WorldWideScience

Sample records for bridge deck reliability

  1. To the question of reliability and durability ballastless deck of bridge

    Directory of Open Access Journals (Sweden)

    V.V. Prystynskaya

    2012-12-01

    Full Text Available The principal causes of operational defects in bridge ballastless deck plates are considered in the article. The drawbacks of these plates construction that prevent from achieving a higher level of bridge framework reliability and durability have been analysed.

  2. STUDY OF BRIDGE DECK A REVIEW

    OpenAIRE

    MISS. KSHITIJA S. BALWAN , MR. V. G. KHURD , MR. S. S. CHOUGULE

    2018-01-01

    The objective of this study was to understand the meaning of bridge deck. To know the different forms of decks used in bridge design. To understand different methods used for analysis of deck and study of box girder and its evolution

  3. Hydrodynamic forces on inundated bridge decks

    Science.gov (United States)

    2009-05-01

    The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...

  4. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction

    Science.gov (United States)

    2017-09-01

    Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...

  5. Renovation techniques for fatigue cracked orthotropic steel bridge decks

    NARCIS (Netherlands)

    de Jong, F.B.P.

    2007-01-01

    This dissertation presents the research into renovation techniques for orthotropic steel bridge decks. These techniques are needed to solve fatigue problems in the decks of these bridges, as several fatigue cracks have been detected in the deck structure of these bridges the last decade. A

  6. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  7. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  8. Investigation of Aerodynamic Interference between Twin Deck Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC)

    2016-05-01

    Construction of a twin bridge can be a cost effective and minimally disruptive way to increase capacity when an existing bridge is not near the end of its service life. With ever growing vehicular traffic, when demand approaches the capacity of many existing roads and bridges. Remodeling a structure with an insufficient number of lanes can be a good solution in case of smaller and less busy bridges. Closing down or reducing traffic on crossings of greater importance for the construction period, however, can result in major delays and revenue loss for commerce and transportation as well as increasing the traffic load on alternate route bridges. Multiple-deck bridges may be the answer to this issue. A parallel deck can be built next to the existing one, without reducing the flow. Additionally, a new bridge can be designed as a twin or multi-deck structure. Several such structures have been built throughout the United States, among them: - The New NY Bridge Project - the Tappan Zee Hudson River Crossing, - SR-182 Columbia River Bridge, - The Thaddeus Kosciusko Bridge (I-87), - The Allegheny River Bridge, Pennsylvania, which carries I76, - Fred Hartman Bridge, TX, see Figure 1.2. With a growing number of double deck bridges, additional, more detailed, studies on the interaction of such bridge pairs in windy conditions appears appropriate. Aerodynamic interference effects should be examined to assure the aerodynamic stability of both bridges. There are many studies on aerodynamic response of single deck bridges, but the literature on double-deck structures is not extensive. The experimental results from wind tunnels are still limited in number, as a parametric study is required, they can be very time consuming. Literature review shows that some investigation of the effects of gap-width and angle of wind incidence has been done. Most of the CFD computational studies that have been done were limited to 2D simulations. Therefore, it is desirable to investigate twin decks

  9. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    Science.gov (United States)

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  10. Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter

    The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...

  11. Exodermic bridge deck performance evaluation.

    Science.gov (United States)

    2010-07-01

    In 1998, the Wisconsin DOT completed a two"leaf bascule bridge in Green Bay with an exodermic deck system. The exodermic deck consisted of 4.5"in thick cast"in"place reinforced concrete supported by a 5.19"in tall unfilled steel grid. The concrete an...

  12. Gust loading on streamlined bridge decks

    DEFF Research Database (Denmark)

    Larose, Guy; Mann, Jakob

    1998-01-01

    The current analytical description of the buffeting action of wind on long-span bridges is based on the strip assumption. However, recent experiments on closed-box girder bridge decks have shown that this assumption is not valid and is the source of an important part of the error margin...... of the analytical prediction methods. In this paper, an analytical model that departs from the strip assumption is used to describe the gust loading on a thin airfoil. A parallel is drawn between the analytical model and direct measurements of gust loading on motionless closed-box girder bridge decks. Empirical...

  13. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction : research brief

    Science.gov (United States)

    2017-09-01

    This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...

  14. Steel plate reinforcement of orthotropic bridge decks

    NARCIS (Netherlands)

    Teixeira de Freitas, S.

    2012-01-01

    The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue

  15. Field performance of timber bridges. 8, Lynches Woods Park stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; D. Conger

    The Lynches Woods Park bridge was constructed during the summer of 1990 in Newberry, South Carolina. It is a single-span, single-lane, stress-laminated deck superstructure that measures approximately 30 ft long, 16 ft wide, and 14 in. deep. The bridge is unique in that is one of the first known stress-laminated deck bridges to be constructed of Southern Pine lumber...

  16. Static and fatigue investigation of second generation steel free bridge decks

    International Nuclear Information System (INIS)

    Klowak, C.; Memon, Amjad H.; Mufti, Aftab A.

    2006-01-01

    This paper outlines the static and fatigue behavior of two different cast-in-place second generation steel-free bridge decks, which are: hybrid carbon fiber reinforced polymer (CFRP); and glass fiber reinforced polymer (GFRP) and steel strap design. Although cast monolithically, the first deck slab was divided into three segments with different reinforcement configurations. All three segments were tested under a 222kN cyclic loading to investigate fatigue behavior. The second bridge deck comprised an internal panel and two cantilevers and was equipped with a civionics system. The internal panel static test that this paper deals with is useful in the development of fatigue theory derived from fatigue testing of the first bridge deck. Test results form the cyclic loading of the first bridge deck indicated that the cross-sectional area of the reinforcement used in the test bridge deck can be reduced by 40% based on the reinforcement provided in the deck under service loads. The hybrid system also reduced the development of longitudinal crack widths to approximately 0.4 mm under service conditions, compared to the cracks that occurred approximately halfway between adjacent bridge girders that were determined to be roughly 1 mm in several first generation steel-free bridge decks constructed in Canada. Civionics, also discussed in the paper, is a new term coined from Civil-Electronics, which is the application of electronics to civil structures. The Civionics Specifications (2004) developed by ISIS Canada researchers are a helpful design tool for engineers and contractors to develop civionics and structural health monitoring systems for civil infrastructure that will last the lifetime of a structure. The use of civionics for the second test bridge deck ensured the survival of 100% of the 63 internal sensors throughout the rigors of the construction and casting of the deck. (author)

  17. Causes of Early Age Cracking on Concrete Bridge Deck Expansion Joint Repair Sections

    Directory of Open Access Journals (Sweden)

    Jared R. Wright

    2014-01-01

    Full Text Available Cracking of newly placed binary Portland cement-slag concrete adjacent to bridge deck expansion dam replacements has been observed on several newly rehabilitated sections of bridge decks. This paper investigates the causes of cracking by assessing the concrete mixtures specified for bridge deck rehabilitation projects, as well as reviewing the structural design of decks and the construction and curing methods implemented by the contractors. The work consists of (1 a comprehensive literature review of the causes of cracking on bridge decks, (2 a review of previous bridge deck rehabilitation projects that experienced early-age cracking along with construction observations of active deck rehabilitation projects, and (3 an experimental evaluation of the two most commonly used bridge deck concrete mixtures. Based on the literature review, the causes of concrete bridge deck cracking can be classified into three categories: concrete material properties, construction practices, and structural design factors. The most likely causes of the observed early-age cracking were found to be inadequate curing and failure to properly eliminate the risk of plastic shrinkage cracking. These results underscore the significance of proper moist curing methods for concrete bridge decks, including repair sections. This document also provides a blueprint for future researchers to investigate early-age cracking of concrete structures.

  18. Longer Lasting Bridge Deck Overlays

    Science.gov (United States)

    2018-04-01

    The objective of this report is to determine the most effective method for bridge deck overlay construction and repair by assessing current practices; examining new products and technologies; and reviewing NCHRP (National Cooperative Highway Research...

  19. Rapid replacement of bridge deck expansion joints study - phase I.

    Science.gov (United States)

    2014-12-01

    Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and : other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemical...

  20. Simple model of cable-stayed bridge deck subjected to static wind loading

    Science.gov (United States)

    Kang, Yi-Lung; Wang, Yang Cheng

    1997-05-01

    Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.

  1. PARAMETRIC STUDY OF SKEW ANGLE ON BOX GIRDER BRIDGE DECK

    OpenAIRE

    Shrikant D. Bobade *, Dr. Valsson Varghese

    2016-01-01

    Box girder bridge deck, is the most common type of bridges in world and India, it consists of several Slab or girders. The span in the direction of the roadway and connected across their tops and bottoms by a thin continuous structural stab, the longitudinal box girders can be made of steel or concrete. The Simple supported single span concrete bridge deck is presented in present study. Skewed bridges are suitable in highway design when the geometry of straight bridges is not possible. The sk...

  2. Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop; M. A. Ritter

    The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...

  3. Analysis, prediction, and case studies of early-age cracking in bridge decks

    Science.gov (United States)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  4. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  5. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  6. Field performance of timber bridges. 17, Ciphers stress-laminated deck bridge

    Science.gov (United States)

    James P. Wacker; James A. Kainz; Michael A. Ritter

    In September 1989, the Ciphers bridge was constructed within the Beltrami Island State Forest in Roseau County, Minnesota. The bridge superstructure is a two-span continuous stress-laminated deck that is approximately 12.19 m long, 5.49 m wide, and 305 mm deep (40 ft long, 18 ft wide, and 12 in. deep). The bridge is one of the first to utilize red pine sawn lumber for...

  7. Field performance of timber bridges. 10, Sanborn Brook stress-laminated deck bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; J. P. Wacker; M. A. Ritter

    The Sanborn Brook bridge was constructed in August 1991, 10 miles northeast of Concord, New Hampshire, as part of the demonstration timber bridge program of the USDA Forest Service. The bridge is a simple-span, double-lane, stress-laminated deck superstructure constructed from Southern Pine lumber and is approximately 25 ft long and 28 ft wide with a skew of 14 degrees...

  8. Issues in bridge deck damage evaluation using aerial photos

    Science.gov (United States)

    Natarajan, M.; Chen, S. E.; Boyle, C.; Martin, E.; Hauser, E.

    2012-04-01

    Small format aerial photography (SFAP) with low flying technique is proposed for damage evaluation of bridge decks. High resolution images obtained using under-belly photography can be used to quantify the various bridge deck problems. The conventional truck-mount or vehicle-mount deck imaging technologies require a large number of image samples. Hence the physical scanning is time consuming and it is also challenging consider the size and location of a bridge. Aerial imaging overcomes these issues, but they face different kinds of challenges that are posed by obstacles such as shadow from trees, power lines and vehicles, signs and luminaries structures. The image resolution uncertainty, which is a function of the pilot skills and flying conditions, may also add additional challenges to aerial imaging technique. Hence different image processing tools have to be integrated into a single package to achieve the desired task. This paper summarizes the challenges faced and the preliminary results are presented and discussed.

  9. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  10. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Science.gov (United States)

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  11. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  12. Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar

    Science.gov (United States)

    Martino, Nicole Marie

    Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.

  13. Field performance of timber bridges. 15, Pueblo County, Colorado, stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop

    The Pueblo County 204B bridge was constructed in March 1990 in Pueblo, Colorado, as a demonstration bridge under the USDA Forest Service Timber Bridge Initiative. The stress-laminated deck superstructure is approximately 10 m long, 9 m wide, and 406 mm deep, with a skew of 10 degrees. Performance monitoring was conducted for 3 years, beginning at...

  14. Flow field analysis of a pentagonal-shaped bridge deck by unsteady RANS

    Directory of Open Access Journals (Sweden)

    Md. Naimul Haque

    2016-01-01

    Full Text Available Long-span cable-stayed bridges are susceptible to dynamic wind effects due to their inherent flexibility. The fluid flow around the bridge deck should be well understood for the efficient design of an aerodynamically stable long-span bridge system. In this work, the aerodynamic features of a pentagonal-shaped bridge deck are explored numerically. The analytical results are compared with past experimental work to assess the capability of two-dimensional unsteady RANS simulation for predicting the aerodynamic features of this type of deck. The influence of the bottom plate slope on aerodynamic response and flow features was investigated. By varying the Reynolds number (2 × 104 to 20 × 104 the aerodynamic behavior at high wind speeds is clarified.

  15. Precision monitoring of bridge deck curvature change during replacement.

    Science.gov (United States)

    2016-05-01

    This project was focused on development and deployment of a system for monitoring vertical : displacement in bridge decks and bridge spans. The system uses high precision wireless inclinometer : sensors to monitor inclinations at various points of a ...

  16. Fatigue Assessment of Full-Scale Retrofitted Orthotropic Bridge Decks

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    Full-scale fatigue tests were performed on two retrofitted orthotropic bridge decks (OBDs). The retrofitting systems consist of adding a second steel plate on the top of the existing deck. The aim is to reduce the stresses at the fatigue-sensitive details and therefore extend the fatigue life of

  17. A Highly Accurate and Efficient Analytical Approach to Bridge Deck Free Vibration Analysis

    Directory of Open Access Journals (Sweden)

    D.J. Gorman

    2000-01-01

    Full Text Available The superposition method is employed to obtain an accurate analytical type solution for the free vibration frequencies and mode shapes of multi-span bridge decks. Free edge conditions are imposed on the long edges running in the direction of the deck. Inter-span support is of the simple (knife-edge type. The analysis is valid regardless of the number of spans or their individual lengths. Exact agreement is found when computed results are compared with known eigenvalues for bridge decks with all spans of equal length. Mode shapes and eigenvalues are presented for typical bridge decks of three and four span lengths. In each case torsional and non-torsional modes are studied.

  18. Structural Performance Evaluation of Tsing MA Bridge Deck Using Long-Term Monitoring Data

    Science.gov (United States)

    Ni, Y. Q.; Xia, H. W.; Ko, J. M.

    The Tsing Ma Bridge in Hong Kong is suspension bridge with a main span of 1377 m carrying both highway and railway traffic. After completing its construction in 1997, the bridge was instrumented by the Hong Kong SAR Government Highways Department with a long-term structural health monitoring system comprising about 300 sensors permanently installed on the bridge. As part of this monitoring system, a total of 110 strain gauges have been installed to measure strain at the deck cross-sections and bearings. In this study, a method for real-time structural performance evaluation of the stiffening deck system making use of long-term strain measurement data is proposed and verified using the strain monitoring data from a typical deck cross-section of the Tsing Ma Bridge.

  19. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  20. Recommendations for Longitudinal Post-Tensioning in Full-Depth Precast Concrete Bridge Deck Panels

    OpenAIRE

    Bowers, Susan Elizabeth

    2007-01-01

    Full-depth precast concrete panels offer an efficient alternative to traditional cast-in-place concrete for replacement or new construction of bridge decks. Research has shown that longitudinal post-tensioning helps keep the precast bridge deck in compression and avoid problems such as leaking, cracking, spalling, and subsequent rusting on the beams at the transverse panel joints. Current design recommendations suggest levels of initial compression for precast concrete decks in a very limit...

  1. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  2. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    Science.gov (United States)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  3. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  4. Shrinkage and durability study of bridge deck concrete.

    Science.gov (United States)

    2010-12-01

    The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...

  5. Fatigue analysis and life prediction of composite highway bridge decks under traffic loading

    Directory of Open Access Journals (Sweden)

    Fernando N. Leitão

    Full Text Available Steel and composite (steel-concrete highway bridges are currently subjected to dynamic actions of variable magnitude due to convoy of vehicles crossing on the deck pavement. These dynamic actions can generate the nucleation of fractures or even their propagation on the bridge deck structure. Proper consideration of all of the aspects mentioned pointed our team to develop an analysis methodology with emphasis to evaluate the stresses through a dynamic analysis of highway bridge decks including the action of vehicles. The design codes recommend the application of the curves S-N associated to the Miner's damage rule to evaluate the fatigue and service life of steel and composite (steel-concrete bridges. In this work, the developed computational model adopted the usual mesh refinement techniques present in finite element method simulations implemented in the ANSYS program. The investigated highway bridge is constituted by four longitudinal composite girders and a concrete deck, spanning 40.0m by 13.5m. The analysis methodology and procedures presented in the design codes were applied to evaluate the fatigue of the bridge determining the service life of the structure. The main conclusions of this investigation focused on alerting structural engineers to the possible distortions, associated to the steel and composite bridge's service life when subjected to vehicle's dynamic actions.

  6. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    Science.gov (United States)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use

  7. Evaluation of bridge deck with shrinkage-compensating concrete.

    Science.gov (United States)

    2016-04-01

    Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability : concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solution...

  8. Experimental studies on multicellular GFRP bridge deck panels ...

    Indian Academy of Sciences (India)

    M P MUTHURAJ

    2017-11-20

    Nov 20, 2017 ... design of a new bridge deck panel made of GFRP. .... cient manufacturing processes with minimal wastage. But re-use of the remaining FRP elements during manufacture ... Energy consumption for production of different.

  9. Fatigue Properties of Orthotropic Decks on Railway Bridges

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Gajdoš, Lubomír

    1999-01-01

    Roč. 21, č. 7 (1999), s. 639-652 ISSN 0141-0296 Grant - others:XX(CZ) ERRI D 191 Keywords : railway bridges * orthotropic decks * fatigue Subject RIV: JM - Building Engineering Impact factor: 0.364, year: 1999

  10. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    Science.gov (United States)

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  11. Bridge deck concrete volume change : final contract report.

    Science.gov (United States)

    2010-02-01

    Concrete structures such as bridge decks, with large surface area relative to volume, shrink and crack, thus reducing service life performance and increasing operation costs. The project evaluated the early, first 24 hours, and long-term, 180 days, s...

  12. Using artificial neural networks in the design of orthotropic bridge decks

    Directory of Open Access Journals (Sweden)

    Ahmed Shamel Fahmy

    2016-12-01

    Full Text Available For orthotropic bridge decks a lot of progress has been made in the development of codes to aid in the design process, in addition to software tools for numerical analysis and design. However, professional software tools will not aid the designer in choosing a preliminary economic layout at the conceptual design stage. Designers would go through iterative, lengthy and expensive procedures to reach the best configuration. The present research provides a methodology to investigate the contingency of using artificial neural networks for conceptual design of orthotropic steel-deck bridge. A neural network model was trained with different combinations of dimensions, and eight types of safety checks were performed on all of them. The resulting network can predict whether the deck is safe or not. It is found that this approach for the selection of orthotropic deck dimensions is a better and cost-effective option compared with international codes or expert opinion.

  13. Research on construction technology for orthotropic steel deck pavement of Haihe River Chunyi Bridge

    Science.gov (United States)

    Xue, Y. C.; Qian, Z. D.; Zhang, M.

    2017-01-01

    In order to ensure the good service quality of orthotropic steel deck pavement of Haihe River Chunyi Bridge in Tianjin, and to reduce the occurrence of pavement diseases like lateral and longitudinal cracks, the key working procedures such as steel deck cleaning, anticorrosive coating, bonding layer spraying, seam cutting, epoxy asphalt concrete’s mixing, transportation, paving and compaction were studied. The study was based on the main features of epoxy asphalt concrete which is the pavement materials of Haihe River Chunyi Bridge, and combined with the basic characteristics and construction conditions of Haihe River Chunyi Bridge. Furthermore, some processing measures like controlling time and temperature, continuous paving with two pavers, lateral feeding, and improving the compaction method were proposed. The project example shows that the processing measures can effectively solve the technical difficulties in the construction of orthotropic steel deck pavement of Haihe River Chunyi Bridge, can greatly improve the construction speed and quality, and can provide reference for the same kinds of orthotropic steel deck pavement construction.

  14. Measurement of bridge deck layout prior to concrete placement : final report.

    Science.gov (United States)

    2017-01-01

    The main objective of this research was to develop a method of measuring and : producing as built bridge drawings. This was the first step in the feasibility : assessment for automated bridge deck paving. The research goes to show the : standard meth...

  15. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Science.gov (United States)

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...

  16. Deck and Cable Dynamic Testing of a Single-span Bridge Using Radar Interferometry and Videometry Measurements

    Science.gov (United States)

    Piniotis, George; Gikas, Vassilis; Mpimis, Thanassis; Perakis, Harris

    2016-03-01

    This paper presents the dynamic testing of a roadway, single-span, cable-stayed bridge for a sequence of static load and ambient vibration monitoring scenarios. Deck movements were captured along both sideways of the bridge using a Digital Image Correlation (DIC) and a Ground-based Microwave Interfererometer (GBMI) system. Cable vibrations were measured at a single point location on each of the six cables using the GBMI technique. Dynamic testing involves three types of analyses; firstly, vibration analysis and modal parameter estimation (i. e., natural frequencies and modal shapes) of the deck using the combined DIC and GBMI measurements. Secondly, dynamic testing of the cables is performed through vibration analysis and experimental computation of their tension forces. Thirdly, the mechanism of cable-deck dynamic interaction is studied through their Power Spectra Density (PSD) and the Short Time Fourier Transform (STFT) analyses. Thereby, the global (deck and cable) and local (either deck or cable) bridge modes are identified, serving a concrete benchmark of the current state of the bridge for studying the evolution of its structural performance in the future. The level of synergy and complementarity between the GBMI and DIC techniques for bridge monitoring is also examined and assessed.

  17. Plans for crash-tested wood bridge railings for concrete decks

    Science.gov (United States)

    Michael A. Ritter; Ronald K. Faller; Barry T. Rosson; Paula D. Hilbrich Lee; Sheila Rimal. Duwadi

    1998-01-01

    As part of a continuing cooperative research between the Midwest Roadside Safety Facility (MwRSF); the USDA Forest Service, Forest Products Laboratory (FPL); and the Federal Highway Administration (FHWA), several crashworthy wood bridge railings and approach railing transitions have been adapted for use on concrete bridge decks. These railings meet testing and...

  18. reliability assessment of stringers spacings in bridges as function

    African Journals Online (AJOL)

    user

    A timber bridge deck is modelled on timber stringers in accordance with current .... simple linear formulation for supporting stringers ... new generation design codes, evaluation of existing ... transverse plank deck the span of the deck is.

  19. Comparison between major repair and replacement options for a bridge deck life cycle assessment: A case study

    Directory of Open Access Journals (Sweden)

    Abu Dabous Saleh

    2017-01-01

    Full Text Available Material production, manufacturing, transportation, usage, and end of lifeprocessing are usually the main contributors defining the life cycle assessment (LCA. Bridge infrastructure is important to the economy and the society. Over their life cycle, highway bridges experience several stressors that can significantly affect their structural performance and therefore require rehabilitation. This paper discusses the life cycle analysis of bridge rehabilitation decisions and demonstrates the analysis with a case study of a bridge located in Ontario, Canada. The LCA of the bridge deck is analyzed for two rehabilitation strategies: major repair and replacement. The study focuses on evaluating the different life cycle phases of the bridge deck by assessing their carbon dioxide emission, energy consumption and cost. Also, the paper presents the impact of the different elements within each phase to identify the most contributing elements. The LCA of the bridge deck is analyzed and estimated with the aid of CES EduPack 2016 software that includes a database of more than 4000 different materials and more than 200 manufacturing processes. Analysis of the case study shows that material phase causes significant life cycle impact. The study concluded that the deck replacement yields higher environmental impact and life cycle cost compared to repairing and strengthening the deck.

  20. Characterization of stormwater runoff from bridge decks in eastern Massachusetts, 2014–16

    Science.gov (United States)

    Smith, Kirk P.; Sorenson, Jason R.; Granato, Gregory E.

    2018-05-02

    The quality of stormwater runoff from bridge decks (hereafter referred to as “bridge-deck runoff”) was characterized in a field study from August 2014 through August 2016 in which concentrations of suspended sediment (SS) and total nutrients were monitored. These new data were collected to supplement existing highway-runoff data collected in Massachusetts which were deficient in bridge-deck runoff concentration data. Monitoring stations were installed at three bridges maintained by the Massachusetts Department of Transportation in eastern Massachusetts (State Route 2A in the city of Boston, Interstate 90 in the town of Weston, and State Route 20 near Quinsigamond Village in the city of Worcester). The bridges had annual average daily traffic volumes from 21,200 to 124,000 vehicles per day; the land use surrounding the monitoring stations was 25 to 67 percent impervious.Automatic-monitoring techniques were used to collect more than 160 flow-proportional composite samples of bridge-deck runoff. Samples were analyzed for concentrations of SS, loss on ignition of suspended solids (LOI), particulate carbon (PC), total phosphorus (TP), total dissolved nitrogen (DN), and particulate nitrogen (PN). The distribution of particle size of SS also was determined for composite samples. Samples of bridge-deck runoff were collected year round during rain, mixed precipitation, and snowmelt runoff and with different dry antecedent periods throughout the 2-year sampling period.At the three bridge-deck-monitoring stations, median concentrations of SS in composite samples of bridge-deck runoff ranged from 1,490 to 2,020 milligrams per liter (mg/L); however, the range of SS in individual composites was vast at 44 to 142,000 mg/L. Median concentrations of SS were similar in composite samples collected from the State Route 2A and Interstate 90 bridge (2,010 and 2,020 mg/L, respectively), and lowest at the State Route 20 bridge (1,490 mg/L). Concentrations of coarse sediment (greater

  1. Performance evaluation of concrete bridge decks reinforced with MMFX and SSC rebars.

    Science.gov (United States)

    2006-01-01

    This report investigates the performance of bridge decks reinforced with stainless steel clad (SSC) and micro-composite multistructural formable steel (MMFX) rebars. The two-span Galloway Road Bridge on route CR5218 over North Elkhorn Creek in Scott ...

  2. Development and validation of deterioration models for concrete bridge decks - phase 1 : artificial intelligence models and bridge management system.

    Science.gov (United States)

    2013-06-01

    This research documents the development and evaluation of artificial neural network (ANN) models to predict the condition ratings of concrete highway bridge decks in Michigan. Historical condition assessments chronicled in the national bridge invento...

  3. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-01-01

    Full Text Available The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper, depending on the experimental investigations of FRP to steel girder system, the Finite Element (FE models on experiments were developed and analyzed. Comparison between experiments and FE results indicated that the FE models were much stiffer for in-plane shear stiffness of the FRP deck panel. To modify the FE models, rotational spring elements were added between webs and flanges of FRP decks, to simulate the semirigid connections. Numerical analyses were also conducted on four-point bending experiments of FRP-steel composite girders. Good agreement between experimental results and FE analysis was achieved by comparing the load-deflection curves at midspan and contribution of composite action from FRP decks. With the validated FE models, the parametric studies were conducted on adhesively bonded connection between FRP decks and steel girders, which indicated that the loading transfer capacity of adhesive connection was not simply dependent on the shear modulus or thickness of adhesive layer but dominated by the in-plane shear stiffness K.

  4. Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge

    Czech Academy of Sciences Publication Activity Database

    Buljac, Andrija; Kozmar, H.; Pospíšil, Stanislav; Macháček, Michael

    2017-01-01

    Roč. 137, April (2017), s. 310-322 ISSN 0141-0296 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : bridge decks * roadway wind barrier * aerodynamic forces and moments * galloping * flutter * wind-tunnel experiments Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering , Municipal and structural engineering Impact factor: 2.258, year: 2016 http://www.sciencedirect.com/science/ article /pii/S014102961730278X

  5. Service Life and Maintenance Modelling of Reinforced Concrete Bridge Decks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Recent research in the area of assessment and maintenance of reinforced concrete bridge decks is presented in this paper. Three definitions of service lifetime are introduced and the difficult problem of assessing the service life is discussed. A stochastic modelling of corrosion and corrosion...... cracking is introduced and the site dependency of corrosion is stressed. Finally, a recently developed optimal repair strategy for bridges is briefly explained....

  6. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    Science.gov (United States)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  7. Performance of Rail Fastening Systems on an Open-Deck Bridge

    Science.gov (United States)

    2018-02-01

    Transportation Technology Center, Inc. (TTCI) monitored the performance of rail fasteners on an open-deck bridge and its approaches, located at Norfolk Southern Corporations (NS's) eastern mega site. The project was co-sponsored by the Federal Rai...

  8. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  9. A feasibility study of bridge deck deicing using geothermal energy.

    Science.gov (United States)

    2015-04-01

    In this study, we investigated the feasibility of a ground-coupled system that utilizes heat energy harvested from the ground for : deicing of bridge decks. Heat exchange is performed using circulation loops integrated into the deep foundations suppo...

  10. Demonstration and Validation of a Composite Grid Reinforcement System for Bridge Decks

    Science.gov (United States)

    2016-09-01

    presence of chlorides from road salts that can pene- trate into the concrete deck and cause corrosion of standard steel reinforcement. Installation of the... Corrosion of Metal and Alloys – Corrosivity of Atmospheres – Classification, Determination and Estimation.” Geneva, Switzerland: International Standards...one year), an atmospheric corrosion test rack, (equipped with sensors to monitor corrosion and chlorides were in- serted in the bridge deck), and

  11. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    NARCIS (Netherlands)

    Jiang, X.; Luo, Chengwei; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper,

  12. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  13. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  14. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  15. Structural condition assessment and service load performance of deteriorated prestressed concrete deck beam bridges

    Science.gov (United States)

    Fuentes, Juan Bolivar

    Precast pretensioned deck beam bridges are a generic bridge type widely used by IDOT for new construction through the end of the 1970's and still widely used on county roads throughout Illinois. While these bridges were economical to build, IDOT discontinued their use because reflective cracks developed along the length of the longitudinal joints between beams. Three 30 years old deteriorated beams were removed from an existing bridge over Spoon River in Fulton County, IL and delivered to Newmark Civil Engineering Laboratory. The program consisted of a series of comprehensive, destructive and non-destructive, tests and evaluations of the three beams with emphasis on three major areas; (1) The Condition Assessment of the as-delivered beams. (2) The service load performance of the bridge sub-assemblage constructed from those beams. After a comprehensive inspection of the beams was completed, the beams were integrated together into a bridge subassembly that simulated a bridge lane. (3) Following the service load tests, the three beams were separated and tested individually to failure. The critical signs to be observed in existing structures that will lead the inspectors to conclude that a deck beam is being overloaded were are also studied. Several conclusions were found. Cracking of the longitudinal joint has little effect on the stiffness of the bridge if the transverse rod is snug. The presence of a snug transverse tie rod increases the strength of the longitudinal joint. After a longitudinal joint has fractured, reincorporating a snug transverse rod can significantly reestablish the stiffness of the longitudinal joint and reduce overloading of a deteriorated beam. Participation factors must be based on relative bending moments of one beam with respect to the total amount of bending moment produced by the applied load and not to the amount of total vertical displacement. The participation factors will vary along the span of the bridge deck and will depend on the

  16. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  17. a finite element model for the analysis of bridge decks

    African Journals Online (AJOL)

    Dr Obe

    A FINITE ELEMENT MODEL FOR THE ANALYSIS OF BRIDGE DECKS. NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.1, MARCH 2008. 59. (a) Beam-plate system. (b) T-beam structural model. Fig. 1 Beam-plate structure idealisations. The matrix displacement method of analysis is used. The continuum structure is.

  18. Bridge deck cracking : effects on in-service performance, prevention, and remediation.

    Science.gov (United States)

    2015-08-01

    The main objectives of this project were: (a) to identify the causes of early-age cracking in concrete bridge decks, (b) to provide : recommendations for effective mitigation of early-age cracking, (c) to assess the effect of cracks on the long-term ...

  19. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  20. Implementing statistical analysis in multi-channel acoustic impact-echo testing of concrete bridge decks: Determining thresholds for delamination detection

    Science.gov (United States)

    Hendricks, Lorin; Spencer Guthrie, W.; Mazzeo, Brian

    2018-04-01

    An automated acoustic impact-echo testing device with seven channels has been developed for faster surveying of bridge decks. Due to potential variations in bridge deck overlay thickness, varying conditions between testing passes, and occasional imprecise equipment calibrations, a method that can account for variations in deck properties and testing conditions was necessary to correctly interpret the acoustic data. A new methodology involving statistical analyses was therefore developed. After acoustic impact-echo data are collected and analyzed, the results are normalized by the median for each channel, a Gaussian distribution is fit to the histogram of the data, and the Kullback-Leibler divergence test or Otsu's method is then used to determine the optimum threshold for differentiating between intact and delaminated concrete. The new methodology was successfully applied to individual channels of previously unusable acoustic impact-echo data obtained from a three-lane interstate bridge deck surfaced with a polymer overlay, and the resulting delamination map compared very favorably with the results of a manual deck sounding survey.

  1. Impact of overweight vehicles (with heavy axle loads) on bridge deck deterioration.

    Science.gov (United States)

    2012-03-01

    Bridge deck slabs develop compressive stresses from global flexural deformation and locally from high-level : wheel loads when it is subjected to overweight trucks. This study quantified the impact of overweight vehicles : with heavy axle loads on br...

  2. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal : Technical Summary

    Science.gov (United States)

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  3. Effectiveness of polymer bridge deck overlays in highway noise reduction : technical paper.

    Science.gov (United States)

    2016-04-01

    The Kansas Department of Transportation (KDOT) began placing multi-layer polymer bridge deck overlays in 1999 and at the present time have over 200 in service. A few years after placing the overlays, individuals indicated that they noticed how quiet ...

  4. 3D laser scanning for quality control and assurance in bridge deck construction.

    Science.gov (United States)

    2014-08-01

    The inspection of installations of rebar and other embedded components in bridge deck construction is a tedious : task for eld inspectors, requiring considerable eld time for measurement and verication against code requirement. The verica...

  5. Moving dynamic loads caused by bridge deck joint unevenness - a case study

    CSIR Research Space (South Africa)

    Steyn, WJV

    2004-11-01

    Full Text Available This paper focus on the general guidelines regarding maximum unevenness from bridge deck joints for typical South African heavy vehicles, in order to minimize the generation of moving variable loads. In a recent investigation it was found that areas...

