WorldWideScience

Sample records for bremsstrahlung probing nuclear

  1. Coherence effects in nuclear bremsstrahlung

    NARCIS (Netherlands)

    Lohner, H

    2002-01-01

    The production of nuclear bremsstrahlung (Egamma > 30 MeV) has been studied in heavy-ion collisions, as well as proton and alpha-particle collisions with nuclei. In heavy-ion reactions the measured photon spectra show an exponential shape dominated by the incoherent sum of photons produced in first-

  2. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy; Bremsstrahlung thermique comme sonde de la multifragmentation nucleaire dans les collisions noyau-noyau aux energies de Fermi

    Energy Technology Data Exchange (ETDEWEB)

    D' Enterria, D.G

    2000-05-15

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E{sub {gamma}} > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar{sup 36} + Au{sup 197}, Ag{sup 107}, Ni{sup 58}, C{sup 12} at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4{pi}. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pn{gamma}) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  3. Bremsstrahlung photons - an ideal tool in nuclear structure and nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, Mario [Institut fur Kernphysik, Darmstadt (Germany)

    2005-07-01

    Full text of publication follows. Bremsstrahlung photons, produced by decelerating electrons, are a very useful probe to investigate current topics in nuclear structure and nuclear astrophysics. The photon scattering facility of the superconducting electron accelerator S-DALINAC at the Darmstadt University of Technology allows for high resolution Nuclear Resonance Fluorescence (NRF) experiments up to 10 MeV. One current topic of interest in nuclear structure is the investigation of Pygmy Dipole Resonances (PDR), which are located near the particle threshold. Recently, experiments have been carried out on Ca isotopes [1] as well as on several N=82 nuclei [2] in order to understand the structure of the PDR. Moreover, important astrophysical questions can be investigated using real photons (g,n) reaction rates, which play a major role in nucleosynthesis, can be measured at the S-DALINAC by simulating a quasi-stellar photon bath with variable temperature [3,4].

  4. Nuclear Effects on Bremsstrahlung Neutrino Rates of Astrophysical Interest

    CERN Document Server

    Stoica, S

    2002-01-01

    We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough ($T \\leq 20 MeV$), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the non-degenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by $nn$ and $pp$ bremsstrahlung by a factor of about two in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars and other astrophysical situations.

  5. Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung

    Science.gov (United States)

    Stoica, S.; Paun, V. P.; Negoita, A. G.

    2004-06-01

    The rates of neutrino pair emission by nucleon-nucleon (NN) bremsstrahlung are calculated with the inclusion of the full contribution from a nuclear one pion exchange potential (OPEP). We compute the contributions from the neutron-neutron (nn), proton-proton (pp), and neutron-proton (np) processes for physical conditions encountered in supernovae and neutron stars, both in the degenerate (D) and nondegenerate (ND) limits. We find a significant reduction of these rates, especially for the nn and pp processes, in comparison with the case when the whole nuclear contribution was replaced by constants, representing the high-momentum limits of the expressions of the nuclear potential. Furthermore, we also perform the calculations by including contributions due to the ρ meson exchange between nucleons, in the OPEP. This may be relevant for processes produced in the inner core of neutron stars, where the density may exceed several times the standard nuclear density, and the short-range part of the NN interaction should be taken into account. These corrections lead to an additional suppression of the neutrino emission rates between (8 and 36)%, depending on the process [nn (pp) or np] and physical conditions (temperature and degeneracy of the nucleons).

  6. Constructing the nuclear caloric curve from thermal bremsstrahlung

    NARCIS (Netherlands)

    Ortega, R

    2004-01-01

    The behavior of the emission of thermal bremsstrahlung with the reaction centrality has been studied in Xe-121 + Sn-nat reactions at 50A MeV. A thermal hard photon component is present along the measured impact parameter range (0.1 less than or equal to b/b(max) less than or equal to 0.6) showing th

  7. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  8. Nuclear effects on axions emission rates from nucleon-nucleon bremsstrahlung

    Science.gov (United States)

    Pastrav, B.; Scafes, A. C.

    2010-11-01

    The rates of axion emissions by nucleon-nucleon bremsstrahlung from neutron stars obtained with the inclusion of the full angular momentum contribution from a nuclear one-pion-exchange potential (OPEP), are studied in different conditions of temperature and degeneracy in both, non degenerate (ND) and degenerate (D) regimes. The comparison with the previous results obtained in literature, where only the high momentum limit of the OPEP expressions are used, is done and the differences discussed.

  9. Neutron–proton bremsstrahlung as a possible probe of high-momentum component in nucleon momentum distribution

    Directory of Open Access Journals (Sweden)

    Hui Xue

    2016-04-01

    Full Text Available Neutron-proton bremsstrahlung in intermediate energy nucleus–nucleus collisions is proposed as a possible probe to study the high-momentum component in nucleon momentum distribution of finite nucleus. Based on the Boltzmann–Uehling–Uhlenbeck (BUU transport model, the effects of high-momentum component on the production of bremsstrahlung photons in the reaction of C12+12C collisions at different incident beam energies are studied. It is found that the high-momentum component increases the high-energy bremsstrahlung photon production remarkably. Furthermore, the ratio of photon production at different incident beam energies is suggested as a potential observable to probe the high-momentum component in nucleon momentum distribution of finite nucleus.

