxies at z>3. Using the wealth of data available in the GOODS field, especially the SHARDS data, we characterize the properties of this population of red galaxies and discuss on its relevance for previous estimations of the stellar mass function at z=3-5, and the evolution of massive galaxies in the early Universe.

  2. On the recording of an emission with a reduced brightness in the region of a strong sunspot magnetic field

    Science.gov (United States)

    Bogod, V. M.; Peterova, N. G.; Ryabov, B. I.; Topchilo, N. A.

    2015-01-01

    Observations are reviewed of active regions where radio emission depressions in radio sources above large sunspots is observed. The depression value can be significant and can reach 2000-4000 K relative to the temperature around a quiet Sun. However, the number of cases of strong depression is small, which is apparently related to the specific features and conditions of sunspot observations and the limited or restrict telescope possibilities of the present day. Usage of the RATAN-600 radio telescope with a high spectral resolution (1%) made it possible to establish that this phenomenon is observed in a limited wavelength range (1.7-3.0) cm. Owing to the special method of RATAN-600 polarization measurements, it has been indicated that the emission depression effect takes place in the ordinary o-mode emission, whereas the emission source above a sunspot is always brighter than the background in the extraordinary e-mode. Two new active regions where the depression phenomenon was registered have been considered, and a comparison with the data from the NoRH radioheliograph, SSRT, and spacecraft has been performed. The values of the magnetic fields above the sunspots at which the region of ordinary and extraordinary wave generation penetrates in the coronal temperature region have been measured. A depression phenomenon modeling, indicating that electron density decreases and the situation is similar to coronal holes, has been performed based on the set of observational data. Possible directions in the study of this phenomenon are discussed.

  3. Nonlinear cell response to strong electric fields

    Science.gov (United States)

    Bardos, D. C.; Thompson, C. J.; Yang, Y. S.; Joyner, K. H.

    2000-07-01

    The response of living cells to externally applied electric fields is of widespread interest. In particular, the intensification of electric fields across cell membranes is believed to be responsible, through membrane rupture and reversible membrane breakdown processes, for certain types of tissue damage in electrical trauma cases which cannot be attributed to Joule heating. Large elongated cells such as skeletal muscle fibres are particularly vulnerable to such damage. Previous theoretical studies of field intensification across cell membranes in such cells have assumed the membrane current to be linear in the applied field (Ohmic membrane conductivity) and were limited to sinusoidal applied fields. In this paper, we investigate a simple model of a long cylindrical cell, corresponding to nerve or skeletal muscle cells. Employing the electroquasistatic approximation, a system of coupled first-order differential equations for the membrane electric field is derived which incorporates arbitrary time dependence in the external field and nonlinear membrane response (non-Ohmic conductivity). The behaviour of this model is investigated for a variety of applied fields in both the linear and highly nonlinear regimes. We find that peak membrane fields predicted by the nonlinear model are approximately twice as intense, for low-frequency electrical trauma conditions, as those of the linear theory.

  4. Manipulating Cells with Static Magnetic Fields

    Science.gov (United States)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  5. Electric Field Analysis of Breast Tumor Cells

    Directory of Open Access Journals (Sweden)

    V. Gowri Sree

    2011-01-01

    Full Text Available An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this.

  6. Characterization of HER2 gene amplification heterogeneity in invasive and in situ breast cancer using bright-field in situ hybridization.

    Science.gov (United States)

    Polónia, António; Oliveira, Guilherme; Schmitt, Fernando

    2017-11-01

    The aims of this study were to evaluate and compare the HER2 gene amplification status in invasive and adjacent in situ breast carcinoma, using bright-field in situ hybridization, and to document the possible presence of HER2 genetic heterogeneity (HER2-GH) in both components. A cohort of 100 primary invasive carcinomas (IC) associated with carcinoma in situ (CIS) were evaluated for HER2 gene amplification by SISH according to the 2013 ASCO/CAP HER2 guideline. A second cohort of all the cases with HER2-GH since the introduction of the updated ASCO/CAP HER2 guideline was also characterized, and an evaluation of the HER2 gene amplification in the CIS component, if present, was also done. In the first cohort, the HER2 amplification in the IC was negative in 87% of the cases and positive in 13% of the cases, without the presence of HER2-GH. All the cases had an associated CIS with the same HER2 status as IC, with four cases of CIS presenting HER2-GH. In the CIS, we observed a significant relationship of HER2 gene amplification with high nuclear grade. In the four cases with HER2-GH in CIS, two cases presented HER2 gene amplification in the IC. The second cohort included 12 cases with HER2-GH in a total of 1243 IC cases (0.97%). Additionally, we identified two cases associated with non-amplified CIS. HER2-GH is a rare event in IC and can already be present in CIS, not being an important step in the acquisition of invasive features.

  7. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  8. Magnetic topological analysis of coronal bright points

    Science.gov (United States)

    Galsgaard, K.; Madjarska, M. S.; Moreno-Insertis, F.; Huang, Z.; Wiegelmann, T.

    2017-10-01

    Context. We report on the first of a series of studies on coronal bright points which investigate the physical mechanism that generates these phenomena. Aims: The aim of this paper is to understand the magnetic-field structure that hosts the bright points. Methods: We use longitudinal magnetograms taken by the Solar Optical Telescope with the Narrowband Filter Imager. For a single case, magnetograms from the Helioseismic and Magnetic Imager were added to the analysis. The longitudinal magnetic field component is used to derive the potential magnetic fields of the large regions around the bright points. A magneto-static field extrapolation method is tested to verify the accuracy of the potential field modelling. The three dimensional magnetic fields are investigated for the presence of magnetic null points and their influence on the local magnetic domain. Results: In nine out of ten cases the bright point resides in areas where the coronal magnetic field contains an opposite polarity intrusion defining a magnetic null point above it. We find that X-ray bright points reside, in these nine cases, in a limited part of the projected fan-dome area, either fully inside the dome or expanding over a limited area below which typically a dominant flux concentration resides. The tenth bright point is located in a bipolar loop system without an overlying null point. Conclusions: All bright points in coronal holes and two out of three bright points in quiet Sun regions are seen to reside in regions containing a magnetic null point. An as yet unidentified process(es) generates the brigh points in specific regions of the fan-dome structure. The movies are available at http://www.aanda.org

  9. Haemopoietic cell renewal in radiation fields

    Science.gov (United States)

    Fliedner, T. M.; Nothdurft, W.; Tibken, B.; Hofer, E.; Weiss, M.; Kindler, H.

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ``turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ``blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.

  10. Video Field Studies with your Cell Phone

    DEFF Research Database (Denmark)

    Buur, Jacob; Fraser, Euan

    2010-01-01

    is monumental, that equipment is difficult to handle etc. This tutorial presents a lightweight entry into video field studies, using cheap devices like cell phones and portable webcams for informal shooting and simple computer handling for editing. E.g. how far can you get with an iPhone or a video capable i...

  11. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  12. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen) for human G-protein-coupled receptor signaling in microbial yeast cells.

    Science.gov (United States)

    Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2013-01-01

    G-protein-coupled receptors (GPCRs) are currently the most important pharmaceutical targets for drug discovery because they regulate a wide variety of physiological processes. Consequently, simple and convenient detection systems for ligands that regulate the function of GPCR have attracted attention as powerful tools for new drug development. We previously developed a yeast-based fluorescence reporter ligand detection system using flow cytometry. However, using this conventional detection system, fluorescence from a cell expressing GFP and responding to a ligand is weak, making detection of these cells by fluorescence microscopy difficult. We here report improvements to the conventional yeast fluorescence reporter assay system resulting in the development of a new highly-sensitive fluorescence reporter assay system with extremely bright fluorescence and high signal-to-noise (S/N) ratio. This new system allowed the easy detection of GPCR signaling in yeast using fluorescence microscopy. Somatostatin receptor and neurotensin receptor (implicated in Alzheimer's disease and Parkinson's disease, respectively) were chosen as human GPCR(s). The facile detection of binding to these receptors by cognate peptide ligands was demonstrated. In addition, we established a highly sensitive ligand detection system using yeast cell surface display technology that is applicable to peptide screening, and demonstrate that the display of various peptide analogs of neurotensin can activate signaling through the neurotensin receptor in yeast cells. Our system could be useful for identifying lead peptides with agonistic activity towards targeted human GPCR(s).

  13. Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency

    National Research Council Canada - National Science Library

    Shi Tang; Andreas Sandström; Petter Lundberg; Thomas Lanz; Christian Larsen; Stephan van Reenen; Martijn Kemerink; Ludvig Edman

    2017-01-01

    The light-emitting electrochemical cell promises cost-efficient, large-area emissive applications, as its characteristic in-situ doping enables use of air-stabile electrodes and a solution-processed...

  14. ERK1/2, MEK1/2 and p38 downstream signalling molecules impaired in CD56 dim CD16+ and CD56 bright CD16 dim/- natural killer cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients.

    Science.gov (United States)

    Huth, Teilah Kathryn; Staines, Donald; Marshall-Gradisnik, Sonya

    2016-04-21

    Natural Killer (NK) cell effector functions are dependent on phosphorylation of the mitogen-activated protein kinases (MAPK) pathway to produce an effective immune response for the clearance of target cells infected with viruses, bacteria or malignantly transformed cells. Intracellular signals activating NK cell cytokine production and cytotoxic activity are propagated through protein phosphorylation of MAPKs including MEK1/2, ERK1/2, p38 and JNK. Reduced NK cell cytotoxic activity is consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients and intracellular signalling by MAPK in NK cells remains to be investigated. Therefore, the purpose of this paper was to investigate MAPK downstream signalling molecules in NK cell phenotypes from CFS/ME patients. Flow cytometric protocols were used to measure phosphorylation of the MAPK pathway in CD56(bright)CD16(dim/-) and CD56(dim)CD16(+) NK cells following stimulation with K562 tumour cells or phorbol-12-myristate-13-acetate plus ionomycin. NK cell cytotoxic activity, degranulation, lytic proteins and cytokine production were also measured as markers for CD56(bright)CD16(dim/-) and CD56(dim)CD16(+) NK cell function using flow cytometric protocols. CFS/ME patients (n = 14) had a significant decrease in ERK1/2 in CD56(dim)CD16(+) NK cells compared to the non-fatigued controls (n = 11) after incubation with K562 cells. CD56(bright)CD16(dim/-) NK cells from CFS/ME patients had a significant increase in MEK1/2 and p38 following incubation with K562 cells. This is the first study to report significant differences in MAPK intracellular signalling molecules in CD56(dim)CD16(+) and CD56(bright)CD16(dim/-) NK cells from CFS/ME patients. The current results highlight the importance of intracellular signalling through the MAPK pathway for synergistic effector function of CD56(dim)CD16(+) and CD56(bright)CD16(dim/-) NK cells to ensure efficient clearance of target cells. In CFS/ME patients

  15. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    Science.gov (United States)

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-02-16

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

  16. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  17. How can fuel cell vehicles bring a bright future for this dragon? Answer by multi-criteria decision making analysis

    DEFF Research Database (Denmark)

    Zhang, Long; Yu, Jing; Ren, Jingzheng

    2016-01-01

    Fuel Cell Vehicles (FCVs) has been introduced to the market around the world in recent years. As the largest automobile market of the world, China is also one of the potential FCVs market. However, a series of factors and barriers influence the willingness of China’s customers to accept FCVs...... availability, vehicle performance, and economic costs are the most important dimensions in affecting customers’ attitude towards FCVs. More specifically, vehicle reliability and safety, purchasing cost, industry development, vehicle model and space contribute the most significance in customers’ purchase...... decision. According to the results, some policy implications are proposed from the prospective of improving and demonstrating vehicle performance, government leading facility construction and operation, and costs reductions....

  18. Retinal correspondence of monocular receptive fields in disparity-sensitive complex cells from area V1 in the awake monkey.

    Science.gov (United States)

    Perez, Rogelio; Castro, Adrian F; Justo, Maria S; Bermudez, Maria A; Gonzalez, Francisco

    2005-04-01

    To explore the neural mechanisms underlying disparity sensitivity in complex cells of the macaque visual cortex, the relationship between interocular receptive field (RF) positional shift and disparity sensitivity was studied in area V1. Single-unit recordings were made from area V1 of awake Macaca mulatta. Monocular RFs were mapped by means of a reverse cross-correlation technique, and their centers were determined after performing a bidimensional Gaussian function fitting. Interocular RF shifts were calculated for both bright and dark stimuli. Similarly, Gabor adjustments were obtained from disparity profiles to bright and dark dynamic random-dot stereograms (RDSs). Twenty-five complex cells were studied. The response profiles to disparity were similar for bright and dark RDSs. Interocular RF positional shift correlated significantly with both the peaks of Gabor fittings of disparity-sensitivity profiles and the peaks of the Gaussian envelopes of these Gabor fittings. Correlation between interocular RF positional shift and the peaks of the Gaussian envelopes was stronger than correlation between interocular RF positional shift and peaks of Gabor fittings. Interocular shift of monocular RFs is more related to the center of the range of disparities to which the cell is sensitive, than to the preferred disparity of the cell.

  19. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    Science.gov (United States)

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Scanning number and brightness yields absolute protein concentrations in live cells: a crucial parameter controlling functional bio-molecular interaction networks.

    Science.gov (United States)

    Papini, Christina; Royer, Catherine A

    2018-02-01

    Biological function results from properly timed bio-molecular interactions that transduce external or internal signals, resulting in any number of cellular fates, including triggering of cell-state transitions (division, differentiation, transformation, apoptosis), metabolic homeostasis and adjustment to changing physical or nutritional environments, amongst many more. These bio-molecular interactions can be modulated by chemical modifications of proteins, nucleic acids, lipids and other small molecules. They can result in bio-molecular transport from one cellular compartment to the other and often trigger specific enzyme activities involved in bio-molecular synthesis, modification or degradation. Clearly, a mechanistic understanding of any given high level biological function requires a quantitative characterization of the principal bio-molecular interactions involved and how these may change dynamically. Such information can be obtained using fluctation analysis, in particular scanning number and brightness, and used to build and test mechanistic models of the functional network to define which characteristics are the most important for its regulation.

  1. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI.The data suggest that perceptions of brightness represent a robust

  2. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  3. The influence of electric field and confinement on cell motility.

    Science.gov (United States)

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  4. Surface Brightness Profiles of Composite Images of Compact Galaxies at Z approximately equal 4-6 in the Hubble Ultra Deep Field

    National Research Council Canada - National Science Library

    Hathi, N. P; Jansen, R. A; Windhorst, R. A; Cohen, S. H; Keel, W. C; Corbin, M. R; Ryan, Jr, R. E

    2007-01-01

    The Hubble Ultra Deep Field (HUDF) contains a significant number of B-, V-, and iota'-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at Z approximately equal 4-6...

  5. Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56bright NKG2A+++ Cells, and Yet Display Increased Degranulation and Higher Perforin Content

    Directory of Open Access Journals (Sweden)

    Kerry Dobbs

    2017-07-01

    Full Text Available Mutations of the recombinase-activating genes 1 and 2 (RAG1 and RAG2 in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT represents the only curative treatment; however, high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag−/− natural killer (NK cells have a mature phenotype, reduced fitness, and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ genes. Here, we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56bright CD16−/int CD57− cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSCT.

  6. Lightness, brightness, and anchoring.

    Science.gov (United States)

    Anderson, Barton L; Whitbread, Michael; de Silva, Chamila

    2014-08-07

    The majority of work in lightness perception has evaluated the perception of lightness using flat, matte, two-dimensional surfaces. In such contexts, the amount of light reaching the eye contains a conflated mixture of the illuminant and surface lightness. A fundamental puzzle of lightness perception is understanding how it is possible to experience achromatic surfaces as specific achromatic shades in the face of this ambiguity. It has been argued that the perception of lightness in such contexts implies that the visual system imposes an "anchoring rule" whereby a specific relative luminance (the highest) serves as a fixed point in the mapping of image luminance onto the lightness scale ("white"). We conducted a series of experiments to explicitly test this assertion in contexts where this mapping seemed most unlikely-namely, low-contrast images viewed in dim illumination. Our results provide evidence that the computational ambiguity in mapping luminance onto lightness is reflected in perceptual experience. The perception of the highest luminance in a two-dimensional Mondrian display varied monotonically with its brightness, ranging from midgray to white. Similar scaling occurred for the lowest luminance and, by implication, all other luminance values. We conclude that the conflation between brightness and lightness in two-dimensional Mondrian displays is reflected in perception and find no support for the claim that any specific relative luminance value acts as a fixed anchor point in this mapping function. © 2014 ARVO.

  7. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  8. How Bright Can Supernovae Get?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  9. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  10. Gene copy number gain of EGFR is a poor prognostic biomarker in gastric cancer: evaluation of 855 patients with bright-field dual in situ hybridization (DISH) method.

    Science.gov (United States)

    Higaki, Eiji; Kuwata, Takeshi; Nagatsuma, Akiko Kawano; Nishida, Yasunori; Kinoshita, Takahiro; Aizawa, Masaki; Nitta, Hiroaki; Nagino, Masato; Ochiai, Atsushi

    2016-01-01

    EGFR overexpression is a prognostic biomarker and is expected to be a predictive biomarker for anti-EGFR therapies in gastric cancer. However, few studies have reported the clinical impact of EGFR gene copy number (GCN) and its correlation with EGFR overexpression. We used dual in situ hybridization (DISH) to detect EGFR GCN and chromosome 7 centromere (CEN7) in a set of tissue microarrays representing 855 patients with gastric cancer. These data were compared with those of immunohistochemical (IHC) analysis of EGFR expression to evaluate prognostic value. EGFR GCN gain (≥ 2.5 EGFR signals per cell) was detected in 194 patients (22.7%) and indicated poor prognosis. Among 194 patients, EGFR amplification (EGFR/CEN7 ≥ 2.0) was observed in 29 patients (14.9%), which was almost identical to the IHC 3+ subgroup and worst prognostic subgroup. Patients with EGFR GCN gain but not amplification, including those exhibiting polysomy, also exhibited poorer prognosis than GCN non-gain patients and were distributed between IHC 0/1+ and 2+ subgroups. GCN gain was frequently observed in patients with more advanced disease, but served as an independent prognostic factor regardless of the pathological stage. EGFR GCN gain is a more accurate prognostic biomarker than EGFR overexpression in patients with gastric cancer.

  11. The Influence of Brightness on Functional Assessment by mfERG: A Study on Scaffolds Used in Retinal Cell Transplantation in Pigs

    Directory of Open Access Journals (Sweden)

    A. T. Christiansen

    2012-01-01

    Full Text Available To determine the effect of membrane brightness on multifocal electroretinograms (mfERGs, we implanted poly lactic-co-glycolic acid (PLGA membranes in the subretinal space of 11 porcine eyes. We compared membranes with their native shiny white color with membranes that were stained with a blue dye (Brilliant Blue. Histological and electrophysiological evaluation of the overlying retina was carried out 6 weeks after implantation. Histologically, both white and blue membranes degraded in a spongiform manner leaving a disrupted outer retina with no preserved photoreceptor segments. Multifocal ERG revealed the white membranes to have a significantly higher P1-amplitude ratio than the blue (P=0.027, and a correlation between brightness ratio and P1-amplitude ratio was found (r=0.762. Based on our findings, we conclude that bright subretinal objects can produce normal mfERG amplitude ratios even when the adjacent photoreceptors are missing. Functional assessment with mfERG in scaffold implant studies should therefore be evaluated with care.

  12. The mechanisms of the effects of magnetic fields on cells

    Science.gov (United States)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins

  13. Effect of Magnetic Field on L-Strain Cells

    CERN Document Server

    Ulakoglu, G; Atak, C; Rzakoulieva, A; Danilov, V I; Alikamanoglu, S

    2000-01-01

    The effects of electromagnetic and magnetic fields are currently being made useful in many fields, especially in medicine. In this research work, L-Strain cells which are a type of fibrosarcoma cells were exposed to a magnetic flow of 2-26 mT in periods of 1, 2, 3 and 4 minutes. The L-Strain cells, which were exposed to the magnetic field for these periods, were counted after 24 and 48 hours, when compared with the controls, it was observed that in groups of 1 and 4 minutes exposure a significant decrease (P < 0.05) in the number of cells occurred. The per cent of labelling index of L-Strain cells exposed to the magnetic field for 1 and 4 minutes decreased significantly also in comparison to the controls.

  14. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    Science.gov (United States)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  15. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    Science.gov (United States)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  16. The nature of solar brightness variations

    Science.gov (United States)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  17. Granular cells in the presence of magnetic field

    Science.gov (United States)

    Jurčák, J.; Lemmerer, B.; van Noort, M.

    2017-10-01

    We present a statistical study of the dependencies of the shapes and sizes of the photospheric convective cells on the magnetic field properties. This analysis is based on a 2.5 hour long SST observations of active region NOAA 11768. We have blue continuum images taken with a cadence of 5.6 sec that are used for segmentation of individual granules and 270 maps of spectropolarimetric CRISP data allowing us to determine the properties of the magnetic field along with the line-of-sight velocities. The sizes and shapes of the granular cells are dependent on the the magnetic field strength, where the granules tend to be smaller in regions with stronger magnetic field. In the presence of highly inclined magnetic fields, the eccentricity of granules is high and we do not observe symmetric granules in these regions. The mean up-flow velocities in granules as well as the granules intensities decrease with increasing magnetic field strength.

  18. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  19. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field.

    Science.gov (United States)

    Tsai, Hsieh-Fu; Peng, Shih-Wei; Wu, Chun-Ying; Chang, Hui-Fang; Cheng, Ji-Yen

    2012-01-01

    We report a new design of microfluidic chip (Multiple electric Field with Uniform Flow chip, MFUF chip) to create multiple electric field strengths (EFSs) while providing a uniform flow field simultaneously. MFUF chip was fabricated from poly-methyl methacrylates (PMMA) substrates by using CO2 laser micromachining. A microfluidic network with interconnecting segments was utilized to de-couple the flow field and the electric field (EF). Using our special design, different EFSs were obtained in channel segments that had an identical cross-section and therefore a uniform flow field. Four electric fields with EFS ratio of 7.9:2.8:1:0 were obtained with flow velocity variation of only 7.8% CV (coefficient of variation). Possible biological effect of shear force can therefore be avoided. Cell behavior under three EFSs and the control condition, where there is no EF, was observed in a single experiment. We validated MFUF chip performance using lung adenocarcinoma cell lines and then used the chip to study the electrotaxis of HSC-3, an oral squamous cell carcinoma cell line. The MFUF chip has high throughput capability for studying the EF-induced cell behavior under various EFSs, including the control condition (EFS = 0).

  20. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  1. Brightness in human rod vision depends on slow neural adaptation to quantum statistics of light.

    Science.gov (United States)

    Rudd, Michael E; Rieke, Fred

    2016-11-01

    In human rod-mediated vision, threshold for small, brief flashes rises in proportion to the square root of adapting luminance at all but the lowest and highest adapting intensities. A classical signal detection theory from Rose (1942, 1948) and de Vries (1943) attributed this rise to the perceptual masking of weak flashes by Poisson fluctuations in photon absorptions from the adapting field. However, previous work by Brown and Rudd (1998) demonstrated that the square-root law also holds for suprathreshold brightness judgments, a finding that supports an alternative explanation of the square-root sensitivity changes as a consequence of physiological adaptation (i.e., neural gain control). Here, we employ a dichoptic matching technique to investigate the properties of this brightness gain control. We show that the brightness gain control: 1) affects the brightness of high-intensity suprathreshold flashes for which assumptions of the de Vries-Rose theory are strongly violated; 2) exhibits a long time course of 100-200 s; and 3) is subject to modulation by temporal contrast noise when the mean adapting luminance is held constant. These findings are consistent with the hypothesis that the square-root law results from a slow neural adaptation to statistical noise in the rod pool. We suggest that such adaptation may function to reduce the probability of spurious ganglion cell spiking activity due to photon fluctuation noise as the ambient illumination level is increased.

  2. Near-field electromagnetic theory for thin solar cells.

    Science.gov (United States)

    Niv, A; Gharghi, M; Gladden, C; Miller, O D; Zhang, X

    2012-09-28

    Current methods for evaluating solar cell efficiencies cannot be applied to low-dimensional structures where phenomena from the realm of near-field optics prevail. We present a theoretical approach to analyze solar cell performance by allowing rigorous electromagnetic calculations of the emission rate using the fluctuation-dissipation theorem. Our approach shows the direct quantification of the voltage, current, and efficiency of low-dimensional solar cells. This approach is demonstrated by calculating the voltage and the efficiency of a GaAs slab solar cell for thicknesses from several microns down to a few nanometers. This example highlights the ability of the proposed approach to capture the role of optical near-field effects in solar cell performance.

  3. Lightness, brightness, and brightness contrast: 2. Reflectance variation.

    Science.gov (United States)

    Arend, L E; Spehar, B

    1993-10-01

    Changes of annulus luminance in traditional disk-and-annulus patterns can be perceived to be either reflectance or illuminance changes. In the present experiments, we examined the effect of varying annulus reflectance. In Experiment 1, we placed test and standard patch-and-surround patterns in identical Mondrian patchworks. Only the luminance of the test surround changed from trial to trial, appearing as reflectance variation under constant illumination. Lightness matches were identical to brightness matches, as expected. In Experiment 2, we used only the patch and surround (no Mondrian). Instructions said that the illumination would change from trial to trial. Lightness and brightness-contrast data were identical; illumination gradients were indistinguishable from reflectance gradients. In Experiment 3, the patterns were the same, but the instructions said that the shade of gray of the test surround would change from trial to trial. Lightness matches were identical to brightness matches, again confirming the ambiguity of disk-and-annulus patterns.

  4. Field-flow fractionation of cells with chemiluminescence detection.

    Science.gov (United States)

    Melucci, Dora; Roda, Barbara; Zattoni, Andrea; Casolari, Sonia; Reschiglian, Pierluigi; Roda, Aldo

    2004-11-12

    Field-flow fractionation is a separation technique characterized by a retention mechanism which makes it suitable for sorting cells over a short analysis time, with low sample carry-over and preserving cell viability. Thanks to its high sensitivity, chemiluminescence detection is suitable for the quantification of just a few cells expressing chemiluminescence or bioluminescence. In this work, different formats for coupling gravitational field-flow fractionation and chemiluminescence detection are explored to achieve ultra-sensitive cell detection in the framework of cell sorting. The study is carried out using human red blood cells as model sample. The best performance is obtained with the on-line coupling format, performed in post-column flow-injection mode. Red cells are isolated from diluted whole human blood in just a few minutes and detected using the liquid phase chemiluminescent reaction of luminol catalysed by the red blood cell heme. The limit of detection is a few hundred injected cells. This is lower than the limit of detection usually achieved by means of conventional colorimetric/turbidimetric methods, and it corresponds to a red blood cell concentration in the injected sample of five orders of magnitude lower than in whole blood.

  5. Bright Light Treatment in Psychiatry

    Directory of Open Access Journals (Sweden)

    Pinar Guzel Ozdemir

    2017-06-01

    Full Text Available Bright light treatment is a treatment modality that leads elevation of mood due to attenuation in depressive symptoms, regulation in circadian rhythm activity, increase the effect of antidepressants and amelioration in sleep quality. Bright light treatment is considered among the first-line treatments for seasonal affective disorder because of high response rates. Additionally, bright light treatment being extended to other conditions, including non-seasonal mood disorders, Alzheimer's disease, circadian rhythm sleep disorders, eating disorders, attention deficit hyperactivity disorder and other behavioral syndromes is likely to have a far reached use. Side effects are often temporary and can generally be overcome by reducing exposure time. The central focus on this paper is to review the action mechanisms, efficacy, usage areas, the ways of administration and side effects of the light treatment. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(2.000: 177-188

  6. High-brightness ultra-cold metastable neon-beam

    CERN Document Server

    Shimizu, Fujio

    2015-01-01

    This paper presents detailed characteristics of an ultra-cold bright metastable neon atomic beam which we have been using for atom-interferometric applications. The basis of the device is an atomic beam released from a magneto-optical trap (MOT) which is operated with a high intensity trapping laser, high magnetic quadrupole field, and large laser detuining. Mainly due to the complex structure of three dimensional magnetic field and laser beams, a bright small spot of atoms is formed near the center of the quadrupole magnetic field under an appropriate operating condition. We obtained the minimum trap diameter of 50 micron meter, the atomic density nearly 10^{13}cm^{-3}, and the atomic temperature slightly less than the Doppler limited temperature of 200 micro-K. By releasing trapped atoms we obtained an bright cold atomic beam which is not far from the collision limited atomic density.

  7. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  8. Malaria over-diagnosis in Cameroon: diagnostic accuracy of Fluorescence and Staining Technologies (FAST) Malaria Stain and LED microscopy versus Giemsa and bright field microscopy validated by polymerase chain reaction.

    Science.gov (United States)

    Parsel, Sean M; Gustafson, Steven A; Friedlander, Edward; Shnyra, Alexander A; Adegbulu, Aderosoye J; Liu, Ying; Parrish, Nicole M; Jamal, Syed A; Lofthus, Eve; Ayuk, Leo; Awasom, Charles; Henry, Carolyn J; McArthur, Carole P

    2017-04-04

    Malaria is a major world health issue and its continued burden is due, in part, to difficulties in the diagnosis of the illness. The World Health Organization recommends confirmatory testing using microscopy-based techniques or rapid diagnostic tests (RDT) for all cases of suspected malaria. In regions where Plasmodium species are indigenous, there are multiple etiologies of fever leading to misdiagnoses, especially in populations where HIV is prevalent and children. To determine the frequency of malaria infection in febrile patients over an 8-month period at the Regional Hospital in Bamenda, Cameroon, we evaluated the clinical efficacy of the Flourescence and Staining Technology (FAST) Malaria stain and ParaLens AdvanceTM microscopy system (FM) and compared it with conventional bright field microscopy and Giemsa stain (GS). Peripheral blood samples from 522 patients with a clinical diagnosis of "suspected malaria" were evaluated using GS and FM methods. A nested PCR assay was the gold standard to compare the two methods. PCR positivity, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined. Four hundred ninety nine samples were included in the final analysis. Of these, 30 were positive via PCR (6.01%) with a mean PPV of 19.62% and 27.99% for GS and FM, respectively. The mean NPV was 95.01% and 95.28% for GS and FM, respectively. Sensitivity was 26.67% in both groups and specificity was 92.78% and 96.21% for GS and FM, respectively. An increased level of diagnostic discrepancy was observed between technicians based upon skill level using GS, which was not seen with FM. The frequency of malarial infections confirmed via PCR among patients presenting with fever and other symptoms of malaria was dramatically lower than that anticipated based upon physicians' clinical suspicions. A correlation between technician skill and accuracy of malaria diagnosis using GS was observed that was less pronounced using FM

  9. Graphene-on-Silicon Near-Field Thermophotovoltaic Cell

    NARCIS (Netherlands)

    Svetovoy, V. B.; Palasantzas, G.

    2014-01-01

    A graphene layer on top of a dielectric can dramatically influence the ability of the material for radiative heat transfer. This property of graphene is used to improve the performance and reduce costs of near-field thermophotovoltaic cells. Instead of low-band-gap semiconductors it is proposed to

  10. Investigating the Bright End of LSST Photometry

    Science.gov (United States)

    Ojala, Elle; Pepper, Joshua; LSST Collaboration

    2018-01-01

    The Large Synoptic Survey Telescope (LSST) will begin operations in 2022, conducting a wide-field, synoptic multiband survey of the southern sky. Some fraction of objects at the bright end of the magnitude regime observed by LSST will overlap with other wide-sky surveys, allowing for calibration and cross-checking between surveys. The LSST is optimized for observations of very faint objects, so much of this data overlap will be comprised of saturated images. This project provides the first in-depth analysis of saturation in LSST images. Using the PhoSim package to create simulated LSST images, we evaluate saturation properties of several types of stars to determine the brightness limitations of LSST. We also collect metadata from many wide-field photometric surveys to provide cross-survey accounting and comparison. Additionally, we evaluate the accuracy of the PhoSim modeling parameters to determine the reliability of the software. These efforts will allow us to determine the expected useable data overlap between bright-end LSST images and faint-end images in other wide-sky surveys. Our next steps are developing methods to extract photometry from saturated images.This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.Thanks to NSF grant PHY-135195 and the 2017 LSSTC Grant Award #2017-UG06 for making this project possible.

  11. Network based sky Brightness Monitor

    Science.gov (United States)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  12. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α

    DEFF Research Database (Denmark)

    Riley, Caroline H; Hansen, Morten; Brimnes, Marie K

    2015-01-01

    -tumor immune response against the JAK2-mutated clone. The objective of this study was to investigate circulating levels and phenotype of natural killer cells in 29 JAK2-positive MPN patients during IFN-α treatment. Furthermore, functional studies of NK cells upon target-cell recognition and cytokine......In recent years, major molecular remissions have been observed in patients with JAK2-positive chronic myeloproliferative neoplasms (MPNs) after therapy with IFN-α. IFN-α is known to have altering effects on immune cells involved in immune surveillance and might consequently enhance anti...

  13. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

    DEFF Research Database (Denmark)

    Matic, S.; Geisler, D.A.; Møller, I.M.

    2005-01-01

    remained intact, as indicated by an unaffected tonoplast proton gradient. Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes...

  14. A high brightness probe of polymer nanoparticles for biological imaging

    Science.gov (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  15. Pulsating electromagnetic field stimulation prevents cell death of puromycin treated U937 cell line.

    Science.gov (United States)

    Kaszuba-Zwoinska, J; Wojcik, K; Bereta, M; Ziomber, A; Pierzchalski, P; Rokita, E; Marcinkiewicz, J; Zaraska, W; Thor, P

    2010-04-01

    Aim of study was to verify whether pulsating electromagnetic field (PEMF) can affect cancer cells proliferation and death. U937 human lymphoid cell line at densities starting from 1 x 10(6) cells/ml to 0.0625 x 10(6) cells/ml, were exposed to a pulsating magnetic field 50 Hz, 45+/-5 mT three times for 3 h per each stimulation with 24 h intervals. Proliferation has been studied by counting number of cells stimulated and non-stimulated by PEMF during four days of cultivation. Viability of cells was analyzed by APC labeled Annexin V and 7-AAD (7-amino-actinomycin D) dye binding and flow cytometry. Growing densities of cells increase cell death in cultures of U937 cells. PEMF exposition decreased amount of cells only in higher densities. Measurement of Annexin V binding and 7-AAD dye incorporation has shown that density-induced cell death corresponds with decrease of proliferation activity. PEMF potentiated density-induced death both apoptosis and necrosis. The strongest influence of PEMF has been found for 1 x 10(6)cells/ml and 0.5 x 10(6) cells/ml density. To eliminate density effect on cell death, for further studies density 0.25 x 10(6) cells/ml was chosen. Puromycin, a telomerase inhibitor, was used as a cell death inducer at concentration 100 microg/ml. Combined interaction of three doses of puromycin and three fold PEMF interaction resulted in a reduced of apoptosis by 24,7% and necrosis by 13%. PEMF protects U937 cells against puromycin- induced cell death. PEMF effects on the human lymphoid cell line depends upon cell density. Increased density induced cells death and on the other hand prevented cells death induced by puromycin.

  16. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  17. A bright point source of ultrashort hard x-rays from laser bioplasmas

    CERN Document Server

    Krishnamurthy, M; Lad, Amit D; Ahmad, Saima; Narayanan, V; Rajeev, R; Kundu, M; Kumar, G Ravindra; Ray, Krishanu

    2010-01-01

    Micro and nano structures scatter light and amplify local electric fields very effectively. Energy incident as intense ultrashort laser pulses can be converted to x-rays and hot electrons more efficiently with a substrate that suitably modifies the local fields. Here we demonstrate that coating a plain glass surface with a few micron thick layer of an ubiquitous microbe, {\\it Escherichia coli}, catapults the brightness of hard x-ray bremsstrahlung emission (up to 300 keV) by more than two orders of magnitude at an incident laser intensity of 10$^{16}$ W cm$^{-2}$. This increased yield is attributed to the local enhancement of electric fields around individual {\\it E. coli} cells and is reproduced by detailed particle-in-cell (PIC) simulations. This combination of laser plasmas and biological targets can lead to turnkey, multi-kilohertz and environmentally safe sources of hard x-rays.

  18. CLIQ-BID: A method to quantify bacteria-induced damage to eukaryotic cells by automated live-imaging of bright nuclei.

    Science.gov (United States)

    Wallez, Yann; Bouillot, Stéphanie; Soleilhac, Emmanuelle; Huber, Philippe; Attrée, Ina; Faudry, Eric

    2018-01-08

    Pathogenic bacteria induce eukaryotic cell damage which range from discrete modifications of signalling pathways, to morphological alterations and even to cell death. Accurate quantitative detection of these events is necessary for studying host-pathogen interactions and for developing strategies to protect host organisms from bacterial infections. Investigation of morphological changes is cumbersome and not adapted to high-throughput and kinetics measurements. Here, we describe a simple and cost-effective method based on automated analysis of live cells with stained nuclei, which allows real-time quantification of bacteria-induced eukaryotic cell damage at single-cell resolution. We demonstrate that this automated high-throughput microscopy approach permits screening of libraries composed of interference-RNA, bacterial strains, antibodies and chemical compounds in ex vivo infection settings. The use of fluorescently-labelled bacteria enables the concomitant detection of changes in bacterial growth. Using this method named CLIQ-BID (Cell Live Imaging Quantification of Bacteria Induced Damage), we were able to distinguish the virulence profiles of different pathogenic bacterial species and clinical strains.