  6. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated......, and as an example the reliability profile and a sensitivity analyses for a corroded reinforced concrete bridge is shown....

  7. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  8. An Advanced Coupled Genetic Algorithm for Identifying Unknown Moving Loads on Bridge Decks

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2014-01-01

    Full Text Available This study deals with an inverse method to identify moving loads on bridge decks using the finite element method (FEM and a coupled genetic algorithm (c-GA. We developed the inverse technique using a coupled genetic algorithm that can make global solution searches possible as opposed to classical gradient-based optimization techniques. The technique described in this paper allows us to not only detect the weight of moving vehicles but also find their moving velocities. To demonstrate the feasibility of the method, the algorithm is applied to a bridge deck model with beam elements. In addition, 1D and 3D finite element models are simulated to study the influence of measurement errors and model uncertainty between numerical and real structures. The results demonstrate the excellence of the method from the standpoints of computation efficiency and avoidance of premature convergence.

  9. Two-course bonded concrete bridge deck construction : condition and performance after six years.

    Science.gov (United States)

    1981-01-01

    This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...

  10. effect of uncertainty on the fatigue reliability of reinforced concrete ...

    African Journals Online (AJOL)

    In this paper, a reliability time-variant fatigue analysis and uncertainty effect on the serviceability of reinforced concrete bridge deck was carried out. A simply supported 15m bridge deck was specifically used for the investigation. Mathematical models were developed and the uncertainties in structural resistance, applied ...

  11. Evaluation of performance and maximum length of continuous decks in bridges : part 1.

    Science.gov (United States)

    2011-06-01

    The purpose of this research was to evaluate the performance history of continuous bridge decks in the State of Georgia, to determine why the current design detail works, to recommend a new design detail, and to recommend the maximum and/or optimum l...

  12. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  13. Experimental Analysis of Stiffness of the Riveted Steel Railway Bridge Deck Members’ Joints

    Directory of Open Access Journals (Sweden)

    Gocál Jozef

    2014-12-01

    Full Text Available The paper deals with the real behaviour of the riveted steel railway bridge deck members’ connections with respect to their bending stiffness. Attention is paid to the stringer-to-cross beam connection as well as the cross beam-to-main girder connection. The stiffness of the two connections is investigated on the basis of evaluation of the experimentally determined stress response of the observed structural members to the actual traffic load on an existing railway bridge.

  14. CRASH TEST AND EVALUATION OF RESTRAINED SAFETY-SHAPE CONCRETE BARRIERS ON CONCRETE BRIDGE DECK

    Science.gov (United States)

    2018-01-01

    This research designed and tested a new portable concrete barrier that meets the performance of MASH TL-4 and can be used in temporary and permanent applications on bridge decks. Additionally, this new barrier system will minimize deflection, allowin...

  15. Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.

    Science.gov (United States)

    2014-12-01

    Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...

  16. Arch-Axis Coefficient Optimization of Long-Span Deck-Type Concrete-Filled Steel Tubular Arch Bridge

    Science.gov (United States)

    Liu, Q. J.; Wan, S.; Liu, H. C.

    2017-11-01

    This paper is based on Nanpuxi super major bridge which is under construction and starts from Wencheng Zhejiang province to Taishun highway. A finite element model of the whole bridge is constructed using Midas Civil finite element software. The most adverse load combination in the specification is taken into consideration to determine the method of calculating the arch-axis coefficient of long-span deck-type concrete-filled steel tubular arch bridge. By doing this, this paper aims at providing references for similar engineering projects.

  17. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM

    Czech Academy of Sciences Publication Activity Database

    Aygül, M.; AL-Emrani, M.; Urushadze, Shota

    2012-01-01

    Roč. 40, July (2012), s. 129-142 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) 7E08098 Grant - others:evropská komise(XE) RFSR-CT-2008-00033 (BRIFAG) Institutional support: RVO:68378297 Keywords : orthotropic bridge deck * open ribs * structural hot spot stress * effective notch stress Subject RIV: JM - Building Engineering Impact factor: 1.976, year: 2012

  18. Estimation of Structure-Borne Noise Reduction Effect of Steel Railway Bridge Equipped with Floating Ladder Track and Floating Reinforced-Concrete Deck

    Science.gov (United States)

    Watanabe, Tsutomu; Sogabe, Masamichi; Asanuma, Kiyoshi; Wakui, Hajime

    A number of steel railway bridges have been constructed in Japan. Thin steel members used for the bridges easily tend to vibrate and generate structure-borne noise. Accordingly, the number of constructions of steel railway bridges tends to decrease in the urban areas from a viewpoint of environmental preservation. Then, as a countermeasure against structure-borne noise generated from steel railway bridges, we have developed a new type of the steel railway bridge equipped with a floating-ladder track and a floating reinforced-concrete (RC) deck. As a result of train-running experiment, it became apparent that the new steel railway bridge installed by double floating system has reduced a vibration velocity level by 10.5 dB(A) at main girder web as compared with a steel railway bridge installed by directly fastened track. This reduction effect was achieved by the ladder track and RC deck supported by resilient materials.

  19. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  20. Long-term behaviour of a steel-concrete composite railway bridge deck

    OpenAIRE

    STAQUET, S; TAILHAN, JL; ESPION, B

    2005-01-01

    A prefabricated, composite and prestressed railway bridge deck has been instrumented in June 2000 with strain gages and vibrating wire extensometers. The purpose of this paper is to report on the comparison between strains recorded in situ up to four years with values computed within the framework of an original time-dependent analysis base on the evolution of the degree of hydration and the internal relative humidity in concrete. These fundamental parameters used in the proposed model to com...

  1. Development and validation of deterioration models for concrete bridge decks - phase 2 : mechanics-based degradation models.

    Science.gov (United States)

    2013-06-01

    This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the c...

  2. Experimental Investigation of Membrane Materials used in Multilayer Surfacing Systems for Orthotropic Steel Deck Bridges

    NARCIS (Netherlands)

    Tzimiris, G.

    2017-01-01

    In the Netherlands asphaltic surfacings on orthotropic steel deck bridges (OSDB) mostly consist of two structural layers. The upper layer consists of what is known as very open porous asphalt (ZOAB) for noise reduction. For the lower layer Guss Asphalt (GA) is used. Earlier investigations have shown

  3. Optimizing rib width to height and rib spacing to deck plate thickness ratios in orthotropic decks

    Directory of Open Access Journals (Sweden)

    Abdullah Fettahoglu

    2016-12-01

    Full Text Available Orthotropic decks are composed of deck plate, ribs, and cross-beams and are frequently used in industry to span long distances, due to their light structures and load carrying capacities. Trapezoidal ribs are broadly preferred as longitudinal stiffeners in design of orthotropic decks. They supply the required stiffness to the orthotropic deck in traffic direction. Trapezoidal ribs are chosen in industrial applications because of their high torsional and buckling rigidity, less material and welding needs. Rib width, height, spacing, thickness of deck plate are important parameters for designing of orthotropic decks. In the scope of this study, rib width to height and rib spacing to deck plate thickness ratios are assessed by means of the stresses developed under different ratios of these parameters. For this purpose a FE-model of orthotropic bridge is generated, which encompasses the entire bridge geometry and conforms to recommendations given in Eurocode 3 Part 2. Afterwards necessary FE-analyses are performed to reveal the stresses developed under different rib width to height and rib spacing to deck plate thickness ratios. Based on the results obtained in this study, recommendations regarding these ratios are provided for orthotropic steel decks occupying trapezoidal ribs.

  4. Reliability Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Middleton, C. R.

    This paper is partly based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: concrete bridges". It contains the details of a methodology which can be used to generate Whole Life (WL) reliability...... profiles. These WL reliability profiles may be used to establish revised rules for concrete bridges. This paper is to some extend based on Thoft-Christensen et. al. [1996], Thoft-Christensen [1996] et. al. and Thoft-Christensen [1996]....

  5. Reliability Modeling of Double Beam Bridge Crane

    Science.gov (United States)

    Han, Zhu; Tong, Yifei; Luan, Jiahui; Xiangdong, Li

    2018-05-01

    This paper briefly described the structure of double beam bridge crane and the basic parameters of double beam bridge crane are defined. According to the structure and system division of double beam bridge crane, the reliability architecture of double beam bridge crane system is proposed, and the reliability mathematical model is constructed.

  6. Super-long bridges with floating towers: the role of multi-box decks and Hardware-In-the-Loop technology for wind tunnel tests

    Science.gov (United States)

    Zasso, A.; Argentini, T.; Bayati, I.; Belloli, M.; Rocchi, D.

    2017-12-01

    The super long fjord crossings in E39 Norwegian project pose new challenges to long span bridge design and construction technology. Proposed solutions should consider the adoption of bridge deck with super long spans or floating solutions for at least one of the towers, due to the relevant fjord depth. At the same time, the exposed fjord environment, possibly facing the open ocean, calls for higher aerodynamic stability performances. In relation to this scenario, the present paper addresses two topics: 1) the aerodynamic advantages of multi-box deck sections in terms of aeroelastic stability, and 2) an experimental setup in a wind tunnel able to simulate the aeroelastic bridge response including the wave forcing on the floating.

  7. Structural improvement of strengthened deck panels with externally bonded plates

    International Nuclear Information System (INIS)

    Sim, Jongsung; Oh, Hongseob

    2005-01-01

    Concrete bridge decks require eventual replacement and rehabilitation due to decreasing load-carrying capacity. This paper compares different strengthening design procedures that improve the usability and structural performance of bridge decks. The failure characteristics of bridge decks strengthened with various materials such as carbon fiber sheet, glass fiber sheet, steel plate, and grid CFRP and GFRP are analyzed, and the theoretical load-carrying capacities are evaluated using traditional beam and yield line theory, and punching shear analysis. The strengthening materials increase the punching shear strength of the deck and change the failure mode of the strengthened panel

  8. Lifetime Reliability Assessment of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed....... Finally the produce is illustrated on 6 existing UK bridges....

  9. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  10. Performance of stress-laminated timber highway bridges in cold climates

    Science.gov (United States)

    James P. Wacker

    2009-01-01

    This paper summarizes recent laboratory and field data studies on thermal performance of stress-laminated timber highway bridges. Concerns about the reliability of stress-laminated deck bridges when exposed to sub-freezing temperatures triggered several investigations. Two laboratory studies were conducted to study the effects of wood species, preservative, moisture...

  11. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management - pilot project.

    Science.gov (United States)

    2016-09-29

    This project piloted the findings from an initial research and development project pertaining to the detection, : quantification, and visualization of bridge deck distresses through the use of remote sensing techniques, specifically : combining optic...

  12. Numerical Simulation of Early Age Cracking of Reinforced Concrete Bridge Decks with a Full-3D Multiscale and Multi-Chemo-Physical Integrated Analysis

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishida

    2018-03-01

    Full Text Available In November 2011, the Japanese government resolved to build “Revival Roads” in the Tohoku region to accelerate the recovery from the Great East Japan Earthquake of March 2011. Because the Tohoku region experiences such cold and snowy weather in winter, complex degradation from a combination of frost damage, chloride attack from de-icing agents, alkali–silica reaction, cracking and fatigue is anticipated. Thus, to enhance the durability performance of road structures, particularly reinforced concrete (RC bridge decks, multiple countermeasures are proposed: a low water-to-cement ratio in the mix, mineral admixtures such as ground granulated blast furnace slag and/or fly ash to mitigate the risks of chloride attack and alkali–silica reaction, anticorrosion rebar and 6% entrained air for frost damage. It should be noted here that such high durability specifications may conversely increase the risk of early age cracking caused by temperature and shrinkage due to the large amounts of cement and the use of mineral admixtures. Against this background, this paper presents a numerical simulation of early age deformation and cracking of RC bridge decks with full 3D multiscale and multi-chemo-physical integrated analysis. First, a multiscale constitutive model of solidifying cementitious materials is briefly introduced based on systematic knowledge coupling microscopic thermodynamic phenomena and microscopic structural mechanics. With the aim to assess the early age thermal and shrinkage-induced cracks on real bridge deck, the study began with extensive model validations by applying the multiscale and multi-physical integrated analysis system to small specimens and mock-up RC bridge deck specimens. Then, through the application of the current computational system, factors that affect the generation and propagation of early age thermal and shrinkage-induced cracks are identified via experimental validation and full-scale numerical simulation on real

  13. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  14. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  15. Design of Experimental Suspended Footbridge with Deck Made of UHPC

    Directory of Open Access Journals (Sweden)

    Blank Marek

    2016-01-01

    Full Text Available This paper deals with the static and dynamic design of experimental footbridge for pedestrians and cyclists in the municipality Lužec nad Vltavou in Czech Republic, Europe. This work aims to familiarize the reader with calculations carried out and the results obtained, describing the static and dynamic properties of proposed footbridge. The construction of footbridge is designed as a suspended structure with prestressed bridge deck consisting of prefabricated UHPC panels and reversed “V” shaped steel pylon with height of approximately 40 meters. The deck is anchored using 24 steel hangers in one row in a steel pylon - 17 ropes in the main span and 7 cables on the other side. Range of the main span is 99.18 meters and the secondary span is 31.9 m. Deck width is 4.5 meters with 3.0 meters passing space. The bridge is designed for the possibility of passage of vehicles weighting up to 3.5 tons. Deck panels are made of UHPC with reinforcement. At the edge of the bridge on the side of the shorter span the bridge deck is firmly connected with abutment and on the other deck it is stored using a pair of sliding bearings. The utilization of the excellent properties of UHPC allows to design a very thin and lightweight construction of the deck, which could not be achieved with the use of normal concrete.

  16. Fiber reinforced polymer bridge decks.

    Science.gov (United States)

    2011-01-01

    The overarching goal of this study was to perform a comprehensive evaluation of various issues related to the strength and serviceability : of the FRP deck panels that are available in the industry. Specific objectives were to establish critical limi...

  17. Modal analysis of cable-stayed UHPC bridge

    Directory of Open Access Journals (Sweden)

    Tej Petr

    2017-01-01

    Full Text Available This paper deals with the dynamic analysis of cable-stayed UHPC bridge over the Vltava river near town Melnik in Czech Republic, Europe. Bridge serves for pedestrians and cyclists. This work aims to familiarize the reader with dynamic calculations carried out and the results obtained, describing the dynamic properties of proposed bridge. The construction of bridge is designed as a cable-stayed structure with prestressed bridge deck consisting of prefabricated UHPC panels and reversed “V” shaped steel pylon with height of approximately 40 meters. The deck is anchored using 24 steel hangers in one row in a steel pylon - 17 ropes in the main span and 7 cables on the other side. Range of the main span is 99.18 meters and the secondary span is 31.9 m. Deck width is 4.5 meters with 3.0 meters passing space. The bridge is designed for the possibility of passage of vehicles weighting up to 3.5 tonnes. Deck panels are made of UHPC with reinforcement. At the edge of the bridge on the side of the shorter span the bridge deck is firmly connected with abutment and on the other deck it is stored using a pair of sliding bearings.

  18. The Impact of Traffic-Induced Bridge Vibration on Rapid Repairing High-Performance Concrete for Bridge Deck Pavement Repairs

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Based on forced vibration tests for high-performance concrete (HPC, the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.

  19. Assessment of the Reliability of Concrete Bridges

    DEFF Research Database (Denmark)

    Middleton, C. R.; Thoft-Christensen, Palle

    Although there has been a considerable amount of research into different aspects of concrete bridge reliability, it has still not been widely adopted in professional practice other than in the development and calibration of codes. This situation appears to be changing as there has been a signific......Although there has been a considerable amount of research into different aspects of concrete bridge reliability, it has still not been widely adopted in professional practice other than in the development and calibration of codes. This situation appears to be changing as there has been...... adopted to assist in achieving this goal. Rather than review the specific research on this subject this paper examines a number of key issues related to the practical application of reliability analysis to the assessment of concrete bridges....

  20. Experimental evaluation of the buckling phenomena in the new joint design for upper deck structure of a bridge

    Directory of Open Access Journals (Sweden)

    Solazzi L.

    2010-06-01

    Full Text Available This paper is concerned with the experimental mechanical analysis of a new design of a joint for a main components of a upper deck of a road bridge. These components are subject to the compression state stress induced by the weight and the load acting on the road. Each upper deck of a bridge (positioned on each side of the bridge is composed by four tubular structures that must be joint each together. The joint must to take in to account many aspects, for example that the length of each component is not the same (because, obviously, there is a mechanical tolerance. This phenomena induce different compression stress on each component and so is very important non only the critical buckling load but also the post buckling behaviour of the structure. It is very important that if a single tubular structure reaches the critical load of instability, it still has load capacity . This is to avoid that, in the case where a column reaches the instability, the entire load acting on a column increase the load on the remaining three. For this purpose many different geometrical solutions have been designed (elaborated by fem analyses and successively tested experimentally. This work reports the main experimental results on the best joint solution and how this increase the load capacity and the displacement respect to the solution without this flange.

  1. ANDERS: future of concrete bridge deck evaluation and rehabilitation

    Science.gov (United States)

    Gucunski, Nenad; Moon, Franklin

    2011-04-01

    The Automated Nondestructive Evaluation and Rehabilitation System (ANDERS) aims to provide a uniquely comprehensive tool that will transform the manner in which bridge decks are assessed and rehabilitated. It is going to be achieved through: 1) much higher evaluation detail and comprehensiveness of detection at an early stage deterioration, 2) comprehensive condition and structural assessment at all stages of deterioration, and 3) integrated assessment and rehabilitation that will be minimally invasive, rapid and cost effective. ANDERS is composed of four systems. that merge novel imaging and NDE techniques, together with novel intervention approaches to arrest the deterioration processes. These technologies are incorporated within a series of human-operated and robotic vehicles. To perform assessments, ANDERS will be equipped with two complimentary nondestructive approaches. The first, Multi-Modal Nondestructive Evaluation (MM-NDE) System aims to identify and characterize localized deterioration with a high degree of resolution. The second, Global Structural Assessment (GSA) System aims to capture global structural characteristics and identify any appreciable effects of deterioration on a bridge structure. Output from these two approaches will be merged through a novel Automated Structural Identification (Auto St-Id) approach that will construct, calibrate, and utilize simulation models to assess overall structural vulnerability and capacity. These three systems comprise the assessment suite of ANDERS and will directly inform the Nondestructive Rehabilitation (NDR) System. The NDR System leverages robotics for the precision and rapid delivery of novel materials capable of halting the early-stage deterioration identified.

  2. Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy

    International Nuclear Information System (INIS)

    Bavusi, Massimo; Loperte, Antonio; Lapenna, Vincenzo; Soldovieri, Francesco; Di Napoli, Rosario; Di Cesare, Antonio; Carlo Ponzo, Felice

    2011-01-01

    An extensive experimental and numerical investigation has been carried out to assess the status of the 'Ponte sul Basento' (1967–1976), in the town of Potenza (Basilicata region, southern Italy), better known as the Musmeci bridge. Architecturally, the bridge is a considerable reinforced 20th century concrete structure that was designed and built by the Italian architect Sergio Musmeci (1926–1981). Moreover, the bridge represents an important element of the infrastructural network, linking the city centre to the Potenza-Sicignano highway, crossing the Basento river and the railway close to the main train station of the city. Recently, due to ageing and continuous and significant traffic, the bridge started to be affected by several problems such as water infiltration. Within the presented study, a widespread ground penetrating radar (GPR) survey has been designed to investigate the geometrical characteristics of the bridge deck (Gerber saddles, internal stiffening walls, pillar supports) and detect the presence of defects or damage due to water infiltration and traffic fatigue. Concerning this, a 900 MHz 3D GPR survey has been performed along a zone of one of the lanes on the road surface. Moreover, a second 1500 MHz 3D survey has been carried out at the bottom of the bridge deck in order to gain detailed information about an important structural element of the bridge, the Gerber saddle. Both results have been processed following two approaches: the first a classical time-domain processing session based on commercial software and the use of migration; the second in microwave tomography, an advanced frequency domain automatic PC-based inversion algorithm. In this paper, we present a comparative interpretation of both kinds of processed results, and provide considerations about the investigated structures

  3. Christian Menn's recent bridge designs - Reducing structural elements to the simplest solution

    OpenAIRE

    Brühwiler, E.; Mahmoud, Khaled M.

    2009-01-01

    The conceptual designs by Christian Menn of four landmark bridges are presented: 1) a 350-m span cable-stayed bridge with jointless deck girder, 2) a cable-stayed bridge with a single “spindle-shaped” pylon, 3) a bridge with an arch reaching high above the deck (both carrying a horizontally curved deck girder), and 4) a cable stayed bridge with three pylons monolithically connected to the deck girder. All of the original bridge designs are driven by the aim to optimize the flow of force...

  4. Reliability Evaluation of Bridges Based on Nonprobabilistic Response Surface Limit Method

    Directory of Open Access Journals (Sweden)

    Xuyong Chen

    2017-01-01

    Full Text Available Due to many uncertainties in nonprobabilistic reliability assessment of bridges, the limit state function is generally unknown. The traditional nonprobabilistic response surface method is a lengthy and oscillating iteration process and leads to difficultly solving the nonprobabilistic reliability index. This article proposes a nonprobabilistic response surface limit method based on the interval model. The intention of this method is to solve the upper and lower limits of the nonprobabilistic reliability index and to narrow the range of the nonprobabilistic reliability index. If the range of the reliability index reduces to an acceptable accuracy, the solution will be considered convergent, and the nonprobabilistic reliability index will be obtained. The case study indicates that using the proposed method can avoid oscillating iteration process, make iteration process stable and convergent, reduce iteration steps significantly, and improve computational efficiency and precision significantly compared with the traditional nonprobabilistic response surface method. Finally, the nonprobabilistic reliability evaluation process of bridge will be built through evaluating the reliability of one PC continuous rigid frame bridge with three spans using the proposed method, which appears to be more simple and reliable when lack of samples and parameters in the bridge nonprobabilistic reliability evaluation is present.

  5. Assessment of the Reliability of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C. R.

    This paper is based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges". It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....

  6. T-section glulam timber bridge modules : modeling and performance

    Science.gov (United States)

    Paul A. Morgan; Steven E. Taylor; Michael A. Ritter; John M. Franklin

    1999-01-01

    This paper describes the design, modeling, and testing of two portable timber bridges, each consisting of two noninterconnected longitudinal glued-laminated timber (glulam) deck panels 1.8 m (6 ft) wide. One bridge is 12.2 m (40 ft) long while the other bridge is 10.7 m (35 ft) long. The deck panels are fabricated in a unique double-tee cross section. The bridges...

  7. Embodied Energy Optimization of Prestressed Concrete Slab Bridge Decks

    Directory of Open Access Journals (Sweden)

    Julián Alcalá

    2018-04-01

    Full Text Available This paper presents one approach to the analysis and design of post-tensioned cast-in-place concrete slab bridge decks. A Simulated Annealing algorithm is applied to two objective functions: (i the economic cost; and (ii the embodied energy at different stages of production materials, transport, and construction. The problem involved 33 discrete design variables: five geometrical ones dealing with the thickness of the slab, the inner and exterior web width, and two flange thicknesses; concrete type; prestressing cables, and 26 variables for the reinforcement set-up. The comparison of the results obtained shows two different optimum families, which indicates that the traditional criteria of economic optimization leads to inefficient designs considering the embodied energy. The results indicate that the objectives are not competing functions, and that optimum energy designs are close to the optimum cost designs. The analysis also showed that the savings of each kW h of energy consumed carries an extra cost of 0.49€. The best cost solution presents 5.3% more embodied energy. The best energy solution is 9.7% more expensive than that of minor cost. In addition, the results have showed that the best cost solutions are not the best energy solutions.

  8. Integral Abutment and Jointless Bridges

    Directory of Open Access Journals (Sweden)

    Cristian-Claudiu Comisu

    2005-01-01

    Full Text Available Integral bridges, or integral abutment and jointless bridges, as they are more commonly known in the USA, are constructed without any movement joints between spans or between spans and abutments. Typically these bridges have stub-type abutments supported on piles and continuous bridge deck from one embankment to the other. Foundations are usually designed to be small and flexible to facilitate horizontal movement or rocking of the support. Integrally bridges are simple or multiple span ones that have their superstructure cast integrally with their substructure. The jointless bridges cost less to construct and require less maintenance then equivalent bridges with expansion joints. Integral bridges present a challenge for load distribution calculations because the bridge deck, piers, abutments, embankments and soil must all be considered as single compliant system. This paper presents some of the important features of integral abutment and jointless bridge design and some guidelines to achieve improved design. The goal of this paper is to enhance the awareness among the engineering community to use integral abutment and jointless bridges in Romania.

  9. Experimental Investigation of a Self-Sensing Hybrid GFRP-Concrete Bridge Superstructure with Embedded FBG Sensors

    OpenAIRE

    Wang, Yanlei; Li, Yunyu; Ran, Jianghua; Cao, Mingmin

    2012-01-01

    A self-sensing hybrid GFRP-concrete bridge superstructure, which consists of two bridge decks and each bridge deck is comprised of four GFRP box sections combined with a thin layer of concrete in the compression zone, was developed by using eight embedded FBG sensors in the top and bottom flanges of the four GFRP box sections at midspan section of one bridge deck along longitudinal direction, respectively. The proposed self-sensing hybrid bridge superstructure was tested in 4-point loading to...

  10. Reliability-based Assessment of Fatigue Life for Bridges

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2012-01-01

    The reliability level for bridges is discussed based on a comparison of the reliability levels proposed and used by e.g. JCSS, ISO, NKB and Eurocodes. The influence of reserve capacity by which failure of a specific detail does not lead to structural collapse is investigated. The results show...

  11. Super-Light Prefabricated Deck Element Integrated in Traditional Concrete Prefabricated Element Construction

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl

    Super-light structures in form of deck elements have been used for the first time in a building to construct indoor pedestrian bridges. Examples of connections to external structures and other super-light deck elements are given along with other details. Other examples on the great versatility...

  12. Influence of Pavement on Fatigue Performance of Urban Steel Box Girder Deck

    Directory of Open Access Journals (Sweden)

    Zheng Zhongyue

    2016-01-01

    Full Text Available Based on spatial finite element analysis method, the Influence of pavement on fatigue performance of orthotropic steel deck was analyzed in terms of pavement system, asphalt pavement stiffness. The result shows that compared with asphalt pavement system, RPC pavement system can not only obviously improve the stress condition of steel bridge deck, but also significantly extend the fatigue life of steel bridge panel; Increasing the stiffness of pavement layer can obviously reduce the stress amplitude of fatigue details, especially for direct contact with the pavement.

  13. Bridge management systems: An asset management tool for road structures

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2012-10-01

    Full Text Available Culverts Ret Walls Buildings Traffic Storm water Etc ? Combined Priorities and Budget Optimised Programme Bridge Project Funding ? Road projects and bridge projects compete for the same ?pot? of funds ? Road failures are more common and more... & retaining walls 18. Longitudinal members 8. Surfacing/ballast (decks & arches) 9. Deck drainage 19. Transverse members 10. Kerbs/sidewalks 20. Deck slabs & arches 11. Parapets & handrails 21. Miscellaneous Condition Survey ? Survey is required...

  14. RECONSTRUCTION AND REINFORCEMENT OF BRIDGE ACROSS THE RIVER. SYLVA IN KUNGUR, RUSSIA

    Directory of Open Access Journals (Sweden)

    R. Ye. Heizn

    2010-04-01

    Full Text Available Sylva Bridge at Kungur city is one of the oldest road bridges in Perm region, the West Urals, Russia. Its erection was begun in 1912 and was interrupted with the First World War and the further events in Russia. The bridge was opened only in 1931. For 75 years of bridge operation the most part of bridge constructions has been acquired plural damages, both mechanical and corrosion. After the bridge inspection in 2003 and according to the calculations of its capacity, the decision on reconstruction of the bridge was accepted. The purpose of rehabilitation was to replace the timber deck by steel orthotropic deck with asphalt pavement. A new deck was to be engaged in combined action with the existing metal structures with the help of socles with high-strength bolts. Due to this, the bridge carrying capacity was increased as required by the present standards. In 2006, after tests, the bridge was opened for traffic.

  15. Seismic Retrofitting of an Existing Steel Railway Bridge by Fluid Viscous Dampers

    Science.gov (United States)

    Gangopadhyay, Avijit; Ghosh, Aparna Dey

    2016-09-01

    There are over a lakh of bridges in the Indian Railways, many of which have become seismically deficient, either through aging or due to inadequate seismic design considerations. The extensive damage of bridges all over the world in recent earthquakes has propelled significant advancement in earthquake protection and retrofitting of bridges. Amongst various passive control systems that are reliable as well as cost-effective, Fluid Viscous Dampers (FVDs) are proving to be successful in bridge vibration control. Orificed FVDs, commercially available as Taylor Devices, have already been successfully installed in several bridges worldwide. However, there has been no such application or study related to Indian railway bridges. In this paper, an existing thirty years' old railway bridge in Jharkhand, India, has been analyzed in SAP2000v14 considering reduced stiffness and found deficient when subjected to spectrum-compatible accelerograms. Subsequent retrofitting of the bridge superstructure with FVDs has been carried out and the results indicate substantial reductions in the responses of the bridge deck.

  16. Investigation on the performance of bridge approach slab

    Directory of Open Access Journals (Sweden)

    Abdelrahman Amr

    2018-01-01

    Full Text Available In Egypt, where highway bridges are to be constructed on soft cohesive soils, the bridge abutments are usually founded on rigid piles, whereas the earth embankments for the bridge approaches are directly founded on the natural soft ground. Consequently, excessive differential settlement frequently occurs between the bridge deck and the bridge approaches resulting in a “bump” at both ends of the bridge deck. Such a bump not only creates a rough and uncomfortable ride but also represents a hazardous condition to traffic. One effective technique to cope with the bump problem is to use a reinforced concrete approach slab to provide a smooth grade transition between the bridge deck and the approach pavement. Investigating the geotechnical and structural performance of approach slabs and revealing the fundamental affecting factors have become mandatory. In this paper, a 2-D finite element model is employed to investigate the performance of approach slabs. Moreover, an extensive parametric study is carried out to appraise the relatively optimum geometries of approach slab, i.e. slab length, thickness, embedded depth and slope, that can yield permissible bumps. Different geo-mechanical conditions of the cohesive foundation soil and the fill material of the bridge embankment are examined.

  17. Structural evaluation of the John A. Roebling Suspension Bridge : element level analysis.

    Science.gov (United States)

    2008-07-01

    The primary objective of the structural evaluation of the John A. Roebling Bridge is to determine the maximum allowable gross vehicle weight (GVW) that can be carried by the bridge deck structural elements such as the open steel grid deck, channels, ...

  18. Seismic performance evaluation of an historical concrete deck arch bridge using survey and drawing of the damages, in situ tests, dynamic identification and pushover analysis

    Science.gov (United States)

    Bergamo, Otello; Russo, Eleonora; Lodolo, Fabio

    2017-07-01

    The paper describes the performance evaluation of a retrofit historical multi-span (RC) deck arch bridge analyzed with in situ tests, dynamic identification and FEM analysis. The peculiarity of this case study lies in the structural typology of "San Felice" bridge, an historical concrete arch bridge built in the early 20th century, a quite uncommon feature in Italy. The preservation and retrofit of historic cultural heritage and infrastructures has been carefully analyzed in the international codes governing seismic response. A complete survey of the bridge was carried out prior to sketching a drawing of the existing bridge. Subsequently, the study consists in four steps: material investigation and dynamic vibration tests, FEM analysis and calibration, retrofit assessment, pushover analysis. The aim is to define an innovative approach to calibrate the FEM analysis through modern experimental investigations capable of taking structural deterioration into account, and to offer an appropriate and cost-effective retrofitting strategy.

  19. The prone bridge test: Performance, validity, and reliability among older and younger adults.

    Science.gov (United States)

    Bohannon, Richard W; Steffl, Michal; Glenney, Susan S; Green, Michelle; Cashwell, Leah; Prajerova, Kveta; Bunn, Jennifer

    2018-04-01

    The prone bridge maneuver, or plank, has been viewed as a potential alternative to curl-ups for assessing trunk muscle performance. The purpose of this study was to assess prone bridge test performance, validity, and reliability among younger and older adults. Sixty younger (20-35 years old) and 60 older (60-79 years old) participants completed this study. Groups were evenly divided by sex. Participants completed surveys regarding physical activity and abdominal exercise participation. Height, weight, body mass index (BMI), and waist circumference were measured. On two occasions, 5-9 days apart, participants held a prone bridge until volitional exhaustion or until repeated technique failure. Validity was examined using data from the first session: convergent validity by calculating correlations between survey responses, anthropometrics, and prone bridge time, known groups validity by using an ANOVA comparing bridge times of younger and older adults and of men and women. Test-retest reliability was examined by using a paired t-test to compare prone bridge times for Session1 and Session 2. Furthermore, an intraclass correlation coefficient (ICC) was used to characterize relative reliability and minimal detectable change (MDC 95% ) was used to describe absolute reliability. The mean prone bridge time was 145.3 ± 71.5 s, and was positively correlated with physical activity participation (p ≤ 0.001) and negatively correlated with BMI and waist circumference (p ≤ 0.003). Younger participants had significantly longer plank times than older participants (p = 0.003). The ICC between testing sessions was 0.915. The prone bridge test is a valid and reliable measure for evaluating abdominal performance in both younger and older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  1. The approximation function of bridge deck vibration derived from the measured eigenmodes

    Directory of Open Access Journals (Sweden)

    Sokol Milan

    2017-12-01

    Full Text Available This article deals with a method of how to acquire approximate displacement vibration functions. Input values are discrete, experimentally obtained mode shapes. A new improved approximation method based on the modal vibrations of the deck is derived using the least-squares method. An alternative approach to be employed in this paper is to approximate the displacement vibration function by a sum of sine functions whose periodicity is determined by spectral analysis adapted for non-uniformly sampled data and where the parameters of scale and phase are estimated as usual by the least-squares method. Moreover, this periodic component is supplemented by a cubic regression spline (fitted on its residuals that captures individual displacements between piers. The statistical evaluation of the stiffness parameter is performed using more vertical modes obtained from experimental results. The previous method (Sokol and Flesch, 2005, which was derived for near the pier areas, has been enhanced to the whole length of the bridge. The experimental data describing the mode shapes are not appropriate for direct use. Especially the higher derivatives calculated from these data are very sensitive to data precision.