  10. Polarised bremsstrahlung nuclear resonance fluorescence set-up at the 15 MeV linac in Gent

    Science.gov (United States)

    Govaert, K.; Mondelaers, W.; Jacobs, E.; De Frenne, D.; Persyn, K.; Pommé, S.; Yoneama, M.-L.; Lindenstruth, S.; Huber, K.; Jung, A.; Starck, B.; Stock, R.; Wesselborg, C.; Heil, R.-D.; Kneissl, U.; Pitz, H. H.

    1994-01-01

    Nuclear resonance fluorescence experiments using unpolarised as well as off-axis linearly polarised bremsstrahlung represent an outstanding tool to determine in a completely model independent way transition probabilities, multipole orders and parities of electromagnetic transitions to bound states in nuclei. A new polarised bremsstrahlung facility has been constructed at the 15 MeV linac in Gent. The experimental arrangement is discussed and first results are presented.

  11. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... at a very low value. Incoherent interaction with single target electrons gives rise to two additional bremsstrahlung components, a modest component due to scattering of virtual photons of the electrons on the projectile and a strong low-energy component due to scattering of the virtual photons...... of the projectile on the electrons. The difference in radiation levels can be traced to the mass of the scatterer. Since target electrons are more widely distributed than nuclei in a crystal channel the variation of the electron component of the bremsstrahlung with incidence angle to a major crystallographic...

  12. Axion Bremsstrahlung

    CERN Document Server

    Melkumova, E Y; Kerner, R; Melkumova, Elena; Tsov, Dmitry V. Gal'; Kerner, Richard

    2003-01-01

    A new mechanism of cosmic axion production is proposed: axion bremsstrahlung from collisions of straight global strings. This effect is of the second order in the axion coupling constant, but the resulting cosmological estimate is likely to be of the same order as that corresponding to radiation from oscillating string loops. This may lead to a further restriction on the axion window.

  13. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  14. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  15. Probing Cold Dense Nuclear Matter

    CERN Document Server

    Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675

    2009-01-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  16. Polarization Bremsstrahlung

    CERN Document Server

    Korol, Andrey V

    2014-01-01

    This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters.   The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications.  Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties.   Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential  information required f...

  17. Beta Bremsstrahlung dose in concrete shielding

    Science.gov (United States)

    Manjunatha, H. C.; Chandrika, B. M.; Rudraswamy, B.; Sankarshan, B. M.

    2012-05-01

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides (32P, 89Sr, 90Sr-90Y, 90Y, 91Y, 208Tl, 210Bi, 234Pa and 40K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to 90Sr-90Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Zmod) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study.

  18. D-brane Bremsstrahlung

    CERN Document Server

    Bachlechner, Thomas C

    2013-01-01

    We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.

  19. D-brane bremsstrahlung

    Science.gov (United States)

    Bachlechner, Thomas C.; McAllister, Liam

    2013-10-01

    We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.

  20. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    B K Agrawal; J N De; S K Samaddar

    2014-05-01

    The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy coefficients extracted from the precise data on the nuclear masses.

  1. Internal bremsstrahlung of strongly interacting charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurgalin, S. D. [Voronezh State University (Russian Federation); Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Churakova, T. A. [Voronezh State University (Russian Federation)

    2016-11-15

    A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the {sup 214}Po nucleus, as well as for the decay of the {sup 222}Ra nucleus via the emission of a {sup 14}C cluster and for the decay of the {sup 113}Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal, subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.

  2. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact...... ("ultraperipheral collisions"). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2γ times the position of the giant dipole resonance, that is, near 25γ....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  3. A novel probe of chiral restoration in nuclear medium

    Science.gov (United States)

    Gubler, Philipp; Kunihiro, Teiji; Lee, Su Houng

    2017-04-01

    We propose measuring the mass shift and width broadening of the f1 (1285) meson together with those of the ω from a nuclear target as a means to experimentally probe the partial restoration of chiral symmetry inside the nuclear matter. The relation between the order parameter of chiral symmetry and the difference in the correlation functions of the f1 (1285) current and the ω current is discussed in the limit where the disconnected diagrams are neglected. A QCD sum rule analysis of the f1 (1285) meson mass leads to about 100 MeV attraction in nuclear matter, which can be probed in future experiments.