  19. Iapetus Bright and Dark Terrains

    Science.gov (United States)

    1990-01-01

    Saturn's outermost large moon, Iapetus, has a bright, heavily cratered icy terrain and a dark terrain, as shown in this Voyager 2 image taken on August 22, 1981. Amazingly, the dark material covers precisely the side of Iapetus that leads in the direction of orbital motion around Saturn (except for the poles), whereas the bright material occurs on the trailing hemisphere and at the poles. The bright terrain is made of dirty ice, and the dark terrain is surfaced by carbonaceous molecules, according to measurements made with Earth-based telescopes. Iapetus' dark hemisphere has been likened to tar or asphalt and is so dark that no details within this terrain were visible to Voyager 2. The bright icy hemisphere, likened to dirty snow, shows many large impact craters. The closest approach by Voyager 2 to Iapetus was a relatively distant 600,000 miles, so that our best images, such as this, have a resolution of about 12 miles. The dark material is made of organic substances, probably including poisonous cyano compounds such as frozen hydrogen cyanide polymers. Though we know a little about the dark terrain's chemical nature, we do not understand its origin. Two theories have been developed, but neither is fully satisfactory--(1) the dark material may be organic dust knocked off the small neighboring satellite Phoebe and 'painted' onto the leading side of Iapetus as the dust spirals toward Saturn and Iapetus hurtles through the tenuous dust cloud, or (2) the dark material may be made of icy-cold carbonaceous 'cryovolcanic' lavas that were erupted from Iapetus' interior and then blackened by solar radiation, charged particles, and cosmic rays. A determination of the actual cause, as well as discovery of any other geologic features smaller than 12 miles across, awaits the Cassini Saturn orbiter to arrive in 2004.

  20. LSST Site: Sky Brightness Data

    Science.gov (United States)

    Burke, Jamison; Claver, Charles

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is an upcoming robotic survey telescope. At the telescope site on Cerro Pachon in Chile there are currently three photodiodes and a Canon camera with a fisheye lens, and both the photodiodes and Canon monitor the night sky continuously. The NIST-calibrated photodiodes directly measure the flux from the sky, and the sky brightness can also be obtained from the Canon images via digital aperture photometry. Organizing and combining the two data sets gives nightly information of the development of sky brightness across a swath of the electromagnetic spectrum, from blue to near infrared light, and this is useful for accurately predicting the performance of the LSST. It also provides data for models of moonlight and twilight sky brightness. Code to accomplish this organization and combination was successfully written in Python, but due to the backlog of data not all of the nights were processed by the end of the summer.Burke was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  1. On-site cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  2. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  3. Impact of static magnetic fields on human myoblast cell cultures.

    Science.gov (United States)

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Faber, Anne; Sauter, Alexander; Schulz, Johannes D; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart

    2011-12-01

    Treatment of skeletal muscle loss due to trauma or tumor ablation therapy still lacks a suitable clinical approach. Creation of functional muscle tissue in vitro using the differentiation potential of human satellite cells (myoblasts) is a promising new research field called tissue engineering. Strong differentiation stimuli, which can induce formation of myofibers after cell expansion, have to be identified and evaluated in order to create sufficient amounts of neo-tissue. The objective of this study was to determine the influence of static magnetic fields (SMF) on human satellite cell cultures as one of the preferred stem cell sources in skeletal muscle tissue engineering. Experiments were performed using human satellite cells with and without SMF stimulation after incubation with a culture medium containing low [differentiation medium (DM)] or high [growth medium (GM)] concentrations of growth factors. Proliferation analysis using the alamarBlue assay revealed no significant influence of SMF on cell division. Real-time RT-PCR of the following marker genes was investigated: myogenic factor 5 (MYF5), myogenic differentiation antigen 1 (MYOD1), myogenin (MYOG), skeletal muscle α1 actin (ACTA1), and embryonic (MYH3), perinatal (MYH8) and adult (MYH1) skeletal muscle myosin heavy chain. We detected an influence on marker gene expression by SMF in terms of a down-regulation of the marker genes in cell cultures treated with SMF and DM, but not in cell cultures treated with SMF and GM. Immunocytochemical investigations using antibodies directed against the differentiation markers confirmed the gene expression results and showed an enhancement of maturation after stimulation with GM and SMF. Additional calculation of the fusion index also revealed an increase in myotube formation in cell cultures treated with SMF and GM. Our findings show that the effect of SMF on the process of differentiation depends on the growth factor concentration in the culture medium in human

  4. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    Science.gov (United States)

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT. Published by Elsevier Ltd.

  5. Bright and stable light-emitting electrochemical cells based on an intramolecularly π-stacked, 2-naphthyl-substituted iridium complex

    OpenAIRE

    Schneider, G E; Pertegás, A.; E. C. Constable; Housecroft, C. E.; N. Hostettler; Morris, C. D.; J. A. Zampese; Junquera-Hernández, J. M.; Ortí, E.; Sessolo, M.; Bolink, H.J.

    2014-01-01

    The synthesis and characterization of a new cationic bis-cyclometallated iridium(III) complex and its use in solid-state light-emitting electrochemical cells (LECs) are described. The complex [Ir(ppy)2(Naphbpy)][PF6], where Hppy = 2-phenylpyridine and Naphbpy = 6-(2-naphthyl)-2,2′-bipyridine, incorporates a pendant 2-naphthyl unit that π-stacks face-to-face with the adjacent ppy− ligand and acts as a peripheral bulky group. The complex presents a structureless emission centred around 595–600 ...

  6. Induction of cell death by magnetic particles in response to a gradient magnetic field inside a uniform magnetic field

    Science.gov (United States)

    Amaya-Jaramillo, Carlos David; Pérez-Portilla, Adriana Patricia; Serrano-Olmedo, José Javier; Ramos-Gómez, Milagros

    2017-10-01

    A new instrument based on a magnetic force produced by an alternating magnetic field gradient, which is obtained through Maxwell coils, inside a constant field magnet has been designed and used to produce cell death. We have determined the interaction of microparticles and cells under different conditions such as incubation time with microparticles, particle size, magnetic field exposition time, and different current waveforms at different frequencies to produce a magnetic field gradient. We determined that the highest rate of cell death occurs at a frequency of 1 Hz with a square waveform and 1 h of irradiation. This method could be of great interest to remove cancer cells due mainly to the alterations in stiffness observed in the membranes of the tumor cells. Cancer cells can be eliminated in response to the forces caused by the movement of magnetic nanoparticles of the appropriate size under the application of a specific magnetic field. [Figure not available: see fulltext.

  7. Synthesis and Characterization of 8-O-Carboxymethylpyranine (CM-Pyranine as a Bright, Violet-Emitting, Fluid-Phase Fluorescent Marker in Cell Biology.

    Directory of Open Access Journals (Sweden)

    Eric A Legenzov

    Full Text Available To avoid spectral interference with common fluorophores in multicolor fluorescence microscopy, a fluid-phase tracer with excitation and emission in the violet end of the visible spectrum is desirable. CM-pyranine is easily synthesized and purified. Its excitation and emission maxima at 401.5 nm and 428.5 nm, respectively, are well suited for excitation by 405-nm diode lasers now commonly available on laser-scanning microscopes. High fluorescence quantum efficiency (Q = 0.96 and strong light absorption (ε405 > 25,000 M-1cm-1 together make CM-pyranine the brightest violet aqueous tracer. The fluorescence spectrum of CM-pyranine is invariant above pH 4, which makes it a good fluid-phase marker in all cellular compartments. CM-pyranine is very photostable, is retained for long periods by cells, does not self-quench, and has negligible excimer emission. The sum of its properties make CM-pyranine an ideal fluorescent tracer. The use of CM-pyranine as a fluid-phase marker is demonstrated by multicolor confocal microscopy of cells that are also labeled with lipid and nuclear markers that have green and red fluorescence emission, respectively.

  8. Magnetic field enhancement of organic photovoltaic cells performance.

    Science.gov (United States)

    Oviedo-Casado, S; Urbina, A; Prior, J

    2017-06-27

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.

  9. Silole-Based Red Fluorescent Organic Dots for Bright Two-Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging.

    Science.gov (United States)

    Chen, Bin; Feng, Guangxue; He, Bairong; Goh, Chiching; Xu, Shidang; Ramos-Ortiz, Gabriel; Aparicio-Ixta, Laura; Zhou, Jian; Ng, Laiguan; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2016-02-10

    Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    Science.gov (United States)

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan [Nuvant Systems Inc., Crown Point, IN (United States)

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  12. Self-Sealing Wet Chemistry Cell for Field Analysis

    Science.gov (United States)

    Beegle, Luther W.; Soto, Juancarlos; Lasnik, James; Roark, Shane

    2012-01-01

    In most analytical investigations, there is a need to process complex field samples for the unique detection of analytes, especially when detecting low concentration organic molecules that may identify extraterrestrial life. Wet chemistry based instruments are the techniques of choice for most laboratory- based analysis of organic molecules due to several factors including less fragmentation of fragile biomarkers, and ability to concentrate target species resulting in much lower limits of detection. Development of an automated wet chemistry preparation system that can operate autonomously on Earth and is also designed to operate under Martian ambient conditions will demonstrate the technical feasibility of including wet chemistry on future missions. An Automated Sample Processing System (ASPS) has recently been developed that receives fines, extracts organics through solvent extraction, processes the extract by removing non-organic soluble species, and delivers sample to multiple instruments for analysis (including for non-organic soluble species). The key to this system is a sample cell that can autonomously function under field conditions. As a result, a self-sealing sample cell was developed that can autonomously hermetically seal fines and powder into a container, regardless of orientation of the apparatus. The cap is designed with a beveled edge, which allows the cap to be self-righted as the capping motor engages. Each cap consists of a C-clip lock ring below a crucible O-ring that is placed into a groove cut into the sample cap.

  13. Directed Migration of Embryonic Stem Cell-derived Neural Cells In An Applied Electric Field

    OpenAIRE

    Li, Yongchao; Weiss, Mark; Yao, Li

    2014-01-01

    Spinal cord injury or diseases, such as amyotrophic lateral sclerosis, can cause the loss of motor neurons and therefore results in the paralysis of muscles. Stem cells may improve functional recovery by promoting endogenous regeneration, or by directly replacing neurons. Effective directional migration of grafted neural cells to reconstruct functional connections is crucial in the process. Steady direct current electric fields (EFs) play an important role in the development of the central ne...

  14. Number and brightness analysis of sFRP4 domains in live cells demonstrates vesicle association signal of the NLD domain and dynamic intracellular responses to Wnt3a.

    Science.gov (United States)

    Perumal, Vanathi; Krishnan, Kannan; Gratton, Enrico; Dharmarajan, Arun M; Fox, Simon A

    2015-07-01

    The Wnts are secreted, lipidated glycoproteins that play a role in cellular processes of differentiation, proliferation, migration, survival, polarity and stem cell self-renewal. The majority of Wnts biological effects are through binding to specific frizzled (Fzd) receptor complexes leading to activation of downstream pathways. Secreted frizzled-related proteins (sFRPs) were first identified as antagonists of Wnt signalling by binding directly to Wnts. They comprise two domains, a Fzd-like cysteine rich domain (CRD) and a netrin-like domain (NLD). Subsequently sFRPs have been shown to also interact with Fzd receptors and more diverse functions have been identified, including potentiation of Wnt signalling. Many aspects of the biology of this family remain to be elucidated. We used the number and brightness (N&B) method, a technique based on fluorescence fluctuation analysis, to characterise the intracellular aggregation and trafficking of sFRP4 domains. We expressed sFRP4 and its' domains as EGFP fusions and then characterised the effect of endogenous Wnt3a by fluorescence confocal imaging. We observed vesicular trafficking of sFRP4 and that the NLD domain has a vesicular association signal. We found that sFRP4 and the CRD formed oligomeric aggregates in the perinuclear region while the NLD was distributed evenly throughout the cell with a larger proportion of aggregates. Most significantly we observed intracellular redistribution of sFRP4 in response to Wnt3a suggesting that Wnt3a can modulate intracellular localisation and secretion of sFRP4. Our results reveal a number of novel findings regarding sFRP4 which are likely to have relevance to this wider family. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Induction of Cell Activation Processes by Low Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Myrtill Simkó

    2004-01-01

    Full Text Available Electromagnetic fields (EMF such as those from electric power transmission and distribution lines (50/60 Hz have been associated with increased risk of childhood leukemia, cancer of the nervous system, and lymphomas. Several in vitro studies on EMF effects were performed to clarify the existing controversies, define the risks, and determine the possible mechanisms of adverse effects. In some of these reports, the effects were related to other mechanisms of carcinogenesis. Modification in cell proliferation was observed after EMF exposure and a few reports on cytotoxic effects have also been published. This limited review gives an overview of the current results of scientific research regarding in vitro studies on the effects of power line frequency EMF, but also cell biological mechanisms and their potential involvement in genotoxicity and cytotoxicity are discussed. Cell cycle control and signal transduction processes are included to elucidate the biochemical background of possible interactions. Exposure to EMF has been also linked to the incidence of leukemia and other tumors in some epidemiological studies and is considered as “possibly carcinogenic to humans”, but there is no well-established biological mechanism that explains such a relation. Furthermore, EMF is also shown as a stimulus for immune relevant cells (e.g., macrophages to release free radicals. It is known that chronic activation of macrophages is associated with the onset of phagocytosis and leads to increased formation of reactive oxygen species, which themselves may cause DNA damage and are suggested to lead to carcinogenesis. To demonstrate a possible interaction between EMF and cellular systems, we present a mechanistic model describing cell activation as a major importance for cellular response.

  16. An isolated, bright cusp aurora at Saturn

    Science.gov (United States)

    Kinrade, J.; Badman, S. V.; Bunce, E. J.; Tao, C.; Provan, G.; Cowley, S. W. H.; Grocott, A.; Gray, R. L.; Grodent, D.; Kimura, T.; Nichols, J. D.; Arridge, C. S.; Radioti, A.; Clarke, J. T.; Crary, F. J.; Pryor, W. R.; Melin, H.; Baines, K. H.; Dougherty, M. K.

    2017-06-01

    Saturn's dayside aurora displays a number of morphological features poleward of the main emission region. We present an unusual morphology captured by the Hubble Space Telescope on 14 June 2014 (day 165), where for 2 h, Saturn's FUV aurora faded almost entirely, with the exception of a distinct emission spot at high latitude. The spot remained fixed in local time between 10 and 15 LT and moved poleward to a minimum colatitude of 4°. It was bright and persistent, displaying intensities of up to 49 kR over a lifetime of 2 h. Interestingly, the spot constituted the entirety of the northern auroral emission, with no emissions present at any other local time—including Saturn's characteristic dawn arc, the complete absence of which is rarely observed. Solar wind parameters from propagation models, together with a Cassini magnetopause crossing and solar wind encounter, indicate that Saturn's magnetosphere was likely to have been embedded in a rarefaction region, resulting in an expanded magnetosphere configuration during the interval. We infer that the spot was sustained by reconnection either poleward of the cusp or at low latitudes under a strong component of interplanetary magnetic field transverse to the solar wind flow. The subsequent poleward motion could then arise from either reconfiguration of successive open field lines across the polar cap or convection of newly opened field lines. We also consider the possible modulation of the feature by planetary period rotating current systems.

  17. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  18. Directed Migration of Embryonic Stem Cell-derived Neural Cells In An Applied Electric Field

    Science.gov (United States)

    Weiss, Mark; Yao, Li

    2014-01-01

    Spinal cord injury or diseases, such as amyotrophic lateral sclerosis, can cause the loss of motor neurons and therefore results in the paralysis of muscles. Stem cells may improve functional recovery by promoting endogenous regeneration, or by directly replacing neurons. Effective directional migration of grafted neural cells to reconstruct functional connections is crucial in the process. Steady direct current electric fields (EFs) play an important role in the development of the central nervous system. A strong biological effect of EFs is the induction of directional cell migration. In this study, we investigated the guided migration of embryonic stem cell (ESC) derived presumptive motor neurons in an applied EF. The dissociated mouse ESC derived presumptive motor neurons or embryoid bodies were subjected to EFs stimulation and the cell migration was studied. We found that the migration of neural precursors from embryoid bodies was toward cathode pole of applied EFs. Single motor neurons migrated to the cathode of the EFs and reversal of EFs poles reversed their migration direction. The directedness and displacement of cathodal migration became more significant when the field strength was increased from 50 mV/mm to 100 mV/mm. EFs stimulation did not influence the cell migration velocity. Our work suggests that EFs may serve as a guidance cue to direct grafted cell migration in vivo. PMID:24804615

  19. Directed migration of embryonic stem cell-derived neural cells in an applied electric field.

    Science.gov (United States)

    Li, Yongchao; Weiss, Mark; Yao, Li

    2014-10-01

    Spinal cord injury or diseases, such as amyotrophic lateral sclerosis, can cause the loss of motor neurons and therefore results in the paralysis of muscles. Stem cells may improve functional recovery by promoting endogenous regeneration, or by directly replacing neurons. Effective directional migration of grafted neural cells to reconstruct functional connections is crucial in the process. Steady direct current electric fields (EFs) play an important role in the development of the central nervous system. A strong biological effect of EFs is the induction of directional cell migration. In this study, we investigated the guided migration of embryonic stem cell (ESC) derived presumptive motor neurons in an applied EF. The dissociated mouse ESC derived presumptive motor neurons or embryoid bodies were subjected to EFs stimulation and the cell migration was studied. We found that the migration of neural precursors from embryoid bodies was toward cathode pole of applied EFs. Single motor neurons migrated to the cathode of the EFs and reversal of EFs poles reversed their migration direction. The directedness and displacement of cathodal migration became more significant when the field strength was increased from 50 mV/mm to 100 mV/mm. EFs stimulation did not influence the cell migration velocity. Our work suggests that EFs may serve as a guidance cue to direct grafted cell migration in vivo.

  20. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  1. Brightness and darkness as perceptual dimensions

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2007-01-01

    A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The

  2. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  3. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  4. Snap-shot survey of compact, radio-bright SNRs

    Science.gov (United States)

    Garmire, Gordon

    2008-09-01

    We propose to observe a set of radio-bright remnants (SNRs) previously unobserved in X-rays. The SNRs have flat, non-thermal spectra suggesting efficient particle acceleration at the shock front. We also expect to find new pulsars or neutron stars within these remnants. These makes the selected SNRs good candidates for future TeV and GeV detections. The selected SNRs are also compact enough to be imaged within the ACIS-I field of view.

  5. Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting

    Directory of Open Access Journals (Sweden)

    Mohiuddin Khan Shourav

    2016-07-01

    Full Text Available Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.

  6. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    Science.gov (United States)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  7. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  8. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    A., Blackmore, P. F., Schoenbach, K. H. & Beebe , S. J. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields...duration electric pulses in mammalian cells. Biochim Biophys Acta 1800, 1210–9 (2010). 31. Ren, W. & Beebe , S. J. An apoptosis targeted stimulus with

  9. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    Science.gov (United States)

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  10. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  11. SKYMONITOR: A Global Network for Sky Brightness Measurements

    Science.gov (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  12. Space Brightness Evaluation for a Daylit Room

    Directory of Open Access Journals (Sweden)

    Takashi Maruyama

    2011-05-01

    Full Text Available One of the most important problems for lighting design is how to reduce an electric energy. One way to solve this problem is use of daylight, but little is known how to perceive a brightness of a room illuminated by daylight come in through a window and artificial light. Although the horizontal illuminance increases because of daylight, we would not perceive the room as bright as brightness estimated by the illuminance. The purpose of this study is to measure the space brightness for daylit room and to propose a evaluation method. The experiment was conducted with a couple of miniature office rooms, standard room and test room. Test room has several types of windows and standard room has no window. Subject was asked to evaluate the brightness of the test room relative to the standard room with method of magnitude estimation. It was found that brightness of daylit room did not increase simply with horizontal illuminance. Subject perceived a daylit room darker than a room illuminated only by the artificial light even if horizontal illuminance of these room was same. The effect of daylight on space brightness would vary with the window size and intensity of daylight or artificial light.

  13. Investigating outer hair cell motility with a combination of external alternating electrical field stimulation and high-speed image analysis.

    Science.gov (United States)

    Kitani, Rei; Kalinec, Federico

    2011-07-18

    OHCs are cylindrical sensorimotor cells located in the Organ of Corti, the auditory organ inside the mammalian inner ear. The name "hair cells" derives from their characteristic apical bundle of stereocilia, a critical element for detection and transduction of sound energy. OHCs are able to change shape -elongate, shorten and bend- in response to electrical, mechanical and chemical stimulation, a motor response considered crucial for cochlear amplification of acoustic signals. OHC stimulation induces two different motile responses: i) electromotility, a.k.a fast motility, changes in length in the microsecond range derived from electrically-driven conformational changes in motor proteins densely packed in OHC plasma membrane, and ii) slow motility, shape changes in the millisecond to seconds range involving cytoskeletal reorganization. OHC bending is associated with electromotility, and result either from an asymmetric distribution of motor proteins in the lateral plasma membrane, or asymmetric electrical stimulation of those motor proteins (e.g., with an electrical field perpendicular to the long axis of the cells). Mechanical and chemical stimuli induce essentially slow motile responses, even though changes in the ionic conditions of the cells and/or their environment can also stimulate the plasma membrane-embedded motor proteins. Since OHC motile responses are an essential component of the cochlear amplifier, the qualitative and quantitative analysis of these motile responses at acoustic frequencies (roughly from 20 Hz to 20 kHz in humans) is a very important matter in the field of hearing research. The development of new imaging technology combining high-speed videocameras, LED-based illumination systems, and sophisticated image analysis software now provides the ability to perform reliable qualitative and quantitative studies of the motile response of isolated OHCs to an external alternating electrical field (EAEF). This is a simple and non-invasive technique

  14. Poor induction of interleukin-2 receptor expression on cd8bright+ cells in whole-blood cell-cultures with cd3 mab - implications for immunotherapy with cd3 mab

    NARCIS (Netherlands)

    Janssen, R. A. J.; Heijn, A. A.; The, T. Hauw; de Leij, L

    To induce better stimulation of T cells during recombinant interleukin-2 (rIL-2) therapy of renal cell carcinoma patients, pretreatment with low-dose CD3 monoclonal antibody (mAb) has been proposed. However, in our clinic, such a treatment did not induce additional activation of T cells. To

  15. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  16. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  17. Graphene-based photovoltaic cells for near-field thermal energy conversion

    National Research Council Canada - National Science Library

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    .... While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution...

  18. A spectroscopic atlas of bright stars

    CERN Document Server

    Martin, Jack

    2009-01-01

    Suitable for amateur astronomers interested in practical spectroscopy or spectrography, this reference book identifies more than 70 (northern hemisphere) bright stars that are suitable observational targets. It provides finder charts for locating these sometimes-familiar stars.

  19. Nimbus-5 ESMR Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  20. WE-EF-BRA-08: Cell Survival in Modulated Radiation Fields and Altered DNA-Repair at Field Edges

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, S; Oelfke, U [The Institute of Cancer Research, London (United Kingdom); Eismann, S [University of Heidelberg, Heidelberg, DE (Germany)

    2015-06-15

    Purpose: Tissue damage prognoses in radiotherapy are based on clonogenic assays that provide dose dependent cell survival rates. However, recent work has shown that apart from dose, systemic reactions and cell-cell communication crucially influence the radiation response. These effects are probably a key in understanding treatment approaches such as microbeam radiation therapy (MRT). In this study we tried to quantify the effects on a cellular level in spatially modulated radiation fields. Methods: Pancreas carcinoma cells were cultured, plated and irradiated by spatially modulated radiation fields with an X-ray tube and at a synchrotron. During and after treatment cells were able to communicate via the intercellular medium. Afterwards we stained for DNA and DNA damage and imaged with a fluorescence microscope. Results: Intriguingly we found that DNA damage does not strictly increase with dose. Two cell entities appear that have either a high or a low amount of DNA lesions, indicating that DNA damage is also a cell stress reaction. Close to radiation boundaries damage-levels became alike; they were higher than expected at low and lower than expected at high doses. Neighbouring cells reacted similarly. 6 hours after exposure around 40% of the cells resembled in their reactions neighbouring cells more than randomly chosen cells that received the same dose. We also observed that close to radiation boundaries the radiation induced cell-cycle arrest disappeared and the size of DNA repair-centres increased. Conclusion: Cell communication plays an important role in the radiation response of tissues and may be both, protective and destructive. These effects may not only have the potential to affect conventional radiotherapy but may also be exploited to spare organs at risk by intelligently designing irradiation geometries. To that end intensive work is required to shed light on the still obscure processes in cell-signalling and radiation biology.

  1. Mild and Selective Protein Release of Cell Wall Deficient Microalgae with Pulsed Electric Field

    NARCIS (Netherlands)

    Lam, 't Gerard; Kolk, van der Jelmer A.; Chordia, Akshita; Vermuë, Marian H.; Olivieri, Giuseppe; Eppink, Michel H.M.; Wijffels, René H.

    2017-01-01

    Pulsed electric field (PEF) is considered to be a very promising technology for mild cell disruption. The application of PEF for microalgae that have a rigid cell wall, however, is hampered by the presence of that rigid outer cell wall. A cell wall free mutant of C. reinhardtii was used to mimic

  2. Effect of Interior Chromaticness on Space Brightness

    Directory of Open Access Journals (Sweden)

    Hidenari Takada

    2011-05-01

    Full Text Available To design a lighting environment, horizontal illuminance is generally used as the brightness of a room. But it is reported that a subjective brightness does not always match the horizontal illuminance. For example, the room furnished with high saturated colored objects is perceived brighter than the room furnished with achromatic objects, even though the horizontal illuminance is the same. To investigate a effect of interior chromaticness on space brightness, we conducted the experiment in four miniature rooms that were different in terms of chromaticness of interior decorating surfaces, but kept lightness of surfaces constant. Subjects were asked to set the illuminance of reference room, that is furnished with achromatic objects, to equate the brightness of the test room, that is with chromatic objects. Four of seven subjects needed less illuminance to get the equality of space brightness if the test room had a saturated objects. The illuminance ratio of test to reference room was about 1.4. Other three subjects set the illuminance of reference room almost equal to test room. Thus, there are differences between individuals so further work would be needed to estimate the quantitative effect of interior chromaticness on space brightness.

  3. Magnetic Field Design for Selecting and Aligning Immunomagnetic Labeled Cells

    NARCIS (Netherlands)

    Tibbe, Arjan G.J.; de Grooth, B.G.; Greve, Jan; Dolan, Gerald J.; Rao, Chandra; Terstappen, Leonardus Wendelinus Mathias Marie

    2002-01-01

    Background: Recently we introduced the CellTracks cell analysis system, in which samples are prepared based on a combination of immunomagnetic selection, separation, and alignment of cells along ferromagnetic lines. Here we describe the underlying magnetic principles and considerations made in the

  4. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  5. Water management in a single cell proton exchange membrane fuel cells with a serpentine flow field

    Science.gov (United States)

    Hassan, Nik Suhaimi Mat; Daud, Wan Ramli Wan; Sopian, Kamaruzzaman; Sahari, Jaafar

    Gas and water management is the key to achieving good performance from a polymer electrolyte membrane fuel cell (PEMFC) stack. Imbalance between production and evaporation rates can result in either flooding of the electrodes or membrane dehydration, both of which severely limit fuel cell performance. In the present study, a mathematical model was developed to evaluate moisture profiles of hydrogen and air flows in the flow field channels of both the anode and the cathode. For model validation, a single fuel cell was designed with an active area of 200 cm 2. Six humidity sensors were installed in the flow fields of both the anode and the cathode at 457 mm, 1266 mm and 2532 mm from the inlets. The experiment was performed using an Arbin Fuel Cell Test Station. The temperature was varied (25 °C, 40 °C, 50 °C and 60 °C), while hydrogen and air velocities were fixed at 3 L min -1 and 6 L min -1, respectively, during the operation of the single cell. The feed relative humidity at the anode was fixed at 1.0, while the feed relative humidity at the cathode was fixed at 0.005 (dry air). All humidity sensor readings were taken at steady state after 2 h of operation. Model predictions were then compared with experimental results by using the least squares algorithm. The moisture content was found to decrease along the flow field at the anode, but to increase at the cathode. The moisture content profile at the anode was shown to depend on the moisture Peclet number, which decreased with temperature. On the other hand, the moisture profile at the cathode was shown to depend on both the Peclet number and the Damkohler number. The trend of the Peclet number in the cathode followed closely that of the anode. The Damkohler number decreased with temperature, indicating increasing moisture mass transfer with temperature. The moisture profile models were successfully validated by the published data of the estimated overall mass transfer coefficient and moisture effective

  6. Cell ageing: a flourishing field for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Dora Brites

    2015-06-01

    Full Text Available Cellular senescence is viewed as an irreversible cell-cycle arrest mechanism involving a complexity of biological progressive processes and the acquisition of diverse cellular phenotypes. Several cell-intrinsic and extrinsic causes (stresses may lead to diverse cellular signaling cascades that include oxidative stress, mitochondrial dysfunction, DNA damage, excessive accumulation of misfolded proteins, impaired microRNA processing and inflammation. Here we review recent advances in the causes and consequences of brain cell ageing, including the senescence of endothelial cells at the central nervous system barriers, as well as of neurons and glial cells. We address what makes ageing an important risk factor for neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and cerebrovascular disease. In particular, we highlight the importance of defects in mitochondrial dynamics, in the cathepsin activity imbalance, in cell-cell communication, in the accumulation of misfolded and unfolded proteins and in the microRNA profiling as having potential impact on cellular ageing processes. Another important aspect is that the absence of specific senescence biomarkers has hampered the characterization of senescent cells in ageing and age-associated diseases. In accordance, the senescence-associated secretory phenotype (SASP or secretome was shown to vary in distinct cell types and upon different stressors, and SASP heterogeneity is believed to create subsets of senenescent cells. In addition to secreted proteins, we then place extracellular vesicles (exosomes and ectosomes as important mediators of intercellular communication with pathophysiological roles in disease spreading, and as emerging targets for therapeutic intervention. We also discuss the application of engineered extracellular vesicles as vehicles for drug delivery. Finally, we summarize current knowledge on methods to rejuvenate senescent cells

  7. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    Science.gov (United States)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  8. Defining the Velocity Field of Root Cells in Arabidopsis Seedlings Using Open Source Image Processing Tools

    Science.gov (United States)

    Craig, Amy E.; Higgins, Brad R.; Guy, Tracy; Durham Brooks, Tessa; Wentworth, Christopher D.

    2011-11-01

    The velocity field for cells in a growing root is a function of a cell's position with respect to the root apex and time. For many species of plant this function has the same general sigmoid shape described by a modified logistics curve. In this investigation we obtain microscopic images of Arabidopsis seedling roots over a 20 minute period of time, measure the velocity field for root cells using an application developed with the open source mathematics application Octave, and test whether the velocity field can be described by the modified logistics function. We find support for describing the velocity field by the modified logistics function.

  9. The biocytin wide-field bipolar cell in the rabbit retina selectively contacts blue cones

    Science.gov (United States)

    MacNeil, Margaret A.; Gaul, Paulette A.

    2010-01-01

    The biocytin wide-field bipolar cell in rabbit retina is a sparsely populated ON cone bipolar cell with a broad dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the cone types that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. PMID:17990268

  10. On-site fuel cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-01-01

    In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.

  11. How a High-Gradient Magnetic Field Could Affect Cell Life

    Science.gov (United States)

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-11-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.

  12. Confined Photovoltaic Fields in a Photo-Responsive Liquid Crystal Test Cell (Preprint)

    Science.gov (United States)

    2017-08-11

    AFRL-RX-WP-JA-2017-0428 CONFINED PHOTOVOLTAIC FIELDS IN A PHOTO- RESPONSIVE LIQUID CRYSTAL TEST CELL (PREPRINT) Atefeh...TITLE AND SUBTITLE CONFINED PHOTOVOLTAIC FIELDS IN A PHOTO- RESPONSIVE LIQUID CRYSTAL TEST CELL (PREPRINT) 5a. CONTRACT NUMBER FA8650-16-D...hybridized photo responsive liquid crystal test cells are reported, where iron doped lithium niobate substrates were used to photo generate electric

  13. External magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiencyExternal magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiency

    OpenAIRE

    ZERBO, ISSA; ZOUNGRANA, MARTIAL; SOURABIE, IDRISSA; Ouedraogo, Adama; ZOUMA, BERNARD; BATHIEBO, DIEUDONNE JOSEPH

    2015-01-01

    This article presents a modelling study of external magnetic field effect on a bifacial silicon solar cell's electric power and conversion efficiency. After the resolution of the magnetotransport equation and continuity equation of excess minority carriers, we calculate the photocurrent density and the photovoltage and then we deduce the solar cell's electric power before discussing the influence of the magnetic field on those electrical parameters. Using the electric powe...

  14. External magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiencyExternal magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiency

    OpenAIRE

    ZERBO, ISSA; ZOUNGRANA, MARTIAL; SOURABIE, IDRISSA; Ouedraogo, Adama; ZOUMA, BERNARD; BATHIEBO, DIEUDONNE JOSEPH

    2015-01-01

    This article presents a modelling study of external magnetic field effect on a bifacial silicon solar cell's electric power and conversion efficiency. After the resolution of the magnetotransport equation and continuity equation of excess minority carriers, we calculate the photocurrent density and the photovoltage and then we deduce the solar cell's electric power before discussing the influence of the magnetic field on those electrical parameters. Using the electric power curves...

  15. SMOS brightness temperature assimilation into the Community Land Model

    Directory of Open Access Journals (Sweden)

    D. Rains

    2017-11-01

    Full Text Available SMOS (Soil Moisture and Ocean Salinity mission brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF as well as to the Community Microwave Emission Model (CMEM. Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010–2015. Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 % for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.

  16. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Nys, G.M.S.; van der Smagt, M.J.; de Haan, E.H.F.

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level

  17. Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones.

    Science.gov (United States)

    MacNeil, Margaret A; Gaul, Paulette A

    2008-01-01

    The biocytin wide-field bipolar cell in rabbit retina has a broad axonal arbor in layer 5 of the inner plexiform layer and a wide dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the types of cones that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin, and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. Copyright 2007 Wiley-Liss, Inc.

  18. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    Science.gov (United States)

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  19. Modulation of cell function by electric field: a high-resolution analysis

    Science.gov (United States)

    Taghian, T.; Narmoneva, D. A.; Kogan, A. B.

    2015-01-01

    Regulation of cell function by a non-thermal, physiological-level electromagnetic field has potential for vascular tissue healing therapies and advancing hybrid bioelectronic technology. We have recently demonstrated that a physiological electric field (EF) applied wirelessly can regulate intracellular signalling and cell function in a frequency-dependent manner. However, the mechanism for such regulation is not well understood. Here, we present a systematic numerical study of a cell-field interaction following cell exposure to the external EF. We use a realistic experimental environment that also recapitulates the absence of a direct electric contact between the field-sourcing electrodes and the cells or the culture medium. We identify characteristic regimes and present their classification with respect to frequency, location, and the electrical properties of the model components. The results show a striking difference in the frequency dependence of EF penetration and cell response between cells suspended in an electrolyte and cells attached to a substrate. The EF structure in the cell is strongly inhomogeneous and is sensitive to the physical properties of the cell and its environment. These findings provide insight into the mechanisms for frequency-dependent cell responses to EF that regulate cell function, which may have important implications for EF-based therapies and biotechnology development. PMID:25994294

  20. Modulation of cell function by electric field: a high-resolution analysis.

    Science.gov (United States)

    Taghian, T; Narmoneva, D A; Kogan, A B

    2015-06-06

    Regulation of cell function by a non-thermal, physiological-level electromagnetic field has potential for vascular tissue healing therapies and advancing hybrid bioelectronic technology. We have recently demonstrated that a physiological electric field (EF) applied wirelessly can regulate intracellular signalling and cell function in a frequency-dependent manner. However, the mechanism for such regulation is not well understood. Here, we present a systematic numerical study of a cell-field interaction following cell exposure to the external EF. We use a realistic experimental environment that also recapitulates the absence of a direct electric contact between the field-sourcing electrodes and the cells or the culture medium. We identify characteristic regimes and present their classification with respect to frequency, location, and the electrical properties of the model components. The results show a striking difference in the frequency dependence of EF penetration and cell response between cells suspended in an electrolyte and cells attached to a substrate. The EF structure in the cell is strongly inhomogeneous and is sensitive to the physical properties of the cell and its environment. These findings provide insight into the mechanisms for frequency-dependent cell responses to EF that regulate cell function, which may have important implications for EF-based therapies and biotechnology development. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture....... Large apertures result in high order transverse modes, filamentation and spatio-temporal instabilities, all of which degrade spatial coherence and therefore brightness. We shall describe a combined assault on three fronts: (1) minimise aperture size required for a given power by maximising the facet...... damage threshold, (2) for a given aperture, minimise self-focusing and filamentation by minimising the effective nonlinear coefficient (the alpha parameter), and (3) for a given aperture and nonlinear coefficient, develop optical cavities and propagation structures to suppress filamentation and high...

  2. On the Brightness of Supernova Ia

    CERN Document Server

    Zheng, Yijia

    2013-01-01

    Before 1998 the universe expansion was thought to be slowing down. After 1998 the universe expansion is thought to be accelerating up. The key evidence came from the observed brightness of high redshift supernovae Ia in 1998. Astronomers found that the observed brightness of high redshift supernovae Ia is fainter than expected. Astronomers believe this means that the universe expansion is accelerating up. In this paper it is argued that if the ionized gas in the universe space is taken into account, then the brightness of the high redshift supernova Ia should be fainter than expected. The universe expansion does not need to be accelerating up. The exotic form of energy (dark energy) does not need to be introduce

  3. Development and Fielding of a Direct Methanol Fuel Cell

    Science.gov (United States)

    2010-03-01

    fuel cell to power operational test instrumentation in support of the future combat systems test and evaluation. This unit also has application by the German Bundeswehr as a battery-charging station and auxiliary power unit. The direct methanol fuel cell is characterized by its low noise emission, minimal thermal signature, and high fuel efficiency that will enable continuously sustained operation for long duration missions in the

  4. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  5. The Physics and Applications of High Brightness Beams: Working Group A Summary on High Brightness Beam Production

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, John

    2003-03-19

    Working group A was devoted to high brightness beam production and characterization. The presentations and discussions could be categorized as cathode physics, new photoinjector designs, computational modeling of high brightness beams, and new experimental methods and results. Several novel injector and cathode designs were presented. However, a standard 1.5 cell rf photoinjector is still the most common source for high brightness beams. New experimental results and techniques were presented and thoroughly discussed. The brightest beam produced in a rf photoinjector published at the time of the workshop is approximately 2 10{sup 14} A/(m-rad){sup 2} at Sumitomo Heavy Industries in Japan with 1 nC of charge, a 9 ps FWHM long laser pulse and a normalized transverse emittance of 1.2 pm. The emittance was achieved by utilizing a temporally flat laser pulse which decreased the emittance by an estimated factor of 2 from the beam produced with a Gaussian pulse shape with an identical pulse length.