  2. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Science.gov (United States)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  3. Guardrails for Use on Historic Bridges: Volume 2—Bridge Deck Overhang Design

    OpenAIRE

    Frosch, Robert J.; Morel, Adam J.

    2016-01-01

    Bridges that are designated historic present a special challenge to bridge engineers whenever rehabilitation work or improvements are made to the bridges. Federal and state laws protect historically significant bridges, and railings on these bridges can be subject to protection because of the role they play in aesthetics. Unfortunately, original railings on historic bridges do not typically meet current crash-test requirements and typically do not meet current standards for railing height and...

  4. Assessment of the Reliability Profiles for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper calculation of reliability profiles is discussed. ULS as well as SLS limit states are formulated. Corrosion due to chloride penetration is the considered deterioration mechanism. Three models for corrosion are formulated. A definition of service lifetime for concrete bridges...

  5. Development and layout of a protocol for the field performance of concrete deck and crack sealers.

    Science.gov (United States)

    2009-09-01

    The main objective of this project was to develop and layout a protocol for the long-term monitoring and assessment of the performance of concrete deck and crack sealants in the field. To accomplish this goal, a total of six bridge decks were chosen ...

  6. Precast Pearl-Chain concrete arch bridges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2015-01-01

    A Pearl-Chain Bridge is a closed-spandrel arch bridge consisting of a number of straight pre-fabricated so called Super-Light Deck elements put together in an arch shape by post-tensioning cables. Several Pearl-Chain arches can be positioned adjacent to each other by a crane to achieve a bridge...... of a desired width. On top of the arch is a filling material to level out the surface of the above road. The filling only transfers vertical loads to the arch. The geometry and material properties of Super-Light Decks are presented, and we refer to several fullscale tests of Pearl-Chain arches where...... the technology was used. We also study other important components and details in the Pearl-Chain Bridge concept and review the effects of different types of loads. A theoretical case study of a circular 30 m span Pearl-Chain Bridge is presented showing the influence of a number of parameters: The number of post...

  7. Reliability-based failure cause assessment of collapsed bridge during construction

    International Nuclear Information System (INIS)

    Choi, Hyun-Ho; Lee, Sang-Yoon; Choi, Il-Yoon; Cho, Hyo-Nam; Mahadevan, Sankaran

    2006-01-01

    Until now, in many forensic reports, the failure cause assessments are usually carried out by a deterministic approach so far. However, it may be possible for the forensic investigation to lead to unreasonable results far from the real collapse scenario, because the deterministic approach does not systematically take into account any information on the uncertainties involved in the failures of structures. Reliability-based failure cause assessment (reliability-based forensic engineering) methodology is developed which can incorporate the uncertainties involved in structural failures and structures, and to apply them to the collapsed bridge in order to identify the most critical failure scenario and find the cause that triggered the bridge collapse. Moreover, to save the time and cost of evaluation, an algorithm of automated event tree analysis (ETA) is proposed and possible to automatically calculate the failure probabilities of the failure events and the occurrence probabilities of failure scenarios. Also, for reliability analysis, uncertainties are estimated more reasonably by using the Bayesian approach based on the experimental laboratory testing data in the forensic report. For the applicability, the proposed approach is applied to the Hang-ju Grand Bridge, which collapsed during construction, and compared with deterministic approach

  8. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  9. Field performance of timber bridges. 13, Mohawk Canal stress-laminated bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; X. Lauderdale

    The Mohawk Canal bridge was constructed in August 1994, just outside Roll, Arizona. It is a simple-span, double-lane, stress-laminated deck superstructure, approximately 6.4 m (21 ft) long and 10.4 m (34 ft) wide and constructed with Combination 16F-V3 Douglas Fir glued-laminated timber beam laminations. The performance of the bridge was monitored continuously for 2...

  10. Light-weight aluminium bridges and bridge decks. An overview of recent applications

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Kluyver, D. de

    2008-01-01

    The last decades have shown a large increase in the application of aluminium alloys for light-weight bridges. For bridge construction, aluminium alloys have some specific advantages, but also some points of attention. This paper deals with some recent projects of aluminium bridges, and for these

  11. Investigation of Influence Factors of Wind-Induced Buffeting Response of a Six-Tower Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Zhang

    2016-01-01

    Full Text Available This paper presents an investigation of the wind-induced buffeting responses of the Jiashao Bridge, the longest multispan cable-stayed bridge in the world. A three-dimensional finite element model for the Jiashao Bridge is established using the commercial software package ANSYS and a 3D fluctuating wind field is simulated for both bridge deck and towers. A time-domain procedure for analyzing buffeting responses of the bridge is implemented in ANSYS with the aeroelastic effect included. The characteristics of buffeting responses of the six-tower cable-stayed bridge are studied in some detail, focusing on the effects including the difference in the longitudinal stiffness between the side towers and central towers, partially longitudinal constraints between the bridge deck and part of bridge towers, self-excited aerodynamic forces, and the rigid hinge installed in the middle of the bridge deck. The analytical results can provide valuable references for wind-resistant design of multispan cable-stayed bridges in the future.

  12. Timber in Bridge Structures

    OpenAIRE

    Detkin, Viktoria

    2016-01-01

    The purpose of this final year project was to study the properties of timber as a structural material and the suitability of wood in load bearing members for bridge structures. For a case study, an existing timber bridge was selected. Due to its condition the bridge should be replaced. The design of a new bridge with steel beams holding a glulam deck was made. During the case study the replacement of steel beams by glulam timber ones was discussed. Some calculations were made in order to ...

  13. Compressive Membrane Action in Prestressed Concrete Deck Slabs

    NARCIS (Netherlands)

    Amir, S.

    2014-01-01

    One of the most important questions that structural engineers all over the world are dealing with is the safety of the existing structures. In the Netherlands, there are a large number of transversely prestressed bridge decks that have been built in the last century and now need to be investigated

  14. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Directory of Open Access Journals (Sweden)

    Bizjak Karmen Fifer

    2016-10-01

    Full Text Available The railway infrastructure is a very important component of the world’s total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  15. Estimating bridge stiffness using a forced-vibration technique for timber bridge health monitoring

    Science.gov (United States)

    James P. Wacker; Xiping Wang; Brian Brashaw; Robert J. Ross

    2006-01-01

    This paper describes an effort to refine a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the frequency response of several simple-span, sawn timber beam (with plank deck) bridges located in St. Louis County, Minnesota. Static load deflections were also measured to...

  16. Bridge deck surface temperature monitoring by infrared thermography and inner structure identification using PPT and PCT analysis methods

    Science.gov (United States)

    Dumoulin, Jean

    2013-04-01

    One of the objectives of ISTIMES project was to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, we focused our research and development efforts on uncooled infrared camera techniques due to their promising potential level of dissemination linked to their relative low cost on the market. On the other hand, works were also carried out to identify well adapted implementation protocols and key limits of Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) processing methods to analyse thermal image sequence and retrieve information about the inner structure. So the first part of this research works addresses infrared thermography measurement when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey). In such context, it requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time, thanks to additional measurements. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed [1] with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The whole measurement system was implemented on the "Musmeci" bridge located in Potenza (Italy). No traffic interruption was required during the mounting of our measurement system. The infrared camera was fixed on top of a mast at 6 m elevation from the surface of the bridge deck. A small weather station was added on the same mast at 1 m under the camera. A GPS antenna was also fixed at the

  17. Matrix-based system reliability method and applications to bridge networks

    International Nuclear Information System (INIS)

    Kang, W.-H.; Song Junho; Gardoni, Paolo

    2008-01-01

    Using a matrix-based system reliability (MSR) method, one can estimate the probabilities of complex system events by simple matrix calculations. Unlike existing system reliability methods whose complexity depends highly on that of the system event, the MSR method describes any general system event in a simple matrix form and therefore provides a more convenient way of handling the system event and estimating its probability. Even in the case where one has incomplete information on the component probabilities and/or the statistical dependence thereof, the matrix-based framework enables us to estimate the narrowest bounds on the system failure probability by linear programming. This paper presents the MSR method and applies it to a transportation network consisting of bridge structures. The seismic failure probabilities of bridges are estimated by use of the predictive fragility curves developed by a Bayesian methodology based on experimental data and existing deterministic models of the seismic capacity and demand. Using the MSR method, the probability of disconnection between each city/county and a critical facility is estimated. The probability mass function of the number of failed bridges is computed as well. In order to quantify the relative importance of bridges, the MSR method is used to compute the conditional probabilities of bridge failures given that there is at least one city disconnected from the critical facility. The bounds on the probability of disconnection are also obtained for cases with incomplete information

  18. Wind tunnel test of musi VI bridge

    Science.gov (United States)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  19. Soil-structure interaction studies for understanding the behavior of integral abutment bridges.

    Science.gov (United States)

    2012-03-01

    Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...

  20. History of cable-stayed bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    1999-01-01

    The principle of supporting a bridge deck by inclined tension members leading to towers on either side of the span has been known for centuries. However, the real development of cable-stayed bridges did not begin before the 1950s. Since then the free span has been increased from 183 m in the Strö...

  1. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    Directory of Open Access Journals (Sweden)

    Kamel Bezih

    2015-09-01

    Full Text Available In the design of reinforced concrete (RC bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this paper, a coupled reliability–mechanical approach is developed to study the effect of soil–structure interaction for RC bridges. The modeling of this interaction is incorporated into the mechanical model of RC continuous beams, by considering nonlinear elastic soil stiffness. The reliability analysis highlights the large importance of soil–structure interaction and shows that the structural safety is highly sensitive to the variability of soil properties, especially when the nonlinear behavior of soil is considered.

  2. Effects of ambient temperature changes on integral bridges.

    Science.gov (United States)

    2008-09-01

    Integral bridges (IBs) are jointless bridges whereby the deck is continuous and monolithic with abutment walls. IBs are outperforming their non-integral counterparts in economy and safety. Their principal advantages are derived from the absence of ex...

  3. Railway bridge monitoring during construction and sliding

    Science.gov (United States)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Vurpillot, Samuel

    1997-05-01

    The Moesa railway bridge is a composite steel concrete bridge on three spans of 30 m each. The 50 cm thick concrete deck is supported on the lower flanges of two continuous, 2.7 m high I-beams. The bridge has been constructed alongside an old metallic bridge. After demolishing this one, the new bridge has been slid for 5 m by 4 hydraulic jacks and positioned on the refurbished piles of the old bridge. About 30 fiber optic, low-coherence sensors were imbedded in the concrete deck to monitor its deformations during concrete setting and shrinkage, as well as during the bridge sliding phase. In the days following concrete pour it was possible to follow its thermal expansion due to the exothermic setting reaction and the following thermal and during shrinkage. The deformations induced by the additional load produced by the successive concreting phases were also observed. During the bridge push, which extended over six hours, the embedded and surface mounted sensors allowed the monitoring of the curvature variations in the horizontal plane due to the slightly uneven progression of the jacks. Excessive curvature and the resulting cracking of concrete could be ruled out by these measurements. It was also possible to observe the bridge elongation under the heating action of the sun.

  4. Punching shear strength of transversely prestressed concrete decks

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.

    2012-01-01

    In the Netherlands, there is a need to determine the capacity of bridge decks as a large number of them were built back in the 60’s and 70’s. Since then, not only a lot of additional safety requirements have been incorporated into the modern codes but the traffic flow has also increased drastically.

  5. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    OpenAIRE

    Kamel Bezih; Alaa Chateauneuf; Mahdi Kalla; Claude Bacconnet

    2015-01-01

    In the design of reinforced concrete (RC) bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this ...

  6. Improvement of fatigue properties of orthotropic decks

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Urushadze, Shota

    2011-01-01

    Roč. 33, č. 4 (2011), s. 1166-1169 ISSN 0141-0296 R&D Projects: GA ČR GA103/08/1340; GA MŠk(CZ) 7E08098 Grant - others:BRIFAG -Bridge Fatigue Guidance(XE) RFSR_CT-2008-00033 Institutional research plan: CEZ:AV0Z20710524 Keywords : orthotropic deck * fatigue * prolonged life Subject RIV: JM - Building Engineering Impact factor: 1.351, year: 2011

  7. Structural Reliability of the Nigerian Grown Abura Timber Bridge ...

    African Journals Online (AJOL)

    Structural reliability analysis was carried out on the Nigerian grown Abura timber, to ascertain its structural performance as timber bridge beams. Samples of the Nigerian grown Abura timber were bought from timber market, seasoned naturally and their structural/strength properties were determined at a moisture content of ...

  8. Investigation of early timber–concrete composite bridges in the United States

    Science.gov (United States)

    James P. Wacker; Alfredo Dias; Travis K. Hosteng

    2017-01-01

    The use of timber–concrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...

  9. Assessment of concrete bridge decks with alkali silica reactions

    DEFF Research Database (Denmark)

    Eriksen, Kirsten; Jansson, Jacob; Geiker, Mette Rica

    2008-01-01

    Based on investigations of concrete from an approximately 40 years old bridge a procedure to support the management of maintenance and repair of alkali silica damaged bridges is proposed. Combined petrography and accelerated expansion testing were undertaken on cores from the Bridge at Skovdiget......, Bagsværd, Denmark to provide information on the damage condition as well as the residual reactivity of the concrete. The Danish Road Directory’s guidelines for inspection and assessment of alkali silica damaged bridges will be briefly presented, and proposed modifications will be describe...

  10. Cost and Ecological Feasibility of using UHPC in Highway Bridges

    Science.gov (United States)

    2017-11-15

    There is a growing interest in expanding the use of Ultra-high performance concrete (UHPC) from bridge deck joints for accelerated bridge construction to complex architectural and advanced structural applications. The high costs currently associated ...

  11. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation

    Science.gov (United States)

    Li, Xiaozhen; Liu, Quanmin; Pei, Shiling; Song, Lizhong; Zhang, Xun

    2015-09-01

    In order to investigate the characteristics of the noise from steel-concrete composite bridges under high-speed train loading, a model used to predict the bridge-borne noise is established and validated through a field experiment. The numerical model for noise prediction is developed based on the combination of spatial train-track-bridge coupled vibration theory and Statistical Energy Analysis (SEA). Firstly, train-track-bridge coupled vibration is adopted to obtain the velocity time history of the bridge deck vibration. Then, the velocity time history is transferred into frequency domain through FFT to serve as the vibratory energy of SEA deck subsystems. Finally, the transmission of the vibratory energy is obtained by solving the energy balance equations of SEA, and the sound radiation is computed using the vibro-acoustic theory. The numerically computed noise level is verified by a field measurement. It is determined that the dominant frequency of steel-concrete composite bridge-borne noise is 20-1000 Hz. The noise from the bottom flange of steel longitudinal girder is less than other components in the whole frequency bands, while the noise from web of steel longitudinal girder is dominant in high frequency range above 315 Hz. The noise from concrete deck dominates in low-frequency domain ranges from 80 Hz to 160 Hz.

  12. Load Distribution Factors for Composite Multicell Box Girder Bridges

    Science.gov (United States)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  13. Development of a precast bridge deck overhang system for the rock creek bridge.

    Science.gov (United States)

    2008-12-01

    Precast, prestressed panels are commonly used at interior beams for bridges in Texas. The use of these : panels provides ease of construction, sufficient capacity, and good economy for the construction of : bridges in Texas. Current practice for the ...

  14. Passive Control System for Mitigation of Longitudinal Buffeting Responses of a Six-Tower Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Fangfang Geng

    2016-01-01

    Full Text Available This paper presents an investigation of mitigation of longitudinal buffeting responses of the Jiashao Bridge, the longest multispan cable-stayed bridge in the world. A time-domain procedure for analyzing buffeting responses of the bridge is implemented in ANSYS with the aeroelastic effect included. The characteristics of longitudinal buffeting responses of the six-tower cable-stayed bridge are studied in some detail, focusing on the effects of insufficient longitudinal stiffness of central towers and partially longitudinal constraints between the bridge deck and part of bridge towers. The effectiveness of viscous fluid dampers on the mitigation of longitudinal buffeting responses of the bridge is further investigated and a multiobjective optimization design method that uses a nondominating sort genetic algorithm II (NSGA-II is used to optimize parameters of the viscous fluid dampers. The results of the parametric investigations show that, by appropriate use of viscous fluid dampers, the top displacements of central towers and base forces of bridge towers longitudinally restricted with the bridge deck can be reduced significantly, with hampering the significant gain achieved in the base forces of bridge towers longitudinally unrestricted with the bridge deck. And the optimized parameters for the viscous fluid dampers can be determined from Pareto-optimal fronts using the NSGA-II that can satisfy the desired performance requirements.

  15. Influence of microclimate on the sustainability and reliability of weathering steel bridge

    Science.gov (United States)

    Kubzova, M.; Krivy, V.; Kreislova, K.

    2018-04-01

    Reliability and sustainability of bridge structures designed from weathering steel are influenced by the development of a sufficiently protective layer of corrosion products on its surface. The development of this protective layer is affected by several parameters such as air pollution around the bridge structure, the microclimate under the bridge, the location of surface within the bridge structure and the time of wetness. Design of structural details also significantly influences the development of the protective corrosion layer. The article deals with the results of the experimental tests carried out on the road bridge located in the city of Ostrava in the Czech Republic. The development of the protective corrosion layer on the surface of the bridge is significantly influenced by the intensive traffic under the bridge construction and the design solution of the bridge itself. Attention is focused mainly on the influence of chloride deposition on the protective function of the corrosion layer. Corrosion samples were placed on the bridge to evaluate the influence of the above-mentioned parameters. The deposition rate of chlorides spreading from the road to surfaces of the steel structure is also measured.

  16. On the typography of flight-deck documentation

    Science.gov (United States)

    Degani, Asaf

    1992-01-01

    Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.

  17. Reliability Evaluation of Bridges Based on Nonprobabilistic Response Surface Limit Method

    OpenAIRE

    Chen, Xuyong; Chen, Qian; Bian, Xiaoya; Fan, Jianping

    2017-01-01

    Due to many uncertainties in nonprobabilistic reliability assessment of bridges, the limit state function is generally unknown. The traditional nonprobabilistic response surface method is a lengthy and oscillating iteration process and leads to difficultly solving the nonprobabilistic reliability index. This article proposes a nonprobabilistic response surface limit method based on the interval model. The intention of this method is to solve the upper and lower limits of the nonprobabilistic ...

  18. Evaluating abdominal core muscle fatigue: Assessment of the validity and reliability of the prone bridging test.

    Science.gov (United States)

    De Blaiser, C; De Ridder, R; Willems, T; Danneels, L; Vanden Bossche, L; Palmans, T; Roosen, P

    2018-02-01

    The aims of this study were to research the amplitude and median frequency characteristics of selected abdominal, back, and hip muscles of healthy subjects during a prone bridging endurance test, based on surface electromyography (sEMG), (a) to determine if the prone bridging test is a valid field test to measure abdominal muscle fatigue, and (b) to evaluate if the current method of administrating the prone bridging test is reliable. Thirty healthy subjects participated in this experiment. The sEMG activity of seven abdominal, back, and hip muscles was bilaterally measured. Normalized median frequencies were computed from the EMG power spectra. The prone bridging tests were repeated on separate days to evaluate inter and intratester reliability. Significant differences in normalized median frequency slope (NMF slope ) values between several abdominal, back, and hip muscles could be demonstrated. Moderate-to-high correlation coefficients were shown between NMF slope values and endurance time. Multiple backward linear regression revealed that the test endurance time could only be significantly predicted by the NMF slope of the rectus abdominis. Statistical analysis showed excellent reliability (ICC=0.87-0.89). The findings of this study support the validity and reliability of the prone bridging test for evaluating abdominal muscle fatigue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Determining the optimum length of a bridge opening with a specified reliability level of water runoff

    Directory of Open Access Journals (Sweden)

    Evdokimov Sergey

    2017-01-01

    Full Text Available Current trends in construction are aimed at providing reliability and safety of engineering facilities. According to the latest government regulations for construction, the scientific approach to engineering research, design, construction and operation of construction projects is a key priority. The reliability of a road depends on a great number of factors and characteristics of their statistical compounds (sequential and parallel. A part of a road with such man-made structures as a bridge or a pipe is considered as a system with a sequential element connection. The overall reliability is the multiplication of the reliability of these elements. The parameters of engineering structures defined by analytical dependences are highly volatile because of the inaccuracy of the defining factors. However each physical parameter is statistically unstable that is evaluated by variable coefficient of their values. It causes the fluctuation in the parameters of engineering structures. Their study may result in the changes in general and particular design rules in order to increase the reliability. The paper gives the grounds for these changes by the example of a bridge. It allows calculating its optimum length with a specified reliability level of water runoff under the bridge.

  20. Bridge Deck Runoff: Water Quality Analysis and BMP Effectiveness

    Science.gov (United States)

    2010-12-01

    The Alaska Department of Transportation (ADOT) is responsible for more than 700 bridges - most span water bodies. Are these water bodies affected by stormwater runoff from ADOT bridges? What are the regulatory and economic constraints on the ADOT reg...

  1. Precast concrete elements for accelerated bridge construction : laboratory testing of precast substructure components, Boone County bridge.

    Science.gov (United States)

    2009-01-01

    Vol. 1-1: In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure : elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth dec...

  2. Golden Gate Bridge response: a study with low-amplitude data from three earthquakes

    Science.gov (United States)

    Çelebi, Mehmet

    2012-01-01

    The dynamic response of the Golden Gate Bridge, located north of San Francisco, CA, has been studied previously using ambient vibration data and finite element models. Since permanent seismic instrumentation was installed in 1993, only small earthquakes that originated at distances varying between ~11 to 122 km have been recorded. Nonetheless, these records prompted this study of the response of the bridge to low amplitude shaking caused by three earthquakes. Compared to previous ambient vibration studies, the earthquake response data reveal a slightly higher fundamental frequency (shorter-period) for vertical vibration of the bridge deck center span (~7.7–8.3 s versus 8.2–10.6 s), and a much higher fundamental frequency (shorter period) for the transverse direction of the deck (~11.24–16.3 s versus ~18.2 s). In this study, it is also shown that these two periods are dominant apparent periods representing interaction between tower, cable, and deck.

  3. The future of rapid bridge deck replacement.

    Science.gov (United States)

    2015-06-01

    Replacing aging, deteriorated infrastructure often requires road closures and traffic detours which impose : inconvenience and delay on commerce and members of the motoring public. Accelerated bridge construction : techniques often use precast member...

  4. Pennsylvania hardwood timber bridges : field performance after 10 years

    Science.gov (United States)

    James P. Wacker; Carlito Calil

    2004-01-01

    Several hardwood demonstration timber bridges were built by the Pennsylvania Department of Transportation in the early nineteen nineties. These bridge superstructures are of the recently developed stress-laminated deck design-type using Red Oak lumber laminations that were pressure-treated with creosote preservatives. This paper will describe the data acquisition...

  5. Track-Bridge Longitudinal Interaction of Continuous Welded Rails on Arch Bridge

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available Taking arch bridges, including deck, half-through, and through arch bridges (short for DAB, HTAB, and TAB as examples, mechanics analysis models of longitudinal interaction between continuously welded rails (short for CWRs and arch bridges are established. Based on the finite element method (FEM, the longitudinal interaction calculation software of CWR on arch bridges has been developed. Focusing on an HTAB, the tension, compression, and deflection conditions are calculated and analyzed. The results show that the mechanics analysis models of three types of arch bridges can truly reflect the real state of the structure; the calculation software can be used for systematic research of the CWR on arch bridge; as for HTAB, temperature difference of arch rib has a small effect on rail tension/compression, and arch bridge can be simplified as a continuous beam for rail tension/compression additional force calculation; in calculation of deflection conditions of HTAB, it is suggested that train loads are arranged on half span and full span and take the direction of load entering bridge into account. Additionally, the deflection additional force variation of CFST basket handle arch bridge is different from that of ordinary bridge.

  6. Evaluating seismic reliability of Reinforced Concrete Bridge in view of their rehabilitation

    Directory of Open Access Journals (Sweden)

    Boubel Hasnae

    2018-01-01

    Full Text Available Considering in this work, a simplified methodology was proposed in order to evaluate seismic vulnerability of Reinforced Concrete Bridge. Reliability assessment of stress limits state and the applied loading which are assumed to be random variables. It is assumed that only their means and standard deviations are known while no information is available about their densities of probabilities. First Order Reliability Method is applied to a response surface representation of the stress limit state obtained through quadratic polynomial regression of finite element results. Then a parametric study is performed regarding the influence of the distributions of probabilities chosen to model the problem uncertainties for Reinforced Concrete Bridge. It is shown that the probability of failure depends largely on the chosen densities of probabilities, mainly in the useful domain of small failure probabilities.

  7. Evaluation of concrete bridge mix designs for control of cracking, phase I.

    Science.gov (United States)

    2014-11-01

    Cracking of concrete is a common problem with concrete structures such as bridge decks, pavements and bridge : rail. The Agency of Transportation (VTrans) has recently invested in higher performing concrete mixes that are : more impervious and has hi...

  8. Standard plans for timber bridge superstructures

    Science.gov (United States)

    James P. Wacker; Matthew S. Smith

    2001-01-01

    These standardized bridge plans are for superstructures consisting of treated timber. Seven superstructure types are includes: five longitudinal and two transverse deck systems. Both HS520 and HS25 loadings are included, along with L/360 and L/500 deflection criteria.

  9. Probabilistic and sensitivity analysis of Botlek Bridge structures

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2017-01-01

    Full Text Available This paper deals with the probabilistic and sensitivity analysis of the largest movable lift bridge of the world. The bridge system consists of six reinforced concrete pylons and two steel decks 4000 tons weight each connected through ropes with counterweights. The paper focuses the probabilistic and sensitivity analysis as the base of dynamic study in design process of the bridge. The results had a high importance for practical application and design of the bridge. The model and resistance uncertainties were taken into account in LHS simulation method.

  10. Truck-based mobile wireless sensor networks for the experimental observation of vehicle–bridge interaction

    International Nuclear Information System (INIS)

    Kim, Junhee; Lynch, Jerome P; Lee, Jong-Jae; Lee, Chang-Geun

    2011-01-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm

  11. Special Fluid Viscous Dampers For The Messina Strait Bridge

    International Nuclear Information System (INIS)

    Colato, Gian Paolo; Infanti, Samuele; Castellano, Maria Gabriella

    2008-01-01

    The Messina Strait Bridge would be the world's longest suspension bridge, with a design earthquake characterised by a PGA value of 0.58 g and a distance between the ipocenter and the bridge of 15 km. Said critical structure of course would need a suitable restraint system for traffic braking loads, wind and seismic actions. Each type of load requires a specific behaviour of the restraint system, making its design a big challenge.The restraint system comprises special types of fluid viscous dampers, installed both in longitudinal and transverse direction, both at the towers and at the anchorages. In seismic conditions they behave as viscous dampers, to reduce the forces on the structural elements and the movements of the bridge deck. But in service dynamic conditions, e.g. under traffic or wind load, the devices shall behave like shock transmission units, thus preventing the longitudinal and transverse movements of the deck.FIP Industriale cooperated with the selected General Contractor, a consortium lead by Impregilo, in the design of said viscous dampers. This paper describes the main features of said devices

  12. Force-based and displacement-based reliability assessment approaches for highway bridges under multiple hazard actions

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2015-08-01

    Full Text Available The strength limit state of American Association of State Highway and Transportation Officials (AASHTO Load and Resistance Factor Design (LRFD Bridge Design Specifications is developed based on the failure probabilities of the combination of non-extreme loads. The proposed design limit state equation (DLSE has been fully calibrated for dead load and live load by using the reliability-based approach. On the other hand, most of DLSEs in other limit states, including the extreme events Ⅰ and Ⅱ, have not been developed and calibrated though taking certain probability-based concepts into account. This paper presents an assessment procedure of highway bridge reliabilities under the limit state of extreme event Ⅰ, i. e., the combination of dead load, live load and earthquake load. A force-based approach and a displacement-based approach are proposed and implemented on a set of nine simplified bridge models. Results show that the displacement-based approach comes up with more convergent and accurate reliabilities for selected models, which can be applied to other hazards.

  13. Is deck B a disadvantageous deck in the Iowa Gambling Task?

    Directory of Open Access Journals (Sweden)

    Chiu Yao-Chu

    2007-03-01

    Full Text Available Abstract Background The Iowa gambling task is a popular test for examining monetary decision behavior under uncertainty. According to Dunn et al. review article, the difficult-to-explain phenomenon of "prominent deck B" was revealed, namely that normal decision makers prefer bad final-outcome deck B to good final-outcome decks C or D. This phenomenon was demonstrated especially clearly by Wilder et al. and Toplak et al. The "prominent deck B" phenomenon is inconsistent with the basic assumption in the IGT; however, most IGT-related studies utilized the "summation" of bad decks A and B when presenting their data, thereby avoiding the problems associated with deck B. Methods To verify the "prominent deck B" phenomenon, this study launched a two-stage simple version IGT, namely, an AACC and BBDD version, which possesses a balanced gain-loss structure between advantageous and disadvantageous decks and facilitates monitoring of participant preferences after the first 100 trials. Results The experimental results suggested that the "prominent deck B" phenomenon exists in the IGT. Moreover, participants cannot suppress their preference for deck B under the uncertain condition, even during the second stage of the game. Although this result is incongruent with the basic assumption in IGT, an increasing number of studies are finding similar results. The results of the AACC and BBDD versions can be congruent with the decision literatures in terms of gain-loss frequency. Conclusion Based on the experimental findings, participants can apply the "gain-stay, loss-shift" strategy to overcome situations involving uncertainty. This investigation found that the largest loss in the IGT did not inspire decision makers to avoid choosing bad deck B.

  14. Automated finite element updating using strain data for the lifetime reliability assessment of bridges

    International Nuclear Information System (INIS)

    Okasha, Nader M.; Frangopol, Dan M.; Orcesi, André D.

    2012-01-01

    The importance of improving the understanding of the performance of structures over their lifetime under uncertainty with information obtained from structural health monitoring (SHM) has been widely recognized. However, frameworks that efficiently integrate monitoring data into the life-cycle management of structures are yet to be developed. The objective of this paper is to propose and illustrate an approach for updating the lifetime reliability of aging bridges using monitored strain data obtained from crawl tests. It is proposed to use automated finite element model updating techniques as a tool for updating the resistance parameters of the structure. In this paper, the results from crawl tests are used to update the finite element model and, in turn, update the lifetime reliability. The original and updated lifetime reliabilities are computed using advanced computational tools. The approach is illustrated on an existing bridge.

  15. The effect of span length and girder type on bridge costs

    Directory of Open Access Journals (Sweden)

    Batikha Mustafa

    2017-01-01

    Full Text Available Bridges have an important role in impacting the civilization, growth and economy of cities from ancient time until these days due to their function in reducing transportation cost and time. Therefore, development of bridges has been a knowledge domain in civil engineering studies in terms of their types and construction materials to confirm a reliable, safe, economic design and construction. Girder-bridge of concrete deck and I-beam girder has been used widely for short and medium span bridges because of ease and low-cost of fabrication. However, many theoretical and practical investigations are still undertaken regarding the type of beam girder; i.e steel composite or prestressed concrete. This paper evaluates the effect of bridge span and the type of girder on the capital cost and life cycle costs of bridges. Three types of girders were investigated in this research: steel composite, pre-tensioned pre-stressed concrete and post-tensioned pre-stressed concrete. The structural design was analyzed for 5 span lengths: 20, 25, 30, 35 and 40m. Then, the capital construction cost was accounted for 15 bridges according to each span and construction materials. Moreover, the maintenance required for 50 years of bridge life was evaluated and built up as whole life costs for each bridge. As a result of this study, the influence of both span length and type of girder on initial construction cost and maintenance whole life costs were assessed to support the decision makers and designers in the selection process for the optimum solution of girder bridges.

  16. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges.

    Science.gov (United States)

    Sun, Bing-nan; Wang, Zhi-gang; Ko, J M; Ni, Y Q

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  17. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  18. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  19. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.

    Science.gov (United States)

    Asgari, B; Osman, S A; Adnan, A

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  20. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    B. Asgari

    2014-01-01

    Full Text Available Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM. The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  1. Design and Analysis of Collapsible Scissor Bridge

    Directory of Open Access Journals (Sweden)

    Biro Mohamad Nabil Aklif

    2018-01-01

    Full Text Available Collapsible scissor bridge is a portable bridge that can be deployed during emergency state to access remote areas that are affected by disaster such as flood. The objective of this research is to design a collapsible scissor bridge which is able to be transported by a 4x4 vehicle and to be deployed to connect remote areas. The design is done by using Solidworks and numerical analysis for structural strength is conducted via ANSYS. The research starts with parameters setting and modelling. Finite element analysis is conducted to analyze the strength by determining the safety factor of the bridge. Kutzbach equation is also analyzed to ensure that the mechanism is able to meet the targeted degree of motion. There are five major components of the scissor structure; pin, deck, cross shaft and deck shaft. The structure is controlled by hydraulic pump driven by a motor for the motions. Material used in simulation is A36 structural steel due to limited library in ANSYS. However, the proposed material is Fiber Reinforced Polymer (FRP composites as they have a high strength to weight ratio. FRP also tends to be corrosion resistance and this characteristic is useful in flooded area.