  4. Nuclear probes and intraoperative gamma cameras.

    Science.gov (United States)

    Heller, Sherman; Zanzonico, Pat

    2011-05-01

    Gamma probes are now an important, well-established technology in the management of cancer, particularly in the detection of sentinel lymph nodes. Intraoperative sentinel lymph node as well as tumor detection may be improved under some circumstances by the use of beta (negatron or positron), rather than gamma detection, because the very short range (∼ 1 mm or less) of such particulate radiations eliminates the contribution of confounding counts from activity other than in the immediate vicinity of the detector. This has led to the development of intraoperative beta probes. Gamma camera imaging also benefits from short source-to-detector distances and minimal overlying tissue, and intraoperative small field-of-view gamma cameras have therefore been developed as well. Radiation detectors for intraoperative probes can generally be characterized as either scintillation or ionization detectors. Scintillators used in scintillation-detector probes include thallium-doped sodium iodide, thallium- and sodium-doped cesium iodide, and cerium-doped lutecium orthooxysilicate. Alternatives to inorganic scintillators are plastic scintillators, solutions of organic scintillation compounds dissolved in an organic solvent that is subsequently polymerized to form a solid. Their combined high counting efficiency for beta particles and low counting efficiency for 511-keV annihilation γ-rays make plastic scintillators well-suited as intraoperative beta probes in general and positron probes in particular Semiconductors used in ionization-detector probes include cadmium telluride, cadmium zinc telluride, and mercuric iodide. Clinical studies directly comparing scintillation and semiconductor intraoperative probes have not provided a clear choice between scintillation and ionization detector-based probes. The earliest small field-of-view intraoperative gamma camera systems were hand-held devices having fields of view of only 1.5-2.5 cm in diameter that used conventional thallium

  5. Hard gammas as a probe of nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Coniglione, R.; Sapienza, P.; Alba, R.; Agodi, C.; Maiolino, C.; Zoppo, A. Del; Colonna, M.; Bellia, G.; Finocchiaro, C.; Greco, V.; Loukachine, K.; Migneco, E.; Piattelli, P.; Santonocito, D. [INFN, Laboratorio Nazionale del Sud, Via A. Doria 44, Catania (Italy); Colonna, N. [INFN, Bari (Italy); Bruno, M.; D' Agostino, M.; Mastinu, P.F.; Vannini, G. [INFN and Dipartimento di Fisica, Bologna (Italy); Gramegna, F. [INFN, Laboratorio Nazionale di Legnaro, Padova (Italy); Iori, I.; Fabbietti, L.; Moroni, A. [INFN and Dipartimento di Fisica, Milano (Italy); Margagliotti, G.V.; Milazzo, P.M.; Rui, R. [INFN and Dipartimento di Fisica, Trieste (Italy); Blumenfeld, Y.; Scarpaci, J.A. [Institut de Physique Nucleaire, IN 2P 3 CNRS, F 91406 Orsay (France)

    2001-09-01

    Full text: Heavy ion collisions around the Fermi energy allow to investigate properties of nuclear matter far from stability at high density and temperature. To improve the comprehension of heavy ion reactions in these extreme conditions and to gather information on the EOS of nuclear matter, knowledge on the dynamics of the reactions is needed. It is well known that, in heavy ion reactions, hard gammas (E > 20 MeV) are mainly produced as Bremsstrahlung radiation in the n-p collisions occurring in the interaction zone. With the aim to study the reaction dynamics, that is strongly influenced by two body collisions, the energetic gamma emission has been measured for several reactions induced by {sup 58}Ni beams at 30 and 45 MeV/u performed with MEDEA and MULTICS apparatus (1) at the Laboratori Nazionali del Sud (Catania-Italy). An analysis in terms of energetic gammas, heavy residues and intermediate mass fragments and comparison with dynamical calculations, that explore the entire reaction dynamics, will be presented. (Author)

  6. Probing electron correlation and nuclear dynamics in Momentum Space

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S, E-mail: michael.deleuze@uhasselt.b [Research Group of Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan, Gebouw D, B3590 Diepenbeek (Belgium)

    2010-02-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  7. Runaway electrons and Bremsstrahlung

    Science.gov (United States)

    Helander, Per

    2016-09-01

    If an electric field is applied to a plasma, it causes ‘runaway’ acceleration of some electrons—a phenomenon that has been known for almost a century. A paper by Embréus et al (2016 New J. Phys. 18 093023) calculates how the emission of Bremsstrahlung affects the upper end of the energy spectrum of these electrons, and finds that it is important to carefully account for finite energy of the emitted photons.

  8. Simulation of Bremsstrahlung production

    Energy Technology Data Exchange (ETDEWEB)

    Patau, J.P.; Malbert, M.; Terrissol, M. (Centre de Physique Atomique, Toulouse (France))

    1981-10-01

    Electron slowing down and related phenomena are often greatly affected by bremsstrahlung production. Each creation of photon is individually simulated on the basis of a cross-section pack advised by Koch and Motz with corrections in the high energy frequency limit region. An accurate and fast sampling method is described. Its applicability covers a range between 50 keV and 80 MeV for target atoms whose atomic number is from 5 up to 90.

  9. Determination of hyperfine fields orientation in nuclear probe techniques

    Science.gov (United States)

    Szymański, K.; Olszewski, W.; Satuła, D.; Gawryluk, D. J.; Krzton-Maziopa, A.; Kalska-Szostko, B.

    2017-02-01

    One of the most popular nuclear probes, 57Fe is used for the investigation of orientations of hyperfine fields and also for the determination of other important properties. In particular, the orientation of iron magnetic moments can be unambiguously determined, including its signs. Experiments with polarized radiation are presented with regard to selected systems. Orientation of electric field gradient is used for acquiring information about the shape of the texture-free spectra. Applications on the analysis of iron-based superconductors are presented.

