WorldWideScience

Sample records for brevibacterium

  1. Brevibacterium massiliense bacteremia

    Directory of Open Access Journals (Sweden)

    Maude Vecten

    2017-01-01

    Full Text Available Brevibacterium massiliense infection in man is rare. We report here the second case with isolation of B. massiliense in human. This micro-organism requires specific laboratory investigations such as 16S rRNA gene sequencing for accurate species identification. The clinical outcome was favorable.

  2. [Three new species of brevibacteria--Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov. and Brevibacterium permense sp. nov].

    Science.gov (United States)

    Gavrish, E Iu; Krauzova, V I; Potekhina, N V; Karasev, S G; Plotnikova, E G; Altyntseva, O V; Korosteleva, L A; Evtushenko, L I

    2004-01-01

    This work deals with the taxonomic study of 12 orange-pigmented bacteria isolated from permafrost sediments, rice plots, and soils contaminated with wastes from the chemical and salt industries, which were assigned to the genus Brevibacterium on the basis of phenotypic characteristics, as well as of some strains described previously as Brevibacterium linens. The study revealed three genomic species, whose members and the type strains of the closest species of Brevibacterium had DNA similarity levels between 24 and 59%. The strains of the genomic species differed from each other and from the known species of Brevibacterium in some physiological and biochemical characteristics, as well as in the sugar and polyol composition of their teichoic acids. The 16S rDNA sequence analysis confirmed the assignment of the environmental isolates to the genus Brevibacterium and showed the phylogenetic distinction of the three genomic species. The results obtained in this study allow three new Brevibacterium species to be described: Brevibacterium antiquum (type strain VKM Ac-2118T = UCM Ac-411T), Brevibacterium aurantiacum (type strain VKM Ac-2111T = NCDO 739T = ATCC 9175T), and Brevibacterium permense (type strain VKM Ac-2280T = UCM Ac-413T).

  3. Industrial importance of the genus Brevibacterium.

    Science.gov (United States)

    Onraedt, Annelies; Soetaert, Wim; Vandamme, Erick

    2005-04-01

    The genus Brevibacterium has long been difficult for taxonomists to classify due to its close morphological similarity to other genera. Since it was proposed in 1953, the genus has often been redefined. The genus is best known for its important role in the ripening of certain cheeses (B. linens) and for its supposed over-production of L: -amino acids. Other interesting industrial applications, including the production of ectoine, have recently been proposed. The general characteristics, the occurrence and the recent taxonomy of Brevibacterium are reviewed here. Furthermore, known and potential industrial applications for Brevibacterium species are briefly discussed.

  4. Identification of Brevibacterium from clinical sources.

    Science.gov (United States)

    Pitcher, D G; Malnick, H

    1984-01-01

    Coryneform bacteria of the genus Brevibacterium occur on the normal skin surface, but reports of human infection with this genus are lacking. A number of cultures of coryneform bacteria sent to the National Collection of Type Cultures for identification have been identified as Brevibacterium spp on the basis of their cell wall composition and ability to produce methane-thiol from L-methionine. We describe a rapid method for the detection of methane-thiol and confirmatory tests which differentiate Brevibacterium from morphologically similar genera. PMID:6392351

  5. Identification of a novel Brevibacterium species isolated from humans and description of Brevibacterium sanguinis sp. nov.

    Science.gov (United States)

    Wauters, Georges; Haase, Gerhard; Avesani, Véronique; Charlier, Jacqueline; Janssens, Michèle; Van Broeck, Johan; Delmée, Michel

    2004-06-01

    Six coryneforms isolated from blood and dialysate fluid were phenotypically similar to Brevibacterium casei, but 16S rRNA gene sequencing and DNA-DNA hybridization indicate that they belong to a new species for which the name Brevibacterium sanguinis is proposed.

  6. Brevibacterium marinum sp. nov., isolated from seawater.

    Science.gov (United States)

    Lee, Soon Dong

    2008-02-01

    A novel yellow-pigmented actinobacterium was isolated from seawater collected from Hwasun Beach in Jeju, Republic of Korea. A comparative analysis of the 16S rRNA gene sequence indicated that the organism, designated HFW-26(T), was closely related to members of the genus Brevibacterium. As found for other species of the genus Brevibacterium, strain HFW-26(T) possessed meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, contained MK-8(H(2)) as the major menaquinone, contained polar lipids that included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown phospholipid, and had anteiso-C(15 : 0) and anteiso-C(17 : 0) as the predominant fatty acids. The G+C content of the DNA was 71.4 mol%. The phylogenetically closest relative was Brevibacterium picturae DSM 16132(T) (99.0 % 16S rRNA gene sequence similarity). However, DNA-DNA hybridization of strain HFW-26(T) showed 35.1-43.7 % relatedness with respect to B. picturae DSM 16132(T). The novel isolate could be clearly distinguished from B. picturae DSM 16132(T) on the basis of some cultural, physiological and biochemical characteristics. A battery of phenotypic and genetic data obtained in this study suggest that strain HFW-26(T) represents a novel species of the genus Brevibacterium, for which the name Brevibacterium marinum sp. nov. is proposed. The type strain is HFW-26(T) (=JBRI 2001(T)=KCTC 19221(T)=DSM 18964(T)).

  7. Growth stimulation of Brevibacterium sp. by siderophores.

    Science.gov (United States)

    Noordman, W H; Reissbrodt, R; Bongers, R S; Rademaker, J L W; Bockelmann, W; Smit, G

    2006-09-01

    To assess which types of siderophores are typically produced by Brevibacterium and how siderophore production and utilization traits are distributed within this genus. During co-cultivation experiments it was found that growth of B. linens Br5 was stimulated by B. linens NIZO B1410 by two orders of magnitude. The stimulation was caused by the production of hydroxamate siderophores by B. linens NIZO B1410 that enabled the siderophore-auxotrophic strain Br5 to grow faster under the applied iron-limited growth conditions. Different patterns of siderophore production and utilization were observed within the genus Brevibacterium. These patterns did not reflect the phylogenetic relations within the group as determined by partial 16S rDNA sequencing. Most Brevibacterium strains were found to utilize hydroxamate siderophores. Brevibacteria can produce and utilize siderophores although certain strains within this genus are siderophore-auxotrophic. It is reported for the first time that brevibacteria produce and utilize siderophores. This knowledge can be utilized to stimulate growth of auxotrophic strains under certain conditions. Enhancing the growth rate of Brevibacterium is of importance for the application of this species, for example, for cheese manufacturing or for industrial production of enzymes or metabolites.

  8. A 3, 5-Diaminohexanoate-Decomposing Brevibacterium

    Science.gov (United States)

    Hong, Su-Chen L.; Barker, H. A.

    1972-01-01

    An obligately aerobic bacterium that grows on dl-erythro-3, 5-diaminohexanoate as a sole carbon, nitrogen, and energy source was isolated by the enrichment culture method. The organism utilizes only the l isomer by means of an inducible enzyme system. The organism has been tentatively identified as a member of the genus Brevibacterium. PMID:5079062

  9. Growth stimulation of Brevibacterium sp. by siderophores

    NARCIS (Netherlands)

    Noordman, W.H.; Reissbrodt, R.; Bongers, R.S.; Rademaker, J.L.W.; Bockelmann, W.; Smit, G.

    2006-01-01

    To assess which types of siderophores are typically produced by Brevibacterium and how siderophore production and utilization traits are distributed within this genus. Methods and Results: During co-cultivation experiments it was found that growth of B. linens Br5 was stimulated by B. linens NIZO

  10. Degradation of ochratoxin a by Brevibacterium species.

    Science.gov (United States)

    Rodriguez, Hector; Reveron, Ines; Doria, Francesca; Costantini, Antonella; De Las Rivas, Blanca; Muňoz, Rosario; Garcia-Moruno, Emilia

    2011-10-12

    The ability to degrade ochratoxin A was studied in different bacteria with a well-known capacity to transform aromatic compounds. Strains belonging to Rhodococcus, Pseudomonas, and Brevibacterium genera were grown in liquid synthetic culture medium containing ochratoxin A. Brevibacterium spp. strains showed 100% degradation of ochratoxin A. Ochratoxin α was detected and identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) as a degradation product in the cell-free supernatants. The degradation of ochratoxin A is of public concern for food and environmental safety, because it could contribute to the development of new biological ochratoxin A detoxification systems in foodstuffs. In this study, the degradation of ochratoxin A by bacteria belonging to the food chain was demonstrated for the first time.

  11. Isolation and Identification of a Brevibacterium linens strain ...

    African Journals Online (AJOL)

    It showed tyrosine clearing and had meso-DAP as the characteristic cell wall amino acid. On the basis of the morphological, physiological, and biochemical tests the organism was identified as Brevibacterium linens. To our knowledge, this is the first report of any Brevibacterium strain able to degrade PNP. African Journal of ...

  12. Aminopeptidase from Brevibacterium linens: activation and inhibition.

    Science.gov (United States)

    Foissy, H

    1978-04-18

    Activation and inhibition of a purified aminopeptidase from Brevibacterium linens was investigated using L-alpha-leucyl-4-nitroanilide and L-leucyl-L-leucine as substrates. The enzyme was activated by cobalt, provided that the enzyme was preincubated with the metal. Strong inhibitory effects were derived from heavy metals, metal-complexing compounds, reducing agents, the modification of aromatic amino acids, and the presence of hydrophobic substances or certain amino acids in the test mixtures. Supposing that this B. linens aminopeptidase plays a part during surface-ripening of cheeses, possible consequences of specific technological conditions for its activity are discussed.

  13. Brevibacterium massiliense sp. nov., isolated from a human ankle discharge.

    Science.gov (United States)

    Roux, Véronique; Raoult, Didier

    2009-08-01

    Gram-positive, non-spore-forming rods, strain 5401308T, were isolated from a human ankle discharge. Based on cellular morphology and the results of biochemical testing, this strain was tentatively identified as an undescribed member of the genus Brevibacterium. The major fatty acids were anteiso-C15:0 (45.3%), anteiso-C17:0 (19.2%) and iso-C15:0 (18.3%). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that the bacterium was closely related to the type strains of Brevibacterium mcbrellneri (96.3% similarity) and Brevibacterium paucivorans (95.8%). On the basis of phenotypic data and phylogenetic inference, it is proposed that this strain represents a novel species, designated Brevibacterium massiliense sp. nov.; the type strain is 5401308T (=CSUR P26T=CIP 109422T=CCUG 53855T).

  14. Draft genome sequence of Brevibacterium massiliense strain 541308T.

    Science.gov (United States)

    Roux, Véronique; Robert, Catherine; Gimenez, Grégory; Raoult, Didier

    2012-09-01

    A draft genome sequence of Brevibacterium massiliense, an aerobic bacterium isolated from a human ankle discharge, is described here. CRISPR-associated proteins were found to be encoded in the genome, and analysis of transport proteins was performed.

  15. Hydrocarbon utilization by Brevibacterium, Azotomonas, Protaminobacterium, Mycococcus and Aeromonas spp

    Energy Technology Data Exchange (ETDEWEB)

    Lonsane, B.K.; Vadalkar, K.; Singh, H.D.; Baruah, J.N.

    1976-11-01

    Morphological, cultural and biochemical characteristics of 7 bacterial isolates, capable of utilizing hydrocarbons as sole source of carbon, reveal that 3 isolates belong to genus Aeromonas and one each to genera Brevibacterium, Protaminobacter, Mycococcus and Azotomonas. The isolates are studied for biomass formation on gas oil, substrate specificities for petroleum hydrocarbons and fermentation of gas oil by Brevibacterium sp. The hydrocarbon utilizing abilities of the strains of Protaminobacter, Azotomonas and Aeromonas are not known previously.

  16. Manganese transport in Brevibacterium ammoniagenes ATCC 6872.

    Science.gov (United States)

    Schmid, J; Auling, G

    1987-01-01

    Uptake of manganese by Brevibacterium ammoniagenes ATCC 6872 was energy dependent and obeyed saturation kinetics (Km = 0.65 microM; Vmax = 0.12 mumol/min per g [dry weight]). Uptake showed optima at 27 degrees C and pH 9.5. 54Mn2+ accumulated by the cells was released by treatment with toluene or by exchange for unlabeled manganese ions, via an energy-dependent process. Co2+, Fe2+, Cd2+, and Zn2+ inhibited manganese uptake. Inhibition by Cd2+ and Zn2+ was competitive (Ki = 0.15 microM Cd2+ and 1.2 microM Zn2+). Experiments with 65Zn2+ provided no evidence for Zn2+ uptake via the Mn2+ transport system. PMID:3597325

  17. TAXONOMICALLY SIGNIFICANT COLOR REACTIONS OF BREVIBACTERIUM LINENS

    Science.gov (United States)

    Grecz, Nicholas; Dack, Gail M.

    1961-01-01

    Grecz, Nicholas (University of Chicago, Chicago, Ill.), and Gail M. Dack. Taxonomically significant color reactions of Brevibacterium linens. J. Bacteriol. 82:241–246. 1961.—Brevibacterium linens was observed to give characteristic color reactions with certain bases and acids. An intensive carmine-red color appeared immediately after addition of a drop of 5 n sodium hydroxide, 5 n potassium hydroxide, and saturated barium hydroxide. A light carmine-red was given by lithium hydroxide, and a light orange-red with a milky suspension of calcium hydroxide. No discernible color change was given with weak bases such as ammonium hydroxide, aniline, and pyridine. A characteristic salmon-pink color was produced when B. linens was rubbed with a glass rod in a drop of glacial acetic acid or filter paper; a brick-red color was produced with aniline under these conditions. With syrupy phosphoric acid a green color appeared within 3 to 4 min which turned blue after approximately 3 hr. The blue color was stable for several days. On the basis of these color reactions, B. linens could be distinguished from other microorganisms possessing yellow-orange pigmentation, i.e., Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus flavus, Micrococcus citreus, Mycobacterium phlei, Sarcina lutea. Therefore, these color changes may be used for the identification of B. linens. Original isolates of B. linens from cheese were tested by these spot reactions and all presumptive identifications could be subsequently confirmed by conventional methods. Blue and green colors appeared in all yellow-orange chromogens treated with sulfuric, perchloric, and hydrochloric acids and hence these colors were not specific for B. linens. PMID:13708147

  18. Brevibacterium casei as a cause of brain abscess in an immunocompetent patient.

    Science.gov (United States)

    Kumar, V Anil; Augustine, Deepthi; Panikar, Dilip; Nandakumar, Aswathy; Dinesh, Kavitha R; Karim, Shamsul; Philip, Rosamma

    2011-12-01

    Coryneform bacteria belonging to the genus Brevibacterium have emerged as opportunistic pathogens. Of the nine known species of Brevibacterium isolated from human clinical samples, Brevibacterium casei is the most frequently reported species from clinical specimens. We report the first case of B. casei brain abscess in an immunocompetent patient successfully treated by surgery and antimicrobial therapy.

  19. Brevibacterium casei as a Cause of Brain Abscess in an Immunocompetent Patient ▿

    Science.gov (United States)

    Kumar, V. Anil; Augustine, Deepthi; Panikar, Dilip; Nandakumar, Aswathy; Dinesh, Kavitha R.; Karim, Shamsul; Philip, Rosamma

    2011-01-01

    Coryneform bacteria belonging to the genus Brevibacterium have emerged as opportunistic pathogens. Of the nine known species of Brevibacterium isolated from human clinical samples, Brevibacterium casei is the most frequently reported species from clinical specimens. We report the first case of B. casei brain abscess in an immunocompetent patient successfully treated by surgery and antimicrobial therapy. PMID:22012007

  20. Novel linear megaplasmid from Brevibacterium sp. isolated from extreme environment.

    Science.gov (United States)

    Dib, Julián Rafael; Wagenknecht, Martin; Hill, Russell T; Farías, María Eugenia; Meinhardt, Friedhelm

    2010-06-01

    Brevibacterium sp. Ap13, isolated from flamingo's feces in Laguna Aparejos, a high-altitude lake located at approximately 4,200 m in the northwest of Argentina was previously found to be resistant to multiple antibiotics, and was therefore screened for plasmids that may be implicated in antibiotic resistance. Brevibacterium sp. Ap13 was found to contain two plasmids of approximately 87 and 436 kb, designated pAP13 and pAP13c, respectively. Only pAP13 was stably maintained and was extensively characterized by pulsed-field gel electrophoresis to reveal that this plasmid is linear and likely has covalently linked terminal proteins associated with its 5' ends. This is the first report of a linear plasmid in the genus Brevibacterium and may provide a new tool for genetic manipulation of this commercially important genus. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  1. Brevibacterium otitidis: an elusive cause of neurosurgical infection.

    LENUS (Irish Health Repository)

    Fe Talento, Alida

    2013-03-01

    Coryneform bacteria are usually considered as non-pathogenic when isolated from clinical specimens. We present a case of Brevibacterium otitidis neurosurgical infection in an immunocompetent patient, and highlight the difficulty with identification and interpretation of antimicrobial susceptibility results for this unusual pathogen.

  2. Optimization of cholesterol oxidase production by Brevibacterium sp ...

    African Journals Online (AJOL)

    Abstract. An ultrasound-assisted emulsification as a pretreatment for cholesterol oxidase production by submerge fermentation using Brevibacterium sp. in a batch system was studied. Medium improvement for the production employing response surface methodology (RSM) was optimized in this paper. The concentration of ...

  3. Brevibacterium casei isolated as a cause of relapsing peritonitis.

    Science.gov (United States)

    Althaf, Mohammed Mahdi; Abdelsalam, Mohamed Said; Alsunaid, Mohammed Sunaid; Hussein, Maged Hassan

    2014-03-19

    We report a case of relapsing peritonitis in a 33-year-old woman on automated peritoneal dialysis. End-stage renal disease was secondary to systemic lupus erythematosus complicated with lupus nephritis. The organism isolated was Brevibacterium casei that was not readily identified, delaying appropriate management with an extended antibiotic course. Definite management of B casei peritonitis was peritoneal dialysis catheter removal.

  4. Molecular identification and differentiation of Brevibacterium species and strains.

    Science.gov (United States)

    Hoppe-Seyler, Tobias-Simon; Jaeger, Beate; Bockelmann, Wilhelm; Geis, Arnold; Heller, Knut-Jochem

    2007-01-01

    Amplified ribosomal DNA restriction enzyme analysis (ARDRA), pulsed field gel electrophoresis (PFGE) and ribotyping were used to differentiate among 24 strains of Brevibacterium linens, Brevibacterium casei and Brevibacterium epidermidis obtained from type culture collections or isolated from various smear ripened cheeses. ARDRA was applied to the 16S rDNA. B. linens was shown to be a quite heterogenic group with 2 to at least 4 copies of rrn operons per strain with aberrant nucleotide sequences. AccI gave genus specific restriction patterns and was used to separate Brevibacterium from Corynebacterium species. The expected species specificity of TaqI applied to B. linens type culture strains, but not to all strains isolated from cheese. By AvaI restriction, B. casei and B. linens were differentiated from B. epidermidis and the orange pigmented Arthrobacter casei, a new species of coryneform bacteria; by XmnI restriction, B. linens and B. epidermidis were differentiated from B. casei. One of 4 B. linens genotypes could not be distinguished from B. casei by this method. Here, the typical orange B. linens pigments were used for classification, which was confirmed by partial sequencing of the 16S rDNA.

  5. Generalized Net Model of Brevibacterium flavul 22LD Fermentation Process

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2005-04-01

    Full Text Available In order to render the specific peculiarities of the fermentation processes, as well as to avoid the complexity of mathematical description with systems of differential equations, the elaboration of some new methods and approaches for their modelling and control is predetermined. As a new, alternative approach for modelling of fermentation processes, an application of generalized nets is presented in this paper. The theory of generalized nets is applied to the fermentation process of Brevibacterium flavul 22LD for L-lysine production. A generalized net model of considered process is developed. For comparison and completeness, model with differential equations is also provided. The generalized nets model developed for the fed-batch cultivation of Brevibacterium flavul 22LD allows changing the concentration of the feeding solution and the aeration rate. In this way some inhibition effects are prevented and a possibility for optimal carrying out of the considered fermentation process is provided.

  6. Differentiation of Brevibacterium spp. encountered in clinical specimens.

    Science.gov (United States)

    Funke, G; Carlotti, A

    1994-01-01

    Forty-three strains belonging to the genus Brevibacterium which were encountered in clinical materials over 2 decades were compared with reference strains, including the type strains, of B. casei, B. epidermidis, B. mcbrellneri, B. iodinum, and B. linens. By means of carbohydrate assimilation tests (CATs) the 43 clinical isolates could be assigned to the species B. casei (n = 41) and B. epidermidis (n = 2). DNA-DNA hybridizations were performed for 20 clinical isolates and confirmed the species identification of the isolates. Cellular fatty acid profiles of all strains were determined and found to have less discriminative power than CATs. This is the first report indicating that most clinical Brevibacterium isolates are B. casei and that CATs provide an easy-to-perform method for species determination within the genus, thus avoiding nucleic acid techniques. PMID:7929766

  7. Biosynthesis of Carotenoids in Brevibacterium sp. KY-43131

    Science.gov (United States)

    Hsieh, L. K.; Lee, Tung-Ching; Chichester, C. O.; Simpson, K. L.

    1974-01-01

    The biosynthesis of 4-keto and 4,4′-diketo carotenoids in Brevibacterium sp. KY-4313 was studied. Echinenone and canthaxanthin were isolated from the cultures grown on a medium containing several n-alkanes. When glutathione was added to the bacterial cultures, the formation of canthaxanthin was inhibited while β-carotene and its hydroxy derivatives accumulated. It is suggested that these 4-hydroxy compounds, isocryptoxanthin, isozeaxanthin, and 4-hydroxy-4′-keto-β-carotene, are intermediates in the biosynthesis of canthaxanthin. In the presence of 2-(4-chlorophenylthio)-triethylamine hydrochloride or nicotine, lycopene and neurosporene accumulated. The β-carotene level decreased slightly but β-zeacarotene remained unchanged. β-carotene and its derivatives were resynthesized upon removal of the inhibitors. It was concluded that cyclization can take place at either the neurosporene or lycopene level in Brevibacterium sp. KY-4313. PMID:4828305

  8. Brevibacterium casei Sepsis in an 18-Year-Old Female with AIDS

    Science.gov (United States)

    Brazzola, P.; Zbinden, R.; Rudin, C.; Schaad, U. B.; Heininger, U.

    2000-01-01

    Brevibacterium sp. was isolated from the blood of an acutely ill 18-year-old female with AIDS. The isolate was identified as Brevibacterium casei by use of carbohydrate assimilation tests. Treatment was successful with intravenously administered ciprofloxacin. To our knowledge, this is the first report of sepsis caused by B. casei in a human immunodeficiency virus-infected patient. PMID:10970420

  9. Native aortic valve endocarditis caused by Brevibacterium epidermidis in an immunocompetent patient.

    Science.gov (United States)

    Manetos, Christos M; Pavlidis, Antonios N; Kallistratos, Manolis S; Tsoukas, Athanasios S; Chamodraka, Eytixia S; Levantakis, Ioannis; Manolis, Athanasios J

    2011-09-01

    Although Brevibacterium species used to be considered as nonpathogenic microorganisms until recently, it seems that they can cause a wide variety of clinical diseases by acting mostly as opportunistic pathogens. The present case is the second reported case of infective endocarditis by Brevibacterium species; however, it is the first reported infected native aortic valve in an immunocompetent patient.

  10. Brevibacterium samyangense sp. nov., an actinomycete isolated from a beach sediment.

    Science.gov (United States)

    Lee, Soon Dong

    2006-08-01

    A novel actinomycete, strain SST-8(T), was isolated from sand sediment of Samyang Beach in Jeju, Korea, and subjected to a polyphasic taxonomic study. The organism, which produced opaque, circular, yellow colonies, with a coryneform morphology, showed the following chemotaxonomic characteristics: meso-diaminopimelic acid as the diamino acid in the peptidoglycan, MK-8(H(2)) as the major menaquinone, phosphatidylglycerol as the only polar lipid, anteiso-C(15 : 0) and anteiso-C(17 : 0) as major fatty acids and a DNA G+C content of 70.7 mol%. The combination of morphological and chemotaxonomic features supported its classification in the genus Brevibacterium. Phylogenetic analyses, based on 16S rRNA gene sequence studies, showed that strain SST-8(T) formed an intermediate branch between the Brevibacterium luteolum/Brevibacterium otitidis and Brevibacterium mcbrellneri/Brevibacterium paucivorans clusters. Sequence similarity calculations based on a neighbour-joining analysis revealed that the closest relatives of strain SST-8(T) were the type strains of B. paucivorans (96.6 %), B. luteolum (96.5 %), B. mcbrellneri (96.3 %), Brevibacterium avium (96.0 %) and B. otitidis (95.9 %). Based on a broad set of phenotypic and genetic data, it was evident that the strain represents a novel species of the genus Brevibacterium. The name Brevibacterium samyangense sp. nov. is proposed, with SST-8(T) (=NRRL B-41420(T)=KCCM 42316(T)) as the type strain.

  11. Biodegradation of Cyclohexylamine by Brevibacterium oxydans IH-35A

    Science.gov (United States)

    Iwaki, Hiroaki; Shimizu, Masatake; Tokuyama, Tai; Hasegawa, Yoshie

    1999-01-01

    A bacterial strain capable of growing on cyclohexylamine (CHAM) was isolated by using enrichment and isolation techniques. The strain isolated, strain IH-35A, was classified as a member of the genus Brevibacterium. The results of growth and enzyme studies are consistent with degradation of CHAM via cyclohexanone (CHnone), 6-hexanolactone, 6-hydroxyhexanoate, and adipate. Cell extracts obtained from this strain grown on CHAM contained CHAM oxidase, and the model for CHAM oxidation by this enzyme was similar to the model for deamino oxidation of amine by amine oxidase. PMID:10224025

  12. Fermentative Accumulation of Guanosine Polyphosphate by Brevibacterium ammoniagenes

    Science.gov (United States)

    Furuya, Akira; Sato, Akira

    1975-01-01

    Guanosine-3′-diphosphate-5′-monophosphate (3.35 mg/ml), guanosine-3′-diphosphate-5′-diphosphate (MSI) (5.21 mg/ml), and guanosine-3′-diphosphate-5′ triphosphate (MSII) (0.82 mg/ml), in addition to guanosine 5′-monophosphate, guanosine 5′-diphosphate, and guanosine 5′-triphosphate, were accumulated by microbial conversion of 5′-xanthylic acid with a mutant of Brevibacterium ammoniagenes. PMID:1180553

  13. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean.

    Science.gov (United States)

    Bhadra, Bhaskar; Raghukumar, Chandralata; Pindi, Pavan Kumar; Shivaji, Sisinthy

    2008-01-01

    Two bacterial strains, designated BBH5 and BBH7(T), were isolated from a deep-sea sediment sample collected from the Chagos Trench of the Indian Ocean (1 degrees 06' S 7 degrees 31' E). Based on their 16S rRNA gene sequence similarity (99.9%), level of DNA-DNA relatedness (93%) and a number of similar phenotypic characteristics, the two strains are identified as representing the same species. Their phylogenetically nearest neighbours, based on 16S rRNA gene sequence similarity values (97.9-98.4%), were identified as Brevibacterium iodinum, Brevibacterium epidermidis, Brevibacterium linens and Brevibacterium permense. However, strains BBH5 and BBH7(T) could be distinguished from the above four species by a number of phenotypic characteristics, and levels of DNA-DNA relatedness between the two new isolates and these Brevibacterium species were 35-42%. Therefore, strains BBH5 and BBH7(T) are considered to represent a novel species of the genus Brevibacterium, for which the name Brevibacterium oceani sp. nov. is proposed. The type strain is BBH7(T) (=LMG 23457(T) =IAM 15353(T)).

  14. THE IMPACT OF SUPERHIGH FREQUENCY ELECTROMAGNETIC RADIATION ON THREONINE PRODUCER Brevibacterium flavum

    National Research Council Canada - National Science Library

    L V Marynchenko; O I Nizhelska; D M Lytvynenko; G M Zabolotna

    2016-01-01

    ... synthesis by bacteria Brevibacterium flavum for ordinary (non-mutant) and mutant strains. The frequencies of millimeter range waves were selected according to previous works as 41.76; 42.2 and 61.0 GHz...

  15. Peritonitis Due to Brevibacterium otitidis in a Patient Undergoing Continuous Ambulatory Peritoneal Dialysis

    Science.gov (United States)

    Wauters, Georges; Van Bosterhaut, Bernard; Avesani, Véronique; Cuvelier, René; Charlier, Jacqueline; Janssens, Michèle; Delmée, Michel

    2000-01-01

    Brevibacterium otitidis is a coryneform rod and, as far as is known, is isolated only from infected ears. We report the first known case of peritonitis caused by B. otitidis in a patient undergoing continuous ambulatory peritoneal dialysis. PMID:11060116

  16. Purification of an Endogenous polynucleotide phosphorylase from Brevibacterium JM98A.

    Science.gov (United States)

    Yang, H H; Thayer, D W; Yang, S P

    1979-01-01

    Polynucleotide phosphorylase was purified form Brevibacterium JM98A (ATCC 29895). Homopolynucleotides were arsenolysed in the order polyadenylate greater than polycytidylic acid greater than polyuridylic acid greater than polyguanylate. The products were ribonucleoside 5'-monophosphates. PMID:485149

  17. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture.

    Science.gov (United States)

    Cui, Yingshun; Kang, Myung-Suk; Woo, Sung-Geun; Jin, Long; Kim, Kwang Kyu; Park, Joonhong; Lee, Myungjin; Lee, Sung-Taik

    2013-01-01

    A Gram-reaction-positive, non-spore-forming, aerobic actinobacterial strain (2C6-41(T)) was isolated from the activated sludge from an industrial wastewater treatment plant in Daegu, South Korea. Its taxonomic position was investigated by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity, closest phylogenetic relatives to strain 2C6-41(T) were Brevibacterium pityocampae DSM 21720(T) (97.2 %), Brevibacterium salitolerans KCTC 19616(T) (96.7 %), Brevibacterium album KCTC 19173(T) (96.2 %) and Brevibacterium samyangense KCCM 42316(T) (96.2 %). The DNA G+C content of strain 2C6-41(T) was 66.4 mol%. Chemotaxonomic data, which included MK-8(H(2)) as the major menaquinone; meso-diaminopimelic acid, glutamic acid and alanine as cell-wall amino acids; ribose, mannose and glucose as major cell-wall sugars; and anteiso-C(15 : 0), anteiso-C(17 : 0), C(16 : 0) and iso-C(15 : 0) as major fatty acids, supported the affiliation of strain 2C6-41(T) to the genus Brevibacterium. The aromatic ring cleavage enzyme catechol 1,2-dioxygenase was not detected in strain 2C6-41(T), but catechol 2,3-dioxygenase was detected. The results of physiological and biochemical tests, and the low level of DNA-DNA relatedness to the closest phylogenetic relative enabled strain 2C6-41(T) to be differentiated genotypically and phenotypically from recognized species of the genus Brevibacterium. The isolate is therefore considered to represent a novel species in the genus Brevibacterium, for which the name Brevibacterium daeguense sp. nov. is proposed. The type strain is 2C6-41(T) (=KCTC 19800(T) = JCM 17458(T)).

  18. Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment.

    Science.gov (United States)

    Kämpfer, Peter; Schäfer, Jenny; Lodders, Nicole; Busse, Hans-Jürgen

    2010-04-01

    A Gram-stain-positive, rod-shaped, non-endospore-forming, orange-pigmented (coloured) actinobacterium (01-Je-003(T)) was isolated from the wall of an indoor environment primarily colonized with moulds. On the basis of 16S rRNA gene sequence similarity studies, strain 01-Je-003(T) was shown to belong to the genus Brevibacterium and was most similar to the type strains of Brevibacterium picturae (98.8 % similarity), Brevibacterium marinum (97.3 %) and Brevibacterium aurantiacum (97.2 %). Chemotaxonomic data [predominant quinone menaquinone MK-8(H2); polar lipid profile consisting of major compounds diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid; characteristic cell-wall diamino acid meso-diaminopimelic acid; polyamine pattern showing major compounds putrescine and cadaverine; major fatty acids anteiso-C(15 : 0) and anteiso-C(17 : 0)] supported the affiliation of strain 01-Je-003(T) to the genus Brevibacterium. The results of DNA-DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 01-Je-003(T) from the two most closely related species, B. picturae and B. marinum. Strain 01-Je-003(T) therefore represents a novel species, for which the name Brevibacterium sandarakinum sp. nov. is proposed, with the type strain 01-Je-003(T) (=DSM 22082(T) =CCM 7649(T)).

  19. Inhibition of Brevibacterium linens by Probiotics from Dairy Products

    Directory of Open Access Journals (Sweden)

    Alison M. Knox

    2005-01-01

    Full Text Available Brevibacterium linens is an important species in dairy products rendering a specific taste and aroma to numerous smear ripened and blue veined cheeses due to proteolysis. However, the presence of the species in South African blue veined cheeses is undesirable and consumers demand the product void of the species. Accordingly, numerous methods including microbial inhibition using fungi and bacterial probiotic cultures with possible inhibitory effects were applied in an attempt to inhibit the species. None of the fungi, however, proved to be successful, whereas Lactobacillus rhamnosus and Bifidobacterium lactis, two typical probiotic species applied in dairy products, showed inhibitory effects against B. linens when tested using the spot-on-lawn assay.

  20. Cell-Bound Lipase and Esterase of Brevibacterium linens

    Science.gov (United States)

    Sørhaug, Terje; Ordal, Z. John

    1974-01-01

    The activities of glycerol ester hydrolase, lipase (EC 3.1.1.3) and carboxylesterase, and esterase (EC 3.1.1.1) were determined for whole cell preparations of Brevibacterium linens by using the pH-stat assay. The culture growth liquors were inactive against the three substrates, tributyrin emulsion, triacetin, and methyl butyrate. Cells washed in water had less activity than cells washed in 5% NaCl; the ratio of activities was close to 1:2 for all strains using tributyrin emulsion as the substrate. For the esterase substrates, this relationship varied widely and was strain dependent. The ability to hydrolyze the two esterase substrates varied independently of the level of lipase activity. PMID:4824883

  1. Brevibacterium salitolerans sp. nov., an actinobacterium isolated from salt-lake sediment.

    Science.gov (United States)

    Guan, Tong-Wei; Zhao, Ke; Xiao, Jing; Liu, Ying; Xia, Zhan-Feng; Zhang, Xiao-Ping; Zhang, Li-Li

    2010-12-01

    A novel bacterium, designated TRM 415(T), belonging to the genus Brevibacterium, was isolated from a sediment sample from a salt lake in Xinjiang province, China. Comparative 16S rRNA gene sequence analysis indicated that strain TRM 415(T) was phylogenetically most closely related to Brevibacterium album YIM 90718(T) (98.4 % sequence similarity) and had low similarity (Brevibacterium; however, DNA-DNA hybridization studies between strain TRM 415(T) and B. album YIM 90718(T) showed only 41.3 % relatedness. Strain TRM 415(T) possessed meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, MK-8(H(2)) as the major menaquinone and polar lipids including phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C(17 : 0) and anteiso-C(15 : 0). The genomic DNA G+C content was 69 mol%. Based on the evidence from this polyphasic study, strain TRM 415(T) represents a novel species of the genus Brevibacterium, for which the name Brevibacterium salitolerans sp. nov. is proposed. The type strain is TRM 415(T) (=JCM 15900(T) =CCTCC AB 208328(T) =KCTC 19616(T)).

  2. Brevibacterium album sp. nov., a novel actinobacterium isolated from a saline soil in China.

    Science.gov (United States)

    Tang, Shu-Kun; Wang, Yun; Schumann, Peter; Stackebrandt, Erko; Lou, Kai; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2008-03-01

    A novel Gram-positive, rod-shaped actinobacterium, designated strain YIM 90718(T), was isolated from a saline soil in Xinjiang province, north-west China, and subjected to polyphasic taxonomy. The peptidoglycan type was A1gamma and the cell-wall sugars contained galactose. Phospholipids were phosphatidylglycerol and diphosphatidylglycerol. The predominant menaquinone was MK-8(H(2)). The major fatty acids were anteiso-C(15 : 0), anteiso-C(17 : 0) and iso-C(15 : 0). All of these chemotaxonomic data assigned the new isolate YIM 90718(T) consistently to the genus Brevibacterium. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM 90718(T) formed a distinct phyletic lineage in the genus Brevibacterium and showed the highest sequence similarity (96.2 %) to Brevibacterium samyangense SST-8(T) and low similarity (Brevibacterium. On the based of the polyphasic evidence, a novel species, Brevibacterium album sp. nov., is proposed, with the type strain YIM 90718(T) (=DSM 18261(T) =KCTC 19173(T) =CCTCC AB 206112(T)).

  3. Brevibacterium pityocampae sp. nov., isolated from caterpillars of Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae).

    Science.gov (United States)

    Kati, Hatice; Ince, Ikbal Agah; Demir, Ismail; Demirbag, Zihni

    2010-02-01

    This work deals with the taxonomic study of a bacterium, strain Tp12(T), isolated from caterpillars of the pine processionary moth (Thaumetopoea pityocampa Denis & Schiffermüller, 1775; Lepidoptera, Thaumetopoeidae). The isolate was assigned to the genus Brevibacterium on the basis of a polyphasic taxonomic study, including morphological and biochemical characteristics, 16S rRNA gene sequence analysis, fatty acid analysis and DNA G+C content. The highest 16S rRNA gene sequence similarity to this isolate was approximately 96 %, with the type strains of Brevibacterium album and Brevibacterium samyangense. Cellular fatty acids of the isolate are of the branched type, with the major components being anteiso-C(15 : 0) and anteiso-C(17 : 0). The DNA G+C content was 69.8 mol%. Although the strain was related to B. album and B. samyangense according to 16S rRNA gene sequence analysis, it differed from any known species of Brevibacterium. Based on this evidence, the novel species Brevibacterium pityocampae sp. nov. is proposed, with strain Tp12(T) (=DSM 21720(T) =NCCB 100255(T)) as the type strain.

  4. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest.

    Science.gov (United States)

    Rajamanikyam, Maheshwari; Vadlapudi, Varahalarao; Parvathaneni, Sai Prathima; Koude, Dhevendar; Sripadi, Prabhakar; Misra, Sunil; Amanchy, Ramars; Upadhyayula, Suryanarayana Murty

    2017-01-01

    Bacteria belonging to the family Brevibacterieae are ubiquitous Gram positive organisms that are responsible for the feet odour and cheese aroma. Brevibacterium mcbrellneri is a relatively new member belonging to Brevibacterieae. In the current manuscript we discuss isolation of biologically active metabolites from Brevibacterium mcbrellneri. Two aromatic esters were isolated from Brevibacterium mcbrellneri by "Bioassay guided fractionation strategy" and identified as di-(2-ethylhexyl) phthalate and dibutyl phthalate by chemical characterization using biophysical techniques. The phthalate compounds show broad spectrum antibacterial activity and mosquito larvicidal activity. Mosquito larvicidal activity has been attributed to inhibition of acetylcholinesterase enzyme activity. These compounds were found to be cytotoxic in multiple cell lines causing cell cycle arrest in G1 phase.

  5. [Decrease of phosphate concentration in the medium by Brevibacterium casei cells].