  2. Experimental Validation of a Numerical Model for Three-Dimensional High-Speed Railway Bridge Analysis by Comparison with a Small-Scale Model

    DEFF Research Database (Denmark)

    Sneideris, J.; Bucinskas, Paulius; Agapii, L.

    2015-01-01

    The aim of this paper is to perform dynamic analysis of a multi-span railway bridge interacting with the underlying soil. A small-scale model of a bridge structure is constructed for experimental testing and the results are compared with a computational model. The computational model in this paper...... dimensional 10-degrees-of-freedom system. The subsoil model utilizes Green’s function for a horizontally layered half-space. The small-scale experimental model consists of bridge deck, columns and footings which are made from Plexiglas. An electric vehicle travels along the bridge deck on a track to simulate...

  3. Statistical variations in chloride diffusion in concrete bridges

    Czech Academy of Sciences Publication Activity Database

    Tikalsky, P.; Pustka, D.; Marek, Pavel

    2005-01-01

    Roč. 102, č. 3 (2005), s. 481-486 ISSN 0889-3241 Institutional research plan: CEZ:AV0Z20710524 Keywords : bridge deck * corrosion * durability Subject RIV: JM - Building Engineering Impact factor: 0.544, year: 2005

  4. MASH test 3-11 of the TxDOT single slope bridge rail (type SSTR) on pan-formed bridge deck

    Science.gov (United States)

    2011-03-01

    The objective of this crash test was to determine whether the TxDOT Single Slope Traffic Rail (Type : SSTR) would perform acceptably on a pan-formed deck when tested according to the guidelines set forth in : Manual for Assessing Safety Hardware (MAS...

  5. Seismic Responses of a Cable-Stayed Bridge with Consideration of Uniform Temperature Load

    Directory of Open Access Journals (Sweden)

    Junjun Guo

    2016-12-01

    Full Text Available The effects of temperature load on the dynamic responses of cable-stayed bridges have attracted the attention of researchers in recent years. However, these investigations mainly focus on the influence of temperature on the dynamic characteristics of structures, such as vibration mode and frequency. This paper discusses the effects of uniform temperature changes on the seismic responses of a cable-stayed bridge. A three dimensional finite element model of a cable-stayed bridge using OpenSees is established for nonlinear time history analysis, and uniform temperature load is applied to the prototype bridge before the conducting of seismic excitation. Three ground motion records are selected from the PEER strong motion database based on the design spectrum. Case studies are then performed considering the varying temperature and the connections between the deck and pylons of the bridge. The result shows that the seismic responses of the bridge are significantly increased with the consideration of temperature load. Meanwhile, the types between the deck and pylon also have notable impacts on the seismic responses of the bridge with and without temperature changes. This research could provide a reference for designers during the design phase of cable-stayed brides.

  6. Investigation of the Reliability of Bridge Elements Reinforced with Basalt Plastic Fibers

    Science.gov (United States)

    Koval', T. I.

    2017-09-01

    The poorly studied problem on the reliability and durability of basalt-fiber-reinforced concrete bridge elements is considered. A method of laboratory research into the work of specimens of the concrete under a manyfold cyclic dynamic load is proposed. The first results of such experiments are presented.

  7. FEATURES OF DESIGN OF TIED-ARCH BRIDGES WITH FLEXIBLE INCLINED SUSPENSION HANGERS

    Directory of Open Access Journals (Sweden)

    V. O. Samosvat

    2017-10-01

    Full Text Available Purpose. Investigation and analysis of the hanger arrangement and the structural stability of a Network arch bridge – a tied-arch bridge with inclined hangers that cross each other at least twice. It is also necessary to make a comparative analysis with other types of hanger arrangements. Methodology. The authors in their research investigated a large number of parameters to determine their influence in the force distribution in the arch. Eventually they determined optimal values for all parameters. These optimal values allowed developing a design guide that leads to optimal arch design. When solving this problem, the authors used three-dimensional finite element models and the objective was to determine the most suitable solution for a road bridge, with a span of 100 meters, consisting of two inclined steel arches, located on a road with two traffic lanes, subjected to medium traffic. The virtual prototype of the model is performed by finite element simulator Midas Civil. Findings. In this study, for the bridge deck, a concrete tie appears to be the best solution considering the structural behavior of network arches, but economic advantages caused by easier erection may lead to steel or a composite bridge deck as better alternatives. Design requirements and local conditions of each particular bridge project will decide the most economic deck design.Originality. To ensure passenger comfort and the stability and continuity of the track, deformations of bridges are constricted. A network arch is a stiff structure with small deflections and therefore suitable to comply with such demands even for high speed railway traffic.
A network arch bridge with a concrete tie usually saves more than half the steel required for tied arches with vertical hangers and concrete ties. Practical value. Following the study design advice given in this article leads to savings of about 60 % of structural steel compared with conventional tied arch bridges with

  8. Multiobjective Optimal Control of Longitudinal Seismic Response of a Multitower Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Geng Fangfang

    2016-01-01

    Full Text Available The dynamic behavior of a multitower cable-stayed bridge with the application of partially longitudinal constraint system using viscous fluid dampers under real earthquake ground motions is presented. The study is based on the dynamic finite element model of the Jiashao Bridge, a six-tower cable-stayed bridge in China. The prime aim of the study is to investigate the effectiveness of viscous fluid dampers on the longitudinal seismic responses of the bridge and put forth a multiobjective optimization design method to determine the optimized parameters of the viscous fluid dampers. The results of the investigations show that the control objective of the multitower cable-stayed bridge with the partially longitudinal constraint system is to yield maximum reductions in the base forces of bridge towers longitudinally restricted with the bridge deck, with slight increases in the base forces of bridge towers longitudinally unrestricted with the bridge deck. To this end, a multiobjective optimization design method that uses a nondominating sort genetic algorithm II (NSGA-II is used to optimize parameters of the viscous fluid dampers. The effectiveness of the proposed optimization design method is demonstrated for the multitower cable-stayed bridge with the partially longitudinal constraint system, which reveals that a design engineer can choose a set of proper parameters of the viscous fluid dampers from Pareto optimal fronts that can satisfy the desired performance requirements.

  9. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  10. Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation

    Directory of Open Access Journals (Sweden)

    E. Tubaldi

    2015-01-01

    Full Text Available Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges.

  11. RELIABILITY ASSESSMENT OF STRINGERS SPACINGS IN ...

    African Journals Online (AJOL)

    IROKO) and Mitragyna ciliate (ABURA) to represent N1, N2, N3, and N4 classes of Nigerian timber suitable for bridge decks, convincingly, it was established that, stringer spacing, strength classes, timber thicknesses and width are some of the ...

  12. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    Science.gov (United States)

    Hawileh, Rami A.; Rasheed, Hayder A.

    2017-12-01

    This paper presents a numerical study that investigates the behavior of continuous concrete decks doubly reinforced with top and bottom glass fiber reinforced polymer (GFRP) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves. A parametric study is performed to examine the top cover thickness and the critical fire exposure curve needed to fully degrade the top GFRP bars while achieving certain fire ratings for the deck considered. Accordingly, design tables are prepared for each fire curve to guide the engineer to properly size the top concrete cover and maintain the temperature in the GFRP bars below critical design values in order to control the full top GFRP degradation. It is notable to indicate that degradation of top GFRP bars do not pose a collapse hazard but rather a serviceability concern since cracks in the negative moment region widen resulting in simply supported spans.

  13. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  14. Reliability Analysis-Based Numerical Calculation of Metal Structure of Bridge Crane

    Directory of Open Access Journals (Sweden)

    Wenjun Meng

    2013-01-01

    Full Text Available The study introduced a finite element model of DQ75t-28m bridge crane metal structure and made finite element static analysis to obtain the stress response of the dangerous point of metal structure in the most extreme condition. The simulated samples of the random variable and the stress of the dangerous point were successfully obtained through the orthogonal design. Then, we utilized BP neural network nonlinear mapping function trains to get the explicit expression of stress in response to the random variable. Combined with random perturbation theory and first-order second-moment (FOSM method, the study analyzed the reliability and its sensitivity of metal structure. In conclusion, we established a novel method for accurately quantitative analysis and design of bridge crane metal structure.

  15. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  16. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : final report.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of designing pre-tensioned prestressed concrete beam (PPCB) : bridges utilizing the continuity developed in the bridge deck as opposed to the current Iowa Department of Transportation (...

  17. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  18. Dynamic response of the train-track-bridge system subjected to derailment impacts

    Science.gov (United States)

    Ling, Liang; Dhanasekar, Manicka; Thambiratnam, David P.

    2018-04-01

    Derailments on bridges, although not frequent, when occurs due to a complex dynamic interaction of the train-track-bridge structural system, are very severe. Furthermore, the forced vibration induced by the post-derailment impacts can toss out the derailed wagons from the bridge deck with severe consequences to the traffic underneath and the safety of the occupants of the wagons. This paper presents a study of the train-track-bridge interaction during a heavy freight train crossing a concrete box girder bridge from a normal operation to a derailed state. A numerical model that considers the bridge vibration, train-track interaction and the train post-derailment behaviour is formulated based on a coupled finite-element - multi-body dynamics (FE-MBD) theory. The model is applied to predict the post-derailment behaviour of a freight train composed of one locomotive and several wagons, as well as the dynamic response of a straight single-span simply supported bridge containing ballast track subjected to derailment impacts. For this purpose, a typical derailment scenario of a heavy freight train passing over a severe track geometry defect is introduced. The dynamic derailment behaviour of the heavy freight train and the dynamic responses of the rail bridge are illustrated through numerical examples. The results exhibit the potential for tossing out of the derailed trains from the unstable increase in the yaw angle signature and a lower rate of increase of the bridge deck bending moment compared to the increase in the static axle load of the derailed wheelset.

  19. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : tech transfer summary.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of : designing pre-tensioned prestressed concrete beam (PPCB) bridges : utilizing the continuity developed in the bridge deck as opposed to the : current Iowa Department of Transportati...

  20. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  1. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  2. Future Trends in Reliability-Based Bridge Management

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Future bridge management systems will be based on simple stochastic models predicting the residual strength of structural elements. The current deterministic management systems are not effective in optimizing e.g. the life cycle cost of a bridge or a system of bridges. A number of important factors...

  3. Application of Composite Structures in Bridge Engineering. Problems of Construction Process and Strength Analysis

    Science.gov (United States)

    Flaga, Kazimierz; Furtak, Kazimierz

    2015-03-01

    Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life). The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.

  4. A sensor network system for the health monitoring of the Parkview bridge deck.

    Science.gov (United States)

    2010-01-31

    Bridges are a critical component of the transportation infrastructure. There are approximately 600,000 bridges in : the United State according to the Federal Highway Administration. Four billion vehicles traverse these bridges daily. : Regular inspec...

  5. Development of precast bridge deck overhang system : technical report.

    Science.gov (United States)

    2011-07-01

    The implementation of full-depth, precast overhang panel systems has the potential to improve constructability, : productivity, and make bridges more economical. Initial testing and analyses reported in the 0-6100-2 report resulted in : a design that...

  6. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  7. Reduction of seismic response long-span PC cable-stayed bridge by passive dampers; Damper ni yoru saidai PC shachokyo no jishinji oto no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Yamanobe, S.; Niihara, Y. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    It is important in designing a PC cable-stayed bridge to properly estimate the seismic response of the bridge for reduction of the response. In this paper, an improvement of the seismic resistance of PC cable-stayed bridges when dampers are installed between the deck and piers and lateral vibration of the deck is restricted is investigated using a time history response model. PC cable-stayed bridges with a span length of 400 m, particularly two types of bridges of harp and semi-harp are investigated and the following is found by analyzing the case where there are installed hysteresis type dampers (with 1 cm yield displacement and secondary rigidity assumed to be 1/10 times that of initial rigidity, the initial rigidity being parametrically changed.) or viscous type dampers (a damping factor is changed.) The result shows that the dampers can reduce the seismic response of a PC cable-stayed bridge and that a semi-harp configuration of stay cables where stay cable members are substantially vertically arranged is more effective than a harp configuration for the seismic performance of PC cable-stayed bridges. The damper partly bear inertial force of the bridge upon earthquake whereby tension of the stay cable members is reduced and bending moment of the deck is reduced. There is existing an optimum characteristic value of the damper concerning the bending moment of the piers. 5 refs., 7 figs., 2 tabs.

  8. Active aerodynamic stabilisation of long suspension bridges

    DEFF Research Database (Denmark)

    Nissen, Henrik Ditlev; Sørensen, Paul Haase; Jannerup, Ole Erik

    2004-01-01

    The paper describes the addition of actively controlled appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suppension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to make...... use of control analysis and design techniques, a linear model of the structural and aerodynamic motion around equilibriun is developed. The model is validated through comparison with finite element calculations and wind tunnel experimental data on the Great Belt East Bridge in Denmark. The developed...... active control scheme is local in that the flap control signal at a given longitudinal position along the bridge only depends on local motion measurements. The analysis makes use of the Nyquist stability criteria and an anlysis of the sensitivity function for stability analysis. The analysis shows...

  9. Critical traffic loading for the design of prestressed concrete bridge

    International Nuclear Information System (INIS)

    Hassan, M.I.U.

    2009-01-01

    A study has been carried out to determine critical traffic loadings for the design of bridge superstructures. The prestressed concrete girder bridge already constructed in Lahore is selected for the analysis as an example. Standard traffic loadings according to AASHTO (American Association of State Highway and Transportation Officials) and Pakistan Highway Standards are used for this purpose. These include (1) HL-93 Truck, (2) Lane and (3) Tandem Loadings in addition to (4) Military tank loading, (5) Class-A, (6) Class-B and (7) Class-AA loading, (8) NLC (National Logistic Cell) and (9) Volvo truck loadings. Bridge superstructure including transom beam is analyzed Using ASD and LRFD (Load and Resistance Factor Design) provisions of AASHTO specifications. For the analysis, two longer and shorter spans are selected. This includes the analysis of bridge deck; interior and exterior girder; a typical transom beam and a pier. Dead and live loading determination is carried out using both computer aided and manual calculations. Evaluation of traffic loadings is done for all the bridge components to find out the critical loading. HL-93 loading comes out to be the most critical loading and where this loading is not critical in case of bridge decks; a factor of 1.15 is introduced to make it equivalent with HL-93 -Ioading. SAP-2000 (Structural Engineering Services of Pakistan) and MS-Excel is employed for analysis of bridge superstructure subjected to this loading. Internal forces are obtained for the structural elements of the bridge for all traffic loadings mentioned. It is concluded that HL-93 loading can be used for the design of prestressed concrete girder bridge. Bridge design authorities like NHA (National Highway Authority) and different cities development authorities are using different standard traffic loadings. A number of suggestions are made from the results of the research work related to traffic loadings and method of design. These recommendations may be

  10. Constitutive and numerical modeling of soil and soil-pile interaction for 3D applications and Kealakaha stream bridge case study.

    Science.gov (United States)

    2011-12-01

    This study is concerned with developing new modeling tools for predicting the response of the new Kealakaha : Stream Bridge to static and dynamic loads, including seismic shaking. The bridge will span 220 meters, with the : deck structure being curve...

  11. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    OpenAIRE

    B. V. Savchinskiy

    2010-01-01

    On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  12. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

  13. Durability of Materials in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller

    . The construction of the Pearl-Chain arch is simple. The arch is assembled on its side, next to the road that the bridge will span, by placing a number of plane prefabricated Super-Light Decks that consist of lightweight aggregate concrete and conventional concrete, in the desired arch shape. Mortar joints are cast...... is stabilized by casting a fill material between the spandrel walls of the arch. Finally, the road surface is cast on top of the fill material. New bridges are designed for a service lifetime of at least 100 years. Hence, the specifications of the materials used in Pearl-Chain Bridges are high. This PhD study...... and pervious concrete were also investigated. The most suitable fill material for Pearl-Chain Bridges depends on the particular bridge design; the results obtained and presented in the present PhD study provide guidance on how to decide which fill material is most suitable regarding strength, permeability...

  14. Progressive collapse susceptibility of a long span suspension bridge

    DEFF Research Database (Denmark)

    Olmati, Pierluigi; Giuliani, Luisa

    2013-01-01

    Long span bridges are complex structural systems, often having strategic roles in the network infrastructures; consequently their susceptibility to a disproportionate response in case of local failures needs to be assessed. In particular, current regulations prescribe that the structural robustness...... should be maintained in case of an accidental hanger detachment. Local damages in bridges, which are characterized by an horizontal load transfer system, may progress along the deck or along the suspension system, as the dynamic overloading of the structural elements immediately adjacent to the failed...

  15. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    Directory of Open Access Journals (Sweden)

    B. V. Savchinskiy

    2010-03-01

    Full Text Available On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  16. Determination of in-situ strength on selected bridge element concrete girder and slab of Nagtahan bridge using rebound hammer test

    International Nuclear Information System (INIS)

    Uy, Bernadette Betsy B.; Banaga, Renato T.

    2013-01-01

    This study examined the extent of the damage due to fire on the affected areas of the bridge structure. The need to assess the damage of the Nagtahan Bridge is very useful to provide appropriate measures in the repair or in the reinforcement of the bridge, hence will ensure its strength and integrity. The study included two (2) spans of the bridge deck/slab with specific locations of the bridge that were subjected for testing. The Rebound Hammer was used as a preliminary test in evaluating the bridge condition. Its capability is to assess the in-place uniformity of concrete, to delineate regions in a structure of poor quality or deteriorated concrete, and to estimate the in-place strength; and ultimately, for relative comparison between the different structures of the bridge. With the use of the NDT Rebound Hammer Test, the researchers were able to determine whether or not the in-situ strength of the bridge's concrete has been weakened due to fire. The DPW-Standard Specification is the government acceptable manual, containing the acceptance criteria, used as the basis for standard construction procedures in the department.(author)

  17. Strategic Planning for the National Bridge Stock of Iran

    Directory of Open Access Journals (Sweden)

    Ali Sahrapeyma

    2013-06-01

    Full Text Available The National Bridge Stock of Iran consists of about 330,000 bridges, of which around 50% are older than 30 years. Since 2010, Iran Road Maintenance & Transportation Organization has started implementing a comprehensive Bridge Management System in order to manage this aged stock efficiently. To predict future conditions of bridge stock, a heuristic numerical method is presented. This methodology is based on Markovian process to model deterioration of bridge decks and a multi-objective optimization problem to find the best solutions. The optimization problem involves three decision variables regarding management strategies, and has three objectives regarding cost minimization. Constraints of the problem are the percentage of deficient bridges, the percentage of bridges under MR&Rs (Maintenance, Repair and Rehabilitation and the average value of condition scores. The results show that to avoid future challenges, the annual budget for bridge maintenance should be increased, the current maintenance strategy should be improved as soon as possible, and national manuals and instructions for inspection, condition rating and maintenance should be developed.

  18. Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners

    International Nuclear Information System (INIS)

    Thibault, D; Gagnon, M; Godin, S

    2014-01-01

    The failure of hydraulic turbine runners is a very rare event. Hence, in order to assess the reliability of these components, one cannot rely on statistical models based on the number of failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are more complicated but have the advantage of being able to account for physical parameters in the prediction of the evolution of runner degradation. They can therefore propose solutions to help improve reliability. With the use of such models, the effect of materials properties on runner reliability can easily be illustrated. This paper will present a brief review of the Kitagawa-Takahashi diagram that links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. This diagram is at the centre of the reliability model used in this study. Using simplified response spectra obtained from on-site runner stress measurements, the paper will show how fatigue reliability is impacted by materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. It will also present a review of the most important microstructural features of 13%Cr- 4%Ni stainless steels used for runner manufacturing and will review how they influence fatigue properties in an effort to bridge the gap between metallurgy and turbine runners reliability

  19. Assessing and updating the reliability of concrete bridges subjected to spatial deterioration - principles and software implementation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Fischer, Johannes; Bügler, Maximilian

    2015-01-01

    to implement the method presented here. The software prototype is applied to a typical highway bridge and the influence of inspection information on the system deterioration state and the structural reliability is quantified taking into account the spatial correlation of the corrosion process. This work...

  20. Live load distribution on longitudinal glued-laminated timber deck bridges : final report : conclusions and recommendations

    Science.gov (United States)

    Fouad Fanous; Jeremy May; Terry Wipf; Michael Ritter

    2010-01-01

    Over the past few years the United States Department of Agriculture (USDA), Forest Products Laboratory (FPL), and the Federal Highway Administration (FHWA) have supported several research programs. This paper is a result of a study sponsored by FPL, with the objective of determining how truckloads are distributed to the deck panels of a longitudinal glued-laminated...

  1. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various excitation mechanisms have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...

  2. Determination of brace forces caused by construction loads and wind loads during bridge construction : [summary].

    Science.gov (United States)

    2014-04-01

    Bridges are constructed in stages as pilings, : columns, girders, decks, and other components : are added. At each stage, the structure must be : stable. Girders, which add significant weight to : the developing structure, rest on elastomeric : beari...

  3. Bridge deterioration models to support Indiana's bridge management system.

    Science.gov (United States)

    2016-02-01

    An effective bridge management system that is equipped with reliable deterioration models enables agency engineers to carry out : monitoring and long-term programming of bridge repair actions. At the project level, deterioration models help the agenc...

  4. Aerodynamic problems of cable-stayed bridges spanning over one thousand meters

    Institute of Scientific and Technical Information of China (English)

    Chen Airong; Ma Rujin; Wang Dalei

    2009-01-01

    Tbe elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all, geometric nonlin-ear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand meters. Lat-eral static wind load will generate additional displacement of long cables, which causes the decrease of supporting rigidi-ty of the whole bridge and the change of dynamic properties. Wind load, being the controlling load in the design of ca-hie-stayed bridge, is a critical problem and needs to be solved. Meanwhile, research on suitable system between pylon and deck indicates fixed-fixed connection system is an effective way for improvement performance of cable-stayed bridges under longitudinal wind load. In order to obtain aerodynamic parameters of cable-stayed bridge spanning over one thou-sand meters, identification method for flutter derivatives of full bridge aero-elastic model is developed in this paper. Furthermore, vortex induced vibration and Reynolds number effect are detailed discussed.

  5. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  6. 46 CFR 108.486 - Helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  7. Identification of aeroelastic forces on bridge cables from full-scale measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos

    2011-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various mechanisms have been suggested for their excitation, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... Bridge. The system records wind conditions and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using state-of-the-art methods of output-only system identification, the vibration modes of the cables have been identified. From these modes...

  8. Bridge Management Strategy Based on Extreme User Costs for Bridge Network Condition

    Directory of Open Access Journals (Sweden)

    Ladislaus Lwambuka

    2014-01-01

    Full Text Available This paper presents a practical approach for prioritization of bridge maintenance within a given bridge network. The maintenance prioritization is formulated as a multiobjective optimization problem where the simultaneous satisfaction of several conflicting objectives includes minimization of maintenance costs, maximization of bridge deck condition, and minimization of traffic disruption and associated user costs. The prevalence of user cost during maintenance period is twofold; the first case refers to the period of dry season where normally the traffic flow is diverted to alternative routes usually resurfaced to regain traffic access. The second prevalence refers to the absence of alternative routes which is often the case in the least developed countries; in this case the user cost referred to results from the waiting time while the traffic flow is put on hold awaiting accomplishment of the maintenance activity. This paper deals with the second scenario of traffic closure in the absence of alternative diversion routes which in essence results in extreme user cost. The paper shows that the multiobjective optimization approach remains valid for extreme cases of user costs in the absence of detour roads as often is the scenario in countries with extreme poor road infrastructure.

  9. Benefits of measuring half-cell potentials and rebar corrosion rates in condition surveys of concrete bridge decks.

    Science.gov (United States)

    1992-01-01

    The practice of conducting a half-cell potential survey during the assessment of the condition of a concrete deck was reexamined with the objective of eliminating some of the doubts concerning its benefits. It was found that the survey grid size of 4...

  10. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... China of wire decking, and that such [[Page 4585

  11. Study on load test of 100m cross-reinforced deck type concrete box arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Cheng, Ying Jie

    2018-06-01

    Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.

  12. Discussion on runoff purification technology of highway bridge deck based on water quality safety

    Science.gov (United States)

    Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng

    2018-06-01

    Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.

  13. 46 CFR 132.320 - Helicopter-landing decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...

  14. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Science.gov (United States)

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  15. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    Science.gov (United States)

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  16. Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors

    Science.gov (United States)

    Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui

    2017-10-01

    Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.

  17. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ye

    2018-02-01

    Full Text Available In this paper, a fiber Bragg grating (FBG-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC. Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW. The stochastic characteristic of stress concentration factor (SCF of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  18. Design and Construction of Operation Bridge for Research Reactor

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Choi, Jinbok; Lee, Jongmin; Oh, Jinho

    2015-01-01

    The operation bridge contains a lower working deck mounted on a saddle that travels on rails. Upright members are mounted on the saddle to support the upper structure and two hoist monorails. The saddle contains an anti-derail system that is composed of seismic lugs and guide rollers. The operation bridge travels along the rails to transport the fuel assembly, irradiated object, and reactor components in the pools by using tools. Hoists are installed at the top girder. The hoist is suspended from the monorail by means of a motor driven trolley that runs along the monorail. Movements of hoist and trolley are controlled by using the control pendant switch. Processes of design and construction of the operation bridge for the research reactor are introduced. The operation bridge is designed under consideration of functions of handling equipment in the pool and operational limits for safety. Structural analysis is carried out to evaluate the structural integrity in the seismic events. Tests and inspections are also performed during fabrication and installation to confirm the function and safety of the operation bridge

  19. MODERN ASPECTS OF BRIDGES MONITORING

    Directory of Open Access Journals (Sweden)

    M. I. Kazakevych

    2007-12-01

    Full Text Available The major concepts of the elaboration and realization of the bridge construction monitoring systemic approach are presented in this paper. The main peculiarity of the bridge monitoring modern aspect is pointed out here, namely, the transition from the demands of providing the reliability to the demands of providing the whole complex of the structure consumer qualities. The criteria of diagnostics of the bridge exploitation reliability as the fundamental aim of monitoring are formulated here.

  20. On Reliability Based Optimal Design of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In recent years important progress has been made in assessment of the lifetime behaviour of concrete bridges. Due to the large uncertainties related to the loading and the deterioration of such bridges, an assessment based on stochastic modelling of the significant parameters seems to be only...

  1. Upstand Finite Element Analysis of Slab Bridges

    OpenAIRE

    O'Brien, Eugene J.; Keogh, D.L.

    1998-01-01

    For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...

  2. 46 CFR 28.565 - Water on deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Water on deck. 28.565 Section 28.565 Shipping COAST... VESSELS Stability § 28.565 Water on deck. (a) Each vessel with bulwarks must comply with the requirements... energy, “b” in Figure 28.565, must not be less than the water on deck heeling energy, “a” in Figure 28...

  3. Duality and the Deck effect

    CERN Document Server

    Törnqvist, N A

    1972-01-01

    As shown by Deck, the double-peripheral model for three-particle final states gives a substantial low-mass enhancement over phase space in two-body subchannels. With the advent of duality it was conjectured that the Deck effect and a true resonance are just different manifestations of the same phenomena. Thus the presence of a Deck enhancement could be interpreted as evidence for the existence of the A/sub 1/ resonance. The conjecture has been subject to criticism of two different kinds. These two points are clarified by constructing a counter example to the conjecture of Chew and Pignotti, using the five-point amplitude (B/sub 5/) of the generalized Veneziano model. (8 refs).

  4. Computational and experimental investigation of free vibration and flutter of bridge decks

    Science.gov (United States)

    Helgedagsrud, Tore A.; Bazilevs, Yuri; Mathisen, Kjell M.; Øiseth, Ole A.

    2018-06-01

    A modified rigid-object formulation is developed, and employed as part of the fluid-object interaction modeling framework from Akkerman et al. (J Appl Mech 79(1):010905, 2012. https://doi.org/10.1115/1.4005072) to simulate free vibration and flutter of long-span bridges subjected to strong winds. To validate the numerical methodology, companion wind tunnel experiments have been conducted. The results show that the computational framework captures very precisely the aeroelastic behavior in terms of aerodynamic stiffness, damping and flutter characteristics. Considering its relative simplicity and accuracy, we conclude from our study that the proposed free-vibration simulation technique is a valuable tool in engineering design of long-span bridges.

  5. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    Directory of Open Access Journals (Sweden)

    Martin Herbrand

    2017-09-01

    Full Text Available Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  6. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    Science.gov (United States)

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  7. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  8. Fatigue evaluation for Tsing Ma Bridge using structural health monitoring data

    Science.gov (United States)

    Chan, Hung-tin Tommy; Ko, Jan Ming; Li, Zhao-Xia

    2001-08-01

    Fatigue assessment for the Tsing Ma Bridge (TMB) are presented based on the British standard BS5400 and the real-time structural health monitoring data under railway loading. TMB, as an essential portion of transport network for the Hong Kong airport, is the longest suspension bridge in the world carrying both highway and railway traffic. The bridge design has been mainly based on BS5400. A structural health monitoring system - Wind and Structural Health Monitoring System (WASHMS) for TMB has been operated since the bridge commissioning in May 1997. In order to assess the fatigue behavior of TMB under railway loading, strain gauges were installed on the bridge deck to measure the strain-time histories as soon as the bridge is loaded by a standard railway loading due to the service of an actual train. The strain-time history data at the critical members are then used to determine the stress spectrum, of which the rainflow method recommended for railway bridges by BS5400 is applied to count cycles of stress range. Miner's law is employed to evaluate fatigue damage and remaining service life of the bridge. The evaluated results of fatigue damage and remaining service life would help us to well understand about the fatigue design of the bridge and status in fatigue accumulation.

  9. Bridge element deterioration rates.

    Science.gov (United States)

    2008-10-01

    This report describes the development of bridge element deterioration rates using the NYSDOT : bridge inspection database using Markov chains and Weibull-based approaches. It is observed : that Weibull-based approach is more reliable for developing b...

  10. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  11. Human Errors and Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, A. S.

    on basis of reliability profiles for bridges without human errors are extended to include bridges with human errors. The first rehabilitation distributions for bridges without and with human errors are combined into a joint first rehabilitation distribution. The methodology presented is illustrated...... for reinforced concrete bridges....

  12. Simple Program to Investigate Hysteresis Damping Effect of Cross-Ties on Cables Vibration of Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Panagis G. Papadopoulos

    2012-01-01

    Full Text Available A short computer program, fully documented, is presented, for the step-by-step dynamic analysis of isolated cables or couples of parallel cables of a cable-stayed bridge, connected to each other and possibly with the deck of the bridge, by very thin pretensioned wires (cross-ties and subjected to variation of their axial forces due to traffic or to successive pulses of a wind drag force. A simplified SDOF model, approximating the fundamental vibration mode, is adopted for every individual cable. The geometric nonlinearity of the cables is taken into account by their geometric stiffness, whereas the material nonlinearities of the cross-ties include compressive loosening, tensile yielding, and hysteresis stress-strain loops. Seven numerical experiments are performed. Based on them, it is observed that if two interconnected parallel cables have different dynamic characteristics, for example different lengths, thus different masses, weights, and geometric stiffnesses, too, or if one of them has a small additional mass, then a single pretensioned very thin wire, connecting them to each other and possibly with the deck of the bridge, proves effective in suppressing, by its hysteresis damping, the vibrations of the cables.

  13. 46 CFR 174.215 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 174.215 Section 174.215 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... weather deck. The weather deck must have open rails to allow rapid clearing of water, or must have freeing...

  14. 46 CFR 173.062 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 173.062 Section 173.062 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSEL USE School Ships § 173.062 Drainage of weather deck. The weather deck of each sailing...

  15. Reliability Assessment for PSC Box-Girder Bridges Based on SHM Strain Measurements

    Directory of Open Access Journals (Sweden)

    Chuang Chen

    2017-01-01

    Full Text Available A reliability assessment method for prestressed concrete (PSC continuous box-girder bridges based on structural health monitoring (SHM strain measurements was proposed. First, due to the fact that measured strain was compositive and the variation periods of its components were different, a series of limit state equations under normal use limit state were given. Then, a linear fitting method was used to determine the relationship between the ambient temperature and the measured strain, which was aimed at extracting the vehicle load effect and the temperature load effect from the measured strain. Finally, according to the equivalent normalization method, the load effects unsatisfying the normal distribution by probability density function fitting were transformed, and the daily failure probabilities of monitored positions were calculated for evaluating the safety state of the girder. The results show that (1 the top plate of the box girder is more sensitive than the bottom plate to the high temperature, (2 the daily and seasonal strain variations induced by uniform temperature reveal an inconsistent tendency to the seasonal variation for mid-span cross sections, and (3 the generalized extreme value distribution is recommended for temperature gradient stress and vehicle induced stress fitting for box-girder bridges.

  16. Reliability Analysis of Offshore Jacket Structures with Wave Load on Deck using the Model Correction Factor Method

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Friis-Hansen, P.; Nielsen, J.S.

    2006-01-01

    failure/collapse of jacket type platforms with wave in deck loads using the so-called Model Correction Factor Method (MCFM). A simple representative model for the RSR measure is developed and used in the MCFM technique. A realistic example is evaluated and it is seen that it is possible to perform...

  17. Noise from Aft Deck Exhaust Nozzles: Differences in Experimental Embodiments

    Science.gov (United States)

    Bridges, James E.