  6. Effect of static magnetic fields on the budding of yeast cells.

    Science.gov (United States)

    Egami, Shigeki; Naruse, Yujiro; Watarai, Hitoshi

    2010-12-01

    The effect of static magnetic fields on the budding of single yeast cells was investigated using a magnetic circuit that was capable of generating a strong magnetic field (2.93 T) and gradient (6100 T²  m⁻¹). Saccharomyces cerevisiae yeast cells were grown in an aqueous YPD agar in a silica capillary under either a homogeneous or inhomogeneous static magnetic field. Although the size of budding yeast cells was only slightly affected by the magnetic fields after 4 h, the budding angle was clearly affected by the direction of the homogeneous and inhomogeneous magnetic fields. In the homogeneous magnetic field, the budding direction of daughter yeast cells was mainly oriented in the direction of magnetic field B. However, when subjected to the inhomogeneous magnetic field, the daughter yeast cells tended to bud along the axis of capillary flow in regions where the magnetic gradient, estimated by B(dB/dx), were high. Based on the present experimental results, the possible mechanism for the magnetic effect on the budding direction of daughter yeast cells is theoretically discussed. Copyright © 2010 Wiley-Liss, Inc.

  7. Influence of pulsed magnetic fields on the morphology of bone cells in early stages of growth.

    Science.gov (United States)

    Noriega-Luna, Berenice; Sabanero, Myrna; Sosa, Modesto; Avila-Rodriguez, Mario

    2011-08-01

    The effect of electromagnetic fields on living systems has been studied both in vivo and in vitro in a wide range of organisms, cells and tissues. However, the mechanism of action of electromagnetic fields is not yet clearly defined. This paper presents the results of applying a pulsed magnetic field of 70ms width, intensity of 0.65mT at 4Hz in human osteoblasts, during 45min. The magnetic field application was conducted on crops of both 24 and 48h of proliferation. The effect of applying magnetic fields was assessed using parameters such as cell density, protein content, distribution of F-actin fibrils and β-tubulin and integrity of nuclear structure. The results indicate no alteration in either protein synthesis or nuclear structure, or in the number of cells. However, we observed that exposure to these fields induces changes in the distribution of cytoskeletal proteins of osteoblasts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Variations in Cell Surfaces of Estrogen Treated Breast Cancer Cells Detected by A Combined Instrument for Far-Field and Near-Field Microscopy

    Directory of Open Access Journals (Sweden)

    P. Perner

    2002-01-01

    Full Text Available The response of single breast cancer cells (cell line T‐47D to 17β‐estradiol (E2 under different concentrations was studied by using an instrument that allows to combine far‐field light microscopy with high resolution scanning near‐field (AFM/SNOM microscopy on the same cell. Different concentrations of E2 induce clearly different effects as well on cellular shape (in classical bright‐field imaging as on surface topography (atomic force imaging and absorbance (near‐field light transmission imaging. The differences range from a polygonal shape at zero via a roughly spherical shape at physiological up to a spindle‐like shape at un‐physiologically high concentrations. The surface topography of untreated control cells was found to be regular and smooth with small overall height modulations. At physiological E2 concentrations the surfaces became increasingly jagged as detected by an increase in membrane height. After application of the un‐physiological high E2 concentration the cell surface structures appeared to be smoother again with an irregular fine structure. The general behaviour of dose dependent differences was also found in the near‐field light transmission images. In order to quantify the treatment effects, line scans through the normalised topography images were drawn and a rate of co‐localisation between high topography and high transmission areas was calculated. The cell biological aspects of these observations are, so far, not studied in detail but measurements on single cells offer new perspectives to be empirically used in diagnosis and therapy control of breast cancers.

  9. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  10. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Bright perspectives for nuclear photonics

    Science.gov (United States)

    Thirolf, P. G.; Habs, D.

    2014-05-01

    With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.

  12. Osteogenic differentiation of amniotic epithelial cells: synergism of pulsed electromagnetic field and biochemical stimuli

    OpenAIRE

    Wang, Qian; Wu, Wenchao; Han, Xiaoyu; Zheng, Ai; Lei, Song; Wu, Jiang; Chen, Huaiqing; He, Chengqi; Luo, Fengming; Liu, Xiaojing

    2014-01-01

    Background Pulsed electromagnetic field (PEMF) is a non-invasive physical therapy used in the treatment of fracture nonunion or delayed healing. PEMF can facilitate the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Amniotic epithelial cells (AECs) have been proposed as a potential source of stem cells for cell therapy. However, whether PEMF could modulate the osteogenic differentiation of AECs is unknown. In the present study, the effects of PEMF on the osteogenic...

  13. Induction of Cell Activation Processes by Low Frequency Electromagnetic Fields

    OpenAIRE

    Myrtill Simkó

    2004-01-01

    Electromagnetic fields (EMF) such as those from electric power transmission and distribution lines (50/60 Hz) have been associated with increased risk of childhood leukemia, cancer of the nervous system, and lymphomas. Several in vitro studies on EMF effects were performed to clarify the existing controversies, define the risks, and determine the possible mechanisms of adverse effects. In some of these reports, the effects were related to other mechanisms of carcinogenesis. Modification in ce...

  14. Flux and brightness calculations for various synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring.

  15. Microwave brightness temperature imaging and dielectric properties ...

    Indian Academy of Sciences (India)

    material collected by former Soviet Union robots and Apollo astronauts. With the completion of the first round of lunar exploration by human beings, the study of lunar microwave brightness tempe- rature was completely forgotten. Accompanied by a new upcoming era of lunar exploration and the development of science and ...

  16. Dark matter in low surface brightness galaxies

    NARCIS (Netherlands)

    de Blok, WJG; McGaugh, SS; Persic, M; Salucci, P

    1997-01-01

    Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB

  17. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  18. Simultaneous brightness contrast of foraging Papilio butterflies

    Science.gov (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro

    2012-01-01

    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast. PMID:22179808

  19. Microwave brightness temperature imaging and dielectric properties ...

    Indian Academy of Sciences (India)

    In this paper,we give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 meter Telescope and Siberian Solar Radio Telescope.We also ... Center for Space Science and Applied Research, Chinese Academy of Sciences, P.O. Box 8701, Beijing 100 080, China.

  20. Dark Matter in Low Surface Brightness Galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; McGaugh, S. S.

    1996-01-01

    Abstract: Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that

  1. The biocytin wide-field bipolar cell in the rabbit retina selectively contacts blue cones

    OpenAIRE

    MacNeil, Margaret A.; Gaul, Paulette A.

    2008-01-01

    The biocytin wide-field bipolar cell in rabbit retina is a sparsely populated ON cone bipolar cell with a broad dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the cone types that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-...

  2. Yeast cells proliferation on various strong static magnetic fields and temperatures

    Science.gov (United States)

    Otabe, E. S.; Kuroki, S.; Nikawa, J.; Matsumoto, Y.; Ooba, T.; Kiso, K.; Hayashi, H.

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 106/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  3. Yeast cells proliferation on various strong static magnetic fields and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Otabe, E S; Kuroki, S; Nikawa, J [Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu Iizuka Fukuoka 820-8502 (Japan); Matsumoto, Y [Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Ooba, T [Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861 (Japan); Kiso, K [Fukuoka Regional Taxation Bureau, 2-11-1 Hakataekihigashi, Hakata-ku Fukuoka, 812-8547 (Japan); Hayashi, H [Kyushu Power Electric, 2-1-47 Shiobaru Minami-ku Fukuoka 815-8520 (Japan)], E-mail: otabe@cse.kyutech.ac.jp

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 {+-}0.2 x 10{sup 6}/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, {rho}, of initial part is analyzed in terms of Malthus equation as given by {rho} = {rho}o exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  4. Static high-gradient magnetic fields affect the functionality of monocytic cells

    Czech Academy of Sciences Publication Activity Database

    Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.

    2014-01-01

    Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism

  5. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity.

    Science.gov (United States)

    Perica, Karlo; Tu, Ang; Richter, Anne; Bieler, Joan Glick; Edidin, Michael; Schneck, Jonathan P

    2014-03-25

    Iron-dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy.

  6. Magnetic field enhancement of organic photovoltaic cells performance

    OpenAIRE

    Oviedo-Casado, S.; Urbina, A.; Prior, J.

    2017-01-01

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typ...

  7. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  8. The Light-Induced Field-Effect Solar Cell Concept - Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency.

    Science.gov (United States)

    Wang, Yusheng; Xia, Zhouhui; Liu, Lijia; Xu, Weidong; Yuan, Zhongcheng; Zhang, Yupeng; Sirringhaus, Henning; Lifshitz, Yeshayahu; Lee, Shui-Tong; Bao, Qiaoliang; Sun, Baoquan

    2017-05-01

    Solar cell generates electrical energy from light one via pulling excited carrier away under built-in asymmetry. Doped semiconductor with antireflection layer is general strategy to achieve this including crystalline silicon (c-Si) solar cell. However, loss of extra energy beyond band gap and light reflection in particular wavelength range is known to hinder the efficiency of c-Si cell. Here, it is found that part of short wavelength sunlight can be converted into polarization electrical field, which strengthens asymmetry in organic-c-Si heterojunction solar cell through molecule alignment process. The light harvested by organometal trihalide perovskite nanoparticles (NPs) induces molecular alignment on a conducting polymer, which generates positive electrical surface field. Furthermore, a "field-effect solar cell" is successfully developed and implemented by combining perovskite NPs with organic/c-Si heterojunction associating with light-induced molecule alignment, which achieves an efficiency of 14.3%. In comparison, the device with the analogous structure without perovskite NPs only exhibits an efficiency of 12.7%. This finding provides a novel concept to design solar cell by sacrificing part of sunlight to provide "extra" asymmetrical field continuously as to drive photogenerated carrier toward respective contacts under direct sunlight. Moreover, it also points out a method to combine promising perovskite material with c-Si solar cell. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Field cancerization: concept and clinical implications in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Jaiswal, Gagan; Jaiswal, Shradha; Kumar, Rajesh; Sharma, Aanchal

    2013-01-01

    Cancer begins with multiple cumulative epigenetic and genetic alterations that sequentially transform a cell or a group of cells in a particular organ. The early genetic events might lead to clonal expansion of pre-neoplastic daughter cells in a particular tumor field. Subsequent genomic changes in some of these cells drive them towards the malignant phenotype. These transformed cells are diagnosed histopathologically as cancers owing to changes in cell morphology. Conceivably, a population of daughter cells with early genetic changes (without histopathology) remains in the organ, demonstrating the concept of field cancerization. The concept of "field cancerization" was first introduced by Slaughter et al in 1953 when studying the presence of histologically abnormal tissue surrounding oral squamous cell carcinoma. It was proposed to explain the development of multiple primary tumors and locally recurrent cancer. With present technological advancement and carefully designed studies using appropriate control tissue will enable identification of important molecular signatures in these genetically transformed but histologically normal cells. Such tumor-specific biomarkers should have excellent clinical utility. This review examines the concept of field cancerization in head and neck cancer and its possible utility in early detection, tumor progression and clinical significance.

  10. Role of Cortical Cell Type and Morphology in Sub- and Suprathreshold Uniform Electric Field Stimulation

    Science.gov (United States)

    Radman, Thomas; Ramos, Raddy L; Brumberg, Joshua C; Bikson, Marom

    2009-01-01

    Background The neocortex is the most common target of sub-dural electrotherapy and non-invasive brain stimulation modalities including transcranial magnetic stimulation (TMS) and transcranial current simulation (TCS). Specific neuronal elements targeted by cortical stimulation are considered to underlie therapeutic effects, but the exact cell-type(s) affected by these methods remains poorly understood. Objective We determined if neuronal morphology or cell type predicted responses to sub- and suprathreshold uniform electric fields. Methods We characterized the effects of sub- and supra-threshold electrical stimulation on identified cortical neurons in vitro. Uniform electric fields were applied to rat motor cortex brain slices, while recording from interneurons and pyramidal cells across cortical layers, using whole cell patch clamp. Neuron morphology was reconstructed following intracellular dialysis of biocytin. Based solely on volume-weighted morphology, we developed a parsimonious model of neuronal soma polarization by sub-threshold electric fields. Results We found that neuronal morphology correlated with somatic sub-threshold polarization. Based on neuronal morphology, we predict layer V pyramidal neuronal soma to be the most sensitive to polarization by optimally oriented sub-threshold fields. Supra-threshold electric field action potential threshold was shown to reflect both direct cell polarization and synaptic (network) activation. Layer V/VI neuron absolute electric field action potential thresholds were lower than Layer II/III pyramidal neurons and interneurons. Compared to somatic current injection, electric fields promoted burst firing and modulated action potential firing times. PMID:20161507

  11. Effect of Magnetic Field on Adhesion of Muscle Cells to Culture Plate

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-08-01

    Full Text Available The effect of a magnetic field on adhesion of cultured muscle cells to the culture plate has been studied in vitro. An experimental system was manufactured to apply a magnetic field to muscle cell culture. The system consists of a couple of solenoid coils, a culture dish of 52 mm internal diameter, and an inverted phase-contrast microscope. The solenoid coil generates the alternating magnetic field of 13 mT of the effective value at a period of 0.01 s with the electric current of the rectangular pulses. C2C12 (Mouse myoblast cell line originated with cross-striated muscle of C3H mouse cells were suspended in Dulbecco's Modified Eagle's Medium. The suspension was poured into the plastic dish placed on the stage of the microscope. The culture dish was exposed to the magnetic field between the solenoid coils at 29 degrees Celsius. For comparative study, a part of the suspension was poured into the same kind of dish without exposure to the magnetic field at 29 degrees Celsius. The number of cells, which adhered to the bottom of the culture dish, was traced according to the time (<130 min during exposure to the alternating magnetic field. The experimental results show that adhesion is accelerated with alternating magnetic field of 13 mT.

  12. Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell.

    Science.gov (United States)

    Bandura, Dmitry R; Baranov, Vladimir I; Tanner, Scott D

    2002-10-01

    A novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to 610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of approximately 10(-6). In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 x 10(-8) of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression.

  13. Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells

    NARCIS (Netherlands)

    Santbergen, R.; Hairen, T.; Zeman, M.; Smets, A.H.M.

    2014-01-01

    The scattering cross-section of a plasmonic nanoparticle is proportional to the intensity of the electric field that drives the plasmon resonance. In this work we determine the driving field pattern throughout a complete thin-film silicon solar cell. Our simulations reveal that by tuning of the

  14. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    Science.gov (United States)

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  15. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    Science.gov (United States)

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Purpose Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Methods Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10∶14 light∶dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Results Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1∶1 or 7∶7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. Conclusions The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1∶1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical

  16. Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields.

    Science.gov (United States)

    Vittorio, Orazio; Quaranta, Paola; Raffa, Vittoria; Funel, Niccola; Campani, Daniela; Pelliccioni, Serena; Longoni, Biancamaria; Mosca, Franco; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    We investigated the interaction between magnetic carbon nanotubes (CNTs) and mesenchymal stem cells (MSCs), and their ability to guide these intravenously injected cells in living rats by using an external magnetic field. Multiwalled CNTs were used to treat MSCs derived from rat bone marrow. Cytotoxicity induced by nanotubes was studied using the WST-1 proliferation and Hoechest 33258 apoptosis assays. The effects of nanotubes on MSCs were evaluated by monitoring the effects on cellular growth rates, immunophenotyping and differentiation, and on the arrangement of cytoskeletal actin. MSCs loaded with nanotubes were injected in vivo in the portal vein of rats driving their localization in the liver by magnetic field. An histological analysis was performed on the liver, lungs and kidneys of all animals. CNTs did not affect cell viability and their ability to differentiate in osteocytes and adipocytes. Both the CNTs and the magnetic field did not alter the cell growth rate, phenotype and cytoskeletal conformation. CNTs, when exposed to magnetic fields, are able to shepherd MSCs towards the magnetic source in vitro. Moreover, the application of a magnetic field alters the biodistribution of CNT-labelled MSCs after intravenous injection into rats, increasing the accumulation of cells into the target organ (liver). Multiwalled CNTs hold the potential for use as nanodevices to improve therapeutic protocols for transplantation and homing of stem cells in vivo. This could pave the way for the development of new strategies for the manipulation/guidance of MSCs in regenerative medicine and cell transplantation.

  17. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  18. Flow field design for high-pressure PEM electrolysis cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    micro-channels and porous media, our research group has developed an Euler-Euler model in the computational fluid dynamics modelling framework of ANSYS CFX. In addition to two-phase flow, the model accounts for turbulence, species transport in the gas phase, heat transport in all three phases (i......With the increasing interest in producing hydrogen through water electrolysis, the importance of understanding the transport phenomena governing its operation increases. To ensure optimal operating conditions for PEM electrolysis, it is particularly important to understand how the liquid feed.......e. solid, gas and liquid), as well as charge transport of electrons and ions. Our recent improvements have focused on the models ability to account for phase change and electrochemistry as well as the modelling of two-phase flow regimes. For comparison, an interdigitated and parallel channel flow field...

  19. Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field.

    Science.gov (United States)

    Sun, Yaohui; Do, Hao; Gao, Jing; Zhao, Ren; Zhao, Min; Mogilner, Alex

    2013-04-08

    Sensing of an electric field (EF) by cells-galvanotaxis-is important in wound healing [1], development [2], cell division, nerve growth, and angiogenesis [3]. Different cell types migrate in opposite directions in EFs [4], and the same cell can switch the directionality depending on conditions [5]. A tug-of-war mechanism between multiple signaling pathways [6] can direct Dictyostelium cells to either cathode or anode. Mechanics of motility is simplest in fish keratocytes, so we turned to keratocytes to investigate their migration in EFs. Keratocytes sense electric fields and migrate to the cathode [7, 8]. Keratocyte fragments [9, 10] are the simplest motile units. Cell fragments from leukocytes are able to respond to chemotactic signals [11], but whether cell fragments are galvanotactic was unknown. We found that keratocyte fragments are the smallest motile electric field-sensing unit: they migrate to the anode, in the opposite direction of whole cells. Myosin II was essential for the direction sensing of fragments but not for parental cells, while PI3 kinase was essential for the direction sensing of whole cells but not for fragments. Thus, two signal transduction pathways, one depending on PI3K, another on myosin, compete to orient motile cells in the electric field. Galvanotaxis is not due to EF force and does not depend on cell or fragment size. We propose a "compass" model according to which protrusive and contractile actomyosin networks self-polarize to the front and rear of the motile cell, respectively, and the electric signal orients both networks toward cathode with different strengths. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells

    Czech Academy of Sciences Publication Activity Database

    Havrdová, M.; Poláková, K.; Skopalík, J.; Vůjtek, M.; Mokdad, A.; Homolková, M.; Tuček, J.; Nebesářová, Jana; Zbořil, R.

    2014-01-01

    Roč. 67, DEC 2014 (2014), s. 149-154 ISSN 0968-4328 Institutional support: RVO:60077344 Keywords : Field emission scanning electronmicroscopy (FE-SEM) * Stem cells * Iron oxide nanoparticles * Cellular morphology * Endosomes * Cell uptake Subject RIV: FD - Oncology ; Hematology Impact factor: 1.988, year: 2014

  1. Non-uniform distribution of outer hair cell transmembrane potential induced by extracellular electric field.

    Science.gov (United States)

    Ramamoorthy, Sripriya; Wilson, Teresa M; Wu, Tao; Nuttall, Alfred L

    2013-12-17

    Intracochlear electric fields arising out of sound-induced receptor currents, silent currents, or electrical current injected into the cochlea induce transmembrane potential along the outer hair cell (OHC) but its distribution along the cells is unknown. In this study, we investigated the distribution of OHC transmembrane potential induced along the cell perimeter and its sensitivity to the direction of the extracellular electric field (EEF) on isolated OHCs at a low frequency using the fast voltage-sensitive dye ANNINE-6plus. We calibrated the potentiometric sensitivity of the dye by applying known voltage steps to cells by simultaneous whole-cell voltage clamp. The OHC transmembrane potential induced by the EEF is shown to be highly nonuniform along the cell perimeter and strongly dependent on the direction of the electrical field. Unlike in many other cells, the EEF induces a field-direction-dependent intracellular potential in the cylindrical OHC. We predict that without this induced intracellular potential, EEF would not generate somatic electromotility in OHCs. In conjunction with the known heterogeneity of OHC membrane microdomains, voltage-gated ion channels, charge, and capacitance, the EEF-induced nonuniform transmembrane potential measured in this study suggests that the EEF would impact the cochlear amplification and electropermeability of molecules across the cell. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. GAP JUNCTION COMMUNICATON IN A TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS

    Science.gov (United States)

    GAP JUNCTION COMMUNICTION IN TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS. OBJECTIVE: We previously showed that functional gap junction communication (GJC), as monitored by dye transfer (DT), could be enhanced in mouse C3H 10T112 cells and in mouse...

  3. Design and Installation of a Disposal Cell Cover Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  4. Effect of internal electric field on InAs/GaAs quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kasamatsu, Naofumi; Kada, Tomoyuki; Hasegawa, Aiko; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-02-28

    We studied time-resolved carrier recombination in InAs/GaAs quantum dot (QD) solar cells. The electric field in a p-i-n diode structure spatially separates photoexcited carriers in QDs, strongly affecting the conversion efficiency of intermediate-band solar cells. The radiative decay lifetime is dramatically reduced in a strong electric field (193 kV/cm) by efficient recombination due to strong carrier localization in each QD and significant tunneling-assisted electron escape. Conversely, an electric field of the order of 10 kV/cm maintains electronic coupling in the stacked QDs and diminishes tunneling-assisted electron escape.

  5. Pulsed Electromagnetic Field Stimulates Cellular Proliferation in Human Intervertebral Disc Cells

    OpenAIRE

    Lee, Hwan-Mo; Kwon, Un-Hye; Kim, Hyang; Kim, Ho-Joong; Kim, Boram; Park, Jin-Oh; Moon, Eun-Soo; Moon, Seong-Hwan

    2010-01-01

    Purpose The purpose of this study is to investigate the mechanism of cellular proliferation of electromagnetic field (EMF) on human intervertebral disc (IVD) cells. Materials and Methods Human IVD cells were cultured three-dimensionally in alginate beads. EMF was exposed to IVD cells with 650?, 1.8 millitesla magnetic flux density, 60 Hz sinusoidal wave. Cultures were divided into a control and EMF group. Cytotoxicity, DNA synthesis and proteoglycan synthesis were measured by MTT assay, [3H]-...

  6. Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.

    Science.gov (United States)

    Karnup, S V; Hayar, A; Shipley, M T; Kurnikova, M G

    2006-09-29

    Field potentials recorded in the olfactory bulb glomerular layer (GL) are thought to result mainly from activation of mitral and tufted cells. The contribution of juxtaglomerular cells (JG) is unknown. We tested the hypothesis that JG are the main driving force to novel spontaneous glomerular layer field potentials (sGLFPs), which were recorded in rat olfactory bulb slices maintained in an interface chamber. We found that sGLFPs have comparable magnitudes, durations and frequencies both in standard horizontal slices, where all layers with all cell types were present, and in isolated GL slices, where only JG cells were preserved. Hence, the impact of mitral and deep/medium tufted cells to sGLFPs turned out to be minor. Therefore, we propose that the main generators of sGLFPs are JG neurons. We further explored the mechanism of generation of sGLFPs using a neuronal ensemble model comprising all types of cells associated with a single glomerulus. Random orientation and homogenous distribution of dendrites in the glomerular neuropil along with surrounding shell of cell bodies of JG neurons resulted in substantial spatial restriction of the generated field potential. The model predicts that less than 20% of sGLFP can spread from one glomerulus to an adjacent one. The contribution of JG cells to the total field in the center of the glomerulus is estimated as approximately 50% ( approximately 34% periglomerular and approximately 16% external tufted cells), whereas deep/medium tufted cells provide approximately 39% and mitral cells only approximately 10%. Occasionally, some sGLFPs recorded in adjacent or remote glomeruli were cross-correlated, suggesting involvement of interglomerular communication in information coding. These results demonstrate a leading role of JG cells in activation of the main olfactory bulb (MOB) functional modules. Finally, we hypothesize that the GL is not a set of independent modules, but it represents a subsystem in the MOB network, which can

  7. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  8. Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock

    CERN Document Server

    Affolderbach, Christoph; Bandi, Thejesh; Horsley, Andrew; Treutlein, Philipp; Mileti, Gaetano

    2015-01-01

    We report on the experimental measurement of the DC and microwave magnetic field distributions inside a recently-developed compact magnetron-type microwave cavity, mounted inside the physics package of a high-performance vapor-cell atomic frequency standard. Images of the microwave field distribution with sub-100 $\\mu$m lateral spatial resolution are obtained by pulsed optical-microwave Rabi measurements, using the Rb atoms inside the cell as field probes and detecting with a CCD camera. Asymmetries observed in the microwave field images can be attributed to the precise practical realization of the cavity and the Rb vapor cell. Similar spatially-resolved images of the DC magnetic field distribution are obtained by Ramsey-type measurements. The T2 relaxation time in the Rb vapor cell is found to be position dependent, and correlates with the gradient of the DC magnetic field. The presented method is highly useful for experimental in-situ characterization of DC magnetic fields and resonant microwave structures,...

  9. Could field cancerization be interpreted as a biochemical anomaly amplification due to transformed cells?

    Science.gov (United States)

    Fernández P, Janeth; Méndez-Sánchez, Stelia C; Gonzalez-Correa, C A; Miranda, David A

    2016-12-01

    Field cancerization is a concept used to explain cellular and molecular alterations in tissue associated to neoplasia and cancer. This effect was proposed by Slaughter in order to explain the development of multiple primary tumors and locally recurrent cancer. The particular changes associated with this effect, in each type of cancer, have been detected even at distances greater than 10cm off the tumor, in areas classified as normal by histopathological studies. Early detection of lung, colon, and ovary cancer has been reported by the use of Partial Wave Microscopy Spectroscopy (PWS) and has been explained in terms of the field cancerization effect. Until now, field cancerization has been studied as a field effect and we hypothesize that it can be understood as an amplifying effect of biochemical abnormalities in cells, which leads us to ask the question: Could field cancerization be interpreted as a biochemical anomaly amplification due to transformed cells? We propose this question because the biochemical changes due to field cancerization alter the dynamics of molecules and cells in abnormal tissues in comparison to normal ones, these alterations modify the interaction of intracellular and extracellular medium, as well as cellular movement. We hypothesize that field cancerization when interpreted as an amplification effect can be used for the early detection of cancer by measuring the change of cell dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of high-gradient magnetic fields on living cell machinery

    Science.gov (United States)

    Zablotskii, V.; Lunov, O.; Kubinova, S.; Polyakova, T.; Sykova, E.; Dejneka, A.

    2016-12-01

    A general interest in biomagnetic effects is related to fundamental studies of the influence of magnetic fields on living objects on the cellular and whole organism levels. Emerging technologies offer new directions for the use of high-gradient magnetic fields to control cell machinery and to understand the intracellular biological processes of the emerging field of nanomedicine. In this review we aim at highlighting recent advances made in identifying fundamental mechanisms by which magnetic gradient forces act on cell fate specification and cell differentiation. The review also provides an analysis of the currently available magnetic systems capable of generating magnetic fields with spatial gradients of up to 10 MT m-1, with the focus on their suitability for use in cell therapy. Relationships between experimental factors and underlying biophysical mechanisms and assumptions that would ultimately lead to a deeper understanding of cell machinery and the development of more predictive models for the evaluation of the effects of magnetic fields on cells, tissue and organisms are comprehensively discussed.

  11. Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells.

    Science.gov (United States)

    Sarvestani, Amir Sabet; Abdolmaleki, Parviz; Mowla, Seyed Javad; Ghanati, Faezeh; Heshmati, Emran; Tavasoli, Zeinab; Jahromi, Azadeh Manoochehri

    2010-02-01

    In order to evaluate the influence of static magnetic fields (SMF) on the progression of cell cycle as a monitor of presumptive genotoxicity of these fields, the effects of a 15 mT SMF on cell cycle progression in rat bone marrow stem cells (BMSC) were examined. The cells were divided into two groups. One group encountered SMF alone for 5h continuously but the other group exposed with X ray before treatment with SMF. The population of cells did not show any significant difference in the first group but the second group that was exposed with acute radiation before encountering SMF showed a significant increase in the number of cells in G(2)/M phase. So SMF has intensified the effects of X ray, where SMF alone, did not had any detectable influence on cell cycle. These findings suggest that magnetic fields (MF) play their role by increasing the effects of genotoxic agents and because of the greater concentration of free radicals in the presence of radical pair producers, this effect is better detectable.

  12. Companions of Bright Barred Shapley Ames Galaxies

    OpenAIRE

    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson

    2003-01-01

    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  13. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  14. Simple-cell-like receptive fields maximize temporal coherence in natural video.

    Science.gov (United States)

    Hurri, Jarmo; Hyvärinen, Aapo

    2003-03-01

    Recently, statistical models of natural images have shown the emergence of several properties of the visual cortex. Most models have considered the nongaussian properties of static image patches, leading to sparse coding or independent component analysis. Here we consider the basic time dependencies of image sequences instead of their nongaussianity. We show that simple-cell-type receptive fields emerge when temporal response strength correlation is maximized for natural image sequences. Thus, temporal response strength correlation, which is a nonlinear measure of temporal coherence, provides an alternative to sparseness in modeling simple-cell receptive field properties. Our results also suggest an interpretation of simple cells in terms of invariant coding principles, which have previously been used to explain complex-cell receptive fields.

  15. Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof

    Science.gov (United States)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2004-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  16. TC4 AMPR BRIGHTNESS TEMPERATURE (TB) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TC4 AMPR Brightness Temperature (TB) dataset consists of brightness temperature data from July 19, 2007 through August 8, 2007. The Tropical Composition, Cloud...

  17. Brightness illusion in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo

    2016-02-01

    A long-standing debate surrounds the issue of whether human and nonhuman species share similar perceptual mechanisms. One experimental strategy to compare visual perception of vertebrates consists in assessing how animals react in the presence of visual illusions. To date, this methodological approach has been widely used with mammals and birds, while few studies have been reported in distantly related species, such as fish. In the present study we investigated whether fish perceive the brightness illusion, a well-known illusion occurring when 2 objects, identical in physical features, appear to be different in brightness. Twelve guppies (Poecilia reticulata) were initially trained to discriminate which rectangle was darker or lighter between 2 otherwise identical rectangles. Three different conditions were set up: neutral condition between rectangle and background (same background used for both darker and lighter rectangle); congruent condition (darker rectangle in a darker background and lighter rectangle in a lighter background); and incongruent condition (darker rectangle in a lighter background and lighter rectangle in a darker background). After reaching the learning criterion, guppies were presented with the illusory pattern: 2 identical rectangles inserted in 2 different backgrounds. Guppies previously trained to select the darker rectangle showed a significant choice of the rectangle that appears to be darker by human observers (and vice versa). The human-like performance exhibited in the presence of the illusory pattern suggests the existence of similar perceptual mechanisms between humans and fish to elaborate the brightness of objects. (c) 2016 APA, all rights reserved).

  18. A tapered serpentine flow field for the anode of micro direct methanol fuel cells

    Science.gov (United States)

    Zhang, Yufeng; Zhang, Peng; Yuan, Zhenyu; He, Hong; Zhao, Youran; Liu, Xiaowei

    2011-03-01

    We develop a self-breathing micro direct methanol fuel cell (μDMFC) characterized by a new anode structure with tapered single serpentine flow fields to improve cell performance. Compared with the conventional single serpentine flow field, this new design enhances the methanol mass transport efficiency and the exhaust resultant (CO2) rate due to the increasing pressure difference between adjacent flow channels. The μDMFCs with two single serpentine flow fields are fabricated using silicon-based micro-electro-mechanical systems (MEMS) technologies and are tested at room temperature. The experimental results reveal that the new tapered single serpentine flow field exhibits a significantly higher peak power density than that of the conventional flow field, demonstrating a substantial increase of 17.9% in mass transport coefficients.

  19. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  20. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  1. 1950 MHz IMT-2000 field does not activate microglial cells in vitro.

    Science.gov (United States)

    Hirose, Hideki; Sasaki, Atsushi; Ishii, Nana; Sekijima, Masaru; Iyama, Takahiro; Nojima, Toshio; Ugawa, Yoshikazu

    2010-02-01

    Given the widespread use of the cellular phone today, investigation of potential biological effects of radiofrequency (RF) fields has become increasingly important. In particular, much research has been conducted on RF effects on brain function. To examine any biological effects on the central nervous system (CNS) induced by 1950 MHz modulation signals, which are controlled by the International Mobile Telecommunication-2000 (IMT-2000) cellular system, we investigated the effect of RF fields on microglial cells in the brain. We assessed functional changes in microglial cells by examining changes in immune reaction-related molecule expression and cytokine production after exposure to a 1950 MHz Wideband Code Division Multiple Access (W-CDMA) RF field, at specific absorption rates (SARs) of 0.2, 0.8, and 2.0 W/kg. Primary microglial cell cultures prepared from neonatal rats were subjected to an RF or sham field for 2 h. Assay samples obtained 24 and 72 h after exposure were processed in a blind manner. Results showed that the percentage of cells positive for major histocompatibility complex (MHC) class II, which is the most common marker for activated microglial cells, was similar between cells exposed to W-CDMA radiation and sham-exposed controls. No statistically significant differences were observed between any of the RF field exposure groups and the sham-exposed controls in percentage of MHC class II positive cells. Further, no remarkable differences in the production of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) were observed between the test groups exposed to W-CDMA signal and the sham-exposed negative controls. These findings suggest that exposure to RF fields up to 2 W/kg does not activate microglial cells in vitro. (c) 2009 Wiley-Liss, Inc.

  2. Influence of pulsed electromagnetic and pulsed vector magnetic potential field on the growth of tumor cells.

    Science.gov (United States)

    Loja, Tomas; Stehlikova, Olga; Palko, Lukas; Vrba, Kamil; Rampl, Ivan; Klabusay, Martin

    2014-09-01

    Tumor diseases cause 20% of deaths in Europe and they are the second most common cause of death and morbidity after cardiovascular diseases. Thus, tumor cells are target of many therapeutic strategies and tumor research is focused on searching more efficient and specific drugs as well as new therapeutic approaches. One of the areas of tumor research is an issue of external fields. In our work, we tested influence of a pulsed electromagnetic field (PEMF) and a hypothetic field of the pulsed vector magnetic potential (PVMP) on the growth of tumor cells; and further the possible growth inhibition effect of the PVMP. Both unipolar and bipolar PEMF fields of 5 mT and PVMP fields of 0 mT at frequencies of 15 Hz, 125 Hz and 625 Hz were tested on cancer cell lines derived from various types of tumors: CEM/C2 (acute lymphoblastic leukemia), SU-DHL-4 (B-cell lymphoma), COLO-320DM (colorectal adenocarcinoma), MDA-BM-468 (breast adenocarcinoma), and ZR-75-1 (ductal carcinoma). Cell morphology was observed, proliferation activity using WST assay was measured and simultaneous proportion of live, early apoptotic and dead cells was detected using flow cytometry. A PEMF of 125 Hz and 625 Hz for 24 h-48 h increased proliferation activity in the 2 types of cancer cell lines used, i.e. COLO-320DM and ZR-75-1. In contrast, any of employed methods did not confirm a significant inhibitory effect of hypothetic PVMP field on tumor cells.

  3. Evaluation of biological effects of intermediate frequency magnetic field on differentiation of embryonic stem cell

    Directory of Open Access Journals (Sweden)

    Sachiko Yoshie

    2016-01-01

    Full Text Available The embryotoxic effect of intermediate frequency (IF magnetic field (MF was evaluated using murine embryonic stem (ES cells and fibroblast cells based on the embryonic stem cell test (EST. The cells were exposed to 21 kHz IF–MF up to magnetic flux density of 3.9 mT during the cell proliferation process (7 days or the cell differentiation process (10 days during which an embryonic body differentiated into myocardial cells. As a result, there was no significant difference in the cell proliferation between sham- and IF–MF-exposed cells for both ES and fibroblast cells. Similarly, the ratio of the number of ES-derived cell aggregates differentiated to myocardial cells to total number of cell aggregates was not changed by IF–MF exposure. In addition, the expressions of a cardiomyocytes-specific gene, Myl2, and an early developmental gene, Hba-x, in the exposed cell aggregate were not altered. Since the magnetic flux density adopted in this study is much higher than that generated by an inverter of the electrical railway, an induction heating (IH cooktop, etc. in our daily lives, these results suggested that IF–MF in which the public is exposed to in general living environment would not have embryotoxic effect.

  4. Receptive field properties of rod-driven horizontal cells in the skate retina

    Science.gov (United States)

    1992-01-01

    The large receptive fields of retinal horizontal cells result primarily from extensive intercellular coupling via gap (electrical) junctions; thus, the extent of the receptive field provides an index of the degree to which the cells are electrically coupled. For rod-driven horizontal cells in the dark-adapted skate retina, a space constant of 1.18 +/- 0.15 mm (SD) was obtained from measurements with a moving slit stimulus, and a comparable value (1.43 +/- 0.55 mm) was obtained with variation in spot diameter. These values, and the extensive spread of a fluorescent dye (Lucifer Yellow) from the site of injection to neighboring cells, indicate that the horizontal cells of the all-rod retina of skate are well coupled electrically. Neither the receptive field properties nor the gap-junctional features of skate horizontal cells were influenced by the adaptive state of the retina: (a) the receptive field organization was unaffected by light adaptation, (b) similar dye coupling was seen in both dark- and light-adapted retinae, and (c) no significant differences were found in the gap-junctional particle densities measured in dark- and light-adapted retinas, i.e., 3,184 +/- 286/microns 2 (n = 8) and 3,073 +/- 494/microns 2 (n = 11), respectively. Moreover, the receptive fields of skate horizontal cells were not altered by either dopamine, glycine, GABA, or the GABAA receptor antagonists bicuculline and picrotoxin. We conclude that the rod-driven horizontal cells of the skate retina are tightly coupled to one another, and that the coupling is not affected by photic and pharmacological conditions that are known to modulate intercellular coupling between cone-driven horizontal cells in other species. PMID:1359000

  5. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  6. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    Science.gov (United States)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  7. The potential and electric field in the cochlear outer hair cell membrane.