    Science.gov (United States)

    Riazanova, L P; Smirnov, A V; Kulakovskaia, T V; Kulaev, I S

    2007-01-01

    Brevibacteria able to decrease phosphate concentration in the medium are of interest for the study of the role of bacteria in the phosphorus cycle and for development of biotechnology of phosphate removal from waste. Brevibacterium casei, Brevibacterium linens, and Brevibacterium epidermidis grown in media with initial phosphorus concentrations of 1-11 mM were shown to decrease its concentration by 90%. The composition of the incubation medium required for B. casei to carry out this process was established. This process occurs in the absence of glucose but requires the presence of Mg2+, NH4+, and alpha-ketoglutarate. The latter two components may be replaced by amino acids metabolized to NH4+ and alpha-ketoglutarate: histidine, arginine, glutamine, proline, or glutamic acid. No formation of insoluble phosphate salts was observed when the media were incubated under the same conditions with heat-inactivated cells or without cells at pH 7-8.5.

  6. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Ram Kumar Pandian, SureshBabu; Kottaisamy, Muniasamy; BarathmaniKanth, Selvaraj; Kartikeyan, Bose; Gurunathan, Sangiliyandi

    2010-06-01

    The present study demonstrates an unprecedented green process for the production of spherical-shaped Au and Ag nanoparticles synthesized and stabilized using a bacterium, Brevibacterium casei. Aqueous solutions of chloroaurate ions for Au and Ag(+) ions for silver were treated with B. casei biomass for the formation of Au nanoparticles (AuNP) and Ag nanoparticles (AgNP). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 540 nm for Ag and Au nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of 10-50 nm (silver), and 10-50 nm (gold). XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. Further analysis carried out by Fourier Transform Infrared Spectroscopy (FTIR), provides evidence for the presence of proteins as possible biomolecules responsible for the reduction and capping agent which helps in increasing the stability of the synthesized silver and gold nanoparticles. The biological activities of the synthesized particles were confirmed based on their stable anti-coagulant effects. The use of bacterium for nanoparticles synthesis offers the benefits of ecofriendliness and amenability for large-scale production. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Post-traumatic endophthalmitis due to Brevibacterium casei : A case report

    Directory of Open Access Journals (Sweden)

    Asima Banu

    2013-02-01

    Full Text Available Endophthalmitis is a serious post-traumatic ocular complication that can lead to loss of vision. We report a case of acute post-traumatic endophthalmitis following a penetrating injury caused by an unusual organism, Brevibacterium casei . The patient was successfully treated with intravitreal antibiotics like ceftazidime and vancomycin, along with topical cefazolin and tobramycin. Brevibacterium casei can be added to the list of rare bacteria causing endophthalmitis and should be kept in mind by clinicians as a potential source of pathology.

  8. Brevibacterium picturae sp. nov., isolated from a damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria).

    Science.gov (United States)

    Heyrman, Jeroen; Verbeeren, Jens; Schumann, Peter; Devos, Joke; Swings, Jean; De Vos, Paul

    2004-09-01

    Three strains showing highly similar (GTG)5-PCR patterns were isolated from a heavily damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria). On the basis of 16S rRNA gene sequence similarity, the strains were attributed to Brevibacterium, with Brevibacterium casei (96.7 %), Brevibacterium iodinum (96.7 %) and Brevibacterium linens (96.6 %) as the closest related species. Chemotaxonomic data [peptidoglycan contains meso-diaminopimelic acid; mycolic acids absent; MK-8(H2) as the major menaquinone; polar lipids phosphatidylglycerol and diphosphatidylglycerol present; anteiso-C(15 : 0) and anteiso-C(17 : 0) as major fatty acids] supported the affiliation of the strains to the genus Brevibacterium. Additional physiological and biochemical tests confirmed the taxonomic position of the strains and allowed phenotypic differentiation from Brevibacterium species with validly published names. The isolates from the mural painting, therefore, represent a novel species, for which the name Brevibacterium picturae sp. nov. is proposed, with LMG 22061T (= DSM 16132T) as the type strain.

  9. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    DEFF Research Database (Denmark)

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis...

  10. Brevibacterium jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood.

    Science.gov (United States)

    Choi, Eun Jin; Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2013-09-01

    A Gram-staining-positive, aerobic, non-motile bacterium, designated strain SJ5-8(T), was isolated from seau-jeot (shrimp jeotgal), a traditional fermented seafood in South Korea. Cells were non-spore-forming rods showing catalase- and oxidase-positive reactions. Growth of strain SJ5-8(T) was observed at 10-37 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.5-8.5) and in the presence of 0-14% (w/v) NaCl (optimum, 5%). Phylogenetic inference based on 16S rRNA gene sequences showed that the strain formed a tight phyletic lineage with members of the genus Brevibacterium. Strain SJ5-8(T) was most closely related to Brevibacterium yomogidense MN-6-a(T), Brevibacterium daeguense 2C6-41(T) and Brevibacterium salitolerans TRM 415(T) with similarities of 98.9, 97.5 and 97.4%, respectively. The DNA-DNA relatedness values between strain SJ5-8(T) and the type strains of B. yomogidense, B. daeguense and B. salitolerans were 51.7 ± 1.9%, 22.2 ± 4.0% and 52.4 ± 3.8%, respectively. Chemotaxonomic data (major sole isoprenoid quinone, MK-8(H₂); major diagnostic diamino acid, meso-diaminopimelic acid; major polyamines, putrescine and cadaverine; major cellular fatty acids, anteiso-C(15:0), iso-C(15:0) and anteiso-C(17:0); major polar lipids, phosphatidylglycerol and diphosphatidylglycerol; DNA G+C content, 69.3 mol%) also supported the affiliation of strain SJ5-8(T) to the genus Brevibacterium. Therefore, strain SJ5-8(T) represents a novel species of the genus Brevibacterium, for which the name Brevibacterium jeotgali sp. nov. is proposed. The type strain is SJ5-8(T) ( =KACC 16911(T) =JCM 18571(T)).

  11. Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges.

    Science.gov (United States)

    Chen, Ping; Zhang, Limin; Wang, Jian; Ruan, Jisheng; Han, Xiqiu; Huang, Ying

    2016-12-01

    Three actinobacterial strains, FXJ8.128, FXJ8.269T and FXJ8.309, were isolated from deep-sea sediments collected from the Carlsberg Ridge and Southwest Indian Ridge at depths of 3690, 1800 and 2461 m, respectively. The three strains had highly similar 16S rRNA gene sequences (99.8-99.9 % identities) and formed a monophyletic clade within the Brevibacterium 16S rRNA gene tree, showing 98.2-98.9 % 16S rRNA gene sequence identities with type strains Brevibacterium epidermidis NCIMB 702286T, Brevibacterium iodinum DSM 20626T, Brevibacterium linens DSM 20425T, Brevibacterium oceani BBH7T and Brevibacterium permense VKM Ac-2280T. All three isolates showed activity towards the breakdown of pectin and fluoranthene. They contained MK-8(H2) as the most predominant menaquinone, diphosphatidylglycerol, phosphatidylglycerol and a glycolipd as the main polar lipids, and anteiso-C15 : 0 and anteiso-C17 : 0 as the major cellular fatty acids. Moreover, the three isolates were distinguished readily from the phylogenetically related type strains by DNA-DNA hybridization values, by random amplified polymorphic DNA fingerprint profiles and by a range of physiological and biochemical characteristics. On the basis of the above polyphasic taxonomic data, strains FXJ8.128, FXJ8.269T and FXJ8.309 represent a novel species of the genus Brevibacterium, for which the name Brevibacterium sediminis sp. nov. is proposed. The type strain is FXJ8.269T (=CGMCC 1.15472T=DSM 102229T).

  12. The type of cheese curds determined the colouring capacity of Brevibacterium and Arthrobacter species.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Spinnler, Henry-Eric

    2010-08-01

    This study compares the colouring capacity of Brevibacterium aurantiacum (BA), Brevibacterium BL and Arthrobacter species AS in relation to deacidified media made from lactic curd (Epoisses), mixed curds (Munster) and rennet curds (Livarot or Reblochon). BA colouring capacity proved to be constant, leading to a dark orange colour, irrespective of the deacidified media. However, it gave too dark a colour for Reblochon. The strains BL and AS were not adapted to the colouring of Epoisses deacidified medium. On the Livarot or Munster deacidified medium, these two strains provided a light yellow orange colour range that was not suitable for these cheeses. However, these two strains (BL and AS) produced a suitable colour for Reblochon deacidified medium.

  13. Brevibacterium rufescens nov. comb. , a facultative anaerobic methylotrophic bacterium from oil-bearing strata

    Energy Technology Data Exchange (ETDEWEB)

    Nazina, T.N.

    1981-03-01

    The paper presents the results of studying the bacterial population from the microaerophilic zone of oil-bearing strata of the Apsheron Peninsula. The incidence of bacteria capable of growing at the account of organic substances present in stratal water could reach dozens of thousands of cells in 1 ml. A bacterium predominant in the bacterial cenosis of the microaerophilic zone was islated as a pure culture. A new combination, Brevibacterium rufescens nov. comb. was created on the basis of morphological, physiologo-biochemical properties and the GC content in the DNA of the organism under study. The microorganism is adapted to its habitat in a number of properties. The necessity of recreating the genus Brevibacterium is discussed.

  14. Coenzyme precursor-assisted expression of a cholesterol oxidase from Brevibacterium sp. in Escherichia coli.

    Science.gov (United States)

    Wang, Longgang; Wang, Wu

    2007-05-01

    The gene (choB(b)), encoding cholesterol oxidase from Brevibacterium sp. CCTCC M201008, was cloned and sequenced by PCR (GenBank accession number: DQ345780). The gene consists of 1653 base pairs and encodes a protein of 551 amino acids. ChoB(b) exhibited a homology of 98% with cholesterol oxidase gene from Brevibacterium sterolicum ATCC 21387. The cholesterol oxidase gene, cloned in the vector pET-28a, was over-expressed in Escherichia coli BL21-CodonPlus (DE3)-RP grown at 23 degrees C in Luria-Bertani medium containing 50 microM riboflavin, the precursor of the FAD coenzyme of the enzyme. A maximum activity of 3.7 U/mg was obtained from cell free extract of E. coli BL21-CodonPlus (DE3)-RP harboring the pET-28a-choB(b).

  15. Cloning and expression in Escherichia coli of genes involved in the lysine pathway of Brevibacterium lactofermentum.

    Science.gov (United States)

    Márquez, G; Sousa, J M; Sánchez, F

    1985-01-01

    The Brevibacterium lactofermentum genes which complement Escherichia coli lysA and asd-1 mutants were identified, respectively, as a 1.9-kilobase PstI-ClaI fragment and a 2.5-kilobase PstI fragment by cloning into pBR325. Southern blot transfers show hybridization to chromosomal fragments of identical size. The putative B. lactofermentum asd and lysA products are 44 and 48 kilodaltons, respectively. Images PMID:2864331

  16. Transcriptional analysis and regulatory signals of the hom-thrB cluster of Brevibacterium lactofermentum.

    Science.gov (United States)

    Mateos, L M; Pisabarro, A; Pátek, M; Malumbres, M; Guerrero, C; Eikmanns, B J; Sahm, H; Martín, J F

    1994-01-01

    Two genes, hom (encoding homoserine dehydrogenase) and thrB (encoding homoserine kinase), of the threonine biosynthetic pathway are clustered in the chromosome of Brevibacterium lactofermentum in the order 5' hom-thrB 3', separated by only 10 bp. The Brevibacterium thrB gene is expressed in Escherichia coli, in Brevibacterium lactofermentum, and in Corynebacterium glutamicum and complements auxotrophs of all three organisms deficient in homoserine kinase, whereas the Brevibacterium hom gene did not complement two different E. coli auxotrophs lacking homoserine dehydrogenase. However, complementation was obtained when the homoserine dehydrogenase was expressed as a fusion protein in E. coli. Northern (RNA) analysis showed that the hom-thrB cluster is transcribed, giving two different transcripts of 2.5 and 1.1 kb. The 2.5-kb transcript corresponds to the entire cluster hom-thrB (i.e., they form a bicistronic operon), and the short transcript (1.1 kb) originates from the thrB gene. The promoter in front of hom and the hom-internal promoter in front of thrB were subcloned in promoter-probe vectors of E. coli and corynebacteria. The thrB promoter is efficiently recognized both in E. coli and corynebacteria, whereas the hom promoter is functional in corynebacteria but not in E. coli. The transcription start points of both promoters have been identified by primer extension and S1 mapping analysis. The thrB promoter was located in an 87-bp fragment that overlaps with the end of the hom gene. A functional transcriptional terminator located downstream from the cluster was subcloned in terminator-probe vectors. Images PMID:7961509

  17. [Pathway analysis for production of L-leucine by Brevibacterium flavum TK0303].

    Science.gov (United States)

    Liu, Hui; Chen, Ning; Wen, Ting-yi

    2007-04-01

    Brevibacterium flavum is used for the production of a number of amino acids in the biotechnology industry. The yield of producing a metabolite is ultimately limited by the ability of the central metabolism and the desired biosynthesis pathway. Pathway analysis is a very useful tool for metabolic engineering, which can be applied to increase the yield of a metabolite or channeling a metabolite into desired pathways. It does not require any kinetic parameters and only uses the Stoichiometric equations. Pathway analysis for production of L-leucine by Brevibacterium flavum TK0303 at steady state was conducted in this paper. Theoretical yield and flux distribution for optimal pathway were determined. It is also concluded that pyruvate and acetyl-coenzyme A are the key nodes of the L-leucine biosynthesis pathway by analyzing the flux distributions of different modes. According to the pathway analysis, the production of L-leucine is expected to be raised by strengthening the flux of the key nodes (pyruvate and acetyl-coenzyme A) through changing the environmental factors. Because the flux of TCA cycle in Brevibacterium flavum TK0303 is weak, the production of L-leucine must be provided enough amido by adding glutamic acid to the fermentation medium. NH4Ac is both a carbon source and a nitrogen source, which could be helpful to the production of L-leucine. The effects of glutamic acid and NH4Ac on the production of L-leucine were further studied. The production of L-leucine increased 56% by adding glutamic acid. By improving the concentration of NH4Ac, the biosynthesis of L-leucine was greatly strengthened too. The results indicate that the flux of L-leucine can be largely increased by changing the chemical regulatory factors such as NH4Ac and glutamic acid and the modes established by pathway analysis prove to be efficient to describe the metabolic network of L-leucine production by Brevibacterium flavum TK0303.

  18. Brevibacterium ammoniilyticum sp. nov., an ammonia-degrading bacterium isolated from sludge of a wastewater treatment plant.

    Science.gov (United States)

    Kim, Jinsoo; Srinivasan, Sathiyaraj; You, Taek; Bang, John J; Park, Sujeong; Lee, Sang-Seob

    2013-03-01

    A Gram-stain-positive, non-motile, chemo-organotrophic, mesophilic, aerobic bacterium, designated A1(T), was isolated from sludge of a wastewater treatment plant. Strain A1(T) showed good ability to degrade ammonia and grew well on media amended with methanol and ammonia. Strain A1(T) grew with 0-11 % (w/v) NaCl, at 20-42 °C, but not 45 °C and at pH 6-10 (optimum pH 8.0-9.0). The isolate was catalase-positive and oxidase-negative. The DNA G+C content was 70.7 mol%. A comparative analysis of 16S rRNA gene sequences revealed that strain A1(T) formed a distinct phyletic lineage in the genus Brevibacterium and showed high sequence similarity with Brevibacterium casei NCDO 2048(T) (96.9 %), Brevibacterium celere KMM 3637(T) (96.9 %) and Brevibacterium sanguinis CF63(T) (96.4 %). DNA-DNA hybridization revealed Brevibacterium was supported by the chemotaxonomic data: predominant quinone menaquinone MK-7(H2); polar lipid profile containing diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid; characteristic cell-wall diamino acid meso-diaminopimelic acid; whole-cell sugars galactose, xylose and ribose; absence of mycolic acids; and major fatty acids iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The results of physiological and biochemical tests allowed phenotypic differentiation of strain A1(T) from members of the genus Brevibacterium. On the basis of the results in this study, a novel species, Brevibacterium ammoniilyticum sp. nov., is proposed. The type strain is A1(T) ( = KEMC 41-098(T)  = JCM 17537(T)  = KACC 15558(T)).

  19. Brevibacterium yomogidense sp. nov., isolated from a soil conditioner made from poultry manure.

    Science.gov (United States)

    Tonouchi, Akio; Kitamura, Koji; Fujita, Takashi

    2013-02-01

    A novel Gram-stain-positive rod-shaped actinobacterium was isolated from a soil conditioner made from poultry manure. The isolate, designated strain MN-6-a(T), contained anteiso-C(15 : 0) and anteiso-C(17 : 0) as the major fatty acids, and MK-7(H(2)) and MK-8(H(2)) as the major menaquinones. Phosphatidylglycerol was a major polar lipid. The G+C content of the genomic DNA was 67.4 mol%. Phylogenetic analysis showed that strain MN-6-a(T) was closely related to Brevibacterium salitolerans TRM 415(T) with 97.1 % 16S rRNA gene sequence similarity. DNA-DNA hybridization showed that strain MN-6-a(T) had 10.2 % genomic relatedness with B. salitolerans TRM 415(T). On the basis of phenotypic, phylogenetic and chemotaxonomic data obtained in this study, strain MN-6-a(T) represents a novel species of the genus Brevibacterium, for which the name Brevibacterium yomogidense sp. nov. is proposed. The type strain is MN-6-a(T) ( = JCM 17779(T) = DSM 24850(T)).

  20. Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga.

    Science.gov (United States)

    Ivanova, Elena P; Christen, Richard; Alexeeva, Yulia V; Zhukova, Natalia V; Gorshkova, Natalia M; Lysenko, Anatoly M; Mikhailov, Valery V; Nicolau, Dan V

    2004-11-01

    Two whitish yellow, Gram-positive, non-motile, aerobic bacteria were isolated from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The bacteria studied were chemo-organotrophic, mesophilic and grew well on nutrient media containing up to 15 % (w/v) NaCl. The DNA G+C content was 61 mol%. The two isolates exhibited a conspecific DNA-DNA relatedness value of 98 %, indicating that they belong to the same species. A comparative analysis of 16S rRNA gene sequences revealed that strain KMM 3637(T) formed a distinct phyletic lineage in the genus Brevibacterium (family Brevibacteriaceae, class Actinobacteria) and showed the highest sequence similarity (about 97 %) to Brevibacterium casei. DNA-DNA hybridization experiments demonstrated 45 % binding with the DNA of B. casei DSM 20657(T). Physiological and chemotaxonomic characteristics (meso-diaminopimelic acid in the peptidoglycan, major cellular fatty acids 15 : 0ai and 17 : 0ai) of the bacteria studied were consistent with the genomic and phylogenetic data. On the basis of the results of this study, a novel species, Brevibacterium celere sp. nov., is proposed. The type strain is KMM 3637(T) (=DSM 15453(T)=ATCC BAA-809(T)).

  1. Brevibacterium siliguriense sp. nov., a facultatively oligotrophic bacterium isolated from river water.

    Science.gov (United States)

    Kumar, Arvind; Ince, İkbal Agah; Katı, Ahmet; Chakraborty, Ranadhir

    2013-02-01

    A Gram-positive-staining, rod-shaped, facultatively oligotrophic bacterial strain, designated MB18(T), was isolated from a water sample collected from the River Mahananda at Siliguri (26° 44' 23.20' N, 88° 25' 22.89' E), West-Bengal, India. On the basis of 16S rRNA gene sequence similarity, the closest relative of this strain was Brevibacterium epidermidis NCDO 2286(T) (96 % similarity). The DNA G+C content of strain MB18(T) was 64.6 mol%. Chemotaxonomic data [MK-8(H(2)) as the major menaquinone, galactose as the sole cell-wall sugar, meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, phosphatidylglycerol and diphosphatidylglycerol as constituents of the polar lipids, anteiso-C(15 : 0), anteiso-C(17 : 0) and iso-C(15 : 0) as the major fatty acids] supported the affiliation of strain MB18(T) to the genus Brevibacterium. The results of DNA G+C content, 16S rRNA gene sequence analysis and biochemical and physiological analyses allowed genotypic and phenotypic differentiation of strain MB18(T) from its nearest neighbour B. epidermidis. The isolate therefore represents a novel species, for which the name Brevibacterium siliguriense sp. nov. is proposed; the type strain is MB18(T) ( = DSM 23676(T) = LMG 25772(T)).

  2. Efficient utilization of ectoine by halophilic Brevibacterium species and Escherichia coli subjected to osmotic downshock.

    Science.gov (United States)

    Nagata, Shinichi; Wang, Chenxiang

    2005-01-01

    Halophilic and non-halophilic bacteria subjected to osmotic downshock, from 0.7 M NaCl to deionized water, were examined for their survival, with the uptake and utilization of the cyclic amino acid ectoine, one of the representative compatible solutes, being taken into account. The uptake of ectoine added externally and survival of the cells were monitored as a function of incubation time in the presence and absence of NaCl. The halophilic Brevibacterium sp. JCM 6894 and B. epidermidis JCM 2593 actively accumulated ectoine regardless of the presence of NaCl, which led to cell survival. Brevibacterium casei JCM 2594 belonging to the same Brevibacterium species, however, revealed Na+-dependence of its uptake activity of ectoine. Non-halophilic Escherichia coli K-12 did not accumulate ectoine, and thereby this strain failed to survive irrespective of whether NaCl was present. The physiological meanings of the downshock procedure are discussed in connection with the uptake and the subsequent utilization of ectoine.

  3. Enzymes involved in 3,5-diaminohexanoate degradation by Brevibacterium sp.

    Science.gov (United States)

    Barker, H A; Kahn, J M; Chew, S

    1980-01-01

    Cell-free extracts of Brevibacterium sp. L5 grown on DL-erythro-3,5-diaminohexanoate were found to contain a 3-keto-5-aminohexanoate cleavage enzyme that converts 3-keto-5-aminohexanoate and acetyl-coenzyme A (CokA) to 3-aminobutyryl-CoA and acetoacetate and a deaminase that coverts L-3-aminobutyryl-CoA to crotonyl-CoA. The cleavage enzyme has been purified extensively, and some of its properties have been determined for comparison with the 3-keto-6-acetamido-hexanoate cleavage enzyme of Pseudomonas sp. B4. The deaminase has been partially purified and characterized. Both the cleavage enzyme and the deaminase are induced by growth on 3,5-diaminohexanoate. The presence of these and other accessory enzymes in Brevibacterium sp. extracts accounts for the results of earlier tracer experiments which showed that C-1 and C-2 of 3-keto-5-aminohexanoate are converted mainly to acetoacetate and acetate, whereas C-3 to C-6 are converted mainly to 3-hydroxybutyrate or its coenzyme A thiolester. The enzymes observed in extracts of Brevibacterium sp. can account for the conversion of 3,5-diaminohexanoate to acetyl-CoA. PMID:7410315

  4. Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection.

    Science.gov (United States)

    Liu, Long; Yang, Haiquan; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-11-01

    Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces.

  5. Consecutive episodes of peritonitis in a patient undergoing peritoneal dialysis caused by unusual organisms: Brevibacterium and Pantoea agglomerans

    Directory of Open Access Journals (Sweden)

    Joon Seok Choi

    2012-06-01

    Full Text Available A 52-year-old man undergoing continuous ambulatory peritoneal dialysis presented with two consecutive episodes of peritonitis caused by unusual organisms, namely, Brevibacterium and Pantoea agglomerans. The patient was successfully treated with a 2-week course of cefazolin and ceftazidime for the Brevibacterium-associated peritonitis, and a 3-week course of gentamicin for the P. agglomerans-associated peritonitis. Although these environmental organisms are rarely responsible for human infection, the number of reported cases of human infection by these unusual organisms has increased. This report emphasizes the potential for infection by environmental organisms in patients undergoing peritoneal dialysis.

  6. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature.

    Science.gov (United States)

    Suutari, M; Laakso, S

    1992-01-01

    Streptomyces griseus showed three different modes of changing fatty acids in response to temperature change. In Brevibacterium fermentans, two such responses were found. The responses involved changes in fatty acid branching, unsaturation, or chain length, depending on growth temperature range. Changes in unsaturation of branched-chain acids were characteristic at low growth temperatures. PMID:1637171

  7. Bioremediation of hexavalent chromate using permeabilized Brevibacterium sp. and Stenotrophomonas sp. cells.

    Science.gov (United States)

    Ge, Shimei; Ge, Shichao; Zhou, Maohong; Dong, Xinjiao

    2015-07-01

    Bioremediation has been found to be a useful method for removing hexavalent chromium (Cr(VI)), which is very toxic, from wastewater. Two strains of bacteria that were able to reduce Cr(VI) effectively were isolated from Cr(VI) contaminated soil samples and identified as Brevibacterium sp. K1 and Stenotrophomonas sp. D6, respectively, based on 16S rRNA gene sequence analyses. Brevibacterium sp. K1 and Stenotrophomonas sp. D6 could grow in Luria-Broth medium containing K2Cr2O7 at 1000 and 1600 mg/L, respectively, and they completely reduced the Cr(VI) in LB medium containing K2Cr2O7 at 200 mg/L within 72 h. Further analyses revealed that permeabilized K1 and D6 cells reduced Cr(VI) more effectively than did the resting cells. Triton X-100 was the best permeabilizing agent that was tested. The permeabilized cells of both strains could completely reduce Cr(VI) in industrial wastewater twice before needing to be replenished. The results suggested that these chromate-reducing bacteria are potential candidates for practical use biotreating industrial effluents containing Cr(VI) with Stenotrophomonas sp. D6 being the more effective bacterium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The first reported catheter-related Brevibacterium casei bloodstream infection in a child with acute leukemia and review of the literature

    National Research Council Canada - National Science Library

    Bal, Zumrut Sahbudak; Sen, Semra; Karapinar, Deniz Yilmaz; Aydemir, Sohret; Vardar, Fadil

    2015-01-01

    Brevibacterium spp. are catalase-positive, non-spore-forming, non motile, aerobic Gram-positive rods that were considered apathogenic until a few reports of infections in immunocompromised patients had been published...

  9. Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei.

    Science.gov (United States)

    Kiran, George Seghal; Sabarathnam, Balu; Selvin, Joseph

    2010-08-01

    The antibiofilm activity of a glycolipid biosurfactant isolated from the marine actinobacterium Brevibacterium casei MSA19 was evaluated against pathogenic biofilms in vitro. The isolate B. casei MSA19 was a potential biosurfactant producer among the 57 stable strains isolated from the marine sponge Dendrilla nigra. The biosurfactant production was optimized under submerged fermentation. The purified glycolipid showed a broad spectrum of antimicrobial activity. Based on the minimum inhibitory concentration/minimum bactericidal concentration ratio, the glycolipid was determined as bacteriostatic. The glycolipid biosurfactant disrupted the biofilm formation under dynamic conditions. The disruption of the biofilm by the MSA19 glycolipid was consistent against mixed pathogenic biofilm bacteria. Therefore, the glycolipid biosurfactant can be used as a lead compound for the development of novel antibiofilm agents.

  10. Brevibacterium frigoritolerans as a Novel Organism for the Bioremediation of Phorate.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Mandal, Kousik; Jindal, Vikas

    2015-11-01

    Phorate, an organophosphorus insecticide, has been found effective for the control of various insect pests. However, it is an extremely hazardous insecticide and causes a potential threat to ecosystem. Bioremediation is a promising approach to degrade the pesticide from the soil. The screening of soil from sugarcane fields resulted in identification of Brevibacterium frigoritolerans, a microorganism with potential for phorate bioremediation was determined. B. frigoritolerans strain Imbl 2.1 resulted in the active metabolization of phorate by between 89.81% and 92.32% from soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil). But in case of control soil, 33.76%-40.92% degradation were observed. Among metabolites, sulfone was found as the main metabolite followed by sulfoxide. Total phorate residues were not found to follow the first order kinetics. This demonstrated that B. frigoritolerans has potential for bioremediation of phorate both in liquid cultures and agricultural soils.

  11. Transcriptional analysis of L-methionine catabolism in Brevibacterium linens ATCC9175.

    Science.gov (United States)

    Cholet, Orianne; Hénaut, Alain; Bonnarme, Pascal

    2007-04-01

    The expression of genes possibly involved in L-methionine and lactate catabolic pathways were performed in Brevibacterium linens (ATCC9175) in the presence or absence of added L-methionine. The expression of 27 genes of 39 selected genes differed significantly in L-methionine-enriched cultures. The expression of the gene encoding L-methionine gamma-lyase (MGL) is high in L-methionine-enriched cultures and is accompanied by a dramatic increase in volatile sulfur compounds (VSC) biosynthesis. Several genes encoding alpha-ketoacid dehydrogenase and one gene encoding an acetolactate synthase were also up-regulated by L-methionine, and are probably involved in the catabolism of alpha-ketobutyrate, the primary degradation product of L-methionine to methanethiol. Gene expression profiles together with biochemical data were used to propose catabolic pathways for L-methionine in B. linens and their possible regulation by L-methionine.

  12. Multiple sigma factor genes in Brevibacterium lactofermentum: characterization of sigA and sigB.

    Science.gov (United States)

    Oguiza, J A; Marcos, A T; Malumbres, M; Martín, J F

    1996-01-01

    Four rpoD hybridizing signals have been identified in the chromosome of Brevibacterium lactofermentum. Two rpoD-like genes, sigA and sigB, have been cloned and sequenced, and they encode principal sigma factors of the RNA polymerase. The deduced amino acid sequences of SigA and SigB showed very high similarities to those of Mycobacterium smegmatis MysA and MysB proteins, respectively, and also to those of HrdB proteins from different Streptomyces species. SigA and SigB maintain the conserved motifs of sigma 70-like principal sigma factors. sigB is closely linked to the dtxR gene (encoding a repressor of iron-regulated promoters homologous to the diphtheria toxin repressor from Corynebacterium diphtheriae. PMID:8550480

  13. Medium optimization of protease production by Brevibacterium linens DSM 20158, using statistical approach

    Directory of Open Access Journals (Sweden)

    Khadija Shabbiri

    2012-09-01

    Full Text Available Various cultivation parameters were optimized for the production of extra cellular protease by Brevibacterium linens DSM 20158 grown in solid state fermentation conditions using statistical approach. The cultivation variables were screened by the Plackett-Burman design and four significant variables (soybean meal, wheat bran, (NH42SO4 and inoculum size were further optimized via central composite design (CCD using a response surface methodological approach. Using the optimal factors (soybean meal 12.0g, wheat bran 8.50g, (NH42SO4 0.45g and inoculum size 3.50%, the rate of protease production was found to be twofold higher in the optimized medium as compared to the unoptimized reference medium.

  14. Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex.

    Science.gov (United States)

    Kawaguchi, A; Okuda, S

    1977-01-01

    A multienzyme fatty acid synthetase complex isolated from Brevibacterium ammoniagenes has been purified to a specific activity of 1440 nmol of malonyl-CoA incorporated per min/mg. The enzyme is homogeneous, as judged by gel electrophoresis on agarose gels, and has a molecular weight of 1.2 X 10(6). Both NADPH and NADH are required for activity. In contrast to other fatty acid synthetase complexes, the enzyme catalyzes the synthesis of both long-chain saturated and monounsaturated fatty acids from malonyl-CoA and acetyl-CoA. The formation of unsaturated fatty acids is oxygen-independent and sharply reduced by 3-decynoyl-N-acetylcysteamine, a known inhibitor of Escherchia coli beta-hydroxydecanoyl thioester dehydrase (EC 4.2.1.60). PMID:20622

  15. High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA.

    Science.gov (United States)

    Santamaria, R I; Gil, J A; Martin, J F

    1985-01-01

    An efficient polyethylene glycol-assisted method for transformation of Brevibacterium lactofermentum protoplasts that uses plasmid vectors has been developed. Two small plasmids, pUL330 (5.2 kilobases) and pUL340 (5.8 kilobases), both containing the kanamycin resistance gene from transposon Tn5 and the replication origin of the natural plasmid pBL1 of B. lactofermentum, were selected as vectors. Supercoiled forms of the plasmids yielded a 100-fold higher transformation frequency than did linear forms. The optimal transformation frequency was achieved with 10 ng of DNA in 1 ml of transformation buffer. Higher concentrations of plasmid DNA resulted in a decrease in transformation frequency per microgram of DNA. Optimal transformation was obtained with 25 to 35% polyethylene glycol 6000. Under optimal conditions, 10(6) transformants per microgram of DNA were obtained. PMID:3980445

  16. Enhanced dibenzothiophene biodesulfurization by immobilized cells of Brevibacterium lutescens in n-octane-water biphasic system.

    Science.gov (United States)

    Dai, Yong; Shao, Rong; Qi, Gang; Ding, Bin-Bin

    2014-11-01

    In this study, it was the first report that the Brevibacterium lutescens CCZU12-1 was employed as a sulfur removing bacteria. Using dibenzothiophene (DBT) as the sole sulfur source, B. lutescens could selectively degrade DBT into 2-hydroxybiphenyl (2-HBP) via the "4S" pathway. In the basal salt medium (BSM) supplemented with 0.25 mM DBT and 0.5 g/L Tween-80, high desulfurization rate (100 %) was obtained by growth cells after 60 h. Furthermore, the n-octane-water (10:90, v/v) biphasic system was built for the biodesulfurization by resting cells. Moreover, a combination of magnetic nano Fe3O4 particles with calcium alginate immobilization was used for enhancing biodesulfurization. In this n-octane-water biphasic system, immobilized B. lutescens cells could be reused for not less than four times. Therefore, B. lutescens CCZU12-1 shows high potential in the biodesulfurization.

  17. THE IMPACT OF SUPERHIGH FREQUENCY ELECTROMAGNETIC RADIATION ON THREONINE PRODUCER Brevibacterium flavum

    Directory of Open Access Journals (Sweden)

    L. V. Marynchenko

    2016-12-01

    Full Text Available The aim of the research was the impact of non-thermal electromagnetic radiation of superhigh frequencies with waves of millimeter range on threonine amino acid synthesis by bacteria Brevibacterium flavum for ordinary (not mutant and mutant strains. The frequencies of millimeter range waves were selected according to previous works as 41.76; 42.2 and 61.0 GHz. The exposition was 10 min. The control samples of bacterial suspension in the flasks were kept under the same conditions as the test ones. Irradiated suspensions were used as inoculum for fermentation on molasses wort at t = +30 ºC with aeration. After cultivation for 3 days the samples irradiated with frequency 42.2 and 61.0 GHz gave an increase in colonies forming units, respectively, 1.4 and 1.9 times compared to the control for the non-mutant strain. The quantity of synthesized threonine was determined by thin-layer chromatography on the plates of ciluprevir. A significant increase of the threonine content in the culture fluid was observed for the non-mutant strain (70% compared to control after the irradiation with frequency 61.0 GHz. The splitting of the colonies planted pigmentation was observed: the control samples were mostly pigmentated, and irradiated bacteria lost this ability immediately after exposure, but after the culturing the irradiated samples restored pigmentation. The pigmentation ability was confirmed by the data on the accumulation threonine in the culture fluid. The Brevibacterium flavum mutant strain did not respond to the irradiation, this influence was negative for generative abilities and accumulation of threonine in the culture fluid.

  18. Engineering Brevibacterium flavum for the production of renewable bioenergy: C4-C5 advanced alcohols.

    Science.gov (United States)

    Su, HaiFeng; Lin, JiaFu; Wang, YuanHong; Chen, Qiao; Wang, GuangWei; Tan, FuRong

    2017-09-01

    Biosynthesis of advanced biofuels by engineered non-natural microorganisms has been proposed to be the most promising approach for the replacement of dwindling fossil fuel resources. Brevibacterium flavum (Bf) is a model brevibacterium aerobe which lacks basic and applied research that could enable this species to produce biofuels. There are no reports regarding engineering this microorganism to produce advanced alcohols before. Here, for the first time, we developed the bacterium as a novel biosynthetic platform for advanced alcohols production via the mutagenesis and engineering to produce 2-ketoacids derived alcohols. In order to enhance the strain's capability of producing advanced alcohols, we preferentially improved intrinsic metabolism ability of the strain to obtain improved expression host (IEH) via generating mutagenesis libraries by whole cell mutagenesis (WCM). The IEH was determined via screening out the mutant strain with the highest production of branched-chain organic acids (BCOA) using high throughput screening method.. Subsequently, a novel vector system for Bf was established, and the corresponding biosynthetic pathway of directing carbon flux into the target advanced alcohols was recruited to make the bacterium possess the capability of producing advanced alcohols and further enhance the production using the IEH. Specifically, we generated bioengineered strains that were able to synthesize up to the highest 5362 and 4976 mg/L isobutanol, 1945 and 1747 mg/L 2-methyl-1-butanol (2 MB), and 785.34 and 781 mg/L 3-methyl-1-butanol (3 MB) from pure glucose and duckweed substrates, respectively. Our findings confirmed the feasibility and potential of using Bf as a novel biosynthetic platform to generate advanced biofuels with glucose and inexpensive renewable feedstock-duckweed as a fermentation substrate. Biotechnol. Bioeng. 2017;114: 1946-1958. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Teichoic, teichulosonic and teichuronic acids in the cell wall of Brevibacterium aurantiacum VKM Ac-2111(Т).

    Science.gov (United States)

    Shashkov, Alexander S; Potekhina, Natalia V; Senchenkova, Sofya N; Evtushenko, Lyudmila I

    2016-02-08

    Two different teichoic acids, along with a teichulosonic and a teichuronic acids, were identified in the cell wall of Brevibacterium aurantiacum VKM Ac-2111(Т). One teichoic acid is 1,3-poly(glycerol phosphate) with 2-acetamido-2-deoxy-α-D-galactopyranose and L-glutamic acid as non-stoichiometric substituents at O-2 of the glycerol residue. The second one is a poly(glycosylglycerol phosphate) with -4)-α-D-Galp-(1 → 2)-sn-Gro-(3-P- and/or -6)-α-D-Galp-(1 → 2)-sn-Gro-(3-P- units in the main chain. The structure of the first has not been reported so far, while the latter one is new for actinobacteria. The teichulosonic acid with α-3-deoxy-β-D-glycero-D-galacto-non-2-ulopyranosonic acid (Kdn) and β-D-glucopyranose residues in the backbone represents a novel polymer: → 8)-α-Kdn-(2 → 6)-β-D-Glcp-(1 →. The teichuronic acid has also hitherto unknown structure: → 3)-β-D-Galf(2OAc)0.3-(1 → 3)-β-D-GlcpА-(1 → and is found in members of the genus Brevibacterium for the first time. The polymer structures were elucidated using 1D- and 2D-NMR spectroscopy: (1)H,(1)H COSY, TOCSY, ROESY, (1)H,(13)C HSQC, HSQC-TOCSY, and (1)H,(13)C and (1)H,(31)P HMBC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biosynthesis of benzoylformic acid from benzoyl cyanide with a new bacterial isolate of Brevibacterium sp. CCZU12-1.

    Science.gov (United States)

    He, Yu-Cai; Pan, Xue-He; Xu, Xiao-Feng; Wang, Li-Qun

    2014-03-01

    Brevibacterium sp. CCZU12-1 with high nitrilase activity could effectively hydrolyze benzoyl cyanide into benzoylformic acid. After the culture optimization, the preferred carbon sources, nitrogen sources, and inducer were glucose (10 g/L), a composite of peptone (10 g/L) plus yeast extract (2.5 g/L), and ε-caprolactam (2.0 mM), respectively. After the reaction optimization, the optimum reaction temperature, reaction pH, organic cosolvent, and metal ion were 30 °C, 7.0, ethanol (2%, v/v), and Ca(2+) (0.1 mM), respectively. At biotransformation of 120-mM benzoyl cyanide for 24 h, the yield of benzoylformic acid reached 91.8%. Moreover, the microbial nitrilase from Brevibacterium sp. CCZU12-1 could hydrolyze various nitriles, and it significantly exhibited high nitrilase activity against benzoyl cyanide, 3-cyanopyridine, and α-cyclohexyl-mandelonitrile.