    2014-01-01

    Two embodiments of a rectangular nozzle on an aft deck are compared. In one embodiment the lower lip of the nozzle was extended with the sidewalls becoming triangles. In a second embodiment a rectangular nozzle was fitted with a surface that fit flush to the lower lip and extended outward from the sides of the nozzle, approximating a semi-infinite plane. For the purpose of scale-model testing, making the aft deck an integral part of the nozzle is possible for relatively short deck lengths, but a separate plate model is more flexible, accounts for the expanse of deck to the sides of the nozzle, and allows the nozzle to stand off from the deck. Both embodiments were tested and acoustic far-field results were compared. In both embodiments the extended deck introduces a new noise source, but the amplitude of the new source was dependent upon the span (cross-stream dimension) of the aft deck. The noise increased with deck length (streamwise dimension), and in the case of the beveled nozzle it increased with increasing aspect ratio. In previous studies of slot jets in wings it was noted that the increased noise from the extended aft deck appears as a dipole at the aft deck trailing edge, an acoustic source type with different dependence on velocity than jet mixing noise. The extraneous noise produced by the aft deck in the present studies also shows this behavior both in directivity and in velocity scaling.

  18. Cone calorimeter tests of wood-based decking materials

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger; Nicole M. Stark

    2007-01-01

    New technologies in building materials have resulted in the use of a wide variety of materials in decks. As part of our effort to address fire concerns in the wildland-urban interface, the Forest Products Laboratory has been examining the fire performance of decking products. In addition to preservative-treated wood, decking products include wood-plastic composites and...

  19. 46 CFR 12.15-13 - Deck engine mechanic.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  20. A probabilistic capacity spectrum strategy for the reliability analysis of bridge pile shafts considering soil structure interaction

    Directory of Open Access Journals (Sweden)

    Dookie Kim

    Full Text Available This paper presents a probabilistic capacity spectrum strategy for the reliability analysis of a bridge pile shaft, accounting for uncertainties in design factors in the analysis and the soil-structure interaction (SSI. Monte Carlo simulation method (MCS is adopted to determine the probabilities of failure by comparing the responses with defined limit states. The analysis considers the soil structure interaction together with the probabilistic application of the capacity spectrum method for different types of limit states. A cast-in-drilledhole (CIDH extended reinforced concrete pile shaft of a bridge is analysed using the proposed strategy. The results of the analysis show that the SSI can lead to increase or decrease of the structure's probability of failure depending on the definition of the limit states.

  1. Effects of CFRP Strengthening on Dynamic and Fatigue Responses of Composite Bridge

    Directory of Open Access Journals (Sweden)

    Kittisak Kuntiyawichai

    2014-01-01

    Full Text Available This paper investigates the effect of CFRP strengthening on dynamic and fatigue responses of composite bridge using finite element program ABAQUS. Dynamic and fatigue responses of composite bridge due to truck load based on AASHTO standard are investigated. Two types of CFRP strengthening techniques, CFRP sheets and CFRP deck, are applied to both the damaged and undamaged bridges. For the case of damaged bridge, two through-thickness crack sizes, 3 mm and 6 mm in depth, are assumed at midspan of the steel girders. Furthermore, effects of the number of steel girders on the dynamic and fatigue responses are also considered. The results show that the maximum responses of composite bridges occur for dual lane cases. By using CFRP as a strengthening material, the maximum stress and deflection of the steel girders reduce and consequently increase the fatigue life of the girders. After introducing initial crack into the steel girders of the composite bridges, the fatigue life of the bridges is dramatically reduced. However, the overall performance of the damaged composite bridge can be improved by using CFRP, albeit with less effectiveness. Therefore, if cracks are found, steel welding must be performed before strengthening the composite bridge by CFRP.

  2. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  3. Modal Parameter Identification and Numerical Simulation for Self-anchored Suspension Bridges Based on Ambient Vibration

    Science.gov (United States)

    Liu, Bing; Sun, Li Guo

    2018-06-01

    This paper chooses the Nanjing-Hangzhou high speed overbridge, a self-anchored suspension bridge, as the research target, trying to identify the dynamic characteristic parameters of the bridge by using the peak-picking method to analyze the velocity response data under ambient excitation collected by 7 vibration pickup sensors set on the bridge deck. The ABAQUS is used to set up a three-dimensional finite element model for the full bridge and amends the finite element model of the suspension bridge based on the identified modal parameter, and suspender force picked by the PDV100 laser vibrometer. The study shows that the modal parameter can well be identified by analyzing the bridge vibration velocity collected by 7 survey points. The identified modal parameter and measured suspender force can be used as the basis of the amendment of the finite element model of the suspension bridge. The amended model can truthfully reflect the structural physical features and it can also be the benchmark model for the long-term health monitoring and condition assessment of the bridge.

  4. Optimum Maintenance Strategies for Highway Bridges

    DEFF Research Database (Denmark)

    Frangopol, Dan M.; Thoft-Christensen, Palle; Das, Parag C.

    As bridges become older and maintenance costs become higher, transportation agencies are facing challenges related to implementation of optimal bridge management programs based on life cycle cost considerations. A reliability-based approach is necessary to find optimal solutions based on minimum...... expected life-cycle costs or maximum life-cycle benefits. This is because many maintenance activities can be associated with significant costs, but their effects on bridge safety can be minor. In this paper, the program of an investigation on optimum maintenance strategies for different bridge types...... is described. The end result of this investigation will be a general reliability-based framework to be used by the UK Highways Agency in order to plan optimal strategies for the maintenance of its bridge network so as to optimize whole-life costs....

  5. Application of an automated wireless structural monitoring system for long-span suspension bridges

    International Nuclear Information System (INIS)

    Kurata, M.; Lynch, J. P.; Linden, G. W. van der; Hipley, P.; Sheng, L.-H.

    2011-01-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  6. Application of AN Automated Wireless Structural Monitoring System for Long-Span Suspension Bridges

    Science.gov (United States)

    Kurata, M.; Lynch, J. P.; van der Linden, G. W.; Hipley, P.; Sheng, L.-H.

    2011-06-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  7. Full-Scale Evaluation of DuraDeck (registered trademark) and MegaDeck (trademark) Matting Systems

    Science.gov (United States)

    2013-07-01

    plates studded with threaded bolts were placed ERDC/GSL TR-13-27 10 underneath two pre-drilled corners of the panel. The plates were positioned so...metal plates studded with threaded ERDC/GSL TR-13-27 4 Figure 1. DuraDeck® mat panel, top surface. Figure 2. DuraDeck® mat panel, bottom surface...ERDC/GSL TR-13-27 5 bolts , as shown in Figure 3, underneath the mat corners and then installing special connector nuts from the top surface

  8. Estimation of Bridge Reliability Distributions

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper it is shown how the so-called reliability distributions can be estimated using crude Monte Carlo simulation. The main purpose is to demonstrate the methodology. Therefor very exact data concerning reliability and deterioration are not needed. However, it is intended in the paper to ...

  9. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading : Arcan Test Study and Numerical Modeling

    NARCIS (Netherlands)

    Jiang, X.; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2016-01-01

    The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress,

  10. Seismic response of cable stayed bridges under multi support excitation

    Directory of Open Access Journals (Sweden)

    Mahmoud Reza ُُShiravand

    2017-07-01

    Full Text Available In this Study, the seismic response of cable stayed bridges have been evaluated under multi-support excitations. There are three sources that cause the earthquake wave characteristics change during its propagation path. Local site effect, loss of coherency and wave passage effect are three sources of spatial variation of seismic ground motions. In long span structures, such as cable supported bridges, this phenomenon is more evident and traditional analyzing (uniform excitation may not be valid and be conservative. Thus, it is necessary to investigate the response of cable stayed bridges under non-uniform excitations. For this purpose, the non-uniform time histories were artificially generated using Kriging method based on a set of known time history in the west support of bridge. Nonlinear time history analysis was performed and cables axial force, deck moment, pylons moment and finally drift ratio of bridge have been examined in order to investigate how non-uniform excitation change the seismic response of bridge compared with uniform excitations. Results show non-uniform excitation in some bridge components increase responses and decreases in the others. In non-uniform excitation, although total time history energy is lesser than uniform excitation, it can significantly change the distribution of the forces and makes differential displacement between cables supports and increase the possibility of failure.

  11. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, J.A.; Vejrum, Tina

    1997-01-01

    on welded plate test specimens have been carried through. The materials that have been used are either conventional structural steel with a yield stress of ~ 400-410 MPa or high-strength steel with a yield stress of ~ 810-840 MPa.The fatigue tests have been carried out using load histories, which correspond......In the present investigation, fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis.In the experimental part of the investigation, fatigue test series...... to one week's traffic loading, determined by means of strain gage measurements on the orthotropic steel deck structure of the Farø Bridges in Denmark.The test series which have been carried through show a significant difference between constant amplitude and variable amplitude fatigue test results. Both...

  12. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, Jette Andkjær

    1999-01-01

    have been carried through. The materials that have been used are either conventional structural steel with a yield stress of f(y) similar to 400-410 MPa or high-strength steel with a yield stress of f(y) similar to 810-840 MPa. The fatigue tests have been carried out using load histories, which......Fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series on welded plate test specimens...... correspond to one week's traffic loading, determined by means of strain gauge measurements on the orthotropic steel deck structure of the Faro Bridges in Denmark. The test series carried through show a significant difference between constant amplitude and variable amplitude fatigue test results. Both...

  13. WORM: A general-purpose input deck specification language

    International Nuclear Information System (INIS)

    Jones, T.

    1999-01-01

    Using computer codes to perform criticality safety calculations has become common practice in the industry. The vast majority of these codes use simple text-based input decks to represent the geometry, materials, and other parameters that describe the problem. However, the data specified in input files are usually processed results themselves. For example, input decks tend to require the geometry specification in linear dimensions and materials in atom or weight fractions, while the parameter of interest might be mass or concentration. The calculations needed to convert from the item of interest to the required parameter in the input deck are usually performed separately and then incorporated into the input deck. This process of calculating, editing, and renaming files to perform a simple parameter study is tedious at best. In addition, most computer codes require dimensions to be specified in centimeters, while drawings or other materials used to create the input decks might be in other units. This also requires additional calculation or conversion prior to composition of the input deck. These additional calculations, while extremely simple, introduce a source for error in both the calculations and transcriptions. To overcome these difficulties, WORM (Write One, Run Many) was created. It is an easy-to-use programming language to describe input decks and can be used with any computer code that uses standard text files for input. WORM is available, via the Internet, at worm.lanl.gov. A user's guide, tutorials, example models, and other WORM-related materials are also available at this Web site. Questions regarding WORM should be directed to wormatlanl.gov

  14. Rapid replacement of bridge deck expansion joints study - phase I : [tech transfer summary].

    Science.gov (United States)

    2014-12-01

    This initial research phase focused on documenting the current : means and methods of bridge expansion joint deterioration, : maintenance, and replacement and on identifying improvements : through all of the input gathered.

  15. Experimental study on AR fiberglass connectors for bridges made of composite materials

    Directory of Open Access Journals (Sweden)

    Tolosana, N.

    2006-06-01

    Full Text Available One highly relevant aspect in composite material bridgedesing is the study of the shear connectors to be used.Composite material bridges most commonly comprise acomposite deck resting on steel or reinforced concrete girders.This article analyzes the connectors most frequentlyused in such bridges.It also reviews the connectors used in the King StormwaterChannel Bridge, whose fibreglass deck is supported bygirders made of concrete-filled carbon fibre girders.The paper advances proposals for several types of connectorsand discusses the results of push-out test run ona number of prototypes with different geometries.The results are analyzed to identify the optimum model forthe “Autovia del Cantabrico” Overpass, with its 46-m span,carbon fibre girders and AR glass shear connectors.Un aspecto relevante dentro del proyecto de un puenterealizado en materiales compuestos es el estudio de losconectores. El caso mas frecuente de puente en materialescompuestos es aquel que presenta un tablero de materialescompuestos soportado por vigas metalicas o de hormigonarmado. En este trabajo se analizaran los tipos deconectores mas utilizados en este tipo de puentesSe analizaran tambien los conectores utilizados en elKing Stormwater Channel Bridge, donde ademas deltablero en fibra de vidrio, se fabricaron las vigas en fibrasde carbono rellenas de hormigon.En este articulo se propondran varios tipos de conectoresy se presentaran los resultados experimentales correspondientesal ensayo de “push-out” de varios prototipos condiferentes geometrias.Tras evaluar los resultados, se determinara el mas idoneopara su implantacion en el Paso Superior de la Autovia delCantabrico, de 46 metros de luz y que presenta las vigasen fibra de carbono y los conectores de vidrio AR.

  16. Super-bridges suspended over carbon nanotube cables

    Science.gov (United States)

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-11-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ~3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ~6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ~3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  17. Super-bridges suspended over carbon nanotube cables

    International Nuclear Information System (INIS)

    Carpinteri, Alberto; Pugno, Nicola M

    2008-01-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ∼3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ∼6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ∼3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  18. Disassembly of an arch bridge deformed due to landslide activity and the replacement of a new bridge in the same site. Jisuberi ni yori henkei shita arch bashi no kaitai to shinbashi no kakekae

    Energy Technology Data Exchange (ETDEWEB)

    Sano, S; Morimoto, C; Tomoda, T; Mizukawa, Y; Onushi, M; Ito, T [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1991-10-20

    This report describes the replacement process of an arch bridge deformed due to landslide activity, selection and contents of the disassembly method, and configuration of the new bridge and its design method. The Ryugu Bridge had been damaged by landslides over an extended period. It was a deck arch bridge having originally a span of 74 meters, but it had shortened by 424 mm due to landslide activity during 14 years since its completion. Then it was decided to be replaced by a new bridge having an adjustable structure to support the movement of its abutments. As disassembly of the deformed arch bridge could be dangerous, the best methodology was studied, and the disassembly was carried out by the cable method. The new bridge had box-girder parts in both side of the main truss, so as to be adjustable to the change of the span length, and the bridge was designed for a working life of 50 years if the bearing supports and expansion joints were reset every 10 years. Concerning the connecting parts between the box-girder and the main truss, appropriateness of the sectional configuration was verified by FEM analysis. 9 refs., 18 figs., 2 tab.

  19. Existing Steel Railway Bridges Evaluation

    Science.gov (United States)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  20. Monitoring of Bridges by a Laser Pointer: Dynamic Measurement of Support Rotations and Elastic Line Displacements: Methodology and First Test.

    Science.gov (United States)

    Artese, Serena; Achilli, Vladimiro; Zinno, Raffaele

    2018-01-25

    Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab ® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges.

  1. Monitoring of Bridges by a Laser Pointer: Dynamic Measurement of Support Rotations and Elastic Line Displacements: Methodology and First Test

    Directory of Open Access Journals (Sweden)

    Serena Artese

    2018-01-01

    Full Text Available Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges.

  2. Re-Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper two aspects of re-assessment of the reliability of concrete bridges are discussed namely modelling of the corrosion of reinforcement and updating of uncertain variables. The main reason for deterioration of concrete bridges is corrosion of the reinforcement. Therefore, modelling...

  3. Wave impact on a deck or baffle

    Science.gov (United States)

    Md Noar, Nor Aida Zuraimi; Greenhow, Martin

    2015-02-01

    Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.

  4. Existing Steel Railway Bridges Evaluation

    Directory of Open Access Journals (Sweden)

    Vičan Josef

    2016-12-01

    Full Text Available The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  5. effect of uncertainty on the fatigue reliability of reinforced concrete

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... Keywords: Fatigue, cracks, structural reliability, uncertainties, high stress loads. 1. INTRODUCTION ... infrastructure system, are extremely vulnerable to this action of fatigue. .... Shear in the deck beam, G(x3) is the equation for.

  6. A probabilistic bridge safety evaluation against floods.

    Science.gov (United States)

    Liao, Kuo-Wei; Muto, Yasunori; Chen, Wei-Lun; Wu, Bang-Ho

    2016-01-01

    To further capture the influences of uncertain factors on river bridge safety evaluation, a probabilistic approach is adopted. Because this is a systematic and nonlinear problem, MPP-based reliability analyses are not suitable. A sampling approach such as a Monte Carlo simulation (MCS) or importance sampling is often adopted. To enhance the efficiency of the sampling approach, this study utilizes Bayesian least squares support vector machines to construct a response surface followed by an MCS, providing a more precise safety index. Although there are several factors impacting the flood-resistant reliability of a bridge, previous experiences and studies show that the reliability of the bridge itself plays a key role. Thus, the goal of this study is to analyze the system reliability of a selected bridge that includes five limit states. The random variables considered here include the water surface elevation, water velocity, local scour depth, soil property and wind load. Because the first three variables are deeply affected by river hydraulics, a probabilistic HEC-RAS-based simulation is performed to capture the uncertainties in those random variables. The accuracy and variation of our solutions are confirmed by a direct MCS to ensure the applicability of the proposed approach. The results of a numerical example indicate that the proposed approach can efficiently provide an accurate bridge safety evaluation and maintain satisfactory variation.

  7. 46 CFR 109.575 - Accumulation of liquids on helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accumulation of liquids on helicopter decks. 109.575... DRILLING UNITS OPERATIONS Miscellaneous § 109.575 Accumulation of liquids on helicopter decks. The master or person in charge shall ensure that no liquids are allowed to accumulate on the helicopter decks. ...

  8. Experiments and theory on deck and girder crushing

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Ocakli, Hasan

    1999-01-01

    -deflection curves and modes of deformation for decks, stringer decks and deep thin-walled beams subjected to central or excentric point loads between transverse frames. Based on theory and experiments, various modelling aspects of the local/global failure of the beams are discussed. The agreement between......This paper is concerned with theoretical and experimental analysis of deep plastic collapse of a deck or deep girder subjected to an in-plane, concentrated load. A theory is derived which is valid until initition of fracture in the structure. The presented experimental results show load...

  9. Evaluation of Different Software Packages in Flow Modeling under Bridge Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Dastorani

    2007-01-01

    Full Text Available This study is an independent and a comparative research concerning the accuracy, capability and suitability of three well-known packages ofISIS, MIKE11 and HEC-RAS as hydraulic river modeling software packages for modeling the flow through bridges. The research project was designed to assess the ability of each software package to model the flow through bridge structures. It was carried out using the data taken from experiments completed by a 22-meter laboratory flume at theUniversityofBirmingham. The flume has a compound cross section containing a main channel and two flood plains on either side. For this study a smooth main channel and a smooth floodplain have been assumed. Two types of bridges are modeled in this research; a multiple opening semi-circular arch bridge and a single opening straight deck bridge. For each bridge, two different simulations were carried out using two different upstream boundaries as low flow and high flow simulations. According to the results, all three packages were able to model arch and US BPR bridges but in some cases they presented different results. The highest water elevation upstream the bridge (maximum afflux was the main parameter to be compared to the measured values.ISISand HEC-RAS (especially HEC-RAS seem to be more efficient to model arch bridge. However, in some cases, MIKE 11 produced considerably higher results than those of the other two packages. To model USBPR bridge, all three packages produced reasonable results. However, the results by HEC-RAS are the best when the outputs are compared to the experimental data.

  10. Development of test method for assessing the bonding characteristics of membrane layers in wearing course laid on orthotropic steel bridge decks

    NARCIS (Netherlands)

    Liu, X.; Scarpas, A.; Li, J.; Tzimiris, G.; Hofman, R.; Voskuilen, J.

    2013-01-01

    In order to adequately characterize the adhesive bonding strength of the various membranes with surrounding materials on orthotropic steel decks and collect the necessary parameters for FE modeling, details of the Membrane Adhesion Test (MAT) are introduced. Analytical constitutive relations of the

  11. Formulation of Equations of Motion for a Simply Supported Bridge under a Moving Railway Freight Vehicle

    Directory of Open Access Journals (Sweden)

    Ping Lou

    2007-01-01

    Full Text Available Based on energy approach, the equations of motion in matrix form for the railway freight vehicle-bridge interaction system are derived, in which the dynamic contact forces between vehicle and bridge are considered as internal forces. The freight vehicle is modelled as a multi-rigid-body system, which comprises one car body, two bogie frames and four wheelsets. The bogie frame is linked with the car body through spring-dashpot suspension systems, and the bogie frame is rigidly linked with wheelsets. The bridge deck, together with railway track resting on bridge, is modelled as a simply supported Bernoulli-Euler beam and its deflection is described by superimposing modes. The direct time integration method is applied to obtain the dynamic response of the vehicle-bridge interaction system at each time step. A computer program has been developed for analyzing this system. The correctness of the proposed procedure is confirmed by one numerical example. The effect of different beam mode numbers and various surface irregularities of beam on the dynamic responses of the vehicle-bridge interaction system are investigated.

  12. Vibration analysis of concrete bridges during a train pass-by using various models

    International Nuclear Information System (INIS)

    Li, Qi; Wang, Ke; Cheng, Shili; Li, Wuqian; Song, Xiaodong

    2016-01-01

    The vibration of a bridge must be determined in order to predict the bridge noise during a train pass-by. It can be generally solved with different models either in the time domain or the frequency domain. The computation cost and accuracy of these models vary a lot in a wide frequency band. This study aims to compare the results obtained from various models for recommending the most suitable model in further noise prediction. First, train-track-bridge models in the time domain are developed by using the finite element method and mode superposition method. The rails are modeled by Timoshenko beam elements and the bridge is respectively modeled by shell elements and volume elements. Second, power flow models for the coupled system are established in the frequency domain. The rails are modelled by infinite Timoshenko beams and the bridge is respectively represented by three finite element models, an infinite Kirchhoff plate, and an infinite Mindlin plate model. The vibration at given locations of the bridge and the power input to the bridges through the rail fasteners are calculated using these models. The results show that the shear deformation of the bridge deck has significant influences on the bridge vibration at medium-to-high frequencies. The Mindlin plate model can be used to represent the U-shaped girder to obtain the power input to the bridge with high accuracy and efficiency. (paper)

  13. The Influence of the Track Axis Curvature at Railway Filler-Beam Deck Bridges

    Directory of Open Access Journals (Sweden)

    Răzvan Marian Stănescu

    2016-06-01

    Full Text Available The article presents a comparative study between the simplified method calculation proposed by the prescriptions of design codes and the analysis with the FEM program LUSAS [1], regarding the influence of the curvature of the track axis at railway bridges with steel beams embedded in concrete.

  14. Damage Localization of Cable-Supported Bridges Using Modal Frequency Data and Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    X. T. Zhou

    2014-01-01

    Full Text Available This paper presents an investigation on using the probabilistic neural network (PNN for damage localization in the suspension Tsing Ma Bridge (TMB and the cable-stayed Ting Kau Bridge (TKB from simulated noisy modal data. Because the PNN approach describes measurement data in a Bayesian probabilistic framework, it is promising for structural damage detection in noisy conditions. For locating damage on the TMB deck, the main span of the TMB is divided into a number of segments, and damage to the deck members in a segment is classified as one pattern class. The characteristic ensembles (training samples for each pattern class are obtained by computing the modal frequency change ratios from a 3D finite element model (FEM when incurring damage at different members of the same segment and then corrupting the analytical results with random noise. The testing samples for damage localization are obtained in a similar way except that damage is generated at locations different from the training samples. For damage region/type identification of the TKB, a series of pattern classes are defined to depict different scenarios with damage occurring at different portions/components. Research efforts have been focused on evaluating the influence of measurement noise level on the identification accuracy.

  15. Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-01-01

    Full Text Available In the through arch bridges, the suspenders are the key components connecting the arch rib and the bridge deck in the middle, and their safety is an increasing focus in the field of bridge engineering. In this study, various vehicle traffic flow parameters are investigated based on the actual vehicle data acquired from the long-term structural health monitoring system of a composite arch bridge. The representative vehicle types and the probability density functions of several parameters are determined, including the gross vehicle weight, axle weight, time headway, and speed. A finite element model of the bridge structure is constructed to determine the influence line of the cable force for various suspenders. A simulated vehicle flow, generated using the Monte Carlo method, is applied on the influence lines of the target suspender to determine the stress process, and then the stress amplitude spectrum is obtained based on the statistical analysis of the stress process using the rainflow counting method. The fatigue performance levels of various suspenders are analyzed according to the Palmgren-Miner linear cumulative damage theory, which helps to manage the safety of the suspenders.

  16. Intelligent control for braking-induced longitudinal vibration responses of floating-type railway bridges

    Science.gov (United States)

    Qu, Wei-Lian; Qin, Shun-Quan; Tu, Jian-Weia; Liu, Jia; Zhou, Qiang; Cheng, Haibin; Pi, Yong-Lin

    2009-12-01

    This paper presents an intelligent control method and its engineering application in the control of braking-induced longitudinal vibration of floating-type railway bridges. Equations of motion for the controlled floating-type railway bridges have been established based on the analysis of the longitudinal vibration responses of floating-type railway bridges to train braking and axle-loads of moving trains. For engineering applications of the developed theory, a full-scale 500 kN smart magnetorheologic (MR) damper has been designed, fabricated and used to carry out experiments on the intelligent control of braking-induced longitudinal vibration. The procedure for using the developed intelligent method in conjunction with the full-scale 500 kN MR dampers has been proposed and used to control the longitudinal vibration responses of the deck of floating-type railway bridges induced by train braking and axle-loads of moving trains. This procedure has been applied to the longitudinal vibration control of the Tian Xingzhou highway and railway cable-stayed bridge over the Yangtze River in China. The simulated results have shown that the intelligent control system using the smart MR dampers can effectively control the longitudinal response of the floating-type railway bridge under excitations of braking and axle-loads of moving trains.

  17. Intelligent control for braking-induced longitudinal vibration responses of floating-type railway bridges

    International Nuclear Information System (INIS)

    Qu, Wei-Lian; Tu, Jian-Weia; Liu, Jia; Zhou, Qiang; Qin, Shun-Quan; Cheng, Haibin; Pi, Yong-Lin

    2009-01-01

    This paper presents an intelligent control method and its engineering application in the control of braking-induced longitudinal vibration of floating-type railway bridges. Equations of motion for the controlled floating-type railway bridges have been established based on the analysis of the longitudinal vibration responses of floating-type railway bridges to train braking and axle-loads of moving trains. For engineering applications of the developed theory, a full-scale 500 kN smart magnetorheologic (MR) damper has been designed, fabricated and used to carry out experiments on the intelligent control of braking-induced longitudinal vibration. The procedure for using the developed intelligent method in conjunction with the full-scale 500 kN MR dampers has been proposed and used to control the longitudinal vibration responses of the deck of floating-type railway bridges induced by train braking and axle-loads of moving trains. This procedure has been applied to the longitudinal vibration control of the Tian Xingzhou highway and railway cable-stayed bridge over the Yangtze River in China. The simulated results have shown that the intelligent control system using the smart MR dampers can effectively control the longitudinal response of the floating-type railway bridge under excitations of braking and axle-loads of moving trains

  18. Ambient Response Analysis of the Great Belt Bridge

    DEFF Research Database (Denmark)

    Brincker, Rune; Frandsen, Jeanette B.; Andersen, Palle

    2000-01-01

    In this paper an ambient response analysis of the Great Belt Bridge is presented. The Great Belt Bridge is one of the largest suspension bridges in the world, and the analysis was carried out in order to investigate the possibilities of estimating reliable damping values from the ambient response...

  19. Cyclic and dynamic response of a bridge pier model located at the Volvi European test site in Greece

    International Nuclear Information System (INIS)

    Manos, G.C.; Kourtides, V.; Soulis, V.J.

    2005-01-01

    the presence or not of diagonal cables between the foundation and the deck as well the presence or not of extra mass at the deck apart from the concrete slab. The deck acceleration response was recorded and was studied in the frequency domain in order to extract the most significant eigen-modes and eigen-frequencies for the various configurations of the pier bridge model, which are presented here in a summary form. Moreover, an extensive numerical simulation of the response was also performed, which includes the flexibility of the foundation. Good agreement can be seen when the measured values are compared with the corresponding numerical predictions. (authors)

  20. Reexamining the validity and reliability of the clinical version of the Iowa gambling task: Evidence from a normal subject group

    Directory of Open Access Journals (Sweden)

    Ching-Hung eLin

    2013-05-01

    Full Text Available Over past decade, the Iowa gambling task (IGT has been utilized to test various decision deficits induced by neurological damage or psychiatric disorders. The IGT has recently been standardized for identifying 13 different neuropsychological disorders. Neuropsychological patients choose bad decks frequently, and normal subjects prefer good EV decks. However, the IGT has several validity and reliability problems. Some research groups have pointed out that the validity of IGT is influenced by the personality and emotional state of subjects. Additionally, several other studies have proposed that the prominent deck B phenomenon (PDB phenomenon – that is, normal subjects preferring bad deck B – may be the most serious problem confronting IGT validity. Specifically, deck B offers a high frequency of gains but negative EV. In the standard IGT administration, choice behavior can be understood with reference to gain-loss frequency (GLF rather than inferred future consequences (EV, the basic assumption of IGT. Furthermore, using two different criteria (basic assumption vs. professional norm results in significantly different classification results. Therefore, we recruited 72 normal subjects to test the validity and reliability of IGT. Each subject performed three runs of the computer-based clinical IGT version. The PDB phenomenon has been observed to a significant degree in the first and second stages of the clinical IGT version. Obviously, validity, reliability and the practice effect were unstable between two given stages. The present form of the clinical IGT version has only one stage, so its use should be reconsidered for examining normal decision makers; results from patient groups must also be interpreted with great care. GLF could be the main factor to be considered in establishing the constructional validity and reliability of the clinical IGT version.

  1. Development of MIDAS/SMR Input Deck for SMART

    International Nuclear Information System (INIS)

    Cho, S. W.; Oh, H. K.; Lee, J. M.; Lee, J. H.; Yoo, K. J.; Kwun, S. K.; Hur, H.

    2010-01-01

    The objective of this study is to develop MIDAS/SMR code basic input deck for the severe accidents by simulating the steady state for the SMART plant. SMART plant is an integrated reactor developed by KAERI. For the assessment of reactor safety and severe accident management strategy, it is necessary to simulate severe accidents using the MIDAS/SMR code which is being developed by KAERI. The input deck of the MIDAS/SMR code for the SMART plant is prepared to simulate severe accident sequences for the users who are not familiar with the code. A steady state is obtained and the results are compared with design values. The input deck will be improved through the simulation of the DBAs and severe accidents. The base input deck of the MIDAS/SMR code can be used to simulate severe accident scenarios after improvement. Source terms and hydrogen generation can be analyzed through the simulation of the severe accident. The information gained from analyses of severe accidents is expected to be helpful to develop the severe accident management strategy

  2. Identification of causes and solution strategies for deck cracking in jointless bridges : research report.

    Science.gov (United States)

    2012-07-01

    Bridges have traditionally relied on a system of expansion joints and flexible bearings to accommodate movements due to temperature, creep, and shrinkage loading. Joints and elements in their vicinity experience a high amount of degradation; thus mod...

  3. Numerical Modelling of the Dynamic Response of High-Speed Railway Bridges Considering Vehicle-Structure and Structure-Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Agapii, L.; Sneideris, J.

    2015-01-01

    is idealized as a multi-degree-of-freedom system, modelled with two layers of spring-dashpot suspension systems. Coupling the vehicle system and railway track is realized through interaction forces between the wheels and the rail, where the irregularities of the track are implemented as a random stationary......The aim of this paper is the dynamic analysis of a multi-support bridge structure exposed to high-speed railway traffic. The proposed computational model has a unified approach for simultaneously accounting for the bridge structure response, soil response and forces induced by the vehicle....... The bridge structure is modelled in three dimensions based on the finite element method using two-noded three-dimensional beam elements. The track structure is composed of three layers: rail, sleepers and deck which are connected through spring-dashpot systems. The vehicle travelling along a bridge...

  4. Monitoring of wind load and response for cable-supported bridges in Hong Kong

    Science.gov (United States)

    Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung

    2001-08-01

    Structural health monitoring for the three cable-supported bridges located in the West of Hong Kong or the Tsing Ma Control Area has been carried out since the opening of these bridges to public traffic. The three cable-supported bridges are referred to as the Tsing Ma (suspension) Bridge, the Kap Shui Mun (cable-stayed) Bridge and the Ting Kau (cable-stayed) Bridge. The structural health monitoring works involved are classified as six monitoring categories, namely, wind load and response, temperature load and response, traffic load and response, geometrical configuration monitoring, strains and stresses/forces monitoring and global dynamic characteristics monitoring. As wind loads and responses had been a major concern in the design and construction stages, this paper therefore outlines the work of wind load and response monitoring on Tsing Ma, Kap Shui Mun and Ting Kau Bridges. The paper starts with a brief description of the sensory systems. The description includes the layout and performance requirements of sensory systems for wind load and responses monitoring. Typical results of wind load and response monitoring in graphical forms are then presented. These graphical forms include the plots of wind rose diagrams, wind incidences vs wind speeds, wind turbulence intensities, wind power spectra, gust wind factors, coefficient of terrain roughness, extreme wind analyses, deck deflections/rotations vs wind speeds, acceleration spectra, acceleration/displacement contours, and stress demand ratios. Finally conclusions on wind load and response monitoring on the three cable-supported bridges are drawn.

  5. Effects of concrete moisture on polymer overlay bond over new concrete : [technical summary].

    Science.gov (United States)

    2015-06-01

    Epoxy polymer overlays have been used for decades on existing bridge decks to protect : the deck and extend its service life. The polymer overlays ability to seal a bridge deck : is now being specified for new construction. Questions exist about t...

  6. "The Battery" designed with Super-Light (concrete) Decks

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    This paper describes how Super-Light structures can be used as a structural principle for the buildings in the project ‘The Battery’ designed by Bjarke Ingels Group. The overall structural concept is described and the advantages of using super-light slabs for the project are explored. Especially...... the cantilevered internal corridors are investigated. Super-Light Structures is a newly patented structural concrete concept. Slabs based on the concept are the first structural element developed under the patent. The slabs called SL-decks have multiple advantages compared to traditional hollow core slabs....... The paper aims to describe the concept of how the deck can be used in these innovative buildings and how the special advantages of the SL-decks are applied....

  7. Overview of the National Timber Bridge Inspection Study

    Science.gov (United States)

    James P. Wacker; Brian K. Brashaw; Frank Jalinoos

    2013-01-01

    As many engineers begin to implement life cycle cost analyses within the preliminary bridge design phase, there is a significant need for more reliable data on the expected service life of highway bridges. Many claims are being made about the expected longevity of concrete and steel bridges, but few are based on actual performance data. Because engineers are least...