  10. Precision Nuclear Beta Spectroscopy as a Probe for BSM Physics

    Science.gov (United States)

    Sprow, Aaron

    2017-01-01

    The shape of nuclear beta decay spectra is sensitive to new physics such as scalar and tensor currents, and weak magnetism. By selecting an appropriate nuclear species, it is possible to disentangle these effects. 45Ca, which undergoes a predominantly Gamow-Teller transition with an end-point energy of 256 keV, is an excellent probe for tensor couplings. Recently, the 45Ca beta decay spectrum was measured in the Caltech/UCNA 4 π magnetic spectrometer instrumented with large, highly-pixelated Si detectors at the Los Alamos National Laboratory UCN facility. This detection system, in conjunction with an extremely thin foil source preparation, allows for a full reconstruction of events to build a precise spectrum. Preliminary results of the analysis of this data will be presented.

  11. Nuclear structure studies with medium energy probes. [Northwestern Univ

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Kamal K.

    1980-01-01

    Progress in the continuing program of experimental research in nuclear structure with medium-energy probes during the year 1979-1980 is reviewed, and the research activities planned for the year 1980-1981 are discussed. In the study of pion-induced reactions emphasis is placed on investigation of isovector characteristics of nuclear excitations and on double charge exchange reactions. Pion production studies form the major part of the program of experiments with proton beams of 400 to 800 MeV at LAMPF. Current emphasis is on the bearing of these investigations on di-baryon existence. The study of high-spin states and magnetic scattering constitute the main goals of the electron scattering program at Bates. Representative results are presented; completed work is reported in the usual publications. (RWR)

  12. A Comparison of Laser-induced Bremsstrahlung and Laser Compton Scattering for (γ, n) Photo-transmutation of Hazardous Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Haseeb ur; Lee, Jiyoung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This paper also presents sensitivity analysis to yield the maximum possible photo-transmutation rates. In general the possibility of radionuclide transmutation using photo-neutron reaction is evaluated in this work. In this paper a detailed methodology to calculate transmutation reaction rates using Laser Induced Bremsstrahlung (LIB) and Laser Compton Scattering (LCS) has been discussed. The methodology was validated by comparing the calculated reaction rates against published data in publically accessed literatures. In the second half of the paper, the authors present a novel concept to narrow down the LCS photon spectrum to an energy range that matches with the resonance region of a particular radionuclide. This is particularly useful considering hazardous waste is usually a mix of different isotopes. As such, being able to tune the LCS photon into any narrow energy range so as to selectively transmute any particular isotope of interest in the hazardous waste mixture would be very desirable. LCS spectrum is highly sensitive to the electron beam energy, laser power, laser luminosity and Compton backscattering angle. From the results it is quite evident that LCS is much better option for the radionuclide transmutation as reaction rates for the LCS is much higher than LIB method even for very small laser power. It can be seen even for the optimistic reaction rate calculations with Bremsstrahlung method reaction rate is much lower than LCS case for 10 Hz repetition rate. If repetition rate of laser 100 Hz then LIB reaction rate has the same order of the magnitude as the reaction rate via LCS. Higher Laser Powers can yield very high transmutation rates.

  13. Probing Emergent Scale-Chiral Symmetry in Nuclear Interactions

    CERN Document Server

    Paeng, Won-Gi

    2016-01-01

    In effective field theory for baryonic matter in which broken scale symmetry and hidden local symmetry are incorporated, both scale invariance and local gauge invariance, invisible or perhaps even absent in the QCD vacuum, could arise at high density as emergent symmetries, with a dilaton figuring as a scalar Nambu-Goldstone boson and the $\\rho$ and $a_1$ mesons as gauge fields, the former at the "dialton-limit (DL) fixed point" and the latter at the "vector manifestation (VM) fixed point." A novel phenomenon observed in a simplified model is that the dilaton condensate in nuclear medium "walks" as density increases beyond $n_{1/2}\\sim (2-3)n_0$ and induces the in-medium hidden gauge symmetry coupling, un-scaling up to density $n_{1/2}$, to start dropping rapidly towards the VM fixed point $n_{VM} >n_{1/2} $ at which the vector meson mass vanishes, coinciding, most likely, with chiral symmetry restoration. We discuss how to probe both VM and DL properties by means of the nuclear symmetry energy and the sound ...

  14. Feasibility of probing solid state nuclear tracks by thermal analysis method

    Institute of Scientific and Technical Information of China (English)

    YANG TongSuo; ZHOU Bing; YANG XinXin; HE ShaoRong; HENG ShuYun; YUAN SunSheng

    2007-01-01

    The feasibility of probing solid state nuclear tracks by thermal analysis method is discussed both theoretically and experimentally. Comparison is made between the thermal analysis method and the optical microscope method, and it is demonstrated that this thermal analysis method is applicable to probing solid state nuclear tracks.

  15. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    CERN Document Server

    Baring, M G; Ellison, D C; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    1999-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at b...

  16. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  17. Ultrahigh-intensity inverse bremsstrahlung

    Science.gov (United States)

    Kostyukov, I. Yu.; Rax, J.-M.