  1. [Effect of cultivation parameters of antarctic strains Enterobacter hormaechei and Brevibacterium antarcticumon resistant to copper(II) ions].

    Science.gov (United States)

    Tashyreva, H O; Iutyns'ka, H O; Tashyrev, O B

    2009-01-01

    Enterobacter hormaechei and Brevibacterium antarcticum strains isolated from ornithogenic soils of Galindez Island (West Antarctica) were investigated for their resistance to Cu2+ cations and for their capacity to Cu2+ uptake from the environment. The studied strains are capable to grow in the concentration range of copper 100-1100 mg/l and to extract 11-75% of Cu2+ from the environment depending on cultivation parameters and copper output concentration in the culture medium.

  2. Some enzymatic properties of cholesterol oxidase produced by Brevibacterium sp Algumas propriedades enzimáticas da colesterol oxidase produzida por Brevibacterium sp.

    Directory of Open Access Journals (Sweden)

    Terezinha J.G. Salva

    1999-12-01

    Full Text Available In this study we determined some properties of the cholesterol oxidase from a Brevibacterium strain isolated from buffalo's milk and identified the cholesterol degradation products by the bacterial cell. A small fraction of the enzyme synthesized by cells cultured in liquid medium for 7days was released into the medium whereas a larger fraction remained bound to the cell membrane. The extraction of this fraction was efficiently accomplished in 1 mM phosphate buffer, pH 7.0, containing 0.7% Triton X-100. The enzyme stability under freezing and at 45oC was improved by addition of 20% glycerol. The optimum temperature and pH for the enzyme activity were 53°C and 7.5, respectively. The only steroidal product from cholesterol oxidation by the microbial cell and by the crude extract of the membrane-bound enzyme was 4-colesten-3-one. Chromatographic analysis showed that minor no steroidal compounds as well as 4-colesten-3-one found in the reaction media arose during fermentation process and were extracted together with the enzyme in the buffer solution. Cholesterol oxidation by the membrane-bound enzyme was a first order reaction type.Neste trabalho foram definidas algumas propriedades da enzima colesterol oxidase produzida por uma linhagem de Brevibacterium sp. isolada de leite de búfala e foram identificados os compostos resultantes da degradação do colesterol pela bactéria. Uma pequena fração da enzima sintetizada pelas células cultivadas em meio líquido por 7 dias foi liberada no meio de cultura e uma fração maior permaneceu ligada à membrana celular. A extração desta fração foi eficientemente efetuada em tampão fosfato 1mM, pH 7,0, contendo 0,7% de triton X-100. A estabilidade da enzima congelada e a 45oC foi aumentada pela adição de 20% de glicerol. A temperatura ótima para a atividade enzimática esteve ao redor de 53(0C e o pH ótimo esteve ao redor de 7,5. O único produto da degradação do colesterol, causada pela a

  3. Calcite dissolution by Brevibacterium sp. SOTI06: A futuristic approach for the reclamation of calcareous sodic soils

    Directory of Open Access Journals (Sweden)

    Tamilselvi S.M

    2016-12-01

    Full Text Available Assessing the ability of soil microorganisms to dissolute poorly soluble native calcite to supply Ca2+ is a new area to be explored in reclaiming sodic soils by supplying adequate Ca2+ and reducing the recurrent sodicity. Hence, the present study aimed to isolate a calcite dissolving bacteria (CDB from calcareous sodic soils and to understand the mechanism of calcite dissolution. Of the thirty three CDB isolates recovered from the calcareous sodic soils of Tamil Nadu (Coimbatore, Ramnad and Trichy, eleven isolates were screened for calcite dissolution based on titratable acidity. 16S rRNA gene sequence analysis of the three best isolates viz., SORI09, SOTI05 and SOTI06 revealed 99 % similarity to Bacillus aryabhattai, 100 % to B. megaterium and 93 % to Brevibacterium sp., respectively. Among them, Brevibacterium sp. SOTI06 released more Ca2+ (3.6 g.l-1 by dissolving 18.6 % of the native calcite. The spectral data of FTIR also showed reduction in the intensity of calcite (55.36 to 41.27 by the isolate at a wave number of 1636 cm-1 which confirmed the dissolution. Besides producing organic acids (gluconic acid and acetic acid, Brevibacterium sp. SOTI06 also produced siderophore (91.6 % and extracellular polysaccharides (EPS, 13.3 µg. ml-1 which might have enhanced the calcite dissolution.

  4. Application of Streptomyces and Brevibacterium cholesterol oxidase for total serum cholesterol assay by the enzymatic kinetic method.

    Science.gov (United States)

    Srisawasdi, Pornpen; Jearanaikoon, Patcharee; Wetprasit, Nuanchawee; Sriwanthana, Busarawan; Kroll, Martin H; Lolekha, Porntip H

    2006-10-01

    Using non-esterified cholesterol standard, Brevibacterium and Streptomyces are found as suitable sources of cholesterol oxidase for kinetic cholesterol assay. For clinical use, we investigated the suitability of these enzymes for cholesterol determination in human serum. We compared the performance of reagents containing 2 enzymes for the kinetic determination of total serum cholesterol with the standardized endpoint method. Reagent containing Streptomyces enzyme was more sensitive than that of Brevibacterium, with linearity up to 20.7 and 2.6 mmol/l, respectively. The analytical reaction for Streptomyces showed a shorter lag phase (148 s) and a steeper slope (absorbance vs. time) than that of Brevibacterium (246 s). The assay using Streptomyces reagent was precise and accurate and compared favorably with the endpoint method (y=1.06x-0.15, r=0.996, bias=0.21 mmol/l). Hemoglobin as high as 7.5 g/l did not interfere while turbidity greater than 2+ (absorbance >0.778 at 670 nm) and bilirubin concentrations >171.0 micromol/l did interfere (in a negative interference). Reagent was stable up to at least 8 weeks. The Streptomyces cholesterol oxidase, with 3,4-dichlorophenol, proved a suitable source for serum total cholesterol determination by the kinetic method.

  5. Calcite Dissolution by Brevibacterium sp. SOTI06: A Futuristic Approach for the Reclamation of Calcareous Sodic Soils.

    Science.gov (United States)

    Tamilselvi, S M; Thiyagarajan, Chitdeshwari; Uthandi, Sivakumar

    2016-01-01

    Assessing the ability of soil microorganisms to dissolute poorly soluble native calcite to supply Ca2+ is a new area to be explored in reclaiming sodic soils by supplying adequate Ca2+ and reducing the recurrent sodicity. Hence, the present study aimed to isolate a calcite dissolving bacteria (CDB) from calcareous sodic soils and to understand the mechanism of calcite dissolution. Of the 33 CDB isolates recovered from the calcareous sodic soils of Tamil Nadu (Coimbatore, Ramnad, and Trichy), 11 isolates were screened for calcite dissolution based on titratable acidity. 16S rRNA gene sequence analysis of the three best isolates viz., SORI09, SOTI05, and SOTI06 revealed 99% similarity to Bacillus aryabhattai, 100% to B. megaterium, and 93% to Brevibacterium sp., respectively. Among them, Brevibacterium sp. SOTI06 released more Ca2+ (3.6 g.l-1) by dissolving 18.6% of the native calcite. The spectral data of FTIR also showed reduction in the intensity of calcite (55.36-41.27) by the isolate at a wave number of 1636 cm-1 which confirmed the dissolution. Besides producing organic acids (gluconic acid and acetic acid), Brevibacterium sp. SOTI06 also produced siderophore (91.6%) and extracellular polysaccharides (EPS, 13.3 μg. ml-1) which might have enhanced the calcite dissolution.

  6. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.

    Science.gov (United States)

    Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, Ana

    2017-12-21

    Biological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH4-N, and Ca2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite.

  7. Kinetic and thermodynamic characterization of lysine production process in Brevibacterium lactofermentum.

    Science.gov (United States)

    Ahmed, Sibtain; Afzal, Munazza; Rajoka, Muhammad Ibrahim

    2013-05-01

    Detailed kinetic and thermodynamic parameters for lysine production from Brevibacterium lactofermentum are investigated for the first time in this study. Production of the essential amino acid, L-lysine, by B. lactofermentum was assessed in a flask and a continuously stirred tank fermentor (22 L). Maximum lysine production was achieved after 40 h of growth and at 35 °C. The effect of different nitrogen sources such as NH(4)NO(3), (NH(4))(2)SO(4), (NH(4))(2)HPO(4), corn steep liquor, NaNO(3), and urea showed that corn steep liquor gave a better lysine yield. Lysine production was increased when dissolved oxygen was maintained at 50 % saturation. The use of dissolved oxygen was critical for high productivity. This indicates that dissolved oxygen greatly affects L-lysine productivity. Kinetic and thermodynamic parameters during lysine production from molasses and glucose mixture showed that B. lactofermentum efficiently converted the substrate mixture into cell mass and lysine. Kinetic and thermodynamic parameters were significantly higher compared with other microorganisms which may be due to the high metabolic activity of B. lactofermentum. This study will have a significant impact on future strategies for lysine production at industrial scale.

  8. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens.

    Science.gov (United States)

    Valdés-Stauber, N; Scherer, S

    1994-01-01

    Brevibacterium linens M18, isolated from red smear cheese, produces a substance that inhibits the growth of Listeria spp. and several coryneform and other gram-positive bacteria. No gram-negative bacteria were inhibited. The substance is heat labile, sensitive to proteolytic enzymes, and stable between pH 3 and 12. High levels of this bacteriocin, named Linocin M18, were obtained in the stationary growth phase. Linocin M18 was purified by ultrafiltration, ultracentrifugation, and gel filtration chromatography. In its native form, it is a proteinaceous aggregate with a high molecular weight. Fractions with Linocin M18 activity contained particles of 20 to 30 nm in diameter. The bacteriocin consists of a single protein subunit with a molecular mass of 31 kDa and an isoelectric point of 4.5 N-terminal sequence analysis yielded Met-Asn-Asn-Leu-Tyr-Arg-Glu-Leu-Ala-Pro-Ile-Pro-Gly-Pro-Ala-Ala-Ala-Glu- Ile. Significant homology with published sequences was lacking. Images PMID:7986050

  9. Cloning, expression, and characterization of a novel sialidase from Brevibacterium casei.

    Science.gov (United States)

    Wang, Xuedong; Long, Hui; Shen, Danhong; Liu, Long

    2017-03-01

    The sialidase gene from Brevibacterium casei was cloned in pET28a and overexpressed as a histidine-tagged protein in Escherichia coli BL21(DE3). The histidine-tagged sialidase protein was purified and characterized from the crude cell extracts of isopropyl-β-d-thiogalactopyranoside-induced cells using Ni-NTA agarose chromatography. SDS-PAGE using the purified sialidase indicated a single band at 116 kDa. This sialidase showed maximum activity at a pH of 5.5 and temperature of 37 °C. The kinetic parameters Km and Vmax for the artificial substrate 2'-(4-methylumbelliferyl)-α-d-N-acetyl-neuraminic acid sodium salt hydrate were 1.69 × 10-3 mM and 244 mmol·Min-1 ·mg-1 , respectively. The sialidase may catalyze the hydrolysis of terminal sialic acids linked by the α-(2,3) and α-(2,8) linkage of polysialogangliosides, but it does not act on monosialotetrahexosylganglioside (GM1), which offers it a great potential for commercially producing GM1 from polysialogangliosides. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  10. Redesign, reconstruction, and directed extension of the Brevibacterium linens C40 carotenoid pathway in Escherichia coli.

    Science.gov (United States)

    Kim, Se Hyeuk; Park, Yun Hee; Schmidt-Dannert, Claudia; Lee, Pyung Cheon

    2010-08-01

    In this study, the carotenoid biosynthetic pathways of Brevibacterium linens DSMZ 20426 were reconstructed, redesigned, and extended with additional carotenoid-modifying enzymes of other sources in a heterologous host Escherichia coli. The modular lycopene pathway synthesized an unexpected carotenoid structure, 3,4-didehydrolycopene, as well as lycopene. Extension of the novel 3,4-didehydrolycopene pathway with the mutant Pantoea lycopene cyclase CrtY(2) and the Rhodobacter spheroidene monooxygenase CrtA generated monocyclic torulene and acyclic oxocarotenoids, respectively. The reconstructed beta-carotene pathway synthesized an unexpected 7,8-dihydro-beta-carotene in addition to beta-carotene. Extension of the beta-carotene pathway with the B. linens beta-ring desaturase CrtU and Pantoea beta-carotene hydroxylase CrtZ generated asymmetric carotenoid agelaxanthin A, which had one aromatic ring at the one end of carotene backbone and one hydroxyl group at the other end, as well as aromatic carotenoid isorenieratene and dihydroxy carotenoid zeaxanthin. These results demonstrate that reconstruction of the biosynthetic pathways and extension with promiscuous enzymes in a heterologous host holds promise as a rational strategy for generating structurally diverse compounds that are hardly accessible in nature.

  11. Efficient cyclic system to yield ectoine using Brevibacterium sp. JCM 6894 subjected to osmotic downshock.

    Science.gov (United States)

    Nagata, Shinichi; Wang, Yaoqiang; Oshima, Akinobu; Zhang, Linghua; Miyake, Hideyoshi; Sasaki, Hideaki; Ishida, Akio

    2008-03-01

    Brevibacterium sp. JCM 6894 cells grown in the presence of 1.5-2.5 M NaCl for 24 h at 30 degrees C were subjected to the osmotic downshock. Downshocked cells after ectoine release were grown for further 24 h in the fresh medium with same salinity as before shock. When this cyclic system was applied to the strain JCM 6894, the amount of ectoine in the cells increased with an increase of incubation time, which indicates that the cells manipulated by the present conditions were enough active to survive and synthesize ectoine after several times of osmotic downshock. In the presence of 2 M NaCl, the highest yield of ectoine released was achieved in this cyclic system, more than 2.4 g/L during 7 days of incubation. (1)H and (13)C-NMR analyses of solutes released from the cells by the osmotic downshock showed the presence of only ectoine with high purity. Release of ectoine from the cells was carried out within 5 min and its rates were increased by the dilution in the downshock treatment. For the convenience of operations, non-sterilized medium containing 2 M NaCl was examined for the cell growth in the present system, in which almost same level of ectoine yield, release rates, and cell viability were observed as those of sterilized medium. Copyright 2007 Wiley Periodicals, Inc.

  12. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19.

    Science.gov (United States)

    Kiran, G Seghal; Sabu, A; Selvin, Joseph

    2010-08-02

    The surfactants are emerging as potential nanoparticle stabilizing agents, however, the synthetic surfactants are not economically viable as well as they are not environmentally friendly. Therefore, the biosurfactants are emerging as a green alternate for the synthesis and stabilization of nanoparticles. In this report, a glycolipid biosurfactant was produced from sponge-associated marine Brevibacterium casei MSA19 under solid state fermentation using the agro-industrial and industrial waste as substrate. The production was optimized with factors such as oil seed cake as substrate, glucose as carbon source, beef extract as nitrogen source, FeSO(4).7H(2)O as metal, 2% NaCl, pH 7.0 and 30 degrees C. Based on the biochemical composition, TLC chromatogram, FT-IR and GC-MS analysis, the surface active compound produced by the strain MSA19 was elucidated as a glycolipid derivative. The emulsification index of the biosurfactant produced by B. casei MSA19 was invariably high over the synthetic surfactants such as SDS, Tween20 and Tween80. The purified surfactant concentration in the extract was 18 g/L. It was found that the nano-scale silver can be synthesized in reverse micelles using the glycolipid as stabilizer. The silver nanoparticles synthesized in this study were uniform and stable for 2 months. Therefore, the biosurfactant-mediated nanoparticles synthesis can be considered as "green" stabilizer of nanoparticles. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway.

    Science.gov (United States)

    Chen, Shaohua; Dong, Yi Hu; Chang, Changqing; Deng, Yinyue; Zhang, Xi Fen; Zhong, Guohua; Song, Haiwei; Hu, Meiying; Zhang, Lian-Hui

    2013-03-01

    Brevibacterium aureum DG-12, a new bacterial strain isolated from active sludge, was able to degrade and utilize cyfluthrin as a growth substrate in the mineral medium. Response surface methodology using central composite rotatable design of cultural conditions was successfully employed for optimization resulting in 88.6% degradation of cyfluthrin (50mgL(-1)) within 5days. The bacterium degraded cyfluthrin by cleavage of both the carboxylester linkage and diaryl bond to form 2,2,3,3-tetramethyl-cyclopropanemethanol, 4-fluoro-3-phenexy-benzoic acid, 3,5-dimethoxy phenol, and phenol, and subsequently transformed these compounds with a maximum specific degradation rate, half-saturation constant and inhibition constant of 1.0384day(-1), 20.4967mgL(-1), and 141.9013mgL(-1), respectively. A novel degradation pathway for cyfluthrin was proposed based on analysis of these metabolites. In addition, this strain was found capable of degrading a wide range of synthetic pyrethroid insecticides. Our results suggest that B. aureum DG-12 may be an ideal microorganism for bioremediation of the pyrethroid-contaminated environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Unbalanced Growth Death Due to Depletion of Mn2+ in Brevibacterium ammoniagenes

    Science.gov (United States)

    Oka, Tetuo; Udagawa, Kiyoshi; Kinoshita, Shukuo

    1968-01-01

    In the microbial conversion of added hypoxanthine to 5′-inosinic acid, Mn2+ concentration in the growth medium is known to have a profound effect both on the yield of 5′-inosinic acid and the morphology of cells of Brevibacterium ammoniagenes. To elucidate the mechanism in which Mn2+ was concerned with cell morphology and 5′-inosinic acid production, effects of Mn2+ on the macromolecular synthesis were measured. It was found that Mn2+ strongly governed deoxyribonucleic acid (DNA) synthesis and that, in the medium lacking Mn2+, DNA synthesis was stopped at the level corresponding to one-fourth to one-third that in the medium supplemented with Mn2+ (100 μg/liter). On the other hand, cellular ribonucleic acid and protein synthesis was quite indifferent to Mn2+ concentration. Consequently, cells showed so-called “unbalanced growth death” after 10 hr of culture, losing the ability to form colonies while cell mass was increasing. The elongated cells turned into irregular forms (bulbous, club-shaped, etc.) which finally lysed. Two main reaction components in the conversion of hypoxanthine to 5′-inosinic acid, phosphoribosylpyrophosphate and hypoxanthine phosphoribosyltransferase, were liberated into the medium during lysis. The role of Mn2+ in the synthesis of DNA and the role of the unbalanced growth death in the conversion of hypoxanthine to 5′-inosinic acid are discussed. Images PMID:5726310

  15. Optimization of trehalose production by a novel strain Brevibacterium sp. SY361.

    Science.gov (United States)

    Wang, Lei; Huang, Rui; Gu, Guanbin; Fang, Hongying

    2008-10-01

    Trehalose production by a novel strain of Brevibacterium sp. SY361 was optimized in submerged fermentation. Different chemical and physical parameters such as carbon and nitrogen sources, inoculum level, initial pH, incubation temperature, aeration and time-course of fermentation, were studied in order to increase trehalose productivity. An optimal production medium containing 3% (w/v) glucose, 0.9% (v/v) corn steep liquor, 0.5% (w/v) KH(2)PO(4) and 0.4% (w/v) MgSO(4).7 H(2)O was found suitable for trehalose production. An optimal volume of medium in a 500 ml flask was 80 ml. The optimal levels of other parameters were 4.0% (v/v) of inoculum, initial pH of 6.0, incubation temperature of 28-32 degrees C and time-course of 60 h. Optimized parameters gave a maximum trehalose of 12.2 mg/ml with a conversion rate of 58.4%. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Purification and characterization of R-stereospecific amidase from Brevibacterium epidermidis ZJB-07021.

    Science.gov (United States)

    Ruan, Li-Tao; Zheng, Ren-Chao; Zheng, Yu-Guo; Shen, Yin-Chu

    2016-05-01

    A R-stereospecific amidase was purified from Brevibacterium epidermidis ZJB-07021 and characterized in detail. The amidase was purified to homogeneity by three chromatographic steps for up to 328.9-fold with specific activity of 31.9 U mg(-1). The enzyme was a homodimer with a molecular mass of 94 kDa. It exhibited maximum activity at 40 °C and pH 7.5. The enzyme was strongly inactivated by serine protease inhibitor PMSF. The values of Km and Vmax for racemic 2,2-dimethylcyclopropane carboxamide (DMCPCA) were 4.58 mM and 35.03 μmol min(-1) mg(-1) protein, respectively. The amidase showed a broad substrate spectrum toward aliphatic, aromatic and heterocyclic amides, but could hardly hydrolyze the bulky side-chain-containing amides. Furthermore, kinetic resolution of racemic DMCPCA by the amidase afforded S-DMCPCA in 46.3% yield and 99% ee with an average E-value of 67. These unique properties of the amidase imply that it is a promising biocatalyst for the production of chiral amides and carboxylic acids. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Growth characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. isolated from surface-ripened cheese.

    Science.gov (United States)

    Mounier, Jérôme; Rea, Mary C; O'Connor, Paula M; Fitzgerald, Gerald F; Cogan, Timothy M

    2007-12-01

    The growth characteristics of five bacteria, Brevibacterium aurantiacum 1-16-58, Corynebacterium casei DPC 5298(T), Corynebacterium variabile DPC 5310, Microbacterium gubbeenense DPC 5286(T), and Staphylococcus saprophyticus 4E61, all of which were isolated from the surface of smear cheese, were studied in complex and chemically defined media. All of the coryneforms, except M. gubbeenense, grew in 12% salt, while B. aurantiacum and S. saprophyticus grew in 15% salt. All five bacteria assimilated lactate in a semisynthetic medium, and none of the coryneform bacteria assimilated lactose. Glucose assimilation was poor, except by S. saprophyticus and C. casei. Five to seven amino acids were assimilated by the coryneforms and 12 by S. saprophyticus. Glutamate, phenylalanine, and proline were utilized by all five bacteria, whereas utilization of serine, threonine, aspartate, histidine, alanine, arginine, leucine, isoleucine, and glycine depended on the organism. Growth of C. casei restarted after addition of glutamate, proline, serine, and lactate at the end of the exponential phase, indicating that these amino acids and lactate can be used as energy sources. Pantothenic acid was essential for the growth of C. casei and M. gubbeenense. Omission of biotin reduced the growth of B. aurantiacum, C. casei, and M. gubbeenense. All of the bacteria contained lactate dehydrogenase activity (with both pyruvate and lactate as substrates) and glutamate pyruvate transaminase activity but not urease activity.

  18. Adenylate Cyclase from Brevibacterium liquefaciens. III. In Situ Regulation of Adenylate Cyclase by Pyruvate

    Science.gov (United States)

    Umezawa, Kazuo; Takai, Katsuji; Tsuji, Shoji; Kurashina, Yoshikazu; Hayaishi, Osamu

    1974-01-01

    In the presence of DL-alanine intracellular cyclic AMP in nonproliferating cells of Brevibacterium liquefaciens increased rapidly to the maximum level of approximately 180 μM, and extracellular cyclic AMP increased to 100 μM within 4 hr at 25°. Adenylate cyclase (EC 4.6.1.1) induction was not observed during this incubation. The concentration of pyruvate in the total culture increased concomitantly with that of cyclic AMP and reached approximately 20 mM after 4 hr of incubation. Since the activity of cyclic nucleotide phosphodiesterase is extremely low in this bacterium, the accumulation of cyclic AMP with DL-alanine appeared to be due to the activation of adenylate cyclase by pyruvate. D-alanine was more effective than L-alanine in producing pyruvate, and a high activity of D-alanine oxidation was detected in the cell lysate of B. liquefaciens. Thus, adenylate cyclase in this bacterium appeared to be regulated in vivo by pyruvate which was formed, in this case, predominantly from D-alanine through the action of D-aminoacid oxidase (EC 1.4.3.3). Pyruvate, added extracellularly, also caused a rapid accumulation of intracellular cyclic AMP. Glucose did not change the level of cyclic AMP significantly. It also did not affect the intracellular accumulation of cyclic AMP with DL-alanine. PMID:4373721

  19. Reclassification of Brevibacterium halotolerans DSM8802 as Bacillus halotolerans comb. nov. Based on Microbial and Biochemical Characterization and Multiple Gene Sequence.

    Science.gov (United States)

    Ben-Gad, Doron; Gerchman, Yoram

    2017-01-01

    Brevibacterium halotolerans is currently classified as a member of the Brevibacterium genus, a genus that groups together many bacterial species of similar morphology but diverse biochemical and physiological features. Here we suggest, based on multiple gene sequencing and microbial and biochemical characterization of two environmental isolates and one type strain (DSM8802), that the B. halotolerans DSM8802 (and probably the other deposited under this species name) should be re-classified into the Bacillus genus, and offered the name B. halotolerans comb. nov.

  20. Development of a large scale process for the conversion of polysialogangliosides to monosialotetrahexosylganglioside with a novel strain of Brevibacterium casei producing sialidase.

    Science.gov (United States)

    Peng, Yan-Feng; Wang, Xue-Dong; Wei, Dong-Zhi

    2007-06-01

    A bioconversion process of producing GM1 (monosialotetrahexosylganglioside) on an industrial scale was developed with a novel sialidase-producing strain Brevibacterium casei. The sialidase hydrolyzed polysialogangliosides to produce GM1 but did not act on GM1. When Brevibacterium casei was cultured in a synthetic medium containing crude pig brain gangliosides (10% w/v) at 30 degrees C for 24 h in a 50 l fermenter, most of the polysialogangliosides were converted to GM1. The content of GM1 was increased from 9% in crude gangliosides to 45% with 70% (w/w) yield.

  1. Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat.

    Science.gov (United States)

    Pham, Nguyen-Phuong; Layec, Séverine; Dugat-Bony, Eric; Vidal, Marie; Irlinger, Françoise; Monnet, Christophe

    2017-12-07

    Brevibacterium strains are widely used for the manufacturing of surface-ripened cheeses, contributing to the breakdown of lipids and proteins and producing volatile sulfur compounds and red-orange pigments. The objective of the present study was to perform comparative genomic analyses in order to better understand the mechanisms involved in their ability to grow on the cheese surface and the differences between the strains. The genomes of 23 Brevibacterium strains, including twelve strains isolated from cheeses, were compared for their gene repertoire involved in salt tolerance, iron acquisition, bacteriocin production and the ability to use the energy compounds present in cheeses. All or almost all the genomes encode the enzymes involved in ethanol, acetate, lactate, 4-aminobutyrate and glycerol catabolism, and in the synthesis of the osmoprotectants ectoine, glycine-betaine and trehalose. Most of the genomes contain two contiguous genes encoding extracellular proteases, one of which was previously characterized for its activity on caseins. Genes encoding a secreted triacylglycerol lipase or involved in the catabolism of galactose and D-galactonate or in the synthesis of a hydroxamate-type siderophore are present in part of the genomes. Numerous Fe3+/siderophore ABC transport components are present, part of them resulting from horizontal gene transfers. Two cheese-associated strains have also acquired catecholate-type siderophore biosynthesis gene clusters by horizontal gene transfer. Predicted bacteriocin biosynthesis genes are present in most of the strains, and one of the corresponding gene clusters is located in a probable conjugative transposon that was only found in cheese-associated strains. Brevibacterium strains show differences in their gene repertoire potentially involved in the ability to grow on the cheese surface. Part of these differences can be explained by different phylogenetic positions or by horizontal gene transfer events. Some of the

  2. New cyclic tetrapeptide from the coral-derived endophytic bacteria Brevibacterium sp. L-4 collected from the South China Sea.

    Science.gov (United States)

    Liu, Bing-Xin; Guo, Qiong; Peng, Guang-Tian; He, Xi-Xin; Chen, Xiao-Jie; Lei, Ling-Fang; Deng, Yun; Jun Su, Xian; Zhang, Cui-Xian

    2016-01-01

    One new cyclic tetrapeptide cyclic-(Tyr-Ala-Leu-Ser) (1) along with four natural compounds firstly obtained 3H-imidazole-4-carboxylic acid (2), 2-methyl-3H-imidazole-4-carboxylic acid (3), 3-ethylidene-6-isopropyl-piperazine-2,5-dione (4), and 3-isobutylidene-6-methyl piperazine-2,5-dione (5) have been isolated from the coral derived endophytic bacteria Brevibacterium sp. L-4 collected from the South China Sea. Their structures were elucidated through spectroscopic techniques including NMR (1D and 2D), MS, and EA, and their relative configurations were also assigned by NMR analysis.

  3. Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR homolog from Brevibacterium lactofermentum.

    Science.gov (United States)

    Oguiza, J A; Tao, X; Marcos, A T; Martín, J F; Murphy, J R

    1995-01-01

    A homolog of the Corynebacterium diphtheriae dtxR gene was isolated from Brevibacterium lactofermentum. The product of the B. lactofermentum dtxR gene was immunoreactive with polyclonal anti-DtxR antibodies and functioned as an iron-activated repressor capable of regulating the expression of beta-galactosidase from a diphtheria tox promoter/operator transcriptional fusion in recombinant Escherichia coli. The extents of induction by increasing concentrations of the chelator 2,2'-dipyridyl were identical in cells expressing DtxR from either C. diphtheriae or B. lactofermentum. PMID:7814338

  4. Brevibacterium massiliense (Roux and Raoult 2009) is a later heterotypic synonym of Brevibacterium ravenspurgense (Mages, Frodl, Bernard and Funke 2009), using whole-genome sequence analysis as a comparative tool.

    Science.gov (United States)

    Bernard, Kathryn A; Pacheco, Ana Luisa; Burdz, Tamara; Wiebe, Deborah; Huynh, Chris; Bonner, Christine; German, Greg J; Bernier, Anne-Marie

    2016-11-01

    A patient strain derived from urine was found by 16S rRNA gene sequencing to be closely related (99.6 % identity) to sequences derived from both Brevibacterium ravenspurgense CCUG 56047T and Brevibacterium massilienseCCUG 53855T. Those species had been described during the same 11 month period in 2008-2009. Further characterization revealed that those isolates could not be readily distinguished from each other biochemically, by cellular fatty acids, antimicrobial susceptibility, MALDI-TOF MS, 16S rRNA gene sequencing or by whole-genome sequence (WGS) analyses. By WGS comparison, these isolates had an aerage nucleotide identity using blastn (ANIb) scores of 95.7 % or higher to each other, DNA G+C content in the range of 62.3 mol%-62.4 mol%, with genome sizes ranging from 2.28×106 to 2.41×106 bases. Based on these data, we propose that the name B. massiliense is a later heterotypic synonym of B. ravenspurgense and provide an emended description of B. ravenspurgense.

  5. Structural analysis of a novel cyclohexylamine oxidase from Brevibacterium oxydans IH-35A.

    Directory of Open Access Journals (Sweden)

    I Ahmad Mirza

    Full Text Available Cyclohexylamine oxidase (CHAO is a flavoprotein first described in Brevibacterium oxydans strain IH-35A that carries out the initial step of the degradation of the industrial chemical cyclohexylamine to cyclohexanone. We have cloned and expressed in Escherichia coli the CHAO-encoding gene (chaA from B. oxydans, purified CHAO and determined the structures of both the holoenzyme form of the enzyme and a product complex with cyclohexanone. CHAO is a 50 kDa monomer with a PHBH fold topology. It belongs to the flavin monooxygenase family of enzymes and exhibits high substrate specificity for alicyclic amines and sec-alkylamines. The overall structure is similar to that of other members of the flavin monooxygenase family, but lacks either of the C- or N-terminal extensions observed in these enzymes. Active site features of the flavin monooxygenase family are conserved in CHAO, including the characteristic aromatic cage. Differences in the orientations of residues of the CHAO aromatic cage result in a substrate-binding site that is more open than those of its structural relatives. Since CHAO has a buried hydrophobic active site with no obvious route for substrates and products, a random acceleration molecular dynamics simulation has been used to identify a potential egress route. The path identified includes an intermediate cavity and requires transient conformation changes in a shielding loop and a residue at the border of the substrate-binding cavity. These results provide a foundation for further studies with CHAO aimed at identifying features determining substrate specificity and for developing the biocatalytic potential of this enzyme.

  6. Co-expression of five genes in E coli for L-phenylalanine in Brevibacterium flavum

    Science.gov (United States)

    Wu, Yong-Qing; Jiang, Pei-Hong; Fan, Chang-Sheng; Wang, Jian-Gang; Shang, Liang; Huang, Wei-Da

    2003-01-01

    AIM: To study the effect of co-expression of ppsA, pckA, aroG, pheA and tyrB genes on the production of L-phenylalanine, and to construct a genetic engineering strain for L-phenylalanine. METHODS: ppsA and pckA genes were amplified from genomic DNA of E. coli by polymerase chain reaction, and then introduced into shuttle vectors between E coli and Brevibacterium flavum to generate constructs pJN2 and pJN5. pJN2 was generated by inserting ppsA and pckA genes into vector pCZ; whereas pJN5 was obtained by introducing ppsA and pckA genes into pCZ-GAB, which was originally constructed for co-expression of aroG, pheA and tyrB genes. The recombinant plasmids were then introduced into B. flavum by electroporation and the transformants were used for L-phenylalanine fermentation. RESULTS: Compared with the original B. flavum cells, all the transformants were showed to have increased five enzyme activities specifically, and have enhanced L-phenylalanine biosynthesis ability variably. pJN5 transformant was observed to have the highest elevation of L-phenylalanine production by a 3.4-fold. Co-expression of ppsA and pckA increased activity of DAHP synthetase significantly. CONCLUSION: Co-expression of ppsA and pckA genes in B. flavum could remarkably increase the expression of DAHP synthetase; Co-expression of ppsA, pckA, aroG, pheA and tyrB of E. coli in B. flavum was a feasible approach to construct a strain for phenylalanine production. PMID:12532463

  7. Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol.

    Science.gov (United States)

    Verma, Tuhina; Singh, Neha

    2013-03-01

    Chromate and pentachlorophenol are major pollutants discharged through tanneries. Three bacteria resistant to high Cr(6+) and PCP concentrations simultaneously were isolated. The TVS-3 strain was tolerant to highest 850 mg l(-1) Cr(6+) and 1000 mg l(-1) PCP concentration and concomitantly reduced 69% Cr(6+) and degraded 72% PCP within 168 h at pH 7.5, 35 ± 1°C temperature, was selected and identified as Brevibacterium casei. At 168 h of growth, bacterium showed maximum PCP utilization of 720 mg l(-1) and released 900 mg l(-1) chloride ion. The bacterium exhibited remarkable ability to significantly reduce Cr(6+) and degrade PCP in presence of other metals, between 100-120 rpm aeration and over broad pH (6.5-10.0) and temperature (30-40°C) range. Maximum 78% Cr(6+) reduction and 82% PCP degradation was observed at pH 8.0, 35 ± 1°C within 168 h of incubation, 120 rpm and initial concentration of 850 mg l(-1) Cr(6+) and 1000 mg l(-1) PCP. This is the first study reporting 78% Cr(6+) reduction and 82% PCP degradation simultaneously by single native bacteria under wide growth conditions utilizing PCP as sole carbon source. This bacterium may potentially be useful for simultaneous bioremediation of Cr(6+) and PCP containing wastes in the environment. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum.

    Science.gov (United States)

    Forquin, Marie-Pierre; Hébert, Agnès; Roux, Aurélie; Aubert, Julie; Proux, Caroline; Heilier, Jean-François; Landaud, Sophie; Junot, Christophe; Bonnarme, Pascal; Martin-Verstraete, Isabelle

    2011-02-01

    In this study, we combined metabolic reconstruction, growth assays, and metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway, thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, at least one gene of the transsulfuration pathway (aecD), and genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC 9175 during sulfur starvation or in the presence of sulfate. Under sulfur starvation, 690 genes, including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters, were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine, or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in the presence of cystine, whereas the expression of metX, metY, metE1, metE2, and BL613, encoding a probable cystathionine-γ-synthase, decreased in the presence of methionine. We identified three ABC transporters: two operons encoding transporters were transcribed more strongly during cysteine limitation, and one was transcribed more strongly during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase (BL929) and a methionine transporter (metPS) was induced in the presence of methionine in conjunction with a significant increase in volatile sulfur compound production.

  9. Structural analysis of a novel cyclohexylamine oxidase from Brevibacterium oxydans IH-35A.

    Science.gov (United States)

    Mirza, I Ahmad; Burk, David L; Xiong, Bing; Iwaki, Hiroaki; Hasegawa, Yoshie; Grosse, Stephan; Lau, Peter C K; Berghuis, Albert M

    2013-01-01

    Cyclohexylamine oxidase (CHAO) is a flavoprotein first described in Brevibacterium oxydans strain IH-35A that carries out the initial step of the degradation of the industrial chemical cyclohexylamine to cyclohexanone. We have cloned and expressed in Escherichia coli the CHAO-encoding gene (chaA) from B. oxydans, purified CHAO and determined the structures of both the holoenzyme form of the enzyme and a product complex with cyclohexanone. CHAO is a 50 kDa monomer with a PHBH fold topology. It belongs to the flavin monooxygenase family of enzymes and exhibits high substrate specificity for alicyclic amines and sec-alkylamines. The overall structure is similar to that of other members of the flavin monooxygenase family, but lacks either of the C- or N-terminal extensions observed in these enzymes. Active site features of the flavin monooxygenase family are conserved in CHAO, including the characteristic aromatic cage. Differences in the orientations of residues of the CHAO aromatic cage result in a substrate-binding site that is more open than those of its structural relatives. Since CHAO has a buried hydrophobic active site with no obvious route for substrates and products, a random acceleration molecular dynamics simulation has been used to identify a potential egress route. The path identified includes an intermediate cavity and requires transient conformation changes in a shielding loop and a residue at the border of the substrate-binding cavity. These results provide a foundation for further studies with CHAO aimed at identifying features determining substrate specificity and for developing the biocatalytic potential of this enzyme.

  10. [Distribution of pyrimidine blocks in the DNA of Brevibacterium linens, Arthrobacter globiformis, Nocardia corallina and Nocardia rubra].

    Science.gov (United States)

    Eroshina, N V; Golovlev, E L; Geĭdarov, T G; Bur'ianov, Ia I

    1975-01-01

    The nucleotide composition and the frequency of pyrimidine blocks were studied in DNA of the following bacteria: Brevibacterium linens (Weignamm, 1910) Breed, 1953; Arthrobacter globiformis (Conn, 1928) Conn et Dimmick, 1947; Nocardia corallina (Bergey et al., 1923) Waksman et Henrici, 1948; Nocardia rubra (Krassilnikov, 1949) Waksman et Henrici, 1948. These organisms are classed by some microbiologists as mycobacteria (the Mycobacteriaceae family) while other authors regard them as representatives of three families belonging to two orders. About 60 percent of all pyrimidines in DNA of these bacteria are found in the sequences pur-pyr-pur and pur-pyr-pyr-pur, the number of dipyrimidines being higher than the amount of monopyrimidine nucleotides. The content of dipyrimidine nucleotides in DNA of Nocardia corallina and Nocardia rubra is higher (16.8 mole %) than the content of dipyrimidine blocks in DNA of Brevibacterium linens and Arthrobacter globiformis, in which the quantity of dipyrimidines is almost the same (13.9 and 14.4 mole %). A new characteristic, the selected mean value, is suggested to evaluate differences in the distribution of pyrimidines in DNA.