  8. 46 CFR 45.143 - Hull openings above freeboard deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull openings above freeboard deck. 45.143 Section 45.143 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.143 Hull openings above freeboard deck. Closures for openings above...

  9. Aluminium bridges, aluminium bridge decks

    NARCIS (Netherlands)

    Soetens, F.; Straalen, IJ.J. van

    2003-01-01

    Applications of aluminium have grown considerably in building and civil engineering the last decade. In building and civil engineering the increase of aluminium applications is due to various aspects like light weight, durability and maintenance, use of extrusions, and esthetics. The paper starts

  10. International Contribution to the Highway Agency's Bridge Related Research

    DEFF Research Database (Denmark)

    Nowak, A. S.; Thoft-Christensen, Palle

    and prediction of the remaining life. However, the parameters, which are involved in the evaluation process, are random variable. Therefore, a considerable research effort has been directed at the development of probability-based methodology. The research projects considered in the paper include the development...... of reliability models for analysis of bridges subjected to corrosion and fatigue, and reliability-based optimization of maintenance strategies for bridges....

  11. Determining Time Variation of Cable Tension Forces in Suspended Bridges Using Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Gannon Stromquist-LeVoir

    2018-01-01

    Full Text Available A feasibility study was conducted to develop a novel method to determine the temporal changes of tensile forces in bridge suspender cables using time-frequency analysis of ambient vibration measurements. An analytical model of the suspender cables was developed to evaluate the power spectral density (PSD function of a cable with consideration of cable flexural stiffness. Discrete-time, short-time Fourier transform (STFT was utilized to analyze the recorded acceleration histories in both time and frequency domains. A mathematical convolution of the analytical PSD function and time-frequency data was completed to evaluate changes in cable tension force over time. The method was implemented using acceleration measurements collected from an in-service steel arch bridge with a suspended deck to calculate the temporal variation in cable forces from the vibration measurements. The observations served as proof of concept that the proposed method may be used for cable fatigue life calculations and bridge weigh-in-motion studies.

  12. Flexible concrete link slabs used as expansion joints in bridge decks

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2011-01-01

    of water through the expansion joint and subsequent corrosion of girders and girder bearings. Investigations on joint-less superstructures using conventional steel reinforcement in so-called concrete link slabs indicate improved performance and economic feasibility. However, this concept requires...... relatively large amounts of steel reinforcement for crack control purposes and consequently provides a relatively large flexural stiffness and negative moment capacity at the joint between the spans. These contradicting requirements and effects in existing replacement concepts for damaged mechanical bridge...... joints are currently unresolved. In the proposed system described in this paper, a ductile cement-based composite section reinforced with Glass Fiber Reinforced Polymers (GFRP) replaces the damaged expansion joint. The combination of this ductile concrete together with corrosion resistant GFRP...

  13. Seismic Retrofit of a Multispan Prestressed Concrete Girder Bridge with Friction Pendulum Devices

    Directory of Open Access Journals (Sweden)

    Alberto Maria Avossa

    2018-01-01

    Full Text Available The paper deals with the proposal and application of a procedure for the seismic retrofit of an existing multispan prestressed concrete girder bridge defined explicitly for the use of friction pendulum devices as an isolation system placed between piers top and deck. First, the outcomes of the seismic risk assessment of the existing bridge, performed using an incremental noniterative Nonlinear Static Procedure, based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra, are described and discussed. Then, a specific multilevel design process, based on a proper application of the hierarchy of strength considerations and the Direct Displacement-Based Design approach, is adopted to dimension the FPD devices. Furthermore, to assess the impact of the FPD nonlinear behaviour on the bridge seismic response, a device model that reproduces the variation of the normal force and friction coefficient, the bidirectional coupling, and the large deformation effects during nonlinear dynamic analyses was used. Finally, the paper examines the effects of the FPD modelling parameters on the behaviour of the retrofitted bridge and assesses its seismic response with the results pointing out the efficiency of the adopted seismic retrofit solution.

  14. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  15. Simulation of the Vacuum Assisted Resin Transfer Molding (VARTM) process and the development of light-weight composite bridging

    Science.gov (United States)

    Robinson, Marc J.

    A continued desire for increased mobility in the aftermath of natural disasters, or on the battlefield, has lead to the need for improved light-weight bridging solutions. This research investigates the development of a carbon/epoxy composite bridging system to meet the needs for light-weight bridging. The research focuses on two main topics. The first topic is that of processing composite structures and the second is the design and testing of these structures. In recent years the Vacuum Assisted Resin Transfer Molding (VARTM) process has become recognized as a low-cost manufacturing alternative for large Fiber Reinforced Polymer (FRP) composite structures for civil, military, and aerospace applications. The success of the VARTM process (complete wet-out) is very sensitive to the resin injection strategy used and the proper placement of flow distribution materials and inlet and vacuum ports. Predicting the flow front pattern, the time required for infusing a part with resin, and the time required to bleed excess resin at the end of filling, is critical to ensure that the part will become completely impregnated and desired fiber volume fractions achieved prior to the resin gelling (initiation of cure). In order to eliminate costly trial and error experiments to determine the optimal infusion strategy, this research presents a simulation model which considers in-plane flow as well as flow through the thickness of the preform. In addition to resin filling, the current model is able to simulate the bleeding of resin at the end of filling to predict the required bleeding time to reach desired fiber volume fractions for the final part. In addition to processing, the second portion of the dissertation investigates the design and testing of composite bridge deck sections which also serve as short-span bridging for gaps up to 4 m in length. The research focuses on the design of a light-weight core material for bridge decking as well as proof loading of short-span bridge

  16. Advanced ground-penetrating, imaging radar for bridge inspection

    International Nuclear Information System (INIS)

    Warhus, J.P.; Nelson, S.D.; Mast, J.E.; Johansson, E.M.

    1994-01-01

    During FY-93, the authors continued with development and experimental evaluation of components and system concepts aimed at improving ground-penetrating imaging radar (GPIR) for nondestructive evaluation of bridge decks and other high-value concrete structures. They developed and implemented a laboratory test bed, including features to facilitate component testing antenna system configuration evaluation, and collection of experimental data from realistic test objects. In addition, they developed pulse generators and antennas for evaluation and use in antenna configuration studies. This project was part of a cooperative effort with the Computational Electronics and Electromagnetics and Remote Imaging and Signal Engineering Thrust Areas, which contributed signal- and image-processing algorithm and software development and modeling support

  17. Increasing the Capacity of Existing Bridges by Using Unbonded Prestressing Technology: A Case Study

    Directory of Open Access Journals (Sweden)

    Antonino Recupero

    2014-01-01

    Full Text Available External posttensioning or unbonded prestressing was found to be a powerful tool for retrofitting and for increasing the life extension of existing structures. Since the 1950s, this technique of reinforcement was applied with success to bridge structures in many countries, and was found to provide an efficient and economic solution for a wide range of bridge types and conditions. Unbonded prestressing is defined as a system in which the post-tensioning tendons or bars are located outside the concrete cross-section and the prestressing forces are transmitted to the girder through the end anchorages, deviators, or saddles. In response to the demand for a faster and more efficient transportation system, there was a steady increase in the weight and volume of traffic throughout the world. Besides increases in legal vehicle loads, the overloading of vehicles is a common problem and it must also be considered when designing or assessing bridges. As a result, many bridges are now required to carry loads significantly greater than their original design loads; and their deck results still deteriorated by cracking of concrete, corrosion of rebars, snapping of tendons, and so forth. In the following, a case study about a railway bridge retrofitted by external posttensioning technique will be illustrated.

  18. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    Science.gov (United States)

    Seeram, Madhuri; Manohar, Y.

    2018-06-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  19. Fluid-structure interaction analysis of a deck structure during a HCDA

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    Presented is an assessment of the structural integrity of the deck structure of a pool-type LMFBR during a Hypothetical Core Disruptive Accident (HCDA). During this accident the sodium above the core is propelled upward until it impacts against the deck structure. This hydrodynamic loading could produce (1) significant structural damage and (2) sodium leak paths. A finite-element model is used to study the deck dynamics during slug impact. By using the symmetry of the system, a sector model which accounts for the salient features of the system is developed. The main radial I-beam, component support I-beam and bottom annular plate are modeled using triangular plate elements. The concrete fill is modeled using hexahedral continuum elements. Using the above finite-element model the dynamics of the deck during a HCDA are investigated

  20. Optimization of wood plastic composite decks

    Science.gov (United States)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  1. RISK LEVEL ANALYSIS ON THE PREVENTIVE EROSION CAPACITY OF BRIDGES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Deficiency of the Preventive Erosion Capacity (PEC) of a bridge pier is the main factor leading to bridge failures. In this paper, the PEC of bridge piers was analyzed using the stochastic analysis method. The definitions of the reliability and risk level of a bridge pier subjected to water erosion were proposed and a computational model for erosion depth and risk level in was suggested.

  2. Pilot Study for Investigating the Cyclic Response of the Recentering Bridge Bearing System Combined with the Friction Damper

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2016-01-01

    Full Text Available The bridge bearing is one of the component members which provide resting supports between piers and decks. The bridge bearing is intended to control longitudinal movement caused by traffic flow and thermal expansion, thereby reducing stress concentration. In high seismicity area, the bridge bearing has been utilized as the base isolation system to mitigate acceleration transferred from the ground. Although the existing bridge bearing installed between superstructure and substructure provides extra flexibility to the base of the entire structure, considerable permanent deformation occurs due to lack of recentering capacity after earthquake. It is required to spend extra cost for repairing impaired parts. The bridge bearings integrated with superelastic shape memory alloy (SMA devices used for upgrading the recentering effect into the friction damper are proposed in this study. The refined finite element (FE analyses are introduced to reproduce the response of such new structures under cyclic loading condition. The bridge bearing systems that maintain uniform recentering capability are designed with various friction coefficients so as to examine energy dissipation and residual deformation through FE analyses. After observing FE analysis results, optimal design for the recentering bridge bearing system will be proposed to take advantage of energy dissipation and self-centering capacity.

  3. 29 CFR 1915.73 - Guarding of deck openings and edges.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Guarding of deck openings and edges. 1915.73 Section 1915.73 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION..., Ladders and Other Working Surfaces § 1915.73 Guarding of deck openings and edges. (a) The provisions of...

  4. Mechanical properties of superelastic Cu–Al–Be wires at cold temperatures for the seismic protection of bridges

    International Nuclear Information System (INIS)

    Zhang Yunfeng; Zhu Songye; Camilleri, Joseph A

    2008-01-01

    This paper examines the suitability of superelastic copper–aluminum–beryllium (Cu–Al–Be) alloy wires for the seismic protection of bridges in cold regions. Experimental results for the mechanical properties of superelastic Cu–Al–Be alloy wires at a variety of temperatures and loading rates are presented. This research is motivated by the recent use of shape memory alloys for bridge restrainers subject to harsh winter conditions, especially in cold regions. Bridge restrainers made of superelastic Cu–Al–Be wire strands are expected to be used for protecting bridge decks from excessive displacement when subjected to strong earthquakes. Using a temperature chamber, superelastic Cu–Al–Be wires with a diameter of 1.4 mm were tested under uniaxial cyclic loading at various loading rates and cold temperatures. The test results from 23 to −50 °C demonstrate that Cu–Al–Be exhibits superelastic behavior at cold temperatures down to −85 °C. It is also found that with decreasing temperature the transformation plateau stress is reduced while its fatigue life increases under cyclic testing

  5. Analysis of structural diseases in widened structure due to the shrinkage and creep difference of new bridge

    Science.gov (United States)

    Wu, Wenqing; Zhang, Hui

    2018-03-01

    In order to investigate the possible structural diseases brought to the top flange of existing prestressed concrete box girder bridge due to the shrinkage and creep difference between new and old bridge, the stress state of the existing box girder before and after widening and the mechanisms of potential structural diseases were analyzed using finite element method in this paper. Results showed that the inner flange of the old box girder were generally in the state of large tensile stress, the main reason for which was the shrinkage and creep effect difference of the new and old bridge. And the tensile stress was larger than tensile strength of C50 concrete, which would most likely cause crack in the deck plate of box girder. Hence, reinforcement measures are needed to be designed carefully. Meanwhile, the transverse deformation of widened structure had exceeded the distance between the anti-seismic block and the web of box girder at the end cross section, which would squeeze anti-seismic block severely. Therefore, it is necessary to limit the length of continuous bridge in need of widening.

  6. Investigating extreme event loading on coastal bridges using wireless sensor technology

    Science.gov (United States)

    Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.

    2017-04-01

    Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.

  7. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Baarholm, Rolf Jarle

    2001-07-01

    The main objective of this thesis has been to study the phenomenon of water impact underneath the decks of offshore platforms due to propagating waves. The emphasis has been on the impact loads. Two theoretical methods based on two-dimensional potential theory have been developed, a Wagner based method (WBM) and a nonlinear boundary element method (BEM). A procedure to account for three-dimensional effects is suggested. The deck is assumed to be rigid. Initial studies of the importance of hydroelasticity for wave loads on an existing deck structure have been performed. For a given design wave, the local structural responses were found to behave quasi-static. Global structural response has not been studied. In the Wagner based method gravity is neglected and a linear spatial distribution of the relative impact velocity along the deck is assumed. The resulting boundary value problem is solved analytically for each time step. A numerical scheme for stepping the wetted deck area in time is presented. The nonlinear boundary element method includes gravity, and the exact impact velocity is considered. The incident wave velocity potential is given a priori, and a boundary value problem for the perturbation velocity potential associated with the impact is defined. The boundary value problem is solved for each time step by applying Green's second identity. The exact boundary conditions are imposed on the exact boundaries. A Kutta condition is introduced as the fluid flow reaches the downstream end of the deck. At present, the BEM is only applicable for fixed platform decks. To validate the theories, experiments have been carried out in a wave flume. The experiments were performed in two-dimensional flow condition with a fixed horizontal deck at different vertical levels above the mean free surface. The vertical force on the deck and the wetting of the deck were the primary parameters measured. Only regular propagating waves were applied. When a wave hits the deck, the

  8. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    OpenAIRE

    Chon W.; Amano R. S.

    2005-01-01

    When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Do...

  9. Full-scale measurements and system identification on Sutong cable-stayed bridge during Typhoon Fung-Wong.

    Science.gov (United States)

    Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun

    2014-01-01

    The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  10. Full-Scale Measurements and System Identification on Sutong Cable-Stayed Bridge during Typhoon Fung-Wong

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available The structural health monitoring system (SHMS provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT combined with the random decrement technique (RDT. The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  11. Flight Deck I-Glasses, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Deck i-Glasses is a color, stereoscopic 3-D display mounted on consumer style eye glass frames that will enhance operator performance and multi-modal...

  12. Comparison of deck- and trial-based approaches to advantageous decision making on the Iowa Gambling Task.

    Science.gov (United States)

    Visagan, Ravindran; Xiang, Ally; Lamar, Melissa

    2012-06-01

    We compared the original deck-based model of advantageous decision making assessed with the Iowa Gambling Task (IGT) with a trial-based approach across behavioral and physiological outcomes in 33 younger adults (15 men, 18 women; 22.2 ± 3.7 years of age). One administration of the IGT with simultaneous measurement of skin conductance responses (SCRs) was performed and the two methods applied: (a) the original approach of subtracting disadvantageous picks of Decks A and B from advantageous picks of Decks C and D and (b) a trial-based approach focused on the financial outcome for each deck leading up to the trial in question. When directly compared, the deck-based approach resulted in a more advantageous behavioral profile than did the trial-based approach. Analysis of SCR data revealed no significant differences between methods for physiological measurements of SCR fluctuations or anticipatory responses to disadvantageous picks. Post hoc investigation of the trial-based method revealed Deck B contributed to both advantageous and disadvantageous decision making for the majority of participants. When divided by blocks of 20, the number of advantageous to disadvantageous choices reversed as the task progressed despite the total number of picks from Deck B remaining high. SCR fluctuations for Deck B, although not significantly different from the other decks, did show a sharp decline after the first block of 20 and remained below levels for Decks C and D toward the end of the task, suggesting that participants may have gained knowledge of the frequency of loss for this deck. (c) 2012 APA, all rights reserved

  13. Aircraft Carrier Flight and Hangar Deck Fire Protection: History and Current Status

    National Research Council Canada - National Science Library

    Darwin, Robert L; Bowman, Howard L; Hunstad, Mary; Leach, William B; Williams, Frederick W

    2005-01-01

    .... Next, a review of firefighting systems, including the firefighting agents currently in use, as well as the current tactics for fighting fires on the flight deck and the hangar deck, is provided...

  14. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...

  15. Wireless data collection retrievals of bridge inspection/management information.

    Science.gov (United States)

    2017-02-28

    To increase the efficiency and reliability of bridge inspections, MDOT contracted to have a 3D-model-based data entry application for mobile tablets developed to aid inspectors in the field. The 3D Bridge App is a mobile software tool designed to fac...

  16. Super-light SL-Deck elements with fixed end connections

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2015-01-01

    Super-light structures combining light and strong concrete are invented by the author at the Technical University of Denmark and commercialized by the spin-out company Abeo Ltd. The first product is the SL-Deck element that represents a number of strong improvements to the building industry among...... to low weight and due to possibilities of continuous elements and fixed end connections. A new machine is constructed producing the elements and BIM software is developed optimizing the structures, the production, and the logistics and running the machine. New production lines are established...... building projects leading to considerable savings of time and costs and opening up new possibilities for architects and users. Furthermore, the paper describes full-scale test results with new fixed end connections between decks and walls and between decks and columns in facades giving more possibilities...

  17. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    extent these simplified models estimate the heat storage potential of precast hollow-core concrete decks correctly. This study investigates various approaches on how to model the heat transfer within the air void in the deck. Furthermore, it is analysed how different heat transfer models influence...... the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  18. Methodology of homogeneous and non-homogeneous Markov Chains for modeling bridge element deterioration.

    Science.gov (United States)

    2008-08-01

    Bridge management is an important activity of transportation agencies in the US : and in many other countries. A critical aspect of bridge management is to reliably predict : the deterioration of bridge structures, so that appropriate or optimal acti...

  19. STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...

    African Journals Online (AJOL)

    eobe

    STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.

  20. Towards a real-time Structural Health Monitoring of railway bridges

    OpenAIRE

    Vagnoli, Matteo; Remenyte-Prescott, Rasa; Andrews, John

    2017-01-01

    More than 350,000 railway bridges are present on the European railway network, making them a key infrastructure of the whole railway network. Railway bridges are continuously exposed to changing environmental threats, such as wind, floods and traffic load, which can affect safety and reliability of the bridge. Furthermore, a problem on a bridge can affect the whole railway network by increasing the vulnerability of the geographic area, served by the railway network. In this paper a Bayesian B...

  1. A vibration powered wireless mote on the Forth Road Bridge

    International Nuclear Information System (INIS)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A

    2015-01-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm 3 , was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent. (paper)

  2. A vibration powered wireless mote on the Forth Road Bridge

    Science.gov (United States)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.

    2015-12-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.

  3. Design of bridges against large tectonic deformation

    Science.gov (United States)

    Anastasopoulos, I.; Gazetas, G.; Drosos, V.; Georgarakos, T.; Kourkoulis, R.

    2008-12-01

    The engineering community has devoted much effort to understanding the response of soil-structure systems to seismic ground motions, but little attention to the effects of an outcropping fault offset. The 1999 earthquakes of Turkey and Taiwan, offering a variety of case histories of structural damage due to faulting, have (re)fueled the interest on the subject. This paper presents a methodology for design of bridges against tectonic deformation. The problem is decoupled in two analysis steps: the first (at the local level) deals with the response of a single pier and its foundation to fault rupture propagating through the soil, and the superstructure is modeled in a simplified manner; and the second (at the global level) investigates detailed models of the superstructure subjected to the support (differential) displacements of Step 1. A parametric study investigates typical models of viaduct and overpass bridges, founded on piles or caissons. Fixed-head piled foundations are shown to be rather vulnerable to faulting-induced deformation. End-bearing piles in particular are unable to survive bedrock offsets exceeding 10 cm. Floating piles perform better, and if combined with hinged pile-to-cap connections, they could survive much larger offsets. Soil resilience is beneficial in reducing pile distress. Caisson foundations are almost invariably successful. Statically-indeterminate superstructures are quite vulnerable, while statically-determinate are insensitive (allowing differential displacements and rotations without suffering any distress). For large-span cantilever-construction bridges, where a statically determinate system is hardly an option, inserting resilient seismic isolation bearings is advantageous as long as ample seating can prevent the deck from falling off the supports. An actual application of the developed method is presented for a major bridge, demonstrating the feasibility of design against tectonic deformation.

  4. Towards a characterization of information automation systems on the flight deck

    Science.gov (United States)

    Dudley, Rachel Feddersen

    This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.

  5. Disadvantageous Deck Selection in the Iowa Gambling Task: The Effect of Cognitive Load

    Directory of Open Access Journals (Sweden)

    Melissa J. Hawthorne

    2015-05-01

    Full Text Available Research has shown that cognitive load affects overall Iowa Gambling Task (IGT performance, but it is unknown whether such load impacts the selection of the individual decks that correspond to gains or losses. Here, participants performed the IGT either in a full attention condition or while engaged in a number monitoring task to divide attention. Results showed that the full attention group was more aware of the magnitude of gains or losses for each draw (i.e., payoff awareness than was the divided attention group. However, the divided attention group was more sensitive to the frequency of the losses (i.e., frequency awareness, as evidenced by their increased preference for Deck B, which is the large but infrequent loss deck. An analysis across blocks showed that the number monitoring group was consistently more aware of loss frequency, whereas the full attention group shifted between awareness of loss frequency and awareness of payoff amount. Furthermore, the full attention group was better able to weigh loss frequency and payoff amount when making deck selections. These findings support the notion that diminished cognitive resources may result in greater selection of Deck B, otherwise known as the prominent Deck B phenomenon.

  6. Application Side Casing on Open Deck RoRo to Improve Ship Stability

    Science.gov (United States)

    Hasanudin; K. A. P Utama, I.; Chen, Jeng-Horng

    2018-03-01

    RoRo is a vessel that can transport passengers, cargo, container and cars. Open Car Deck is favourite RoRo Vessel in developing countries due to its small GT, small tax and spacious car deck, but it has poor survival of stability. Many accident involve Open Car Deck RoRo which cause fatalities and victim. In order to ensure the safety of the ship, IMO had applied intact stability criteria IS Code 2008 which adapted from Rahola’s Research, but since 2008 IMO improved criteria become probabilistic damage stability SOLAS 2009. The RoRo type Open Car Deck has wide Breadth (B), small Draft (D) and small freeboard. It has difficulties to satisfy the ship’s stability criteria. Side Casings which has been applied in some RoRo have be known reduce freeboard or improve ship’s safety. In this paper investigated the effect side casings to survival of intact dan damage ship’s stability. Calculation has been conducted for four ships without, existing and full side casings. The investigation results shows that defect stability of Open Deck RoRo can be reduce with fitting side casing.

  7. Comparative durability of timber bridges in the USA

    Science.gov (United States)

    James P. Wacker; Brian K. Brashaw

    2017-01-01

    As engineers begin to utilize life-cycle-cost design approaches for timber bridges, there is a necessity for more reliable data about their durability and expected service life. This paper summarizes a comprehensive effort to assess the current condition of more than one hundred timber highway bridge superstructures throughout the United States. This national study was...

  8. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  9. Optimizing Tailored Bus Bridging Paths

    NARCIS (Netherlands)

    Gu, Wei; Yu, Jie; Ji, Yuxiong; van der Gun, J.P.T.; Pel, A.J.; Zhang, H. Michael; van Arem, B.

    2017-01-01

    Metro disruptions due to unexpected events reduce transit system reliability, resulting in significant productivity loss and long passenger delays. Bus bridging strategy is often used to connect stations affected by metro disruptions such that passengers could continue their journey. The literature

  10. Organic Functional Group Playing Card Deck

    Science.gov (United States)

    Welsh, Michael J.

    2003-04-01

    The recognition and identification of organic functional groups, while essential for chemistry and biology majors, is also very useful for non-science majors in the study of molecules in art and life. In order to make this task more palatable for the non-science major (art and communications students), the images of a traditional playing deck of cards (heart, spade, diamond, and club) have been replaced with four representations of common organic functional groups. The hierarchy rules for naming two groups in a molecule is loosely incorporated to represent the sequence (King, Queen, Jack, ?, Ace) of the deck. Students practice recognizing and identifying organic groups by playing simple card games of "Old Maid" and "Go Fish". To play games like "Poker" or "Gin", a student must not only recognize the functional groups, but also master a naming hierarchy for the organic groups.

  11. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  12. 46 CFR 45.135 - Hull openings at or below freeboard deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull openings at or below freeboard deck. 45.135 Section 45.135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.135 Hull openings at or below freeboard deck. Closures for hull...

  13. structural reliability of the nigerian grown abura timber bridge beam

    African Journals Online (AJOL)

    ENGR. J. I. AGUWA

    2013-07-02

    Jul 2, 2013 ... Structural analysis and deterministic design of a timber bridge beam using the Nigerian ... practice especially when it involves naturally occuring materials .... the beam due to distributed loads is; from [15]. (4). It is assumed that ...

  14. Behavior of Epoxy-Coated Textured Reinforcing Bars

    Science.gov (United States)

    2018-04-01

    Cracking in bridge decks is a common but difficult problem to control. Both research and experience show that the use of epoxy-coated reinforcement, which is mandated by most state departments of transportation (DOTs) for bridge decks, increases c...

  15. Bridge health monitoring with consideration of environmental effects

    International Nuclear Information System (INIS)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong; Park, Jongchil

    2012-01-01

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge

  16. Bridge health monitoring with consideration of environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong [Inha Univ., Incheon (Korea, Republic of); Park, Jongchil [Korea Expressway Co., (Korea, Republic of)

    2012-12-15

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge.

  17. Failure of riprap protection : phase II (final report).

    Science.gov (United States)

    2008-06-01

    Riprap rundowns are often used by the New Mexico Department of Transportation (NMDOT) to : capture and drain the runoff approaching or leaving bridge decks. Rundowns are generally located at : the ends of a bridge deck to transport the water down the...

  18. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  19. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges

    Science.gov (United States)

    Jin, Zhibin; Pei, Shiling; Li, Xiaozhen; Liu, Hongyan; Qiang, Shizhong

    2016-11-01

    The running safety of railway vehicles on bridges can be negatively affected by earthquake events. This phenomenon has traditionally been investigated with only the lateral ground excitation component considered. This paper presented results from a numerical investigation on the contribution of vertical ground motion component to the derailment of vehicles on simply-supported bridges. A full nonlinear wheel-rail contact model was used in the investigation together with the Hertzian contact theory and nonlinear creepage theory, which allows the wheel to jump vertically and separate from the rail. The wheel-rail relative displacement was used as the criterion for derailment events. A total of 18 ground motion records were used in the analysis to account for the uncertainty of ground motions. The results showed that inclusion of vertical ground motion will likely increase the chance of derailment. It is recommended to include vertical ground motion component in earthquake induced derailment analysis to ensure conservative estimations. The derailment event on bridges was found to be more closely related to the deck acceleration rather than the ground acceleration.

  20. Aerodynamic stability study of a long-span prestressed concrete cable-stayed bridge. Aerodynamic behavior of edge box girder under uniform flow; Chodai PC shachokyo no taifu anteisei ni kansuru kenkyu. Ichiyoryuchu ni okeru edge girder keishiki no kuriki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, T. [Obayashi Corp., Tokyo (Japan)

    1999-01-10

    In recent years, the construction of long-span bridges is on the increase. Prestressed concrete cable-stayed bridges are dynamically very efficient structures of relatively low cost that blend in well with the landscape. Maintenance is also easy. Consequently, the adoption of edge box girders for cable-stayed bridges is increasing worldwide, but problems related to the aerodynamic stability of the structure have emerged. The aerodynamic stability of edge box girders for a prestressed concrete cable-stayed bridge was investigated under uniform flow conditions by conducting several wind tunnel experiments. As a result, the section of the bridge deck was optimized to prevent torsional flutter within an angle of attack varying from -5 to +5 degrees. It is therefore possible to guarantee the aerodynamic stability of long-span prestressed concrete cable-stayed bridges. (author)

  1. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    Directory of Open Access Journals (Sweden)

    Chon W.

    2005-01-01

    Full Text Available When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.

  2. Live-Load Testing Application Using a Wireless Sensor System and Finite-Element Model Analysis of an Integral Abutment Concrete Girder Bridge

    Directory of Open Access Journals (Sweden)

    Robert W. Fausett

    2014-01-01

    Full Text Available As part of an investigation on the performance of integral abutment bridges, a single-span, integral abutment, prestressed concrete girder bridge near Perry, Utah was instrumented for live-load testing. The live-load test included driving trucks at 2.24 m/s (5 mph along predetermined load paths and measuring the corresponding strain and deflection. The measured data was used to validate a finite-element model (FEM of the bridge. The model showed that the integral abutments were behaving as 94% of a fixed-fixed support. Live-load distribution factors were obtained using this validated model and compared to those calculated in accordance to recommended procedures provided in the AASHTO LRFD Bridge Design Specifications (2010. The results indicated that if the bridge was considered simply supported, the AASHTO LRFD Specification distribution factors were conservative (in comparison to the FEM results. These conservative distribution factors, along with the initial simply supported design assumption resulted in a very conservative bridge design. In addition, a parametric study was conducted by modifying various bridge properties of the validated bridge model, one at a time, in order to investigate the influence that individual changes in span length, deck thickness, edge distance, skew, and fixity had on live-load distribution. The results showed that the bridge properties with the largest influence on bridge live-load distribution were fixity, skew, and changes in edge distance.

  3. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct

    Science.gov (United States)

    Olmos, José M.; Astiz, Miguel Á.

    2018-04-01

    In order to properly study the high-speed traffic safety on a high-pier viaduct subject to episodes of lateral turbulent winds, an efficient dynamic interaction train-bridge-wind model has been developed and experimentally validated. This model considers the full wheel and rail profiles, the friction between these two bodies in contact, and the piers P-Delta effect. The model has been used to determine the critical train and wind velocities from which the trains cannot travel safely over the O'Eixo Bridge. The dynamic simulations carried out and the results obtained in the time domain show that traffic safety rates exceed the allowed limits for turbulent winds with mean velocities at the deck higher than 25 m/s.

  4. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    Science.gov (United States)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  5. Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2014-01-01

    Full Text Available The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS (multielements cable system model, where multielements per cable stay are used, is built up and used to analyze the model properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs model, where the tower or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The results of MECS model analysis show that the main tower in the multispan cable-stayed bridge is prone to the transverse vibration, and the local vibration of cables only has a little impact on the frequency values of the global modes. The results of simplified model analysis show that the energy can be transformed between the modes of the beam and cable when the nature frequencies of them are very close. On the other hand, with the transverse excitation changing, the cable can exhibit richer quasi-periodic or chaotic motions due to the nonlinear terms caused by the coupled mode between the beam and cable.

  6. Deck41 Surficial Seafloor Sediment Description Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deck41 is a digital summary of surficial sediment composition for 36,401 seafloor samples worldwide. Data include collecting source, ship, cruise, sample id,...

  7. Concept design and alternate arrangements of orbiter mid-deck habitability features

    Science.gov (United States)

    Church, R. A.; Ciciora, J. A.; Porter, K. L.; Stevenson, G. E.

    1976-01-01

    The evaluations and recommendations for habitability features in the space shuttle orbiter mid-deck are summarized. The orbiter mission plans, the mid-deck dimensions and baseline arrangements along with crew compliments and typical activities were defined. Female and male anthropometric data based on zero-g operations were also defined. Evaluations of baseline and alternate feasible concepts provided several recommendations which are discussed.

  8. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges.

    Science.gov (United States)

    Tabatabai, Habib; Aljuboori, Mohammed

    2017-12-14

    Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  9. Critique of the Reggeized deck model

    International Nuclear Information System (INIS)

    Berger, E.L.

    1975-01-01

    A detailed analysis is presented of the Reggeized pion exchange Deck model for processes of the type ap → A*N → (a*π)N, where a = π, K, or nucleon and a* = rho, K*, N or Δ. Predictions of the model for both production and decay properties of the low mass system A* → (a*π) are derived and contrasted with data. Diffractive as well as charge exchange reactions are treated. The role of pion exchange in generating (a*π) enhancements near threshold and their properties is examined from several points of view. Characteristic exchange effects and quantum number properties (e.g., cross-overs) of the pion exchange Deck graph are shown to be verified in the data, but this graph alone is inadequate. The failures all point to the need for a second graph, having a* exchange properties. The contribution of a* exchange is roughly equal to that of the π exchange graph. (U.S.)

  10. decké osobnosti a vedení ve vědě

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    č. 3 (2005), s. 14-17 ISSN 1210-9525 Institutional research plan: CEZ:AV0Z10300504 Keywords : vědecké osobnosti * talent * grantový systém * vědecká excelence Subject RIV: AM - Education http://abicko.avcr.cz/archiv/2005/3/obsah/vedecke-osobnosti-a-vedeni-ve-vede.html

  11. Evaluation of structural reliability using simulation methods

    Directory of Open Access Journals (Sweden)

    Baballëku Markel

    2015-01-01

    Full Text Available Eurocode describes the 'index of reliability' as a measure of structural reliability, related to the 'probability of failure'. This paper is focused on the assessment of this index for a reinforced concrete bridge pier. It is rare to explicitly use reliability concepts for design of structures, but the problems of structural engineering are better known through them. Some of the main methods for the estimation of the probability of failure are the exact analytical integration, numerical integration, approximate analytical methods and simulation methods. Monte Carlo Simulation is used in this paper, because it offers a very good tool for the estimation of probability in multivariate functions. Complicated probability and statistics problems are solved through computer aided simulations of a large number of tests. The procedures of structural reliability assessment for the bridge pier and the comparison with the partial factor method of the Eurocodes have been demonstrated in this paper.