    Science.gov (United States)

    Harland, Ben; Lee, Wen-han; Brownell, William E; Sun, Sean X; Spector, Alexander A

    2015-05-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell's motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field, and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC + AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC + AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance.

  8. Delivery devices for exposure of biological cells to nanosecond pulsed electric fields.

    Science.gov (United States)

    Soueid, Malak; Dobbelaar, Martinus C F; Bentouati, Sabrina; Bardet, Sylvia M; O'Connor, Rodney P; Bessières, Delphine; Paillol, Jean; Leveque, Philippe; Arnaud-Cormos, Delia

    2018-01-01

    In this paper, delivery devices for nanosecond pulsed electric field exposure of biological samples in direct contact with electrodes or isolated are presented and characterized. They are based on a modified electroporation cuvette and two transverse electromagnetic cells (TEM cells). The devices were used to apply pulses with high intensity (4.5 kV) and short durations (3 and 13 ns). The delivery devices were electromagnetically characterized in the frequency and time domains. Field intensities of around 5, 0.5, and 12 MV m-1 were obtained by numerical simulations of the biological sample positioned in the three delivery devices. Two delivery systems had a homogenous electric field spatial distribution, and one was adapted to permit a highly localized exposure in the vicinity of a needle. Experimental biological investigations were carried out at different field intensities for five cancer cell lines. The results using flow cytometry showed that cells kept polarized mitochondrial membrane but lost plasma membrane integrity following a dose-response trend after exposure to different electric field intensities. Certain cell types (U87, MCF7) showed higher sensitivities to nsPEFs than other lines tested.

  9. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Robinson, M P [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Evans, J A [Academic Unit of Medical Physics, University of Leeds, Leeds LS2 9JT (United Kingdom); Smye, S W [Department of Medical Physics and Engineering, Leeds Teaching Hospitals, St. James' s University Hospital, Leeds LS9 7TF (United Kingdom); O' Toole, P [Department of Biology, University of York, Heslington, York YO10 5DD (United Kingdom)

    2010-02-21

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m{sup -1}. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  11. Electromagnetic field effects on cells of the immune system: The role of calcium signaling

    Energy Technology Data Exchange (ETDEWEB)

    Walleczek, J. (Lawrence Berkeley Lab., CA (United States))

    1992-10-01

    During the past decade considerable evidence has accumulated demonstrating that nonthermal exposures of cells of the immune system to extremely low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes that might be relevant to in vivo immune activity. A similar responsiveness to nonionizing electromagnetic energy in this frequency range has also been documented for tissues of the neuroendocrine and musculoskeletal system. However, knowledge about the underlying biological mechanisms by which such fields can induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca[sup 2+]-regulated activity is involved in bioactive ELF field coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells and then closely examines new results that suggest a role for Ca[sup 2+] in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca[sup 2+] in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca[sup 2+] signaling processes are involved in the mediation of field effects on the immune system. 69 refs., 2 tabs.

  12. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazumasa [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Loukitcheva, Maria [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Shimojo, Masumi [Chile Observatory, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Solanki, Sami K. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37073 Göttingen (Germany); White, Stephen M., E-mail: k.iwai@isee.nagoya-u.ac.jp [Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, NM (United States)

    2017-06-01

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatial resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.

  13. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    OpenAIRE

    Hsing-Cheng Yu; Xie-Hong Tsai; An-Chun Luo; Ming Wu; Sei-Wang Chen

    2015-01-01

    When viewing three-dimensional (3D) images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D) images in order to adjust the 3D-image brightness values. In addition, the ph...

  14. Coupled electric fields in photorefractive driven liquid crystal hybrid cells - theory and numerical simulation

    Science.gov (United States)

    Moszczyński, P.; Walczak, A.; Marciniak, P.

    2016-12-01

    In cyclic articles previously published we described and analysed self-organized light fibres inside a liquid crystalline (LC) cell contained photosensitive polymer (PP) layer. Such asymmetric LC cell we call a hybrid LC cell. Light fibre arises along a laser beam path directed in plane of an LC cell. It means that a laser beam is parallel to photosensitive layer. We observed the asymmetric LC cell response on an external driving field polarization. Observation has been done for an AC field first. It is the reason we decided to carry out a detailed research for a DC driving field to obtain an LC cell response step by step. The properly prepared LC cell has been built with an isolating layer and garbage ions deletion. We proved by means of a physical model, as well as a numerical simulation that LC asymmetric response strongly depends on junction barriers between PP and LC layers. New parametric model for a junction barrier on PP/LC boundary has been proposed. Such model is very useful because of lack of proper conductivity and charge carriers of band structure data on LC material.

  15. Single-molecule imaging of cell surfaces using near-field nanoscopy.

    Science.gov (United States)

    Hinterdorfer, Peter; Garcia-Parajo, Maria F; Dufrêne, Yves F

    2012-03-20

    Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional

  16. Promotion of cell proliferation by the proto-oncogene DEK enhances oral squamous cell carcinogenesis through field cancerization.

    Science.gov (United States)

    Nakashima, Takayuki; Tomita, Hiroyuki; Hirata, Akihiro; Ishida, Kazuhisa; Hisamatsu, Kenji; Hatano, Yuichiro; Kanayama, Tomohiro; Niwa, Ayumi; Noguchi, Kei; Kato, Keizo; Miyazaki, Tatsuhiko; Tanaka, Takuji; Shibata, Toshiyuki; Hara, Akira

    2017-10-01

    Oral squamous cell carcinoma (OSCC) develops through a multistep carcinogenic process involving field cancerization. The DEK gene is a proto-oncogene with functions in genetic and epigenetic modifications, and has oncogenic functions, including cellular proliferation, differentiation, and senescence. DEK overexpression is associated with malignancies; however, the functional roles of DEK overexpression are unclear. We demonstrated that DEK-expressing cells were significantly increased in human dysplasia/carcinoma in situ and OSCC. Furthermore, we generated ubiquitous and squamous cell-specific doxycycline (DOX)-inducible Dek mice (iDek and iDek-e mice respectively). Both DOX+ iDek and iDek-e mice did not show differences in the oral mucosa compared with DOX- mice. In the environment exposed to carcinogen, DOX-treated (DOX+) iDek mice showed field cancerization and OSCC development. Microarray analysis revealed that DEK overexpression was mediated by the upregulation of DNA replication- and cell cycle-related genes, particularly those related to the G1 /S transition. Tongue tumors overexpressing DEK showed increased proliferating cell nuclear antigen and elongator complex protein 3 expression. Our data suggest that DEK overexpression enhanced carcinogenesis, including field cancerization, in OSCC by stimulating the G1 /S phase transition and promoting DNA replication, providing important insights into the potential applications of DEK as a target in the treatment and prevention of OSCC. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Parametric Modeling of Nerve Cell under the Sinusoidal Environmental 50 Hz Extremely Low Frequency Magnetic Fields

    OpenAIRE

    Homayoun Ebrahimian; Seyied Mohammad Firoozabadi; Mahyar Janahmadi; Mehri Kaviani Moghadam

    2013-01-01

    Background & Objectives: The development of technology has naturally given rise to an increase in environmental low-frequency electromagnetic fields and consequently has attracted scholars' attention. Most of the studies have focused on transmission lines and power system distribution with 50 Hz. This research is an attempt to show the effect of 50 Hz magnetic fields on bioelectric parameters and indicates the possible influence of this change in F1 cells of Helix aspersa .   Methods: The pre...

  18. Identifying Emerging Research Related to Solar Cells Field Using a Machine Leaning Approach

    OpenAIRE

    Hajime Sasaki; Tadayoshi Hara; Ichiro Sakata

    2016-01-01

    The number of research papers related to solar cells field is increasing rapidly. It is hard to grasp research trends and to identify emerging research issues because of exponential growth of publications, and the field’s subdivided knowledge structure. Machine learning techniques can be applied to the enormous amounts of data and subdivided research fields to identify emerging researches. This paper proposed a prediction model using a machine learning approach to identify emerging sola...

  19. Dark and Bright Ridges on Europa

    Science.gov (United States)

    1998-01-01

    This high-resolution image of Jupiter's moon Europa, taken by NASA's Galileo spacecraft camera, shows dark, relatively smooth region at the lower right hand corner of the image which may be a place where warm ice has welled up from below. The region is approximately 30 square kilometers in area. An isolated bright hill stands within it. The image also shows two prominent ridges which have different characteristics; youngest ridge runs from left to top right and is about 5 kilometers in width (about 3.1 miles). The ridge has two bright, raised rims and a central valley. The rims of the ridge are rough in texture. The inner and outer walls show bright and dark debris streaming downslope, some of it forming broad fans. This ridge overlies and therefore must be younger than a second ridge running from top to bottom on the left side of the image. This dark 2 km wide ridge is relatively flat, and has smaller-scale ridges and troughs along its length.North is to the top of the picture, and the sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 15 kilometers by 20 kilometers (9 miles by 12 miles). The resolution is 26 meters (85 feet) per picture element. This image was taken on December 16, 1997 at a range of 1300 kilometers (800 miles) by Galileo's solid state imaging system.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  20. An exceptionally bright, compact starburst nucleus

    Science.gov (United States)

    Margon, Bruce; Anderson, Scott F.; Mateo, Mario; Fich, Michel; Massey, Philip

    1988-01-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies.

  1. Broadband bright twin beams and their upconversion

    Science.gov (United States)

    Chekhova, Maria V.; Germanskiy, Semen; Horoshko, Dmitri B.; Kitaeva, Galiya Kh.; Kolobov, Mikhail I.; Leuchs, Gerd; Phillips, Chris R.; Prudkovskii, Pavel A.

    2018-02-01

    We report on the observation of broadband (40 THz) bright twin beams through high-gain parametric down-conversion in an aperiodically poled lithium niobate crystal. The output photon number is shown to scale exponentially with the pump power and not with the pump amplitude, as in homogeneous crystals. Photon-number correlations and the number of frequency/temporal modes are assessed by spectral covariance measurements. By using sum-frequency generation on the surface of a non-phasematched crystal, we measure a cross-correlation peak with the temporal width 90 fs.

  2. Electromagnetic field effects on cells of the immune system: The role of calcium signalling

    Energy Technology Data Exchange (ETDEWEB)

    Walleczek, J.

    1991-07-01

    During the past decade considerable evidence has accumulated demonstrating the exposures of cells of the immune system to relatively weak extremely-low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes which might be relevant to in-vivo immune activity. However, knowledge about the underlying biological mechanisms by which weak fields induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca{sup 2+} regulated activity is involved in bioactive ELF field-coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells, and then closely examines new results which suggest a role for Ca{sup 2+} in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca{sup 2+} signalling processes are involved in the mediation of field effects on the immune system. 64 refs., 2 tabs.

  3. Contactless cell trapping by the use of a uniform AC electric field.

    Science.gov (United States)

    Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira; Santo, Yudai

    2013-01-01

    The AC electric field-driven manipulation of suspended polarizable particles has become a major technique in micro- and nano-devices. In the present study, suspensions of cultured HeLa cells in isotonic solution were used to explore the mechanisms underlying the suspension behaviors during exposure to a uniform AC electric field of strength E(rms)=1.67×10(4) V/m at frequency 1 kHz. Molecular dynamics (MD) simulations based on the Langevin equation of particle kinetics were performed to elucidate the corresponding problem. A theoretical model to compute the trajectories of individual cells under the action of electro-mechanical, viscous and gravitational forces in the suspending medium was newly developed. Numerical computations demonstrated that the suspended cells began to aggregate to form chainlike clusters along the direction of the uniform AC electric field at an earlier stage of the field application. Moreover, the predicted results were similar to the experimental results. These findings indicate that the chain-like cell clustering arises from the long-range dipole-dipole interaction of neighboring cells, but under the action of the gravitational force that likely hinders the growth of clusters in the vertical direction.

  4. Field collapse due to band-tail charge in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States); Schiff, E.A. [Syracuse Univ., NY (United States)

    1996-05-01

    It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  5. Cell wall as a target for bacteria inactivation by pulsed electric fields

    Science.gov (United States)

    Pillet, Flavien; Formosa-Dague, Cécile; Baaziz, Houda; Dague, Etienne; Rols, Marie-Pierre

    2016-01-01

    The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria. PMID:26830154

  6. Environmental temperature affects physiology and survival of nanosecond pulsed electric field-treated cells.

    Science.gov (United States)

    Yin, Shengyong; Miao, Xudong; Zhang, Xueming; Chen, Xinhua; Wen, Hao

    2018-02-01

    Nanosecond pulsed electric field (nsPEF) is a novel non-thermal tumor ablation technique. However, how nsPEF affect cell physiology at different environmental temperature is still kept unknown. But this issue is of critical clinical practice relevance. This work aim to investigate how nsPEF treated cancer cells react to different environmental temperatures (0, 4, 25, and 37°C). Their cell viability, apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) were examined. Lower temperature resulted in higher apoptosis rate, decreased mitochondria membrane potential, and increased ROS levels. Sucrose and N-acetylcysteine (NAC) pre-incubation inhibit ROS generation and increase cell survival, protecting nsPEF-treated cells from low temperature-caused cell death. This work provides an experimental basis for hypothermia and fluid transfusion during nsPEF ablation with anesthesia. © 2017 Wiley Periodicals, Inc.

  7. [The cell micro-encapsulation techniques and its advancement in the field of gene therapy].

    Science.gov (United States)

    Li, Xiaoling; Cai, Shaohui

    2006-12-01

    It is no doubt that the gene therapy using recombinant engineering cells provides a novel approach to many refractory diseases. However, the transplant rejection from the host's immune system against heterogeneous cells has been the main handicap of its clinical application. The modern cell micro-encapsulation technique with good immune isolation makes it possible to overcome this problem and has shown potential application foreground in clinical therapies for a lot of diseases such as Parkinson's disease and Hemophiliac disease. This article reviews mainly the relative materials and techniques in processing micro-encapsulation, the host cells used to construct the recombinant genetic engineering cells and application of cell micro-encapsulation technique in the field of gene therapy.

  8. Broad band spectral energy distribution studies of Fermi bright blazars

    Energy Technology Data Exchange (ETDEWEB)

    Monte, C., E-mail: claudia.monte@ba.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico, I-70126 Bari (Italy); Giommi, P.; Cavazzuti, E.; Gasparrini, D. [Agenzia Spaziale Italiana (ASI) Science Data Center I-00044 Frascati (Roma) (Italy); Raino, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico, I-70126 Bari (Italy); Fuhrmann, L.; Angelakis, E. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Villata, M.; Raiteri, C.M. [INAF, Osservatorio Astronomico di Torino, I-10025 Pino Torinese (Italy); Perri, M. [Agenzia Spaziale Italiana (ASI) Science Data Center I-00044 Frascati (Roma) (Italy); Richards, J. [California Institute of Technology, Pasadena, CA (United States)

    2011-02-21

    The Fermi Gamma-ray Space Telescope was successfully launched on June 11, 2008 and has already opened a new era for gamma-ray astronomy. The Large Area Telescope (LAT), the main instrument on board Fermi, presents a significant improvement in sensitivity over its predecessor EGRET, due to its large field of view and effective area, combined with its excellent timing capabilities. The preliminary results of the Spectral Energy Distribution Analysis performed on a sample of bright blazars are presented. For this study, the data from the first three months of data collection of Fermi have been used. The analysis is extended down to radio, mm, near-IR, optical, UV and X-ray bands and up to TeV energies based on unprecedented sample of simultaneous multi-wavelength observations by GASP-WEBT.

  9. Broad band spectral energy distribution studies of Fermi bright blazars

    Science.gov (United States)

    Monte, C.; Giommi, P.; Cavazzuti, E.; Gasparrini, D.; Rainò, S.; Fuhrmann, L.; Angelakis, E.; Villata, M.; Raiteri, C. M.; Perri, M.; Richards, J.

    2011-02-01

    The Fermi Gamma-ray Space Telescope was successfully launched on June 11, 2008 and has already opened a new era for gamma-ray astronomy. The Large Area Telescope (LAT), the main instrument on board Fermi, presents a significant improvement in sensitivity over its predecessor EGRET, due to its large field of view and effective area, combined with its excellent timing capabilities. The preliminary results of the Spectral Energy Distribution Analysis performed on a sample of bright blazars are presented. For this study, the data from the first three months of data collection of Fermi have been used. The analysis is extended down to radio, mm, near-IR, optical, UV and X-ray bands and up to TeV energies based on unprecedented sample of simultaneous multi-wavelength observations by GASP-WEBT.

  10. Structured illumination for wide-field Raman imaging of cell membranes

    Science.gov (United States)

    Chen, Houkai; Wang, Siqi; Zhang, Yuquan; Yang, Yong; Fang, Hui; Zhu, Siwei; Yuan, Xiaocong

    2017-11-01

    Although the diffraction limit still restricts their lateral resolution, conventional wide-field Raman imaging techniques offer fast imaging speeds compared with scanning schemes. To extend the lateral resolution of wide-field Raman microscopy using filters, standing-wave illumination technique is used, and an improvement of lateral resolution by a factor of more than two is achieved. Specifically, functionalized surface enhanced Raman scattering nanoparticles are employed to strengthen the desired scattering signals to label cell membranes. This wide-field Raman imaging technique affords various significant opportunities in the biological applications.

  11. Involvement of small-field horizontal cells in feedback effects on green cones of turtle retina.

    OpenAIRE

    Neyton, J.; Piccolino, M; Gerschenfeld, H M

    1981-01-01

    Light stimuli depolarize green cones of turtle retina through a circuit involving a feedback connection from luminosity horizontal cells (L-HC) to green cones. In turtle retina two types of L-HC have been distinguished: large-field L-HC and small-field L-HC. The spatial properties of the feedback depolarizations of green cones were compared with those of both large- and small-field L-HC. Green cones were found to be more effectively depolarized by relatively small spots of red light than by l...

  12. Orientation of red blood cells and rouleaux disaggregation in interference laser fields.

    Science.gov (United States)

    Kruchenok, J V; Bushuk, S B; Kurilo, G I; Nemkovich, N A; Rubinov, A N

    2005-01-01

    The effect of interference laser fields on red blood cells (RBCs) was investigated both theoretically and experimentally. The optical trapping and orientation of individual RBC in interference fringes were observed. It was found that RBC rouleaux undergo disaggregation under the action of interference laser fields. To describe the effect of RBC orientation in interference fringes, we used the equation for torque exerted on a discoid dielectric particle in a gradient light field. The experimental results are in agreement with the predictions of the developed theoretical model.

  13. Induction of growth and proliferation of fibroblast cells in magnetic field

    Directory of Open Access Journals (Sweden)

    Naghmeh Ezatti

    2015-02-01

    Full Text Available Background: Tissue engineering is generally defined as developing and changing the laboratory growth of molecules and cells in tissues or organs to replace and repair the damaged part of body. This study was carried out to stimulate the growth of cultured fibroblast cells by a physical electromagnetic method. Methods: First, an air-core coil was prepared and the cell culture plate was placed comfortably into the mold, then the plate containing the culture medium and human fibroblast cell along with air-core coil were placed in an incubator and then connected to the power supply. Thus, the sample underwent electromagnetic field at different times, and cell proliferation was studied by MTTassay. Results: Microscopic images indicated that the cells undergoing electromagnetic field (0.35 amps had a significant growth compared to the cells in control group in a definit range of stimulation. Conclusion: In conclusion, electromagnetic stimulation in a definite range led to cell proliferation and could be used as a positive factor in tissue engineering.

  14. Rapamycin Prolongs the Survival of Corneal Epithelial Cells in Culture

    OpenAIRE

    Sanaz Gidfar; Farnoud Y. Milani; Milani, Behrad Y.; Xiang Shen; Medi Eslani; Ilham Putra; Michael J. Huvard; Hossein Sagha; Djalilian, Ali R.

    2017-01-01

    Rapamycin has previously been shown to have anti-aging effects in cells and organisms. These studies were undertaken to investigate the effects of rapamycin on primary human corneal epithelial cells in vitro. Cell growth and viability were evaluated by bright field microscopy. Cell proliferation and cycle were evaluated by flow cytometry. The expression of differentiation markers was evaluated by quantitative PCR and Western blot. Senescence was evaluated by senescence-associated ?-Galactosid...

  15. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Steuer, A; Wende, K; Babica, P; Kolb, J F

    2017-09-01

    Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

  16. Frequency-tunable microwave field detection in an atomic vapor cell

    Science.gov (United States)

    Horsley, Andrew; Treutlein, Philipp

    2016-05-01

    We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the σ+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high-resolution microwave imaging system [Horsley et al., New J. Phys. 17, 112002 (2015)], this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

  17. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    Science.gov (United States)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  18. Subjective comparison of brightness preservation methods for local backlight dimming displays

    DEFF Research Database (Denmark)

    Korhonen, Jari; Mantel, Claire; Forchhammer, Søren

    2015-01-01

    Local backlight dimming is a popular technology in high quality Liquid Crystal Displays (LCDs). In those displays, the backlight is composed of contributions from several individually adjustable backlight segments, set at different backlight luminance levels in different parts of the screen......, according to the luma of the target image displayed on LCD. Typically, transmittance of the liquid crystal cells (pixels) located in the regions with dimmed backlight is increased in order to preserve their relative brightness with respect to the pixels located in the regions with bright backlight...... ordering to compare the relevant methods on a real-life LCD with a local backlight dimming capability. In general, our results show that locally adapted brightness preservation methods produce more preferred visual outcome than global methods, but dependency on the content is also observed. Based...

  19. Plasma density transition trapping as a possible high-brightness electron beam source

    Directory of Open Access Journals (Sweden)

    M. C. Thompson

    2004-01-01

    Full Text Available Plasma density transition trapping is a recently proposed self-injection scheme for plasma wakefield accelerators. This technique uses a sharp downward plasma density transition to trap and accelerate background plasma electrons in a plasma wakefield. This paper examines the quality of electron beams captured using this scheme in terms of emittance, energy spread, and brightness. Two-dimensional particle-in-cell simulations show that these parameters can be optimized by manipulating the plasma density profile. We also develop, and support with simulations, a set of scaling laws that predicts how the brightness of transition trapping beams scales with the plasma density of the system. These scaling laws indicate that transition trapping can produce beams with brightness ≥5×10^{14}   A/(mrad^{2}. A proof-of-principle transition trapping experiment is planned for the near future. The proposed experiment is described in detail.

  20. Coronal bright points associated with minifilament eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Yang, Bo; Yang, Dan, E-mail: hjcsolar@ynao.ac.cn [Also at Graduate School of Chinese Academy of Sciences, Beijing, China. (China)

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  1. Subpicosecond, high-brightness excimer laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.J.; Gosnell, T.R.; Roberts, J.P.; Lester, C.S.; Gibson, R.B.; Harper, S.E.; Tallman, C.R.

    1988-01-01

    Subpicosecond, high-brightness excimer laser systems are being used to explore the interaction of intense coherent ultraviolet radiation with matter. Applications of current systems include generation of picosecond x-ray pulses, investigation of possible x-ray laser pumping schemes, studies of multiphoton phenomena in atomic species, and time-resolved photochemistry. These systems, based on the amplification of subpicosecond pulses in small aperture (/approximately/1 cm/sup 2/) XeCl or KrF amplifiers, deliver focal spot intensities of /approximately/10/sup 17/ W/cm/sup 2/. Scaling to higher intensities, however, will require an additional large aperture amplifier which preserves near-diffraction-limited beam quality and subpicosecond pulse duration. We describe here both a small aperture KrF system which routinely provides intensities >10/sup 17/ W/cm/sup 2/ to several experiments, and a large aperture XeCl system designed to deliver /approximately/1 J subpicosecond pulses and yield intensities on target in excess of 10/sup 19/W/cm/sup 2/. We also discuss the effects of two-photon absorption on large-aperture, high-brightness excimer lasers. 4 refs., 2 figs.

  2. Optical Sky Brightness at Dome C, Antarctica

    Science.gov (United States)

    Kenyon, S.; Storey, J. W. V.; Burton, M. G.

    2006-08-01

    Dome C, Antarctica is a prime site for astronomical observations in terms of climate, wind speeds and turbulence. The infrared and terahertz sky backgrounds are the lowest of any inhabited place on Earth. However, at present little is known about the optical sky brightness and atmospheric extinction. Using a variety of modelling techniques together with data from the South Pole, we estimate the brightness of the night sky including the contributions from scattered sunlight, moonlight, aurorae, airglow, zodiacal light and artificial sources. We compare our results to another prime astronomical site, Mauna Kea. We find moonlight has significantly less effect at Dome C than at Mauna Kea. Aurorae are expected to have a minor impact at both sites, and zodiacal light is expected to be less at Dome C than at Mauna Kea. Airglow emissions at Dome C are expected to be similar to those at temperate sites. With proper planning, artificial sources of light pollution should be non-existent. The overall atmospheric extinction, or opacity, is expected to be the minimum possible. We conclude that Dome C is a very promising site not only for infrared and terahertz astronomy, but for optical astronomy as well..

  3. Sublimation in bright spots on (1) Ceres

    Science.gov (United States)

    Nathues, A.; Hoffmann, M.; Schaefer, M.; Le Corre, L.; Reddy, V.; Platz, T.; Cloutis, E. A.; Christensen, U.; Kneissl, T.; Li, J.-Y.; Mengel, K.; Schmedemann, N.; Schaefer, T.; Russell, C. T.; Applin, D. M.; Buczkowski, D. L.; Izawa, M. R. M.; Keller, H. U.; O'Brien, D. P.; Pieters, C. M.; Raymond, C. A.; Ripken, J.; Schenk, P. M.; Schmidt, B. E.; Sierks, H.; Sykes, M. V.; Thangjam, G. S.; Vincent, J.-B.

    2015-12-01

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5, 6, 7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’, which is the distance from the Sun at which water molecules condense.

  4. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    Science.gov (United States)

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  5. [Extremely low frequency electromagnetic field induces apoptosis of osteosarcoma cells via oxidative stress].

    Science.gov (United States)

    Yang, Min-li; Ye, Zhao-ming

    2015-05-01

    To investigate the effects of extremely low frequency electromagnetic field (ELF-EMF) on human osteosarcoma cells and its mechanisms. Human osteosarcoma MG-63 cells were exposed to 50 Hz,1 mT ELF-EMF for 1, 2 and 3 h in vitro, with or without pretreatment by reactive oxygen species (ROS) inhibitor N acetylcysteine (NAC) or p38MAPK inhibitor SB203580. The proliferation of MG-63 cells was determined by MTT method; the apoptosis rate and ROS level in MG-63 cells were detected by flow cytometry. The expression of p38MAPK in MG-63 cells was determined by Western blotting. ELF-EMF decreased the viability of MG-63 cells, inhibited cell growth, induced cell apoptosis and increased the level of ROS significantly. The apoptosis rate declined significantly after treatment with ROS inhibitor NAC or p38MAPK inhibitor SB203580. After exposure to ELF-EMF, p38MAPK in MG-63 cells was activated, and the phosphorylation level was also inhibited after treatment with NAC. ELF-EMF can induce the apoptosis of MG-63 cells. Increased ROS and p38MAPK activation may be involved in the mechanism.

  6. Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges.

    Science.gov (United States)

    Bulat, Katarzyna; Rygula, Anna; Szafraniec, Ewelina; Ozaki, Yukihiro; Baranska, Malgorzata

    2017-06-01

    The scanning near-field optical microscopy (SNOM) shows a potential to study details of biological samples, since it provides the optical images of objects with nanometric spatial resolution (50-200 nm) and the topographic information at the same time. The goal of this work is to demonstrate the capabilities of SNOM in transmission configuration to study human endothelial cells and their morphological changes, sometimes very subtle, upon inflammation. Various sample preparations were tested for SNOM measurements and promising results are collected to show: 1) the influence of α tumor necrosis factor (TNF-α) on EA.hy 926 cells (measurements of the fixed cells); 2) high resolution images of various endothelial cell lines, i.e. EA.hy 926 and HLMVEC (investigations of the fixed cells in buffer environment); 3) imaging of live endothelial cells in physiological buffers. The study demonstrate complementarity of the SNOM measurements performed in air and in liquid environments, on fixed as well as on living cells. Furthermore, it is proved that the SNOM is a very useful method for analysis of cellular morphology and topography. Changes in the cell shape and nucleus size, which are the symptoms of inflammatory reaction, were noticed in TNF-α activated EA.hy 926 cells. The cellular structures of submicron size were observed in high resolution optical images of cells from EA.hy 926 and HLMVEC lines. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Full-field supercritical angle fluorescence microscopy for live cell imaging

    Science.gov (United States)

    Barroca, Thomas; Balaa, Karla; Delahaye, Julie; Lévêque-Fort, Sandrine; Fort, Emmanuel

    2011-08-01

    We introduce a full-field fluorescence imaging technique with axial confinement of about 100nm at the sample/substrate interface. Contrary to standard surface imaging techniques, this confinement is obtained through emission filtering. This technique is based on supercritical emission selectivity. It can be implemented on any epifluorescence microscope with a commercial high numerical aperture objective and offers a real-time surface imaging capability. This technique is of particular interest for live cell membrane and adhesion studies. Using human embryonic kidney cells, we show that one can observe simultaneously the surface and in-depth cell phenomena.

  8. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  9. Static electric fields interfere in the viability of cells exposed to ionising radiation.

    Science.gov (United States)

    Arruda-Neto, João D T; Friedberg, Errol C; Bittencourt-Oliveira, Maria C; Cavalcante-Silva, Erika; Schenberg, Ana C G; Rodrigues, Tulio E; Garcia, Fermin; Louvison, Monica; Paula, Claudete R; Mesa, Joel; Moron, Michelle M; Maria, Durvanei A; Genofre, Godofredo C

    2009-04-01

    The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5 kGy, using a (60)Co gamma source facility. Samples irradiated with 3 kGy were exposed for 2 h to a 20 V . cm(-1) static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36 degrees C for 20 h, gamma-irradiated with doses from 1-4 kGy, and submitted to an electric field of 180 V . cm(-1). Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with gamma-H2AX foci. In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with gamma-H2AX foci increased 40%, approximately. Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation + EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with gamma

  10. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study

    NARCIS (Netherlands)

    J.H.W. Jansen (Justus); O.P. van der Jagt (Olav); B.J. Punt (Bas); J.A.N. Verhaar (Jan); J.P.T.M. van Leeuwen (Hans); H.H. Weinans (Harrie); H. Jahr (Holger)

    2010-01-01

    textabstractBackground: Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical

  11. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.

    Science.gov (United States)

    Yusupov, M; Van der Paal, J; Neyts, E C; Bogaerts, A

    2017-04-01

    Strong electric fields are known to affect cell membrane permeability, which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on how this affects the cell membrane permeability. We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane. We show how oxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage. This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells

    Science.gov (United States)

    Uzhytchak, M.; Lynnyk, A.; Zablotskii, V.; Dempsey, N. M.; Dias, A. L.; Bonfim, M.; Lunova, M.; Jirsa, M.; Kubinová, Š.; Lunov, O.; Dejneka, A.

    2017-12-01

    Remote control of the interaction of magnetic nanoparticles with cells is fundamental to any potential downstream applications of magnetic nanoparticles such as gene and drug delivery vehicles and magnetic cell labeling. Thus, approaches based on the application of external magnetic fields to increase the efficiency of magnetic cell labeling are desirable. Here, we report a simple approach that enhances magnetic cell labeling using pulsed magnetic fields. The rate of uptake of superparamagnetic iron oxide nanoparticles (SPIONs) and transport across the cell membrane were enhanced upon application of a high intensity (7 T) short pulse width (˜15 μs) magnetic field. We present a quantitative analysis and mechanistic explanation of how a pulsed magnetic field influences the uptake of SPIONs by cells. Our findings offer insights into the mechanics of how pulsed magnetic fields can be effectively used to optimize magnetic cell labeling, which can provide a basis for better controlled biomedical applications of SPIONs.

  13. Phase microscopy using light-field reconstruction method for cell observation.

    Science.gov (United States)

    Xiu, Peng; Zhou, Xin; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2015-08-01

    The refractive index (RI) distribution can serve as a natural label for undyed cell imaging. However, the majority of images obtained through quantitative phase microscopy is integrated along the illumination angle and cannot reflect additional information about the refractive map on a certain plane. Herein, a light-field reconstruction method to image the RI map within a depth of 0.2 μm is proposed. It records quantitative phase-delay images using a four-step phase shifting method in different directions and then reconstructs a similar scattered light field for the refractive sample on the focus plane. It can image the RI of samples, transparent cell samples in particular, in a manner similar to the observation of scattering characteristics. The light-field reconstruction method is therefore a powerful tool for use in cytobiology studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell

    DEFF Research Database (Denmark)

    Singdeo, Debanand; Dey, Tapobrata; Gaikwad, Shrihari

    2017-01-01

    to achieve comparatively uniform reactant and product distribution. A three-dimensional CFD model is developed to analyze the effectiveness of the proposed flow field. An HT-PEFC is fabricated and experimented with the proposed flow field for experimental validation. Furthermore, a low-cost current......Flow field design for the distribution of reactants and products on the electrode surface plays an important role in the overall performance of the fuel cell. It acts as a crucial factor when the laboratory scale fuel cell is scaled up for commercial applications. In the present work, a novel flow...... distribution mapping device is developed to validate the current density distribution on the electrode obtained from the CFD model. It exhibits a mismatch of 4% in the spatial distribution of current density between the modelling and experimental results. The proposed design is capable of achieving higher...

  15. Nanoelectronic Discrimination of Nonmalignant and Malignant Cells Using Nanotube Field-Effect Transistors.

    Science.gov (United States)

    Silva, Guilherme O; Michael, Zachary P; Bian, Long; Shurin, Galina V; Mulato, Marcelo; Shurin, Michael R; Star, Alexander

    2017-08-25

    Detection of malignant cells in tissue is a difficult hurdle in medical diagnostics and screening. Carbon nanotubes are extremely sensitive to their local environments, and nanotube-based field-effect transistors (NTFETs) provide a plethora of information regarding the mechanism of interaction with target analytes. Herein, we use a series of functionalized metal nanoparticle-decorated NTFET devices forming an array with multiple nonselective sensor units as the electronic "tongue", sensing all five basic tastes. By extraction of selected NTFET characteristics and using linear discriminant analysis, we have successfully detected and discriminated between malignant and nonmalignant tissues and cells. We also studied the sensing mechanism and what NTFET characteristics are responsible for the variation of response between cell types, allowing for the design of future studies such as detection of malignant cells in a biopsy or the effects of malignant cells on healthy tissue.

  16. Electric-field-enhanced nutrient consumption in dielectric biomaterials that contain anchorage-dependent cells.

    Science.gov (United States)

    Belfiore, Laurence A; Floren, Michael L; Belfiore, Carol J

    2012-02-01

    This research contribution addresses electric-field stimulation of intra-tissue mass transfer and cell proliferation in viscoelastic biomaterials. The unsteady state reaction-diffusion equation is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration occur in response to harmonic electric potential differences across a parallel-plate capacitor in a dielectric-sandwich configuration. The partial differential mass balance with diffusion and electro-kinetic consumption contains the Damköhler (Λ(2)) and Deborah (De) numbers. Zero-field and electric-field-sensitive Damköhler numbers affect nutrient boundary layer growth. Diagonal elements of the 2nd-rank diffusion tensor are enhanced in the presence of weak electric fields, in agreement with the formalism of equilibrium and nonequilibrium thermodynamics. Induced dipole polarization density within viscoelastic biomaterials is calculated via the real and imaginary components of the complex dielectric constant, according to the Debye equation, to quantify electro-kinetic stimulation. Rates of nutrient consumption under zero-field conditions are described by third-order kinetics that include local mass densities of nutrients, oxygen, and attached cells. Thinner nutrient boundary layers are stabilized at shorter dimensionless diffusion times when the zero-field intra-tissue Damköhler number increases above its initial-condition-sensitive critical value [i.e., {Λ(2)(zero-field)}(critical)≥53, see Eq. (23)], such that the biomaterial core is starved of essential ingredients required for successful proliferation. When tissue regeneration occurs above the critical electric-field-sensitive intra-tissue Damköhler number, the electro-kinetic contribution to nutrient consumption cannot be neglected. The critical electric-field-sensitive intra-tissue Damköhler number is proportional to the Deborah number. Copyright © 2011 Elsevier B

  17. New Distant Comet Headed for Bright Encounter

    Science.gov (United States)

    1995-08-01

    How Impressive Will Comet Hale-Bopp Become in 1997 ? A very unusual comet was discovered last month, on its way from the outer reaches of the solar system towards the Sun. Although it is still situated beyond the orbit of Jupiter, it is so bright that it can be observed in even small telescopes. It has been named `Hale-Bopp' after the discoverers and is already of great interest to cometary astronomers. No less than seven telescopes have been used at the ESO La Silla observatory for the first observations of the new object. Together with data gathered at other sites, their aim is to elucidate the nature of this comet and also to determine whether there is reason to hope that it will become a bright and beautiful object in the sky from late 1996 and well into 1997. Further observations are now being planned at ESO and elsewhere to monitor closely the behaviour of this celestial visitor during the coming months. Discovery circumstances The comet was discovered on 23 July 1995, nearly simultaneously by two American amateur astronomers, Alan Hale of Cloudcroft (New Mexico) and Thomas Bopp of Glendale (Arizona). Although the chronology is slightly uncertain, it appears that Hale first saw it some 10 - 20 minutes before Bopp, at 06:10 - 06:15 UT on that day. In any case, he informed the IAU Central Bureau for Astronomical Telegrams (CBAT) in Cambridge (Massachussetts) about his discovery by email already at 06:50 UT, while Bopp's message was filed more than 2 hours later, after he had driven back to his home, 140 km from where he had been observing. Upon receipt of these messages, Brian Marsden at the CBAT assigned the designation `1995 O1' (indicating that it is the first comet found in the second half of July 1995). After further sightings had been made by other observers, and according to the venerable astronomical tradition, the new object was named after the discoverers. The magnitude, reported as 10.5 by Hale, is not unusual for a comet that is discovered within

  18. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.

    Science.gov (United States)

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Kuo, Chin-Guo; Lee, Kuang-Ying

    2014-10-01

    The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%.