  11. Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum.

    Science.gov (United States)

    Halgasova, N; Bukovska, G; Timko, J; Kormanec, J

    2001-10-01

    Using a DNA fragment containing the principal sigma factor gene hrdB of Streptomyces aureofaciens, we identified two sigma70-like genes in a library of Brevibacterium flavum. Sequence analysis of the complete genes revealed two ORFs coding for gene products of 498 and 331 amino acid residues, which showed the greatest similarity to SigA and SigB sigma factors from Brevibacterium lactofermentum. We designated them similarly sigA and sigB. Transcription of B. flavum sigA and sigB has been investigated by S1-nuclease mapping by using RNA from different growth phases and after exposure to several stress conditions. Both genes are transcribed from a single promoter with transcription start points of 368 bp and 25 bp upstream from the proposed translation initiation codon of the sigA and sigB genes, respectively. Whereas sigA is transcribed almost constitutively during growth and after stress conditions, expression of sigB is significantly induced after several stress conditions, like acid stress, ethanol shock, and cold shock. Expression of both genes is significantly reduced after heat shock. Considering these transcriptional results, and also on the basis of the similarity to other principal sigma factor genes, sigA probably encodes the functional principal sigma factor, and sigB might have a function in stress response.

  12. Identification of a Brevibacterium marker gene specific to poultry litter and development of a quantitative PCR assay.

    Science.gov (United States)

    Weidhaas, J L; Macbeth, T W; Olsen, R L; Sadowsky, M J; Norat, D; Harwood, V J

    2010-07-01

    To identify a DNA sequence specific to a bacterium found in poultry litter that was indicative of faecal contamination by poultry sources. Faecally contaminated poultry litter and soils were used as source material for the development of a quantitative polymerase chain reaction (qPCR) method targeting the 16S rRNA gene of a Brevibacterium sp. The identified sequence had 98% nucleotide identity to the 16S rRNA gene of Brevibacterium avium. The qPCR method was tested on 17 soiled litter samples; 40 chicken faecal samples; and 116 nontarget faecal samples from cattle, swine, ducks, geese, and human sewage collected across the United States. The 571-bp product was detected in 76% of poultry-associated samples, but not in 93% of faecal samples from other sources. Marker concentrations were 10(7) -10(9) gene copies per gram in soiled litter, up to 10(5) gene copies per gram in spread-site soils, and 10(7) gene copies per litre in field run-off water. Results were corroborated by a blinded study conducted by a second laboratory. The poultry-specific PCR product is a useful marker gene for assessing the impact of faecal contamination as a result of land-applied poultry litter. This study describes the first quantitative, sensitive and specific microbial source tracking method for the detection of poultry litter contamination. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  13. Simultaneous Identification of Two Cyclohexanone Oxidation Genes from an Environmental Brevibacterium Isolate Using mRNA Differential Display

    Science.gov (United States)

    Brzostowicz, Patricia C.; Gibson, Katharine L.; Thomas, Stuart M.; Blasko, Mary Sue; Rouvière, Pierre E.

    2000-01-01

    The technique of mRNA differential display was used to identify simultaneously two metabolic genes involved in the degradation of cyclohexanone in a new halotolerant Brevibacterium environmental isolate. In a strategy based only on the knowledge that cyclohexanone oxidation was inducible in this strain, the mRNA population of cells exposed to cyclohexanone was compared to that of control cells using reverse transcription-PCR reactions primed with a collection of 81 arbitrary oligonucleotides. Three DNA fragments encoding segments of flavin monooxygenases were isolated with this technique, leading to the identification of the genes of two distinct cyclohexanone monooxygenases, the enzymes responsible for the oxidation of cyclohexanone. Each monooxygenase was expressed in Escherichia coli and characterized. This work validates the application of mRNA differential display for the discovery of new microbial metabolic genes. PMID:10894733

  14. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture.

    Science.gov (United States)

    Seghal Kiran, G; Anto Thomas, T; Selvin, Joseph; Sabarathnam, B; Lipton, A P

    2010-04-01

    The biosurfactant production of a marine actinobacterium Brevibacterium aureum MSA13 was optimized using industrial and agro-industrial solid waste residues as substrates in solid state culture (SSC). Based on the optimization experiments, the biosurfactant production by MSA13 was increased to threefold over the original isolate under SSC conditions with pre-treated molasses as substrate and olive oil, acrylamide, FeCl(3) and inoculums size as critical control factors. The strain B. aureum MSA13 produced a new lipopeptide biosurfactant with a hydrophobic moiety of octadecanoic acid methyl ester and a peptide part predicted as a short sequence of four amino acids including pro-leu-gly-gly. The biosurfactant produced by the marine actinobacterium MSA13 can be used for the microbially enhanced oil recovery processes in the marine environments. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach.

    Science.gov (United States)

    Ram Kumar Pandian, Sureshbabu; Deepak, Venkatraman; Kalishwaralal, Kalimuthu; Muniyandi, Jeyaraj; Rameshkumar, Neelamegam; Gurunathan, Sangiliyandi

    2009-11-01

    Polyhydroxyalkanoates (PHAs) are natural, biodegradable polymers accumulated by bacteria under nutritional exhausted condition where carbon source is in excess. A gram positive bacterium (designated strain SRKP2) that potentially accumulated polyhydroxybutyrate (PHB) was isolated from dairy industrial waste. From its morphological and physiological properties and nucleotide sequence of its 16S rRNA, it was suggested that strain SRKP2 was similar to Brevibacterium casei. PHAs were synthesized from a medium containing dairy waste, yeast extract and sea water. The synthesized PHAs were characterized by FT-IR as Polyhydroxybutyrate (PHB). Response surface methodology was applied to optimize the production of PHB. From the optimized medium the yield of PHB was found to be 2.940 g/L. Here we report the direct use of dairy waste and sea water as potential sources for the production of PHB. Produced PHB was used to synthesize nanoparticles using solvent displacement technique.

  16. 6-Hydroxymethyl-1-phenazine-carboxamide and 1,6-phenazinedimethanol from a marine bacterium, Brevibacterium sp. KMD 003, associated with marine purple vase sponge.

    Science.gov (United States)

    Choi, Eun Ju; Kwon, Hak Cheol; Ham, Jungyeob; Yang, Hyun Ok

    2009-11-01

    Two new antibacterial phenazines were isolated from the culture broth of Brevibacterium sp. KMD 003 obtained from a marine purple vase sponge of the genus Callyspongia, collected in Kyeongpo, Gangwondo, Korea. The structures of these compounds were determined to be 6-hydroxymethyl-1-phenazine-carboxamide (1) and 1,6-phenazinedimethanol (2) through analyses of HR-EI-MS and NMR data. Compounds 1 and 2 showed antibacterial activities against Enterococcus hirae and Micrococcus luteus with 5 microM MIC values.

  17. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    Science.gov (United States)

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided.

  18. The first reported catheter-related Brevibacterium casei bloodstream infection in a child with acute leukemia and review of the literature

    Directory of Open Access Journals (Sweden)

    Zumrut Sahbudak Bal

    Full Text Available Brevibacterium spp. are catalase-positive, non-spore-forming, non motile, aerobic Gram- positive rods that were considered apathogenic until a few reports of infections in immunocompromised patients had been published. To the best of our knowledge, this is the first report of B. casei catheter-related bloodstream infection in a child with acute leukemia. We aim to enhance the awareness of pediatric hematology and infectious disease specialists about this pathogen and review of the literature.

  19. Brevibacterium metallicus sp. nov., an endophytic bacterium isolated from roots of Prosopis laegivata grown at the edge of a mine tailing in Mexico.

    Science.gov (United States)

    Román-Ponce, Brenda; Li, Yong Hua; Vásquez-Murrieta, María Soledad; Sui, Xin Hua; Chen, Wen Feng; Estrada-de Los Santos, Paulina; Wang, En Tao

    2015-12-01

    A Gram-positive, aerobic, nonmotile strain, NM2E3(T) was identified as Brevibacterium based on the 16S rRNA gene sequence analysis and had the highest similarities to Brevibacterium jeotgali SJ5-8(T) (97.3 %). This novel bacterium was isolated from root tissue of Prosopis laegivata grown at the edge of a mine tailing in San Luis Potosí, Mexico. Its cells were non-spore-forming rods, showing catalase and oxidase activities and were able to grow in LB medium added with 40 mM Cu(2+), 72 mM As(5+) and various other toxic elements. Anteiso-C15:0 (41.6 %), anteiso-C17:0 (30 %) and iso-C15:0 (9.5 %) were the major fatty acids. MK-8(H2) (88.4 %) and MK-7(H2) (11.6 %) were the major menaquinones. The DNA G + C content of the strain NM2E3(T) was 70.8 mol % (Tm). DNA-DNA hybridization showed that the strain NM2E3(T) had 39.8, 21.7 and 20.3 % relatedness with B. yomogidense JCM 17779(T), B. jeotgali JCM 18571(T) and B. salitolerans TRM 45(T), respectively. Based on the phenotypic and genotypic analyses, the strain NM2E3(T) (=CCBAU 101093(T) = HAMBI 3627(T) = LMG 8673(T)) is reported as a novel species of the genus Brevibacterium, for which the name Brevibacterium metallicus sp. nov., is proposed.

  20. Biosynthetic preparation of L-(/sup 13/C)- and (/sup 15/N)glutamate by Brevibacterium flavum

    Energy Technology Data Exchange (ETDEWEB)

    Walker, T.E.; London, R.E.

    1987-01-01

    The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: (i) to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and (ii) to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, and important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with (3-/sup 13/C)pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, (1-/sup 13/C)- or (2-/sup 13/C)acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, high enriched L-glutamate. The preparation of L-(/sup 15/N)glutamate from (/sup 15/N)ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms.

  1. Studies on a microbial exopolysaccharide produced by Brevibacterium viscogenes 74-230 as a drilling mud additive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; (Inst. of Microbiology, Beijing, China); Cui, W.; Liu, X.; Zhang, K.; Liu, Y.; Li, L.

    1982-10-01

    A new drilling mud additive produced as a microbial exopolysaccharide by Brevibacterium viscogenes 74-230 from a heavy liquid paraffin is discussed. Addition of the surfactants of Tweens or Span-80 to the medium can promote polysaccharide biosynthesis, but penicillin G and potassium ion has no advantageous effects on it. Corn steep liquor can be used as a substitute of yeast extract, but with poorer results. After removal of cells by centrifugation, over 12g/l of polysaccharide can be obtained by ethanol precipitation, at a conversion rate based on liquid paraffin in excess of 40%. Its rheological property, shear thinning effect, water loss, sensitivity to salts as well to as temperature, etc. are determined and compared with xanthan, partially hydrolysis polyacrylamide and carboxylmethylcellulose. The results indicate that the properties of this polysaccharide as a drilling mud additive are almost comparable with those of xanthan, and far better than those of the other two. It is noteworthy that this polysaccharide is produced from crude oil or its product, while xanthan is from carbohydrate. Field experiments are still going on.

  2. Biosurfactant production by hydrocarbon-degrading Brevibacterium and Vibrio isolates from the sea pen Pteroeides spinosum (Ellis, 1764).

    Science.gov (United States)

    Graziano, Marco; Rizzo, Carmen; Michaud, Luigi; Porporato, Erika Maria Diletta; De Domenico, Emilio; Spanò, Nunziacarla; Lo Giudice, Angelina

    2016-09-01

    Among filter-feeders, pennatulids are the most complex and polymorphic members of the cnidarian class Anthozoa. They display a wide distribution throughout all the oceans, constituting a significant component of the sessile megafauna from intertidal to abyssal depths. In this study, a total of 118 bacterial isolates from enrichment cultures, carried out with homogenates of the sea pen Pteroeides spinosum (Ellis, 1764), were screened for hydrocarbon utilization by using the 2,6-dichlorophenol indophenol assay. Among them, 83 hydrocarbon-oxidizing isolates were analyzed for biosurfactant production by standard screening tests (i.e., emulsifying activity, E24 detection, surface tension measurement, microplate assay). The 16S rRNA gene sequencing revealed the affiliation of the most promising isolates to the genera Brevibacterium and Vibrio. Biosurfactant production resulted strongly affected by salinity and temperature conditions, and occurred in the presence of diesel oil and/or crude oil, whereas no production was observed when isolates were grown on tetradecane. The strains resulted able to create stable emulsions, thus suggesting the production of biosurfactants. Further analyses revealed a glycolipidic nature of the biosurfactant extracted from Vibrio sp. PBN295, a genus that has been only recently reported as biosurfactant producer. Results suggest that pennatulids could represent a novel source for the isolation of hydrocarbon-oxidizing bacteria with potential in biosurfactant production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A novel amidase from Brevibacterium epidermidis ZJB-07021: gene cloning, refolding and application in butyrylhydroxamic acid synthesis.

    Science.gov (United States)

    Ruan, Li-Tao; Zheng, Ren-Chao; Zheng, Yu-Guo

    2016-08-01

    A novel amidase gene (bami) was cloned from Brevibacterium epidermidis ZJB-07021 by combination of degenerate PCR and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). The deduced amino acid sequence showed low identity (≤55 %) with other reported amidases. The bami gene was overexpressed in Escherichia coli, and the resultant inclusion bodies were refolded and purified to homogeneity with a recovery of 22.6 %. Bami exhibited a broad substrate spectrum towards aliphatic, aromatic and heterocyclic amides, and showed the highest acyl transfer activity towards butyramide with specific activity of 1331.0 ± 24.0 U mg(-1). Kinetic analysis demonstrated that purified Bami exhibited high catalytic efficiency (414.9 mM(-1) s(-1)) for acyl transfer of butyramide, with turnover number (K cat) of 3569.0 s(-1). Key parameters including pH, substrate/co-substrate concentration, reaction temperature and catalyst loading were investigated and the Bami showed maximum acyl transfer activity at 50 °C, pH 7.5. Enzymatic catalysis of 200 mM butyramide with 15 μg mL(-1) purified Bami was completed in 15 min with a BHA yield of 88.1 % under optimized conditions. The results demonstrated the great potential of Bami for the production of a variety of hydroxamic acids.

  4. Analysis and expression of the thrC gene of Brevibacterium lactofermentum and characterization of the encoded threonine synthase.

    Science.gov (United States)

    Malumbres, M; Mateos, L M; Lumbreras, M A; Guerrero, C; Martín, J F

    1994-01-01

    The thrC gene of Brevibacterium lactofermentum was cloned by complementation of Escherichia coli thrC auxotrophs. The gene was located by deletion mapping and complementation analysis in a 2.9-kb Sau3AI-HindIII fragment of the genome. This fragment also complemented a B. lactofermentum UL1035 threonine auxotroph that was deficient in threonine synthase. A 1,892-bp DNA fragment of this region was sequenced; this fragment contained a 1,446-bp open reading frame that encoded a 481-amino-acid protein having a deduced M(r) of 52,807. The gene was expressed in E. coli, by using the phage T7 system, as a 53-kDa protein. The promoter region subcloned in promoter-probe plasmids was functional in E. coli. A Northern analysis revealed that the gene was expressed as a monocistronic 1,400-nucleotide transcript. The transcription start point of the thrC gene was located by S1 mapping 6 bp upstream from the translation initiation codon, which indicated that this promoter was one of the leaderless transcription-initiating sequences. The threonine synthase overexpressed in B. lactofermentum UL1035 was purified almost to homogeneity. The active form corresponded to a monomeric 52.8-kDa protein, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme required pyridoxal phosphate as its only cofactor to convert homoserine phosphate into threonine. Images PMID:8074505

  5. Production and properties of a surface-active lipopeptide produced by a new marine Brevibacterium luteolum strain.

    Science.gov (United States)

    Vilela, W F D; Fonseca, S G; Fantinatti-Garboggini, F; Oliveira, V M; Nitschke, M

    2014-11-01

    Microbial-derived surfactants are molecules of great interest due to their environmentally friendly nature and low toxicity; however, their production cost is not competitive when compared to synthetics. Marine microorganisms are exposed to extremes of pressure, temperature, and salinity; hence, they can produce stable compounds under such conditions that are useful for industrial applications. A screening program to select marine bacteria able to produce biosurfactant using low-cost substrates (mineral oil, sucrose, soybean oil, and glycerol) was conducted. The selected bacterial strain showed potential to synthesize biosurfactants using mineral oil as carbon source and was identified as Brevibacterium luteolum. The surface-active compound reduced the surface tension of water to 27 mN m(-1) and the interfacial tension (water/hexadecane) to 0.84 mN m(-1) and showed a critical micelle concentration of 40 mg L(-1). The biosurfactant was stable over a range of temperature, pH, and salt concentration and the emulsification index (E24) with different hydrocarbons ranging from 60 to 79 %. Structural characterization revealed that the biosurfactant has a lipopeptide nature. Sand washing removed 83 % of crude oil demonstrating the potential of the biosurfactants (BS) for bioremediation purposes. The new marine B. luteolum strain showed potential to produce high surface-active and stable molecule using a low-cost substrate.

  6. An investigation into membrane bound redox carriers involved in energy transduction mechanism in Brevibacterium linens DSM 20158 with unsequenced genome.

    Science.gov (United States)

    Shabbiri, Khadija; Botting, Catherine H; Adnan, Ahmad; Fuszard, Matthew; Naseem, Shahid; Ahmed, Safeer; Shujaat, Shahida; Syed, Quratulain; Ahmad, Waqar

    2014-04-01

    Brevibacterium linens (B. linens) DSM 20158 with an unsequenced genome can be used as a non-pathogenic model to study features it has in common with other unsequenced pathogens of the same genus on the basis of comparative proteome analysis. The most efficient way to kill a pathogen is to target its energy transduction mechanism. In the present study, we have identified the redox protein complexes involved in the electron transport chain of B. linens DSM 20158 from their clear homology with the shot-gun genome sequenced strain BL2 of B. linens by using the SDS-Polyacrylamide gel electrophoresis coupled with nano LC-MS/MS mass spectrometry. B. linens is found to have a branched electron transport chain (Respiratory chain), in which electrons can enter the respiratory chain either at NADH (Complex I) or at Complex II level or at the cytochrome level. Moreover, we are able to isolate, purify, and characterize the membrane bound Complex II (succinate dehydrogenase), Complex III (menaquinone cytochrome c reductase cytochrome c subunit, Complex IV (cytochrome c oxidase), and Complex V (ATP synthase) of B. linens strain DSM 20158.

  7. Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: azo dye as electron donor for chromate reduction.

    Science.gov (United States)

    Ng, Tsz Wai; Cai, Qinhong; Wong, Chong-Kim; Chow, Alex T; Wong, Po-Keung

    2010-10-15

    Chromate [Cr(VI)] and azo dyes are common pollutants which may co-exist in some industrial effluents. Hence studies of biological treatment of industrial wastewater should include investigation of the co-removal of these two pollutants. Brevibacterium casei, which can reduce Cr(VI) in the presence of the azo dye Acid Orange 7 (AO7) under nutrient-limiting condition, was isolated from a sewage sludge sample of a dyeing factory. Response surface methodology, which is commonly used to optimize growth conditions for food microorganisms to maximize product(s) yield, was used to determine the optimal conditions for chromate reduction and dye decolourization by B. casei. The optimal conditions were 0.24 g/L glucose, 3.0 g/L (NH(4))(2)SO(4) and 0.2 g/L peptone at pH 7 and 35 degrees C. The predicted maximum chromate reduction efficiencies and dye decolourization were 83.4+/-0.6 and 40.7+/-1.7%, respectively. A new mechanism was proposed for chromate reduction coupling with AO7 decolourization by B. casei. Under nutrient-limiting condition, AO7 was used as an e(-) donor by the reduction enzyme(s) of B. casei for the reduction of Cr(VI). The resulted Cr(III) then complexed with the oxidized AO7 to form a purple coloured intermediate. 2010 Elsevier B.V. All rights reserved.

  8. Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: Azo dye as electron donor for chromate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Tsz Wai; Cai Qinhong [Department of Biology, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wong, Chong-Kim [Department of Biology, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Environmental Science Programme, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Chow, Alex T. [Department of Biosystems Engineering, Clemson University, SC 29634 (United States); Department of Forestry and Natural Resources, Clemson University, SC 29634 (United States); Wong, Po-Keung, E-mail: pkwong@cuhk.edu.hk [Department of Biology, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Environmental Science Programme, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)

    2010-10-15

    Chromate [Cr(VI)] and azo dyes are common pollutants which may co-exist in some industrial effluents. Hence studies of biological treatment of industrial wastewater should include investigation of the co-removal of these two pollutants. Brevibacterium casei, which can reduce Cr(VI) in the presence of the azo dye Acid Orange 7 (AO7) under nutrient-limiting condition, was isolated from a sewage sludge sample of a dyeing factory. Response surface methodology, which is commonly used to optimize growth conditions for food microorganisms to maximize product(s) yield, was used to determine the optimal conditions for chromate reduction and dye decolourization by B. casei. The optimal conditions were 0.24 g/L glucose, 3.0 g/L (NH{sub 4}){sub 2}SO{sub 4} and 0.2 g/L peptone at pH 7 and 35 deg. C. The predicted maximum chromate reduction efficiencies and dye decolourization were 83.4 {+-} 0.6 and 40.7 {+-} 1.7%, respectively. A new mechanism was proposed for chromate reduction coupling with AO7 decolourization by B. casei. Under nutrient-limiting condition, AO7 was used as an e{sup -} donor by the reduction enzyme(s) of B. casei for the reduction of Cr(VI). The resulted Cr(III) then complexed with the oxidized AO7 to form a purple coloured intermediate.

  9. On the oxygen reactivity of flavoprotein oxidases: an oxygen access tunnel and gate in brevibacterium sterolicum cholesterol oxidase.

    Science.gov (United States)

    Piubelli, Luciano; Pedotti, Mattia; Molla, Gianluca; Feindler-Boeckh, Susanne; Ghisla, Sandro; Pilone, Mirella S; Pollegioni, Loredano

    2008-09-05

    The flavoprotein cholesterol oxidase from Brevibacterium sterolicum (BCO) possesses a narrow channel that links the active center containing the flavin to the outside solvent. This channel has been proposed to serve for the access of dioxygen; it contains at its "bottom" a Glu-Arg pair (Glu-475-Arg-477) that was found by crystallographic studies to exist in two forms named "open" and "closed," which in turn was suggested to constitute a gate functioning in the control of oxygen access. Most mutations of residues that flank the channel have minor effects on the oxygen reactivity. Mutations of Glu-311, however, cause a switch in the basic kinetic mechanism of the reaction of reduced BCO with dioxygen; wild-type BCO and most mutants show a saturation behavior with increasing oxygen concentration, whereas for Glu-311 mutants a linear dependence is found that is assumed to reflect a "simple" second order process. This is taken as support for the assumption that residue Glu-311 finely tunes the Glu-475-Arg-477 pair, forming a gate that functions in modulating the access/reactivity of dioxygen.

  10. Formation of insoluble magnesium phosphates during growth of the archaea Halorubrum distributum and Halobacterium salinarium and the bacterium Brevibacterium antiquum.

    Science.gov (United States)

    Smirnov, Aleksey; Suzina, Natalia; Chudinova, Natalia; Kulakovskaya, Tatiana; Kulaev, Igor

    2005-03-01

    Stationary phase cells of the halophilic archaea Halobacterium salinarium and Halorubrum distributum, growing at 3-4 M NaCl, and of the halotolerant bacterium Brevibacterium antiquum, growing with and without 2.6 NaCl, took up approximately 90% of the phosphate from the culture media containing 2.3 and 11.5 mM phosphate. The uptake was blocked by the uncoupler FCCP. In B. antiquum, EDTA inhibited the phosphate uptake. The content of polyphosphates in the cells was significantly lower than the content of orthophosphate. At a high phosphate concentration, up to 80% of the phosphate taken up from the culture medium was accumulated as Mg(2)PO(4)OH x 4H(2)O in H. salinarium and H. distributum and as NH(4)MgPO(4) x 6H(2)O in B. antiquum. Consolidation of the cytoplasm and enlargement of the nucleoid zone were observed in the cells during phosphate accumulation. At phosphate surplus, part of the H. salinarium and H. distributum cell population was lysed. The cells of B. antiquum were not lysed and phosphate crystals were observed in the cytoplasm.

  11. Mining and characterization of two amidase signature family amidases from Brevibacterium epidermidis ZJB-07021 by an efficient genome mining approach.

    Science.gov (United States)

    Ruan, Li-Tao; Zheng, Ren-Chao; Zheng, Yu-Guo

    2016-10-01

    Amidases have received increasing attention for their significant potential in the production of valuable carboxylic acids. In this study, two amidases belonging to amidase signature family (BeAmi2 and BeAmi4) were identified and mined from genomic DNA of Brevibacterium epidermidis ZJB-07021 by an efficient strategy combining comparative analysis of genomes and identification of unknown region by high-efficiency thermal asymmetric interlaced PCR (HiTAIL-PCR). The deduced amino acid sequences of BeAmi2 and BeAmi4 showed low identity (< 40%) with other reported amidases. The two amidases displayed optimum activity toward a wide spectrum of substrates at a mild alkaline pH and 45 °C. Both of them were remarkably inactivated by serine-directed inhibitor and sulfhydryl-reducing agent. Kinetic analysis revealed that nicotinamide was the preferable substrate for both amidases and the chlorine substitutions on the pyridine ring had a negative effect on activity. The bioprocesses for hydrolysis of 100 mM nicotinamide, isonicotinamide, 2-chloronicotinamide and 5-chloronicotinamide with purified BeAmi2 (6 U mL(-1)) were complete in 60 min with full conversion except 2-chloronicotinamide. These results indicated BeAmi2 was an effective catalyst for hydrolysis of several nicotinamide derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Influence of oxygen and pH on methanethiol production from L-methionine by Brevibacterium lines CNRZ 918

    Energy Technology Data Exchange (ETDEWEB)

    Ferchichi, M.; Hemme, D.; Bouillanne, C.

    1986-04-01

    The effects of dissolved oxygen concentration and pH on the growth of Brevibacterium linens CNRZ 918 and its production of methanethiol from L-methionine were investigated. Optimal specific methanethiol production was obtained at 25% saturation of dissolved oxygen and at a pH between 8 and 9, whereas optimal cell growth occurred at 50% oxygen saturation and when the pH was maintained constantly at 7. Methanethiol production by nonproliferating bacteria required the presence of L-methionine (7 mM) in the culture medium. This was probably due to the induction of enzyme systems involved in the process. The intracellular concentration of L-methionine seemed to play a key role in this process. B. linens CNRZ 918 tolerated alkaline pHs with a maximal growth pH of approximately 9. Its orange pigmentation seemed to depend on the presence of L-methionine in the culture medium and on the concentration of dissolved oxygen.

  13. Growth enhancement of the halotolerant Brevibacterium sp. JCM 6894 by methionine externally added to a chemically defined medium.

    Science.gov (United States)

    Mimura, Haruo

    2014-01-01

    We examined amino acid requirements for the growth of the halotolerant Brevibacterium sp. JCM 6894 in the absence and presence of 1.2 M NaCl in a chemically defined medium. The experiment was also carried out in the presence of 1.2 M KCl. As a result, growth was highly enhanced by methionine in the absence and presence of KCl as well as NaCl up to 1.2 M. However, growth in the presence of 150 mM methionine was repressed by leucine (up to 100 mM)and valine (up to 100 mM). Concentration-dependent growth inhibition was observed in the presence of isoleucine (up to 150 mM) and threonine (up to 300 mM). When the cells were incubated in the absence of externally added K+, growth was strongly repressed, even in the presence of 150 mM methionine. The growth, however, recovered drastically by the addition of 1 mM KCl, regardless of the presence and absence of 1.2 M NaCl. These results indicate that methionine, which seems to be symported into cytoplasm with K+, plays an important role in the growth of the strain under salt stress.

  14. Heterologous production of methionine-gamma-lyase from Brevibacterium linens in Lactococcus lactis and formation of volatile sulfur compounds.

    Science.gov (United States)

    Hanniffy, Sean B; Philo, Mark; Peláez, Carmen; Gasson, Michael J; Requena, Teresa; Martínez-Cuesta, M C

    2009-04-01

    The conversion of methionine to volatile sulfur compounds (VSCs) is of great importance in flavor formation during cheese ripening and is the focus of biotechnological approaches toward flavor improvement. A synthetic mgl gene encoding methionine-gamma-lyase (MGL) from Brevibacterium linens BL2 was cloned into a Lactococcus lactis expression plasmid under the control of the nisin-inducible promoter PnisA. When expressed in L. lactis and purified as a recombinant protein, MGL was shown to degrade L-methionine as well as other sulfur-containing compounds such as L-cysteine, L-cystathionine, and L-cystine. Overproduction of MGL in recombinant L. lactis also resulted in an increase in the degradation of these compounds compared to the wild-type strain. Importantly, gas chromatography-mass spectrometry analysis identified considerably higher formation of methanethiol (and its oxidized derivatives dimethyl disulfide and dimethyl trisulfide) in reactions containing either purified protein, whole cells, or cell extracts from the heterologous L. lactis strain. This is the first report of production of MGL from B. linens in L. lactis. Given their significance in cheese flavor development, the use of lactic acid bacteria with enhanced VSC-producing abilities could be an efficient way to enhance cheese flavor development.

  15. R-enantioselective hydrolysis of 2,2-dimethylcyclopropanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021.

    Science.gov (United States)

    Jin, S-J; Zheng, R-C; Zheng, Y-G; Shen, Y-C

    2008-10-01

    To isolate new micro-organisms with R-stereospecific amidase activity and to examine their potential as biocatalysts in enantioselective hydrolysis of 2,2-dimethylcyclopropanecarboxamide (1). A novel R-stereospecific amidase-producing strain ZJB-07021 was isolated through a sophisticated colorimetric screening method. Based on morphology, physiological tests, Biolog system (GP2) and 16S rRNA sequence, the new isolate was identified as Brevibacterium epidermidis. After 70 min of bioconversion at 35 degrees C, kinetic resolution of (R,S)-1 by the amidase afforded (S)-1 in 41.1% yield (>99% ee) and (R)-2 in 49.9% yield (69.7% ee) with an average E-value of 23. The enantioselectivity was found to be temperature dependent and enhanced from 12.6 at 45 degrees C to 65.9 at 14 degrees C. A novel bacterial strain of B. epidermidis ZJB-07021 producing R-stereospecific amidase was isolated and characterized. The isolate exhibited high E values for kinetic resolution of racemic-1 to (S)-1. To our knowledge, this was the first report on the species B. epidermidis that harboured R-stereospecific amidase. Strain ZJB-07021 could be further improved as a suitable biocatalyst for the stereoselective bioconversion of racemic-1 after optimization of culture and biotransformation process.

  16. The first reported catheter-related Brevibacterium casei bloodstream infection in a child with acute leukemia and review of the literature.

    Science.gov (United States)

    Bal, Zumrut Sahbudak; Sen, Semra; Karapinar, Deniz Yilmaz; Aydemir, Sohret; Vardar, Fadil

    2015-01-01

    Brevibacterium spp. are catalase-positive, non-spore-forming, non motile, aerobic Gram-positive rods that were considered apathogenic until a few reports of infections in immunocompromised patients had been published. To the best of our knowledge, this is the first report of B. casei catheter-related bloodstream infection in a child with acute leukemia. We aim to enhance the awareness of pediatric hematology and infectious disease specialists about this pathogen and review of the literature. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  17. Preparation of /sup 14/C-labelled AMP, ADP and ATP from adenine-8-/sup 14/C by using Brevibacterium ammoniagenes

    Energy Technology Data Exchange (ETDEWEB)

    Pande, V.N. (Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.)

    1985-04-01

    High radiochemical yields of /sup 14/C-labelled adenine nucleotides (AMP, 4.6%, ADP, 15.5% and ATP 59.5%) could be obtained by growing the cells of Brevibacterium ammoniagenes in the presence of /sup 14/C-adenine. The specific radioactivity of the adenine nucleotides almost reached that of /sup 14/C-adenine indicating negligible dilution of the label. The procedure is convenient and especially suited for commercial preparation of the radiolabelled nucleotides directly from labelled adenine. Preliminary results indicate that the organism could also be used for the preparation of radiolabelled guanine nucleotides.

  18. 3-(2-hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361

    Energy Technology Data Exchange (ETDEWEB)

    Strubel, V.; Engesser, K.H.; Fischer, P.; Knackmuss, H.J. (Univ. Stuttgart (West Germany))

    1991-03-01

    Dibenzofuran (DBF) has been used in some recent studies as a model compound for investigating the microbial degradation of cyclic biaryl ethers. Public attention has focused on this class of compounds, since it comprises some of the most pernicious and persistent molecules, such as TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin). For DBF, the most simple cyclic biaryl ether, a novel degradation mechanism involving angular dioxygenation has been described with 3-(2-hydroxyphenyl)catechol (HPC) as a central intermediate. Definite proof for this mechanism is presented in this paper, and the total degradation of DBF by Brevibacterium is described.

  19. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard

    Directory of Open Access Journals (Sweden)

    Tomasz ePłociniczak

    2016-02-01

    Full Text Available Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants.The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%, Zn (86% and Cu (39% in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  20. Global Regulation of the Response to Sulfur Availability in the Cheese-Related Bacterium Brevibacterium aurantiacum▿ †

    Science.gov (United States)

    Forquin, Marie-Pierre; Hébert, Agnès; Roux, Aurélie; Aubert, Julie; Proux, Caroline; Heilier, Jean-François; Landaud, Sophie; Junot, Christophe; Bonnarme, Pascal; Martin-Verstraete, Isabelle

    2011-01-01

    In this study, we combined metabolic reconstruction, growth assays, and metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway, thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, at least one gene of the transsulfuration pathway (aecD), and genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC 9175 during sulfur starvation or in the presence of sulfate. Under sulfur starvation, 690 genes, including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters, were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine, or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in the presence of cystine, whereas the expression of metX, metY, metE1, metE2, and BL613, encoding a probable cystathionine-γ-synthase, decreased in the presence of methionine. We identified three ABC transporters: two operons encoding transporters were transcribed more strongly during cysteine limitation, and one was transcribed more strongly during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase (BL929) and a methionine transporter (metPS) was induced in the presence of methionine in conjunction with a significant increase in volatile sulfur compound production. PMID:21169450

  1. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios.

    Science.gov (United States)

    Kiran, George Seghal; Lipton, Anuj Nishanth; Priyadharshini, Sethu; Anitha, Kumar; Suárez, Lucia Elizabeth Cruz; Arasu, Mariadhas Valan; Choi, Ki Choon; Selvin, Joseph; Al-Dhabi, Naif Abdullah

    2014-08-13

    Vibrio pathogens are causative agents of mid-culture outbreaks, and early mortality syndrome and secondary aetiology of most dreadful viral outbreaks in shrimp aquaculture. Among the pathogenic vibrios group, Vibrio alginolyticus and V. harveyi are considered as the most significant ones in the grow-out ponds of giant black tiger shrimp Penaeus monodon in India. Use of antibiotics was banned in many countries due to the emergence of antibiotic-resistant strains and accumulation of residual antibiotics in harvested shrimp. There is an urgent need to consider the use of alternative antibiotics for the control of vibriosis in shrimp aquaculture. Biofilm formation is a pathogenic and/or establishment mechanism of Vibrio spp. This study aims to develop novel safe antibiofilm and/or antiadhesive process using PHB to contain vibrios outbreaks in shrimp aquaculture. In this study a poly-hydroxy butyrate (PHB) polymer producing bacterium Brevibacterium casei MSI04 was isolated from a marine sponge Dendrilla nigra and production of PHB was optimized under submerged-fermentation (SmF) conditions. The effect of carbon, nitrogen and mineral sources on PHB production and enhanced production of PHB by response surface methods were demonstrated. The maximum PHB accumulation obtained was 6.74 g/L in the optimized media containing 25 g/L starch as carbon source, 96 h of incubation, 35°C and 3% NaCl. The highest antiadhesive activity upto 96% was recorded against V. vulnificus, and V. fischeri, followed by 92% against V. parahaemolyticus and V. alginolyticus and 88% inhibition was recorded against V. harveyi. In this study, a thermostable biopolymer was chemically characterized as PHB based on 1HNMR spectra, FT-IR and GC-MS spectra. The NMR spectra revealed that the polymer was an isocratic homopolymer and it also confirmed that the compound was PHB. The antiadhesive activity of PHB was determined in microtitre plate assay and an effective concentration (EC) of PHB (200

  2. Two single-base-pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of Brevibacterium lactofermentum.

    Science.gov (United States)

    Matsui, K; Miwa, K; Sano, K

    1987-01-01

    A 5-fluorotryptophan-resistant mutant, termed 1041, was isolated from Brevibacterium lactofermentum AJ12036. The anthranilate synthase of 1041 was insensitive to feedback inhibition by tryptophan, and the specific activities of the anthranilate synthase and anthranilate phosphoribosyltransferase of 1041 were 29- and 23-fold higher than those in parental strain AJ12036, respectively. A single-base change (adenine to cytosine) that resulted in a Ser-to-Arg substitution was found in the trpE structural gene of 1041. This substitution was identified as the cause of the desensitization to feedback inhibition by tryptophan of anthranilate synthase in 1041. Another substitution (guanine to adenine) was found at a position in which a mutation would destabilize the rho-independent terminator structure within the putative attenuator. The enhanced synthesis of tryptophan enzymes in 1041 could be caused by this substitution in the attenuator. PMID:3667535

  3. Purification and characterization of aldehyde dehydrogenase with a broad substrate specificity originated from 2-phenylethanol-assimilating Brevibacterium sp. KU1309.

    Science.gov (United States)

    Hirano, Jun-ichiro; Miyamoto, Kenji; Ohta, Hiromichi

    2007-08-01

    Phenylacetaldehyde dehydrogenase (PADH) was purified and characterized from Brevibacterium sp. KU1309, which can grow on the medium containing 2-phenylethanol as the sole carbon source. This enzyme was a homotetrameric protein with a subunit of 61 kDa. The enzyme catalyzed the oxidation of aryl (benzaldehyde, phenylacetaldehyde, 3-phenylpropionaldehyde) and aliphatic (hexanal, octanal, decanal) aldehydes to the corresponding carboxylic acids using NAD(+) as the electron acceptor. The PADH activity was enhanced by several divalent cationic ions such as Mg(2+), Ca(2+), and Mn(2+). On the other hand, it was inhibited by SH reagents (Hg(2+), p-chloromercuribenzoate, iodoacetamide, and N-ethylmaleinimide). The substrate specificity of the enzyme is compared with those of various aldehyde dehydrogenases.

  4. Highly enantioselective oxidation of racemic phenyl-1,2-ethanediol to optically pure (R)-(-)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1.

    Science.gov (United States)

    He, Yu-Cai; Ma, Cui-Luan; Zhang, Xian; Li, Liang; Xu, Jian-He; Wu, Miao-Xin

    2013-08-01

    Enantioselective oxidation of racemic phenyl-1,2-ethanediol into (R)-(-)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1 was demonstrated. It was found that optically active (R)-(-)-mandelic acid (e.e.p > 99.9 %) is produced leaving the other enantiomer (S)-(+)-phenyl-1,2-ethanediol intact. Using fed-batch method, a total of 172.9 mM (R)-(-)-mandelic acid accumulated in the reaction mixture after the seventh feed. Moreover, oxidation of phenyl-1,2-ethanediol using calcium alginate-entrapped resting cells was carried out in the aqueous system, and efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 27.94 g (R)-(-)-mandelic acid g⁻¹ dry cell weight cell after 16 cycles of repeated use.