  12. 2014 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL

    Science.gov (United States)

    Failure Field Imaging Inverter Reliability Thin Film Technologies Packaging Materials and Accelerated . Introduction and Plenary Welcome-Bill Tumas, National Renewable Energy Laboratory (NREL) Welcome-Shubhra Bansal Reliability Analysis of Microinverters-Paul Parker, SolarBridge Technologies Back to top Thin Film

  13. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used...

  14. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...

  15. A Bridge Deflection Monitoring with GPS

    Science.gov (United States)

    Figurski, M.; Gałuszkiewicz, M.; Wrona, M.

    2007-01-01

    This paper introduces results of investigation carried on by The Applied Geomatics Section in Military University of Technology. Research includes possibilities of monitoring dynamic behavior of a bridge using high rate GPS data. Whole event was executed with collaboration of The Road and Bridge Management and The Warsaw Geodesy Company. Interdisciplinary approach with this project allows authors to get reliable information about investigating constructions and their respond for true traffic loading detected by GPS receivers. Way of compute data and used software (TRACK) are also shown in this paper.

  16. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges

    Directory of Open Access Journals (Sweden)

    Habib Tabatabai

    2017-12-01

    Full Text Available Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  17. Robotics and Automation for Flight Deck Aircraft Servicing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  18. Running Safety of Trains under Vessel-Bridge Collision

    Directory of Open Access Journals (Sweden)

    Yongle Li

    2015-01-01

    Full Text Available To optimize the sensor placement of the health monitoring system, the dynamic behavior of the train-bridge system subjected to vessel-collision should be studied in detail firstly. This study thus focuses on the characteristics of a train-bridge system under vessel-bridge collision. The process of the vessel-bridge collision is simulated numerically with a reliable finite element model (FEM. The dynamic responses of a single car and a train crossing a cable-stayed bridge are calculated. It is shown that the collision causes significant increase of the train’s lateral acceleration, lateral wheelset force, wheel unloading rate, and derailment coefficient. The effect of the collision on the train’s vertical acceleration is much smaller. In addition, parametric studies with various train’s positions, ship tonnage, and train speed are performed. If the train is closer to the vessel-bridge collision position or the ship tonnage is larger, the train will be more dangerous. There is a relatively high probability of running danger at a low speed, resulting from longer stay of the train on the bridge. The train’s position, the ship tonnage, and the train speed must be considered when determining the most adverse conditions for the trains running on bridges under vessel-bridge collision.

  19. Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck

    Science.gov (United States)

    Chon, Woochong; Amano, Ryoichi S.

    Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.

  20. P-{Delta} effects on the reliability of oil offshore jacket platforms in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    De Leon-Escobedo, D. [Universidad Autonoma del Estado de Mexico, Toluca, Estado de Mexico (Mexico)]. E-mail: daviddeleonescobedo@yahoo.com.mx; Campos, D. [Instituto Mexicano del Petroleo (Mexico)]. E-mail: dcampos@imp.mx

    2012-07-15

    Given the important economic consequences of an oil platform failure, all the aspects of its structural behavior and safety issues need to be carefully considered. In particular, P-{Delta} effects on the deck legs of marine offshore jacket platforms may be relevant when the deck height and the vertical load are significant. In this paper, the impact of the moment amplification, due to slenderness of the deck legs, on the platform safety is examined and appraised from the viewpoint of the structural reliability. The formulation is applied to a typical tall deck marine platform under the environmental loading at the Bay of Campeche, Mexico, and its reliability index is calculated with and without the P-{Delta} effect. The results presented herein may be used to improve the current practice in the design and assessment of offshore marine platforms in Mexico and to update the current version of the code. [Spanish] Dadas las importantes consecuencias economicas de la falla de una plataforma petrolera, todos los aspectos de su comportamiento estructural y aspectos de seguridad necesitan considerarse cuidadosamente. En particular, los efectos P-{Delta} en las piernas de la cubierta de plataformas marinas costa fuera petroleras tipo jacket pueden ser relevantes cuando la altura de la cubierta y la intensidad de cargas verticales son significativas. En este articulo se examina el impacto que sobre la seguridad de la plataforma tiene la amplificacion de momentos, debido a la esbeltez de las piernas de la cubierta, y se evalua este impacto desde el punto de vista de confiabilidad estructural. La formulacion se aplica a una plataforma marina tipica, con cubierta alta, bajo la carga ambiental de la Bahia de Campeche, Mexico y se calcula su indice de confiabilidad con y sin el efecto P-{Delta}. Los resultados presentados aqui pueden usarse para mejorar las practicas actuales de diseno y evaluacion de plataformas marinas costa fuera en Mexico y para actualizar la version actual

  1. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    Science.gov (United States)

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  2. Preparation of Input Deck to analyze the Nuclear Power Plant for the Use of Regulatory Verification

    International Nuclear Information System (INIS)

    Kang, Doo Hyuk; Kim, Hyung Seok; Suh, Jae Seung; Ahn, Seung Hoon

    2009-01-01

    The objectives of this paper are to make out the input deck that analyzes a nuclear power plant for the use of regulatory verification and to produce its calculation note. We have been maintained the input deck of T/H safety codes used in existing domestic reactors to ensure independent and accurate regulatory verification for the thermal-hydraulic safety analysis in domestic NPPs. This paper is mainly divided into two steps: first step is to compare existing input deck to the calculation note in order to verify the consistency. Next step is to model 3-dimensional reactor pressure vessel using MULTID component instead of the 1D existing input deck

  3. Demonstration and Validation of a Lightweight Composite Bridge Deck Technology as an Alternative to Reinforced Concrete

    Science.gov (United States)

    2016-08-01

    Examples of the sensor placement are shown in Fig- ure 58 through Figure 60. A fully loaded dump truck weighing 78,660 lb was driven across the bridge at...release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and...environmental challenges. ERDC develops innovative solutions in civil and military engineering , geospatial sciences, water resources, and

  4. ABC deck panel testing.

    Science.gov (United States)

    2013-09-01

    Accelerated Bridge Construction techniques have resulted in innovative options that : save time and money during the construction of bridges. One such group of techniques : that has generated considerable interest is the usage of individual precast c...

  5. STS-37 Commander Nagel in commanders seat on OV-104's flight deck

    Science.gov (United States)

    1991-01-01

    STS-37 Commander Steven R. Nagel, wearing launch and entry suit (LES), sits at commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Surrounding Nagel are the seat headrest, control panels, checklists, forward flight deck windows, and three drinking water containers with straws attached to forward panel F2.

  6. Study of the action of blast deck charge in rocky soils

    Directory of Open Access Journals (Sweden)

    Boiko V.V.

    2017-04-01

    Full Text Available Blasting (B in the industry, including the mining extraction of minerals, are carried out mostly with the use of blasthole charges that systematically distributed on the block that is undermined, by individual groups. The latter are blasted according to the scheme of short-delay firing (SDF through the intervals that are accepted not less than 20 Ms. Thus, the seismic effect of group charge explosion, consisting of individual blasthole charges and that actually is a group located charge determined by the formula of concentrated charge. Blast deck charges are effectively used in the driving of the trenches in the mining, formation of screens and cracks near the security objects. Only this method of performing blasting allows to define seismic effect in the transition from one diameter of a charge to another, as well as to determine the actual number of detonated charges in one group, which may differ from the calculated in drilling and blasting project. The work analyzes the physical essence of processes happened while blasting of blast deck charges. The effect of the orientation of the seismic action of blasting of blast deck charges towards the allocation line of charges is investigated. The results of generalized dependence of the speed of the displacement of the ground by the blast parameters and epicentral distance are obtained. We demonstrate with specific examples that blast deck charges that blasting simultaneously make a major chain of the career massive explosions at mining. Keywords: seismic fluctuations; the number of charges; the interaction of charges; the distance between the charges; the coefficients of the seismicity and the attenuation of the intensity of the waves; the unit charge; blast deck and blasthole charges; phase shifting; effective charge.

  7. Deck Yourself with Flu Protection Song

    Centers for Disease Control (CDC) Podcasts

    2009-12-22

    This song (sung to the tune of Deck the Halls) describes actions you can take to protect yourself and others from the flu. Sing along!  Created: 12/22/2009 by National Center for Preparedness, Detection, and Control of Infectious Diseases (NCPDCID), Division of Global Migration and Quarantine (DGMQ).   Date Released: 12/22/2009.

  8. Seismic Analysis for a Crane System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Lee, Chung Young; Ryu, Jeong Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The operation bridge used for an open-pool type research reactor is a crane system with a working deck for the handling of in-pool parts such as fuels, reactor components and reactor utilization facilities. The operation bridge allows operators to access the top of the reactor in the reactor pool and the fuel storage racks in the service pool. The operation bridge contains an operating platform mounted on a truck travelling on rails. Upright members are mounted on the truck to support the upper structure and two hoist monorails. The operation bridge consists of two hoists, upper girder frames, legs, cables, saddle frames, upper deck frames, lower deck frames, and the ladder. Static and dynamic analyses are performed to evaluate the structural integrity for the operation bridge for the required design loadings. The response spectrum analysis is employed as a dynamic analysis method

  9. Seismic Analysis for a Crane System

    International Nuclear Information System (INIS)

    Kim, Kang Soo; Lee, Chung Young; Ryu, Jeong Soo

    2012-01-01

    The operation bridge used for an open-pool type research reactor is a crane system with a working deck for the handling of in-pool parts such as fuels, reactor components and reactor utilization facilities. The operation bridge allows operators to access the top of the reactor in the reactor pool and the fuel storage racks in the service pool. The operation bridge contains an operating platform mounted on a truck travelling on rails. Upright members are mounted on the truck to support the upper structure and two hoist monorails. The operation bridge consists of two hoists, upper girder frames, legs, cables, saddle frames, upper deck frames, lower deck frames, and the ladder. Static and dynamic analyses are performed to evaluate the structural integrity for the operation bridge for the required design loadings. The response spectrum analysis is employed as a dynamic analysis method

  10. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Carmelo [Politecnico di Milano, Dept. of Architecture, Built environment and Construction engineering (ABC), Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Luzi, Guido [Centre Tecnòlogic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics, Av. Gauss, 7 E-08860 Castelldefels (Barcelona) (Spain)

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  11. Wind effects on long-span bridges: Probabilistic wind data format for buffeting and VIV load assessments

    Science.gov (United States)

    Hoffmann, K.; Srouji, R. G.; Hansen, S. O.

    2017-12-01

    The technology development within the structural design of long-span bridges in Norwegian fjords has created a need for reformulating the calculation format and the physical quantities used to describe the properties of wind and the associated wind-induced effects on bridge decks. Parts of a new probabilistic format describing the incoming, undisturbed wind is presented. It is expected that a fixed probabilistic format will facilitate a more physically consistent and precise description of the wind conditions, which in turn increase the accuracy and considerably reduce uncertainties in wind load assessments. Because the format is probabilistic, a quantification of the level of safety and uncertainty in predicted wind loads is readily accessible. A simple buffeting response calculation demonstrates the use of probabilistic wind data in the assessment of wind loads and responses. Furthermore, vortex-induced fatigue damage is discussed in relation to probabilistic wind turbulence data and response measurements from wind tunnel tests.

  12. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    International Nuclear Information System (INIS)

    Gentile, Carmelo; Luzi, Guido

    2014-01-01

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points

  13. Deterministic and Probabilistic Analysis of NPP Communication Bridge Resistance Due to Extreme Loads

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-12-01

    Full Text Available This paper presents the experiences from the deterministic and probability analysis of the reliability of communication bridge structure resistance due to extreme loads - wind and earthquake. On the example of the steel bridge between two NPP buildings is considered the efficiency of the bracing systems. The advantages and disadvantages of the deterministic and probabilistic analysis of the structure resistance are discussed. The advantages of the utilization the LHS method to analyze the safety and reliability of the structures is presented

  14. Service life assessment of timber highway bridges in USA climate zones

    Science.gov (United States)

    James P. Wacker; Brian K. Brashaw; Thomas G. Williamson; P. David Jones; Matthew S. Smith; Travis K. Hosteng; David L. Strahl; Lola E. Coombe; V.J. Gopu

    2014-01-01

    As engineers begin to estimate life-cycle costs and sustainable design approaches for timber bridges, there is a need for more reliable data about their durability and expected service life. This paper summarizes a comprehensive effort to assess the current condition of more than one hundred timber highway bridge superstructures throughout the United States. This...

  15. INCREASED RELIABILITY OF ELECTRIC BLASTING

    OpenAIRE

    Kashuba, Oleh Ivanovych; Skliarov, L I; Skliarov, A L

    2017-01-01

    The problems of improving reliability of an electric blasting method using electric detonators with nichrome filament bridges. It was revealed that in the calculation of the total resistance of the explosive network it is necessary to increase to 24% of the nominal value

  16. Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair.

    Science.gov (United States)

    Lee, Young-Joo; Kim, Robin E; Suh, Wonho; Park, Kiwon

    2017-04-24

    Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed.

  17. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element...... in the article highlight the potential of using TABS and PCM in a prefabricated concrete deck element....

  18. Lifetime fatigue reliability evaluation of short to medium span bridges under site-specific stochastic truck loading

    OpenAIRE

    Yan, Donghuang; Luo, Yuan; Yuan, Ming; Lu, Naiwei

    2017-01-01

    Bridges are vulnerable to the fatigue damage accumulation caused by traffic loading over the service period. A continuous growth in both the vehicle weight and the traffic volume may cause a safety hazard to existing bridges. This study presented a computational framework for probabilistic modeling of the fatigue damage accumulation of short to medium span bridges under actual traffic loading. Stochastic truck-load models were simulated based on site-specific weigh-in-motion measurements. A r...

  19. Delamination Detection of Reinforced Concrete Decks Using Modal Identification

    Directory of Open Access Journals (Sweden)

    Shutao Xing

    2012-01-01

    Full Text Available This study addressed delamination detection of concrete slabs by analyzing global dynamic responses of structures. Both numerical and experimental studies are presented. In the numerical examples, delaminations with different sizes and locations were introduced into a concrete slab; the effects of presence, sizes, and locations of delaminations on the modal frequencies and mode shapes of the concrete slab under various support conditions were studied. In the experimental study, four concrete deck specimens with different delamination sizes were constructed, and experimental tests were conducted. Traditional peak-picking, frequency domain decomposition, and stochastic subspace identification methods were applied to the modal identification from dynamic response measurements. The modal parameters identified by these three methods correlated well. The changes in modal frequencies, damping ratios, and mode shapes that were extracted from the dynamic measurements were investigated and correlated to the actual delaminations and can indicate presence and severity of delamination. Finite element (FE models of reinforced concrete decks with different delamination sizes and locations were established. The modal parameters computed from the FE models were compared to those obtained from the laboratory specimens, and the FE models were validated. The delamination detection approach was proved to be effective for concrete decks on beams.

  20. Electrical Actuation Technology Bridging

    Science.gov (United States)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  1. Parametric Analyses of Dynamic Characteristic of the Cable-Stayed Pedestrian Bridge

    Directory of Open Access Journals (Sweden)

    Pańtak Marek

    2017-12-01

    Full Text Available The paper presents characteristics of the structural system and results of dynamic field tests and numerical parametric analyses of three-span, two-pylon, cable-stayed pedestrian bridge with steel-concrete composite deck and spans of 25.5 + 60.0 + 25.5 m. The footbridge is characterized by increased dynamic susceptibility of the elements of the suspension system observed during the everyday operation of the structure. The analyses have shown that the high amplitude vibrations of the pylon back-stay cables change the parameters of the structural system and consequently change the value of the natural vibration frequencies of the structure. In the paper, the selection methodology of parameters of the computational model which allows to correctly determine the natural vibration frequencies of the footbridge has been presented.

  2. New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System

    Directory of Open Access Journals (Sweden)

    Jae Kang Lee

    2016-05-01

    Full Text Available This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased.

  3. Identification of moving vehicle forces on bridge structures via moving average Tikhonov regularization

    Science.gov (United States)

    Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin

    2017-08-01

    Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.

  4. STS-27 crew poses for inflight portrait on forward flight deck with football

    Science.gov (United States)

    1988-01-01

    With WILSON NFL football freefloating in front of them, STS-27 astronauts pose on Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck for inflight crew portrait. Crewmembers, wearing blue mission t-shirts, are (left to right) Commander Robert L. Gibson, Mission Specialist (MS) Richard M. Mullane, MS Jerry L. Ross, MS William M. Shepherd, and Pilot Guy S. Gardner. Forward flight deck overhead control panels are visible above crewmembers, commanders and pilots seats in front of them, and forward windows behind them. An auto-set 35mm camera mounted on the aft flight deck was used to take this photo. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami.

  5. Extreme storms, sea level rise, and coastal change: implications for infrastructure reliability in the Gulf of Mexico

    Science.gov (United States)

    Anarde, K.; Kameshwar, S.; Irza, N.; Lorenzo-Trueba, J.; Nittrouer, J. A.; Padgett, J.; Bedient, P. B.

    2016-12-01

    Predicting coastal infrastructure reliability during hurricane events is important for risk-based design and disaster planning, such as delineating viable emergency response routes. Previous research has focused on either infrastructure vulnerability to coastal flooding or the impact of changing sea level and landforms on surge dynamics. Here we investigate the combined impact of sea level, morphology, and coastal flooding on the reliability of highway bridges - the only access points between barrier islands and mainland communities - during future extreme storms. We forward model coastal flooding for static projections of geomorphic change using ADCIRC+SWAN. First-order parameters that are adjusted include sea level and elevation. These are varied for each storm simulation to evaluate relative impact on the reliability of bridges surrounding Freeport, TX. Simulated storms include both synthetic and historical events, which are classified by intensity using the storm's integrated kinetic energy, a metric for surge generation potential. Reliability is estimated through probability of failure - given wave and surge loads - and time inundated. Findings include that: 1) bridge reliability scales inversely with surge height, and 2) sea level rise reduces bridge reliability due to a monotonic increase in surge height. The impact of a shifting landscape on bridge reliability is more complex: barrier island rollback can increase or decrease inundation times for storms of different intensity due to changes in wind-setup and back-barrier bay interactions. Initial storm surge readily inundates the coastal landscape during large intensity storms, however the draining of inland bays following storm passage is significantly impeded by the barrier. From a coastal engineering standpoint, we determine that to protect critical infrastructure, efforts now implemented that nourish low-lying barriers may be enhanced by also armoring back-bay coastlines and elevating bridge approach

  6. Upper Mississippi River System, Environment Management Program, Definite Project Report with Integrated Environmental Assessment (R-8). Bay Island, Missouri Rehabilitation and Enhancement. Pool 22, Mississippi River Miles 311 through 312, Marion County, Missouri

    Science.gov (United States)

    1990-03-01

    work under- taken by the drainage district. The new bridge will have a prefabricated deck set on concrete abutments . The span length will be 42 feet...FaciLities & Sanctuaries (Access Road Bridge) 06.3.C.9 Prefabricated Deck & Wearing Surface I LS 20,000.00 20,000 5,000 06.3.C.0 Structural Concrete 54... abutments with wing walls. The existing bridge abutments will remain in place. Installation of the pump station will involve site preparation using

  7. Modification of Displacement Coefficient Method in Estimation of Target Displacement for Regular Concrete Bridges Based on ASCE 41-06 Standard

    Directory of Open Access Journals (Sweden)

    Seyed Bahram Beheshti-Aval

    2015-06-01

    Full Text Available Displacement Coefficient Method (DCM stipulated in the ASCE 41-06 standard is becoming the preferred method for seismic rehabilitation of buildings in many high-seismic-hazard countries. Applications of the method for non-building constructions such as bridges are beyond the scope of this standard. Thus its application to this kind of structure should be approached with care. Target displacement has reasonable accuracy for buildings with strong columns and weak beams, where there is the development of plastic hinges. Due to high stiffness and strength of the deck relative to the piers in most bridges, this mechanism does not occur, and it is necessary to evaluate the accuracy of DCM for such structures. In this research, an attempt is made to evaluate the credibility of DCM in the ASCE/SEI 41-06 standard for estimating target drifts in concrete regular bridges under strong ground motions. To apply the extension of the method to bridge structures, the definition of new correction factor CB, which should be multiplied to previous coefficients, is required. This novel coefficient can improve the accuracy of the mentioned method in accessing seismic displacement demands. The coefficient is presented for soil types A to D based on NEHRP soil classification. The validity of the modified DCM is examined for several bridges with use of nonlinear dynamic analysis. Good correlation is found between both procedures.

  8. Structural Loading of Cross Deck Connections for Trimaran Vessels

    National Research Council Canada - National Science Library

    Rhoads, Jason

    2004-01-01

    ...: longitudinal bending, transverse bending, torsional bending, spreading and squeezing of hulls, inner and outer hull slam pressures, wet deck slam pressures, loading from ship's motions, and whipping of slender hulls...

  9. Construction simulation analysis of 120m continuous rigid frame bridge based on Midas Civil

    Science.gov (United States)

    Shi, Jing-xian; Ran, Zhi-hong

    2018-03-01

    In this paper, a three-dimensional finite element model of a continuous rigid frame bridge with a main span of 120m is established by the simulation and analysis of Midas Civil software. The deflection and stress of the main beam in each construction stage of continuous beam bridge are simulated and analyzed, which provides a reliable technical guarantee for the safe construction of the bridge.

  10. Bridge continuous deformation measurement technology based on fiber optic gyro

    Science.gov (United States)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  11. Condition assessment of timber bridges. 2, Evaluation of several stress-wave tools

    Science.gov (United States)

    Brian K. Brashaw; Robert J. Vatalaro; James P. Wacker; Robert J. Ross

    2005-01-01

    This study was conducted to evaluate the accuracy and reliability of several stress-wave devices widely used for locating deteriorated areas in timber bridge members. Bridge components containing different levels of natural decay were tested using various devices. The specimens were then sawn (along their length) into slabs to expose their interior condition. The...

  12. Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data

    Directory of Open Access Journals (Sweden)

    Widi Nugraha

    2016-02-01

    Full Text Available Load and Resistance Factored Design (LRFD method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM vehicular loads measurement in Northern Java highway, Cikampek - Pamanukan, West Java (2011, used in as statistical loads variable. A 25 m simple span bridge with reinforced concrete T-girder is used as a model for structural analysis due to WIM measured and nominal vehicular load based on RSNI T-02-2005, with applied bending moment of girder as the output. The distribution fitting result of applied bending moment due to WIM measured vehicular loads is lognormal. The maximum bending moment due to RSNI T-02-2005 nominal vehicular load is 842.45 kN-m and has probability of exceedance of 5x10-5. It can be concluded, for this study, that the bridge designed using RSNI T-02-2005 is safely designed, since it has reliability index, β of 5.02, higher than target reliability, β ranging from 3.50 or 3.72.

  13. Load test of the 277W Building high bay roof deck and support structure

    International Nuclear Information System (INIS)

    McCoy, R.M.

    1994-01-01

    The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ''No Roof Access'' signs can be changed to ''Roof Access Restricted'' signs

  14. Dynamic axle and wheel loads identification: laboratory studies

    Science.gov (United States)

    Zhu, X. Q.; Law, S. S.

    2003-12-01

    Two methods have been reported by Zhu and Law to identify moving loads on the top of a bridge deck. One is based on the exact solution (ESM) and the other is based on the finite element formulation (FEM). Simulation studies on the effect of different influencing factors have been reported previously. This paper comparatively studies the performances of these two methods with experimental measurements obtained from a bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model car moves across the bridge deck along different paths. The moving loads on the bridge deck are identified from the measured strains using these two methods, and the responses are reconstructed from the identified loads for comparison with the measured responses to verify the performances of these methods. Studies on the identification accuracy due to the effect of the number of vibration mode used, the number of measuring points and eccentricities of travelling paths are performed. Results show that the ESM could identify the moving loads individually or as axle loads when they are travelling at an eccentricity with the sensors located close to the travelling path of the forces. And the accuracy of the FEM is dependent on the amount of measured information used in the identification.

  15. 49 CFR 214.519 - Floors, decks, stairs, and ladders of on-track roadway maintenance machines.

    Science.gov (United States)

    2010-10-01

    ... roadway maintenance machines. 214.519 Section 214.519 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.519 Floors, decks, stairs, and ladders of on-track roadway maintenance machines. Floors, decks, stairs, and ladders of on-track roadway...

  16. Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship

    Science.gov (United States)

    Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.

    2018-03-01

    Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.

  17. Analysis and modelling composite timber-concrete systems: Design of bridge structure according to EN

    Directory of Open Access Journals (Sweden)

    Manojlović Dragan

    2016-01-01

    Full Text Available Timber-concrete composite structures are already applied more than 80 years in engineering practice, went trought the intuitive problem solution to the fully prefabricated hybride assemblies for dry building. The development path of timber-concrete composites was always followed by extensive theoretical and experimental research, whose results were successfully implemented in practice, i.e. on the market, but till presence didn't result in modern designer's code. In expectation of new European codes for timber-concrete composites, the objective of the paper is to provide a comprehensive review of available standards provisions and recent conclusions from literature. The key issues for practical design are highlighted and ilustrated on the example of glulam composite arch bridge structure with concrete deck, according the Eurocodes.

  18. EVALUASI EMERGENCY RESPONS PLAN PADA KAPAL 42M CREW BOAT BERDASARKAN IMO INTERIM GUIDILINES

    Directory of Open Access Journals (Sweden)

    Mochamad Luqman Ashari

    2013-10-01

    Full Text Available Emergency situations that have tendency or potential harm can be happened any time and any where and carry some big damaging impacts to property damages, mental disturbances, injured and died victims. In shipping, emergencies can be happened in both at anchor or while doing loading and unloading activities at the port. The type of equipments used in emergency situations set out in SOLAS Chapter III (Life Saving Appliance and the guidelines for evacuation analysis on passenger ships refer to the IMO Guidelines Interm MSC/Circ.909. This study aimed to determine the muster station and evacuation time on the ship 42 M crewboats with a capacity of 101passengers. This ship consists of three parts of decks, these are lower part, main deck and bridge deck. The results showed that the placement of muster station is on the bridge deck with required wide 35.35 m2. Evacuation time need by the all passengers to reach the muster station on the bridge deck is 51.59 minutes, and this is in accordance with standard evacuation time (not more than 60 minutes.

  19. Seismic Vulnerability Evaluation of a Three-Span Continuous Beam Railway Bridge

    Directory of Open Access Journals (Sweden)

    Chongwen Jiang

    2017-01-01

    Full Text Available In order to evaluate the seismic vulnerability of a railway bridge, a nonlinear finite element model of typical three-span continuous beam bridge on the Sichuan-Tibet railway in China was built. It further aimed at performing a probabilistic seismic demand analysis based on the seismic performance of the above-mentioned bridge. Firstly, the uncertainties of bridge parameters were analyzed while a set of finite element model samples were formulated with Latin hypercube sampling method. Secondly, under Wenchuan earthquake ground motions, an incremental dynamic method (IDA analysis was performed, and the seismic peak responses of bridge components were recorded. Thirdly, the probabilistic seismic demand model for the bridge principal components under the prerequisite of two different kinds of bearing, with and without seismic isolation, was generated. Finally, comparison was drawn to further ascertain the effect of two different kinds of bearings on the fragility components. Based on the reliability theory, results were presented concerning the seismic fragility curves.

  20. MR damping system on Dongting Lake cable-stayed bridge

    Science.gov (United States)

    Chen, Z. Q.; Wang, X. Y.; Ko, J. M.; Ni, Y. Q.; Spencer, Billie F., Jr.; Yang, G.

    2003-08-01

    The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. After this bridge was completed in 1999, its cables were observed to be sensitive to rain-wind-induced vibration, especially under adverse weather conditions of both rain and wind. To investigate the possibility of using MR damping systems to reduce cable vibration, a joint project between the Central South University of China and the Hong Kong Polytechnic University was conducted. Based on the promising research results, the bridge authority decided to install MR damping systems on the longest 156 stay cables. The installation started in July 2001 and finished in June 2002, making it the world's first application of MR dampers on cable-stayed bridge to suppress the rain-wind-induced cable vibration. As a visible and permanent aspect of bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes the implementation of MR damping systems for cable vibration reduction.

  1. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  2. A Study of the Bolt Connection System for a Concrete Barrier of a Modular Bridge

    Directory of Open Access Journals (Sweden)

    Doo-Yong Cho

    2018-04-01

    Full Text Available Modular technology has been recently studied to reduce the construction periods in the field of bridge construction. However, this method is restricted to the pier, girder, and deck, which are the main members of a bridge, and incidental facilities such as concrete barriers have been rarely studied. Thus, in this study, the connection system of a concrete barrier for modular bridges was developed, and a static loading experiment was performed to verify the structural capacity of the proposed system. The variables of the experiment were the vertical and horizontal bolt connections and the construction method. The barrier and plate were fabricated using match casting methods in which nuts were first inserted into the plates rather than anchor bolts using the conservative method. Moreover, a comparison with the conventional in situ barrier was also performed. The experiments were conducted according to the AASHTO LRFD standard. Consequently, the specimen using the vertical bolt connection had a structural capacity that was equal to 85% of that of the conventional specimen and exhibited similar crack patterns compared with the conventional specimen. In the case of the horizontal bolt connection, the separation in the connection area occurred with the application of the initial load and this specimen exhibited a poor performance because of the increase in the separation distance with the application of the maximum load.

  3. High-speed railway bridge dynamic measurement based on GB-InSAR technology

    Science.gov (United States)

    Liu, Miao; Ding, Ke-liang; Liu, Xianglei; Song, Zichao

    2015-12-01

    It is an important task to evaluate the safety during the life of bridges using the corresponding vibration parameters. With the advantages of non-contact and high accuracy, the new remote measurement technology of GB-InSAR is suitable to make dynamic measurement for bridges to acquire the vibration parameters. Three key technologies, including stepped frequency-continuous wave technique, synthetic aperture radar and interferometric measurement technique, are introduced in this paper. The GB-InSAR is applied for a high-speed railway bridge to measure of dynamic characteristics with the train passing which can be used to analyze the safety of the monitored bridge. The test results shown that it is an reliable non-contact technique for GB-InSAR to acquire the dynamic vibration parameter for the high-speed railway bridges.

  4. Construction Simulation Analysis of 60m-span Concrete Filled Steel Tube arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Ding, Qing Hua

    2018-06-01

    The construction process of the CFST arch bridge is complicated. The construction process not only affects the structural stress in the installation, but also determines the form a bridge and internal force of the bridge. In this paper, a 60m span concrete filled steel tube tied arch bridge is taken as the background, and a three-dimensional finite element simulation model is established by using the MIDAS/Civil bridge structure analysis software. The elevation of the main arch ring, the beam stress, the forces in hanger rods and the modal frequency of the main arch during the construction stage are calculated, and the construction process is simulated and analyzed. Effectively and reasonably guide the construction and ensure that the line and force conditions of the completed bridge meet the design requirements and provides a reliable technical guarantee for the safe construction of the bridge.

  5. Skateboard deck materials selection

    Science.gov (United States)

    Liu, Haoyu; Coote, Tasha; Aiolos; Charlie

    2018-03-01

    The goal of this project was to identify the ideal material for a skateboard deck under 200 in price, minimizing the weight. The material must have a fracture toughness of 5 MPa/m2, have a minimum lifetime of 10, 000 cycles and must not experience brittle fracture. Both single material and hybrid solutions were explored. When further selecting to minimize weight, woods were found to be the best material. Titanium alloy-wood composites were explored to determine the optimal percentage composition of each material.A sandwich panel hybrid of 50% titanium alloy and 50% wood (Ti-Wood) was found to be the optimum material, performing better than the currently used plywood.

  6. A probabilistic computational framework for bridge network optimal maintenance scheduling

    International Nuclear Information System (INIS)

    Bocchini, Paolo; Frangopol, Dan M.

    2011-01-01

    This paper presents a probabilistic computational framework for the Pareto optimization of the preventive maintenance applications to bridges of a highway transportation network. The bridge characteristics are represented by their uncertain reliability index profiles. The in/out of service states of the bridges are simulated taking into account their correlation structure. Multi-objective Genetic Algorithms have been chosen as numerical tool for the solution of the optimization problem. The design variables of the optimization are the preventive maintenance schedules of all the bridges of the network. The two conflicting objectives are the minimization of the total present maintenance cost and the maximization of the network performance indicator. The final result is the Pareto front of optimal solutions among which the managers should chose, depending on engineering and economical factors. A numerical example illustrates the application of the proposed approach.

  7. Reliable software for unreliable hardware a cross layer perspective

    CERN Document Server

    Rehman, Semeen; Henkel, Jörg

    2016-01-01

    This book describes novel software concepts to increase reliability under user-defined constraints. The authors’ approach bridges, for the first time, the reliability gap between hardware and software. Readers will learn how to achieve increased soft error resilience on unreliable hardware, while exploiting the inherent error masking characteristics and error (stemming from soft errors, aging, and process variations) mitigations potential at different software layers. · Provides a comprehensive overview of reliability modeling and optimization techniques at different hardware and software levels; · Describes novel optimization techniques for software cross-layer reliability, targeting unreliable hardware.

  8. 47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...

  9. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  10. Life-Cycle Inventory Analysis of Manufacturing Redwood Decking

    Science.gov (United States)

    Richard D. Bergman; Han-Sup Han; Elaine Oneil; Ivan L. Eastin

    2012-01-01

    Green building has become increasingly important. Therefore, consumers and builders often take into account the environmental attributes of a building material. This study determined the environmental attributes associated with manufacturing 38-mm × 138-mm (nominal 2 × 6) redwood decking in northern California using the life-cycle inventory method. Primary data...