  19. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  20. Graphene-based photovoltaic cells for near-field thermal energy conversion

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat. PMID:23474891

  1. Identifying Emerging Research Related to Solar Cells Field Using a Machine Leaning Approach

    Directory of Open Access Journals (Sweden)

    Hajime Sasaki

    2016-12-01

    Full Text Available The number of research papers related to solar cells field is increasing rapidly. It is hard to grasp research trends and to identify emerging research issues because of exponential growth of publications, and the field’s subdivided knowledge structure. Machine learning techniques can be applied to the enormous amounts of data and subdivided research fields to identify emerging researches. This paper proposed a prediction model using a machine learning approach to identify emerging solar cells related academic research, i.e., papers that might be cited very frequently within three years. The proposed model performed well and stable. The model highlighted some articles published in 2015 that will be emerging in the future. Research related to vegetable-based dye-sensitized solar cells was identified as the one of the promising researches by the model. The proposed prediction model is useful to gain foresight into research trends in science and technology, facilitating decision-making processes.

  2. Induction of Cell Death Mechanisms and Apoptosis by Nanosecond Pulsed Electric Fields (nsPEFs

    Directory of Open Access Journals (Sweden)

    Nova M. Sain

    2013-03-01

    Full Text Available Pulse power technology using nanosecond pulsed electric fields (nsPEFs offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large numbers of nanopores in all cell membranes. While nsPEFs have multiple cellular targets, these studies show that nsPEF-induced dissipation of ΔΨm closely parallels deterioration in cell viability. Increases in intracellular Ca2+ alone were not sufficient for cell death; however, cell death depended of the presence of Ca2+. When both events occur, cell death ensues. Further, direct evidence supports the hypothesis that pulse rise-fall times or high frequency components of nsPEFs are important for decreasing ΔΨm and cell viability. Evidence indicates in Jurkat cells that cytochrome c release from mitochondria is caspase-independent indicating an absence of extrinsic apoptosis and that cell death can be caspase-dependent and –independent. The Ca2+ dependence of nsPEF-induced dissipation of ΔΨm suggests that nanoporation of inner mitochondria membranes is less likely and effects on a Ca2+-dependent protein(s or the membrane in which it is embedded are more likely a target for nsPEF-induced cell death. The mitochondria permeability transition pore (mPTP complex is a likely candidate. Data demonstrate that nsPEFs can bypass cancer mutations that evade apoptosis through mechanisms at either the DISC or the apoptosome.

  3. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    Science.gov (United States)

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD 50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  4. Effect of Extremely Low Frequency Electromagnetic Fields (EMF) on Phospholipase Activity in the Cultured Cells.

    Science.gov (United States)

    Song, Ho Sun; Kim, Hee Rae; Ko, Myoung Soo; Jeong, Jae Min; Kim, Yong Ho; Kim, Myung Cheul; Hwang, Yeon Hee; Sohn, Uy Dong; Gimm, Yoon-Myoung; Myung, Sung Ho; Sim, Sang Soo

    2010-12-01

    This study was conducted to investigate the effects of extremely low frequency electromagnetic fields (EMF) on signal pathway in plasma membrane of cultured cells (RAW 264.7 cells and RBL 2H3 cells), by measuring the activity of phospholipase A(2) (PLA(2)), phospholipase C (PLC) and phospholipase D (PLD). The cells were exposed to the EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h. The basal and 0.5 µM melittin-induced arachidonic acid release was not affected by EMF in both cells. In cell-free PLA(2) assay, we failed to observe the change of cPLA(2) and sPLA(2) activity. Also both PLC and PLD activities did not show any change in the two cell lines exposed to EMF. This study suggests that the exposure condition of EMF (60 Hz, 0.1 or 1 mT) which is 2.4 fold higher than the limit of occupational exposure does not induce phospholipases-associated signal pathway in RAW 264.7 cells and RBL 2H3 cells.

  5. Continuous-variable entanglement of two bright coherent states that never interacted

    Science.gov (United States)

    Barral, David; Belabas, Nadia; Procopio, Lorenzo M.; D'Auria, Virginia; Tanzilli, Sébastien; Bencheikh, Kamel; Levenson, Juan Ariel

    2017-11-01

    We study continuous-variable entanglement of bright quantum states in a pair of evanescently coupled nonlinear χ(2 ) waveguides operating in the regime of degenerate down conversion. We consider the case where only the energy of the nonlinearly generated fields is exchanged between the waveguides while the pump fields stay independently guided in each original waveguide. We show that this device, when operated in the depletion regime, entangles the two noninteracting bright pump modes due to a nonlinear cascade effect. It is also shown that two-color quadripartite entanglement can be produced when certain system parameters are appropriately set. This device works in the traveling-wave configuration, such that the generated quantum light shows a broad spectrum. The proposed device can be easily realized with current technology and therefore stands as a good candidate for a source of bipartite or multipartite entangled states for the emerging field of optical continuous-variable quantum information processing.

  6. Bright light, dark and melatonin can promote circadian adaptation in night shift workers.

    Science.gov (United States)

    Burgess, Helen J; Sharkey, Katherine M; Eastman, Charmane I

    2002-10-01

    The circadian rhythms of shift workers do not usually phase shift to adapt to working at night and sleeping during the day. This misalignment results in a multitude of negative symptoms including poor performance and reduced alertness during night work and poor daytime sleep at home. After an introduction to circadian principles, we discuss the efficacy of appropriately timed bright light exposure (natural and artificial) and exogenous melatonin administration for producing circadian adaptation to night work. Interventions that generate alternative 24h light/dark patterns that facilitate appropriate circadian phase shifting are discussed. Such interventions include minimizing night workers' exposure to the external light/dark cycle, and the use of intermittent and moving patterns of bright light at work. The efficacy of melatonin in phase shifting circadian rhythms in the field is also addressed and compared to that of bright light. We present sleep/light exposure schedules that could produce circadian adaptation in permanent night workers. We conclude this review by discussing the impact of individual differences on possible circadian interventions and issues associated with the use of bright light interventions in the field.

  7. Bright sneezes and dark coughs, loud sunlight and soft moonlight.

    Science.gov (United States)

    Marks, L E

    1982-04-01

    Synesthetic metaphors (such as "the dawn comes up like thunder") are expressions in which words or phrases describing experiences proper to one sense modality transfer their meanings to another modality. In a series of four experiments, subjects used scales of loudness, pitch, and brightness to evaluate the meanings of a variety of synesthetic (auditory-visual) metaphors. Loudness and pitch expressed themselves metaphorically as greater brightness; in turn, brightness expressed itself as greater loudness and as higher pitch. Although loudness thus shared with brightness a metaphorical connection, pitch and brightness showed a connection that was closer and that applied more generally to different kinds of visual brightness. The ways that people evaluate synesthetic metaphors emulate the characteristics of synesthetic perception, thereby suggesting that synesthesia in perception and synesthesia in language both may emenate from the same source-from a phenomenological similarity in the makeup of sensory experiences of different modalities.

  8. Bright photoluminescent hybrid mesostructured silica nanoparticles.

    Science.gov (United States)

    Miletto, Ivana; Bottinelli, Emanuela; Caputo, Giuseppe; Coluccia, Salvatore; Gianotti, Enrica

    2012-07-28

    Bright photoluminescent mesostructured silica nanoparticles were synthesized by the incorporation of fluorescent cyanine dyes into the channels of MCM-41 mesoporous silica. Cyanine molecules were introduced into MCM-41 nanoparticles by physical adsorption and covalent grafting. Several photoluminescent nanoparticles with different organic loadings have been synthesized and characterized by X-ray powder diffraction, high resolution transmission electron microscopy and nitrogen physisorption porosimetry. A detailed photoluminescence study with the analysis of fluorescence lifetimes was carried out to elucidate the cyanine molecules distribution within the pores of MCM-41 nanoparticles and the influence of the encapsulation on the photoemission properties of the guests. The results show that highly stable photoluminescent hybrid materials with interesting potential applications as photoluminescent probes for diagnostics and imaging can be prepared by both methods.

  9. Bioinspired bright noniridescent photonic melanin supraballs.

    Science.gov (United States)

    Xiao, Ming; Hu, Ziying; Wang, Zhao; Li, Yiwen; Tormo, Alejandro Diaz; Le Thomas, Nicolas; Wang, Boxiang; Gianneschi, Nathan C; Shawkey, Matthew D; Dhinojwala, Ali

    2017-09-01

    Structural colors enable the creation of a spectrum of nonfading colors without pigments, potentially replacing toxic metal oxides and conjugated organic pigments. However, significant challenges remain to achieve the contrast needed for a complete gamut of colors and a scalable process for industrial application. We demonstrate a feasible solution for producing structural colors inspired by bird feathers. We have designed core-shell nanoparticles using high-refractive index (RI) (~1.74) melanin cores and low-RI (~1.45) silica shells. The design of these nanoparticles was guided by finite-difference time-domain simulations. These nanoparticles were self-assembled using a one-pot reverse emulsion process, which resulted in bright and noniridescent supraballs. With the combination of only two ingredients, synthetic melanin and silica, we can generate a full spectrum of colors. These supraballs could be directly added to paints, plastics, and coatings and also used as ultraviolet-resistant inks or cosmetics.

  10. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines.

    Science.gov (United States)

    Destefanis, Michele; Viano, Marta; Leo, Christian; Gervino, Gianpiero; Ponzetto, Antonio; Silvagno, Francesca

    2015-01-01

    To date, the effects of electromagnetic fields on cell metabolism have been overlooked. The objective of the present study was to investigate the influence of extremely low frequency electromagnetic fields (ELF-EMF) over mitochondrial metabolism and the consequent impact on cancer cell growth. The effects of ELF-EMF on cancer growth were investigated in several human cancer cell lines by crystal violet assay. The modulation of mitochondrial activity was assessed by cytofluorimetric evaluation of membrane potential and by real-time quantification of mitochondrial transcription. Moreover the expression of several mitochondrial proteins and their levels in the organelle were evaluated. The long-term exposure to ELF-EMF reduced the proliferation of several cancer cell lines and the effect was associated to an increased mitochondrial activity without evident changes in ATP levels. The results of our experiments excluded a transcriptional modulation of mitochondrial respiratory complexes, rather suggesting that ELF-EMF increased the energy demand. The altered mitochondrial metabolism led to changes in mitochondrial protein profile. In fact we found a downregulated expression of mitochondrial phospho-ERK, p53 and cytochrome c. The results of the present study indicate that ELF-EMF can negatively modulate cancer cell growth increasing respiratory activity of cells and altering mitochondrial protein expression.

  11. Bioelectric Field Enhancement: The Influence on Membrane Potential and Cell Migration In Vitro.

    Science.gov (United States)

    Purnell, Marcy C; Skrinjar, Terence J

    2016-12-01

    Objective: The extracellular matrix consists of critical components that affect fibroblast polarization and migration. The existence of both intrinsic and extrinsic electrical signals that play essential roles in the development, physiology, regeneration, and pathology of cells was discovered over a century ago. In this study, we study how the Bioelectric Field Enhancement (BEFE) device and its generated electromagnetic field (EMF) by continuous direct current (DC) significantly affect the membrane potential and cell migration of fibroblasts in vitro. Approach: This is an experimental analysis of membrane potential and cell migration of murine fibroblasts when grown in treated media that has been reconstituted with an aqueous solution that has been exposed to an EMF, which is generated by this device versus fibroblasts grown in identically prepared control media that has not been exposed to the EMF. Results: The growth of fibroblasts in the treated media shows a strong percent change in polarization of the plasma membrane and significant increase in cell migration compared to control groups. Innovation: These experiments show the potential for an adjunct wound care therapy using a continuous DC EMF application through a medium of water. Conclusion: Growth media that was reconstituted with an aqueous solution that had been exposed to this DC derived EMF shows significant changes in cell polarity and cell migration of fibroblasts in vitro. The BEFE device has shown enhanced chronic wound healing in anecdotal reports from patients globally for decades when used as a footbath/bath and could lead to a novel EMF application in wound healing.

  12. Deformation of biological cells in the acoustic field of an oscillating bubble.

    Science.gov (United States)

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  13. Kappa-effect and brightness oscillations of stars

    Science.gov (United States)

    Zhugzhda, Y. D.; Roth, M.; Herzberg, W.

    2012-12-01

    In this paper the theory of visibility and darkening functions for the brightness oscillations of stars is outlined. For this the non-grey approximation is used and the effect of opacity disturbances on stellar brightness oscillations is explored for different types of stars. An explanation of the Procyon paradox is proposed. Special features of the brightness oscillations are discussed. The effect of opacity fluctuations on the damping of p-mode oscillations is considered. Furthermore, the photospheric kappa-mechanism is discussed.

  14. Cell-cycle kinetics of Friend erythroleukemia cells in a magnetically shielded room and in a low-frequency/low-intensity magnetic field.

    Science.gov (United States)

    Eremenko, T; Esposito, C; Pasquarelli, A; Pasquali, E; Volpe, P

    1997-01-01

    This work was undertaken to compare the behavior of Friend erythroleukemia cells in a solenoid, where the magnetic field was 70 microT at 50 Hz (plus 45 microT DC of Earth) with that of the same cells in a magnetically shielded room, where the magnetic field was attenuated to 20 nT DC and 2.5 pT AC. The control laboratory magnetic field corresponded to 45 microT DC and a stray 50 Hz field below 0.2 microT. The culture growth cycle of cells maintained inside the solenoid was slightly accelerated compared with that of cells maintained outside the solenoid (P magnetic field, because, inside the solenoid, the percentage of G1 cells slightly increased during the culture growth cycle, whereas that of S cells slightly decreased. Acceleration of growth was detected soon after exposure of the cultures to the solenoid field, and growth did not change further if the action of this field continued for a long time, accounting for adaptation. The solenoid field also caused a small increase of cell survival without influencing cell volume. By contrast, the culture growth cycle of cells maintained inside the magnetically shielded room was slightly decelerated compared with that of cells maintained outside the room (P field inside the magnetically shielded room also caused a small increase of cell volume, whereas, during the culture growth cycle, the percentage of G1 cells decreased, and that of S cells increased. The majority of these events did not change in cells induced to differentiate hemoglobin through dimethylsulfoxide.

  15. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    Science.gov (United States)

    1985-01-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  16. Field-induced exciton dissociation in PTB7-based organic solar cells

    Science.gov (United States)

    Gerhard, Marina; Arndt, Andreas P.; Bilal, Mühenad; Lemmer, Uli; Koch, Martin; Howard, Ian A.

    2017-05-01

    The physics of charge separation in organic semiconductors is a topic of ongoing research of relevance to material and device engineering. Herein, we present experimental observations of the field and temperature dependence of charge separation from singlet excitons in PTB7 and PC71BM , and from charge-transfer states created across interfaces in PTB 7 /PC71BM bulk heterojunction solar cells. We obtain this experimental data by time-resolving the near infrared emission of the states from 10 K to room temperature and electric fields from 0 to 2.5 MVcm -1 . Examining how the luminescence is quenched by field and temperature gives direct insight into the underlying physics. We observe that singlet excitons can be split by high fields, and that disorder broadens the high threshold fields needed to split the excitons. Charge-transfer (CT) states, on the other hand, can be separated by both field and temperature. Also, the data imply a strong reduction of the activation barrier for charge splitting from the CT state relative to the exciton state. The observations provided herein of the field-dependent separation of CT states as a function of temperature offer a rich data set against which theoretical models of charge separation can be rigorously tested; it should be useful for developing the more advanced theoretical models of charge separation.

  17. Parametric Modeling of Nerve Cell under the Sinusoidal Environmental 50 Hz Extremely Low Frequency Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2013-06-01

    Full Text Available Background & Objectives: The development of technology has naturally given rise to an increase in environmental low-frequency electromagnetic fields and consequently has attracted scholars' attention. Most of the studies have focused on transmission lines and power system distribution with 50 Hz. This research is an attempt to show the effect of 50 Hz magnetic fields on bioelectric parameters and indicates the possible influence of this change in F1 cells of Helix aspersa .   Methods: The present research used Helix aspersa neuron F1 to identify the location of magnetic fields as well as the rate of effects of environmental magnetic fields on nervous system. Control group was used to study the effect of elapsed time, electrode entering and the cell membrane rupture. Intuition group and environmental group were considered in order to study the potential impact of interfering environmental factors and identify the effectiveness rate of magnetic fields, respectively. For the purpose of producing uniform magnetic field Helmholtz coil was used. Electrophysiological recording was realized under the requirements of current clamp. And, in order to show the impacts from magnetic fields on ion channels Hodgkin-Huxley cell model was applied. All data were analyzed taking the advantage of SPSS 16 software and two-way ANOVA statistical test. P < 0.05 was considered as significance level. And MATLAB software environment and PSO were used in order for applying the algorithm and estimating the parameters.   Result: No statistically significant difference was found between control and sham groups in different time intervals. Once the 45.87 microtesla was applied significant differences were observed 12 minutes after the application. The highest amount of change happened 14 minutes after the application of more fields. With the application of the field, the amplitude of the sodium action potential shows decreasing trend . No significant changes were observed in

  18. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu

    2015-10-01

    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  19. The night sky brightness at McDonald Observatory

    Science.gov (United States)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  20. Molecular circadian rhythm shift due to bright light exposure before bedtime is related to subthreshold bipolarity.

    Science.gov (United States)

    Cho, Chul-Hyun; Moon, Joung-Ho; Yoon, Ho-Kyoung; Kang, Seung-Gul; Geum, Dongho; Son, Gi-Hoon; Lim, Jong-Min; Kim, Leen; Lee, Eun-Il; Lee, Heon-Jeong

    2016-08-22

    This study examined the link between circadian rhythm changes due to bright light exposure and subthreshold bipolarity. Molecular circadian rhythms, polysomnography, and actigraphy data were studied in 25 young, healthy male subjects, divided into high and low mood disorder questionnaire (MDQ) score groups. During the first 2 days of the study, the subjects were exposed to daily-living light (150 lux) for 4 hours before bedtime. Saliva and buccal cells were collected 5 times a day for 2 consecutive days. During the subsequent 5 days, the subjects were exposed to bright light (1,000 lux), and saliva and buccal cell samples were collected in the same way. Molecular circadian rhythms were analyzed using sine regression. Circadian rhythms of cortisol (F = 16.956, p < 0.001) and relative PER1/ARNTL gene expression (F = 122.1, p < 0.001) showed a delayed acrophase in both groups after bright light exposure. The high MDQ score group showed a significant delay in acrophase compared to the low MDQ score group only in salivary cortisol (F = 8.528, p = 0.008). The high MDQ score group showed hypersensitivity in cortisol rhythm shift after bright light exposure, suggesting characteristic molecular circadian rhythm changes in the high MDQ score group may be related to biological processes downstream from core circadian clock gene expression.

  1. Hyperlayer hollow-fiber flow field-flow fractionation of cells.

    Science.gov (United States)

    Reschiglian, Pierluigi; Zattoni, Andrea; Roda, Barbara; Cinque, Leonardo; Melucci, Dora; Min, Byung Ryul; Moon, Myeong Hee

    2003-01-24

    Interest in low-cost, analytical-scale, highly efficient and sensitive separation methods for cells, among which bacteria, is increasing. Particle separation in hollow-fiber flow field-flow fractionation (HF FlFFF) has been recently improved by the optimization of the HF FIFFF channel design. The intrinsic simplicity and low cost of this HF FlFFF channel allows for its disposable usage. which is particularly appealing for analytical bio-applications. Here, for the first time, we present a feasibility study on high-performance, hyperlayer HF FIFFF of micrometer-sized bacteria (Escherichia coli) and of different types of cells (human red blood cells, wine-making yeast from Saccharomyces cerevisiae). Fractionation performance is shown to be at least comparable to that obtained with conventional, flat-channel hyperlayer FIFFF of cells, at superior size-based selectivity and reduced analysis time.

  2. The Effect of 217 Hz Magnetic Field of Cell Phone with Different Intensities on Apoptosis of Normal and Cancerous Cells Treated with Chemotherapy Drug

    Directory of Open Access Journals (Sweden)

    Mahsa Mansourian

    2012-03-01

    Full Text Available Background: According to the increasing development of home and business electronic equipment in today's world, the biological effects of ELF magnetic fields have been studied at two molecular-cellular and animal- human levels. Considering the therapeutic viewpoint of this study regarding the effects of low-frequency fields of mobile phone, the effect of acute exposure to this field on chemotherapy will be studied.Materials and Methods: In this experimental study, based on measurement of the intensity of the magnetic fields from mobile phones in another research, flux densities of magnetic field of 159.44, 93.25 and 120µ tesla with frequency of 217Hz was generated in magnetic field generator system, and the apoptosis level in K562 cancer cells and healthy cells of lymphocytes was assessed after exposure to field using flow cytometry method. This evaluation method was also performed for the cells treated with bleomycin after exposure to this field.Results: 217 Hz magnetic field exposure significantly increases the rate of apoptosis percentage (p > 0.05 in K562 cancer cells and in two intensities of 120 and 159.44µ tesla compared to the control group, but such effect is not observed in lymphocyte cells. Bleomycin-induced apoptosis percentage following exposure to the mentioned magnetic field shows no significant difference compared to the group of treatment with drug and without field exposure. This lack of significant difference is observed between the groups of drug after field exposure and field alone as well as between groups exposed to field and groups treated with bleomycin.Conclusion: Study results showed that 217 Hz magnetic field of mobile phone can induce apoptosis on cancer cells, but it has no effect on healthy cells. Thus, in order to use mobile phone as an effective factor in their treatment, some studies should be conducted at animal-human level.

  3. Nonoptical Detection of Allergic Response with a Cell-Coupled Gate Field-Effect Transistor.

    Science.gov (United States)

    Yang, Haoyue; Honda, Masatoshi; Saito, Akiko; Kajisa, Taira; Yanase, Yuhki; Sakata, Toshiya

    2017-12-05

    In this study, we report the label-free and reliable detection of allergic response using a cell-coupled gate field-effect transistor (cell-based FET). Rat basophilic leukemia (RBL-2H3) cells were cultured as a signal transduction interface to induce allergic reaction on the gate oxide surface of the FET, because IgE antibodies, which bind to Fcε receptors at the RBL-2H3 cell membrane, are specifically cross-linked by allergens, resulting in the allergic response of RBL-2H3 cells. In fact, the surface potential at the FET gate decreased owing to secretions such as histamine from the IgE-bound RBL-2H3 cells, which reacted with the allergen. This is because histamine, as one of the candidate secretions, shows basicity, resulting in a change in pH around the cell/gate interface. That is, the RBL-2H3-cell-based FET used in this study was originally from an ion-sensitive FET (ISFET), whose oxide surface (Ta2O5) with hydroxyl groups is fully responsive to pH on the basis of the equilibrium reaction. The allergic response of RBL-2H3 cells on the gate was also confirmed by estimating the amount of β-hexosaminidase released together with histamine and was analyzed using the electrical properties based on an inflammatory response of secreted histamine with the vascular endothelial cell-based FET. Thus, the allergic responses were monitored in a nonoptical and real-time manner using the cell-based FETs with the cellular layers on the gate, which reproduced the in vivo system and were useful for the reliable detection of the allergic reaction.

  4. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields

    OpenAIRE

    Keith P. Johnson; Lei Zhao; Daniel Kerschensteiner

    2018-01-01

    The spike trains of retinal ganglion cells (RGCs) are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC). PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive ...

  5. Evidence of magnetic field switch-off in Particle In Cell simulations of collisionless magnetic reconnection with guide field

    Science.gov (United States)

    Innocenti, M. E.; Goldman, M. V.; Newman, D. L.; Markidis, S.; Lapenta, G.

    2015-12-01

    The long term evolution of large domain Particle In Cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: towards a Petschek-like configuration (Gosling 2007) or towards multiple X points (Eriksson et al. 2014). In the simulations presented here and described in [Innocenti2015*], a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminding of Petschek's switch-off then ensues. Switch-off is obtained through a slow shock / rotational discontinuity (SS/RD) compound structure, with the rotation discontinuity downstreamthe slow shock. Two external slow shocks located in correspondence of the separatrices reduce the in plane tangential component of the magnetic field, but not to zero. Two transitions reminding of rotational discontinuities in the internal part of the exhausts then perform the final switch-off. Both the slow shocks and the rotational discontinuities are characterized as such through the analysis of their Rankine-Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust that prevented switch off in [Liu2012]. Compound SS/RD structures, with the RD located downstream the SS, have been observed in both the solar wind and the magnetosphere in Wind and Geotail data respectively [Whang1998, Whang2004]. Ion trajectiories across the SS/RD structure are followed and the kinetic origin of the SS/RD structure is investigated. * Innocenti, Goldman, Newman, Markidis, Lapenta, Evidence of magnetic field switch-off in collisionless magnetic reconnection, accepted in Astrophysical Journal Letters, 2015 Acknowledgements: NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of

  6. Human Embryonic and Induced Pluripotent Stem Cell Research Trends: Complementation and Diversification of the Field

    Directory of Open Access Journals (Sweden)

    Sabine Kobold

    2015-05-01

    Full Text Available Research in human induced pluripotent stem cells (hiPSCs is rapidly developing and there are expectations that this research may obviate the need to use human embryonic stem cells (hESCs, the ethics of which has been a subject of controversy for more than 15 years. In this study, we investigated approximately 3,400 original research papers that reported an experimental use of these types of human pluripotent stem cells (hPSCs and were published from 2008 to 2013. We found that research into both cell types was conducted independently and further expanded, accompanied by a growing intersection of both research fields. Moreover, an in-depth analysis of papers that reported the use of both cell types indicates that hESCs are still being used as a “gold standard,” but in a declining proportion of publications. Instead, the expanding research field is diversifying and hESC and hiPSC lines are increasingly being used in more independent research and application areas.

  7. Electromagnetic field-induced converse cell growth during a long-term observation.

    Science.gov (United States)

    Bae, Ji-Eun; Do, Ji-Yeon; Kwon, Soon-Hwan; Lee, Sang-Dae; Jung, Yong Woo; Kim, Soo-Chan; Chae, Kwon-Seok

    2013-12-01

    Professional and public concern about the potential adverse effects of man-made electromagnetic fields (EMF) on the human body has dramatically expanded in recent years. Despite numerous attempts to investigate this issue, the long-standing challenge of reproducibility surrounding alternating EMF effects on human health remains unresolved. Our chief aim was to investigate a plausible mechanism for this phenomenon. Growth of cultured human cancer cells, DU145 and Jurkat, exposed to power frequency magnetic field (MF) (60 Hz, 1 mT) for 3 days, was determined using a 2-(4-Iodophenyl)- 3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) assay and a trypan blue exclusion assay. This experiment was repeated at incubators long-term monitoring period up to 5.3 years. A periodogram analysis was performed to investigate periodic patterns in the MF and sham effects on cell growth. Unlike conventional assumptions, the MF effect on growth in both cell types was promotive or suppressive in a period-dependent manner. The converse cell growth induced by the MF was consistent in incubators, with little variation. Spatiotemporal evidence suggests that the period-dependent converse cell growth by the MF may contribute to the poor reproducibility and explain the adverse effects observed in previous experimental and epidemiological investigations. Additionally, the novel approach of this study may be applied to design features required to experimentally determine the effects of EMF on living organisms in a convincing manner.

  8. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields

    Science.gov (United States)

    Belyavskaya, N. A.

    2001-01-01

    Investigations of low magnetic field (LMF) effects on biological systems have attracted attention of biologists due to planned space flights to other planets where the field intensity does not exceed 10 -5 Oe. Pea ( Pisum sativum L.) seeds were grown in an environment of LMF 3 days. In meristem cells of roots exposed to LMF, one could observe such ultrastructural peculiarities as a noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids. Mitochondria were the most sensitive organelle to LMF application. Their size and relative volume in cells increased, matrix was electron-transparent, and cristae reduced. Because of the significant role of calcium signalling in plant responses to different environmental factors, calcium participation in LMF effects was investigated using a pyroantimonate method to identify the localization of free calcium ions. The intensity of cytochemical reaction in root cells after LMF application was strong. The Ca 2+ pyroantimonate deposits were observed both in all organelles and in a hyaloplasm of the cells. Data obtained suggest that the observed LMF effects on ultrastructure of root cells were due to disruptions in different metabolic systems including effects on Ca 2+ homeostasis.

  9. A Gal-MµS Device to Evaluate Cell Migratory Response to Combined Galvano-Chemotactic Fields

    Directory of Open Access Journals (Sweden)

    Shawn Mishra

    2017-11-01

    Full Text Available Electric fields have been studied extensively in biomedical engineering (BME for numerous regenerative therapies. Recent studies have begun to examine the biological effects of electric fields in combination with other environmental cues, such as tissue-engineered extracellular matrices (ECM, chemical gradient profiles, and time-dependent temperature gradients. In the nervous system, cell migration driven by electrical fields, or galvanotaxis, has been most recently studied in transcranial direct stimulation (TCDS, spinal cord repair and tumor treating fields (TTF. The cell migratory response to galvano-combinatory fields, such as magnetic fields, chemical gradients, or heat shock, has only recently been explored. In the visual system, restoration of vision via cellular replacement therapies has been limited by low numbers of motile cells post-transplantation. Here, the combinatory application of electrical fields with other stimuli to direct cells within transplantable biomaterials and/or host tissues has been understudied. In this work, we developed the Gal-MµS device, a novel microfluidics device capable of examining cell migratory behavior in response to single and combinatory stimuli of electrical and chemical fields. The formation of steady-state, chemical concentration gradients and electrical fields within the Gal-MµS were modeled computationally and verified experimentally within devices fabricated via soft lithography. Further, we utilized real-time imaging within the device to capture cell trajectories in response to electric fields and chemical gradients, individually, as well as in combinatory fields of both. Our data demonstrated that neural cells migrated longer distances and with higher velocities in response to combined galvanic and chemical stimuli than to either field individually, implicating cooperative behavior. These results reveal a biological response to galvano-chemotactic fields that is only partially understood, as

  10. Photometry of very bright stars with Kepler and K2 smear data

    Science.gov (United States)

    Pope, B. J. S.; White, T. R.; Huber, D.; Murphy, S. J.; Bedding, T. R.; Caldwell, D. A.; Sarai, A.; Aigrain, S.; Barclay, T.

    2016-01-01

    High-precision time series photometry with the Kepler satellite has been crucial to our understanding both of exoplanets, and via asteroseismology, of stellar physics. After the failure of two reaction wheels, the Kepler satellite has been repurposed as Kepler-2 (K2), observing fields close to the ecliptic plane. As these fields contain many more bright stars than the original Kepler field, K2 provides an unprecedented opportunity to study nearby objects amenable to detailed follow-up with ground-based instruments. Due to bandwidth constraints, only a small fraction of pixels can be downloaded, with the result that most bright stars which saturate the detector are not observed. We show that engineering data acquired for photometric calibration, consisting of collateral `smear' measurements, can be used to reconstruct light curves for bright targets not otherwise observable with Kepler/K2. Here we present some examples from Kepler Quarter 6 and K2 Campaign 3, including the δ Scuti variables HD 178875 and 70 Aqr, and the red giant HR 8500 displaying solar-like oscillations. We compare aperture and smear photometry where possible, and also study targets not previously observed. These encouraging results suggest this new method can be applied to most Kepler and K2 fields.

  11. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment

    Science.gov (United States)

    Hardiansyah, Andri; Huang, Li-Ying; Yang, Ming-Chien; Liu, Ting-Yu; Tsai, Sung-Chen; Yang, Chih-Yung; Kuo, Chih-Yu; Chan, Tzu-Yi; Zou, Hui-Ming; Lian, Wei-Nan; Lin, Chi-Hung

    2014-09-01

    In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.

  12. Comprehensive analysis of human cells motion under an irrotational AC electric field in an electro-microfluidic chip.

    Directory of Open Access Journals (Sweden)

    Clarisse Vaillier

    Full Text Available AC electrokinetics is a versatile tool for contact-less manipulation or characterization of cells and has been widely used for separation based on genotype translation to electrical phenotypes. Cells responses to an AC electric field result in a complex combination of electrokinetic phenomena, mainly dielectrophoresis and electrohydrodynamic forces. Human cells behaviors to AC electrokinetics remain unclear over a large frequency spectrum as illustrated by the self-rotation effect observed recently. We here report and analyze human cells behaviors in different conditions of medium conductivity, electric field frequency and magnitude. We also observe the self-rotation of human cells, in the absence of a rotational electric field. Based on an analytical competitive model of electrokinetic forces, we propose an explanation of the cell self-rotation. These experimental results, coupled with our model, lead to the exploitation of the cell behaviors to measure the intrinsic dielectric properties of JURKAT, HEK and PC3 human cell lines.

  13. Cryopreservation of human embryonic stem cells by a programmed freezer with an oscillating magnetic field.

    Science.gov (United States)

    Lin, Pei-Yi; Yang, Yao-Chen; Hung, Shih-Han; Lee, Sheng-Yang; Lee, Maw-Sheng; Chu, I-Ming; Hwang, Shiaw-Min

    2013-06-01

    Human embryonic stem cells (hESCs), due to their self-renewal capacity and pluripotency, are an important source of cells for regenerative medicine. The immediate obstacles that need to be addressed are the poor cell survival rate of hESCs and their cell quality after cryopreservation. In this study, we used the Cell Alive System (CAS) which combines a programmed freezer with an oscillating magnetic field to reduce cryo-injury during the freezing process. The hESC clumps suspended in freezing medium were divided into three groups: (i) cells frozen by a conventional freezing container, Mr. Frosty and kept in a -80 °C freezer (MF); (ii) cells frozen to -32 °C by CAS, and then transferred to a -80 °C freezer (CAS); (iii) cells frozen to -32 °C by CAS, and then transferred to a pre-cooled Mr. Frosty and kept in a -80 °C freezer (CAS-MF) for overnight. All cryovials were placed in liquid nitrogen for one week, and hESCs were then thawed and cultured on feeder for 7 days. The results of alkaline phosphatase (AP) staining showed that the attachment efficiency of the cells cryopreserved by CAS and CAS-MF was significantly higher (29.0% and 44.0%) than in the MF method (7.0%). Furthermore, we confirmed the cells cryopreserved using CAS-MF could be subcultured while expressing pluripotent markers, differentiate into three germ layers, and maintain a normal karyotype. These results demonstrate that the use of CAS-MF offers an efficient method of hESC banking. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. 60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis.

    Science.gov (United States)

    Neves, Gesilda F; Silva, José R F; Moraes, Renato B; Fernandes, Thiago S; Tenorio, Bruno M; Nogueira, Romildo A

    2014-06-01

    The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50-60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.

  15. GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Karoline M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Guhathakurta, Puragra [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Beaton, Rachael L.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Bullock, James; Tollerud, Erik J. [Center for Cosmology, Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697 (United States); Geha, Marla C. [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Kalirai, Jason S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Kirby, Evan N. [California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Tanaka, Mikito; Chiba, Masashi, E-mail: kgilbert@astro.washington.edu [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2012-11-20

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 {+-} 0.2 and extends to a projected distance of at least {approx}175 kpc ({approx}2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects.

  16. Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field.

    Science.gov (United States)

    Lu, Wei; Wu, Ke; Hu, Xiangjun; Xie, Xiangdong; Ning, Jing; Wang, Changzhen; Zhou, Hongmei; Yang, Guoshan

    2017-02-01

    Intracellular electroporation occurs when the cells are exposed to nanosecond pulsed electric field (nsPEF). It is believed the electroporation (formation and extension of pores on the membrane induced by external electric field) is affected significantly by the transmembrane potential. This paper analyzed transmembrane potential induced by nsPEF in the term of pulse frequency spectrum, aiming to provide a theoretical explanation to intracellular bio-effects. Based on the double-shelled spherical cell model, the frequency dependence of transmembrane potential was obtained by solving Laplace's equation, while the time course of transmembrane potential was obtained by a method combined with discrete Fourier transform and Laplace transform. First-order Debye equation was used to describe the dielectric relaxation of the cell medium. Frequency-domain analysis showed that when the electric field frequency was higher than 10 5 Hz, the transmembrane potential on the organelle membrane (ΔΦ o ) was increasing to exceed the transmembrane potential on the cellular membrane (ΔΦ c ). In the time-domain analysis, transmembrane potentials induced by four nsPEF (short trapezoid, long trapezoid, bipolar and sine shapes) with the same field strength were compared with each other. It showed that ΔΦ o is obviously larger than ΔΦ c if the curve of the normalized frequency spectrum of the pulse is more similar with the curve of normalized ΔΦ o in frequency domain. Pulses with major frequency components higher than 10 8 Hz lead to both small ΔΦ o and ΔΦ c . This may explain why high power pulsed microwave lead to unobvious bio-effects of cells than nsPEF with trapezoid form. Through the pulse frequency spectrum it is clearer to understand the relationship between nsPEF and the transmembrane potential.

  17. Wide-field surface-enhanced CARS microscopy of cells (Conference Presentation)

    Science.gov (United States)

    Fast, Alexander; Kenison, John T.; Potma, Eric O.

    2017-02-01

    We have previously demonstrated a total internal reflection, wide-field CARS microscope, where the signal is enhanced with the aid of a thin gold layer that supports surface plasmon polariton resonances. This surface-enhanced CARS microscope is capable of generating images of lipid structures in close proximity (visualizing lipids in aqueous media, including imaging of cells, with a unique surface-sensitive contrast that cannot be obtained with conventional CARS microscopy.

  18. Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease.

    Science.gov (United States)

    Jadidi, Majid; Biat, Saeed Moghadas; Sameni, Hamid Reza; Safari, Manouchehr; Vafaei, Abbas Ali; Ghahari, Laya

    2016-07-01

    The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. An EMF with a frequency of 50 Hz and two intensities of 40 and 400 µT 1hr/day was generated around the cells for a week. Afterwards, these cells were injected into the left ventricle of Parkinsonian rats. The rats survived for 2 weeks, and then sampling was performed. The injected cells differentiated into DA neurons and sporadically settled in the substantia nigra pars compacta (SNpc). Transplanted rats exhibited significant partial correction apomorphine-induced rotational behavior compared to Parkinsonian rats (5.0±0.1 vs 7.57±0.08). Results demonstrated that endogenous serum and brain derived neurotrophic factor (BDNF) were altered in all experimental groups. The greatest increase was in group of 400 µT EMF in comparison with Parkinsonian rats (398±15 vs. 312±11.79 pg ⁄ mg). Current study have shown that 6-Hydroxydopamine can cause severe loss of dopaminergic neurons (68±6.58), but injected MSCs that exposed to 40 and 400 µT EMF increased dopaminergic neurons in SNpc (108±2.33 & 126±3.89) (P<0.001). Electromagnetic fields with particular frequencies stimulate MSCs. So, these cells had anti-Parkinsonian properties in our studies.