    1999-01-01

    We study inverse bremsstrahlung in the ultrahigh intensity relativistic regime. The fully relativistic ultrahigh intensity absorption (emission) coefficient is derived for an arbitrary scattering potential and small-angle scattering. We find that in the Coulomb field case this absorption (emission) coefficient can be calculated as a function of the quiver energy, drift momentum, and impact parameter in two complementary regimes: (i) for remote collisions when the impact parameter is larger than the amplitude of the quiver motion, and (ii) for instantaneous collisions when the scattering time is shorter than the period of the wave. Both circular and linear polarizations are considered, and this study reveals that in this relativistic regime inverse bremsstrahlung absorption can be viewed as a harmonic Compton resonance heating of the laser-driven electron by the virtual photon of the ion Coulomb field. The relativistic modification of Marcuse's effect [Bell Syst. Tech. J. 41, 1557 (1962)] are also discussed, and relations with previous nonrelativistic results are elucidated.

  18. Probing nuclear bubble structure via neutron star asteroseismology

    CERN Document Server

    Sotani, Hajime; Oyamatsu, Kazuhiro

    2016-01-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy $L$. Although the frequencies are also sensitive to the entrainment effect, i.e., what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase insi...

  19. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  20. SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors

    CERN Document Server

    Lasserre, Thierry; Mention, Guillaume; Reboulleau, Romain; Cribier, Michel; Letourneau, Alain; Lhuillier, David

    2010-01-01

    Today reactor neutrino experiments are at the cutting edge of fundamental research in particle physics. Understanding the neutrino is far from complete, but thanks to the impressive progress in this field over the last 15 years, a few research groups are seriously considering that neutrinos could be useful for society. The International Atomic Energy Agency (IAEA) works with its Member States to promote safe, secure and peaceful nuclear technologies. In a context of international tension and nuclear renaissance, neutrino detectors could help IAEA to enforce the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). In this article we discuss a futuristic neutrino application to detect and localize an undeclared nuclear reactor from across borders. The SNIF (Secret Neutrino Interactions Finder) concept proposes to use a few hundred thousand tons neutrino detectors to unveil clandestine fission reactors. Beyond previous studies we provide estimates of all known background sources as a function of the detecto...

  1. Fast electron bremsstrahlung in axisymmetric magnetic configuration

    Science.gov (United States)

    Peysson, Y.; Decker, J.

    2008-09-01

    The nonthermal bremsstrahlung is calculated in a plasma with arbitrary axisymmetric magnetic configuration, taking into account the relativistic angular anisotropy of the radiation cross section at high photon energies, the helical winding of the field lines on the magnetic flux surfaces, and the poloidal variation of the electron distribution function including particle trapping effects. The fast electron dynamics during current drive in tokamaks and reverse field pinches can be investigated in detail by coupling this calculation to a bounce-averaged relativistic Fokker-Planck solver, which calculates the electron distribution function. The asymmetry between high- and low-field side hard x-ray emission intensity that has been measured on the Tore-Supra tokamak [Equipe TORE SUPRA, in Proceedings of the 15th Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995) Vol. 1, IAEA-CN-60/A1-5 (Institute of Physics, Bristol, U.K., 1995), p. 105] is explained for the first time by the role of trapped electrons. A much stronger poloidal asymmetry is predicted for the line-integrated fast electron bremsstrahlung in the poloidal plane of the Madison Symmetric Torus [R. N. Dexter et al., Fusion Tech. 19, 131 (1991)], since the helical winding of the magnetic field lines is much larger for a reverse field pinch configuration. In this case, the hard x-ray emission is no longer a flux surface quantity, which prevents local reconstructions using a standard Abel inversion, whatever the geometrical arrangement of the lines of sight.

  2. Probing nuclear bubble structure via neutron star asteroseismology

    Science.gov (United States)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2016-10-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy L. Although the frequencies are also sensitive to the entrainment effect, i.e., what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase inside a star of specific mass and radius as a function of L. By comparing the resultant fitting formula to the frequencies of quasi-periodic oscillations (QPOs) observed from the soft-gamma repeaters, we find that each of the observed low-frequency QPOs can be identified either as a torsional oscillation in the bubble phase or as a usual crustal oscillation, given generally accepted values of L for all the stellar models considered here.

  3. Probing nuclear gluons with heavy quarks at EIC

    CERN Document Server

    Chudakov, E; Hyde, Ch; Furletov, S; Furletova, Yu; Nguyen, D; Stratmann, M; Strikman, M; Weiss, C; Yoshida, R

    2016-01-01

    We explore the feasibility of direct measurements of nuclear gluon densities using heavy-quark production (open charm, beauty) at a future Electron-Ion Collider (EIC). We focus on the regions x > 0.3 (EMC effect) and x ~ 0.05-0.1 (antishadowing), where the nuclear modifications of the gluon density offer insight into non-nucleonic degrees of freedom and the QCD structure of nucleon-nucleon interactions. We describe the charm production rates and momentum distributions in nuclear deep-inelastic scattering (DIS) at large x_B, and comment on the possible methods for charm reconstruction using next-generation detectors at the EIC (pi/K identification, tracking, vertex detection).