  5. Construction of a Xylanase-Producing Strain of Brevibacterium lactofermentum by Stable Integration of an Engineered xysA Gene from Streptomyces halstedii JM8

    Science.gov (United States)

    Adham, Sirin A. I.; Campelo, Ana B.; Ramos, Angelina; Gil, José A.

    2001-01-01

    A xylanolytic strain of Brevibacterium lactofermentum containing the Streptomyces halstedii His-tagged xysA gene was generated. The new strain contains DNA derived from S. halstedii, expresses xylanolytic activity, and was obtained by an integrative process mediated by a conjugative plasmid targeted to a dispensable chromosomal region located downstream from the essential cell division gene ftsZ. The His-tagged Xys1 enzyme was constitutively expressed under the control of the kan promoter from Tn5 and was easily purified by use of Ni-nitrilotriacetic acid-agarose. The new strain is stable for more than 200 generations, lacks any known antibiotic resistance gene, and does not need any selective pressure to maintain the integrated gene. This strategy can be used to integrate any gene into the B. lactofermentum chromosome and to maintain it stably without the use of antibiotics for selection. PMID:11722888

  6. Report: Bioconversion of agriculture waste to lysine with UV mutated strain of brevibacterium flavum and its biological evaluation in broiler chicks.

    Science.gov (United States)

    Tabassum, Alia; Hashmi, Abu Saeed; Masood, Faiza; Iqbal, Muhammad Aamir; Tayyab, Muhammad; Nawab, Amber; Nadeem, Asif; Sadeghi, Zahra; Mahmood, Adeel

    2015-07-01

    Lysine executes imperative structural and functional roles in body and its supplementation in diet beneficial to prevent the escalating threat of protein deficiency. The physical mutagenesis offers new fascinating avenues of research for overproduction of lysine through surplus carbohydrate containing agriculture waste especially in developing countries. The current study was aimed to investigate the potential of UV mutated strain of Brevibacterium flavum at 254 nm for lysine production. The physical and nutritional parameters were optimized and maximum lysine production was observed with molasses (4% substrate water ratio). Moreover, supplementation of culture medium with metal cations (i.e. 0.4% CaSO₄, 0.3% NaCl, 0.3% KH₂PO₄, 0.4% MgSO₄, and 0.2% (NH₄) ₂SO₄w/v) together with 0.75% v/v corn steep liquor significantly enhanced the lysine production up to 26.71 ± 0.31 g/L. Though, concentrations of urea, ammonium nitrate and yeast sludge did not exhibit any profound effect on lysine production. Biological evaluation of lysine enriched biomass in terms of weight gain and feed conversion ratio reflected non-significant difference for experimental and control (+ve) groups. Conclusively, lysine produced in the form of biomass was compatible to market lysine in its effectiveness and have potential to utilize at commercial scale.

  7. Combined dissolved oxygen and pH control strategy to improve the fermentative production of L-isoleucine by Brevibacterium lactofermentum.

    Science.gov (United States)

    Peng, Zhijian; Fang, Jun; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian; Wang, Xiaoyuan; Ning, Jianfei; Cai, Liming

    2010-03-01

    The effect of both dissolved oxygen (DO) and pH on L: -isoleucine production by batch culture of Brevibacterium lactofermentum was investigated. A two-stage agitation speed control strategy was developed, and the isoleucine production reached 23.3 g L(-1) in a relative short time (52 h), increased by 11.6% compared to the results obtained in the single agitation speed control process. In order to make sure whether the combination of DO and pH control can boost the production by a mutual effect, different control modes were conducted, based on the data obtained from the two-stage agitation speed control strategy and the analysis of kinetics parameters at different pH values. The results showed that the mode of combining two-stage DO with two-stage pH control strategy was the optimal for isoleucine production. The isoleucine production can reach 26.6 g L(-1) at 56 h, increased by 14.3% comparing to that obtained by the single two-stage DO control strategy.

  8. Charting the cellular and extracellular proteome analysis of Brevibacterium linens DSM 20158 with unsequenced genome by mass spectrometry-driven sequence similarity searches.

    Science.gov (United States)

    Shabbiri, Khadija; Botting, Catherine H; Adnan, Ahmad; Fuszard, Matthew

    2013-05-27

    Brevibacterium linens DSM 20158 is an industrially important actinobacterium which is well-known for the production of amino acids and enzymes. However, as this strain has an unsequenced genome, there is no detailed information regarding its proteome although another strain of this microbe, BL2, has a shotgun genome sequence. However, this still does not cover the entire scope of its proteome. The present study is carried out by first identifying proteins by homology matches using the Mascot search algorithm followed by an advanced approach using de novo sequencing and MS BLAST to expand the B. linens proteome. The proteins identified in the secretome and cellular portion appear to be involved in various metabolic and physiological processes of this unsequenced organism. This study will help to enhance the usability of this strain of B. linens in different areas of research in the future rather than mainly in the food industries. The present study describes the construction of the first detailed proteomic reference map of B. linens DSM 20158 with unsequenced genome by comparative proteome research analysis. This opens new horizons in proteomics to understand the role of proteins involved in the metabolism and physiology of other organisms with unsequenced genomes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Purification and gene cloning of an enantioselective thioesterification enzyme from Brevibacterium ketoglutamicum KU1073, a deracemization bacterium of 2-(4-chlorophenoxy)propanoic acid.

    Science.gov (United States)

    Kato, Dai-ichiro; Yoshida, Hiromitsu; Takeo, Masahiro; Negoro, Seiji; Ohta, Hiromichi

    2010-01-01

    We succeeded in the purification and gene cloning of a new enzyme, α-methyl carboxylic acid deracemizing enzyme 1 (MCAD1) from Brevibacterium ketoglutamicum KU1073, which catalyzes the (S)-enantioselective thioesterification reaction of 2-(4-chlorophenoxy)propanoic acid (CPPA). The cloned gene of MCAD1 contained an ORF of 1,623 bp, encoding a polypeptide of 540 amino acids. In combination with cofactors ATP, coenzyme A (CoASH), and Mg(2+), MCAD1 demonstrated perfect enantioselectivity toward CPPA. The optimal pH and temperature for reaction were found to be 7.25 and 30 °C. Under these conditions, the K(m) and k(cat) values for (S)-CPPA were 0.92 ± 0.17 mM and 0.28 ± 0.026 s(-1) respectively. The results for substrate specificity revealed that MCAD1 had highest activity toward fatty acid tails with a medium chain-length (C(8)). This result indicates that MCAD1 should be classified into a family of medium-chain acyl-CoA synthetase. This novel activity has never been reported for this family.

  10. Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid contents in Carrizo citrange.

    Science.gov (United States)

    Castillo, Elenor; Martinelli, Federico; Zakharov-Negre, Florence; Ebeler, Susan E; Buzo, Tom R; McKenry, Michael V; Dandekar, Abhaya M

    2017-11-01

    Carrizo transgenic plants overexpressing methionine-gamma-lyase produced dimethyl sulfide. The transgenic plants displayed more resistance to nematode attacks (Tylenculus semipenetrans) and may represent an innovative strategy for nematode control. Tylenchulus semipenetrans is a nematode pest of many citrus varieties that causes extensive damage to commercial crops worldwide. Carrizo citrange vr. (Citrus sinensis L. Usb × Poncirus trifoliate L. Raf) plants overexpressing Brevibacterium linens methionine-gamma-lyase (BlMGL) produced the sulfur volatile compound dimethyl sulfide (DMS). The aim of this work was to determine if transgenic citrus plants expressing BlMGL showed increased tolerance to T. semipenetrans infestation and to determine the effect on the content of key amino acids. While transgenic lines emitted dimethyl sulfide from leaves and roots, no sulfur-containing volatiles were detectable in wild-type Carrizo in the same tissues. Significant changes detected some key amino acids from leaves of transgenic plants such as aspartate, lysine, glycine, leucine and threonine with no changes in the amounts of methionine and α-ketobutyrate. In roots only glycine showed significant changes across all transgenic lines in comparison to wild-type plants. Transgenic plants expressing BlMGL and emitting DMS had less T. semipenetrans aggregation and more biomass than infected WT control plants, indicating that they may represent an innovative management alternative to pesticide/nematicide-based remedies.

  11. cis-Terpin Hydrate Metabolism by a Brevibacterium: Patterns of Enzyme Induction, and Accumulation of α-Terpineol in Growth Media

    Science.gov (United States)

    Baum, Robert H.; Marr, Eleanor K.

    1972-01-01

    A brevibacterium, strain TH-4, previously isolated by aerobic enrichment on the monocyclic monoterpenoid cis-terpin hydrate as a sole carbon and energy source, was found to grow on α-terpineol and on a number of common sugars and organic acids. Oxidation of these terpenoids was shown to occur via an induced enzyme system, as measured manometrically by oxygen uptake and prevention of protein synthesis with chloramphenicol or puromycin. Oxidation of terpin hydrate by cell suspensions appeared to be coincidentally induced by growth on α-terpineol, and oxidation of α-terpineol similarly appeared to be induced by growth on terpin hydrate. Culture fluids in which the TH-4 organism was grown at the expense of cis-terpin hydrate were found to contain (−)-α-terpineol in combined butanol-ether extracts. The isolated compound was shown to be chromatographically and spectrophotometrically identical to an authentic sample of α-terpineol. The stereospecificity of an enzymatic dehydration of terpin hydrate to α-terpineol is considered. PMID:4336108

  12. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309.

    Science.gov (United States)

    Hirano, Jun-ichiro; Miyamoto, Kenji; Ohta, Hiromichi

    2008-08-01

    A cytoplasmic NADH oxidase (NOX) was purified from a soil bacteria, Brevibacterium sp. KU1309, which is able to grow in the medium containing 2-phenylethanol as the sole source of carbon under an aerobic condition. The enzyme catalyzed the oxidation of NADH to NAD+ involving two-electron reduction of O2 to H2O2. The molecular weight of the enzyme was estimated to be 102 kDa by gel filtration and 57 kDa by SDS-PAGE, which indicates that the NOX was a homodimer consisting of a single subunit. The enzyme was stable up to 70 degrees C at a broad range of pH from 7 to 11. The enzyme activity increased about ten-fold with the addition of ammonium salt, while it was inhibited by Zn2+ (39%), Cu2+ (41%), Hg2+ (72%) and Ag+ (37%). The enzyme acts on NADH, but not on NADPH. The regeneration of NAD+ utilizing this enzyme made selective oxidation of mandelic acid or L: -phenylalanine possible. This thermostable enzyme is expected to be applicable as a useful biocatalyst for NAD+ recycling.

  13. Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina

    Science.gov (United States)

    Maizel, Daniela; Blum, Jodi S.; Ferrero, Marcela A.; Utturkar, Sagar M.; Brown, Steven D.; Rosen, Barry P.; Oremland, Ronald S.

    2015-01-01

    Brevibacterium linens AE038-8, isolated from As-contaminated groundwater in Tucumán (Argentina), is highly resistant to arsenic oxyanions, being able to tolerate up to 1 M As(V) and 75 mM As(III) in a complex medium. Strain AE038-8 was also able to reduce As(V) to As(III) when grown in complex medium but paradoxically it could not do this in a defined minimal medium with sodium acetate and ammonium sulfate as carbon and nitrogen sources, respectively. No oxidation of As(III) to As(V) was observed under any conditions. Three copies of the ars operon comprising arsenic resistance genes were found on B. linens AE038-8 genome. In addition to the well known arsC, ACR3 andarsR, two copies of the arsO gene of unknown function were detected.

  14. Alkaline Protease Production from Brevibacterium luteolum (MTCC 5982) Under Solid-State Fermentation and Its Application for Sulfide-Free Unhairing of Cowhides.

    Science.gov (United States)

    Renganath Rao, R; Vimudha, M; Kamini, N R; Gowthaman, M K; Chandrasekran, B; Saravanan, P

    2017-06-01

    Enzyme-based unhairing in replacement of conventional lime sulfide system has been attempted as an alternative for tackling pollution. The exorbitant cost of enzyme and the need for stringent process control need to be addressed yet. This study developed a mechanism for regulated release of protease from cheaper agro-wastes, which overcomes the necessity for stringent process control along with total cost reduction. The maximum protease activity of 1193.77 U/g was obtained after 96 h of incubation with 15% inoculum of the actinomycete strain Brevibacterium luteolum (MTCC 5982) under solid-state fermentation (SSF). The medium after SSF was used for unhairing without the downstream processing to avoid the cost involved in enzyme extraction. This also helped in the regulated release of enzyme from bran to the process liquor for controlled unhairing and avoided the problem of grain-pitting. Unhairing process parameters were standardized as 20% enzyme offer, 40% Hide-Float ratio at 5 ± 1 rpm, and process pH of 9.0. The cost of production of 1000 kU of the protease was calculated as 0.44 USD. The techno-economic feasibility studies for setting up an SSF enzyme production plant showed a high return on investment of 15.58% with a payback period of 6.4 years.

  15. Assignment of Brevibacterium stationis (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium, as Corynebacterium stationis comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalinize citrate.

    Science.gov (United States)

    Bernard, Kathryn A; Wiebe, Deborah; Burdz, Tamara; Reimer, Aleisha; Ng, Betty; Singh, Cathleen; Schindle, Samantha; Pacheco, Ana Luisa

    2010-04-01

    Brevibacterium stationis ATCC 14403(T), Corynebacterium ammoniagenes ATCC 6872 and two clinical isolates were found to form a single taxon group consistent with the genus Corynebacterium, designated here as Corynebacterium stationis comb. nov. The type strain of Corynebacterium stationis is ATCC 14403(T) =CCUG 43497( T) =CIP 104228(T) =DSM 20302(T) =NBRC 12144(T) =JCM 11611(T) =VKM B-1228(T). These strains can utilize citrate; therefore, inclusion of C. stationis requires that the description of the genus Corynebacterium be amended to include citrate-positive strains.

  16. The consequences of Bacillus axarquiensis Ruiz-García et al. 2005, Bacillus malacitensis Ruiz-García et al. 2005 and Brevibacterium halotolerans Delaporte and Sasson 1967 (Approved Lists 1980) being treated as heterotypic synonyms.

    Science.gov (United States)

    Tindall, B J

    2017-01-01

    In a recent publication, data was presented supporting Bacillus axarquiensis Ruiz-García et al. 2005, Bacillus malacitensis Ruiz-García et al. 2005 and Brevibacterium halotolerans Delaporte and Sasson 1967 (Approved Lists 1980) being treated as heterotypic synonyms. The nomenclatural consequences proposed were that under these circumstances the correct name to be used is Bacillus axarquiensis Ruiz-García et al. 2005, but this is not consistent with the wording of the International Code of Nomenclature of Prokaryotes and it is, therefore, it is necessary to establish the correct name to be used.

  17. Genotypic and technological diversity of Brevibacterium linens strains for use as adjunct starter cultures in 'Pecorino di Filiano' cheese ripened in two different environments.

    Science.gov (United States)

    Bonomo, Maria Grazia; Cafaro, Caterina; Salzano, Giovanni

    2015-01-01

    Twenty-two Brevibacterium linens strains isolated from 'Pecorino di Filiano' cheese ripened in two different environments (natural cave and storeroom) were characterized and differentiated for features of technological interest and by genotypic methods, in order to select strains with specific features to be used as surface starter cultures. Results showed significant differences among strains on the basis of physiological and technological features, indicating heterogeneity within the species. A middle-low level of proteolytic activity was observed in 27.3 % of strains, while a small group (9.1 %) showed a high ability. Lipolytic activity was observed at three different temperatures and the highest value was detected at 20 °C with 13.6 % of strains, while an increase in temperature produced a slightly lower lipolysis in all strains. The evaluation of diacetyl production revealed that only 22.8 % of strains showed this ability, and most of them were isolated from product ripened in the natural cave. All strains exhibited only leu-aminopeptidase activity, with values more elevated in strains coming from the natural cave product. The combined analysis of genotypic results with the data obtained by the features of technological interest study established that the random amplified polymorphic DNA (RAPD) clusters obtained were composed not only of different genotypes but of different profiles based on technological properties too. This study demonstrated the importance of the ripening environment that affects the typical features of the artisanal product, leading to the selection of a specific surface microflora. Characterized strains could be associated within surface starters to standardize the production process of cheese, but preserving its typical organoleptic and sensory characteristics and improving the quality of the final product.

  18. [Microbial synthesis of deuterium labelled L-phenylalanine with different levels of isotopic enrichment by facultative methylotrophic bacterium Brevibacterium methylicum with RMP assimilation of carbon].

    Science.gov (United States)

    Mosin, O V; Shvets, V I; Skladnev, D A; Ignatov, I

    2014-01-01

    The preparative microbial synthesis of amino acids labelled with stable isotopes, including deuterium ( 2 H), suitable for biomedical applications by methylotrophic bacteria was studied using L-phenylalanine as example. This amino acid is secreted by Gram-negative aerobic facultative methylotrophic bacteria Brevibacterium methylicum, assimilating methanol via ribulose-5-monophosphate (RMP) cycle of assimilation of carbon, The data on adaptation of L-phenylalanine secreted by methylotrophic bacterium В. methylicum to the maximal concentration of deuterium in the growth medium with 98% 2 Н 2 O and 2% [ 2 Н]methanol, and biosynthesis of deuterium labelled L-phenylalanine With different levels of enrichment are presented. The strain was adapted by means of plating initial cells on firm (2% agarose) minimal growth media with an increasing gradient of 2 Н 2 O concentration from 0; 24.5; 49.0; 73.5 up to 98% 2 Н 2 O followed by subsequent selection of separate colonies stable to the action of 2 Н 2 O. These colonies were capable to produce L-phenylalanine. L-phenylalanine was extracted from growth medium by extraction with isopropanol with the subsequent crystallization in ethanol (output 0.65 g/l). The developed method of microbial synthesis allows to obtain deuterium labelled L-phenylalanine with different levels of isotopic enrichment, depending on concentration of 2 Н 2 O in growth media, from 17% (on growth medium with 24,5% 2 Н 2 O) up to 75% (on growth medium with 98% 2 Н 2 O) of deuterium in the molecule that is confirmed with the data of the electron impact (EI) mass- spectrometry analysis of methyl ethers of N-dimethylamino(naphthalene)-5-sulfochloride (dansyl) phenylalanine in these experimental conditions.

  19. Real-time nanomechanical and topographical mapping on live bacterial cells-Brevibacterium casei under stress due to their exposure to Co2+ ions during microbial synthesis of Co3O4 nanoparticles.

    Science.gov (United States)

    Kumar, Umesh; Vivekanand, K; Poddar, Pankaj

    2009-06-04

    The study of elastic properties of microbial and mammalian cells using atomic force microscopy, with force-sensitivity as high as pico-Newtons and spatial resolution of a few nanometers, is proving to be a great tool for the real-time observation of the effects of drugs, biomolecules, metal ions, and nanoparticles on cell physiology in their natural environment. It has been shown that the Young's modulus of the cell surfaces is extremely sensitive to the surrounding environment. Recently, a broad array of microbes have been used successfully to synthesize nanocrystals of several metal and metal oxides in a controlled manner at room temperature after exposing them to various metal ion precursors. However, so far there is no report on the fate of their elastic properties and cell topography etc. during and after their exposure to the metal ions during the microbial synthesis of nanomaterials. Additionally, this information is also found to be extremely relevant to areas such as bioremediation, bioleaching, and biomineralization, where it is important to study the direct influence on the cell physiology in the presence of metal ions. Here, we report, for the first time, the use of AFM force-distance curves on live cells, to directly monitor (in real time) the changes in the surface-topography, surface-adhesion, indentation-depth, and Young's modulus of a metal-tolerant marine bacterium, Brevibacterium casei, isolated from the coast of the Arabian Sea, after its exposure to the Co2+ ions during the process of biosynthesis of nanoparticles. We earlier reported that this bacterium is capable of using the cobalt acetate as a precursor to synthesize protein-functionalized Co3O4 nanoparticles with very high crystallinity. Our study indicates a significant change in the morphology as well as elastic and adhesive properties of the Brevibacterium casei, where we found an increase in the adhesive properties and the indentation depth of the bacterial surfaces and a decrease in

  20. Correlation of Quantitative PCR for a Poultry-Specific Brevibacterium Marker Gene with Bacterial and Chemical Indicators of Water Pollution in a Watershed Impacted by Land Application of Poultry Litter▿

    Science.gov (United States)

    Weidhaas, Jennifer L.; Macbeth, Tamzen W.; Olsen, Roger L.; Harwood, Valerie J.

    2011-01-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters. PMID:21278274

  1. Correlation of quantitative PCR for a poultry-specific brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter.

    Science.gov (United States)

    Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J

    2011-03-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.

  2. Brevibacterium oceanic sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bhadra, B.; Raghukumar, C.; Pindi, P.K.; Shivaji, S.

    Two bacterial strains, designated BBH5 and BBH7 sup(T), were isolated from a deep-sea sediment sample collected from the Chagos Trench of the Indian Ocean (11 degrees 6 minutes S 72 degrees 31 minutes E). Based on their 16S rRNA gene sequence...

  3. Brevibacterium siliguriense sp nov., a facultatively oligotrophic bacterium isolated from river water

    NARCIS (Netherlands)

    Kumar, A.; Ince, I.A.; Kati, A.; Chakraborty, R.

    2013-01-01

    A Gram-positive-staining, rod-shaped, facultatively oligotrophic bacterial strain, designated MB18(T), was isolated from a water sample collected from the River Mahananda at Siliguri (26 degrees 44' 23.20' N, 88 degrees 25' 22.89' a West-Bengal, India. On the basis of 16S rRNA gene sequence

  4. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species--Alexandrium tamarense.

    Directory of Open Access Journals (Sweden)

    Huajun Zhang

    Full Text Available Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or ultimately killed the algal cells.

  5. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp

    Science.gov (United States)

    Chicken feces are vectors of human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a pre...

  6. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species--Alexandrium tamarense.

    Science.gov (United States)

    Zhang, Huajun; An, Xinli; Zhou, Yanyan; Zhang, Bangzhou; Zhang, Su; Li, Dong; Chen, Zhangran; Li, Yi; Bai, Shijie; Lv, Jinglin; Zheng, Wei; Tian, Yun; Zheng, Tianling

    2013-01-01

    Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS) and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or ultimately killed the algal cells.

  7. Discovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense

    Directory of Open Access Journals (Sweden)

    Xinli eAn

    2015-11-01

    Full Text Available Blooms of the dinoflagellate Alexandrium tamarense have become worldwide phenomena and have detrimental impacts on aquatic ecosystems and human health. In this study, a culture supernatant of the marine actinomycete BS01 exerted a strong algicidal effect on A. tamarense (ATGD98-006. The target algicide from BS01 was separated by adsorption chromatography and identified by MALDI-TOF-MS and NMR analysis. The results suggested that the purified algicidal component corresponded to a hydrophobic compound (2-isobutoxyphenylamine (C10H15NO with a molecular weight of 165 Da, which exhibited a significant algicidal effect (64.5% on A. tamarense. After incubation in 5 μg/mL of (2-isobutoxyphenylamine for 24 h, the algae lost mobility and sank to the bottom of the flasks, and 56.5% of the algae cells lost vitality at a concentration of 20 μg/mL (p < 0.01 despite having intact cell profiles. Morphological analysis revealed that the cell structure of A. tamarense was altered by (2-isobutoxyphenylamine resulting in cytoplasm degradation and the loss of organelle integrity. The images following propidium iodide staining suggested that the algal nucleus was also severely damaged and eventually degraded due to exposure to the algicidal compound. All of the results indicate that (2-isobutoxyphenylamine from the actinomycete might be a candidate for the control of bloom-forming A. tamarense.

  8. Discovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense.

    Science.gov (United States)

    An, Xinli; Zhang, Bangzhou; Zhang, Huajun; Li, Yi; Zheng, Wei; Yu, Zhiming; Fu, Lijun; Zheng, Tianling

    2015-01-01

    Blooms of the dinoflagellate Alexandrium tamarense have become worldwide phenomena and have detrimental impacts on aquatic ecosystems and human health. In this study, a culture supernatant of the marine actinomycete BS01 exerted a strong algicidal effect on A. tamarense (ATGD98-006). The target algicide from BS01 was separated by adsorption chromatography and identified by MALDI-TOF-MS and NMR analysis. The results suggested that the purified algicidal component corresponded to a hydrophobic compound (2-isobutoxyphenyl)amine (C10H15NO) with a molecular weight of 165 Da, which exhibited a significant algicidal effect (64.5%) on A. tamarense. After incubation in 5 μg/mL of (2-isobutoxyphenyl)amine for 24 h, the algae lost mobility and sank to the bottom of the flasks, and 56.5% of the algae cells lost vitality at a concentration of 20 μg/mL (p algal nucleus was also severely damaged and eventually degraded due to exposure to the algicidal compound. All of the results indicate that (2-isobutoxyphenyl)amine from the actinomycete might be a candidate for the control of bloom-forming A. tamarense.

  9. GENE 16S RRNA SEQUENCE PHYLOGENETIC ANALYSIS OF LYSINE PRODUCERS STRAINS

    Directory of Open Access Journals (Sweden)

    G. S. Andriiash

    2014-12-01

    Full Text Available The phylogenetic relationships of strainsproducers of essential amino acids of aspartate family Brevibacterium sp. UCM Ac-674 (Brevibacterium sp. 90, Brevibacterium sp. IMV Ac-5004 (Brevibacterium sp. 90H, Brevibacterium sp. UCM Ac-675 (Brevibacterium sp. E531, mutant strain Brevibacterium sp. IMV B-7447 from the «Collections strains and lines of plants for food and agricultural biotechnology SO “Institute for Food Biotechnology and Genomics” of National Academy of Sciences of Ukraine were investigated. The affiliation strain Brevibacterium sp. IMV B-7447 to the genus Brevibacterium within the sequences of the genes based on 16S rRNA was confirmed. The dendogram of phylogenetic relationships of studied strains and related strains Brevibacterium from database GenBank was constructed. It was shown that by the criterion of homology gene sequences based on 16S rRNA the investigated strains-producers belong to three phylogenetic groups. It was established that the mutant strain Brevibacterium sp. ІMV B-7447 has no analogues in the database GenBank.

  10. The ultrasonic effect on the mechanism of cholesterol oxidase ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... The effects of ultrasonic radiation on cholesterol oxidase production by Brevibacterium sp. are studied in this paper. An ultrasonic wave with low intensity at 20 kHz, 200 W/ cm2 was employed to study the effects of irradiation at different lengths of time on the growth of Brevibacterium sp. cells. The result.

  11. Isolation and characterization of synthetic detergentdegraders from ...

    African Journals Online (AJOL)

    ... Klebsiella aerogenes, Escherichia coli, Enterobacter agglomerans, Staphylococcus albus, Pseudomonas aeruginosa, Proteus sp., Klebsiella oxytoca, Brevibacterium sp., Myceliophthora thermophila, Geomyces sp., Alternaria alternata, Verticillium alboatrum, Aspergillus flavus, Trichoderma sp. and Aspergillus oryzae.

  12. Diversity of l-Ieucine catabolism in various microorganisms involved in dairy fermentations, and identification on the rate-controlling step in the formation of the potent flavour component 3-methylbutanal.

    NARCIS (Netherlands)

    Smit, B.A.; Engels, W.J.M.; Wouters, J.T.M.; Smit, G.

    2004-01-01

    Various microorganisms, belonging to the genera Lactococcus, Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Propionibacterium, Brevibacterium, Corynebacterium and Arthrobacter, used in dairy fermentations such as cheese making, were analysed for their potential to convert leucine into

  13. Effects of fermentation and extrusion on the proximate composition ...

    African Journals Online (AJOL)

    They include Flavobacterium rigense, Micrococcus icristinae, Enterobacter cloacae, Enterobacter spp., Corynebacterium cystitidis, C. pilosun, Staphylococcus albus, Brevibacterium spp., Bacillus subtilis, B. cereus, B. brevis, B. megaterium, Candida famata, Saccharomyces cerevisiae, Geotrichum candidium, C. utilis, ...

  14. A comparative study of the anti-listerial activity of smear bacteria

    DEFF Research Database (Denmark)

    Gori, Klaus; Mortensen, Christina; Jespersen, Lene

    2010-01-01

    Cell-free supernatants from Staphylococcus epidermidis, Staphylococcus warneri and Brevibacterium linens were found to possess anti-listerial activities. Anti-listerial activities were increased during exponential growth phase and reached a maximum during stationary growth phase. S. epidermidis (...

  15. Behaviour of marine oil-degrading bacterial populations in a continuous culture system

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; David, J.J.; Nair, S.; LokaBharathi, P.A; Chandramohan, D.

    In pursuit of developing an oil-degrading microbial consortium, we used the principle of "plasmid assisted molecular breeding" (PAMB) in a continuous culture system. Three marine bacteria, Pseudomonas putida, Brevibacterium epidermidis...

  16. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Ramaiah, N.; Vardanyan, L.

    isolate), Pseudomonas aeruginosa (one isolate), and Brevibacterium iodinium (one isolate). The mechanisms of heavy metal detoxification were through volatilization (for Hg), putative entrapment in the extracellular polymeric substance (for Hg, Cd and Pb...

  17. THE MUTANT STRAINS OF MICROORGANISMS ‒ PRODUCERS OF LYSINE AND THREONINE

    Directory of Open Access Journals (Sweden)

    G. S. Andriiash

    2014-06-01

    Full Text Available Strains-producers of essential amino acids of aspartate family such as Corynebacterium glutamicum, Brevibacterium flavum, Brevibacterium sp. 90, Brevibacterium sp. 90H, Brevibacterium sp. E531 from «Collections strains and lines of plants for food and agricultural biotechnology» of «Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine» for biosynthetic activity for lysine and threonine were investigated. Active strains-producers of amino acids were obtained after UV irradiation, biological characteristics of these organisms were studied and their biosynthetic efficiency was estimated. New mutant strains of threonine and lysine were selected using analysis of regulatory and analogorezistent auxotrophy. Sensitivity of output and mutant strain-producers to penicillins, macrolides, cephalosporins, tetracyclines, and other groups of antibiotics was investigated. Biosynthetic activity of obtained threonine producers – Brevibacterium flavum IMВ B-7446 and lysine – Brevibacterium sp. IMВ B-7447 on the production of target amino acids was determined. Strains are deposited in the «National Depository microorganisms» of the Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine.

  18. Identification of plasmid partition function in coryneform bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kurusu, Yasurou; Satoh, Yukie; Inui, Masayuki; Kohama, Keiko; Kobayashi, Miki; Terasawa, Masato; Yukawa, Hideaki (Mitsubishi Petrochemical Co., Ltd., Ibaraki (Japan))

    1991-03-01

    The authors have identified and characterized a partition function that is required for stable maintenance of plasmids in the coryneform bacteria Brevibacterium flavum MJ233 and Corynebacterium glutamicum ATCC 31831. This function is localized to a HindIII-NspV fragment (673 bp) adjacent to the replication region of the plasmid, named pBY503, from Brevibacterium stationis IFO 12144. The function was independent of copy number control and was not associated directly with plasmid replication functions. This fragment was able to stabilize the unstable plasmids in cis but not in trans.

  19. Comparison of ViTEK 2, MALDI-TOF and Partial Sequencing of 16S ...

    African Journals Online (AJOL)

    All the strains were susceptible to Vancomycin, Linezolid and Rifampicin while they were all resistant to Penicillin, Fusidic acid, and Trimethoprim. Brevibacterium epidermidis were generally resistant to Erythromycin and Clindamycin while B. iodinum and B. oceani were susceptible. Conclusion - 16S rRNA identification is ...

  20. Antibacterial action of an aqueous grape seed polyphenolic extract ...

    African Journals Online (AJOL)

    The potential of a polyphenolic grape seed extract for use as a natural antibacterial agent was evaluated. Pure catechin (CS) and a previously LC-MS characterized grape seed phenolic extract (PE) were evaluated as antibacterial agents against Escherichia coli and Brevibacterium linens on solid and in liquid culture media ...

  1. African Journal of Biotechnology - Vol 10, No 66 (2011)

    African Journals Online (AJOL)

    Effect of essential oils of Thymus vulgaris and Mentha piperita on the control of green mould and postharvest quality of Citrus Sinensis cv. Valencia ... Expression and comparison of recombinant cholesterol oxidases (COD) in Escherichia coli with native cholesterol oxidase expressed in Brevibacterium sp. EMAIL FREE ...

  2. GenBank blastx search result: AK107397 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107397 002-127-D06 AB052295.1 Brevibacterium fuscum var. dextranlyticum genes for... ABC membrane transporter homologues, putative alpha-glucosidase, isomaltotrio-dextranase precursor, partial and complete cds.|BCT BCT 1e-122 +2 ...

  3. Expression and comparison of recombinant cholesterol oxidases ...

    African Journals Online (AJOL)

    The structure and bio-activity of an endogenous cholesterol oxidase from Brevibacterium sp. was compared to the same enzyme exogenously expressed in Escherichia coli BL21 (DE3) with and without N- or C-terminal his-tags. The different proteins were purified with affinity and subtractive protocols. The specific activity of ...

  4. Browse Title Index

    African Journals Online (AJOL)

    Khaled M. Ghanem, Fahad A. Al-Fassi, Nuha M. Al-Hazmi. Vol 11, No 33 (2012), Optimization of cholesterol oxidase production by Brevibacterium sp. employing response surface methodology, Abstract PDF. Shengli Yang, Hui Zhang. 7751 - 7800 of 11090 Items, >> ...

  5. Augmentation of NKT and NK cell-mediated cytotoxicity by peptidoglycan monomer linked with zinc

    Directory of Open Access Journals (Sweden)

    Ines Mrakovcic-Šutic

    2002-01-01

    Full Text Available Background: Peptidoglycan monomer (PGM, which was originally prepared by biosynthesis from culture fluids of penicillin-treated Brevibacterium divaricatum, is an immunostimulator, the activities of which might be improved by addition of zinc (Zn to the basic molecule.

  6. Immobilization of microbial cells containing NAD-kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Tanaka, Y.; Kawashima, K.

    1979-06-01

    Microbial cells having NAD-kinase activity, Brevibacterium ammoniagenes, were immobilized by the radiation-copolymerization method under low temperature with the activity recovery of more than 80%. Compared to the native microbial cells the immobilized cells were more stable against heat and pH change. The immobilized cells were subjected to the 5 hr reaction repeatedly 20 times without any activity loss.

  7. In Search of the Silver Bullet: The Reactive Solution

    Science.gov (United States)

    2003-11-19

    polymer matrix • Active against the things we’re worried about • Neutralization products relatively non-toxic • Contain sacrificial attachment...Untreated Cotton/Polyester Chloramide Treated Cotton/Polyester After two minutes exposure Indiscriminately! GastroenteritisShigella Yeast, diaper ...rashCandida albicans Diaper rashBrevibacterium Skin & lung infectionPseudomonas aeruginosa Fungus, Athlete’s Foot & Jock ItchTricophyton mentagrophytes

  8. Identification and characterization of a 29-kilodalton protein from Mycobacterium tuberculosis culture filtrate recognized by mouse memory effector cells

    DEFF Research Database (Denmark)

    Rosenkrands, I; Rasmussen, P.B.; Carnio, M

    1998-01-01

    Culture filtrate proteins from Mycobacterium tuberculosis induce protective immunity in various animal models of tuberculosis. Two molecular mass regions (6 to 10 kDa and 24 to 36 kDa) of short-term culture filtrate are preferentially recognized by Th1 cells in animal models as well as by patients......, Determination of the N-terminal amino acid sequence allowed cloning and sequencing of the cfp29 gene. The nucleotide sequence showed 62% identity to the bacteriocin Linocin from Brevibacterium linens, Purified recombinant histidine-tagged CFP29 and native CFP29 had similar T-cell stimulatory properties...

  9. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil

    DEFF Research Database (Denmark)

    Zheng, Bang-Xiao; Hao, Xiuli; Ding, Kai

    2017-01-01

    based on 16S rRNA gene illumina sequencing. Additionally, a noval pqqC primer was developed to quantify iPSB abundance. In our study, an alkaline soil with 27-year fertilization treatment was selected. The percentage of iPSB was 1.10~2.87% per sample, and the dominant iPSB genera were closely related...... to Arthrobacter, Bacillus, Brevibacterium and Streptomyces. Long-term P fertilization had no significant effect on the abundance of iPSB communities. Rather than P and potassium (K) additions, long-term nitrogen (N) fertilization decreased the iPSB abundance, which was validated by reduced relative abundance...

  10. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    A large number of Gram-positive and Gram-negative bacteria have been found to produce the signaling molecule autoinducer two (AI-2), which is used for interspecies communication. In this study, AI-2 activity was for the first time determined in Arthrobacter nicotianae, Brevibacterium linens (BL2......). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  11. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro (Tokyo Univ. (Japan). Faculty of Science)

    1984-03-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both (1-/sup 14/C)-acetate and (2/sup 14/C) malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases.

  12. Drying trials and protein enrichment by microbial growth on cane and beet molasses distillery stillage

    Energy Technology Data Exchange (ETDEWEB)

    Matteuzzi, D.; Rosa, M.D.; Brigidi, P.; Lerici, C.R.; Sina, P.

    1985-02-01

    It is well known that molasses stillage is difficult to dry because of its high hygroscopicity. This investigation was made to try to affect the drying capacity of beet molasses stillage by the addition of gelling agents. Increase in crude protein and essential amino acid content of beet molasses was obtained by growing Brevibacterium flavum and Candida utilis. The results obtained showed that drying performance is probably due to an optimum combination of the chemico-physical properties of the raw material. 7 references.

  13. Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, H.; Komagata, K.

    1964-01-01

    Hydrocarbon-utilizing bacteria were isolated from oil-brine, soils etc. sampled in oil fields in Japan during 1956, and the following species were identified: Corynebacterium hydrocarboclastus nov. sp., 11 strains; Pseudomonas nitroreducens nov. sp., 1 strain; Pseudomonas maltophila Hugh and Ryschenkow, 5 strains: Brevibacterium lipolyticum (Huss) Breed, 2 strains; Pseudomonas desmolytica Gray and Thornton, 5 strains; Flavobacterium ferrugineum Sickles and Shaw, 1 strain; and Alcaligenes faecalis Chastellani and Chalmers, 1 strain. One difference between Gram-negative bacteria and Gram-positive bacteria was described on the basis of the ability of assimilating hydrocarbons.

  14. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2007-01-01

    A large number of Gram-positive and Gram-negative bacteria have been found to produce the signaling molecule autoinducer two (AI-2), which is used for interspecies communication. In this study, AI-2 activity was for the first time determined in Arthrobacter nicotianae, Brevibacterium linens (BL2......). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  15. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    Science.gov (United States)

    Oliveira, Lilian C.G.; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y.; Rocha, Rafael C.S.; Bertolini, Thiago; Silveira, Marghuel A.V.; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N.

    2015-01-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  16. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico

    Science.gov (United States)

    León-Galván, Ma. Fabiola; Barboza-Corona, José E.; Lechuga-Arana, A. Arianna; Valencia-Posadas, Mauricio; Aguayo, Daniel D.; Cedillo-Pelaez, Carlos; Martínez-Ortega, Erika A.; Gutierrez-Chavez, Abner J.