  19. The effects of radio-frequency electromagnetic fields on T cell function during development.

    Science.gov (United States)

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-05-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF-exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  1. Cutaneous papilloma and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF.

    Directory of Open Access Journals (Sweden)

    Dong Yin

    Full Text Available Nanosecond pulsed electric fields (nsPEF induce apoptotic pathways in human cancer cells. The potential therapeutic effective of nsPEF has been reported in cell lines and in xenograft animal tumor model. The present study investigated the ability of nsPEF to cause cancer cell death in vivo using carcinogen-induced animal tumor model, and the pulse duration of nsPEF was only 7 and 14 nano second (ns. An nsPEF generator as a prototype medical device was used in our studies, which is capable of delivering 7-30 nanosecond pulses at various programmable amplitudes and frequencies. Seven cutaneous squamous cell carcinoma cell lines and five other types of cancer cell lines were used to detect the effect of nsPEF in vitro. Rate of cell death in these 12 different cancer cell lines was dependent on nsPEF voltage and pulse number. To examine the effect of nsPEF in vivo, carcinogen-induced cutaneous papillomas and squamous cell carcinomas in mice were exposed to nsPEF with three pulse numbers (50, 200, and 400 pulses, two nominal electric fields (40 KV/cm and 31 KV/cm, and two pulse durations (7 ns and 14 ns. Carcinogen-induced cutaneous papillomas and squamous carcinomas were eliminated efficiently using one treatment of nsPEF with 14 ns duration pulses (33/39 = 85%, and all remaining lesions were eliminated after a 2nd treatment (6/39 = 15%. 13.5% of carcinogen-induced tumors (5 of 37 were eliminated using 7 ns duration pulses after one treatment of nsPEF. Associated with tumor lysis, expression of the anti-apoptotic proteins Bcl-xl and Bcl-2 were markedly reduced and apoptosis increased (TUNEL assay after nsPEF treatment. nsPEF efficiently causes cell death in vitro and removes papillomas and squamous cell carcinoma in vivo from skin of mice. nsPEF has the therapeutic potential to remove human squamous carcinoma.

  2. Extremely low frequency magnetic fields induce spermatogenic germ cell apoptosis: possible mechanism.

    Science.gov (United States)

    Lee, Sang-Kon; Park, Sungman; Gimm, Yoon-Myoung; Kim, Yoon-Won

    2014-01-01

    The energy generated by an extremely low frequency electromagnetic field (ELF-EMF) is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF) is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010) for limiting exposure to time-varying MF (1 Hz to 100 kHz), overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  3. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells

    Directory of Open Access Journals (Sweden)

    Jing-Peng Fu

    2016-08-01

    Full Text Available Abstract Living organisms are exposed to the geomagnetic field (GMF throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF, leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT, produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2, and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs, in vitro and in vivo. HMF-disturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response.

  4. Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2014-01-01

    Full Text Available The energy generated by an extremely low frequency electromagnetic field (ELF-EMF is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010 for limiting exposure to time-varying MF (1 Hz to 100 kHz, overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  5. THE EFFECT OF MAGNETIC FIELD ON THE EFFICIENCY OF A SILICON SOLAR CELL UNDER AN INTENSE LIGHT CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zoungrana Martial

    2017-06-01

    Full Text Available This work put in evidence, magnetic field effect the electrical parameters of a silicon solar cell illuminated by an intense light concentration: external load electric power, conversion efficiency, fill factor, external optimal charge load. Due to the high photogeneration of carrier in intense light illumination mode, in addition of magnetic field, we took into account the carrier gradient electric field in the base of the solar cell. Taking into account this electric field and the applied magnetic field in our model led to new analytical expressions of the continuity equation, the photocurrent and the photovoltage.

  6. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    And Johnson SB parameters are observed to be best in discriminating the Johnson SB distribution of infrared brightness temperatures of deep convective systems for each season. Due to these properties of Johnson SB function, it can be utilized in the modelling of the histogram of infrared brightness temperature of deep ...

  7. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    It is observed that Johnson SB function is the best continuous distribution function in explaining the histogram of infrared brightness temperatures of the convective clouds. The best fit is confirmed by Kolmogorov–Smirnov statistic. Johnson SB's distribution of histogram of infrared brightness temperatures clearly ...

  8. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Nangle, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simon, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  9. Edge integration and the perception of brightness and darkness

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2006-01-01

    How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the

  10. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  11. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris

    2015-01-01

    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness...

  12. Surface photometry of bulge dominated low surface brightness galaxies

    NARCIS (Netherlands)

    Beijersbergen, M; de Blok, WJG; van der Hulst, JM

    1999-01-01

    We present results of broad band BVRI observations of a sample of galaxies with a low surface brightness (LSB) disk and a bulge. These galaxies are well described as exponential disks and exponential bulges with no preferred value for either scale length or central surface brightness. The median B

  13. Medical imaging correction: a comparative study of five contrast and brightness matching methods.

    Science.gov (United States)

    Matsopoulos, G K

    2012-06-01

    Contrast and brightness matching are often required in many medical imaging applications, especially when comparing medical data acquired over different time periods, due to dissimilarities in the acquisition process. Numerous methods have been proposed in this field, ranging from simple correction filters to more complicated recursive techniques. This paper presents a comprehensive comparison of five methods for matching the contrast and brightness of medical image pairs, namely, Contrast Stretching, Ruttimann's Robust Film Correction, Boxcar Filtering, Least-Squares Approximation and Histogram Registration. The five methods were applied to a total of 100 image pairs, divided into five sets, in order to evaluate the performance of the compared methods on images with different levels of contrast, brightness and combinational contrast and brightness variations. Qualitative evaluation was performed by means of visual assessment on the corrected images as well as on digitally subtracted images, in order to estimate the deviations relative to the reference data. Quantitative evaluation was performed by pair-wise statistical evaluation on all image pairs in terms of specific features of merit based on widely used metrics. Following qualitative and quantitative analysis, it was deduced that the Histogram Registration method systematically outperformed the other four methods in comparison in most cases on average. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Pulsed electromagnetic field stimulates cellular proliferation in human intervertebral disc cells.

    Science.gov (United States)

    Lee, Hwan-Mo; Kwon, Un-Hye; Kim, Hyang; Kim, Ho-Joong; Kim, Boram; Park, Jin-Oh; Moon, Eun-Soo; Moon, Seong-Hwan

    2010-11-01

    The purpose of this study is to investigate the mechanism of cellular proliferation of electromagnetic field (EMF) on human intervertebral disc (IVD) cells. Human IVD cells were cultured three-dimensionally in alginate beads. EMF was exposed to IVD cells with 650 Ω, 1.8 millitesla magnetic flux density, 60 Hz sinusoidal wave. Cultures were divided into a control and EMF group. Cytotoxicity, DNA synthesis and proteoglycan synthesis were measured by MTT assay, [(3)H]-thymidine, and [(35)S]-sulfate incorporation. To detect phenotypical expression, reverse transcription-polymerase chain reactions (RT-PCR) were performed for aggrecan, collagen type I, and type II mRNA expression. To assess action mechanism of EMF, IVD cells were exposed to EMF with N(G)-Monomethyl-L-arginine (NMMA) and acetylsalicylic acid (ASA). There was no cytotoxicity in IVD cells with the EMF group in MTT assay. Cellular proliferation was observed in the EMF group (p EMF group and the control. Cultures with EMF showed no significant change in the expression of aggrecan, type I, and type II collagen mRNA compared to the control group. Cultures with NMMA (blocker of nitric oxide) or ASA (blocker of prostaglandin E2) exposed to EMF demonstrated decreased DNA synthesis compared to control cultures without NMMA or ASA (p EMF stimulated DNA synthesis in human IVD cells while no significant effect on proteoglycan synthesis and chondrogenic phenotype expressions. DNA synthesis was partially mediated by nitric oxide and prostaglandin E2. EMF can be utilized to stimulate proliferation of IVD cells, which may provide efficient cell amplification in cell therapy to degenerative disc disease.

  15. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Science.gov (United States)

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  16. Intercomparisons of Nine Sky Brightness Detectors

    Directory of Open Access Journals (Sweden)

    Henk Spoelstra

    2011-10-01

    Full Text Available Nine Sky Quality Meters (SQMs have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across the Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from −16% to +20%. Intercalibration reduces this to 0.5%, and −7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m2 on 12 April, and the largest value was 5.94 ± 0.03 mcd/m2 on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  17. Dark Skies, Bright Kids Year 6

    Science.gov (United States)

    Liss, Sandra; Troup, Nicholas William; Johnson, Kelsey E.; Barcos-Munoz, Loreto D.; Beaton, Rachael; Bittle, Lauren; Borish, Henry J.; Burkhardt, Andrew; Corby, Joanna; Dean, Janice; Hancock, Danielle; King, Jennie; Prager, Brian; Romero, Charles; Sokal, Kimberly R.; Stierwalt, Sabrina; Wenger, Trey; Zucker, Catherine

    2015-01-01

    Now entering our sixth year of operation, Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in central Virginia through fun, hands-on activities that introduce basic Astronomy concepts beyond Virginia's Standards of Learning. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.DSBK has amassed over 15,000 contact hours since 2009 and we continue to broaden our impact. One important step we have taken in the past year is to establish a graduate student led assessment program to identify and implement directed learning goals for DSBK outreach. The collection of student workbooks, observations, and volunteer surveys indicates broad scale success for the program both in terms of student learning and their perception of science. The data also reveal opportunities to improve our organizational and educational practices to maximize student achievement and overall volunteer satisfaction for DSBK's future clubs and outreach endeavors.

  18. Dark Skies, Bright Kids Year 9

    Science.gov (United States)

    Burkhardt, Andrew Michael; Mathews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest

    2018-01-01

    We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.

  19. Bright visible light emission from graphene.

    Science.gov (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Yoo, Yong Shim; Yoon, Duhee; Dorgan, Vincent E; Pop, Eric; Heinz, Tony F; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel

    2015-08-01

    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  20. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  1. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803.

    Science.gov (United States)

    Sheng, Jie; Vannela, Raveender; Rittmann, Bruce E

    2011-04-15

    In order to use Synechocystis PCC 6803 as feedstock of nonpetroleum-based diesel fuel, pulsed electric field (PEF) technology was used for cell disruption prior to extraction of intracellular lipids. Severe cell disruption was evident after PEF treatment, especially with treatment intensity (TI) > 35 kWh/m(3). Temperature increase during the treatment brought about most of the destruction of autofluorescence compounds, as well as a fraction of inactivation and the destruction of the plasma and thylakoid membranes. However, the forces associated with the pulsing electric field caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments, which resulted in biomass loss. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Thus, PEF shows promise for lowering the costs and environmental effects of the lipid-extraction step.

  2. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki

    2013-12-01

    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  3. Advances in a rapidly emerging field of hair follicle stem cell research.

    Science.gov (United States)

    Mokos, Zrinka Bukvić; Mosler, Elvira Lazić

    2014-03-01

    Human skin maintains the ability to regenerate during adulthood, as it constantly renews itself throughout adult life, and the hair follicle (HF) undergoes a perpetual cycle of growth and degeneration. The study of stem cells (SCs) in the epidermis and skin tissue engineering is a rapidly emerging field, where advances have been made in both basic and clinical research. Advances in basic science include the ability to assay SCs of the epidermis in vivo, identification of an independent interfollicular epidermal SC, and improved ability to analyze individual SCs divisions, as well as the recent hair organ regeneration via the bioengineered hair follicular unit transplantation (FUT) in mice. Advances in the clinic include recognition of the importance of SCs for wound repair and for gene therapy in inherited skin diseases, for example epidermolysis bullosa. The study of the HF stem cells (HFSCs) started by identification of epidermal SC in the HF bulge as quiescent "label retaining cells". The research of these cells emerged rapidly after the identification of bulge cell molecular markers, such as keratin 15 (K15) and CD34 in mice and CD200 in humans, which allowed the isolation and characterization of bulge cells from follicles. This paper provides an overview of the current knowledge on epidermal SCs in the HF describing their essential characteristics and the control of follicle SCs fate, their role in alopecia, as well as their use in tissue engineering.

  4. Electric and magnetic fields do not modify the biochemical properties of FRTL-5 cells.

    Science.gov (United States)

    Dimida, A; Ferrarini, E; Agretti, P; De Marco, G; Grasso, L; Martinelli, M; Longo, I; Giulietti, D; Ricci, A; Galimberti, M; Siervo, B; Licitra, G; Francia, F; Pinchera, A; Vitti, P; Tonacchera, M

    2011-03-01

    Electric and magnetic fields (EMF) might be involved in human disease and numerous research and scientific reviews have been conducted to address this question. In particular thyroid structural and functional alterations caused by various forms of non-ionizing radiation have been described. The aim of this study was to analyze the possible effects of EMF on thyroid, in particular we analyzed the effects caused by a GSM (Global System for Mobile Communications) signal (900 MHz) on cultured thyroid cells (FRTL- 5). The experimental setup was designed in order to expose samples to a radiofrequency wave in well-controlled conditions. We used the FRTL-5 cell line, an epithelial monoclonal continuous cell line derived from Fisher rat thyroid tissue growing as monolayer, expressing the TSH receptor and the sodium-iodide symporter (NIS). FRTL-5 were subsequently irradiate for 24, 48, and 96 h with EMF (800-900 MHz, power-frequency of mobile communication systems) and iodide uptake and cAMP production were measured. The irradiation of cells with EMF at 900 Mhz for 24, 48, and 96 h did not influence the level of cAMP production and was not able to modify iodide accumulation in FRTL- 5 cells with respect to basal conditions. In conclusion, EMF do not seem to be able to interfere with the biochemical properties of FRTL-5 cells in vitro.

  5. Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Majid Jadidi

    2016-07-01

    Full Text Available Objective(s: The main characteristic of mesenchymal stem cells (MSCs is their ability to produce other cell types. Electromagnetic field (EMF stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA neurons. Materials and Methods: An EMF with a frequency of 50 Hz and two intensities of 40 and 400 µT 1hr/day was generated around the cells for a week. Afterwards, these cells were injected into the left ventricle of Parkinsonian rats. The rats survived for 2 weeks, and then sampling was performed. Results: The injected cells differentiated into DA neurons and sporadically settled in the substantia nigra pars compacta (SNpc. Transplanted rats exhibited significant partial correction apomorphine-induced rotational behavior compared to Parkinsonian rats (5.0±0.1 vs 7.57±0.08. Results demonstrated that endogenous serum and brain derived neurotrophic factor (BDNF were altered in all experimental groups. The greatest increase was in group of 400 µT EMF in comparison with Parkinsonian rats (398±15 vs. 312±11.79 pg ⁄ mg. Current study have shown that 6-Hydroxydopamine can cause severe loss of dopaminergic neurons (68±6.58, but injected MSCs that exposed to 40 and 400 µT EMF increased dopaminergic neurons in SNpc ( 108±2.33  & 126±3.89 (P

  6. [Proliferation of bone marrow cells upon exposure to constant magnetic fields of ultra-high strength].

    Science.gov (United States)

    Strzhizhovskiĭ, A D; Galaktionova, G V

    1978-06-01

    A study was made of the 0.5--24 hour effects of the stable magnetic field (SMF), with 9.9--42.4 kOe strength and 0.2--3.5 kOe/cm strength gradient, on the mitotic activity and bone marrow cell number in mice. Short-term treatments were shown to stimulate, and prolonged ones to inhibit mitotic activity, the degree of inhibition correlating with the strength and strenght gradient of SMF. The rate of mitotic index recovery was the smaller the longer the treatment and the higher the strength of SMF. With the most pronounced inhibition of the mitotic activity, the number of bone marrow cells was seen reduced. No increased frequency of aberrant mitoses in bone marrow cells has been noticed following the effect of SMF.

  7. Effect of Pulsed Electric Fields (PEF) on Accumulation of Magnesium in Lactobacillus rhamnosus B 442 Cells.

    Science.gov (United States)

    Góral, Małgorzata; Pankiewicz, Urszula

    2017-10-01

    The aim of this study was to determine the effect of pulsed electric fields (PEF) on accumulation of magnesium ions in Lactobacillus rhamnosus B 442 cells. Under optimized conditions, this is, on 15 min exposure of the 20 h grown culture to PEF of the 2.0 kV/cm and 20 µs pulse width at concentration 400 μg Mg 2+ /mL medium, accumulation of magnesium in the biomass reached maximum 4.28 mg/g d.m. Optimization of PEF parameters caused an increase of magnesium concentration in the cells by 220% in comparison to the control not treated with PEF. Bacterial cell biomass enriched with Mg 2+ may be an alternative for pharmacological supplementation applied in deficiency of this cation.

  8. Molecular analysis of chromosomal rearrangements using pulsed field gel electrophoresis and somatic cell hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.M. (Florida Inst. of Tech., Melbourne (United States))

    1991-01-01

    Many human genetic diseases, including some cancers, are characterized by consistent chromosome abnormalities, such as deletions and translocations. Analyses of these mutations often prove crucial to the eventual cloning and characterization of the gene(s) responsible for the disease. Two methods for analyzing these chromosome abnormalities have been developed in recent years: somatic cell hybridization and pulsed field gel electrophoresis (PFGE). Somatic cell hybridization is a technique for segregating an aberrant chromosome from its normal homologue in a cell derived from an unrelated species, which is usually a rodent. Demonstrations of these analytic techniques are presented, using as an example chromosomal abnormalities involving human chromosome band 11p13, the locus for the Wilms' tumor, aniridia, genitourinary abnormality, and mental retardation (WAGR) syndrome.

  9. Resistance to immunotherapy: clouds in a bright sky.

    Science.gov (United States)

    Milano, Gérard

    2017-10-01

    Two major challenges persist for an optimal management of immunotherapy: i) identifying those patients who will benefit from this type of therapy, and ii) determining the biological, cellular and molecular mechanisms that trigger disease progression while on therapy. There is a consensual view in favor of standardizing practices currently used to measure programmed death ligand 1 (PD-L1) expression that relates to innate resistance. The tumor mutation landscape has been widely explored as a potential predictor of treatment efficacy. In contrast, our knowledge is rather limited as concerns the mechanisms sustaining acquired resistance to checkpoint blockade immunotherapy in patients under treatment. Upregulation of T cell immunoglobulin mucin domain 3 (TIM-3) in CD8+ T-cells has been reported in patients developing acquired resistance to anti-PD-1 treatment. Resistance mechanisms are even more complex for combinatorial strategies linking immunotherapeutic agents and conventional therapies, an area that is expanding rapidly. However, with the arrival of advanced analytical methods such as mass cytometry, there is reason for optimism. These methods can identify cellular mechanisms governing response to therapy and resistance. The clinical use of inhibitors of tumor-microenvironment-modulated pathways, such as those targeting indoleamine 2, 3-dioxygenase (IDO), hold promise for resistance management. Graphical abstract Clouds in a bright sky - Joseph Mallord William Turner.

  10. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Directory of Open Access Journals (Sweden)

    The Hong Phong Nguyen

    Full Text Available The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMFwere studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure, independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM and confocal laser scanning microscopy (CLSM. Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid may affect the extent of uptake of the large nanospheres (46 nm. Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  11. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Science.gov (United States)

    Nguyen, The Hong Phong; Pham, Vy T H; Nguyen, Song Ha; Baulin, Vladimir; Croft, Rodney J; Phillips, Brian; Crawford, Russell J; Ivanova, Elena P

    2016-01-01

    The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  12. Rotation of the trajectories of bright solitons and realignment of intensity distribution in the coupled nonlinear Schrödinger equation.

    Science.gov (United States)

    Radha, R; Vinayagam, P S; Porsezian, K

    2013-09-01

    We reconsider the collisional dynamics of bright solitons in the coupled nonlinear Schrödinger equation. We observe that apart from the intensity redistribution in the interaction of bright solitons, one also witnesses a rotation of the trajectories of bright solitons. The angle of rotation can be varied by suitably manipulating the self-phase-modulation (SPM) or cross-phase-modulation (XPM) parameters. The rotation of the trajectories of the bright solitons arises due to the excess energy that is injected into the dynamical system through SPM or XPM. This extra energy contributes not only to the rotation of the trajectories, but also to the realignment of intensity distribution between the two modes. We also notice that the angular separation between the bright solitons can also be maneuvered suitably. The above results, which exclude quantum superposition for the field vectors, may have wider ramifications in nonlinear optics, Bose-Einstein condensates, and left- and right-handed metamaterials.

  13. Cost-effective and compact wide-field fluorescent imaging on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2011-01-21

    We demonstrate wide-field fluorescent and darkfield imaging on a cell-phone with compact, light-weight and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. For this purpose, we used battery powered light-emitting diodes (LEDs) to pump the sample of interest from the side using butt-coupling, where the pump light was guided within the sample cuvette to uniformly excite the specimen. The fluorescent emission from the sample was then imaged using an additional lens that was positioned right in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to our detection path, an inexpensive plastic colour filter was sufficient to create the dark-field background required for fluorescent imaging, without the need for a thin-film interference filter. We validate the performance of this platform by imaging various fluorescent micro-objects in 2 colours (i.e., red and green) over a large field-of-view (FOV) of ∼81 mm(2) with a raw spatial resolution of ∼20 μm. With additional digital processing of the captured cell-phone images, through the use of compressive sampling theory, we demonstrate ∼2 fold improvement in our resolving power, achieving ∼10 μm resolution without a trade-off in our FOV. Further, we also demonstrate darkfield imaging of non-fluorescent specimen using the same interface, where this time the scattered light from the objects is detected without the use of any filters. The capability of imaging a wide FOV would be exceedingly important to probe large sample volumes (e.g., >0.1 mL) of e.g., blood, urine, sputum or water, and for this end we also demonstrate fluorescent imaging of labeled white-blood cells from whole blood samples, as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts. Weighing only ∼28 g (∼1 ounce), this compact and cost-effective fluorescent imaging platform

  14. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    Science.gov (United States)

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery

  15. Dark Skies, Bright Kids: Year 2

    Science.gov (United States)

    Carlberg, Joleen K.; Johnson, K.; Lynch, R.; Walker, L.; Beaton, R.; Corby, J.; de Messieres, G.; Drosback, M.; Gugliucci, N.; Jackson, L.; Kingery, A.; Layman, S.; Murphy, E.; Richardson, W.; Ries, P.; Romero, C.; Sivakoff, G.; Sokal, K.; Trammell, G.; Whelan, D.; Yang, A.; Zasowski, G.

    2011-01-01

    The Dark Skies, Bright Kids (DSBK) outreach program brings astronomy education into local elementary schools in central Virginia's Southern Albemarle County through an after-school club. Taking advantage of the unusually dark night skies in the rural countryside, DSBK targets economically disadvantaged schools that tend to be underserved due to their rural locale. The goals of DSBK are to foster children's natural curiosity, demonstrate that science is a fun and creative process, challenge students' conceptions of what a scientist is and does, and teach some basic astronomy. Furthermore, DSBK works to assimilate families into students' education by holding family observing nights at the school. Now in its third semester, DSBK has successfully run programs at two schools with very diverse student populations. Working with these students has helped us to revise our activities and to create new ones. A by-product of our work has been the development of lesson plans, complete with learning goals and detailed instructions, that we make publically available on our website. This year we are expanding our repertoire with our new planetarium, which allows us to visualize topics in novel ways and supplements family observing on cloudy nights. The DSBK volunteers have also created a bilingual astronomy artbook --- designed, written, and illustrated by UVa students --- that we will publish and distribute to elementary schools in Virginia. Our book debuted at the last AAS winter meeting, and since then it has been extensively revised and updated with input from many individuals, including parents, professional educators, and a children's book author. Because the club is currently limited to serving a few elementary schools, this book will be part of our efforts to broaden our impact by bringing astronomy to schools we cannot go to ourselves and reaching out to Spanish-speaking communities at the same time.

  16. Optical microvariability of bright type 2 quasars

    Science.gov (United States)

    Polednikova, Jana; Ederoclite, Alessandro; Cepa, Jordi; de Diego Onsurbe, José Antonio; González-Serrano, José Ignacio

    2014-07-01

    We present results from a project focused on searching optical microvariabilty (also known as ``intra-night'' variability) in type 2 - obscured - quasars. Optical microvariability can be described as very small changes in the flux, typically in the order of hundredths of magnitude, which can be observed on timescales of hours. Such studies have been so far conducted for samples of blazars and type 1, unobscured, AGNs, where the optical microvariability was detected with success. We have focused on obscured targets which would pose a challenge to the AGN standard model. In the present work, however, we have observed a sample of three bright (g mag < 17) type 2 quasar, based on the catalog of type 2 quasars from SDSS of Reyes et al. (2008). The observations were carried out with the 1.5 meter telescope at San Pedro Martir observatory in Mexico. The sample was observed during an observation period of four days in Johnsons V filter, resulting in at least two continuous intervals of observations per target during the observational run. We have obtained differential light curves for our sources as well as for the comparison stars. They were analyzed using one-way analysis of variance statistical test (ANOVA), which has been repeatedly used in the past for studies of unobscured targets. Based on the results from the statistical analysis, we show that at least two out of three observed targets appear to be variable on time scales of hours. So far, this is the first study which confirmed existence of optical microvariability in type 2 quasars.

  17. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields.

    Science.gov (United States)

    Ahmed, Suzanne; Wang, Wei; Mair, Lamar O; Fraleigh, Robert D; Li, Sixing; Castro, Luz Angelica; Hoyos, Mauricio; Huang, Tony Jun; Mallouk, Thomas E

    2013-12-31

    The recent discovery of fuel-free propulsion of nanomotors using acoustic energy has provided a new avenue for using nanomotors in biocompatible media. Crucial to the application of nanomotors in biosensing and biomedical applications is the ability to remotely control and steer them toward targets of interest, such as specific cells and tissues. We demonstrate in vitro magnetic steering of acoustically powered nanorod motors in a biologically compatible environment. Steering was accomplished by incorporating (40 ± 5) nm thick nickel stripes into the electrochemically grown nanowires. An external magnetic field of 40-45 mT was used to orient the motors, which were acoustically propelled along their long axes. In the absence of a magnetic field, (300 ± 30) nm diameter, (4.3 ± 0.2) μm long nanowires with (40 ± 5) nm thick magnetic stripes exhibit the same self-acoustophoretic behavior, including pattern formation into concentric nanowire circles, aligned spinning chains, and autonomous axial motion, as their non-magnetic counterparts. In a magnetic field, these wires and their paths are oriented as evidenced by their relatively linear trajectories. Coordinated motion of multiple motors and targeting of individual motors toward HeLa cells with micrometer-level precision was demonstrated.

  18. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  19. Local Field Potentials Encode Place Cell Ensemble Activation during Hippocampal Sharp Wave Ripples.

    Science.gov (United States)

    Taxidis, Jiannis; Anastassiou, Costas A; Diba, Kamran; Koch, Christof

    2015-08-05

    Whether the activation of spiking cell ensembles can be encoded in the local field potential (LFP) remains unclear. We address this question by combining in vivo electrophysiological recordings in the rat hippocampus with realistic biophysical modeling, and explore the LFP of place cell sequence spiking ("replays") during sharp wave ripples. We show that multi-site perisomatic LFP amplitudes, in the ∼150-200 Hz frequency band, reliably reflect spatial constellations of spiking cells, embedded within non-spiking populations, and encode activation of local place cell ensembles during in vivo replays. We find spatiotemporal patterns in the LFP, which remain consistent between sequence replays, in conjunction with the ordered activation of place cell ensembles. Clustering such patterns provides an efficient segregation of replay events from non-replay-associated ripples. This work demonstrates how spatiotemporal ensemble spiking is encoded extracellularly, providing a window for efficient, LFP-based detection and monitoring of structured population activity in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Molecular circadian rhythm shift due to bright light exposure before bedtime is related to subthreshold bipolarity

    OpenAIRE

    Chul-Hyun Cho; Joung-Ho Moon; Ho-Kyoung Yoon; Seung-Gul Kang; Dongho Geum; Gi-Hoon Son; Jong-Min Lim; Leen Kim; Eun-Il Lee; Heon-Jeong Lee

    2016-01-01

    This study examined the link between circadian rhythm changes due to bright light exposure and subthreshold bipolarity. Molecular circadian rhythms, polysomnography, and actigraphy data were studied in 25 young, healthy male subjects, divided into high and low mood disorder questionnaire (MDQ) score groups. During the first 2 days of the study, the subjects were exposed to daily-living light (150 lux) for 4?hours before bedtime. Saliva and buccal cells were collected 5 times a day for 2 conse...

  1. Analytical Formulation of the Electric Field Induced by Electrode Arrays: Towards Automated Dielectrophoretic Cell Sorting

    Directory of Open Access Journals (Sweden)

    Vladimir Gauthier

    2017-08-01

    Full Text Available Dielectrophoresis is defined as the motion of an electrically polarisable particle in a non-uniform electric field. Current dielectrophoretic devices enabling sorting of cells are mostly controlled in open-loop applying a predefined voltage on micro-electrodes. Closed-loop control of these devices would enable to get advanced functionalities and also more robust behavior. Currently, the numerical models of dielectrophoretic force are too complex to be used in real-time closed-loop control. The aim of this paper is to propose a new type of models usable in this framework. We propose an analytical model of the electric field based on Fourier series to compute the dielectrophoretic force produced by parallel electrode arrays. Indeed, this method provides an analytical expression of the electric potential which decouples the geometrical factors (parameter of our system, the voltages applied on electrodes (input of our system, and the position of the cells (output of our system. Considering the Newton laws on each cell, it enables to generate easily a dynamic model of the cell positions (output function of the voltages on electrodes (input. This dynamic model of our system is required to design the future closed-loop control law. The predicted dielectrophoretic forces are compared to a numerical simulation based on finite element model using COMSOL software. The model presented in this paper enables to compute the dielectrophoretic force applied to a cell by an electrode array in a few tenths of milliseconds. This model could be consequently used in future works for closed-loop control of dielectrophoretic devices.

  2. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.

    Science.gov (United States)

    Yeo, MyungGu; Ha, JongHan; Lee, HyeongJin; Kim, GeunHyung

    2016-07-01

    In this study, we proposed a hybrid cell-printing technique that combines a conventional extrusion-based cell-printing process with an electrohydrodynamic jet. The electric field stabilized the extruded struts of cell-embedding-hydrogel and reduced the damage to dispensed cells caused by the high wall shear stress in the dispensing nozzle. The new cell-printing process was optimized in terms of various processing parameters, applied electric field strength, nozzle movement speed, and distance between the nozzle tip and working stage. Using the optimal cell-embedding hydrogel composition (1×10(6)cellsmL(-1) in 4wt% alginate) and cell-printing process parameters (applied voltage, 1kV; nozzle movement speed, 12mms(-1); distance, 0.7mm; current, 10.67±1.1nA), we achieved rapid and stable fabrication of a cell-laden structure without loss of cell viability or proliferation, the values of which were similar to those of the process without an electric field. Furthermore, by applying the same pneumatic pressure to fabricate cell-laden structures, considerably higher volume flow rate and cell viability at the same volume flow rate were achieved by the modified process compared with conventional extrusion-based cell-printing processes. To assess the feasibility of the method, the hydrogel containing human adipose stem cells (hASCs) and alginate (4wt%) was fabricated into a cell-laden porous structure in a layer-by-layer manner. The cell-laden structure exhibited reasonable initial hASC viability (87%), which was similar to that prior to processing of the cell-embedding-hydrogel. The extrusion-based cell-printing process has shortcomings, such as unstable flow and potential loss of cell viability. The unsteady flow can occur due to the high cell concentration, viscosity, and surface tension of bioinks. Also, cell viability post extrusion can be significantly reduced by damage of the cells due to the high wall shear stress in the extrusion nozzle. To overcome these

  3. Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line.

    Science.gov (United States)

    Harland, J D; Liburdy, R P

    1997-01-01

    We have previously reported that environmental-level magnetic fields (1.2 microT [12 milligauss], 60 Hz) block the growth inhibition of the hormone melatonin (10(-9) M) on MCF-7 human breast cancer cells in vitro. We now report that the same 1.2 microT, 60 Hz magnetic fields significantly block the growth inhibitory action of pharmacological levels of tamoxifen (10(-7) M). In biophysical studies we have taken advantage of Faraday's Law of Current Induction and tested whether the 1.2 microT magnetic field or the associated induced electric field is responsible for this field effect on melatonin and tamoxifen. We observe that the magnetic field component is associated with the field blocking effect on melatonin and tamoxifen function. To our knowledge the tamoxifen studies represent the first experimental evidence for an environmental-level magnetic field modification of drug interaction with human breast cancer cells. Together, these findings provide support to the theory that environmental-level magnetic fields can act to modify the action of a drug or hormone on regulation of cell proliferation. Melatonin and tamoxifen may act through different biological pathways to down-regulate cell growth, and further studies are required to identify a specific biological site of interaction for the 1.2 microT magnetic field.

  4. Growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field

    Directory of Open Access Journals (Sweden)

    Yuan-yuan HUA

    2011-07-01

    Full Text Available Objective To investigate the growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field(PEF in vitro.Methods HeLa cells cultured in vitro were divided into experimental group and control group(with or without intense picosecond PEF.With constant pulse width,frequency and voltage,the cells in experimental group were divided into 6 sub-groups according to the number of pulse(100,200,500,1000,1500,2000,the growth inhibition of HeLa cells by PEF and the dose-effect relationship were analyzed by MTT.Caspase 3 protein activity was detected in the cells in 500,1000 and 2000 sub-groups.Mitochondrial transmembrane potential was detected by rhodamine 123 staining with the cells in 2000 sub-groups.Results MTT assay demonstrated that intense picosecond PEF significantly inhibited the proliferation of HeLa cells in dose-dependent manner.The survival rates of cells declined along with the increase in pulse number,and were 96.23%±0.76%,94.11%±2.42%,90.31%±1.77%,64.59%±1.59%,32.95%±0.73%,23.85%±2.38% and 100%,respectively,in 100,200,500,1000,1500,2000 sub-groups and control group(P < 0.01.The Caspase 3 protein activity was significantly enhanced by intense picosecond PEF,and the absorbancy indexes(A were 0.174±0.012,0.232±0.017,0.365±0.016 and 0.122±0.011,respectively,in 500,1000,2000 sub-groups and control group(P < 0.05.The mitochondrial transmembrane potential of HeLa cells was significantly inhibited by intense picosecond PEF,and the fluorescence intensity in 2000 sub-group(76.66±13.38 was much lower than that in control group(155.81±2.33,P < 0.05.Conclusion Intense picosecond PEF may significantly inhibit the growth of HeLa cells,and induce cell apoptosis via mitochondrial pathway.

  5. Automated Brightness and Contrast Adjustment of Color Fundus Photographs for the Grading of Age-Related Macular Degeneration.

    Science.gov (United States)

    Tsikata, Edem; Laíns, Inês; Gil, João; Marques, Marco; Brown, Kelsey; Mesquita, Tânia; Melo, Pedro; da Luz Cachulo, Maria; Kim, Ivana K; Vavvas, Demetrios; Murta, Joaquim N; Miller, John B; Silva, Rufino; Miller, Joan W; Chen, Teresa C; Husain, Deeba

    2017-03-01

    The purpose of this study was to develop an algorithm to automatically standardize the brightness, contrast, and color balance of digital color fundus photographs used to grade AMD and to validate this algorithm by determining the effects of the standardization on image quality and disease grading. Seven-field color photographs of patients (>50 years) with any stage of AMD and a control group were acquired at two study sites, with either the Topcon TRC-50DX or Zeiss FF-450 Plus cameras. Field 2 photographs were analyzed. Pixel brightness values in the red, green, and blue (RGB) color channels were adjusted in custom-built software to make the mean brightness and contrast of the images equal to optimal values determined by the Age-Related Eye Disease Study (AREDS) 2 group. Color photographs of 370 eyes were analyzed. We found a wide range of brightness and contrast values in the images at baseline, even for those taken with the same camera. After processing, image brightness variability (brightest image-dimmest image in a color channel) was reduced 69-fold, 62-fold, and 96-fold for the RGB channels. Contrast variability was reduced 6-fold, 8-fold, and 13-fold, respectively, after adjustment. Of the 23% images considered nongradable before adjustment, only 5.7% remained nongradable. This automated software enables rapid and accurate standardization of color photographs for AMD grading. This work offers the potential to be the future of assessing and grading AMD from photos for clinical research and teleimaging.

  6. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  7. Diazaisoindigo bithiophene and terthiophene copolymers for application in field-effect transistors and solar cells

    KAUST Repository

    Yue, Wan

    2017-06-10

    Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field-effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field-effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017

  8. Visual features underlying perceived brightness as revealed by classification images.

    Directory of Open Access Journals (Sweden)

    Ilmari Kurki

    Full Text Available Along with physical luminance, the perceived brightness is known to depend on the spatial structure of the stimulus. Often it is assumed that neural computation of the brightness is based on the analysis of luminance borders of the stimulus. However, this has not been tested directly. We introduce a new variant of the psychophysical reverse-correlation or classification image method to estimate and localize the physical features of the stimuli which correlate with the perceived brightness, using a brightness-matching task. We derive classification images for the illusory Craik-O'Brien-Cornsweet stimulus and a "real" uniform step stimulus. For both stimuli, classification images reveal a positive peak at the stimulus border, along with a negative peak at the background, but are flat at the center of the stimulus, suggesting that brightness is determined solely by the border information. Features in the perceptually completed area in the Craik-O'Brien-Cornsweet do not contribute to its brightness, nor could we see low-frequency boosting, which has been offered as an explanation for the illusion. Tuning of the classification image profiles changes remarkably little with stimulus size. This supports the idea that only certain spatial scales are used for computing the brightness of a surface.