  4. Surveying the role of excitation energy in probing nuclear dissipation

    Institute of Scientific and Technical Information of China (English)

    YE Wei

    2009-01-01

    A dynamical Langevin model is employed to calculate the excess of the evaporation residue cross sections of the 194pb nucleus over that predicted by the standard statistical model as a function of nuclear dissipation strength. It is shown that large excitation energy can increase the effects of nuclear dissipation on the excess of the evaporation residues and the sensitivity of this excess to the dissipation strength, and that more higher excitation energies have little contribution to further raising this sensitivity. These results suggest that on the experimental side, producing those compound systems with moderate excitation energy is sufficient for a good determination of the pre-saddle nuclear dissipation strength by measuring the evaporation residue cross section, and that forming an extremely highly excited system does not considerably improve the sensitivity of evaporation residues to the dissipation strength.

  5. Diffractive Bremsstrahlung in Hadronic Collisions

    Directory of Open Access Journals (Sweden)

    Roman Pasechnik

    2015-01-01

    Full Text Available Production of heavy photons (Drell-Yan, gauge bosons, Higgs bosons, and heavy flavors, which is treated within the QCD parton model as a result of hard parton-parton collision, can be considered a bremsstrahlung process in the target rest frame. In this review, we discuss the basic features of the diffractive channels of these processes in the framework of color dipole approach. The main observation is a dramatic breakdown of diffractive QCD factorisation due to the interplay between soft and hard interactions, which dominates these processes. This observation is crucial for phenomenological studies of diffractive reactions in high energy hadronic collisions.

  6. Dynamic nuclear polarization studies on deuterated nitroxyl spin probes.

    Science.gov (United States)

    David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A

    2017-10-01

    Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl,3-methoxycarbonyl-2,2,5,5-tetramethy pyrolidine-1-oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser-enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm. The proton spin-lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3-5 mm. The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g-factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. The K sup + as a probe of nuclear medium effects

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.

    1992-01-01

    The study of the K+ total cross sections on a wide range of nuclei has revealed important modifications of the free-space K+ -nucleon interaction when the nucleon is embedded in a nucleus. In addition to the previously published data on carbon and deuterium we report here the extension of such measurements to lithium, silicon, and calcium. We demonstrate that the previous reported medium modifications for carbon occur quite generally. The results are discussed as evidence for partial quark deconfinement at nuclear densities.

  8. Probing nuclear rates with Planck and BICEP2

    CERN Document Server

    Di Valentino, Eleonora; Lesgourgues, Julien; Mangano, Gianpiero; Melchiorri, Alessandro; Miele, Gennaro; Pisanti, Ofelia

    2014-01-01

    Big Bang Nucleosynthesis (BBN) relates key cosmological parameters to the primordial abundance of light elements. In this paper, we point out that the recent observations of Cosmic Microwave Background anisotropies by the Planck satellite and by the BICEP2 experiment constrain these parameters with such a high level of accuracy that the primordial deuterium abundance can be inferred with remarkable precision. For a given cosmological model, one can obtain independent information on nuclear processes in the energy range relevant for BBN, which determine the eventual ^2H/H yield. In particular, assuming the standard cosmological model, we show that a combined analysis of Planck data and of recent deuterium abundance measurements in metal-poor damped Lyman-alpha systems provides independent information on the cross section of the radiative capture reaction d(p,\\gamma)^3He converting deuterium into helium. Interestingly, the result is higher than the values suggested by a fit of present experimental data in the B...

  9. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  10. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  11. Probing Sub-GeV Dark Matter with Conventional Detectors.

    Science.gov (United States)

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  12. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.

  13. Using Light Charged Particles to Probe the Asymmetry Dependence of the Nuclear Caloric Curve

    CERN Document Server

    McIntosh, Alan B; Kohley, Zachary; Cammarata, Paul J; Hagel, Kris; Heilborn, Lauren; Mabiala, Justin; May, Larry W; Marini, Paola; Raphelt, Andrew; Souliotis, George A; Wuenschel, Sara; Zarrella, Andrew; Yennello, Sherry J

    2013-01-01

    Recently, we observed a clear dependence of the nuclear caloric curve on neutron-proton asymmetry $\\frac{N-Z}{A}$ through examination of fully reconstructed equilibrated quasi-projectile sources produced in heavy ion collisions at E/A = 35 MeV. In the present work, we extend our analysis using multiple light charged particle probes of the temperature. Temperatures are extracted with five distinct probes using a kinetic thermometer approach. Additionally, temperatures are extracted using two probes within a chemical thermometer approach (Albergo method). All seven measurements show a significant linear dependence of the source temperature on the source asymmetry. For the kinetic thermometer, the strength of the asymmetry dependence varies with the probe particle species in a way which is consistent with an average emission-time ordering.