    2015-01-01

    Thirty-two farms (n = 535 cows) located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM) and clinical mastitis (CLM) were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT) (≥3) and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY), lactation number (LN), herd size (HS), and number of days in milk (DM) were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH), LN, HS, and DM (P < 0.01), and correlations between udder quarters from the CMT were around 0.49 (P < 0.01). Coagulase-negative staphylococci were mainly identified, as well as Staphylococcus aureus, Streptococcus uberis, Brevibacterium stationis, B. conglomeratum, and Staphylococcus agnetis. Bacterial isolates were resistant to penicillin, clindamycin, ampicillin, and cefotaxime. Bacteriocins synthesized by Bacillus thuringiensis inhibited the growth of multiantibiotic resistance bacteria such as S. agnetis, S. equorum, Streptococcus uberis, Brevibacterium stationis, and Brachybacterium conglomeratum, but they were not active against S. sciuri, a microorganism that showed an 84% resistance to antibiotics tested in this study. PMID:25815326

  17. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico

    Directory of Open Access Journals (Sweden)

    Ma. Fabiola León-Galván

    2015-01-01

    Full Text Available Thirty-two farms (n=535 cows located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM and clinical mastitis (CLM were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT (≥3 and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY, lactation number (LN, herd size (HS, and number of days in milk (DM were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH, LN, HS, and DM P<0.01, and correlations between udder quarters from the CMT were around 0.49 P<0.01. Coagulase-negative staphylococci were mainly identified, as well as Staphylococcus aureus, Streptococcus uberis, Brevibacterium stationis, B. conglomeratum, and Staphylococcus agnetis. Bacterial isolates were resistant to penicillin, clindamycin, ampicillin, and cefotaxime. Bacteriocins synthesized by Bacillus thuringiensis inhibited the growth of multiantibiotic resistance bacteria such as S. agnetis, S. equorum, Streptococcus uberis, Brevibacterium stationis, and Brachybacterium conglomeratum, but they were not active against S. sciuri, a microorganism that showed an 84% resistance to antibiotics tested in this study.

  18. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials.

    Science.gov (United States)

    Mahmoud, Huda M; Kalendar, Aisha A

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications.

  19. Host-parasite interactions in closed and open microbial cultivation system

    Science.gov (United States)

    Pisman, T. I.; Pechurkin, N. S.

    We studied interaction between bacteria and phages within a host-parasite system the members of the system being continuously and closely cultivated The objects of our research were auxotrophic strain Brevibacterium 22L and bacteriophage Brevibacterium sp strain A discovered in the soil of the Soviet Union Republic of Latvia using enrichment method 1 Closed system We investigated the dependence of bacteriolysis time upon the multiplicity of phage infection It was shown that reduction of phage amount by one bacterium leads to increase of marked lysis Another important factor determining cytolysis in fluid medium is the physiological state of bacterial population Specific growth rate of bacteria at the moment of phage infection was chosen as the index of the physiological state of bacteria It was revealed that the shortest latent period and the maximal phage burst is observed when the bacteria located in a favorable nutrient medium are in the logarithmic phase If the bacterial population has already passed from the logarithmic phase to the stationary one the cells become a bad host for phage reproduction and lysis occurs very slowly or even never starts at all 2 Open system In the process of continuous cultivation the members of the host-parasite system showed an ability to coexist over a long period of time After phage infection there were variations in the size of both populations and then the density of the host population reached the level close to that of the uninfected culture In this situation the phage population

  20. OCCURRENCE OF NUCLEOTIDES IN CULTURE FLUIDS OF MICROORGANISMS

    Science.gov (United States)

    Okabayashi, Tadashi; Yoshimoto, Akihiro; Ide, Misao

    1963-01-01

    Okabayashi, Tadashi (Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan), Akihiro Yoshimoto, and Misao Ide. Occurrence of nucleotides in culture fluids of microorganisms. V. Excretion of adenosine cyclic 3′,5′-phosphate by Brevibacterium liquefaciens sp. n. J. Bacteriol. 86:930–936. 1963.—Brevibacterium liquefaciens sp. n., when grown in a medium containing amino acids as the nitrogen source, excreted a considerable amount of an adenine ribonucleotide, which had not previously been noticed. The nucleotide was identified as adenosine cyclic 3′,5′-phosphate by analysis, ultraviolet-absorption spectra, infrared-absorption spectra, paper chromatography, paper electrophoresis, and by comparison of behavior in hydrolysis by HCl, NaOH, and Ba(OH)2; also, behavior in digestion with a crude enzyme preparation of adenosine cyclic 3′,5′-phosphate phosphodiesterase was compared with that of an authentic sample. Preliminary examination of culture conditions revealed that, at least superficially, the substitution of dl-alanine for Casamino Acids (as nitrogen source) is one of the causes of the excretion of adenosine cyclic 3′,5′-phosphate. PMID:14080803

  1. Heavy metal biosorption by bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Vecchio, A.; Finoli, C.; Di Simine, D.; Andreoni, V. [Department of Food Science and Microbiology, State University, Milan (Italy)

    1998-06-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated q{sub max}. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. (orig.) (orig.) With 5 figs., 4 tabs., 23 refs.

  2. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    Directory of Open Access Journals (Sweden)

    Lilian C.G. Oliveira

    2015-06-01

    Full Text Available Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs and polyhydroxyalkanoates (PHAs. Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.

  3. Host parasite interactions in closed and open microbial cultivation system

    Science.gov (United States)

    Pisman, T. I.; Pechurkin, N. S.

    The study addresses interaction of bacteria and phages in the host parasite system in batch and continuous cultures. The study system consists of the auxotrophic strain of Brevibacterium Brevibacterium sp. 22L and the bacteriophage of Brevibacterium sp., isolated from the soil by the enrichment method.Closed system. In the investigation of the relationship between the time of bacterial lysis and multiplicity of phage infection it has been found that at a lower phage amount per cell it takes a longer time for the lysis of the culture to become discernible. Another important factor determining cytolysis in liquid medium is the physiological state of bacterial population. Specific growth rate of bacteria at the moment of phage infection has been chosen as an indicator of the physiological state of bacteria. It has been shown that the shortest latent period and the largest output of the phage are observed during the logarithmic growth phase of bacteria grown under favorable nutrient conditions. In the stationary phase, bacterial cells become “a bad host” for the phage, whose reproduction rate decreases, and the lysis either slows down significantly or does not occur at all.Open system. It has been found that in continuous culture, the components of the host parasite system can coexist over a long period of time. After phage infection, the sizes of the both populations vary for some time and then the density of the host population reaches the level close to that of the uninfected culture. The phage population copies the variations in the density of the host population, but in antiphase. It has been proven that the bacterium becomes resistant to the phage rather soon. It has been supposed that primary resistance is of physiological origin, because the percentage of cells that have survived lysis about 0.2% of the initial bacterial population is too high for phage-resistant mutants. Bacteria and phages cultured over extended periods of time in the host parasite system

  4. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    Science.gov (United States)

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  5. Identification and characterisation of potential biofertilizer bacterial strains

    Science.gov (United States)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  6. [Screening and functional properties of cholesterol-degrading lactic acid bacteria from Jiangshui].

    Science.gov (United States)

    Li, Xueping; Li, Jianhong; Li, Minquan; Meng, Xiangang

    2015-08-04

    We intended to obtain and characterize lactic acid bacteria with high capacity of cholesterol-degrading. We chose Jiangshui as the experimental material, screened lactic acid bacteria by the culture medium with high cholesterol, and studied other features of lactic acid bacteria like salt-tolerant, acid resistance, then identified the species of lactic acid bacteria by combining physiological and biochemical methods and 16S rDNA sequence. All lactic acid bacteria isolated had the capacity of cholesterol-degrading to some extent. There were 4 strains had high cholesterol-degrading rate (> 75%). Four strains were Lactococcus lactis subsp. lactis, two were Brevibacterium casei, and one was Lactococcus raffinolactis. Cholesterol-degrading lactic acid bacteria were screened from Jiangshui, with application potential for cholesterol degradation.

  7. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles.

    Science.gov (United States)

    Deepak, Venkataraman; Pandian, Suresh babu Ram Kumar; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2009-12-01

    In this study, nattokinase was purified from Bacillus subtilis using ion exchange chromatography and immobilized upon polyhydroxybutyrate (PHB) nanoparticles. A novel strain isolated from industrial dairy waste was found to synthesize polyhydroxyalkanoates (PHA) and the strain was identified as Brevibacterium casei SRKP2. PHA granules were extracted from 48 h culture and the FT-IR analysis characterized them as PHB, a natural biopolymer from B. casei. Nanoprecipitation by solvent displacement technique was used to synthesize PHB nanoparticles. PHB nanoparticles were characterized using transmission electron microscopy and particle size ranged from 100-125 nm. Immobilization of nattokinase upon PHB nanoparticles resulted in a 20% increase in the enzyme activity. Immobilization also contributed to the enhanced stability of the enzyme. Moreover, the activity was completely retained on storage at 4 degrees C for 25 days. The method has proven to be highly simple and can be implemented to other enzymes also.

  8. Two Approaches to Control of Fed-batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Tatiana Ilkova

    2008-10-01

    Full Text Available L-lysine is one of the irreplaceable aminoacids whose content in the animal protein is relatively high in comparison to plants, where the content is relatively low. The insufficiently L-lysine quantity in the fodders reduces the biological value of the fodder doses, reduces the weight increase and the further productiveness of the agricultural animals, it increases the fodder quantity, used for a kilogram growth and decreases the product quantity of animal origin. The most effective and cheapest method for the L-lysine biosynthesis (in biological active form is the microbiological method via a direct fermentation. In this paper it is used an optimization method at the L-lysine production from strain Brevibacterium flavum 22LD - Neuro-dynamic programming. For receiving a feedback and robustness of the optimal control profile the Model predictive control of the L-lysine production is developed.

  9. Biodegradation of Sewage Wastewater Using Autochthonous Bacteria

    Directory of Open Access Journals (Sweden)

    Purnima Dhall

    2012-01-01

    Full Text Available The performance of isolated designed consortia comprising Bacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosa for the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand, BOD (biochemical oxygen demand MLSS (mixed liquor suspended solids, and TSS (total suspended solids was studied. Different parameters were optimized (inoculum size, agitation, and temperature to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants.

  10. In situ global method for measurement of oxygen demand and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering

    1997-05-01

    Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

  11. Microbial polysaccharide produced from crude oil and its applicability in secondary oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. (Chinese Academy of Sciences, Beijing, China); Wang, C.

    1980-01-01

    This paper deals with a strain of bacterium Brevibacterium viscogenes nov. sp. 74-230, which produces extracellular polysaccharide from curde oil and its fractions. The effects of ages of the inoculum, several kinds of crude oil and its fractions, and contents of crude oil on the synthesis of polysaccharide were investigated. When crude oil was used as the sole carbon source (12%, w/v) in 50 or 240 1 fermentors, 8.0 g/1 of polysaccharide was obtained. The changes of hydrocarbon components after fermentation were analysed. They indicated that the bacterium strain mainly had utilized n-alkane. The fermented gummy solution was diluted and used as a driving fluid in laboratory scale model experiments. When the injection volume corresponds to 20% of the pore volume, the secondary oil recovery was enhanced to about 9% of the initial reserves.

  12. Effet des polyamines sur la réduction du chrome hexavalent par des souches bactériennes et leur résistance

    Directory of Open Access Journals (Sweden)

    Tahri Joutey, N.

    2014-01-01

    Full Text Available Effect of polyamines on the reduction of hexavalent chromium by bacterial strains and their resistance. Polyamines are involved in several functions in bacteria. In this study, we examined the role of polyamines in hexavalent chromium (Cr[VI] reduction by three bacterial strains isolated from sites contaminated by tannery effluents. The strains were identified as Serratia proteamaculans, Leucobacter chromiireducens and Brevibacterium frigoritolerans. The inhibition of polyamine synthesis by α-difluoromethylornithine (DFMO caused a decrease in Cr(VI tolerance in the bacterial isolates, indicating the role of endogenous polyamines in resistance to Cr(VI. The exogenous application of polyamines (putrescine, spermidine, cadaverine was found to stimulate growth and Cr(VI reduction by the bacterial strains in Luria-Bertani medium. The results show the importance of polyamines in response to heavy metal stresses, especially Cr(VI toxicity.

  13. Microbial desulfurization of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    van Afferden, M.; Schacht, S.; Beyer, M.; Klein, J.

    1988-01-01

    Concerning the sulfur removal from coal before combustion there is considerable interest in microbial methods as pyrite oxidation and elimination of organically bound sulfur from coal. Using organic sulfur compounds relevant for coal the mechanism of desulfurization was investigated. The authors isolated a defined mixed culture (FODO) able to utilize dibenzothiophene as sole sulfur source for growth, while benzoate was used as carbon source. The mixed culture FODO consists of an Alcaligenes denitrificans subspecies and a Brevibacterium species. Two metabolites of the degradation and dibenzothiophene-5-dioxide. The subsequent degradation of dibenzothiophene-5-dioxide used as sole sulfur source results in a release of sulfate ions into the medium. The results suggest a sulfur specific oxidative mechanism for removal of sulfur from dibenzothiophene.

  14. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  15. Microbial fermentative preparation of L-(/sup 15/N/sub 2/)lysine and its tracer: application to serum amino acid kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Irving, C.S.; Cooney, C.L.; Brown, L.T.; Gold, D.; Gordon, J.; Klein, P.D.

    1983-05-01

    The microorganism Brevibacterium flavium 21129 has been used to produce multigram batches of L-(/sup 15/N/sub 2/)lysine of high purity and isotopic enrichment by supplementation of the growth medium with (/sup 15/NH/sub 4/)/sub 2/SO/sub 4/ of 98.0 atom% excess. The doubly /sup 15/N-labeled lysine can be detected at dilutions 10 times greater than singly labeled lysine when isotope dilution curves are analyzed by gas chromatography-mass spectrometry. This enhanced sensitivity permits kinetic measurements of plasma free-lysine isotope content over a 300-fold dilution during 6 h following a single oral bolus of 5 mg/kg body wt. This inexpensive preparation method lends itself to the production of highly useful biochemical compounds for kinetic studies of human nutrition.

  16. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile.

    Science.gov (United States)

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P; González, Myriam; Moore, Edward R B; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity Actinobacteria with biotechnological potential for producing biologically active compounds.

  17. Estudios de resistencia al estrés de una bacteria poliextremófila relevante para estudios de habitabilidad en planetas solares y extrasolares

    Science.gov (United States)

    Maizel, D.; Alché, L.; Mauas, P. J. D.

    2017-10-01

    Recent astrobiology studies have focused in the search for life in Earth-like planets within the Habitable Zone. In an attempt to find possible extraterrestrial forms of life, it becomes fundamental to study extreme life in our own planet, known as ``extremophiles''. In the present work, a study was conducted regarding the capability of the poly-extremophilic bacterial strain Brevibacterium linens AE038-8 to resist different stress factors. Strain AE038-8 was able to grow in presence of high salt concentrations and different doses of UV radiation. In addition to the extreme resistance observed in previous research of this strain, we propose B. linens AE038-8 as a model microorganism for astrobiology studies.

  18. Possibility of using strain F9 ( Serratia marcescens) as a bio-collector for hematite flotation

    Science.gov (United States)

    Yang, Hui-fen; Li, Tian; Chang, Yan-hong; Luo, Hui; Tang, Qiong-yao

    2014-03-01

    In this study, we characterized strain F9 and evaluated the interaction between strain F9 and hematite by scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR), zeta potential, flotation, and other methods. The results showed that strain F9 belongs to Serratia marcescens. This brevibacterium had CH2, CH3, and hydroxyl groups on its cell wall, which imparted a strong hydrophobic and negative charge. Adsorption of strain F9 reduced the zeta potential of the hematite surface and increased the hydrophobicity of the hematite surface, thereby generating hydrophobic hematite agglomerates. At least four groups on strain F9 interacted with the hematite surface, which contributed to chemical interactions of carboxylic groups and hydrophobic association among hydrophobic hematite particles. The possible use of strain F9 as a bio-collector for hematite flotation was proved.

  19. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Passari

    2015-04-01

    Full Text Available Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n=22, 52.3% of actinomycetes was isolated from roots, followed by stems (n=9, 21.4%, leaves (n=6, 14.2%, flowers (n=3, 7.1% and petioles (n=2, 4.7%. The genus Streptomyces was the most dominant among the isolates (66.6% in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India. From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I and nonribosomal peptide synthetase (NRPS showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp. and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active

  20. Coral-associated Actinobacteria from the Arabian Gulf: diversity, abundance and biotechnological potentials

    Directory of Open Access Journals (Sweden)

    Huda Mahmoud Mahmoud

    2016-02-01

    Full Text Available Actinobacteria are widely distributed in terrestrial environments, where they are considered a significant source of bioactive compounds, mainly antibiotics. Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with Coscinaraea columna, Platygyra daedalea and Porites harrisoni, north of the Arabian Gulf were investigated. The corals of the Arabian Gulf, one of the world’s hottest seas, are thriving under extreme water temperatures that exceed 39°C during the summer. Similar water temperatures cause coral bleaching and death in other water bodies. For this reason, the corals of the Gulf are living models for investigating how corals in other settings may survive at the end of the current century.Different coral hosts have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though

  1. Use of a metagenetic approach to monitor the bacterial microbiota of "Tomme d'Orchies" cheese during the ripening process.

    Science.gov (United States)

    Ceugniez, Alexandre; Taminiau, Bernard; Coucheney, Françoise; Jacques, Philippe; Delcenserie, Véronique; Daube, Georges; Drider, Djamel

    2017-04-17

    The study of microbial ecosystems in artisanal foodstuffs is important to complete in order to unveil its diversity. The number of studies performed on dairy products has increased during the last decade, particularly those performed on milk and cheese derivative products. In this work, we investigated the bacterial content of "Tomme d'Orchies" cheese, an artisanal pressed and uncooked French cheese. To this end, a metagenetic analysis, using Illumina technology, was utilized on samples taken from the surface and core of the cheese at 0, 1, 3, 14 and 21days of ripening process. In addition to the classical microbiota found in cheese, various strains likely from environmental origin were identified. A large difference between the surface and the core content was observed within samples withdrawn during the ripening process. The main species encountered in the core of the cheese were Lactococcus spp. and Streptococcus spp., with an inversion of this ratio during the ripening process. Less than 2.5% of the whole population was composed of strains issued from environmental origin, as Lactobacillales, Corynebacterium and Brevibacterium. In the core, about 85% of the microbiota was attributed to the starters used for the cheese making. In turn, the microbiota of the surface contained less than 30% of these starters and interestingly displayed more diversity. The predominant genus was Corynebacterium sp., likely originating from the environment. The less abundant microbiota of the surface was composed of Bifidobacteria, Brevibacterium and Micrococcales. To summarize, the "Tomme d'Orchies" cheese displayed a high diversity of bacterial species, especially on the surface, and this diversity is assumed to arise from the production environment and subsequent ripening process. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands

    Directory of Open Access Journals (Sweden)

    Nasrin Sabourmoghaddam

    2015-06-01

    Full Text Available Imidacloprid (1-[(6-chloro-3-pyridinylmethyl]-N-nitro-2-imidazolidinimine, with a novel mode of action is a recent systemic and contact insecticide with high activity against a wide range of pests. Continuous dispersion of this pesticide in the environment and its stability in soil results in environmental pollution which demands remediation. The present research was attempted to isolate and characterize imidacloprid degrading bacteria from vegetable farms of Cameron Highlands in Malaysia. The degradation ability of the isolates was tested in minimal salt medium (MSM for a duration of 25 days and the selected strains were characterized based on their biochemical and molecular characteristics. Levels of imidacloprid in MSM medium were analyzed by high performance liquid chromatography (HPLC. Among 50 soil bacterial isolates Bacillus sp., Brevibacterium sp., Pseudomonas putida F1, Bacillus subtilis and Rhizobium sp. were able to degrade 25.36–45.48% of the initial amount of imidacloprid at the concentration of 25 mg L−1 in C limited media. Brevibacterium sp. was isolated from organic farms that had never been exposed to imidacloprid while the other farms had previously been exposed to different levels of imidacloprid. All bacteria introduced in this study were among the first reports of imidacloprid degrading isolates in C limited media from tropical soil. Therefore, the results of this study demonstrate the effectiveness of using soil bacteria for microbial degradation of imidacloprid. These findings suggest that these strains may be promising candidates for bioremediation of imidacloprid-contaminated soils.

  3. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  4. Biochemical mechanisms for the desulfurization of coal-relevant organic sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Afferden, M. van; Tappe, D.; Beyer, M.; Trueper, H.G.; Klein, J. (DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany))

    1993-12-01

    Two microbial strains ([ital Brevibacterium] sp. DO, [ital Pseudomonas aeruginosa] OS1) were isolated for their ability to desulfurize dibenzothiophene (DBT) and benzyl methyl sulfide (BMS). Enrichment was achieved by a sulfur-selective screening system using the model compounds as the sole source of sulfur for bacterial growth. [ital Brevibacterium] sp. DO utilizes DBT as a sole source of sulfur, carbon and energy for growth, whereas [ital Pseudomonas aeruginosa] OS1 metabolizes BMS to only a small extent under sulfur-selective conditions. Investigations of the regulation of enzymes involved in the desulfurization of coal-relevant sulfur compounds indicate that in nature at least two mechanisms exist: 'carbon regulation' and 'sulfur regulation'. The biochemical mechanisms leading to the desulfurization of BMS and DBT are similar. The sulfur atom of both compounds is initially oxidized to the corresponding sulfone, and cleavage of the C-S bond proceeds via the formation of a chemically unstable hemimercaptal (S-oxidized form) by oxidation of the carbon atom adjacent to the sulfur atom. These results indicate that oxidation of sulfur to its highest oxidation state may be the precondition for the oxidative cleavage of the covalent C-S bonds. By isotope-labelling experiments using [sup 18]O[sub 2], the initial enzymes were identified as sulfoxygenases that use molecular oxygen. Cleavage of the C-S bond of DBT and BMS leads to the formation of organic sulfinic acids as intermediates. With DBT the sulfinic acid is desulfurized probably by hydrolysis; this results in the formation of sulfite and benzoate. The desulfurization of BMS proceeds by sulfonic acid-oxidation. The applicability of these biochemical mechanisms to the microbial desulfurization of coal is discussed. 39 refs., 10 figs., 2 tabs.

  5. Investigation of the activity of the microorganisms in a Reblochon-style cheese by metatranscriptomic analysis

    Directory of Open Access Journals (Sweden)

    Christophe eMonnet

    2016-04-01

    Full Text Available The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, one ripening bacterium (Brevibacterium aurantiacum, and two yeasts (Debaryomyces hansenii and Geotrichum candidum. RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated approximately 75 million reads per sample. Except for Brevibacterium aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to day 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The

  6. Rizobactérias no controle da mancha angular do algodoeiro Rhizobacteria to control cotton bacterial blight

    Directory of Open Access Journals (Sweden)

    Alessandra Keiko Nakasone Ishida

    2008-02-01

    Full Text Available Avaliou-se o potencial de rizobactérias na indução de resistência do algodoeiro à Xanthomonas axonopodis pv. malvacearum. Após o isolamento das rizobactérias, foram selecionados os isolados capazes de reduzir os sintomas da mancha angular bacteriana em casa de vegetação, os quais foram aplicados espacialmente separados do patógeno desafiador. Os melhores isolados foram testados quanto à capacidade de reduzir os sintomas da ramulose e da murcha de Verticillium e de inibir diretamente os patógenos in vitro. Do total de 123 isolados de rizobactérias foram selecionados cinco, L2-1 (Bacillus cereus, MT5-6 (Bacillus cereus, L2-2 (Achromobacter xylosoxidans, MT5-5 (Bacillus cereus e MT5-11 (Brevibacterium sp., os quais apresentaram controle da mancha angular acima de 40%, em relação à testemunha. Nenhum isolado reduziu a severidade da ramulose e da murcha de Verticillium em relação à testemunha, nem apresentou efeito inibitório direto in vitro a X. axonopodis pv. malvacearum e Colletotrichum gossypii var. cephalosporioides. Para V. dahliae, apenas o isolado L2-1 apresentou efeito inibitório.The potential of rhizobacteria was evaluated for resistance induction against Xanthomonas axonopodis pv. malvacearum. After isolation, the rhizobacteria were screened for the reduction of angular leaf spot severity under greenhouse conditions. They were spatially separated from the challenging pathogen. The best isolates were tested for the capacity to reduce ramulose and Verticillium wilt severity and directly inhibit pathogens in vitro. From a total of 123 rhizobacterial isolates, five were selected, L2-1 (Bacillus cereus, MT5-6 (Bacillus cereus, L2-2 (Achromobacter xylosoxidans, MT5-5 (Bacillus cereus and MT5-11 (Brevibacterium sp., which showed angular leaf spot control above 40% as compared to the control. The tested isolates neither reduced the severity of ramulose and verticillium wilt compared to the control nor showed in vitro direct

  7. A new method for tracking poultry litter in the Potomac Basin headwaters of West Virginia.

    Science.gov (United States)

    Weidhaas, J; Lipscomb, E

    2013-08-01

    To validate the distribution of a poultry litter-specific marker gene in faecally contaminated environmental waters of an intensive poultry litter rearing region. A TaqMan(®)-based qPCR assay for Brevibacterium sp. LA35 16S rRNA (LA35 gene), which was previously shown to be associated with poultry litter and faeces, was tested on 126 nontarget faecal samples and 28 poultry litter and faecal samples. The TaqMan assay was sensitive (76%) and specific (100%) to the LA35 gene and exhibited a detection limit for poultry litter in water samples that is sufficiently low (2.5 × 10(-2) mg litter l(-1)) to be applicable for environmental monitoring. The LA35 gene was detected in 43% of water samples (n = 30) collected in an intensive poultry rearing region of West Virginia which drains to the Chesapeake Bay. The poultry-specific TaqMan qPCR method for the LA35 gene is more specific than previously published methods and can be used to identify regions impacted by poultry rearing activities. The LA35 gene appears to have a broad geographical distribution as it has been found in poultry litter and faeces from Delaware and West Virginia, in this study and from Arkansas, Georgia, Florida, Minnesota, Oklahoma and Utah previously. © 2013 The Society for Applied Microbiology.

  8. Effect of vacuum and modified atmosphere packaging on the microbiological, chemical and sensory properties of tropical red drum (Sciaenops ocellatus) fillets stored at 4°C.

    Science.gov (United States)

    Silbande, Adèle; Adenet, Sandra; Chopin, Christine; Cornet, Josiane; Smith-Ravin, Juliette; Rochefort, Katia; Leroi, Françoise

    2018-02-02

    The effect of vacuum (VP - 4°C) and CO 2 /N 2 -atmosphere (MAP - 4°C) packaging on the quality of red drum fillets compared with whole gutted iced fish was investigated. A metagenomic approach, bacterial enumeration and isolation, biochemical and sensory analyses were carried out. The organoleptic rejection of whole fish was observed at day 15 whereas VP and MAP fillets appeared unacceptable only after 29days. At these dates, total mesophilic counts reached 10 7 -10 8 CFU g -1 . According to Illumina MiSeq sequencing, Arthrobacter, Chryseobacterium, Brevibacterium, Staphylococcus and Kocuria were the main genera of the fresh red drum fillets. At the sensory rejection time, lactic acid bacteria (LAB), particularly Carnobacterium sp., dominated the microbiota of both types of packaging. The pH value of fresh samples was between 5.96 and 6.37 and did not vary greatly in all trials. Total volatile basic nitrogen (TVBN) and trimethylamine (TMA) concentrations were low and not represent reliable indicators of the spoilage, contrary to some biogenic amines (cadaverine, putrescine and tyramine). Chilled packed fillets of red drum have an extended shelf-life compared to whole gutted iced fish. Overall, few differences in sensory and microbial quality were observed between the VP and MAP samples. Next-Generation Sequencing (NGS) provided data on the microbiota of a tropical fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    KAUST Repository

    Ettoumi, Besma

    2016-04-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  10. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor.

    Science.gov (United States)

    Cassidy, D P; Hudak, A J

    2001-06-29

    A continuous-flow reactor (CSTR) and a soil slurry-sequencing batch reactor (SS-SBR) were maintained in 8l vessels for 180 days to treat a soil contaminated with diesel fuel (DF). Concentrations of Candida tropicalis, Brevibacterium casei, Flavobacterium aquatile, Pseudomonas aeruginosa, and Pseudomonas fluorescens were determined using fatty acid methyl ester (FAME) analysis. DF removal (biological and volatile) and biosurfactant concentrations were measured. The SS-SBR encouraged the growth of biosurfactant-producing species relative to the CSTR. Counts of biosurfactant-producing species (C. tropicalis, P. aeruginosa, P. fluorescens) relative to total microbial counts were 88% in the SS-SBR and 23% in the CSTR. Biosurfactants were produced in the SS-SBR to levels of nearly 70 times the critical micelle concentration (CMC) early in the cycle, but were completely degraded by the end of each cycle. No biosurfactant production was observed in the CSTR. DF biodegradation rates were over 40% greater and DF stripping was over five times lower in the SS-SBR than the CSTR. However, considerable foaming occurred in the SS-SBR. Reversing the mode of operation in the reactors on day 80 caused a complete reversal in microbial consortia and reactor performance by day 120. These results show that bioslurry reactor operation can be manipulated to control overall reactor performance.

  11. Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques

    DEFF Research Database (Denmark)

    Ryssel, Mia; Johansen, Pernille; Abu Al-Soud, Waleed

    2015-01-01

    Staphylococcus spp. went from 0.0% during cheese production to 75.5% of the OTUs at smearing. During ripening, i.e. from 4 to 18weeks, Corynebacterium was the dominant genus on the cheese surface (55.1%±9.8% of the OTUs), with Staphylococcus (17.9%±11.2% of the OTUs) and Brevibacterium (10.4%±8.3% of the OTUs....... As expected, microbial profiles of the surface and the interior of the cheeses diverged. During cheese production pyrosequencing determined Lactococcus as the dominating genus on cheese surfaces, representing on average 94.7%±2.1% of the OTUs. At day 6 Lactococcus spp. declined to 10.0% of the OTUs, whereas...... the dominant genus accounting for 46.5% of the OTUs. During ripening the yeast counts increased significantly with Debaryomyces being the predominant genus, on average accounting for 96.7%±4.1% of the OTUs. The interior of the cheeses was dominated by Lactococcus spp. comprising on average 93...

  12. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    Science.gov (United States)

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    Science.gov (United States)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P 0.25 mm and 0.02 mm resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  14. Controlled production of camembert-type cheeses: part III role of the ripening microflora on free fatty acid concentrations.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Corrieu, Georges; Spinnler, Henry-Eric

    2007-05-01

    Phenomena generating FFAs, important flavour precursors, are significant in cheese ripening. In Camembert-like cheeses, it was intended to establish the relationships between the dynamics of FFA concentrations changes and the succession of ripening microflora during ripening. Experimental Camembert-type cheeses were prepared in duplicate from pasteurised milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum under aseptic conditions. For each cheese and each cheesy medium, concentrations of FFAs with odd-numbered carbons, except for 9:0 and 13:0, did not change over time. For long-chain FFAs, concentrations varied with the given cheese part (rind or core). K. lactis produced only short or medium-chain FFAs during its growth and had a minor influence on caproic, caprylic, capric, and lauric acids in comparison with G. candidum, the most lipolytic of the strains used here. It generated all short or medium-chain FFAs (4:0-12:0) during its exponential and slowdown growth periods and only long-chain ones (14:0-18:0) during its stationary phase. Pen. camemberti produced more long-chain FFAs (14:0-18:0) during its sporulation. Brev. aurantiacum did not generate any FFAs. The evidence of links between specific FFAs and the growth of a given microorganism is shown.

  15. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    Science.gov (United States)

    Orchard, Ané

    2017-01-01

    Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822

  16. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    Directory of Open Access Journals (Sweden)

    Ané Orchard

    2017-01-01

    Full Text Available Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman’s literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils.

  17. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.

    Science.gov (United States)

    Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-07-01

    Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Korean traditional fermented fish products: jeotgal

    Directory of Open Access Journals (Sweden)

    Ok Kyung Koo

    2016-06-01

    Full Text Available Jeotgal (醢 is a traditional Korean fermented food with thousands years of history with kimchi and other jang (fermented soybean products, 醬. The history was proved by research from historical literature and antique architecture. Jeotgal was developed along with jang (豆醬, fish jang (魚醬, meat jang (肉醬 as a part of jang (醬 up to the Chosun Dynasty and it was always offered during the ancestral rites or ceremonies. According to antique documents written by women, jeotgal had been used as seasonings or condiments that were popular especially for women rather than as food served for ancestral rites. In Southeast Asia and other countries, jeotgal uses varieties of fish and seafoods to provide rich and varied flavors, and thanks to the next generation sequencing technology, we can identify microorganisms that are involved in the fermentation process. Major microorganisms in jeotgal are Bacillus, Brevibacterium, Micrococcus, Pediococcus, Pseudomonas, Lactobacillus, Leuconostoc, and Halobacterium. Recently, much research on various health function of jeotgal has been conducted, reflecting increasing interest in the safety and the functionality of jeotgal. Many reports on functionalities of jeotgal such as supplying essential amino acids, and having antioxidant and antitumorgenic have been published recently. Because of the diverse flavor, types, and their function, jeotgal is expected to continue to develop as an important seasoning in the world sauce market.

  19. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  20. Physico-Chemical, and Sensory Properties of Soy Based Gouda Cheese Analog Made from Different Concentration of Fat, Sodium Citrate and Various Cheese Starter Cultures

    Directory of Open Access Journals (Sweden)

    Abu Amar

    2013-04-01

    Full Text Available Gouda cheese analog (GCA was made using soy protein isolate (SPI, skim milk powder (SMP, fat (palm fat and butter fat, and water (W at optimal ratio of SPI : SMP : F : W = 14 : 6 : 20 : 60. The effects of butter fat, sodium citrate, and cheese starter culture on the sensory properties of ripened product were assessed by preference test, hedonic test, and the texture profile analysis (TPA of GCA. The free fatty acids, water-soluble nitrogen, and reduction in pH value of progel were also measured. The use of 100% butter fat (BF produced strong Gouda flavor. It could be due to the fatty acids content in BF; in contrast, product with 100% palm fat (PF produced tasteless GCA. It might be due to fatty acids content in PF, middle, and long chain fatty acids. Single cheese starter culture could not develop Gouda flavor during ripening. The use of mixed fat (50% BF and 50% PF and mixed cheese starter culture together with Brevibacterium linens developed a suitable characteristic flavor of Gouda product during ripening. The addition of 0.5% sodium citrate could improve the flavor; nevertheless, it reduced the stability of texture.

  1. Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511.

    Science.gov (United States)

    Nishio, Yousuke; Koseki, Chie; Tonouchi, Naoto; Matsui, Kazuhiko; Sugimoto, Shinichi; Usuda, Yoshihiro

    2017-07-11

    Strains of the bacterium, Corynebacterium glutamicum, are widely used for the industrial production of L-glutamic acid and various other substances. C. glutamicum ssp. lactofermentum AJ 1511, formerly classified as Brevibacterium lactofermentum, and the closely related C. glutamicum ATCC 13032 have been used as industrial strains for more than 50 years. We determined the whole genome sequence of C. glutamicum AJ 1511 and performed genome-wide comparative analysis with C. glutamicum ATCC 13032 to determine strain-specific genetic differences. This analysis revealed that the genomes of the two industrial strains are highly similar despite the phenotypic differences between the two strains. Both strains harbored unique genes but gene transpositions or inversions were not observed. The largest unique region, a 220-kb AT-rich region located between 1.78 and 2.00 Mb position in C. glutamicum ATCC 13032 genome, was missing in the genome of C. glutamicum AJ 1511. The next two largest unique regions were present in C. glutamicum AJ 1511. The first region (413-484 kb position) contains several predicted transport proteins, enzymes involved in sugar metabolism, and transposases. The second region (1.47-1.50 Mb position) encodes restriction modification systems. A gene predicted to encode NADH-dependent glutamate dehydrogenase, which is involved in L-glutamate biosynthesis, is present in C. glutamicum AJ 1511. Strain-specific genes identified in this study are likely to govern phenotypes unique to each strain.

  2. Maturing dynamics of surface microflora in Fontina PDO cheese studied by culture-dependent and -independent methods.

    Science.gov (United States)

    Dolci, P; Barmaz, A; Zenato, S; Pramotton, R; Alessandria, V; Cocolin, L; Rantsiou, K; Ambrosoli, R

    2009-01-01

    To study the evolution of rind microbial communities in Fontina PDO cheese. Four batches were examined for their surface microflora during ripening, carried out in two different maturing caves, at Ollomont and Pré-Saint-Didier, Aosta Valley region, Northwest of Italy. Culture-dependent methodologies were combined with culture-independent analysis (PCR-DGGE). Yeasts were found to increase from 10(3) to 10(6) CFU cm(-2) in 28 days, with consequent rise of surface pH, which allowed the growth of salt-tolerant bacteria, in particular coryneforms which reached 10(9) CFU cm(-2) at the end of 3 months. Coagulase-negative cocci and lactic acid bacteria reached 10(7) CFU cm(-2) in the same period. Debaryomyces hansenii and Candida sake were the species more constantly present throughout the whole maturing process. As early as after 1 day since manufacture, Lactococcus lactis subsp. lactis and Streptococcus thermophilus were detected on cheese rinds. Arthrobacter nicotianae, Brevibacterium casei and Corynebacterium glutamicum were found after 7-28 days. According to cluster analysis of DGGE profiles, the maturing environment seemed to influence the dynamics of microbial groups on Fontina surfaces. These results represent a first picture of micro-organisms colonizing Fontina PDO rinds. Further studies are in progress to better understand the origin of this surface microflora and to formulate surface starters.

  3. Endolysin of bacteriophage BFK20: evidence of a catalytic and a cell wall binding domain.

    Science.gov (United States)

    Gerova, Martina; Halgasova, Nora; Ugorcakova, Jana; Bukovska, Gabriela

    2011-08-01

    A gene product of ORF24' was identified on the genome of corynephage BFK20 as a putative phage endolysin. The protein of endolysin BFK20 (gp24') has a modular structure consisting of an N-terminal amidase_2 domain (gp24CD) and a C-terminal cell wall binding domain (gp24BD). The C-terminal domain is unrelated to any of the known cell wall binding domains of phage endolysins. The whole endolysin gene and the sequences of its N-terminal and C-terminal domains were cloned; proteins were expressed in Escherichia coli and purified to homogeneity. The lytic activities of endolysin and its catalytic domain were demonstrated on corynebacteria and bacillus substrates. The binding activity of cell wall binding domain alone and in fusion with green fluorescent protein (gp24BD-GFP) were shown by specific binding assays to the cell surface of BFK20 host Brevibacterium flavum CCM 251 as well as those of other corynebacteria. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria

    Directory of Open Access Journals (Sweden)

    Bong-Goan Chon

    2013-03-01

    Full Text Available To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0−100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6 and B. cereus (C210 showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.

  5. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses.