  9. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2013-01-01

    Full Text Available This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures. A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF to reduce minority carrier recombination loss at the back contact in ultra-thin CdTe cells. In this analysis the highest conversion efficiency of CdTe based PV cell without BSF has been found to be around 17% using CdTe absorber thickness of 5 μm. However, the proposed structures with different BSF have shown acceptable efficiencies with an ultra-thin CdTe absorber of only 0.6 μm. The proposed structure with As2Te3 BSF showed the highest conversion efficiency of 20.8% ( V,  mA/cm2, and . Moreover, the proposed structures have shown improved stability in most extents, as it was found that the cells have relatively lower negative temperature coefficient. However, the cell with ZnTe BSF has shown better overall stability than other proposed cells with temperature coefficient (TC of −0.3%/°C.

  10. Electromagnetic field interactions with micro channels, particles and cells: Application to advanced cytometry

    Science.gov (United States)

    Venkatapathi, Murugesan

    This thesis involves a study of the interaction of laser beams with micro channels and micro particles/cells using the electromagnetic field approach. This problem is relevant to the next generation cytometry, in particular to model based design of flow cytometers. The field approach is applied to study light scatter from particles/cells and also internal and scattered fields of cylindrical micro channels that are important for optical interrogation of particles and cells flowing through. Though current flow cytometers use qualitative fluorescence measurements for biological analysis, other viable optical interrogation techniques like light scatter, quantitative fluorescence and Coherent anti-stokes Raman scatter (CARS) are being studied for application to flow cytometry. The light scatter from particles and cells in a flow cytometer has been studied with the objective of extracting useful information about the particles using scatter measurements. First, the correlation between the size of particles and the current forward scatter measurements was both analytically modeled and experimentally determined. These results indicated that integrated scatter measurements currently used in flow cytometry (forward and side scatter) cannot be used to unambiguously estimate size, shape or refractive index of particles for classification. It is shown that multi-angle scatter measurements can be used to classify micro spheres of different sizes/refractive indices and different bacteria species, provided the scatter measurements are designed based on numerical scatter models. The numerical scatter models were then also used to do a preliminary study of correlation of scatter with internal structure of simple cells like stem cells. A few multivariate statistical methods have been applied for the classification of such particles in flow cytometry using scatter and multi-spectral fluorescence measurements. Typically the micro channels used in flow cytometry have square or circular

  11. Calibration of Surface Brightness Fluctuations for WFC3/IR

    Science.gov (United States)

    Blakeslee, John

    2009-07-01

    We aim to characterize galaxy surface brightness fluctuations {SBF}, and calibrate the SBF distance method, in the F110W and F160W filters of the Wide Field Camera 3 IR channel. Because of the very high throughput of F110W and the good match of F160W to the standard H band, we anticipate that both of these filters will be popular choices for galaxy observations with WFC3/IR. The SBF signal is typically an order of magnitude brighter in the near-IR than in the optical, and the characterisitics {sensitivity, FOV, cosmetics} of the WFC3/IR channel will be enormously more efficient for SBF measurements than previously available near-IR cameras. As a result, our proposed SBF calibration will allow accurate distance derivation whenever an early-type or bulge-dominated galaxy is observed out to a distance of 150 Mpc or more {i.e., out to the Hubble flow} in the calibrated passbands. For individual galaxy observations, an accurate distance is useful for establishing absolute luminosities, black hole masses, linear sizes, etc. Eventually, once a large number of galaxies have been observed across the sky with WFC3/IR, this SBF calibration will enable accurate mapping of the total mass density distribution in the local universe using the data available in the HST archive. The proposed observations will have additional important scientific value; in particular, we highlight their usefulness for understanding the nature of multimodal globular cluster color distributions in giant elliptical galaxies.

  12. The new world atlas of artificial night sky brightness

    Science.gov (United States)

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C. M.; Elvidge, Christopher D.; Baugh, Kimberly; Portnov, Boris A.; Rybnikova, Nataliya A.; Furgoni, Riccardo

    2016-01-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582

  13. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  14. Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field.

    Science.gov (United States)

    Ma, Xiaojian; Huang, Biao; Wang, Guoyu; Fu, Xiaoying; Qiu, Sicong

    2017-09-01

    The objective of this paper is to propose an immersed boundary lattice Boltzmann method (IB-LBM) considering the ultrasonic effect to simulate red blood cell (RBC) aggregation and deformation in ultrasonic field. Numerical examples involving the typical streamline, normalized out-of-plane vorticity contours and vector fields in pure plasma under three different ultrasound intensities are presented. Meanwhile, the corresponding transient aggregation behavior of RBCs, with special emphasis on the detailed process of RBC deformation, is shown. The numerical results reveal that the ultrasound wave acted on the pure plasma can lead to recirculation flow, which contributes to the RBCs aggregation and deformation in microvessel. Furthermore, increasing the intensity of the ultrasound wave can significantly enhance the aggregation and deformation of the RBCs. And the formation of the RBCs aggregation leads to the fluctuated and dropped vorticity value of plasma in return. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    Science.gov (United States)

    Wang, Kai; Yi, Chao; Liu, Chang; Hu, Xiaowen; Chuang, Steven; Gong, Xiong

    2015-03-01

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated with MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.

  16. Field cancerization in non-small cell lung cancer: implications in disease pathogenesis.

    Science.gov (United States)

    Kadara, Humam; Wistuba, Ignacio I

    2012-05-01

    Lung cancer, of which non-small cell lung cancer (NSCLC) composes the majority, is the leading cause of cancer-related deaths in the United States and worldwide. NSCLCs are tumors with complex biology that we have recently started to understand with the advent of various histological, transcriptomic, genomic, and proteomic technologies. However, the histological and molecular pathogenesis of this malignancy, in particular of adenocarcinomas, is still largely unknown. Earlier studies have highlighted a field cancerization phenomenon in which histologically normal-appearing tissue adjacent to neoplastic and pre-neoplastic lesions display molecular abnormalities, some of which are in common with those in the tumors. This review will summarize advances in understanding the field cancerization phenomenon and the potential relevance of this knowledge to gain important and novel insights into the molecular pathogenesis of NSCLC as well as to subsequent development of biomarkers for early detection of lung cancers and possibly personalized prevention.

  17. The formation and disintegration of magnetic bright points observed by sunrise/IMaX

    Energy Technology Data Exchange (ETDEWEB)

    Utz, D.; Del Toro Iniesta, J. C.; Bellot Rubio, L. R. [Instituto de Astrofísica de Andalucía (CSIC), Apdo. de Correos 3004, E-18080 Granada (Spain); Jurčák, J. [Astronomical Institute, Academy of Sciences of the Czech Republic, 251 65 Ondřejov (Czech Republic); Martínez Pillet, V. [Instituto de Astrofísica de Canarias, Vía Láctea, s/n, E-38200 La Laguna (Spain); Solanki, S. K. [Max-Planck Institut für Sonnensystemforschung, Max-Planck-Strasse, 2, D-37191 (Germany); Schmidt, W., E-mail: utz@iaa.es, E-mail: dominik.utz@uni-graz.at [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany)

    2014-12-01

    The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First, we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next, we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km s{sup –1} set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Also, only relatively weak downflows are found on average at this stage of the evolution. Only 16% of the features display upflows at the time that the field weakens, or the MBP disappears. This speaks either for a very fast evolving dynamic process at the end of the lifetime, which could not be temporally resolved, or against strong upflows as the cause of the weakening of the field of these magnetic elements, as has been proposed based on simulation results. It is noteworthy that in about 10% of the cases, we observe in the vicinity of the downflows small-scale strong (exceeding 2 km s{sup –1}) intergranular upflows

  18. High-speed CuBr brightness amplifier beam profile

    Science.gov (United States)

    Evtushenko, G. S.; Torgaev, S. N.; Trigub, M. V.; Shiyanov, D. V.; Evtushenko, T. G.; Kulagin, A. E.

    2017-01-01

    This paper addresses the experimental study of the beam profile of the CuBr brightness amplifier operating at a wide range of pulse repetition frequencies. The use of a medium-size gas discharge tube (2 cm) ensures the operation of the brightness amplifier both at typical PRFs (520 kHz) and at higher PRFs (up to 100 kHz), either with or without HBr additive. The effect of the active additive on the beam profile is demonstrated. The testing results on kinetic modeling of radial processes in the laser (brightness amplifier) plasma are also discussed.

  19. Non-uniform electric field-induced yeast cell electrokinetic behavior

    Directory of Open Access Journals (Sweden)

    Flavio Humberto Fernández Morales

    2010-05-01

    Full Text Available Common dielectrophoresis (c-DEP, i.e. neutral matter motion induced by non-uniform electric fields has become a basic pheno-menon of biochips intended for medical, biological and chemical assays, especially when they imply bioparticle handling. This paper deals with modelling and experimental verification of a castellated, c-DEP-based, microelectrode array intended to handle biological objects. The proposed microsystem was developed employing platinum electrodes patterned by lift-off, silicon micro-machining and photoresin patterning techniques. Saccharomyces cerevisiae were used as test bioparticles for experimental verifi-cation. Yeast cells were repelled toward electrode bays and toward interelectrodic gaps tor frequencies around 20 MHz where there is minimum electric field strength, corresponding to a negative dielectrophoretic phenomenon. Yeast cell agglomerations were observed around electrode edges for frequencies of around 2 MHz where there is maximum electric field strength, thereby verifying the positive dielectrophoretic phenomenon. Bioparticles were separated from the electrode edges when the working fre-quency was reduced and they were dragged towards the electrode centre, remaining there while the frequency was low enough. Such atypical pattern may be explained due to the occurrence of positive dielectrophoresis overlap with electrohydrodynamic effects (i.e. the viscous drag force acting on the particles was greater than the dielectrophoretic force at frequencies where positi-ve dielectrophoresis should occur. The experiments illustrated microsystem convenience in microhandling biological objects, the-reby providing these microarrays’ possible use with other cells. Liquid motion resulting from electrohydrodynamic effects must also be taken into account when designing bioparticle micromanipulators, and could be used as a mechanism for cleaning electrode surfaces.

  20. Confined photovoltaic fields in a photo-responsive liquid crystal test cell

    Science.gov (United States)

    Habibpourmoghadam, Atefeh; Jiao, Lin; Omairat, Faissal; Evans, Dean R.; Lucchetti, Liana; Reshetnyak, Viktor; Lorenz, Alexander

    2017-08-01

    Exciting experimental results on the response properties of hybridized photo responsive liquid crystal test cells are reported, where iron doped lithium niobate substrates were used to photo generate electric fields and indium tin oxide coated cover glasses were used to confine these photo generated fields in a liquid crystal layer. Samples were investigated in a modified inverted optical polarizing microscope with white probe light (crossed polarizers) and exposed with a Gaussian laser beam focused to a small spot (14 μm FWHM). Test cells filled with nematic LC showed homeotropic director alignment. Upon exposure, this alignment was maintained at the exposure spot center and the LC director was selectively realigned in a surrounding single ring. This ring had a thickness of a few microns and its diameter increased with increasing exposure intensity (112 μm at 0.7 mW, 204 μm at 1.1 mW). This characteristic director realignment was traced back to the optically generated electric field distributions by simulations. In samples filled with chiral nematic LC, uniformly standing helix alignment was found. Textural transitions were induced at the focus position, which again led to the formation of well-defined circular defects. We could show that these defects can be permanently stored within the chiral nematic LC. Polarized optical microscopy of a rotated sample revealed that a point like defect with +1 topological charge was enclosed in each of these defects. Photovoltaic fields generated in small lithium niobate particles dispersed in a LC were found to cause promising optical responses and particle movement.

  1. Low stoichiometry operation of a polymer electrolyte membrane fuel cell employing the interdigitated flow field design

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    Fuel cell operation on dry reactant gases under low stoichiometry conditions employing the interdigitated flow field is investigated using a multi-fluid model. It is assumed that the MEA contains a water uptake layer which facilitates water absorption to the membrane and hence prevents the anode...... stoichiometry may even be as low as 1.05. The effect of operation pressure and temperature on the membrane water content is studied. Finally, experiments are suggested to determine the kinetic absorption coefficient and the specific surface area of the electrolyte inside the catalyst layers....

  2. Stem cell research in Brazil: the production of a new field of science.

    Science.gov (United States)

    Zorzanelli, Rafaela Teixeira; Speroni, Angela Vasconi; Menezes, Rachel Aisengart; Leibing, Annette

    2017-01-01

    Based on a review of the literature published in the early twenty-first century by Brazilian researchers, the article offers an overview of stem cell research in Brazil. Three central topics were detected in these papers: (1) the funding of stem cell research in Brazil; (2) preclinical and clinical trials in Brazil; and (3) social anthropological analysis focused on ethical and legal matters. Our review identifies controversial questions in the construction of this scientific field, especially issues involving the media as a disseminator of values and of certain social representations, where new kinds of hope figure large. Within this climate of uncertainty, we find patients and their families energized by the promises of the "medicine of the future."

  3. Probing whole cell currents in high-frequency electrical fields: identification of thermal effects.

    Science.gov (United States)

    Olapinski, Michael; Manus, Stephan; Fertig, Niels; Simmel, Friedrich C

    2008-01-18

    An open-end coaxial probe is combined with a planar patch-clamp system to apply electric fields with GHz frequencies during conventional patch-clamp measurements. The combination of pulsed microwave irradiation and lock-in detection allows for the separation of fast and slow effects and hence facilitates the identification of thermal effects. The setup and the influence of radiation on the patch-clamp current are thoroughly characterized. For the independent optical verification of heating effects, a temperature microscopy technique is applied with high spatial, temporal and temperature resolution. It is shown that the effect of radiation at GHz frequencies on whole cell currents is predominantly thermal in nature in the case of RBL cells with an endogenous K(ir) 2.1 channel.

  4. Creation, Transport and Measurement of Bright Relativistic Electron Beams.

    Science.gov (United States)

    McKee, Chad Bennett

    This thesis deals with three topics relevant to linac-driven free electron lasers: the creation, transport and measurement of bright relativistic electron beams. Thermionic microwave electron guns produce bright electron beams that are well suited to drive free electron lasers, FELs. The rf fields in the gun cause some of the emitted electrons to reverse direction and strike the cathode. These back-bombarding electrons heat the cathode limiting both the pulse length and time averaged current. The cathode heating is reduced if a transverse magnetic field is applied across the gun cavity to deflect back-bombarding electrons. We improve the thermionic microwave electron gun by redesigning the deflection magnet to minimize the back-heating power. Computer simulations show that transverse magnetic fields with rapid axial falloffs reduce the back-heating power more than fields that are axially constant. Experiments verify these simulations. The deflection magnet presently installed on the Mark III gun has a slow axial falloff and reduces the back-heating power by 31%. Using the simulation results we design a new deflection magnet having a rapid axial falloff. This magnet has been installed on the NCCU gun and reduces the back-heating power by 63%. Improper transport of the electron beam through the beam line degrades the quality of the electron beam and lowers the performance of the FEL. We propose to improve the beam line commissioning and control procedures on linac -driven FELs by experimentally measuring the transfer matrix of each beam line section. The transfer matrix of a given section is measured by dithering the electron beam, measuring the beam vector before and after the section and inverting the subsequent data matrix. We minimize the beam line errors by minimizing the deviation between the experimentally measured transfer matrix and the design transfer matrix of each beam line section. While not experimentally verified, computer simulations show that this

  5. The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Bright-end of the Sub-millimeter Number Counts

    NARCIS (Netherlands)

    Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Chapman, S. C.; Geach, J. E.; Ivison, R. J.; Thomson, A. P.; Aretxaga, I.; Blain, A. W.; Cowley, W. I.; Chen, Chian-Chou; Coppin, K. E. K.; Dunlop, J. S.; Edge, A. C.; Farrah, D.; Ibar, E.; Karim, A.; Knudsen, K. K.; Meijerink, R.; Michałowski, M. J.; Scott, D.; Spaans, M.; van der Werf, P. P.

    We present high-resolution 870 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) continuum maps of 30 bright sub-millimeter sources in the UKIDSS UDS field. These sources are selected from deep, 1 degree2 850 μm maps from the SCUBA-2 Cosmology Legacy Survey, and are representative of the

  6. Brookhaven Lab physicists Edward Beebe and Alexander Pikin win 'Brightness Award' for achievement in ion source physics and technology

    CERN Multimedia

    2003-01-01

    "Edward Beebe and Alexander Pikin, physicists at the U.S. Department of Energy's Brookhaven National Laboratory, have been awarded the Ion Source Prize, known as the "Brightness Award," which recognizes and encourages innovative and significant recent achievements in the fields of ion source physics and technology" (1 page).

  7. Effects of Straight and Serpentine Flow Field Designs on Temperature Distribution in Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2016-01-01

    Full Text Available Proton exchange membrane fuel cells or sometimes called as polymer electrolyte membrane (PEM fuel cells is a device for energy transformation in a changing process from one form of energy to another form of energy. It became as an alternative especially for future use in stationary and vehicular applications. PEM fuel cells provide high efficiency and power density with null emission, low operating temperature, quickly start and long life. One of the aspects that are crucial in optimizing the PEM fuel cells performance is a flow field geometry. In this paper, a simulation case of PEM fuel cells was simulated to determine effects of a straight and serpentine flow field on temperature distribution in PEM fuel cells. ANSYS Fluent software was used to simulate 3-dimensional models of single PEM fuel cells in order to determine the effects of changes in the geometry flow field on temperature distributions. Results showed that the serpentine flow field design produces a better temperature distribution along the membrane. The simulation result shows a good agreement with the experiment, thus boost a higher confidence in the results to determine the effectiveness of the flow field design in PEM fuel cells.

  8. Extra-Low-Frequency Magnetic Fields alter Cancer Cells through Metabolic Restriction

    CERN Document Server

    Li, Ying

    2012-01-01

    Background: Biological effects of extra-low-frequency (ELF) magnetic fields (MF) have lacked a credible mechanism of interaction between MFs and living material. Objectives: Examine the effect of ELF-MFs on cancer cells. Methods: Five cancer cell lines were exposed to ELF-MFs within the range of 0.025 to 5 microT, and the cells were examined for karyotype changes after 6 days. Results: All cancer cells lines lost chromosomes from MF exposure, with a mostly flat dose-response. Constant MF exposures for three weeks allow a rising return to the baseline, unperturbed karyotypes. From this point, small MF increases or decreases are again capable of inducing karyotype contractions. Our data suggests that the karyotype contractions are caused by MF interference with mitochondria's ATP synthase (ATPS), compensated by the action of AMP-activated Protein Kinase (AMPK). The effects of MFs are similar to those of the ATPS inhibitor oligomycin. They are amplified by metformin, an AMPK stimulator, and attenuated by resisti...

  9. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis

    Science.gov (United States)

    Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri

    2016-01-01

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294

  10. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.

    Science.gov (United States)

    Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri

    2016-03-22

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.

  11. Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes.

    Science.gov (United States)

    Singh, Harminder Pal; Sharma, Ved Parkash; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2012-04-01

    Indiscriminate adoption and use of cell phone technology has tremendously increased the levels of electromagnetic field radiations (EMFr) in the natural environment. It has raised the concerns among the scientists regarding the possible risks of EMFr to living organisms. However, not much has been done to assess the damage caused to plants that are continuously exposed to EMFr present in the environment. The present study investigated the biochemical mechanism of interference of 900 MHz cell phone EMFr with root formation in mung bean (Vigna radiata syn. Phaseolus aureus) hypocotyls, a model system to study rhizogenesis in plants. Cell phone EMFr enhanced the activities of proteases (by 1.52 to 2.33 times), polyphenol oxidases (by 1.5 to 4.3 times), and peroxidases (by 1.5 to 2.0 times) in mung bean hypocotyls over control. Further, EMFr enhanced malondialdehyde (an indicator of lipid peroxidation), hydrogen peroxide, and proline content, indicating a reactive oxygen species-mediated oxidative damage in hypocotyls. It was confirmed by the upregulation in the activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase, and glutathione reductase) suggesting their possible role in providing protection against EMFr-induced oxidative damage. The study concluded that cell phone radiations affect the process of rhizogenesis through biochemical alterations that manifest as oxidative damage resulting in root impairment.

  12. Microcystin quota, cell division and microcystin net production of precultured Microcystis aeruginosa CYA 228 (Chroococcales, Cyanophyceae) under field conditions

    DEFF Research Database (Denmark)

    Lyck, S.; Christoffersen, K.

    2003-01-01

    The relationship between the specific cell division rate (mu(c)), the specific microcystin (mcyst) production rate (mu(mcyst)) and the cellular content of mcyst (Q(mcyst)) was investigated during growth of Microcystis aeruginosa strain CYA 228 cells in the field (microcosms), and the results were...... compared with previous data obtained from batch cultures. Growth of an easily recognizable unicellular culture alga in the field made it possible to evaluate different ways of expressing mcyst field data as the ratio of mcyst to dry weight, protein or chlorophyll a (Chl a) against the mcyst quota....... The population of CYA 228 cells increased from day 1 to day 7, but decreased from day 7 to day 17. More than a threefold variation was observed in Q(mcyst) of M. aeruginosa cells under field conditions, which indicates that the relationship between mu(c) and mu(mcyst) was not strictly linear. The data from...

  13. Evanescent field microscopy techniques for studying dynamics at the surface of living cells

    Science.gov (United States)

    Sund, Susan E.

    This thesis presents two distinct optical microscopy techniques for applications in cell biophysics: (a)the extension to living cells of an established technique, total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) for the first time in imaging mode; and (b)the novel development of polarized total internal reflection fluorescence (p- TIRF) to study membrane orientation in living cells. Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about the relevant chemical kinetic rates in vivo. TIR/FRAP, an established technique which can measure reversible biomolecular kinetic rates at surfaces, is extended here to measure kinetic parameters of microinjected rhodamine actin at the cytofacial surface of the plasma membrane of living cultured smooth muscle cells. For the first time, spatial imaging (with a CCD camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging allows production of spatially resolved images of kinetic data, and calculation of correlation distances, cell-wide gradients, and kinetic parameter dependence on initial fluorescence intensity. In living cells, membrane curvature occurs both in easily imaged large scale morphological features, and also in less visualizable submicroscopic regions of activity such as endocytosis, exocytosis, and cell surface ruffling. A fluorescence microscopic method, p-TIRF, is introduced here to visualize such regions. The method is based on fluorescence of the oriented membrane probe diI- C18-(3) (diI) excited by evanescent field light polarized either perpendicular or parallel to the plane of the substrate coverslip. The excitation efficiency from each polarization depends on the membrane orientation, and thus the ratio of the observed fluorescence excited by these two polarizations vividly shows regions of microscopic and submicroscopic curvature of the membrane. A theoretical background of the technique and experimental verifications

  14. Beam dynamics in an initial part of a high Brightness electron linac

    CERN Document Server

    Ayzatsky, M I; Dovbnya-Kushnir, V A

    2001-01-01

    The paper is focused on problems of obtained a bright electron beam in a system that includes a grid-controlled electron gun,a klystron type type subharmonical buncher, a standing wave fundamental buncher with increasing accelerating field and a short travelling wave accelerating section. Beam focusing is provided by a longitudinal solenoidal magnetic field.It was shown that the proposed system can provide electron bunches with a peak current more than 100 A and normalized r.m.s. emittance no more than phi centre dot mm centre dot mrad.

  15. Bose-Einstein condensates with spatially inhomogeneous interaction and bright solitons

    Energy Technology Data Exchange (ETDEWEB)

    Shin, H.J., E-mail: hjshin@khu.ac.kr [Department of Physics and Research Institute of Basic Sciences, Kyunghee University, Seoul 130-701 (Korea, Republic of); Radha, R., E-mail: radha_ramaswamy@yahoo.com [Centre for Nonlinear Science, Department of Physics, Government College for Women (Autonomous), Kumbakonam 612001 (India); Kumar, V. Ramesh [Centre for Nonlinear Science, Department of Physics, Government College for Women (Autonomous), Kumbakonam 612001 (India); Institute of Physics, Chinese Academy of Sciences, Beijing (China)

    2011-06-20

    In this Letter, we investigate the dynamics of Bose-Einstein Condensates (BECs) with spatially inhomogeneous interaction and generate bright solitons for the condensates by solving the associated mean field description governed by the Gross-Pitaevskii (GP) equation. We then investigate the properties of BECs in an optical lattice and periodic potential. We show that the GP equation in an optical lattice potential is integrable provided the interaction strength between the atoms varies periodically in space. The model discussed in the Letter offers the luxury of choosing the form of the lattice without destroying the integrability. Besides, we have also brought out the possible ramifications of the integrable model in the condensates of quasi-particles. -- Highlights: → We generate bright solitons for the collisionally inhomogeneous BECs. → We then study their properties in an optical lattice and periodic potential. → The model may have wider ramifications in the BECs of quasi-particles.

  16. Optical sky brightness at Dome A, Antarctica, from the Nigel experiment

    Science.gov (United States)

    Sims, Geoff; Ashley, Michael C. B.; Cui, Xiangqun; Everett, Jon R.; Feng, Longlong; Gong, Xuefei; Hengst, Shane; Hu, Zhongwen; Lawrence, Jon S.; Luong-van, Daniel M.; Shang, Zhaohui; Storey, John W. V.; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhengxi

    2010-07-01

    Nigel is a fiber-fed UV/visible grating spectrograph with a thermoelectrically-cooled 256×1024 pixel CCD camera, designed to measure the twilight and night sky brightness from 300nm to 850 nm. Nigel has three pairs of fibers, each with a field-of-view with an angular diameter of 25 degrees, pointing in three fixed positions towards the sky. The bare fibers are exposed to the sky with no additional optics. The instrument was deployed at Dome A, Antarctica in January 2009 as part of the PLATO (PLATeau Observatory) robotic observatory. During the 2009 winter, Nigel made approximately six months of continuous observations of the sky, with typically 104 deadtime between exposures. The resulting spectra provide quantitative information on the sky brightness, the auroral contribution, and the water vapour content of the atmosphere. We present details of the design, construction and calibration of the Nigel spectrometer, as well some sample spectra from a preliminary analysis.

  17. Patterns of failure after involved field radiotherapy for locally advanced esophageal squamous cell carcinoma.

    Science.gov (United States)

    Li, Duo-Jie; Li, Hong-Wei; He, Bin; Wang, Geng-Ming; Cai, Han-Fei; Duan, Shi-Miao; Liu, Jing-Jing; Zhang, Ya-Jun; Cui, Zhen; Jiang, Hao

    2016-01-01

    To retrospectively analyze the patterns of failure and the treatment effects of involved-field irradiation (IFI) on patients treated with locally advanced esophageal squamous cell carcinoma (ESCC) and to determine whether IFI is practicable in these patients. A total of 79 patients with locally advanced ESCC underwent three dimensional conformal (3D)CRT) or intensity modulated radiotherapy (IMRT) using IFI or elective nodal irradiation (ENI) according to the target volume. The patterns of failure were defined as local/regional, in-field, out)of)field regional lymph node (LN) and distant failure. With a median follow)up of 32.0 months, failures were observed in 66 (83.6%) patients. The cumulative incidence of local/regional failure (55.8 vs 52.8%) and in)field regional lymph node failure (25.6 vs 19.4%) showed no statistically significant difference between the IFI and the ENI group (p=0.526 and 0.215, respectively). Out)of)field nodal relapse rate of only 7.0% was seen in the IFI group. Three)year survival rates for the ENI and IFI group were 22.2 and 18.6%, respectively (p=0.240), and 3)year distant metastasis rates were 27.8 and 32.6%, respectively (p=0.180). The lung V10, V20, V30 and mean lung dose of the ENI group were greater than those of the IFI group, while the mean lung dose and V10 had statistically significant difference. The patterns of failure and survival rates in the IFI group were similar as in the ENI group; the regional recurrence and distant metastasis are the main cause of treatment failure. IFI is feasible for locally advanced ESCC. Further investigation is needed to increase local control and decrease distant metastasis in these patients.

  18. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  19. Millimeter-wave Imaging Radiometer Brightness Temperatures, Wakasa Bay, Japan

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes calibrated brightness temperatures measured over Wakasa Bay in the Sea of Japan in January and February 2003. The MIR was carried on a...

  20. Nimbus-5 ESMR Polar Gridded Brightness Temperatures, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  1. SMEX03 SSM/I Brightness Temperature Data, Alabama

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  2. Binocular Coordination in Reading When Changing Background Brightness

    Directory of Open Access Journals (Sweden)

    Köpsel Anne

    2017-10-01

    Full Text Available Contradicting results concerning binocular coordination in reading have been reported: Liversedge et al. (2006 reported a dominance of uncrossed fixations, whereas Nuthmann and Kliegl (2009 observed more crossed fixations in reading. Based on both earlier and continuing studies, we conducted a reading experiment involving varying brightness of background and font. Calibration was performed using Gabor patches presented on grey background. During the experimental session, text had to be read either on dark, bright, or grey background. The data corroborates former results that showed a predominance of uncrossed fixations when reading on dark background, as well as those showing a predominance of crossed fixations, when reading on bright background. Besides these systematic shifts, the new results show an increase in unsystematic variability when changing the overall brightness from calibration to test. The origins of the effects need to be clarified in future research.

  3. CLPX-Satellite: AVHRR/HRPT Brightness Temperatures and Reflectances

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes AVHRR/HRPT (Advanced Very High Resolution Radiometer/High Resolution Picture Transmission) brightness temperatures and reflectances over the...

  4. SMEX03 SSM/I Brightness Temperature Data, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  5. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of the proposed effort is maximizing the brightness of fiber coupled laser diode pump sources at a minimum cost. The specific innovation proposed is to...

  6. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — NSIDC produces daily gridded brightness temperature data from orbital swath data generated by the Special Sensor Microwave/Imager (SSM/I) aboard the Defense...

  7. CLEMENTINE LWIR BRIGHTNESS TEMPERATURE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This volume contains the archive of Lunar brightness temperature data derived from images acquired by the Clementine Long Wavelength Infrared (LWIR) camera. The LWIR...

  8. SMEX02 SSM/I Brightness Temperature Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — The Special Sensor Microwave/Imager (SSM/I) is a seven-channel, four-frequency, linearly polarized passive microwave radiometric system. Data are brightness...

  9. CLASIC07 PALS Brightness Temperature Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains brightness temperature data obtained by the Passive Active L-band System (PALS) microwave aircraft radiometer instrument as part of the Cloud...

  10. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  11. Visible Color and Photometry of Bright Materials on Vesta

    Science.gov (United States)

    Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].

  12. Static magnetic fields inhibit proliferation and disperse subcellular localization of gamma complex protein3 in cultured C2C12 myoblast cells.

    Science.gov (United States)

    Kim, SeungChan; Im, Wooseok

    2010-05-01

    Magnetic fields may delay the rate of cell cycle progression, and there are reports that magnetic fields induce neurite outgrowth in cultured neuronal cells. To demonstrate whether magnetic field also effects on myoblast cells in cell growth, C2C12 cell lines were cultured and 2000G static magnetic field was applied. After 48 h of incubation, both the WST-1 assay (0.01 magnetic fields inhibit the proliferation of cultured C2C12 cells. Immunocytochemistry for alpha and tubulin gamma complex protein (TUBA and GCP3) was made and applying a static magnetic field-dispersed tubulin GCP3 formation, a intracellular apparatus for tubulin structuring in cell division. This protein expression was not altered by western blot. This study indicates that applying a static magnetic field alters the subcellular localizing of GCP3, and may delay the cell growth in cultured C2C12 myoblast cells.

  13. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    Directory of Open Access Journals (Sweden)

    Jansen Justus HW

    2010-08-01

    Full Text Available Abstract Background Although pulsed electromagnetic field (PEMF stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition, expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p Results Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and -3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-κB ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation

  14. Limits on the Ultra-bright Fast Radio Burst Population from the CHIME Pathfinder

    Science.gov (United States)

    Amiri, M.; Bandura, K.; Berger, P.; Bond, J. R.; Cliche, J. F.; Connor, L.; Deng, M.; Denman, N.; Dobbs, M.; Domagalski, R. S.; Fandino, M.; Gilbert, A. J.; Good, D. C.; Halpern, M.; Hanna, D.; Hincks, A. D.; Hinshaw, G.; Höfer, C.; Hsyu, G.; Klages, P.; Landecker, T. L.; Masui, K.; Mena-Parra, J.; Newburgh, L. B.; Oppermann, N.; Pen, U. L.; Peterson, J. B.; Pinsonneault-Marotte, T.; Renard, A.; Shaw, J. R.; Siegel, S. R.; Sigurdson, K.; Smith, K.; Storer, E.; Tretyakov, I.; Vanderlinde, K.; Wiebe, D. V.; Scientific Collaboration20, CHIME

    2017-08-01

    We present results from a new incoherent-beam fast radio burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution’s slope, α \\equiv -\\tfrac{\\partial {log}N}{\\partial {log}S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power law with α = 0.7, we would expect an FRB detection every few days, making this the fastest survey on the sky at present. We collected 1268 hr of data, amounting to one of the largest exposures of any FRB survey, with over 2.4 × 105 deg2 hr. Having seen no bursts, we have constrained the rate of extremely bright events to <13 sky-1 day-1 above ˜ 220\\sqrt{(τ /{ms})} {Jy} {ms} for τ between 1.3 and 100 ms, at 400-800 MHz. The non-detection also allows us to rule out α ≲ 0.9 with 95% confidence, after marginalizing over uncertainties in the GBT rate at 700-900 MHz, though we show that for a cosmological population and a large dynamic range in flux density, α is brightness dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments.

  15. Effect of electrode geometry on field strength in plastic microfluidic devices and application to cell membrane permeabilization

    Science.gov (United States)

    Chooljian, Marc; Paredes, Jacobo; Liepmann, Dorian

    2014-11-01

    We have developed a method that allows embedding of electrodes in up to 3 walls of a plastic microfluidic channel. Electric field strength and homogeneity of various electrode geometries is analyzed theoretically and experimentally by evaluating the efficiency of on-chip lysis of cells. Electric field-mediated disruption of membranes is an important tool in diagnostics, basic biology, and synthetic biology due to the ability to permeabilize the cell membrane without changing the chemical composition of the buffer. Typically, fields of the required magnitude are applied to the cell by discharging a capacitor through a mixture of cells in a cuvette, resulting in a transient high-voltage pulse. We demonstrate that is possible to substitute a spatially varied DC electric field along a microchannel and to control the timing of the pulses by changing the electrode spacing and the flow rate. Homogeneity of the field with respect to the cross section of the channel is key to achieving critical field strength regardless of the cell's lateral position in the channel. A comparison of 2D versus 3D electrode geometries on the efficiency of electroporation and on side-effects arising due to the electric field (recirculating flows and hydrolysis) is presented.

  16. Details of out-field regional recurrence after involved-field irradiation with concurrent chemotherapy for locally advanced esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-05-01

    Full Text Available Xiaoli Zhang,1,2 Jinming Yu,1,2 Minghuan Li,2 Hui Zhu2 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 2Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China Background: The purpose of this study was to describe the patterns of out-field regional recurrence after involved-field irradiation (IFI in definitive concurrent chemoradiotherapy (CCRT for locally advanced esophageal squamous cell carcinoma (LA-ESCC and identify the possible risk factors. Patients and methods: Eighty patients with LA-ESCC who received CCRT with IFI between January 2003 and January 2009 at the Shandong Cancer Hospital were recruited and analyzed. Imaging scans demonstrating first sites of failure were compared with original computed tomography-based radiation treatment plans, and failure patterns were defined as in-field, out-field regional (failures in initially uninvolved regional nodes, and distant failures. Results: After a median follow-up time of 52.6 months, 24 patients had evidence of out-field regional failure, 43 patients had evidence of in-field failure, and 33 patients had the evidence of distant failure. Multivariate analysis revealed that out-field regional failure was associated with clinical tumor status (T4 vs T1–3, odds ratio [OR] =6.547, P=0.002, tumor length (>8 cm vs ≤8 cm, OR =4.130, P=0.036, response to CCRT (complete response vs no complete response, OR =2.646, P=0.035, and in-field failure (no in-field failure vs in-field failure, OR =1.32, P=0.016. Survival analyses indicated that, compared to in-field failure or distant failure alone group, out-field regional failure alone group tended to have longer overall (P=0.006 and progression-free survival (P=0.164. Conclusion: Our data suggested that the predominant failure pattern after IFI was not out-field regional failure, which also did not influence survival

  17. The Photometric Brightness Variation of Geostationary Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Haingja Seo

    2013-09-01

    Full Text Available Photometric observation is one of the most effective techniques for determining the physical characteristics of unknown space objects and space debris. In this research, we examine the change in brightness of the Communication, Ocean, Meteorological Satellite-1 (COMS-1 Geostationary Orbit Satellite (GEO, and compare it to our estimate model. First, we calculate the maximum brightness time using our calculation method and then derive the light curve shape using our rendering model. The maximum brightness is then calculated using the induced equation from Pogson's formula. For a comparison with our estimation, we carried out photometric observation using an optical telescope. The variation in brightness and the shape of the light curve are similar to the calculations achieved using our model, but the maximum brightness shows a slightly different value from our calculation result depending on the input parameters. This paper examines the photometric phenomenon of the variation in brightness of a GEO satellite, and the implementation of our approach to understanding the characteristics of space objects.

  18. Global View of the Bright Material on Vesta

    Science.gov (United States)

    Zambon, F.; DeSanctis, C.; Schroeder, S.; Tosi, F.; Li, J.-Y.; Longobardo, A.; Ammannito, E.; Blewett, D. T.; Palomba, E.; Capaccioni, F.; hide

    2014-01-01

    At 525 km in mean diameter, Vesta is the second-most massive and one of the brightest asteroids of the main-belt. Here we give a global view of the bright material (BM) units on Vesta. We classified the BMs according to the normal visual albedo. The global albedo map of Vesta allows to be divided the surface into three principal types of terrains: bright regions, dark regions and intermediate regions. The distribution of bright regions is not uniform. The mid-southern latitudes contain the most bright areas, while the northern hemisphere is poor in bright regions. The analysis of the spectral parameters and the normal visual albedo show a dependence between albedo and the strength (depth) of ferrous iron absorption bands, strong bands correspond with high albedo units. Vesta's average albedo is 0.38, but there are bright material whose albedo can exceed 0.50. Only the E-Type asteroids have albedos comparable to those of the BMs on Vesta. The Dawn mission observed a large fraction of Vesta's surface at high spatial resolution, allowing a detailed study of the morphology and mineralogy of it. In particular, reflectance spectra provided by the Visible and InfraRed spectrometer (VIR), confirmed that Vesta's mineralogy is dominated by pyroxenes. All Vesta spectra show two strong absorption bands at approx 0.9 and 1.9 micron, typical of the pyroxenes and associated with the howardite, eucrite and diogenite (HED) meteorites.