  14. Virtual-bremsstrahlung production in proton-proton scattering and proton-deuteron capture

    NARCIS (Netherlands)

    Messchendorp, Johannes Gerhardus

    1999-01-01

    The well-known coupling of the photon with the nucleon together with the fact that photons (or any electromagnetic (e.m.) probe) interact only relatively weakly with nucleons, make bremsstrahlung production an ideal tool to study details of the nucleon-nucleon interaction. In this thesis dilepton pr

  15. Numerical test of polarization sum rules for the triply differential bremsstrahlung cross section in electron-nucleus encounters

    CERN Document Server

    Jakubassa-Amundsen, D H

    2016-01-01

    Inspired by the work of Pratt and coworkers on a sum rule for the polarization correlations in electron bremsstrahlung when the outgoing electron is not observed, we derive the corresponding sum rule for the elementary process of bremsstrahlung. This sum rule is valid for arbitrary electron wavefunctions provided the electron is emitted in the reaction plane. The numerical evaluation of this sum rule within the Dirac partial-wave theory for bare inert spin-zero nuclei and collision energies in the range of 1-10 MeV reveals violations for high nuclear charge. Such violations serve as a measure of the inaccuracies in the bremsstrahlung calculations.

  16. Atomic Bremsstrahlung: retrospectives, current status and perspectives

    OpenAIRE

    Amusia, M. Ya.

    2005-01-01

    We describe here the Atomic bremsstrahlung - emission of continuous spectrum electromagnetic radiation, which is generated in collisions of particles that have internal deformable structure that includes positively and negatively charged constituents. The deformation of one of or both colliding partners induces multiple, mainly dipole, time-dependent electrical moments that become a source of radiation. The history of Atomic bremsstrahlung invention is presented and it's unusual in comparison...

  17. Decoherence and fluctuation dynamics of the quantum dot nuclear spin bath probed by nuclear magnetic resonance

    Science.gov (United States)

    Chekhovich, Evgeny A.

    2017-06-01

    Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.

  18. Coherent bremsstrahlung at colliding beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F. (Inst. of Mathematics, Novosibirsk (Russia)); Kotkin, G.L.; Serbo, V.G. (Novosibirsk State Univ. (Russia)); Polityko, S.I. (Irkutsk State Univ. (Russia))

    1992-07-30

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS). CBS can be treated as radiation of the first bunch particles caused by the collective electromagnetic field of the short second bunch. A general method for the calculation of this CBS is presented. The number of CBS photons per single collision is dN{sub {gamma}}{approx equal}N{sub 0}dE{sub {gamma}}/E{sub {gamma}} in the energy range E{sub {gamma}}

  19. Probing Nuclear Effects at the T2K Near Detector Using Single-Transverse Kinematic Imbalance

    CERN Document Server

    Dolan, Stephen; Pickering, Luke; Vladisavljevic, Tomislav; Weber, Alfons

    2016-01-01

    In order to make precision measurements of neutrino oscillations using few-GeV neutrino beams a detailed understanding of nuclear effects in neutrino scattering is essential. Recent studies have revealed that single-transverse kinematic imbalance (STKI), defined in the plane transverse to an incoming neutrino beam, can act as a unique probe of these nuclear effects. This work first illustrates that an exclusive measurement of STKI at the off-axis near detector of the T2K experiment (ND280) is expected to distinguish the presence of multi-nucleon correlations producing a two proton final state (2p-2h) from alterations of the predominant underlying cross-section parameter ($M_A$ - the nucleon axial mass). Such a measurement is then demonstrated with fake data, showing substantial nuclear model separation potential.

  20. A broadband single-chip transceiver for multi-nuclear NMR probes

    Energy Technology Data Exchange (ETDEWEB)

    Grisi, Marco, E-mail: marco.grisi@epfl.ch; Gualco, Gabriele; Boero, Giovanni [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015 (Switzerland)

    2015-04-15

    In this article, we present an integrated broadband complementary metal-oxide semiconductor single-chip transceiver suitable for the realization of multi-nuclear pulsed nuclear magnetic resonance (NMR) probes. The realized single-chip transceiver can be interfaced with on-chip integrated microcoils or external LC resonators operating in the range from 1 MHz to 1 GHz. The dimension of the chip is about 1 mm{sup 2}. It consists of a radio-frequency (RF) power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency amplifier, and fully integrated transmit-receive switches. As specific example, we show its use for multi-nuclear NMR spectroscopy. With an integrated coil of about 150 μm external diameter, a {sup 1}H spin sensitivity of about 1.5 × 10{sup 13} spins/Hz{sup 1/2} is achieved at 7 T.

  1. Impact of Nucleon-Nucleon Bremsstrahlung Rates Beyond One-Pion Exchange

    CERN Document Server

    Bartl, Alexander; Janka, Hans-Thomas; Schwenk, Achim

    2016-01-01

    Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on a modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only $\\lesssim$5% changes of the neutrino luminosities and an increase of $\\lesssim$0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by $\\lesssim$0.5-1 s.

  2. Impact of nucleon-nucleon bremsstrahlung rates beyond one-pion exchange

    Science.gov (United States)

    Bartl, A.; Bollig, R.; Janka, H.-T.; Schwenk, A.

    2016-10-01

    Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only ≲5 % changes of the neutrino luminosities and an increase of ≲0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by ≲0.5 - 1 s .