    Science.gov (United States)

    Deetae, Pawinee; Bonnarme, Pascal; Spinnler, Henry E; Helinck, Sandra

    2007-10-01

    Twelve bacterial strains belonging to eight taxonomic groups: Brevibacterium linens, Microbacterium foliorum, Arthrobacter arilaitensis, Staphylococcus cohnii, Staphylococcus equorum, Brachybacterium sp., Proteus vulgaris and Psychrobacter sp., isolated from different surface-ripened French cheeses, were investigated for their abilities to generate volatile aroma compounds. Out of 104 volatile compounds, 54 volatile compounds (identified using dynamic headspace technique coupled with gas chromatography-mass spectrometry [GC-MS]) appeared to be produced by the different bacteria on a casamino acid medium. Four out of eight species used in this study: B. linens, M. foliorum, P. vulgaris and Psychrobacter sp. showed a high flavouring potential. Among these four bacterial species, P. vulgaris had the greatest capacity to produce not only the widest varieties but also the highest quantities of volatile compounds having low olfactive thresholds such as sulphur compounds. Branched aldehydes, alcohols and esters were produced in large amounts by P. vulgaris and Psychrobacter sp. showing their capacity to breakdown the branched amino acids. This investigation shows that some common but rarely mentioned bacteria present on the surface of ripened cheeses could play a major role in cheese flavour formation and could be used to produce cheese flavours.

  6. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antmicrobial efficacy of well-known commercial antibiotics. PMID:25848272

  7. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Directory of Open Access Journals (Sweden)

    Gbenga Adedeji Adewumi

    2013-01-01

    Full Text Available In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, Staphylococcus saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and Uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA combined with 16S-23S rRNA gene internal transcribed spacer (ITS PCR amplification, restriction analysis (ITS-PCR-RFLP and randomly amplified polymorphic DNA (RAPD-PCR. This further discriminated Bacillus subtilis and its variants from food-borne pathogens such as Bacillus cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP for iru production to achieve product consistency, safety quality and improved shelf life.

  8. Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land)

    Science.gov (United States)

    Siebert, J.; Hirsch, P.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Approximately 1500 cultures of microorganisms were isolated from rocks and soils of the Ross Desert (McMurdo-Dry Valleys). From these, 15 coccoid strains were chosen for more detailed investigation. They were characterized by morphological, physiological and chemotaxonomical properties. All isolates were Gram-positive, catalase-positive and nonmotile. Six strains showed red pigmentation and could be identified as members of the genera Micrococcus (M. roseus, M. agilis) or Deinococcus. In spite of their coccoid morphology, the remaining nine strains had to be associated with coryneform bacteria (Arthrobacter, Brevibacterium), because of their cell wall composition and G+C ratios. Most of the strains were psychrotrophic, but one strain was even obligately psychrophilic, with a temperature maximum below 20 degrees C. Red cocci had in vitro pH optima above 9.0 although they generally originated from acid samples. Most isolates showed a preference for sugar alcohols and organic acids, compounds which are commonly known to be released by lichens, molds and algae, the other components of the cryptoendolithic ecosystem. These properties indicate that our strains are autochthonous members of the natural Antarctic microbial population.

  9. Degradation of pyridine by Micrococcus luteus isolated from soil

    Energy Technology Data Exchange (ETDEWEB)

    Sims, G.K.; Sommers, L.E.; Konopka, A.

    1986-05-01

    An organism capable of growth on pyridine was isolated from soil by enrichment culture techniques and identified as Micrococcus luteus. The organism oxidized pyridine for energy and released N contained in the pyridine ring as ammonium. The organism could not grow on mono- or disubstituted pyridinecarboxylic acids or hydroxy-, chloro-, amino-, or methylpyridines. Cell extracts of M. luteus could not degrade pyridine, 2-, 3-, or 4-hydroxypyridines or 2,3-dihydroxypyridine, regardless of added cofactors or cell particulate fraction. The organism had a NAD-linked succinate-semialdehyde dehydrogenase which was induced by pyridine. Cell extracts of M. luteus had constitutive amidase activity, and washed cells degraded formate and formamide without a lag. These data are consistent with a previously reported pathway for pyridine metabolism by species of Bacillus, Brevibacterium, and Corynebacterium. Cells of M. luteus were permeable to pyridinecarboxylic acids, monohydroxypyridines, 2,3-dihydroxypyridine, and monoamino- and methylpyridines. The results provide new evidence that the metabolism of pyridine by microorganisms does not require initial hydroxylation of the ring and that permeability barriers do not account for the extremely limited range of substrate isomers used by pyridine degraders.

  10. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Meng Yuan

    2014-03-01

    Full Text Available Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis.

  11. Antioxidant/Prooxidant and Antibacterial/Probacterial Effects of a Grape Seed Extract in Complex with Lipoxygenase

    Directory of Open Access Journals (Sweden)

    Veronica Sanda Chedea

    2014-01-01

    Full Text Available In an attempt to determine the antioxidant/prooxidant, antibacterial/probacterial action of flavan-3-ols and procyanidins from grape seeds, pure catechin (CS, and an aqueous grape seed extract (PE, were applied in the absence and presence of pure lipoxygenase (LS or in extract (LE to leucocyte culture, Escherichia coli B41 and Brevibacterium linens, and observed whether there was any effect on lipid peroxidation, cytotoxicity, or growth rate. Short time periods of coincubation of cells with the polyphenols, followed by the exposure to LS and LE, revealed a high level of lipid peroxidation and a prooxidative effect. Longer coincubation and addition of LS and LE resulted in the reversal of the prooxidant action either to antioxidant activity for CS + LS and PE + LS or to the control level for CS + LE and PE + LE. Lipid peroxidation was significantly reduced when cells were exposed to polyphenols over a longer period. Longer exposure of E. coli to CS or PE followed by addition of LS for 3 h resulted in bactericidal activity. Significant stimulatory effect on microbial growth was observed for PE + LS and PE + LE treatments in B. linens, illustrating the potential probacterial activity in B. linens cultures. Lipoxygenase-polyphenols complex formation was found to be responsible for the observed effects.

  12. Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorus. Technical report No. 2, January-December 1971

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R.M.; Bartha, R.

    1971-12-31

    Within the framework of a study on the oil biodegradation potential of the sea the ability of a Flavobacterium sp. and Brevibacterium sp. to metabolize a paraffinic crude oil and a chemically defined hydrocarbon mixture was investigated. Major components of the crude oil were identified by combination gas chromatography and mass spectrometry. The rate and extent of total hydrocarbon biodegradation was measured. Degradation started after a 2 to 4 day lag period, and reached its maximum within two weeks. At this time up to 60% of the crude oil was degraded. n-Paraffins were preferentially degraded as compared to branched chain hydrocarbons. Biodegradation and mineralization of petroleum, added at 1% (v/v) to freshly collected sea water, were measured using gas-liquid chromatographic, residual weight, and CO/sub 2/-evolution techniques. Only 3% of the added petroleum was biodegraded and 1% was mineralized in unamended sea water after 18 days and incubation. Added nitrate, phosphate supplements in combination increased petroleum biodegradation and mineralization. Attempts to clean up oil spills with the aid of microorganisms should take into consideration the nutritional deficiencies of sea water.

  13. Evaluation of quality measurement of Olomouc cake of cheese (Olomoucké tvarůžky during ripening

    Directory of Open Access Journals (Sweden)

    Daniela Strnadová

    2012-01-01

    Full Text Available Olomouc cake of cheese (Olomoucké tvarůžky is smear-ripened cheese, which is produced from sour industrial curd. Brevibacterium linens, which are added during the production process, are reproducing and make gold-yellow smear cover. The aim of this work was to assess the chemical analysis of the quality of Olomouc cake of cheese. Changes in chemical composition were evaluated during different stages of production and at the same time it was detected whether changes in chemical composition during the manufacturing process are same in spring as well as in summer, without statistically significant differences. Dry matter of Olomouc cake of cheese was ranged from 35 % to 39 %. The increase of dry matter during production is evident, but these changes were in the most cases not statistically signifiant (P > 0.05. The value of titratable acidity of the cheese considerably changes during the manufacturing process, it has a decreasing tendency. Titratable acidity of cheese after shaping was 106.64 (136.12 SH and at the end of life it was 49.91 (65.06 SH. These changes were very highly statistically significant (P 0.05 in cheese from summer period. Content of salt is increased from 5.30 % to 5.98 %, respectively 6.10 %. In spring period the oposite changes in most cases occured (P 0.05.

  14. Characterization of a Selenium-Tolerant Rhizosphere Strain from a Novel Se-Hyperaccumulating Plant Cardamine hupingshanesis

    Directory of Open Access Journals (Sweden)

    Xinzhao Tong

    2014-01-01

    Full Text Available A novel selenium- (Se- hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L−1. When exposed to 1.5 mg Se L−1, SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L−1 or 15.0 mg Se L−1, As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L−1, indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant.

  15. Responses of heterotrophic bacterial populations to pH changes in coal ash effluent

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, R.K. (Univ. of Texas, Houston); Cherry, D.S.; Singleton, F.L.

    1978-08-01

    Total culturable heterotrophic bacteria in a coal ash basin and drainage system were monitored over a period of two years. In the first year heavy (bottom) ash was sluiced to the basin resulting in a pH of 6.5. During the second year fly ash was precipitated and added to the sluice lowering the basin pH to 4.6. Sulfate concentrations during 1975 ranged from 16 to 73 ppM (mean 33) and in 1976 from 44 to 88 ppM (mean 72). Mean annual basin temperatures were 28.8 and 26.0/sup 0/C, respectively. Approximately 1500 m in the receiving swamp below the basin, mean pH and temperature were 6.8 and 22.2/sup 0/C for the first year, and 5.4 and 22.1/sup 0/C for the second. Total culturable bacteria and diversity (colony types) were reduced at all sampling stations by 44 and 30%, respectively, whereas the percentage of the population comprised of chromagenic bacteria increased by 51% at the lower pH. Data indicated the pH had a greater effect than did water temperature when temperature was within the range of 15 to 25/sup 0/C. The predominant genera within the system in the first year were Bacillus, Sarcina, Achromobacter, Flavobacterium, and Pseudomonas. In the second year, at the lower pH, predominant genera were Pseudomonas, Flavobacterium, Chromobacterium, Bacillus, and Brevibacterium.

  16. The effect of prolonged flooding of an oil deposit on the special composition and the activity of hydrocarbon-oxidizing microflora

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevskaya, M.V.

    1982-07-01

    The special composition of hydrocarbon-oxidizing bacteria was studied in terrigenous and carbonate oil-bearing strata from several deposits of the Permian Cis-Ural region. We isolated 43 strains and assigned them to the following genera: Mycobacterium, Micrococcus, Brevibacterium, Corynebacterium, Flavobacterium, Achromobacter and Pseudomonas. The special composition of the hydrocarbon-oxidizing microflora was shown to depend on the flooding of an oil stratum, as a result of which the ecological environment in a deposit changed. Gram-positive coryneform bacteria were found in stratal salinized waters and in diluted stratal waters. Gram-negative hydrocarbon-oxidizing bacteria were isolated from pumped-in river waters and from stratal waters diluted by 70-100% as the result of flooding. The metabolic activity of Corynebacterium fascians (2 strains), Mycobacterium rubrum (1 strain), Pseudomonas mira (1 strain) and Flavobacterium perigrinum (1 strain) was assayed in stratal waters with different concentrations of salts. The coryneform hydrocarbon-oxidizing bacteria were shown to be very halotolerant as the result of adaptation; that is why the incidence of these microorganisms is very great in highly mineralized stratal water of oil deposits.

  17. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities

    Directory of Open Access Journals (Sweden)

    Nimaichand Salam

    2017-01-01

    Full Text Available Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon’s blood. Excessive utilization of the plant for extraction of dragon’s blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces, Nocardiopsis, Brevibacterium, Microbacterium, Tsukamurella, Arthrobacter, Brachybacterium, Nocardia, Rhodococcus, Kocuria, Nocardioides, and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC50-values ranging between 3 and 33 μg·mL−1. Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS- I, PKS-II, and nonribosomal peptide synthetase (NRPS among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  18. Thermal death of a hydrocarbon bacterium in a nonaqueous fluid

    Science.gov (United States)

    Severance, M. M.; Larock, P. A.

    1973-01-01

    A hydrocarbon-utilizing Brevibacterium which grew into the oil phase of an oil-water system was tested for survival at elevated temperature. Cells suspended in oil and cells that had been resuspended in aqueous solution were tested by placing 1-ml samples of the cell suspension in small test tubes immersed in a controlled-temperature water bath. The resultant survival curves in oil consisted of two parts, a flat shoulder obtained in the first half of the heating period, followed by a break indicating rapid die-off. The break in the curves occurred after 50% of the cells were killed. This occurred at exposures of 25, 15, and 8 min for 78, 88.6, and 96.2 C, respectively. The survival curve for 63.5 C in the aqueous solution was a rapid, exponential die-off. The actual increase in survival of the organism in oil is reflected by the length of the shoulder portion. The shoulder occurs only in an oil medium and is increased by decreasing temperature and increasing age of the culture.

  19. Queijos de casca lavada – uma revisão

    Directory of Open Access Journals (Sweden)

    Renata Golin Bueno Costa

    2009-08-01

    Full Text Available Os queijos de casca lavada (maturados por microrganismos de superfície representam uma variedade de queijos no qual bactérias crescem na sua superfície durante a maturação originando a cor alaranjada na sua casca e aroma característico. São queijos maturados sob condições especiais de temperatura e umidade relativa elevada (acima de 95%, e propícias ao crescimento dessa microbiota. Durante a maturação, os queijos são esfregados várias vezes com uma solução salina (morge iniciando-se pelos fabricados há mais tempo para os mais recentes, com o intuito de propagar o Brevibacterium linens, microrganismo principal presente nos queijos de casca lavada. Este artigo objetiva apresentar uma revisão de literatura sobre os queijos de casca lavada, de modo a incentivar a fabricação desses em laticínios brasileiros, em face da dificuldade destas informações em língua portuguesa e que muitas vezes torna-se um obstáculo para a indústria e ou seus técnicos.

  20. X-ray spectroscopy of nitrile hydratase at pH 7 and 9

    Energy Technology Data Exchange (ETDEWEB)

    Scarrow, R.C.; Duong, D.J.; Kindt, J.T. [Haverford College, PA (United States)] [and others

    1996-08-06

    The iron K-edge X-ray absorption spectrum of Rhodococcus sp. R312 (formerly Brevibacterium sp. R312) nitrile hydratase in frozen solutions at pH 7 and 9 has been analyzed to determine details of the iron coordination. EXAFS analysis implies two or three sulfur ligands per iron and overall six coordination; together with previous EPR and ENDOR results, this implies an N{sub 3}S{sub 2}O ligation sphere. The bond lengths from EXAFS analysis [r{sub av}(Fe-S) = 2.21 {angstrom} at pH 7.3; r{sub av}(Fe-N/O) = 1.99 {angstrom}] support cis coordination of two cysteine ligands and conclusively rule out nitric oxide coordination to the iron, a possibility proposed on the basis of an FTIR difference experiment. The higher-frequency EXAFS can be simulated well by inclusion of multiple scattering from two or three imidazole ligands; the fit to the data is improved if first-sphere multiple scattering pathways are also included. A slight shortening (by 0.02 {plus_minus} 0.01 {angstrom}) of one or both Fe-S bonds when the pH is raised from 7.3 to 9.0 is consistent with shifts observed in the Raman spectrum. 67 refs., 4 figs., 4 tabs.

  1. Isolation and characterisation of 1-alkyl-3-methylimidazolium chloride ionic liquid-tolerant and biodegrading marine bacteria.

    Directory of Open Access Journals (Sweden)

    Julianne Megaw

    Full Text Available The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC, and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.

  2. [Wound infections due to opportunistic corynebacterium species].

    Science.gov (United States)

    Olender, Alina; Łetowska, Iwona

    2010-01-01

    Wound infections are often due to endogenous bacterial flora which penetrates into a site of injury. The establishment of the etiologic agent can be problematic, especially when opportunistic bacteria are present, suggesting contamination of clinical material. Among bacteria that can cause such diagnostic problems are opportunistic Corynebacterium spp. and coryneforms colonizing skin. The aim of the study was to analyze the 24 clinical samples collected from wounds of different location, with Gram positive rods isolated in numbers suggesting the cause of infection. Bacterial identification was performed by API Coryne and additional biochemical tests (API ZYM, API NE). It was detected that the commonest species isolated were: C. amycolatum (29.2%), C. striatum (16.7%), C. group G (16.7%) and Brevibacterium spp., C. jeikeium, C. urealyticum, C. group F1. The drug susceptibility testing was performed by E-test method. Among isolated strains, 83.3% were simultaneously resistant to erythromycin and clindamycin. In 75% cases resistance to co-trimoxazole was noted, in 71.7% resistance to chloramphenicol and in 16.7% resistance to beta-lactams were detected. In presented study the high percentage of strains resistant to macrolids and linkosamids (MLSB) was noted. All strains were susceptible to vancomycin and teicoplanin.

  3. The Divergence in Bacterial Components Associated with Bactrocera dorsalis across Developmental Stages

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhao

    2018-02-01

    Full Text Available Eco-evolutionary dynamics of microbiotas at the macroscale level are largely driven by ecological variables. The diet and living environment of the oriental fruit fly, Bactrocera dorsalis, diversify during development, providing a natural system to explore convergence, divergence, and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny, and environment. Here, we characterized the microbiotas of 47 B. dorsalis individuals from three distinct populations by 16S rRNA amplicon sequencing. A significant deviation was found within the larvae, pupae, and adults of each population. Pupae were characterized by an increased bacterial taxonomic and functional diversity. Principal components analysis showed that the microbiotas of larvae, pupae, and adults clearly separated into three clusters. Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae were the predominant families in larval and adult samples, and PICRUSt analysis indicated that phosphoglycerate mutases and transketolases were significantly enriched in larvae, while phosphoglycerate mutases, transketolases, and proteases were significantly enriched in adults, which may support the digestive function of the microbiotas in larvae and adults. The abundances of Intrasporangiaceae, Dermabacteraceae (mainly Brachybacterium and Brevibacteriaceae (mainly Brevibacterium were significantly higher in pupae, and the antibiotic transport system ATP-binding protein and antibiotic transport system permease protein pathways were significantly enriched there as well, indicating the defensive function of microbiotas in pupae. Overall, differences in the microbiotas of the larvae, pupae, and adults are likely to contribute to differences in nutrient assimilation and living environments.

  4. [Microbiological synthesis of [2H]-inosine with a high degree of isotopic enrichment by the gram-positive chemoheterotrophic bacterium Bacillus subtilis].

    Science.gov (United States)

    Mosin, O V; Shvets, V I; Skladnev, D A; Ignatov, I

    2013-01-01

    A 2H-labeled purine ribonucleoside inosine was microbiologically synthesized (yield, 3.9 g/L of culture liquid) using a deuterium-adapted strain ofthe gram-positive chemoheterotrophic bacterium Bacillus subtilis, cultivated in a heavy water medium with a high degree of deuteration (99.8 at % 2H) containing 2% hydrolysate of deuterated biomass of the methylotrophic bacterium Brevibacterium methylicum as a source of 2H-labeled growth substrate produced in an M9 minimal medium with 98% 2H20 and 2% [2H]-methanol. The inosine extracted from the culture liquid of the producer strain was fractionated by adsorption (desorption) on an activated carbon surface, extraction with 0.3 M ammonium-formate buffer (pH 8.9), subsequent crystallization in 80% ethanol, and ion exchange chromatography on a column with AG50WX 4 cation exchange resin equilibrated with 0.3 M ammonium-formate buffer containing 0.045 M NH4Cl. Fast atom bombardment (FAB) mass spectrometry demonstrated incorporation of five deuterium atoms in the inosine molecule (62.5% 2H), three of which were contained in the ribose moiety and two in the hypoxanthine moiety.

  5. Molecular identification of airborne bacteria associated with aerial spraying of bovine slurry waste employing 16S rRNA gene PCR and gene sequencing techniques.

    Science.gov (United States)

    Murayama, Mayumi; Kakinuma, Yuki; Maeda, Yasunori; Rao, Juluri R; Matsuda, Motoo; Xu, Jiru; Moore, Peter J A; Millar, B Cherie; Rooney, Paul J; Goldsmith, Colin E; Loughrey, Anne; McMahon, M Ann S; McDowell, David A; Moore, John E

    2010-03-01

    Polymerase chain reaction amplification of the universal 16S ribosomal RNA (rRNA) gene was performed on a collection of 38 bacterial isolates, originating from air sampled immediately adjacent to the agricultural spreading of bovine slurry. A total of 16 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 34/38 (89.5%) of total bacterial numbers consisting of 12 genera and included Staphylococcus (most common genus isolated), Arthrobacter (2nd most common genus isolated), Brachybacterium, Exiguobacterium, Lactococcus, Microbacterium and Sporosarcina (next most common genera isolated) and finally, Bacillus, Brevibacterium, Frigoribacterium, Mycoplana and Pseudoclavibacter. Gram-negative organisms accounted for only 4/38 (10.5%) bacterial isolates and included the following genera, Brevundimonas, Lysobacter, Psychrobacter and Rhizobium. No gastrointestinal pathogens were detected. Although this study demonstrated a high diversity of the microorganisms present, only a few have been shown to be opportunistically pathogenic to humans and none of these organisms described have been described previously as having an inhalational route of infection and therefore we do not believe that the species of organisms identified pose a significant health and safety threat for immunocompetant individuals. (c) 2009 Elsevier Inc. All rights reserved.

  6. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    Science.gov (United States)

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea.

    Science.gov (United States)

    Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong

    2013-07-01

    Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.

  8. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea.

    Science.gov (United States)

    Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang

    2010-06-01

    In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.

  9. Phylogenetic diversity and biological activity of actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean.

    Science.gov (United States)

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-03-06

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis.

  10. Diversity and novelty of actinobacteria in Arctic marine sediments.

    Science.gov (United States)

    Zhang, Gaiyun; Cao, Tingfeng; Ying, Jianxi; Yang, Yanliu; Ma, Lingqi

    2014-04-01

    The actinobacterial diversity of Arctic marine sediments was investigated using culture-dependent and culture-independent approaches. A total of 152 strains were isolated from seven different media; 18 isolates were selected for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 18 isolates belonged to a potential novel genus and 10 known genera including Actinotalea, Arthrobacter, Brachybacterium, Brevibacterium, Kocuria, Kytococcus, Microbacterium, Micrococcus, Mycobacterium, and Pseudonocardia. Subsequently, 172 rDNA clones were selected by restriction fragment length polymorphism analysis from 692 positive clones within four actinobacteria-specific 16S rDNA libraries of Arctic marine sediments, and then these 172 clones were sequenced. In total, 67 phylotypes were clustered in 11 known genera of actinobacteria including Agrococcus, Cellulomonas, Demequina, Iamia, Ilumatobacter, Janibacter, Kocuria, Microbacterium, Phycicoccus, Propionibacterium, and Pseudonocardia, along with other, unidentified actinobacterial clones. Based on the detection of a substantial number of uncultured phylotypes showing low BLAST identities (marine environments harbour highly diverse actinobacterial communities, many of which appear to be novel, uncultured species.

  11. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: extended incubation periods needed for culture-based assays

    Science.gov (United States)

    Griffin, Dale W.

    2008-01-01

    On 13 August 2004, an atmospheric sample was collected at an altitude of 20,000 m along a west to east transect over the continental United States by NASA’s Stratospheric and Cosmic Dust Program. This sample was then shipped to the US Geological Survey’s Global Desert Dust program for microbiological analyses. This sample, which was plated on a low nutrient agar to determine if cultivable microorganisms were present, produced 590 small yellow to off-white colonies after approximately 7 weeks of incubation at room-temperature. Of 50 colonies selected for identification using 16S rRNA sequencing, 41 belonged to the family Micrococcaceae, seven to the family Microbacteriaceae, one to the genus Staphylococcus, and one to the genus Brevibacterium. All of the isolates identified were non-spore-forming pigmented bacteria, and their presence in this sample illustrate that it is not unusual to recover viable microbes at extreme altitudes. Additionally, the extended period required to initiate growth demonstrates the need for lengthy incubation periods when analyzing high-altitude samples for cultivable microorganisms.

  12. Temperature and relative humidity influence the microbial and physicochemical characteristics of Camembert-type cheese ripening.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Sicard, M; Trelea, I C; Picque, D; Corrieu, G

    2012-08-01

    To evaluate the effects of temperature and relative humidity (RH) on microbial and biochemical ripening kinetics, Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces marxianus, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical changes were studied under different ripening temperatures (8, 12, and 16°C) and RH (88, 92, and 98%). The central point runs (12°C, 92% RH) were both reproducible and repeatable, and for each microbial and biochemical parameter, 2 kinetic descriptors were defined. Temperature had significant effects on the growth of both K. marxianus and G. candidum, whereas RH did not affect it. Regardless of the temperature, at 98% RH the specific growth rate of P. camemberti spores was significantly higher [between 2 (8°C) and 106 times (16°C) higher]. However, at 16°C, the appearance of the rind was no longer suitable because mycelia were damaged. Brevibacterium aurantiacum growth depended on both temperature and RH. At 8°C under 88% RH, its growth was restricted (1.3 × 10(7) cfu/g), whereas at 16°C and 98% RH, its growth was favored, reaching 7.9 × 10(9) cfu/g, but the rind had a dark brown color after d 20. Temperature had a significant effect on carbon substrate consumption rates in the core as well as in the rind. In the rind, when temperature was 16°C rather than 8°C, the lactate consumption rate was approximately 2.9 times higher under 88% RH. Whatever the RH, temperature significantly affected the increase in rind pH (from 4.6 to 7.7 ± 0.2). At 8°C, an increase in rind pH was observed between d 6 and 9, whereas at 16°C, it was between d 2 and 3. Temperature and RH affected the increasing rate of the underrind thickness: at 16°C, half of the cheese thickness appeared ripened on d 14 (wrapping day). However, at 98% RH, the underrind was runny. In conclusion, some descriptors, such as yeast growth and the pH in the rind, depended solely on

  13. Contagem, isolamento e caracterização de bactérias psicrotróficas contaminantes de leite cru refrigerado Counting, isolation and characterization of psychrotrophic bacteria from refrigerated raw milk

    Directory of Open Access Journals (Sweden)

    Edna Froeder Arcuri

    2008-11-01

    Full Text Available Com os objetivos de quantificar, isolar e caracterizar bactérias psicrotróficas contaminantes de leite cru refrigerado, produzido na região da Zona da Mata de Minas Gerais e Sudeste do Rio de Janeiro, foram analisadas amostras de leite coletadas de 20 tanques coletivos e 23 tanques individuais. As contagens de bactérias psicrotróficas nas amostras de leite para os dois tipos de tanques de refrigeração variaram entre 10² e 10(7 Unidades Formadoras de Colônias (UFC ml-1, porém, um maior número de tanques coletivos apresentou contagens acima de 1 x 10(5 UFC ml-1. Foi verificada a predominância de bactérias psicrotróficas gram-negativas (81,2%, que foram identificadas pelos sistemas API 20E e API 20NE nos gêneros: Aeromonas, Alcaligenes, Acinetobacter, Burkholderia,Chryseomonas, Enterobacter, Ewingella, Klebsiella, Hafnia, Methylobacterium, Moraxella, Pantoea, Pseudomonas, Serratia, Sphingomonas e Yersinia. As bactérias gram-positivas (18,8% foram identificadas com API 50 CH, API Coryne e API Staph, nos gêneros: Bacillus, Brevibacterium, Cellum/Microbacterium, Kurthia e Staphylococcus. Os sistemas API utilizados não identificaram todos os isolados bacterianos. Pseudomonas foi o gênero mais isolado e P. fluorescens foi a espécie predominante. A maioria dos isolados bacterianos apresentou atividade proteolítica e/ou lipolítica a temperaturas de refrigeração de 4°C, 7°C e 10°C, evidenciando seu alto potencial de deterioração do leite e dos produtos lácteos. Os resultados ressaltam que maior atenção deve ser dada aos procedimentos que impeçam a contaminação do leite por esses microrganismos.This study aimed to quantify, isolate and characterize psychrotrophic bacteria from refrigerated raw milk produced at the ‘Mata’ Region of Minas Gerais State and Southeast of Rio de Janeiro State, Brazil. Raw milk samples, were collected at the farms, from 20 collective refrigerated tanks and 23 individual refrigerated tanks

  14. Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de sementes de soja Diversity and biotechnological potential of endophytic bacterial community of soybean seeds

    Directory of Open Access Journals (Sweden)

    Laura de Castro Assumpção

    2009-05-01

    Full Text Available O objetivo deste trabalho foi isolar, caracterizar e identificar a comunidade bacteriana endofítica de sementes de soja e avaliar o seu potencial biotecnológico. Foram utilizadas sementes de 12 cultivares de soja. Os isolados bacterianos endofíticos obtidos foram avaliados in vitro quanto ao antagonismo a fungos fitopatogênicos, síntese de ácido indolacético (AIA e solubilização de fosfato. A caracterização foi realizada com técnicas de isolamento, análise de restrição do DNA ribossomal amplificado (ARDRA e sequenciamento parcial do gene 16S rDNA. Os isolados com maior potencial biotecnológico foram inoculados em sementes de soja, para se avaliar a capacidade de promoção de crescimento de plantas. Foi possível identificar 12 ribótipos por meio da ARDRA, que foram classificados como: Acinetobacter, Bacillus, Brevibacterium, Chryseobacterium, Citrobacter, Curtobacterium, Enterobacter, Methylobacterium, Microbacterium, Micromonospora, Pantoea, Paenibacillus, Pseudomonas, Ochrobactrum, Streptomyces e Tsukamurella. Quanto ao potencial biotecnológico da comunidade, 18% dos isolados controlaram o crescimento de fungos fitopatogênicos, 100% produziram AIA, e 39% solubilizaram fosfato. O isolado 67A(57 de Enterobacter sp. aumentou significativamente a massa de matéria seca da raiz. A inoculação de isolados com elevado potencial biotecnológico em avaliações in vitro não promoveu o crescimento de plantas de soja na maioria dos casos.The objectives of this work were to isolate, characterize and identify the endophytic bacterial community of soybean seeds, and to test the biotechnological potential of this community. Seeds from 12 soybean cultivars were used. The endophytic bacterial isolates were evaluated for in vitro antagonism against phytopathogenic fungi, synthesis of indoleacetic acid (IAA, and capacity to solubilize phosphate. Isolation techniques, amplified ribosomal DNA restriction analysis (ARDRA grouping, and

  15. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column Produção de ácido L-glutâmico a partir de um hidrolisado de amido de mandioca usando resina de troca iônica

    Directory of Open Access Journals (Sweden)

    K. Madhavan Nampoothiri

    1999-07-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.Pesquisas foram realizadas com o objetivo de produzir ácido glutâmico a partir de Brevibacterium sp. utilizando um substrato disponível na região, a mandioca (Manihot esculenta Crantz. Estudos iniciais, desenvolvidos em shaker, demonstraram que mesmo obtendo elevado rendimento com 85-90 DE (Dextrose Equivalent value, a taxa de conversão máxima (~34% foi obtida usando um hidrolisado de amido parcialmente digerido, i.e. 45-50 DE. As fermentações foram realizadas em um fermentador de 5 L, usando um hidrolisado de amido de mandioca adequadamente diluído, preparado à partir de um valor DE de 85-90. O

  16. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    Science.gov (United States)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    plates were purified in the same growth medium by streaking and differentiated by assessing their morphological (phase-contrast microscopy) and biochemical characteristics (Gram-stains KOH-lysis and catalase activity). Cultural-based method allow us to identify by 16S and 26S rRNA partial sequence analysis, heterotrophic bacteria belonging to different genera as Bacillus, Pseudomonas, Aeromonas and Microbacterium. By using this approach, Bacillus-related species (B. benzoevorans, B. megaterium and B. pumilis and B. megaterium/B. simplex group) as well as Aeromonas sobria/Aeromonas salmonicida/Aeromonas hydrophila group, Pseudomonas plecoglossicida and Microbacterium esteraromaticum were isolated in different sample points analysed. DGGE analysis of PCR amplified V3 region of rDNA from DNA directly recovered from samples of biofilms and patina, enabled identification of bacterial species not found using culturable technology, as those closest related to Aeromonas, Paenibacillus, Brevibacterium, Exiguobacterium, Microbacterium, Brevibacterium, Stenothophomonas and Streptomyces. Combination of culture-dependent and independent methods provide a better characterization of heterotrophic microbiota that colonize the surface of ancient decorated walls and can contribute to understand the potential of biodeterioration activity by heterotrophic microorganisms.

  17. Swapping metals in Fe- and Mn-dependent dioxygenases: evidence for oxygen activation without a change in metal redox state.

    Science.gov (United States)

    Emerson, Joseph P; Kovaleva, Elena G; Farquhar, Erik R; Lipscomb, John D; Que, Lawrence

    2008-05-27

    Biological O(2) activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O(2) electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O(2) via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 A is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same K(M) and V(max) values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state.

  18. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    Science.gov (United States)

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  19. Identification of a Novel Gene Product That Promotes Survival of Mycobacterium smegmatis in Macrophages

    Science.gov (United States)

    Pelosi, Assunta; Smith, Danielle; Brammananth, Rajini; Topolska, Agnieszka; Billman-Jacobe, Helen; Nagley, Phillip

    2012-01-01

    Background Bacteria of the suborder Corynebacterineae include significant human pathogens such as Mycobacterium tuberculosis and M. leprae. Drug resistance in mycobacteria is increasingly common making identification of new antimicrobials a priority. Mycobacteria replicate intracellularly, most commonly within the phagosomes of macrophages, and bacterial proteins essential for intracellular survival and persistence are particularly attractive targets for intervention with new generations of anti-mycobacterial drugs. Methodology/Principal Findings We have identified a novel gene that, when inactivated, leads to accelerated death of M. smegmatis within a macrophage cell line in the first eight hours following infection. Complementation of the mutant with an intact copy of the gene restored survival to near wild type levels. Gene disruption did not affect growth compared to wild type M. smegmatis in axenic culture or in the presence of low pH or reactive oxygen intermediates, suggesting the growth defect is not related to increased susceptibility to these stresses. The disrupted gene, MSMEG_5817, is conserved in all mycobacteria for which genome sequence information is available, and designated Rv0807 in M. tuberculosis. Although homology searches suggest that MSMEG_5817 is similar to the serine:pyruvate aminotransferase of Brevibacterium linens suggesting a possible role in glyoxylate metabolism, enzymatic assays comparing activity in wild type and mutant strains demonstrated no differences in the capacity to metabolize glyoxylate. Conclusions/Significance MSMEG_5817 is a previously uncharacterized gene that facilitates intracellular survival of mycobacteria. Interference with the function of MSMEG_5817 may provide a novel therapeutic approach for control of mycobacterial pathogens by assisting the host immune system in clearance of persistent intracellular bacteria. PMID:22363734

  20. Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state

    Science.gov (United States)

    Emerson, Joseph P.; Kovaleva, Elena G.; Farquhar, Erik R.; Lipscomb, John D.; Que, Lawrence

    2008-01-01

    Biological O2 activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O2 electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O2 via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 Å is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same KM and Vmax values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state. PMID:18492808

  1. Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Joseph P.; Kovaleva, Elena G.; Farquhar, Erik R.; Lipscomb, John D.; Oue, Jr., Lawrence (UMM)

    2008-07-21

    Biological O{sub 2} activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O{sub 2} electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O{sub 2} via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 {angstrom} is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same K{sub M} and V{sub max} values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state.

  2. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.

  3. Controlled production of Camembert-type cheeses. Part II. Changes in the concentration of the more volatile compounds.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Latrille, Eric; Corrieu, Georges; Spinnler, Henry-Eric

    2004-08-01

    Flavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two replicates performed under controlled conditions of temperature (12 degrees C), relative humidity (95 +/- 2%), and atmosphere showed similar ripening characteristics. The evolutions of metabolite concentrations were studied during ripening. The volatile components were extracted by dynamic headspace extraction, separated and quantified by gas chromatography and identified by mass spectrometry. For each cheese the volatile concentrations varied with the part considered (rind or core). Except for ethyl acetate and 2-pentanone, the volatile quantities observed were higher than their perception thresholds. The flavour component production was best correlated with the starter strains. During the first 10 days the ester formations (ethyl, butyl and isoamyl acetates) were associated with the concentrations of K. lactis and G. candidum. The rind quantity of esters was lower than that observed in core probably due to (1) a diffusion from the core to the surface and (2) evaporation from the surface to the chamber atmosphere. G. candidum and Brev. linens association produced 3 methyl butanol and methyl 3-butanal from leucine, respectively. DMDS came from the methionine catabolism due to Brev. linens. Styrene production was attributed to Pen. camemberti. 2-Pentanone evolution was associated with Pen. camemberti spores and G. candidum. 2-Heptanone changes were not directly related to flora activities while 2-octanone production was essentially due to G. candidum. This study also demonstrates the determining role of volatile component diffusion.

  4. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR.

    Science.gov (United States)

    Masoud, Wafa; Vogensen, Finn K; Lillevang, Søren; Abu Al-Soud, Waleed; Sørensen, Søren J; Jakobsen, Mogens

    2012-02-01

    The purpose of this work was to study the bacterial communities in raw milk and in Danish raw milk cheeses using pyrosequencing of tagged amplicons of the V3 and V4 regions of the 16S rDNA and cDNA. Furthermore, the effects of acidification and ripening starter cultures, cooking temperatures and rate of acidification on survival of added Escherichia coli, Listeria innocua and Staphylococcus aureus in cheeses at different stages of ripening were studied by pyrosequencing and quantitative real time (qRT)-PCR. A high diversity of bacterial species was detected in raw milk. Lactococcus lactis, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus rhamnosus were the main bacteria detected in raw milk and cheeses. Bacteria belonging to the genera Brevibacterium, Staphylococcus, Escherichia, Weissella, Leuconostoc, Pediococcus were also detected in both 16S rDNA and cDNA obtained from raw milk and cheeses. E. coli, which was added to milk used for production of some cheeses, was detected in both DNA and RNA extracted from cheeses at different stages of ripening showing the highest percentage of the total sequence reads at 7 days of ripening and decreased again in the later ripening stages. Growth of E. coli in cheeses appeared to be affected by the cooking temperature and the rate of acidification but not by the ripening starter cultures applied or the indigenous microbiota of raw milk. Growth of L. innocua and S. aureus added to milks was inhibited in all cheeses at different stages of ripening. The use of 16S rRNA gene pyrosequencing and qRT-PCR allows a deeper understanding of the behavior of indigenous microbiota, starter cultures and pathogenic bacteria in raw milk and cheeses. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene.

    Science.gov (United States)

    Kuyukina, Maria S; Ivshina, Irena B; Korshunova, Irina O; Stukova, Galina I; Krivoruchko, Anastasiya V

    2016-03-01

    This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.

  6. Identification and characterisation of oil sludge degrading bacteria isolated from compost

    Directory of Open Access Journals (Sweden)

    Ubani Onyedikachi

    2016-06-01

    Full Text Available Compounds present in oil sludge such as polycyclic aromatic hydrocarbons (PAHs are known to be cytotoxic, mutagenic and potentially carcinogenic. Microorganisms including bacteria and fungi have been reported to degrade oil sludge components to innocuous compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading capabilities from compost prepared from oil sludge and animal manures. These bacteria were isolated on a mineral base medium and mineral salt agar plates. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR of the 16S rRNA gene with specific primers (universal forward 16S-P1 PCR and reverse 16S-P2 PCR. The amplicons were sequenced and sequences were compared with the known nucleotides from the GenBank. The phylogenetic analyses of the isolates showed that they belong to 3 different clades; Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to the genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus. The results showed that Bacillus species were predominant in all composts. Based on the results of the degradation of the PAHs in the composts and results of previous studies on bacterial degradation of hydrocarbons in oil, the characteristics of these bacterial isolates suggests that they may be responsible for the breakdown of PAHs of different molecular weights in the composts. Thus, they may be potentially useful for bioremediation of oil sludge during compost bioremediation.