  19. Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    Science.gov (United States)

    Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.

    2012-01-01

    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.

  20. Where to Find Young Bright Stars in Geosciences: GGD, NSU

    Science.gov (United States)

    Rakhmenkoulova, I. F.; Sharapov, V. N.

    2004-12-01

    Geology and Geophysics Department (GGD) of Novosibirsk State University (NSU) can be regarded as infant, because it was founded in 1962. On the other hand, if to judge by what have been done - it is not only full-fledged, but well-known department. The unique location and specific educational and scientific traditions make GGD a famous school not only in Siberia, but in Russia, and all over the world. What are the tips to prepare bright stars in geosciences? 1.NSU is located in Academgorodok (Novosibirsk scientific center), unique place in Siberia, where more than 20 scientific institutions are located. This makes the University different from other schools in Russia. Famous Russian scientists, including members of RAS, together with foreign professors give lectures and seminars for NSU students. 2.The bright star hunting starts far below the NSU level. Each year in April there is a special event in Academgorodok -`Geologic Olympiad', where children of all Russian regions, as well as ex-Soviet republics are gathered together to submit their papers, to discuss most interesting geoscience problems and to win prizes for their knowledge. The youngest stars happen to be only 6-7 years old. The event is sponsored by NSU, UIGGM, and the Ministry of Natural Resources. The brightest geostars are grown from `Geologic Olympiad' participants. 3.There is special physics-mathematical high school in Academgorodok. Each summer this school gathers young stars from farthest Siberian and Far East regions and gives classes and seminars in mathematics, physics, chemistry and geology. As the result the most talented children become the students of this school (for two years). The school in turn supplies GGD with the students. 4.NSU has the study curriculum different from other universities in Russia. That is why the entrance examinations are much more difficult as compared to other schools and are taken in July (a month earlier then at other universities). However the entrance

  1. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.

    Science.gov (United States)

    Maturana, Matias I; Apollo, Nicholas V; Garrett, David J; Kameneva, Tatiana; Cloherty, Shaun L; Grayden, David B; Burkitt, Anthony N; Ibbotson, Michael R; Meffin, Hamish

    2018-02-01

    Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell's spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear.

  2. Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses

    Directory of Open Access Journals (Sweden)

    Vitalij Novickij

    2017-04-01

    Full Text Available Background Cell membrane permeabilization by pulsed electromagnetic fields (PEMF is a novel contactless method which results in effects similar to conventional electroporation. The non-invasiveness of the methodology, independence from the biological object homogeneity and electrical conductance introduce high flexibility and potential applicability of the PEMF in biomedicine, food processing, and biotechnology. The inferior effectiveness of the PEMF permeabilization compared to standard electroporation and the lack of clear description of the induced transmembrane transport are currently of major concern. Methods The PEMF permeabilization experiments have been performed using a 5.5 T, 1.2 J pulse generator with a multilayer inductor as an applicator. We investigated the feasibility to increase membrane permeability of Chinese Hamster Ovary (CHO cells using short microsecond (15 µs pulse bursts (100 or 200 pulses at low frequency (1 Hz and high dB/dt (>106 T/s. The effectiveness of the treatment was evaluated by fluorescence microscopy and flow cytometry using two different fluorescent dyes: propidium iodide (PI and YO-PRO®-1 (YP. The results were compared to conventional electroporation (single pulse, 1.2 kV/cm, 100 µs, i.e., positive control. Results The proposed PEMF protocols (both for 100 and 200 pulses resulted in increased number of permeable cells (70 ± 11% for PI and 67 ± 9% for YP. Both cell permeabilization assays also showed a significant (8 ± 2% for PI and 35 ± 14% for YP increase in fluorescence intensity indicating membrane permeabilization. The survival was not affected. Discussion The obtained results demonstrate the potential of PEMF as a contactless treatment for achieving reversible permeabilization of biological cells. Similar to electroporation, the PEMF permeabilization efficacy is influenced by pulse parameters in a dose-dependent manner.

  3. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage.

    Directory of Open Access Journals (Sweden)

    Katja Storch

    Full Text Available Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.

  4. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage.

    Science.gov (United States)

    Storch, Katja; Dickreuter, Ellen; Artati, Anna; Adamski, Jerzy; Cordes, Nils

    2016-01-01

    Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.

  5. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations

    DEFF Research Database (Denmark)

    Kern, Stefan; Rösel, Anja; Pedersen, Leif Toudal

    2016-01-01

    Sea-ice concentrations derived from satellite microwave brightness temperatures are less accurate during summer. In the Arctic Ocean the lack of accuracy is primarily caused by melt ponds, but also by changes in the properties of snow and the sea-ice surface itself. We investigate the sensitivity...... of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes......, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso...

  6. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Dynamically Harmonized FT-ICR Cell with Specially Shaped Electrodes for Compensation of Inhomogeneity of the Magnetic Field. Computer Simulations of the Electric Field and Ion Motion Dynamics

    Science.gov (United States)

    Kostyukevich, Yury I.; Vladimirov, Gleb N.; Nikolaev, Eugene N.

    2012-12-01

    The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field.

  8. Investigation of superparamagnetic (Fe3O4) nanoparticles and magnetic field exposures on CHO-K1 cell line

    Science.gov (United States)

    Coker, Zachary; Estlack, Larry; Hussain, Saber; Choi, Tae-Youl; Ibey, Bennett L.

    2016-03-01

    Rapid development in nanomaterial synthesis and functionalization has led to advanced studies in actuation and manipulation of cellular functions for biomedical applications. Often these actuation techniques employ externally applied magnetic fields to manipulate magnetic nanomaterials inside cell bodies in order to drive or trigger desired effects. While cellular interactions with low-frequency magnetic fields and nanoparticles have been extensively studied, the fundamental mechanisms behind these interactions remain poorly understood. Additionally, modern investigations on these concurrent exposure conditions have been limited in scope, and difficult to reproduce. This study presents an easily reproducible method of investigating the biological impact of concurrent magnetic field and nanoparticle exposure conditions using an in-vitro CHO-K1 cell line model, with the purpose of establishing grounds for in-depth fundamental studies of the mechanisms driving cellular-level interactions. Cells were cultured under various nanoparticle and magnetic field exposure conditions from 0 to 500 μg/ml nanoparticle concentrations, and DC, 50 Hz, or 100 Hz magnetic fields with 2.0 mT flux density. Cells were then observed by confocal fluorescence microscopy, and subject to biological assays to determine the effects of concurrent extreme-low frequency magnetic field and nanoparticle exposures on cellnanoparticle interactions, such as particle uptake and cell viability by MTT assay. Current results indicate little to no variation in effect on cell cultures based on magnetic field parameters alone; however, it is clear that deleterious synergistic effects of concurrent exposure conditions exist based on a significant decrease in cell viability when exposed to high concentrations of nanoparticles and concurrent magnetic field.

  9. Studying the lay of the land : views and experiences of professionals in the translational pluripotent stem cell field

    NARCIS (Netherlands)

    Habets, Michelle G J L; van Delden, Johannes J M; Bredenoord, Annelien L

    AIM: The inherent uncertainty of first-in-human trials, combined with the technical complexity of pluripotent stem cells (PSCs), makes early phase PSC studies ethically challenging. Conducting parallel bioethics research based on experiences and views of professionals in the stem cell field is

  10. Wide-Field Multi-Parameter FLIM: Long-Term Minimal Invasive Observation of Proteins in Living Cells.

    NARCIS (Netherlands)

    Vitali, M.; Picazo, F.; Prokazov, Y.; Duci, A.; Turbin, E.; Götze, C.; Llopis, J.; Hartig, R.; Visser, A.J.W.G.; Zuschratter, W.

    2011-01-01

    Time-domain Fluorescence Lifetime Imaging Microscopy (FLIM) is a remarkable tool to monitor the dynamics of fluorophore-tagged protein domains inside living cells. We propose a Wide-Field Multi-Parameter FLIM method (WFMP-FLIM) aimed to monitor continuously living cells under minimum light intensity

  11. Research on testing instrument and method for correction of the uniformity of image intensifier fluorescence screen brightness

    Science.gov (United States)

    Qiu, YaFeng; Chang, BenKang; Qian, YunSheng; Fu, RongGuo

    2011-09-01

    To test the parameters of image intensifier screen is the precondition for researching and developing the third generation image intensifier. The picture of brightness uniformity of tested fluorescence screen shows bright in middle and dark at edge. It is not so direct to evaluate the performance of fluorescence screen. We analyze the energy and density distribution of the electrons, After correction, the image in computer is very uniform. So the uniformity of fluorescence screen brightness can be judged directly. It also shows the correction method is reasonable and close to ideal image. When the uniformity of image intensifier fluorescence screen brightness is corrected, the testing instrument is developed. In a vacuum environment of better than 1×10-4Pa, area source electron gun emits electrons. Going through the electric field to be accelerated, the high speed electrons bombard the screen and the screen luminize. By using testing equipment such as imaging luminance meter, fast storage photometer, optical power meter, current meter and photosensitive detectors, the screen brightness, the uniformity, light-emitting efficiency and afterglow can be tested respectively. System performance are explained. Testing method is established; Test results are given.

  12. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.

    Science.gov (United States)

    Dermol, Janja; Miklavčič, Damijan

    2014-12-01

    High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The enhancement of neuronal cells wound healing with non-contact electric field stimulation by graphene electrodes

    Science.gov (United States)

    Lee, Sohee; Heo, Chaejeong; Lee, Si Young; Lee, Young Hee; Suh, Minah

    2013-05-01

    Electrical stimulation affects cellular behaviors including division, migration and wound healing [1-3]. Cellular injury often occurs due to the imbalance of the endogenous electric field [3]. In order to recover from the injury, wound healing process requires various cellular changes such as regeneration, migration, and the enhancement of cytoskeletal proteins and growth factors. In previous reports, a weak non-contact electric field stimulation (nEFS) accelerates the cell migration as well as cell-to-cell coupling between neuronal cell junction which are accompanied by increasing of cytoskeletal proteins [4, 5]. In this paper, we further investigated the wound healing effect of the nEFS in the neuronal cells (SHSY5Y cells) with live cell optical imaging. Cells were cultured over the optically transparent graphenen EF stimulator. Cellular behavioral changes upon nEFS were recorded with live optical imaging during stimulation of 120 minutes. The ability of wound healing was significantly enhanced with the nEFS. In particular, nEFS significantly shorten the duration of wound healing process. Moreover, after treating cells with cytochalasin D, a block polymerization of the actin filaments, the nEFS significantly enhanced wound healing process of cytochalasin D treated neural cells as compared to the control neural cells. This study suggests that nEFS may provide an effective way to control neural cells repairing process from cellular injury. Further mechanism study about the effect of nEFS on the wound healing may shed new light on cellular behavior.

  14. Apoptosis selectively induced in BEL-7402 cells by folic acid-modified magnetic nanoparticles combined with 100 Hz magnetic field.

    Science.gov (United States)

    Wen, Jian; Jiang, Shulian; Chen, Zhiqiang; Zhao, Wei; Yi, Yongxiang; Yang, Ruili; Chen, Baoan

    2014-01-01

    To explore the effect of folic acid-modified magnetic nanoparticles (FA-MNPs) combined with a 100 Hz extremely low-frequency electromagnetic field (ELF-EMF) on the apoptosis of liver cancer BEL-7402 cells. MNPs (20 nm) were prepared by coprecipitation, and then folic acid was coated onto MNPs to prepare FA-MNPs. BEL-7402 cells and HL7702 cells were selected as liver cancer cells and normal liver cells, respectively. The ELF-EMF was generated from a solenoid coil. Cellular uptake of NPs was determined by inductively coupled plasma atomic emission spectroscopy. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate cell inhibition. Apoptosis was analyzed by flow cytometry. Statistical analyses were performed using two-way analysis of variance. FA-MNPs combined with a 100 Hz magnetic field significantly inhibited cell proliferation and induced higher apoptosis compared to either the ELF-EMF alone or FA-MNPs alone. FA-MNPs showed a better apoptosis effect and higher iron uptake in BEL-7402 cells compared to in HL7702 cells. On the basis of the ELF-EMF, higher doses of FA-MNPs brought higher apoptosis and higher iron uptake in either BEL-7402 cells or HL7702 cells. These results suggest that FA-MNPs may induce apoptosis in a cellular iron uptake-dependent manner when combined with an ELF-EMF in BEL-7402 cells.

  15. Brightness through Local Constraint-LNA-Enhanced FIT Hybridization Probes for In Vivo Ribonucleotide Particle Tracking

    DEFF Research Database (Denmark)

    Hövelmann, Felix; Gaspar, Imre; Loibl, Simon

    2014-01-01

    Imaging the dynamics of RNA in living cells is usually performed by means of transgenic approaches that require modification of RNA targets and cells. Fluorogenic hybridization probes would also allow the analysis of wild-type organisms. We developed nuclease-resistant DNA forced intercalation (FIT...... acid (LNA) unit serves to introduce a local constraint. This closes fluorescence decay channels and thereby increases the brightness of the probe-target duplexes. As few as two probes were sufficient to enable the tracking of oskar mRNPs in wild-type living Drosophila melanogaster oocytes....

  16. Blood Cell Segmentation Based on Improved Pulse Coupled Neural Network and Fuzzy Entropy

    OpenAIRE

    Zhanbo Liu; Fang Wang; Shi Yan; Rui Huang

    2016-01-01

    In the field of biomedical image processing, because of the low intensity and brightness of the cell image, and the complex structure of the cell image, the segmentation of cell images is very difficult. A large number of studies have shown that the Pulse Coupled Neural Networks (PCNN) is suitable for image segmentation. However, the traditional PCNN must set a large number of parameters in image segmentation, and the optimal number of iterations cannot be automatically determined. In this pa...

  17. The Fabrication of Flow Field Plates for Direct Methanol Fuel Cell Using Lithography and Radio Frequency Sputtering.

    Science.gov (United States)

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Cho, Kun-Ching; Hsu, Chun-Yao; Chen, Zhi-Lun

    2015-08-01

    This study uses lithography to etch flow fields on a single side of a printed circuit board (PCB) and combines a flow field plate with a collector plate to make innovative anode flow field plates and cathode flow field plates for a direct methanol fuel cell (DMFC). TiO2 thin film is also sputtered on the anode flow field plate using radio frequency (RF) sputtering. The experimental results show that the prepared DMFC has a better maximum power density of 11.928 mW/cm2. Furthermore, when a TiO2 thin film is sputtered on the flow field plate of the assembled DMFC, the maximum power density is 14.426 mW/cm2, which is actually 21% more than that for a DMFC with no TiO2 thin film coated on the flow field plate.

  18. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    Science.gov (United States)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  19. 2-GHz band CW and W-CDMA modulated radiofrequency fields have no significant effect on cell proliferation and gene expression profile in human cells.

    Science.gov (United States)

    Sekijima, Masaru; Takeda, Hiroshi; Yasunaga, Katsuaki; Sakuma, Noriko; Hirose, Hideki; Nojima, Toshio; Miyakoshi, Junji

    2010-01-01

    We investigated the mechanisms by which radiofrequency (RF) fields exert their activity, and the changes in both cell proliferation and the gene expression profile in the human cell lines, A172 (glioblastoma), H4 (neuroglioma), and IMR-90 (fibroblasts from normal fetal lung) following exposure to 2.1425 GHz continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) RF fields at three field levels. During the incubation phase, cells were exposed at the specific absorption rates (SARs) of 80, 250, or 800 mW/kg with both CW and W-CDMA RF fields for up to 96 h. Heat shock treatment was used as the positive control. No significant differences in cell growth or viability were observed between any test group exposed to W-CDMA or CW radiation and the sham-exposed negative controls. Using the Affymetrix Human Genome Array, only a very small (CDMA RF fields for up to 96 h did not act as an acute cytotoxicant in either cell proliferation or the gene expression profile. These results suggest that RF exposure up to the limit of whole-body average SAR levels as specified in the ICNIRP guidelines is unlikely to elicit a general stress response in the tested cell lines under these conditions.

  20. On the possible existence of brightness spots on the Cyg X-1 supergiant

    Science.gov (United States)

    Karitskaya, E. A.; Bochkarev, N. G.

    2014-11-01

    A magnetic field was recently detected on the O9.7 Iab supergiant component of the Cyg X-1 X-ray binary system. This paper considers its impact upon the star's atmosphere. We have used the simple model of a unipolar cylindrically symmetric circumpolar magnetic spot in static approximation with the parallel magnetic force lines. In that model the Lorentz-force component related to the force line curvature can be neglected and the equation of hydrostatic equilibrium is nabla (P_{g}+P_{r}+{B^2}/{8π}) = ρ{g} , where P_{g} and P_{r} are the gaseous and radiative pressures, respectively, B^2/8π is the isotropic magnetic pressure, g is the gravitation acceleration, and ρ is the gas density. In the frame of this model, and of the model atmosphere that we calculated for the Cyg X-1 O-supergiant te{skb}, the magnetic pressure was found to be comparable with the model atmosphere gas and radiative pressures, and exceeded them in the area surrounding the magnetic poles. That condition should lead to the formation of circumpolar bright spots on the stellar surface. We estimate their brightness contrast to be 25 A dipolar or quadrupolar magnetic field can create large bright spots, which can be studied by ground-based optical photometry. If the magnetic field is inclined to the stellar rotation axis, the anticipated variability may reach about 1% can form spots of lesser size, and those may be revealed only by space telescopes. The spots may also be revealed through variability in spectral line profiles. The observation of spots can be considered an independent instrument for the analysis of magnetic fields in O-type supergiants such as that in Cyg X-1. The full text of this contribution has been published in te{kb}.

  1. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    Science.gov (United States)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  2. Search for bright nearby M dwarfs with virtual observatory tools

    Energy Technology Data Exchange (ETDEWEB)

    Aberasturi, M.; Caballero, J. A.; Montesinos, B.; Gálvez-Ortiz, M. C.; Solano, E.; Martín, E. L. [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain)

    2014-08-01

    Using Virtual Observatory tools, we cross-matched the Carlsberg Meridian 14 and the 2MASS Point Source catalogs to select candidate nearby bright M dwarfs distributed over ∼25,000 deg{sup 2}. Here, we present reconnaissance low-resolution optical spectra for 27 candidates that were observed with the Intermediate Dispersion Spectrograph at the 2.5 m Isaac Newton Telescope (R≈ 1600). We derived spectral types from a new spectral index, R, which measures the ratio of fluxes at 7485-7015 Å and 7120-7150 Å. We also used VOSA, a Virtual Observatory tool for spectral energy distribution fitting, to derive effective temperatures and surface gravities for each candidate. The resulting 27 targets were M dwarfs brighter than J = 10.5 mag, 16 of which were completely new in the Northern hemisphere and 7 of which were located at less than 15 pc. For all of them, we also measured Hα and Na I pseudo-equivalent widths, determined photometric distances, and identified the most active stars. The targets with the weakest sodium absorption, namely, J0422+2439 (with X-ray and strong Hα emissions), J0435+2523, and J0439+2333, are new members in the young Taurus-Auriga star-forming region based on proper motion, spatial distribution, and location in the color-magnitude diagram, which reopens the discussion on the deficit of M2-4 Taurus stars. Finally, based on proper motion diagrams, we report on a new wide M dwarf binary system in the field, LSPM J0326+3929EW.

  3. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    Science.gov (United States)

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  4. Brightness variations of the northern 630nm intertropical arc and the midnight pressure bulge over Eritrea

    Directory of Open Access Journals (Sweden)

    R. H. Wiens

    2004-09-01

    Full Text Available The nightglow brightness at 630nm from the thermospheric O(1D layer was monitored nightly at Asmara, Eritrea (15.4° N, 39.9° E, 7° N dip with an all-sky imager. Averages of north-south strips of the images enabled contour plots of brightness on a latitude vs. local time grid. The contours show the movement of the intertropical arc southward before midnight, staying just north of Asmara after midnight, and gradually brightening to a maximum at 02:00h local civil time, 02:00 LT, after which it disappears before dawn. It is argued that all features of the plots can be explained by known mechanisms capable of driving ions along magnetic field lines, including the fountain effect, summer to winter transequatorial winds, and the midnight pressure bulge. The 02:00 LT brightness maximum is the most striking and the most persistent feature in the data. The persistence of the location of the 02:00 LT brightening is attributed to a pressure bulge centered on the geographic equator at midnight and extending to higher latitudes with increasing local time in both the winter and the summer hemispheres. The bulge is shown to be stronger near solstice than near equinox, confirming earlier work.

  5. Brightness contrast-contrast induction model predicts assimilation and inverted assimilation effects.

    Science.gov (United States)

    Barkan, Yuval; Spitzer, Hedva; Einav, Shmuel

    2008-10-17

    In classical assimilation effects, intermediate luminance patches appear lighter when their immediate surround is comprised of white patches and appear darker when their immediate surround is comprised of dark patches. With patches either darker or lighter than both inducing patches, the direction of the brightness effect is reversed and termed as "inverted assimilation effect." Several explanations and models have been suggested, some are relevant to specific stimulus geometry, anchoring theory, and models that involve high level cortical processing (such as scission, etc.). None of these studies predicted the various types of assimilation effects and their inverted effects. We suggest here a compound brightness model, which is based on contrast-contrast induction (second-order adaptation mechanism). The suggested model predicts the various types of brightness assimilation effects and their inverted effects. The model is composed of three main stages: (1) composing post-retinal second-order opponent receptive fields, (2) calculations of local and remote contrast, and (3) adaptation of the second-order (contrast-contrast induction). We also utilize a variation of the Jacobi iteration process to enable elegant edge integration in order to evaluate the model is performance.

  6. Automatic detection and extraction of ultra-fine bright structure observed with new vacuum solar telescope

    Science.gov (United States)

    Deng, Linhua

    2017-02-01

    Solar magnetic structures exhibit a wealth of different spatial and temporal scales. Presently, solar magnetic element is believed to be the ultra-fine magnetic structure in the lower solar atmospheric layer, and the diffraction limit of the largest-aperture solar telescope (New Vacuum Solar Telescope; NVST) of China is close to the spatial scale of magnetic element. This implies that modern solar observations have entered the era of high resolution better than 0.2 arc-second. Since the year of 2011, the NVST have successfully established and obtained huge observational data. Moreover, the ultra-fine magnetic structure rooted in the dark inter-graunlar lanes can be easily resolved. Studies on the observational characteristics and physical mechanism of magnetic bright points is one of the most important aspects in the field of solar physics, so it is very important to determine the statistical and physical parameters of magnetic bright points with the feature extraction techniques and numerical analysis approaches. For identifying such ultra-fine magnetic structure, an automatically and effectively detection algorithm, employed the Laplacian transform and the morphological dilation technique, is proposed and examined. Then, the statistical parameters such as the typical diameter, the area distribution, the eccentricity, and the intensity contrast are obtained. And finally, the scientific meaning for investigating the physical parameters of magnetic bright points are discussed, especially for understanding the physical processes of solar magnetic energy transferred from the photosphere to the corona.

  7. Brightness variations of the northern 630nm intertropical arc and the midnight pressure bulge over Eritrea

    Directory of Open Access Journals (Sweden)

    R. H. Wiens

    2004-09-01

    Full Text Available The nightglow brightness at 630nm from the thermospheric O(1D layer was monitored nightly at Asmara, Eritrea (15.4° N, 39.9° E, 7° N dip with an all-sky imager. Averages of north-south strips of the images enabled contour plots of brightness on a latitude vs. local time grid. The contours show the movement of the intertropical arc southward before midnight, staying just north of Asmara after midnight, and gradually brightening to a maximum at 02:00h local civil time, 02:00 LT, after which it disappears before dawn. It is argued that all features of the plots can be explained by known mechanisms capable of driving ions along magnetic field lines, including the fountain effect, summer to winter transequatorial winds, and the midnight pressure bulge.

    The 02:00 LT brightness maximum is the most striking and the most persistent feature in the data. The persistence of the location of the 02:00 LT brightening is attributed to a pressure bulge centered on the geographic equator at midnight and extending to higher latitudes with increasing local time in both the winter and the summer hemispheres. The bulge is shown to be stronger near solstice than near equinox, confirming earlier work.

  8. Full-field velocity imaging of red blood cells in capillaries with spatiotemporal demodulation autocorrelation.

    Science.gov (United States)

    Wang, Mingyi; Zeng, Yaguang; Dong, Nannan; Liao, Riwei; Yang, Guojian

    2016-03-01

    We propose a full-field optical method for the label-free and quantitative mapping of the velocities of red blood cells (RBCs) in capillaries. It integrates spatiotemporal demodulation and an autocorrelation algorithm, and measures RBC velocity according to the ratio of RBC length to lag time. Conventionally, RBC length is assumed to be a constant and lag time is taken as a variable, while our method treats both of them as variables. We use temporal demodulation and the Butterworth spatial filter to separate RBC signal from background signal, based on which we obtain the RBC length by image segmentation and lag time by autocorrelation analysis. The RBC velocity calculated now is more accurate. The validity of our method is verified by an in vivo experiment on a mouse ear. Owing to its higher image signal-to-noise ratio, our method can be used for mapping RBC velocity in the turbid tissue case.

  9. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments.

    Science.gov (United States)

    Gonoskov, A; Bastrakov, S; Efimenko, E; Ilderton, A; Marklund, M; Meyerov, I; Muraviev, A; Sergeev, A; Surmin, I; Wallin, E

    2015-08-01

    We review common extensions of particle-in-cell (PIC) schemes which account for strong field phenomena in laser-plasma interactions. After describing the physical processes of interest and their numerical implementation, we provide solutions for several associated methodological and algorithmic problems. We propose a modified event generator that precisely models the entire spectrum of incoherent particle emission without any low-energy cutoff, and which imposes close to the weakest possible demands on the numerical time step. Based on this, we also develop an adaptive event generator that subdivides the time step for locally resolving QED events, allowing for efficient simulation of cascades. Further, we present a unified technical interface for including the processes of interest in different PIC implementations. Two PIC codes which support this interface, PICADOR and ELMIS, are also briefly reviewed.

  10. Searching for the Perfect Wave: The Effect of Radiofrequency Electromagnetic Fields on Cells

    Directory of Open Access Journals (Sweden)

    Lisa Gherardini

    2014-03-01

    Full Text Available There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.

  11. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    Science.gov (United States)

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  12. Quantifying pulsed electric field-induced membrane nanoporation in single cells.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T; Armani, Andrea M

    2016-11-01

    Plasma membrane disruption can trigger a host of cellular activities. One commonly observed type of disruption is pore formation. Molecular dynamic (MD) simulations of simplified lipid membrane structures predict that controllably disrupting the membrane via nano-scale poration may be possible with nanosecond pulsed electric fields (nsPEF). Until recently, researchers hoping to verify this hypothesis experimentally have been limited to measuring the relatively slow process of fluorescent markers diffusing across the membrane, which is indirect evidence of nanoporation that could be channel-mediated. Leveraging recent advances in nonlinear optical microscopy, we elucidate the role of pulse parameters in nsPEF-induced membrane permeabilization in live cells. Unlike previous techniques, it is able to directly observe loss of membrane order at the onset of the pulse. We also develop a complementary theoretical model that relates increasing membrane permeabilization to membrane pore density. Due to the significantly improved spatial and temporal resolution possible with our imaging method, we are able to directly compare our experimental and theoretical results. Their agreement provides substantial evidence that nanoporation does occur and that its development is dictated by the electric field distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of imiquimod as compared with surgery on the cancerization field in basal cell carcinoma.

    Science.gov (United States)

    Graells, J; Ojeda, R M; García-Cruz, A

    2014-01-01

    Patients with basal cell carcinoma (BCC) have an increased risk of subsequent BCCs. It is possible that imiquimod might reduce this risk by acting on the cancerization field. To examine the ability of imiquimod to reduce subsequent BCCs. Retrospective cohort study of patients with BCC treated at our hospital between 2003 and 2011. The patients were divided into 2 groups depending on whether they had been treated with surgery or with imiquimod. Comparing the 2 groups, we analyzed the development of new BCCs, the time that elapsed between first and subsequent tumors, and the site of occurrence of the second BCC with respect to the first one (local, same lymphatic drainage basin or anatomic region, or other). Survival methods were used to analyze the data. We reviewed the charts of 623 patients. Of these, 550 had been treated with surgery (88.3%) and 71 with imiquimod (11.4%). Overall, a second BCC occurred in 36.4% of patients (n=227). The rate of occurrence was 38.2% in the surgery group and 23.9% in the imiquimod group (P=.02). The hazard ratio for the occurrence of a subsequent BCC was 2.13 (95% CI, 1.28-3.53) for patients treated with surgery compared with those treated with imiquimod. Imiquimod reduced the risk of a second BCC locally, regionally, and in the lymphatic drainage area. Our findings are limited by the retrospective nature of our study and the small number of patients treated with imiquimod. Imiquimod may reduce the risk of subsequent BCC in patients treated for BCC and its effect could last for up to 2 years in local, regional and lymphatic cancerization fields. We believe that the cancerization field concept should be expanded to include not only the local area, but also the pertinent anatomic region and the regional lymphatic drainage area. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  14. PROFFIT: Analysis of X-ray surface-brightness profiles

    Science.gov (United States)

    Eckert, Dominique

    2016-08-01

    PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

  15. A neurodynamical model of brightness induction in v1.

    Directory of Open Access Journals (Sweden)

    Olivier Penacchio

    Full Text Available Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.

  16. Voltage-sensitive rhodol with enhanced two-photon brightness.

    Science.gov (United States)

    Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W

    2017-03-14

    We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.

  17. Response of exfoliated human buccal epithelium cells to combined gamma radiation, microwaves, and magnetic field exposure estimated by changes in chromatin condensation and cell membrane permeability

    Directory of Open Access Journals (Sweden)

    K. А. Kuznetsov

    2016-11-01

    Full Text Available Modulation of the biological effects produced by ionizing radiation (IR using microwave and magnetic fields has important theoretical and practical applications. Response of human buccal epithelium cells to different physical agents (single and combined exposure to 0.5–5 Gy γ-radiation (60Co; microwaves with the frequency of 36.64 GHz and power densities of 0.1 and 1 W/m2, and static magnetic field with the intensity of 25 mT has been investigated. The stress response of the cells was evaluated by counting heterochromatin granules quantity (HGQ in the cell nuclei stained with orcein. Membrane permeability was assessed by the percentage of cells stained with indigocarmine (cells with damaged membrane. The increase of heterochromatin granules quantity (HGQ, i.e. chromatin condensation was detected at the doses of 2 Gy and higher. Changes in the cell membrane permeability to indigocarmine expressed the threshold effect. Membrane permeability reached the threshold at the doses of 2–3 Gy for the cells of different donors and did not change with the increase of the dose of γ-radiation. Cells obtained from different donors revealed some individual peculiarities in their reaction to γ-radiation. The static magnetic field and microwaves applied before or after γ-radiation decreased its impact, as revealed by means of HGQ assessment.

  18. Heparanase patents: dim past and bright future.

    Science.gov (United States)

    Nasser, Nicola J; Nevo, Eviatar

    2013-05-01

    Heparanase is an enzyme expressed normally in platelets and in placenta at high levels, and is undetectable in other normal human tissues. Heparanase degrades the heparan sulfate saccharides of the extracellular matrix. The real problem starts when tumor cells express heparanase; this results in increased tumor angiogenesis, aggressiveness, and metastasis. Patents filed on heparanase detection, suppression, and function modulation were not translated yet into products (tested in Phase III trials). The mismatch between researchers, clinicians, and pharmaceutical companies, which identified the first 20 years of heparanase research, is changing and will hopefully foster the arrival of some of these patent inventions for clinical applicability.

  19. Brightness of venous blood in South American camelids: implications for jugular catheterization.

    Science.gov (United States)

    Grint, Nicola; Dugdale, Alexandra

    2009-01-01

    To compare the brightness of South American camelid venous blood to that of Equidae. Prospective clinical evaluation. Twelve South American camelids (eight llamas, four alpacas), eight horses and ponies (control group). Appropriately sized catheters were placed in the jugular vein of each animal under local anaesthesia. The blood spilt before the catheter was capped was caught on a white tile. A sample of blood was drawn for blood-gas analysis. The brightness of the blood (both on the tile and in the syringe) was matched to a colour chart (1 = darkest red, 8 = brightest red) by a single observer under bright light conditions. Packed cell volume (PCV) and partial pressure of oxygen (PvO(2)) in the blood were also measured on the syringe blood. Normally distributed data were compared using a two tailed t-test, and non-normally distributed data were compared using a Mann-Whitney U-test. Significance was set at p < 0.05. Camelid venous blood was significantly brighter red than that of horses and ponies both on the white tile (p = 0.0003) and in the syringe (p = 0.0001). PCV was significantly lower in camelids (32 +/- 4%) compared with horses (37 +/- 5%). Partial pressure of oxygen values were similar between groups. Jugular venous blood in alpacas and llamas is significantly brighter red than that of horses. Colour should not be used as a sole determinant of venous or arterial catheterization in this species.

  20. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes.

    Science.gov (United States)

    Qian, Wei; Huang, Xiaohua; Kang, Bin; El-Sayed, Mostafa A

    2010-01-01

    Novel methods and technologies that could extend and complement the capabilities of the prevailing fluorescence microscope in following the cell cycle under different perturbations are highly desirable in the area of biological and biomedical imaging. We report a newly designed instrument for long-term light scattering live cell imaging based on integrating a homebuilt environmental cell incubation minichamber and an angled dark-field illumination system into a conventional inverted light microscope. Peptide-conjugated gold nanoparticles that are selectively delivered to either the cytoplasmic or nuclear region of the cell are used as light scattering contrast agents. The new system enables us to carry out continuous and intermittence-free dark-field live cell imaging over several tens of hours. A variety of applications of this imaging system are demonstrated, such as monitoring the nuclear uptake of peptide-conjugated gold nanoparticles, tracking the full cycle of cancer cells from birth to division, following the chromosome dynamics during cell mitosis, and observing the intracellular distribution of gold nanoparticles after cell division. We also discuss the overall effect of nuclear targeting gold nanoparticles on the cell viability of parent and daughter cells.

  1. Front surface field formation and diffusion profiles for industrial interdigitated back contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cascant, M.; Morecroft, D.; Boulif, K.; Vauche, L.; Yuste, H.; Castano, F.J. [Siliken, High efficiency solar cell pilot line, R and D department, Ciudad Politecnica de la Innovacion- UPV Camino de Vera 14, 46022 Valencia, (Spain); Bende, E.E. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    Optimization of the Front Surface Field (FSF) for IBC cells is important for passivation, lowering series resistance and reducing UV light degradation. This work presents results for optimizing the FSF diffusion from an industrial perspective, focusing on optimizing the process flow to achieve excellent FSF performance, whilst at the same time reducing the number of process steps. The ideal FSF profile is a compromise since a lightly doped deep diffusion reduces recombination losses close the cell surface where the light is captured, whilst increased doping reduces series resistance. This work investigates diffusing the FSF (1) at the beginning, (2) in the middle and (3) towards the end of the IBC process flow. The advantage of the first option is that the diffusion depth can be increased by subsequent thermal steps. However a diffusion barrier is required to protect the FSF throughout the subsequent processing, which increases the number of process steps and results in increased costs. By placing the FSF diffusion later in the process flow it is possible to simplify the process reducing the number of steps. Experimental results show excellent FSF diffusion passivation performance over 156mm, with lifetime values of over 500 {mu}s. Simulations confirm that high current generation can be achieved with a short circuit current of over 40 mA cm-{sup 2}.

  2. Transcriptomic architecture of the adjacent airway field cancerization in non-small cell lung cancer.

    Science.gov (United States)

    Kadara, Humam; Fujimoto, Junya; Yoo, Suk-Young; Maki, Yuho; Gower, Adam C; Kabbout, Mohamed; Garcia, Melinda M; Chow, Chi-Wan; Chu, Zuoming; Mendoza, Gabriella; Shen, Li; Kalhor, Neda; Hong, Waun Ki; Moran, Cesar; Wang, Jing; Spira, Avrum; Coombes, Kevin R; Wistuba, Ignacio I

    2014-03-01

    Earlier work identified specific tumor-promoting abnormalities that are shared between lung cancers and adjacent normal bronchial epithelia. We sought to characterize the yet unknown global molecular and adjacent airway field cancerization (FC) in early-stage non-small cell lung cancer (NSCLC). Whole-transcriptome expression profiling of resected early-stage (I-IIIA) NSCLC specimens (n = 20) with matched tumors, multiple cytologically controlled normal airways with varying distances from tumors, and uninvolved normal lung tissues (n = 194 samples) was performed using the Affymetrix Human Gene 1.0 ST platform. Mixed-effects models were used to identify differentially expressed genes among groups. Ordinal regression analysis was performed to characterize site-dependent airway expression profiles. All statistical tests were two-sided, except where noted. We identified differentially expressed gene features (n = 1661) between NSCLCs and airways compared with normal lung tissues, a subset of which (n = 299), after gene set enrichment analysis, statistically significantly (P cancer patients from airways in cancer-free smokers. In addition, we identified genes (n = 422) statistically significantly and progressively differentially expressed in airways by distance from tumors that were found to be congruently modulated between NSCLCs and normal lung tissues. Furthermore, LAPTM4B, with statistically significantly increased expression (P cancer cell growth. The adjacent airway FC comprises both site-independent profiles as well as gradient and localized airway expression patterns. Profiling of the airway FC may provide new insights into NSCLC oncogenesis and molecular tools for detection of the disease.

  3. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  4. Self-rotation of cells in an irrotational AC E-field in an opto-electrokinetics chip.

    Science.gov (United States)

    Chau, Long-Ho; Liang, Wenfeng; Cheung, Florence Wing Ki; Liu, Wing Keung; Li, Wen Jung; Chen, Shih-Chi; Lee, Gwo-Bin

    2013-01-01

    The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells.

  5. Self-rotation of cells in an irrotational AC E-field in an opto-electrokinetics chip.

    Directory of Open Access Journals (Sweden)

    Long-Ho Chau

    Full Text Available The use of optical dielectrophoresis (ODEP to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and phys