  11. Optimum design of large span concrete filled steel tubular arch bridge based on static, stability and modal analysis

    Institute of Scientific and Technical Information of China (English)

    赵长军; 胡隽; 徐兴

    2002-01-01

    A three-dimensional finite element model was established for a large span concrete filled steel tubular (CFST) arch bridge which is currently under construction. The arch rib, the spandrel columns, the prestressed concrete box-beam, the cast-in-situ concrete plate of bridge deck, the steel box-beam and the crossbeams connecting the two pieces of arch ribs, were modeled by three-dimensional Timoshenko beam elements (3DTBE). The suspenders were modeled by three-dimensional cable elements (3DCE). Both geometric nonlinearity and prestress effect could be included in each kind of element. At the same time a second finite element model with the same geometric and material properties excepted for the sectional dimension of arch rib was set up. Static dynamic analyses were performed to determine the corresponding characteristics of the structure. The results showed that the arch rib's axial rigidity could be determined by static analysis. The stability and vibration of this system could be separated into in-plane modes, out-of-plane modes and coupled modes. The in-plane stability and dynamic characteristics are determined by the arch rib's vertical stiffness and that of out-of-plane is determined by the crossbeams' stiffness and arch rib's lateral stiffness mainly. The in-plane stiffness is much greater than that of out-of-plane for this kind of bridge . The effect of geometric nonlinearity and prestress effect on bridge behavior is insignificant.

  12. Human engineering analysis for the high speed civil transport flight deck

    Science.gov (United States)

    Regal, David M.; Alter, Keith W.

    1993-01-01

    The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.

  13. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  14. A Compromise Programming Model for Highway Maintenance Resources Allocation Problem

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2012-01-01

    Full Text Available This paper formulates a bilevel compromise programming model for allocating resources between pavement and bridge deck maintenances. The first level of the model aims to solve the resource allocation problems for pavement management and bridge deck maintenance, without considering resource sharing between them. At the second level, the model uses the results from the first step as an input and generates the final solution to the resource-sharing problem. To solve the model, the paper applies genetic algorithms to search for the optimal solution. We use a combination of two digits to represent different maintenance types. Results of numerical examples show that the conditions of both pavements and bridge decks are improved significantly by applying compromise programming, rather than conventional methods. Resources are also utilized more efficiently when the proposed method is applied.

  15. Measurement of the Dynamic Displacements of Railway Bridges Using Video Technology

    Directory of Open Access Journals (Sweden)

    Ribeiro Diogo

    2015-01-01

    Full Text Available This article describes the development of a non-contact dynamic displacement measurement system for railway bridges based on video technology. The system, consisting of a high speed video camera, an optical lens, lighting lamps and a precision target, can perform measurements with high precision for distances from the camera to the target up to 25 m, with acquisition frame rates ranging from 64 fps to 500 fps, and be articulated with other measurement systems, which promotes its integration in structural health monitoring systems. The system’s performance was evaluated based on two tests, one in the laboratory and other on the field. The laboratory test evaluated the performance of the system in measuring the displacement of a steel beam, subjected to a point load applied dynamically, for distances from the camera to the target between 3 m and 15 m. The field test allowed evaluating the system’s performance in the dynamic measurement of the displacement of a point on the deck of a railway bridge, induced by passing trains at speeds between 160 km/h and 180 km/h, for distances from the camera to the target up to 25 m. The results of both tests show a very good agreement between the displacement measurement obtained with the video system and with a LVDT.

  16. Optimal, Generic Planning of Maintenance and Inspection of Steel Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, Michael Havbro

    2002-01-01

    Fatigue damage is an important deterioration mechanism for steel bridges. This paper describes a simplified and generic approach for reliability and risk based inspection planning of fatigue sensitive structural details. Fatigue sensitive details are categorized according to their loading charact...

  17. Evaluating shallow-flow rock structures as scour countermeasures at bridges.

    Science.gov (United States)

    2009-12-01

    A study to determine whether or not shallow-flow rock structures could reliably be used at bridge abutments in place of riprap. Research was conducted in a two-phase effort beginning with numerical modeling and ending with field verification of model...

  18. Quality and reliability management and its applications

    CERN Document Server

    2016-01-01

    Integrating development processes, policies, and reliability predictions from the beginning of the product development lifecycle to ensure high levels of product performance and safety, this book helps companies overcome the challenges posed by increasingly complex systems in today’s competitive marketplace.   Examining both research on and practical aspects of product quality and reliability management with an emphasis on applications, the book features contributions written by active researchers and/or experienced practitioners in the field, so as to effectively bridge the gap between theory and practice and address new research challenges in reliability and quality management in practice.    Postgraduates, researchers and practitioners in the areas of reliability engineering and management, amongst others, will find the book to offer a state-of-the-art survey of quality and reliability management and practices.

  19. Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data

    OpenAIRE

    Widi Nugraha; Indra Djati Sidi

    2016-01-01

    Load and Resistance Factored Design (LRFD) method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM) vehicular loads measurement i...

  20. Pilot opinions on high level flight deck automation issues: Toward the development of a design philosophy

    Science.gov (United States)

    Tenney, Yvette J.; Rogers, William H.; Pew, Richard W.

    1995-01-01

    There has been much concern in recent years about the rapid increase in automation on commercial flight decks. The survey was composed of three major sections. The first section asked pilots to rate different automation components that exist on the latest commercial aircraft regarding their obtrusiveness and the attention and effort required in using them. The second section addressed general 'automation philosophy' issues. The third section focused on issues related to levels and amount of automation. The results indicate that pilots of advanced aircraft like their automation, use it, and would welcome more automation. However, they also believe that automation has many disadvantages, especially fully autonomous automation. They want their automation to be simple and reliable and to produce predictable results. The biggest needs for higher levels of automation were in pre-flight, communication, systems management, and task management functions, planning as well as response tasks, and high workload situations. There is an irony and a challenge in the implications of these findings. On the one hand pilots would like new automation to be simple and reliable, but they need it to support the most complex part of the job--managing and planning tasks in high workload situations.

  1. Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system

    International Nuclear Information System (INIS)

    Lai, Chyh-Ming; Yeh, Wei-Chang

    2016-01-01

    The redundancy allocation problem involves configuring an optimal system structure with high reliability and low cost, either by alternating the elements with more reliable elements and/or by forming them redundantly. The multi-state bridge system is a special redundancy allocation problem and is commonly used in various engineering systems for load balancing and control. Traditional methods for redundancy allocation problem cannot solve multi-state bridge systems efficiently because it is impossible to transfer and reduce a multi-state bridge system to series and parallel combinations. Hence, a swarm-based approach called two-stage simplified swarm optimization is proposed in this work to effectively and efficiently solve the redundancy allocation problem in a multi-state bridge system. For validating the proposed method, two experiments are implemented. The computational results indicate the advantages of the proposed method in terms of solution quality and computational efficiency. - Highlights: • Propose two-stage SSO (SSO_T_S) to deal with RAP in multi-state bridge system. • Dynamic upper bound enhances the efficiency of searching near-optimal solution. • Vector-update stages reduces the problem dimensions. • Statistical results indicate SSO_T_S is robust both in solution quality and runtime.

  2. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  3. Comparison of radiological and morphologic assessments of myocardial bridges.

    Science.gov (United States)

    Ercakmak, Burcu; Bulut, Elif; Hayran, Mutlu; Kaymaz, Figen; Bilgin, Selma; Hazirolan, Tuncay; Bayramoglu, Alp; Erbil, Mine

    2015-09-01

    In this study we aimed to compare the findings of coronary dual-source computed tomography angiography of myocardial bridges with cadaveric dissections. Forty-one isolated, non-damaged fresh sheep hearts were used in this study. Myocardial bridges of the anterior interventricular branch of the left coronary artery were demonstrated and analyzed by a coronary dual-source computed tomography angiography. Dissections along the left anterior interventricular branch of the left coronary artery were performed by using Zeiss OPMI pico microscope and the length of the bridges were measured. The depths of the myocardial bridges were measured from the stained sections by using the light microscope (Leica DM 6000B). MBs were found in all 41 hearts (100%) during dissections. Dual-source computed tomography angiography successfully detected 87.8% (36 of the 41 hearts) of the myocardial bridges measured on left anterior interventricular branch of left coronary artery. The lengths of the myocardial bridges were found 5-40 and 8-50 mm with dissection and dual-source computed tomography angiography, respectively. And the depths were found 0.7-4.5 mm by dual-source computed tomography angiography and 0.745-4.632 mm morphologically. Comparison of the mean values of the lengths showed statistically significantly higher values (22.0 ± 8.5, 17.7 ± 7.7 mm, p = 0.003) for the dissections. Radiological assessment also effectively discriminated complete bridges from incomplete ones. Our study showed that coronary computed tomography angiography is reliable in evaluating the presence and depth of myocardial bridges.

  4. 47 CFR 80.331 - Bridge-to-bridge communication procedure.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge communication procedure. 80..., Alarm, Urgency and Safety Procedures § 80.331 Bridge-to-bridge communication procedure. (a) Vessels subject to the Bridge-to-Bridge Act transmitting on the designated navigational frequency must conduct...

  5. System reliability of concrete structures subjected to chloride ingress

    DEFF Research Database (Denmark)

    Leira, B.J.; Thöns, Sebastian

    2017-01-01

    attack on the entire bridge, a system model with 90 components is next introduced. This model is employed in order to perform reliability updating based on observations at a number of sites along the bridge. An Enhanced Monte Carlo simulation method (EMC) is applied for this purpose. It is shown...... that application of this simulation method reduces computation times significantly as compared to crude Monte Carlo methods....... are obtained based on measurements from the Gimsøystraumen bridge in Norway. These probability distributions are subsequently employed as input to a prediction model for chloride concentration at the steel reinforcement for a single but arbitrary position along the reinforcement. In order to address chloride...

  6. Comparative analysis of design codes for timber bridges in Canada, the United States, and Europe

    Science.gov (United States)

    James Wacker; James (Scott) Groenier

    2010-01-01

    The United States recently completed its transition from the allowable stress design code to the load and resistance factor design (LRFD) reliability-based code for the design of most highway bridges. For an international perspective on the LRFD-based bridge codes, a comparative analysis is presented: a study addressed national codes of the United States, Canada, and...

  7. Effective way to reconstruct arch bridges using concrete walls and transverse strands

    Science.gov (United States)

    Klusáček, Ladislav; Pěkník, Robin; Nečas, Radim

    2017-09-01

    There are more than 500 masonry arch bridges in the Czech Road system and about 2500 in the Czech Railway system. Many of them are cracked in the longitudinal (span) direction. The barrel vaults are separated by the cracks into partial masonry arches without load bearing connection in transverse direction. These constructions are about 150 years old and they are also too narrow for the current road system. This paper presents a strengthening method for masonry arch bridges using transverse post-tensioning. This method is very useful not only for strengthening in the transverse direction, but widening of masonry arches can be taken as secondary effect especially in case of road bridges. Several bridges were successfully repaired with the use of this system which seems to be effective and reliable.

  8. Statistical reliability analyses of two wood plastic composite extrusion processes

    International Nuclear Information System (INIS)

    Crookston, Kevin A.; Mark Young, Timothy; Harper, David; Guess, Frank M.

    2011-01-01

    Estimates of the reliability of wood plastic composites (WPC) are explored for two industrial extrusion lines. The goal of the paper is to use parametric and non-parametric analyses to examine potential differences in the WPC metrics of reliability for the two extrusion lines that may be helpful for use by the practitioner. A parametric analysis of the extrusion lines reveals some similarities and disparities in the best models; however, a non-parametric analysis reveals unique and insightful differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) and modulus of rupture (MOR) of the WPC industrial data. The distinctive non-parametric comparisons indicate the source of the differences in strength between the 10.2% and 48.0% fractiles [3,183-3,517 MPa] for MOE and for MOR between the 2.0% and 95.1% fractiles [18.9-25.7 MPa]. Distribution fitting as related to selection of the proper statistical methods is discussed with relevance to estimating the reliability of WPC. The ability to detect statistical differences in the product reliability of WPC between extrusion processes may benefit WPC producers in improving product reliability and safety of this widely used house-decking product. The approach can be applied to many other safety and complex system lifetime comparisons.

  9. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    Science.gov (United States)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  10. STS-36 Commander Creighton listens to music on OV-104's forward flight deck

    Science.gov (United States)

    1990-01-01

    STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.

  11. 47 CFR 80.1001 - Applicability.

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1001 Applicability. The Bridge-to-Bridge Act and the regulations of this part apply to the following vessels in the... the deck excluding sheer, while navigating; and (d) Every dredge and floating plant engaged, in or...

  12. Elevation Extraction and Deformation Monitoring by Multitemporal InSAR of Lupu Bridge in Shanghai

    Directory of Open Access Journals (Sweden)

    Jingwen Zhao

    2017-08-01

    confirms that the bridge exhibits some symmetric progressive deformation, at 4–7 mm per year on both arches and 4–9 mm per year on the bridge deck during the SAR image acquisition period.

  13. Post learning sleep improves cognitive-emotional decision-making: evidence for a 'deck B sleep effect' in the Iowa Gambling Task.

    Science.gov (United States)

    Seeley, Corrine J; Beninger, Richard J; Smith, Carlyle T

    2014-01-01

    The Iowa Gambling Task (IGT) is widely used to assess real life decision-making impairment in a wide variety of clinical populations. Our study evaluated how IGT learning occurs across two sessions, and whether a period of intervening sleep between sessions can enhance learning. Furthermore, we investigate whether pre-sleep learning is necessary for this improvement. A 200-trial version of the IGT was administered at two sessions separated by wake, sleep or sleep and wake (time-of-day control). Participants were categorized as learners and non-learners based on initial performance in session one. In session one, participants initially preferred the high-frequency reward decks B and D, however, a subset of learners decreased choice from negative expected value 'bad' deck B and increased choices towards with a positive expected value 'good' decks (decks C and D). The learners who had a period of sleep (sleep and sleep/wake control conditions) between sessions showed significantly larger reduction in choices from deck B and increase in choices from good decks compared to learners that had intervening wake. Our results are the first to show that post-learning sleep can improve performance on a complex decision-making task such as the IGT. These results provide new insights into IGT learning and have important implications for understanding the neural mechanisms of "sleeping on" a decision.

  14. Post learning sleep improves cognitive-emotional decision-making: evidence for a 'deck B sleep effect' in the Iowa Gambling Task.

    Directory of Open Access Journals (Sweden)

    Corrine J Seeley

    Full Text Available The Iowa Gambling Task (IGT is widely used to assess real life decision-making impairment in a wide variety of clinical populations. Our study evaluated how IGT learning occurs across two sessions, and whether a period of intervening sleep between sessions can enhance learning. Furthermore, we investigate whether pre-sleep learning is necessary for this improvement. A 200-trial version of the IGT was administered at two sessions separated by wake, sleep or sleep and wake (time-of-day control. Participants were categorized as learners and non-learners based on initial performance in session one. In session one, participants initially preferred the high-frequency reward decks B and D, however, a subset of learners decreased choice from negative expected value 'bad' deck B and increased choices towards with a positive expected value 'good' decks (decks C and D. The learners who had a period of sleep (sleep and sleep/wake control conditions between sessions showed significantly larger reduction in choices from deck B and increase in choices from good decks compared to learners that had intervening wake. Our results are the first to show that post-learning sleep can improve performance on a complex decision-making task such as the IGT. These results provide new insights into IGT learning and have important implications for understanding the neural mechanisms of "sleeping on" a decision.

  15. 46 CFR 179.350 - Openings in the side of a vessel below the bulkhead or weather deck.

    Science.gov (United States)

    2010-10-01

    ... whether the port light is or is not capable of being opened. (c) Except for engine exhausts, each inlet or... deck. (a) On a vessel operating on exposed or partially protected waters, an opening port light is not permitted below the weather deck unless the sill of the port light is at least 760 millimeters (30 inches...

  16. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    Science.gov (United States)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  17. Probabilistic Model for Fatigue Crack Growth in Welded Bridge Details

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Yalamas, Thierry

    2013-01-01

    In the present paper a probabilistic model for fatigue crack growth in welded steel details in road bridges is presented. The probabilistic model takes the influence of bending stresses in the joints into account. The bending stresses can either be introduced by e.g. misalignment or redistribution...... of stresses in the structure. The fatigue stress ranges are estimated from traffic measurements and a generic bridge model. Based on the probabilistic models for the resistance and load the reliability is estimated for a typical welded steel detail. The results show that large misalignments in the joints can...

  18. Overlapping reliable control for a cable-stayed bridge benchmark

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Paulet-Crainiceanu, F.; Rodellar, J.; Rossell, J. M.

    2005-01-01

    Roč. 13, č. 4 (2005), s. 663-669 ISSN 1063-6536 R&D Projects: GA AV ČR IAA2075304 Institutional research plan: CEZ:AV0Z10750506 Keywords : decentralized control * reliable control * overlapping Subject RIV: BC - Control Systems Theory Impact factor: 1.027, year: 2005

  19. NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II

    Science.gov (United States)

    2015-07-01

    Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...

  20. Mechanical Behaviour and Durability of FRP-to-steel Adhesively-bonded Joints

    NARCIS (Netherlands)

    Jiang, X.

    2013-01-01

    During the last two decades, fiber-reinforced polymer (FRP) bridge decks have been increasingly used as a competitive alternative for wood, concrete and orthotropic steel decks, due to their various advantages: light-weight, good corrosion resistance, low maintenance cost and rapid installation for

  1. The effect of floating deck structures on underwater radiated noise

    NARCIS (Netherlands)

    Bosschaart, C.; Jansen, H.W.; Jong, C.A.F. de; Basten, T.

    2017-01-01

    A concept for underwater machinery noise mitigation of future civil and military ships is the application of a common deck structure, supporting multiple machines, which is installed on resilient mounts on the ship's foundation structure. TNO is addressing the availability and testing of tools to be

  2. Investigation of Concrete Electrical Resistivity As a Performance Based Test

    OpenAIRE

    Malakooti, Amir

    2017-01-01

    The purpose of this research project was to identify the extent that concrete resistivity measurements (bulk and/or surface) can be used as a performance based lab test to improve the quality of concrete in Utah bridge decks. By allowing UDOT to specify a required resistivity, concrete bridge deck quality will increase and future maintenance costs will decrease. This research consisted of two phases: the field phase and the lab phase. In the field phase, concrete samples were gathered from...

  3. Myocardial Bridge

    Science.gov (United States)

    ... Center > Myocardial Bridge Menu Topics Topics FAQs Myocardial Bridge En español Your heart is made of muscle, ... surface of the heart. What is a myocardial bridge? A myocardial bridge is a band of heart ...

  4. Flight Deck of the Future: Virtual Windows and e-textile iGear

    Data.gov (United States)

    National Aeronautics and Space Administration — The Flight Deck of the Future (F.F) will integrate interdisciplinary talent to design innovative, integrated human interfaces for the next generation of human...

  5. An alternative randomized response model using two deck of cards: a rejoinder

    Directory of Open Access Journals (Sweden)

    Raghunath Arnab

    2014-10-01

    Full Text Available The Randomized response (RR technique with two decks of cards proposed by Odumade and Singh (2009 can always be made more efficient than the RR techniques proposed by Warner (1965, Mangat and Singh (1990, and Mangat (1994 by adjusting the proportion of cards in the decks. Abdelfatah et al. (2011 modified Odumade and Singh (2009 RR technique and claimed that their method can be more efficient than the Warner (1965 model. In this paper it is shown that such claim is not valid and the RR technique proposed by Abdelfatah et al. (2011 is in fact less efficient than the Warner (1965 technique at equal protection of respondents. Such finding are recently shown by Giordano and Perri (2011.

  6. A Double-Deck Elevator Group Supervisory Control System with Destination Floor Guidance System Using Genetic Network Programming

    Science.gov (United States)

    Yu, Lu; Zhou, Jin; Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Markon, Sandor

    The Elevator Group Supervisory Control Systems (EGSCS) are the control systems that systematically manage three or more elevators in order to efficiently transport the passengers in buildings. Double-deck elevators, where two elevators are connected with each other, serve passengers at two consecutive floors simultaneously. Double-deck Elevator systems (DDES) become more complex in their behavior than conventional single-deck elevator systems (SDES). Recently, Artificial Intelligence (AI) technology has been used in such complex systems. Genetic Network Programming (GNP), a graph-based evolutionary method, has been applied to EGSCS and its advantages are shown in some papers. GNP can obtain the strategy of a new hall call assignment to the optimal elevator when it performs crossover and mutation operations to judgment nodes and processing nodes. Meanwhile, Destination Floor Guidance System (DFGS) is installed in DDES, so that passengers can also input their destinations at elevator halls. In this paper, we have applied GNP to DDES and compared DFGS with normal systems. The waiting time and traveling time of DFGS are all improved because of getting more information from DFGS. The simulations showed the effectiveness of the double-deck elevators with DFGS in different building traffics.

  7. Mechanical behaviour of adhesive joint under tensile and shear loading

    NARCIS (Netherlands)

    Jiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2013-01-01

    Due to various advantages of Fibre-Reinforced Polymer (FRP) decks, the FRP to steel composite bridge system is being increasingly used in new bridge structures as well as rehabilitation projects for old bridges. This paper focuses on the mechanical behaviours and failure modes of the

  8. Load test of the 272E Building high bay roof deck and support structure

    International Nuclear Information System (INIS)

    McCoy, R.M.

    1994-01-01

    The 272E Building high bay roof area was load tested according to the approved load-test procedure. The 272E Building is located in the 200 East Area of the Hanford Site and has the following characteristics: Roof deck -- wood decking supported by 4 x 14 timber purlins; Roof membrane -- tar and gravel; Roof slope -- flat (<10 deg); and Roof elevation -- maximum height of about 63 ft. The 272 Building was visited in August 1992 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determine to be the best way to qualify the roof. The pre-test briefing consisted of filling out the pre-test checklist, discussing proper lifting techniques, reviewing the fall-protection plan, reviewing the job hazards analysis, and reviewing the robot travel path. The load-test results consist of visual observations and the test engineer's conclusions. Visual observations found no adverse conditions such as large deflections or permanent deformations. No deflection measurements were recorded because the tar and gravel on roof get displaced by the robot tracks; the result is large variations in deflection measurements. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ''No Roof Access'' signs can be changed to ''Roof Access Restricted'' signs

  9. Multi-Hazard Assessment of Scour Damaged Bridges with UAS-Based Measurements

    Science.gov (United States)

    Özcan, O.; Ozcan, O.

    2017-12-01

    Flood and stream induced scour occurring in bridge piers constructed on rivers is one of the mostly observed failure reasons in bridges. Scour induced failure risk in bridges and determination of the alterations in bridge safety under seismic effects has the ultimate importance. Thus, for the determination of bridge safety under the scour effects, the scour amount under bridge piers should be designated realistically and should be tracked and updated continuously. Hereby, the scour induced failures in bridge foundation systems will be prevented and bridge substructure design will be conducted safely. In this study, in order to measure the amount of scour in bridge load bearing system (pile foundations and pile abutments) and to attain very high definition 3 dimensional models of river flood plain for the flood analysis, unmanned aircraft system (UAS) based measurement methods were implemented. UAS based measurement systems provide new and practical approach and bring high precision and reliable solutions considering recent measurement systems. For this purpose, the reinforced concrete (RC) bridge that is located on Antalya Boğaçayı River, Turkey and that failed in 2003 due to flood-induced scour was selected as the case study. The amount of scour occurred in bridge piers and piles was determined realistically and the behavior of bridge piers under scour effects was investigated. Future flood effects and the resultant amount of scour was determined with HEC-RAS software by using digital surface models that were obtained at regular intervals using UAS for the riverbed. In the light of the attained scour measurements and expected scour after a probable flood event, the behavior of scour damaged RC bridge was investigated by pushover and time history analyses under lateral and vertical seismic loadings. In the analyses, the load and displacement capacity of bridge was observed to diminish significantly under expected scour. Thus, the deterioration in multi hazard

  10. Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions

    International Nuclear Information System (INIS)

    Bigaud, David; Ali, Osama

    2014-01-01

    Time-variant reliability analysis of RC highway bridges strengthened with carbon fibre reinforced polymer CFRP laminates under four possible competing damage modes (concrete crushing, steel rupture after yielding, CFRP rupture and FRP plate debonding) and three degradation factors is analyzed in terms of reliability index β using FORM. The first degradation factor is chloride-attack corrosion which induces reduction in steel area and concrete cover cracking at characteristic key times (corrosion initiation, severe surface cover cracking). The second degradation factor considered is fatigue which leads to damage in concrete and steel rebar. Interaction between corrosion and fatigue crack growth in steel reinforcing bars is implemented. The third degradation phenomenon is the CFRP properties deterioration due to aging. Considering these three degradation factors, the time-dependent flexural reliability profile of a typical simple 15 m-span intermediate girder of a RC highway bridge is constructed under various traffic volumes and under different corrosion environments. The bridge design options follow AASHTO-LRFD specifications. Results of the study have shown that the reliability is very sensitive to factors governing the corrosion. Concrete damage due to fatigue slightly affects reliability profile of non-strengthened section, while service life after strengthening is strongly related to fatigue damage in concrete. - Highlights: • We propose a method to follow the time-variant reliability of strengthened RC beams. • We consider multiple competing failure modes of CFRP strengthened RC beams. • We consider combined degradation mechanisms (corrosion, fatigue, ageing of CFRP)

  11. Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges

    International Nuclear Information System (INIS)

    Ghosh, Jayadipta; Sood, Piyush

    2016-01-01

    This paper presents a methodology to develop seismic fragility curves for deteriorating highway bridges by uniquely accounting for realistic pitting corrosion deterioration and time-dependent capacity distributions for reinforced concrete columns under chloride attacks. The proposed framework offers distinct improvements over state-of-the-art procedures for fragility assessment of degrading bridges which typically assume simplified uniform corrosion deterioration model and pristine limit state capacities. Depending on the time in service life and deterioration mechanism, this study finds that capacity limit states for deteriorating bridge columns follow either lognormal distribution or generalized extreme value distributions (particularly for pitting corrosion). Impact of column degradation mechanism on seismic response and fragility of bridge components and system is assessed using nonlinear time history analysis of three-dimensional finite element bridge models reflecting the uncertainties across structural modeling parameters, deterioration parameters and ground motion. Comparisons are drawn between the proposed methodology and traditional approaches to develop aging bridge fragility curves. Results indicate considerable underestimations of system level fragility across different damage states using the traditional approach compared to the proposed realistic pitting model for chloride induced corrosion. Time-dependent predictive functions are provided to interpolate logistic regression coefficients for continuous seismic reliability evaluation along the service life with reasonable accuracy. - Highlights: • Realistic modeling of chloride induced corrosion deterioration in the form of pitting. • Time-evolving capacity distribution for aging bridge columns under chloride attacks. • Time-dependent seismic fragility estimation of highway bridges at component and system level. • Mathematical functions for continuous tracking of seismic fragility along service

  12. STS 51-L crewmembers during training session in flight deck simulation

    Science.gov (United States)

    1985-01-01

    S85-46207 (December 1985) --- Shuttle Mission Simulator (SMS) scene of astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck. The photo was taken by Bill Bowers.

  13. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    International Nuclear Information System (INIS)

    Alan E. Bland; Jesse Newcomer

    2007-01-01

    trials showed green product sagging, as a result of the die design. After the third die was acquired and fitted to the extruder, satisfactory decking and structural panels were produced. Cured decking was shipped to the US but experienced significant breakage and damage during transport. Subsequent evaluations concluded that an alternative die design was needed that would produce a more robust product resistant to damage. In summary, AeRock Decking can be a commercially-viable non-wood alternative decking product. This project has provided WRI and AeRock the knowledge and understanding to make AeRock Decking a commercial success. However, a commercial demonstration that produces quality product and the subsequent evaluation of its performance is needed before commercial acceptance of the AeRock product

  14. Interaction between rivers and bridges in Tuscany (Italy)

    Science.gov (United States)

    Tartaglia, V.; Caporali, E.

    2003-04-01

    The natural adjustment phenomena of the rivers next to the crossing infrastructures, often due to the interaction with the structures themselves, cause damage risk conditions for a high number of structures. About 30 railway bridge sites in Tuscany, interested in the last 30 years by river bed instability, have been monitored. A standardized Bridge Site Inspection Form have been defined and used for the inspections to ensure data reliability and a computer-aided system for data collection have been developed. The system is composed by two components: (1) a GIS that contain the hydrological and geomorphological data layers; (2) a DBMS on which the geomorphological characteristics of the sites and the geometrical and structural characteristics of the bridges are stored with a relational structure. The observed damage mechanisms suggest to schematise the bridge-river interaction as the sum of two instability processes: (a) the lateral instability, when long term evolution of the stream or localized collapse phenomena of the banks can undermine the lateral bridge structures not meant to be exposed to flow (piers whit shallow foundation in the floodplain, long abutments, etc.); (b) vertical instability processes, when the river bed level degradation given by the sum of geomorphological phenomena at the basin scale (general scour) and at the site scale (contraction scour and local scour) can undermine the bridge foundations. To express synthetically the damage risk of bridges, due to instability phenomena of their crossed rivers, the use of a Risk Index is here proposed. The RI is calculated with a semi-qualitative method derived from the geomorphological observations and from the calculated values of some hydraulic variables, obtained by the regional frequency analysis of flood in Tuscany. The RI allows, even in lack of foundation depth data, to individuate the critical sites and to rank them for protection planning. Besides a threshold value of the Risk Index has been

  15. Design of footbridge with double curvature made of UHPC

    Science.gov (United States)

    Kněž, P.; Tej, P.; Čítek, D.; Kolísko, J.

    2017-09-01

    This paper presents design of footbridge with double curvature made of UHPC. The structure is designed as a single-span bridge. The span of the bridge is 10.00 m, and the width of the deck is 1.50 m. The thickness of shell structure is 0.03 m for walls and 0.045 m for deck. The main structure of the bridge is one arch shell structure with sidewalls made of UHPC with dispersed steel fibers with conventional reinforcement only at anchoring areas. The structure was designed on the basis of the numerical model. Model was subsequently clarified on the basis of the first test elements. Paper presents detailed course on design of the bridge and presentation will contain also installation in landscape and results of static and dynamic loading tests.

  16. Stress intensity factors for fatigue loaded details between crossbeams and trapezoidal stringers

    NARCIS (Netherlands)

    Maljaars, J.; Pijpers, R.J.M.

    2013-01-01

    A number of orthotropic deck structures of existing bridges are suffering from fatigue cracks. Maintenance of these deck structures may consist of regular inspections and repair of detected cracks. The usual fatigue design life procedure for aswelded structures based on S-N curves is not feasible

  17. Seismic Fragility Assessment of an Isolated Multipylon Cable-Stayed Bridge Using Shaking Table Tests

    Directory of Open Access Journals (Sweden)

    Yutao Pang

    2017-01-01

    Full Text Available In recent decades, cable-stayed bridges have been widely built around the world due to the appealing aesthetics and efficient and fast mode of construction. Numerous studies have concluded that the cable-stayed bridges are sensitive to earthquakes because they possess low damping characteristics and high flexibility. Moreover, cable-stayed bridges need to warrant operability especially in the moderate-to-severe earthquakes. The provisions implemented in the seismic codes allow obtaining adequate seismic performance for the cable-stayed bridge components; nevertheless, they do not provide definite yet reliable rules to protect the bridge. To date, very few experimental tests have been carried out on the seismic fragility analysis of cable-stayed bridges which is the basis of performance-based analyses. The present paper is aimed at proposing a method to derive the seismic fragility curves of multipylon cable-stayed bridge through shake table tests. Toward this aim, a 1/20 scale three-dimensional model of a 22.5 m cable-stayed bridge in China is constructed and tested dynamically by using the shaking table facility of Tongji University. The cable-stayed bridge contains three pylons and one side pier. The outcomes of the comprehensive shaking table tests carried out on cable-stayed bridge have been utilized to derive fragility curves based on a systemic approach.

  18. The Akashi Kaikyo Bridge and the Storebælt Bridge

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    1999-01-01

    With the completion of the Akashi Kaikyo Bridge and the Storebælt East Bridge the development of the suspension bridge technology in the 20th century has manifested itself in two impressive structures. With the present echnology may bridges of similar (and also more modest) dimensions...... will undoubtedly be built far into the next century. For bridges going beyond the spans of existing bridges it is, however, likely that new concepts will be developed....

  19. Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper bridge management systems are discussed with special emphasis on management systems for reinforced concrete bridges. Management systems for prestressed concrete bridges, steel bridges, or composite bridges can be developed in a similar way....

  20. A guidance on MELCOR input preparation : An input deck for Ul-Chin 3 and 4 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Song Won

    1997-02-01

    The objective of this study is to enhance the capability of assessing the severe accident sequence analyses and the containment behavior using MELCOR computer code and to provide the guideline of its efficient use. This report shows the method of the input deck preparation as well as the assessment strategy for the MELCOR code. MELCOR code is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. The code is being developed at Sandia National Laboratories for the U.S. NRC as a second generation plant risk assessment tool and the successor to the source term code package. The accident sequence of the reference input deck prepared in this study for Ulchin unit 3 and 4 nuclear power plants, is the total loss of feedwater (TLOFW) without any success of safety systems, which is similar to station blackout (TLMB). It is very useful to simulate a well-known sequence through the best estimated code or experiment, because the results of the simulation before core melt can be compared with the FSAR, but no data is available after core melt. The precalculation for the TLOFW using the reference input deck is performed successfully as expected. The other sequences will be carried out with minor changes in the reference input. This input deck will be improved continually by the adding of the safety systems not included in this input deck, and also through the sensitivity and uncertainty analyses. (author). 19 refs., 10 tabs., 55 figs.