  7. Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese.

    Science.gov (United States)

    Goerges, Stefanie; Mounier, Jérôme; Rea, Mary C; Gelsomino, Roberto; Heise, Valeska; Beduhn, Rüdiger; Cogan, Timothy M; Vancanneyt, Marc; Scherer, Siegfried

    2008-04-01

    Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.

  8. Mur-LH, the Broad-Spectrum Endolysin of Lactobacillus helveticus Temperate Bacteriophage φ-0303

    Science.gov (United States)

    Deutsch, Stéphanie-Marie; Guezenec, Stéphane; Piot, Michel; Foster, Simon; Lortal, Sylvie

    2004-01-01

    φ-0303 is a temperate bacteriophage isolated from Lactobacillus helveticus CNRZ 303 strain after mitomycin C induction. In this work, the gene coding for a lytic protein of this bacteriophage was cloned using a library of φ-0303 in Escherichia coli DH5α. The lytic activity was detected by its expression, using whole cells of the sensitive strain L. helveticus CNRZ 892 as the substrate. The lysin gene was within a 4.1-kb DNA fragment of φ-0303 containing six open reading frames (ORFs) and two truncated ORFs. No sequence homology with holin genes was found within the cloned fragment. An integrase-encoding gene was also present in the fragment, but it was transcribed in a direction opposite that of the lysin gene. The lysin-encoding lys gene was verified by PCR amplification from the total phage DNA and subcloned. The lys gene is a 1,122-bp sequence encoding a protein of 373 amino acids (Mur-LH), whose product had a deduced molecular mass of 40,207 Da. Comparisons with sequences in sequence databases showed homology with numerous endolysins of other bacteriophages. Mur-LH was expressed in E. coli BL21, and by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with L. helveticus CNRZ 892 as the substrate, the recombinant protein showed an apparent molecular mass of 40 kDa. The N-terminal sequence of the protein confirmed the start codon. Hydrolysis of cell walls of L. helveticus CNRZ 303 by the endolysin and biochemical analysis of the residues produced demonstrated that Mur-LH has N-acetylmuramidase activity. Last, the endolysin exhibited a broad spectrum of lytic activity, as it was active on different species, mainly thermophilic lactobacilli but also lactococci, pediococci, Bacillus subtilis, Brevibacterium linens, and Enterococcus faecium. PMID:14711630

  9. Development of a novel compound microbial agent for degradation of kitchen waste.

    Science.gov (United States)

    Zhao, Kaining; Xu, Rui; Zhang, Ying; Tang, Hao; Zhou, Chuanbin; Cao, Aixin; Zhao, Guozhu; Guo, Hui

    Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi) were selected to develop a compound microbial agent "YH" and five strains of these species including H7 (Brevibacterium epidermidis), A3 (Paenibacillus polymyxa), E3 (Aspergillus japonicus), F9 (Aspergillus versicolor) and A5 (Penicillium digitatum), were new for kitchen waste degradation. YH was compared with three commercial microbial agents-"Tiangeng" (TG), "Yilezai" (YLZ) and Effective Microorganisms (EM), by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH3 and H2S emissions significantly during composting process. The concentration of NH3 decreased from 7.1 to 3.2ppm and that of H2S reduced from 0.7 to 0.2ppm. Moreover, E4/E6 (Extinction value460nm/Extinction value665nm) of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Development of a novel compound microbial agent for degradation of kitchen waste

    Directory of Open Access Journals (Sweden)

    Kaining Zhao

    Full Text Available Abstract Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi were selected to develop a compound microbial agent "YH" and five strains of these species including H7 (Brevibacterium epidermidis, A3 (Paenibacillus polymyxa, E3 (Aspergillus japonicus, F9 (Aspergillus versicolor and A5 (Penicillium digitatum, were new for kitchen waste degradation. YH was compared with three commercial microbial agents-"Tiangeng" (TG, "Yilezai" (YLZ and Effective Microorganisms (EM, by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH3 and H2S emissions significantly during composting process. The concentration of NH3 decreased from 7.1 to 3.2 ppm and that of H2S reduced from 0.7 to 0.2 ppm. Moreover, E4/E6 (Extinction value460nm/Extinction value665nm of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste.

  11. Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance.

    Science.gov (United States)

    Ali, Nida; Dashti, Narjes; Al-Mailem, Dina; Eliyas, Mohamed; Radwan, Samir

    2012-03-01

    Transconjugant bacteria with combined potential for hydrocarbon utilization and heavy metal resistance were suggested by earlier investigators for bioremediation of soils co-contaminated with hydrocarbons and heavy metals. The purpose of this study was to offer evidence that such microorganisms are already part of the indigenous soil microflora. Microorganisms in pristine and oily soils were counted on nutrient agar and a mineral medium with oil as a sole carbon source, in the absence and presence of either sodium arsenate (As V), sodium arsenite (As III) or cadmium sulfate, and characterized via 16S rRNA gene sequencing. The hydrocarbon-consumption potential of individual strains in the presence and absence of heavy metal salts was measured. Pristine and oil-contaminated soil samples harbored indigenous bacteria with the combined potential for hydrocarbon utilization and As and Cd resistance in numbers up to 4 × 10⁵ CFU g⁻¹. Unicellular bacteria were affiliated to the following species arranged in decreasing order of predominance: Bacillus subtilis, Corynebacterium pseudotuberculosis, Brevibacterium linens, Alcaligenes faecalis, Enterobacter aerogenes, and Chromobacterium orangum. Filamentous forms were affiliated to Nocardia corallina, Streptomyces flavovirens, Micromonospora chalcea, and Nocardia paraffinea. All these isolates could grow on a wide range of pure aliphatic and aromatic hydrocarbons, as sole sources of carbon and energy, and could consume oil and pure hydrocarbons in batch cultures. Low As concentrations, and to a lesser extent Cd concentrations, enhanced the hydrocarbon-consumption potential by the individual isolates. There is no need for molecularly designing microorganisms with the combined potential for hydrocarbon utilization and heavy metal resistance, because they are already a part of the indigenous soil microflora.

  12. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Directory of Open Access Journals (Sweden)

    Mariusz Sebastian Cycoń

    2016-09-01

    Full Text Available Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs, their applications significantly increased when the use of OPs was banned or limited. Although pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces and the fungal strains from the genera Aspergillus, Candida, Cladosporium and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the

  13. Exploring the diversity and antimicrobial potential of marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    Directory of Open Access Journals (Sweden)

    Agustina Undabarrena

    2016-07-01

    Full Text Available Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%, PKS I (18% and PKS II (73%.Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.

  14. Microbiological Quality Evaluation of Various Types Of Traditional Romanian Cheese Through Advanced Methods

    Directory of Open Access Journals (Sweden)

    Alexandra Tabaran

    2016-11-01

    Full Text Available Raw milk represents a nutritive environment for a number of pathogens, like Salmonella spp., Escherichia coli O157: H7, Staphylococcus aureus etc. This fact can cause a serious of foodborne outbreaks associated to the consumption of contaminated milk and derivated products. The traditional processing of raw milk in poor hygiene conditions can pose a serious microbiological risk. The study aimed at evaluating the incidence of pathogen bacteria in ripened traditional cheese by advanced biochemical and molecular methods in order to reveal the possible risk of consumer exposure. The study was applied on 150 samples of riepened cheese from the follwoing types: salted teleme cheese and „Burduf” cheese and „Năsal” cheese. The traditional teleme cheese presented an average value of the total E. coli count in between 11.06±0.52-38.33±2.76 cfu/g. The risk represented by the presence of E. coli and Staphylococcus aureus is low within the first steps of ripening, being absent after 28 months of ripeneing in the teleme cheese samples. The Staphylococcus aureus load was in between 3.82±0.12 log cfu/g for the first period of ripeneing in „Burduf” cheese and 0.27±0.56 log cfu/g after the second period of maturation, following a descendant pathway towards the last period of ripening. In „Năsal” cheese we isolated the specific Brevibacterium linens, which gives the characteristics of this type of cheese, but also Micrococcus spp., in 35% and lactic streptococci in  20%. The traditional cheese evaluated represent a low risk of contamination given that no sample investigated has exceeded the maximum limits allowed by the legislation and no pathogen bacteria isolated.

  15. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons

    Directory of Open Access Journals (Sweden)

    Saiqa Tufail

    Full Text Available ABSTRACT Polyhydroxyalkanoates (PHA are efficient, renewable and environment friendly polymeric esters. These polymers are synthesized by a variety of microbes under stress conditions. This study was carried out to check the suitability of waste frying oil in comparison to other oils for economical bioplastic production. Six bacterial strains were isolated and identified as Bacillus cereus (KF270349, Klebsiella pneumoniae (KF270350, Bacillus subtilis (KF270351, Brevibacterium halotolerance (KF270352, Pseudomonas aeruginosa (KF270353, and Stenotrophomonas rhizoposid (KF270354 by ribotyping. All strains were PHA producers so were selected for PHA synthesis using four different carbon sources, i.e., waste frying oil, canola oil, diesel and glucose. Extraction of PHA was carried out using sodium hypochlorite method and maximum amount was detected after 72 h in all cases. P. aeruginosa led to maximum PHA production after 72 h at 37 °C and 100 rpm using waste frying oil that was 53.2% PHA in comparison with glucose 37.8% and cooking oil 34.4%. B. cereus produced 40% PHA using glucose as carbon source which was high when compared against other strains. A significantly lesser amount of PHA was recorded with diesel as a carbon source for all strains. Sharp Infrared peaks around 1740-1750 cm-1 were present in Fourier Transform Infrared spectra that correspond to exact position for PHA. The use of waste oils and production of poly-3hydroxybutyrate-co-3hydroxyvalerate (3HB-co-3HV by strains used in this study is a good aspect to consider for future prospects as this type of polymer has better properties as compared to PHBs.

  16. Identification of a novel gene product that promotes survival of Mycobacterium smegmatis in macrophages.

    Directory of Open Access Journals (Sweden)

    Assunta Pelosi

    Full Text Available BACKGROUND: Bacteria of the suborder Corynebacterineae include significant human pathogens such as Mycobacterium tuberculosis and M. leprae. Drug resistance in mycobacteria is increasingly common making identification of new antimicrobials a priority. Mycobacteria replicate intracellularly, most commonly within the phagosomes of macrophages, and bacterial proteins essential for intracellular survival and persistence are particularly attractive targets for intervention with new generations of anti-mycobacterial drugs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified a novel gene that, when inactivated, leads to accelerated death of M. smegmatis within a macrophage cell line in the first eight hours following infection. Complementation of the mutant with an intact copy of the gene restored survival to near wild type levels. Gene disruption did not affect growth compared to wild type M. smegmatis in axenic culture or in the presence of low pH or reactive oxygen intermediates, suggesting the growth defect is not related to increased susceptibility to these stresses. The disrupted gene, MSMEG_5817, is conserved in all mycobacteria for which genome sequence information is available, and designated Rv0807 in M. tuberculosis. Although homology searches suggest that MSMEG_5817 is similar to the serine:pyruvate aminotransferase of Brevibacterium linens suggesting a possible role in glyoxylate metabolism, enzymatic assays comparing activity in wild type and mutant strains demonstrated no differences in the capacity to metabolize glyoxylate. CONCLUSIONS/SIGNIFICANCE: MSMEG_5817 is a previously uncharacterized gene that facilitates intracellular survival of mycobacteria. Interference with the function of MSMEG_5817 may provide a novel therapeutic approach for control of mycobacterial pathogens by assisting the host immune system in clearance of persistent intracellular bacteria.

  17. An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    True, A.E.; Orville, A.M.; Pearce, L.L.; Lipscomb, J.D.; Que, L. Jr. (Univ. of Minnesota, Minneapolis (USA))

    1990-12-01

    X-ray crystallographic studies of the intradiol cleaving protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa have shown that the enzyme has a trigonal bipyramidal ferric active site with two histidines, two tyrosines, and a solvent molecule as ligands. Fe K-edge EXAFS studies of the spectroscopically similar protocatechuate 3,4-dioxygenase from Brevibacterium fuscum are consistent with a pentacoordinate geometry of the iron active site with 3 O/N ligands at 1.90 {angstrom} and 2 O/N ligands at 2.08 {angstrom}. The 2.08-{angstrom} bonds are assigned to the two histidines, while the 1.90-{angstrom} bonds are associated with the two tyrosines and the coordinated solvent. The short Fe-O distance for the solvent suggests that it coordinates as hydroxide rather than water. When the inhibitor terephthalate is bound to the enzyme, the XANES data indicate that the ferric site becomes 6-coordinate and the EXAFS data show a beat pattern which can only be simulated with an additional Fe-O/N interaction at 2.46 {angstrom}. Together, the data suggest that the oxygens of the carboxylate group in terephthalate displace the hydroxide and chelate to the ferric site but in an asymmetric fashion. In contrast, protocatechuate 3,4-dioxygenase remains 5-coordinate upon the addition of the slow substrate homoprotocatechuic acid (HPCA). Previous EPR data have indicated that HPCA forms an iron chelate via the two hydroxyl functions. For the iron site to remain 5-coordinate and the HPCA to be chelated to the iron, the substrate must displace not only the hydroxide but also a ligand from the protein backbone, probably a histidine. The mechanistic implications of the displacement of hydroxide and a protein ligand in the active site are discussed.

  18. Effect of proteolitic enzymes with probiotic of lactic acid bacteria on characteristics of cow milk dadih

    Directory of Open Access Journals (Sweden)

    Miskiyah

    2011-12-01

    Full Text Available Texture of dadih from cow milk tends to be soft, while dadih from buffalo milk have more compact and solid texture. Enzyme is one of food additives that may produce fermented products made from cow milk that has same charcteristic as dadih’s from buffalo milk. Lactic acid bacteria in fermented milk affect product characteristics. This study aimed to determine the effect of combination of enzyme and probiotic lactic acid bacteria on the characteristics of cow's milk dadih. The study was aime designed using completely randomized design (CRD with 9 treatments, A: renin 2 ppm + 3% Lactobacillus casei; B: renin 2 ppm + 3% B. longum; C: renin 2 ppm + 1.5% L. casei + 1.5% B. longum; D: crude extract of Mucor sp. 0.5 ppm + 3% L. casei; E: crude extract of Mucor sp. 0.5 ppm + 3% Brevibacterium longum; F: crude enzyme extract of Mucor sp. 0.5 ppm + 1.5% L. casei + 1.5% B. longum; G: papain 100 ppm + 3% L. casei; H: papain 100 ppm + 3% B. longum; and F: papain 100 ppm + 1.5% L. casei + 1.5% B. longum. Each treatment was repeated two times. Results showed that combination of renin 2 ppm with 3% of L. casei resulted in the best characteristics of cow milk dadih with viscosity 2278 cP; pH 5.63; titrable acidity 0.56%; moisture 75.03%; protein 6.80%; fat 3.35%; carbohydrate 13.21%; LAB total 6.90 x 1010 cfu/g; it also had a flavor, aroma, texture, and general acceptance that mostly preferred by panelists.

  19. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses.

    Directory of Open Access Journals (Sweden)

    Mirna Mrkonjić Fuka

    Full Text Available Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB, mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all

  20. Isolation of coryneform bacteria from blood cultures of patients at a University Hospital in Saudi Arabia.

    Science.gov (United States)

    Babay, Hanan A; Kambal, Abdelmageed M

    2004-08-01

    Coryneform bacteria have been increasingly recognized as opportunistic pathogens in recent years. The aim of this study is to identify and determine the antimicrobial susceptibility of coryneform bacteria isolated from blood cultures of patients seen at King Khalid University Hospital (KKUH), Riyadh, Kingdom of Saudi Arabia and review the literature. All coryneform bacteria isolated from blood culture specimens between January 2001 and March 2003 were prospectively identified by API Coryne System (BioMerieux, France). Clinical data were collected from each patient's medical record. Antimicrobial susceptibility to 16 antimicrobial agents were determined by minimum inhibitory concentration (MIC) using E-test (AB Biodisk, Solna, Sweden). Out of 50 coryneform bacteria isolated, 19 different species were identified. Corynebacterium propinquum was the most common species 6/50 (12%) followed by Corynebacterium auris 5/50 (10%), Corynebacterium afermentans, Corynebacterium striatum, Dermabacter hominis, Brevibacterium, and Arthrobacter species 4/50 (8%) each. Underlying chest diseases were common among the patients 11/50 (22%), followed by different surgeries 10/50 (20%). Of all, 12/50 (24%) patients were from different intensive care units (ICUs), 36/50 (72%) had either vascular, urinary or respiratory intubation. Three patients in ICUs died, one was an elderly patient with gastrointestinal bleeding and 2 teenagers (one had tracheoesophageal fistula and the other was post-arrest road traffic accident patient). Vancomycin was the most active antimicrobial agent against all coryneform species. The majority had MIC Corynebacterium striatum was the only isolate susceptible to ampicillin. This study revealed that coryneform bacteria are increasingly being recognized as a cause of serious infections in immunocompromised patients. We recommend identification and susceptibility testing of predominant isolates of coryneform bacteria from different clinical sites of seriously ill

  1. Microbiological Synthesis of 2H-Labeled Phenylalanine, Alanine, Valine, and Leucine/Isoleucine with Different Degrees of Deuterium Enrichment by the Gram-Positive Facultative Methylotrophic Bacterium Вrevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg V. Mosin, PhD¹

    2013-06-01

    Full Text Available The microbiological synthesis of [2H]amino acids was performed by the conversion of low molecular weight substrates ([U-2H]MeOH and 2H2O using the Gram-positive aerobic facultative methylotrophic bacterium Brevibacterium methylicum, an L-phenylalanine producer, realizing the NAD+ dependent methanol dehydrogenase (EC 1.6.99.3 variant of the ribulose-5-monophosphate (RuMP cycle of carbon assimilation. In this process, the adapted cells of the methylotroph with enhanced growth characteristics were used on a minimal salt medium M9, supplemented with 2% (v/v [U-2H]MeOH and an increasing gradient of 2Н2O concentration from 0; 24.5, 49.0; 73.5 up to 98% (v/v 2Н2O. Alanine, valine, and leucine/isoleucine were produced and accumulated exogeneously in quantities of 5–6 mol, in addition to the main product of biosynthesis. This method enables the production of [2Н]amino acids with different degrees of deuterium enrichment, depending on the 2Н2O concentration in the growth medium, from 17 at.% 2Н (on the growth medium with 24.5 % (v/v 2Н2О up to 75 at.% 2Н (on the growth medium with 98 % (v/v 2Н2О. This has been confirmed with the data from the electron impact (EI mass spectrometry analysis of the methyl ethers of N-dimethylamino(naphthalene-5-sulfochloride [2H]amino acids under these experimental conditions.

  2. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Molla Gianluca

    2010-04-01

    Full Text Available Abstract Background Cholesterol oxidase is an alcohol dehydrogenase/oxidase flavoprotein that catalyzes the dehydrogenation of C(3-OH of cholesterol. It has two major biotechnological applications, i.e. in the determination of serum (and food cholesterol levels and as biocatalyst providing valuable intermediates for industrial steroid drug production. Cholesterol oxidases of type I are those containing the FAD cofactor tightly but not covalently bound to the protein moiety, whereas type II members contain covalently bound FAD. This is the first report on the over-expression in Escherichia coli of type II cholesterol oxidase from Brevibacterium sterolicum (BCO. Results Design of the plasmid construct encoding the mature BCO, optimization of medium composition and identification of the best cultivation/induction conditions for growing and expressing the active protein in recombinant E. coli cells, concurred to achieve a valuable improvement: BCO volumetric productivity was increased from ~500 up to ~25000 U/L and its crude extract specific activity from 0.5 up to 7.0 U/mg protein. Interestingly, under optimal expression conditions, nearly 55% of the soluble recombinant BCO is produced as covalently FAD bound form, whereas the protein containing non-covalently bound FAD is preferentially accumulated in insoluble inclusion bodies. Conclusions Comparison of our results with those published on non-covalent (type I COs expressed in recombinant form (either in E. coli or Streptomyces spp., shows that the fully active type II BCO can be produced in E. coli at valuable expression levels. The improved over-production of the FAD-bound cholesterol oxidase will support its development as a novel biotool to be exploited in biotechnological applications.

  3. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity.

    Science.gov (United States)

    Siddikee, Md Ashaduzzaman; Glick, Bernard R; Chauhan, Puneet S; Yim, Woo jong; Sa, Tongmin

    2011-04-01

    Three 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria were isolated from West Coast soil of Yellow Sea, Incheon, South Korea and evaluated for their efficiency in improving red pepper plant growth under salt stress. The strains RS16, RS656 and RS111 were identified by 16S rRNA gene sequencing as Brevibacterium iodinum, Bacillus licheniformis and Zhihengliuela alba, respectively. Two hour exposure of 100, 150 and 200 mM NaCl stress on 8 day old red pepper seedlings caused 44, 64 and 74% increase ethylene production, while at 150 mM NaCl stress, inoculation of B. licheniformis RS656, Z. alba RS111, and Br. iodinum RS16 reduces ethylene production by 44, 53 and 57%, respectively. Similarly, 3 week old red pepper plants were subjected to salt stress for two weeks and approximately ∼50% reduction in growth recorded at 150 mM NaCl stress compared to negative control whereas bacteria inoculation significantly increase the growth compared to positive control. Salt stress also caused 1.3-fold reduction in the root/shoot dry weight ratio compared to the absence of salt while bacteria inoculation retained the biomass allocation similar to control plants. The salt tolerance index (ratio of biomass of salt stressed to non-stressed plant) was also significantly increased in inoculated plants compared to non-inoculated. Increase nutrient uptakes under salt stress by red pepper further evident that bacteria inoculation ameliorates salt stress effect. In summary, this study indicates that the use of ACC deaminase-producing halotolerant bacteria mitigates the salt stress by reducing salt stress-induced ethylene production on growth of red pepper plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  5. Effective pesticide nano formulations and their bacterial degradation

    Science.gov (United States)

    Ramadass, M.; Thiagarajan, P.

    2017-11-01

    The use of chemical pesticides for agricultural pest control and the consequent damage to the ecosystem at air, water and soil levels has become a factor of common knowledge. This alarming trend has led to research and development in the area of nanoformulations to achieve the end use of pest control with very low concentrations of pesticides. Such formulations are being proven to be as effective as traditional formulations due to their inherent ability to achieve controlled delivery of their respective active ingredients. The end result is a successful pest control with minimum environmental damage. Despite this, certain organic groups, that form the essential structural constituents of these pesticides, are not readily degraded due to their complex nature. They continue to persist, accumulate and biomagnify in the environment leading to short and long term hazards. In this context, it has been noted that certain common genera of bacteria such as Bacillus, Pseudomonas, Flavobacterium, Sphingomonas, Brevibacterium, Burkholderia, etc possess the inherent ability to utilise specific chemical groups in the pesticides as their sole source of either carbon and / or nitrogen and consequently achieve their conversion into non-toxic end products. A potential bioremediation process is thus slowly gaining popularity and being implemented on a pilot scale. However, large scale successful pesticide microbial remediation will involve experimentation with several combinations of a variety of nano pesticide formulations with different genera of bacteria under optimised conditions. Such studies will throw light on the precise genus and species of bacteria that may degrade the required groups of pesticides, for environmental damage control in the long run.

  6. Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis.

    Science.gov (United States)

    Delcenserie, V; Taminiau, B; Delhalle, L; Nezer, C; Doyen, P; Crevecoeur, S; Roussey, D; Korsak, N; Daube, G

    2014-10-01

    Herve cheese is a Belgian soft cheese with a washed rind, and is made from raw or pasteurized milk. The specific microbiota of this cheese has never previously been fully explored and the use of raw or pasteurized milk in addition to starters is assumed to affect the microbiota of the rind and the heart. The aim of the study was to analyze the bacterial microbiota of Herve cheese using classical microbiology and a metagenomic approach based on 16S ribosomal DNA pyrosequencing. Using classical microbiology, the total counts of bacteria were comparable for the 11 samples of tested raw and pasteurized milk cheeses, reaching almost 8 log cfu/g. Using the metagenomic approach, 207 different phylotypes were identified. The rind of both the raw and pasteurized milk cheeses was found to be highly diversified. However, 96.3 and 97.9% of the total microbiota of the raw milk and pasteurized cheese rind, respectively, were composed of species present in both types of cheese, such as Corynebacterium casei, Psychrobacter spp., Lactococcus lactis ssp. cremoris, Staphylococcus equorum, Vagococcus salmoninarum, and other species present at levels below 5%. Brevibacterium linens were present at low levels (0.5 and 1.6%, respectively) on the rind of both the raw and the pasteurized milk cheeses, even though this bacterium had been inoculated during the manufacturing process. Interestingly, Psychroflexus casei, also described as giving a red smear to Raclette-type cheese, was identified in small proportions in the composition of the rind of both the raw and pasteurized milk cheeses (0.17 and 0.5%, respectively). In the heart of the cheeses, the common species of bacteria reached more than 99%. The main species identified were Lactococcus lactis ssp. cremoris, Psychrobacter spp., and Staphylococcus equorum ssp. equorum. Interestingly, 93 phylotypes were present only in the raw milk cheeses and 29 only in the pasteurized milk cheeses, showing the high diversity of the microbiota

  7. Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Buono, Frédéric; Lambert, Denis; Latrille, Eric; Spinnler, Henry-Eric; Corrieu, Georges

    2004-08-01

    A holistic approach of a mould cheese ripening is presented. The objective was to establish relationships between the different microbiological and biochemical changes during cheese ripening. Model cheeses were prepared from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two cheese-making trials with efficient control of environmental parameters were carried out and showed similar ripening characteristics. K. lactis grew rapidly between days 1 and 6 (generation time around 48 h). G. candidum grew exponentially between days 4 and 10 (generation time around 4.6 d). Brevi. linens also grew exponentially but after day 6 when Pen. camemberti mycelium began developing and the pH of the rind was close to 7. Its exponential growth presented 3 phases in relation to carbon and nitrogen substrate availability. Concentrations of Pen. camemberti mycelium were not followed by viable cell count but they were evaluated visually. The viable microorganism concentrations were well correlated with the carbon substrate concentrations in the core and in the rind. The lactose concentrations were negligible after 10 d ripening, and changes in lactate quantities were correlated with fungi flora. The pH of the inner part depended on NH3. Surface pH was significantly related to NH3 concentration and to fungi growth. The acid-soluble nitrogen (ASN) and non-protein nitrogen (NPN) indexes and NH3 concentrations of the rind were low until day 6, and then increased rapidly to follow the fungi concentrations until day 45. The ASN and NPN indexes and NH3 concentrations in the core were lower than in the rind and they showed the same evolution. G. candidum and Pen. camemberti populations have a major effect on proteolysis; nevertheless, K. lactis and Brevi. linens cell lysis also had an impact on proteolysis. Viable cell counts of K. lactis, G. candidum, Pen. camemberti and Brevi. linens were

  8. Microbial biodiversity in cheese consortia and comparative Listeria growth on surfaces of uncooked pressed cheeses.

    Science.gov (United States)

    Callon, Cécile; Retureau, Emilie; Didienne, Robert; Montel, Marie-Christine

    2014-03-17

    psychrotolerans and Gram positive catalase positive bacteria represented by Staphylococcus vitulinus, Brevibacterium linens, Microbacterium gubbeenense and Brachybacterium tyrofermentans. The results show that the species composition of consortium is more important than the number of species. It is likely that inhibition mechanisms differ from one consortium to another; investigating gene expression will be an effective way to elucidate microbial interactions in cheese. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques.

    Science.gov (United States)

    Ryssel, Mia; Johansen, Pernille; Al-Soud, Waleed Abu; Sørensen, Søren; Arneborg, Nils; Jespersen, Lene

    2015-12-23

    Microbial successions on the surface and in the interior of surface ripened semi-hard Danish Danbo cheeses were investigated by culture-dependent and -independent techniques. Culture-independent detection of microorganisms was obtained by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, using amplicons of 16S and 26S rRNA genes for prokaryotes and eukaryotes, respectively. With minor exceptions, the results from the culture-independent analyses correlated to the culture-dependent plating results. Even though the predominant microorganisms detected with the two culture-independent techniques correlated, a higher number of genera were detected by pyrosequencing compared to DGGE. Additionally, minor parts of the microbiota, i.e. comprising <10.0% of the operational taxonomic units (OTUs), were detected by pyrosequencing, resulting in more detailed information on the microbial succession. As expected, microbial profiles of the surface and the interior of the cheeses diverged. During cheese production pyrosequencing determined Lactococcus as the dominating genus on cheese surfaces, representing on average 94.7%±2.1% of the OTUs. At day 6 Lactococcus spp. declined to 10.0% of the OTUs, whereas Staphylococcus spp. went from 0.0% during cheese production to 75.5% of the OTUs at smearing. During ripening, i.e. from 4 to 18 weeks, Corynebacterium was the dominant genus on the cheese surface (55.1%±9.8% of the OTUs), with Staphylococcus (17.9%±11.2% of the OTUs) and Brevibacterium (10.4%±8.3% of the OTUs) being the second and third most abundant genera. Other detected bacterial genera included Clostridiisalibacter (5.0%±4.0% of the OTUs), as well as Pseudoclavibacter, Alkalibacterium and Marinilactibacillus, which represented <2% of the OTUs. At smearing, yeast counts were low with Debaryomyces being the dominant genus accounting for 46.5% of the OTUs. During ripening the yeast counts increased significantly with Debaryomyces being the predominant genus

  10. Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Hasler Madlen

    2010-03-01

    Full Text Available Abstract Background Surface contamination of smear cheese by Listeria spp. is of major concern for the industry. Complex smear ecosystems have been shown to harbor antilisterial potential but the microorganisms and mechanisms involved in the inhibition mostly remain unclear, and are likely related to complex interactions than to production of single antimicrobial compounds. Bacterial biodiversity and population dynamics of complex smear ecosystems exhibiting antilisterial properties in situ were investigated by Temporal temperature gradient gel electrophoresis (TTGE, a culture independent technique, for two microbial consortia isolated from commercial Raclette type cheeses inoculated with defined commercial ripening cultures (F or produced with an old-young smearing process (M. Results TTGE revealed nine bacterial species common to both F and M consortia, but consortium F exhibited a higher diversity than consortium M, with thirteen and ten species, respectively. Population dynamics were studied after application of the consortia on fresh-produced Raclette cheeses. TTGE analyses revealed a similar sequential development of the nine species common to both consortia. Beside common cheese surface bacteria (Staphylococcus equorum, Corynebacterium spp., Brevibacterium linens, Microbacterium gubbeenense, Agrococcus casei, the two consortia contained marine lactic acid bacteria (Alkalibacterium kapii, Marinilactibacillus psychrotolerans that developed early in ripening (day 14 to 20, shortly after the growth of staphylococci (day 7. A decrease of Listeria counts was observed on cheese surface inoculated at day 7 with 0.1-1 × 102 CFU cm-2, when cheeses were smeared with consortium F or M. Listeria counts went below the detection limit of the method between day 14 and 28 and no subsequent regrowth was detected over 60 to 80 ripening days. In contrast, Listeria grew to high counts (105 CFU cm-2 on cheeses smeared with a defined surface culture

  11. Assessment of the Microbial Constituents of the Home Environment of Individuals with Cystic Fibrosis (CF and Their Association with Lower Airways Infections.

    Directory of Open Access Journals (Sweden)

    Alya Heirali

    Full Text Available Cystic fibrosis (CF airways are colonized by a polymicrobial community of organisms, termed the CF microbiota. We sought to define the microbial constituents of the home environment of individuals with CF and determine if it may serve as a latent reservoir for infection.Six patients with newly identified CF pathogens were included. An investigator collected repeat sputum and multiple environmental samples from their homes. Bacteria were cultured under both aerobic and anaerobic conditions. Morphologically distinct colonies were selected, purified and identified to the genus and species level through 16S rRNA gene sequencing. When concordant organisms were identified in sputum and environment, pulsed-field gel electrophoresis (PFGE was performed to determine relatedness. Culture-independent bacterial profiling of each sample was carried out by Illumina sequencing of the V3 region of the 16s RNA gene.New respiratory pathogens prompting investigation included: Mycobacterium abscessus(2, Stenotrophomonas maltophilia(3, Pseudomonas aeruginosa(3, Pseudomonas fluorescens(1, Nocardia spp.(1, and Achromobacter xylosoxidans(1. A median 25 organisms/patient were cultured from sputum. A median 125 organisms/home were cultured from environmental sites. Several organisms commonly found in the CF lung microbiome were identified within the home environments of these patients. Concordant species included members of the following genera: Brevibacterium(1, Microbacterium(1, Staphylococcus(3, Stenotrophomonas(2, Streptococcus(2, Sphingomonas(1, and Pseudomonas(4. PFGE confirmed related strains (one episode each of Sphinogomonas and P. aeruginosa from the environment and airways were identified in two patients. Culture-independent assessment confirmed that many organisms were not identified using culture-dependent techniques.Members of the CF microbiota can be found as constituents of the home environment in individuals with CF. While the majority of isolates from

  12. Preparation and Immunomodulatory Properties of Modified Peptidoglycan Fragments

    Directory of Open Access Journals (Sweden)

    Tomić, S.

    2013-01-01

    Full Text Available Immunostimulators, known also as adjuvants, are added to vaccines to accelerate, extend or amplify the specific immune reaction to a specific antigen. One well known class of immuno- modulating compounds is based on muramylpeptides which are fragments of peptidoglycans, natural polymers that build up the cell wall of bacteria. Muramyldipeptide, N-acetyl- muramyl-L-alanyl-D-isoglutamine (MDP, Fig. 1 is the smallest structural unit of the peptidoglycan monomer (PGM, Fig. 2 which shows immunostimulating activity. PGM isolated from Brevibacterium divaricatum, acts in itself as an effective adjuvant, and several derivatives were prepared to study the possible influence of different substituents on the immunomodulatory activity. Thus, lipophilic derivativestert-butyloxycarbonyl-L-tyrosyl-PGM and (adamant- 1-ylacetyl-PGM (Fig. 3 were prepared and their activities studied. They were also shown to be good substrates for N-acetylmuramyl-L-alanine amidase from human serum (Scheme 1 which specifically hydrolyzes the lactylamide bond. MDP which is an integral part of PGM and proven to be an effective adjuvant was further synthetically modified and obtained derivatives tested as possible immunomodulators. Romutide (MDP-Lys(L18, approved by Food and Drug Administration (FDA, and mifamurtide (L-MTP-PE, approved by European Medicines Agency (EMA, highlight among many other MDP derivatives (Fig. 4. Since N-acetylglucosamine in the structure of MDP is not essential for the immunostimulating effect, desmuramyldipeptides (Fig. 5 with different acyl groups at N-terminus of L-Ala-D-isoGln dipeptide were prepared. In ada mantyl desmuramyldipeptides such as adamantylamide dipeptide (Fig 6, adamantyl tripeptides (Fig. 7 and desmuramylpeptides with (adamant-1-ylcarboxyamido group (Fig. 8, lipophilic adamantane moiety is bound to the dipeptide part. Binding of some specific sugars to immune active substances may help their targeted delivery. An example is mannose which

  13. The variability of bacterial aerosol in poultry houses depending on selected factors.

    Science.gov (United States)

    Bródka, Karolina; Kozajda, Anna; Buczyńska, Alina; Szadkowska-Stańczyk, Irena

    2012-06-01

    This study is aimed at evaluation of bacterial air contamination in intensive poultry breeding. The evaluation was based on the determined levels of bacterial concentrations and qualitative identification of isolated microorganisms. The study covered 5 poultry houses: two hatcheries and three hen houses with the litter bed system. The air was sampled in three measurement series in the central part of the investigated workplace at the height of about 1.5 m over the ground, using portable measuring sets consisting of a GilAir 5 (Sensidyne, USA) pump and a measuring head filled with a glass microfibre filter (Whatman, UK). For the quantitative and qualitative analysis of microorganisms were used appropriate microbiological media. The total concentrations of airborne mesophilic bacteria inside the poultry breeding houses ranged from 4.74 × 10(4) cfu/m(3) to 1.89 × 10(8) cfu/m(3). For Gram-negative bacteria, the range comprised the values from 4.33 × 10(2) cfu/m(3) to 4.29 × 10(6) cfu/m(3). The concentrations of the cocci of Enterococcus genus ranged from 1.53 × 10(4) cfu/m(3) to 1.09 × 10(7) cfu/m(3), whereas those of other Gram-positive bacteria from 3.78 × 10(4) cfu/m(3) to 6.65 × 10(7) cfu/m(3). The lowest concentrations of each group of the examined microorganisms were noted in the second measurement series when the air exchange in the breeding houses was over twice higher than in first and third measurement series because the mechanical ventilation was supported by natural ventilation (opened gates in the buildings). The lowest concentrations of total bacteria were obtained in those buildings where one-day old chickens were kept. Gram-positive bacteria of the genera: Staphylococcus, Enterococcus, Corynebacterium, Brevibacterium, Micrococcus, Cellulomonas, Bacillus, Aerococcus, and Gram-negative bacteria of the genera: Pseudomonas, Moraxella, Escherichia, Enterobacter, Klebsiella, Pasteurella, Pantoea were isolated. It was shown that for most of the

  14. Marine actinomycetes from Madeira Archipelago preliminary taxonomic studies

    Directory of Open Access Journals (Sweden)

    Ilda Santos Sanches

    2014-06-01

    region and suggesting a more globally distribution of this genus than previously supposed (unplublished results. In this study further 82 strains from Madeira Archipelago (out of 421 were selected for taxonomic identification, taking into account small groups of strains (1-4 evidencing very diverse morphological appearances, as exemplified in Figure 2. Using the same experimental microbiology identification tools, 8 genera were identified. However it was perceived that, the genera Streptomyces, Nocardiopsis and Actinomycetospora were predominant (93%, Figure 3. The phylogenetic trees built for the 82 taxonomically identified strains performed in this study are presented in Figures 4, 5 and 6. To date, having into account the present work and previous studies, our research group have identified from the actinomycetes isolated from Madeira´s ocean sediments, genera Streptomyces, Micromonospora, Salinispora, Nocardiopsis, Verrucosispora, Kocuria, Nonomuraea, Nocardia, Brevibacterium, Mycobacterium, Marinobacter, Actinomadura, Micrococcus, Actinomycetospora, Pseudonocardia, Gordonia and Millisia. From which genera Streptomyces, Micromonospora, Salinispora evidence a major representation. Crude extracts were obtained from all 421 strains and tested for their ability to produce natural products with bioactive properties: (i antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant Enterococcus faecalis (VRE and Candida albicans strains; and (ii cytotoxic activity against the HCT-116 cell line. A screening positive rate of 2.4% for antimicrobial MRSA and VRE assays and 3.2% for cytotoxic HCT-116 assay was obtained (submitted manuscripts. These studies demonstrate that the Macaronesian Atlantic Ocean region is a rich source of marine actinomycete biodiversity with potential industrial applications. Figure 1. Marine actinomycetes sediment sampling locations at Madeira Archipelago. Figure 2. Morphological diversity characteristics of