  3. Can a many-nucleon structure be visible in bremsstrahlung emission during $\\alpha$ decay?

    CERN Document Server

    Maydanyuk, Sergei P; Zou, Li-Ping

    2015-01-01

    We analyze if the nucleon structure of the $\\alpha$ decaying nucleus can be visible in the experimental bremsstrahlung spectra of the emitted photons which accompany such a decay. We develop a new formalism of the bremsstrahlung model taking into account distribution of nucleons in the $\\alpha$ decaying nuclear system. We conclude the following: (1) After inclusion of the nucleon structure into the model the calculated bremsstrahlung spectrum is changed very slowly for a majority of the $\\alpha$ decaying nuclei. However, we have observed that visible changes really exist for the $^{106}{\\rm Te}$ nucleus ($Q_{\\alpha}=4.29$ MeV, $T_{1/2}$=70 mks) even for the energy of the emitted photons up to 1 MeV. This nucleus is a good candidate for future experimental study of this task. (2) Inclusion of the nucleon structure into the model increases the bremsstrahlung probability of the emitted photons. (3) We find the following tendencies for obtaining the nuclei, which have bremsstrahlung spectra more sensitive to the ...

  4. Internal bremsstrahlung signatures in light of direct dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22603 Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan, E-mail: mathias.garny@desy.de, E-mail: ibarra@tum.de, E-mail: miguel.pato@tum.de, E-mail: stefan.vogl@tum.de [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)

    2013-12-01

    Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of a minimal mass-degenerate scenario consisting of a Majorana dark matter particle that couples to a fermion and a scalar via a Yukawa coupling. The upper limits on the annihilation cross section set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to one of the light quarks. In our minimal scenario we examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple predominantly to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires, depending on the concrete scenario, boost factors larger than 5–10.

  5. Internal bremsstrahlung signatures in light of direct dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik Dept. T30d

    2013-06-15

    Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of minimal mass-degenerate scenarios. The constraints set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to (light) quarks. We examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires boost factors larger than {proportional_to}10.

  6. Electromagnetic radiation as a probe of the initial state and of viscous dynamics in relativistic nuclear collisions

    CERN Document Server

    Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2016-01-01

    The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly-interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1D viscous hydrodynamic simulation (MUSIC).

  7. Probing nuclear dynamics in jet production with a global event shape

    Science.gov (United States)

    Kang, Zhong-Bo; Liu, Xiaohui; Mantry, Sonny; Qiu, Jian-Wei

    2013-10-01

    We study single jet production in electron-nucleus collisions e-+NA→J+X, using the 1-jettiness (τ1) global event shape. It inclusively quantifies the pattern of radiation in the final state, gives enhanced sensitivity to soft radiation at wide angles from the nuclear beam and final-state jet, and facilitates the resummation of large Sudakov logarithms associated with the veto on additional jets. Through their effect on the observed pattern of radiation, 1-jettiness can be a useful probe of nuclear parton distribution functions and power corrections from dynamical effects in the nuclear medium. This formalism allows for the standard jet shape analysis while simultaneously providing sensitivity to soft radiation at wide angles from the jet. We use a factorization framework for cross-sections differential in τ1 and the transverse momentum (PJT) and rapidity (y) of the jet, in the region τ1≪PJT. The restriction τ1≪PJT allows only soft radiation between the nuclear beam and jet directions, thereby acting as a veto on additional jets. This region is also insensitive to the details of the jet algorithm, allowing for better theoretical control over resummation, while providing enhanced sensitivity to nuclear medium effects. We give numerical results at leading twist, with resummation at the next-to-next-to-leading logarithmic level of accuracy, for a variety of nuclear targets. Such studies would be ideal for the electron-ion collider and the LHeC proposals for a future electron-ion collider, where a range of nuclear targets are planned.

  8. Probing nuclear effects using single-transverse kinematic imbalance with MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X. -G. [Oxford U.; Betancourt, M. [Fermilab

    2016-08-15

    Kinematic imbalance of the final-state particles in the plane transverse to the neutrino direction provides a sensitive probe of nuclear effects. In this contribution, we report the MINERvA measurement of the single-transverse kinematic imbalance in neutrino charged-current quasielastic-like events on CH targets. To improve the momentum measurements of the final-state particles, we develop a method to select elastically scattering contained (ESC) protons and a general procedure to correct the transverse momentum scales.

  9. Probing nuclear effects using single-transverse kinematic imbalance with MINERvA

    CERN Document Server

    Lu, X -G

    2016-01-01

    Kinematic imbalance of the final-state particles in the plane transverse to the neutrino direction provides a sensitive probe of nuclear effects. In this contribution, we report the MINERvA measurement of the single-transverse kinematic imbalance in neutrino charged-current quasielastic-like events on CH targets. To improve the momentum measurements of the final-state particles, we develop a method to select elastically scattering contained (ESC) protons and a general procedure to correct the transverse momentum scales.

  10. Probing nuclear structure with nucleons; Sonder la structure nucleaire avec des nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Bauge, E. [CEA Bruyeres-le-Chatel, Service de Physique Nucl aire, 91 (France)

    2007-07-01

    The goal of this lecture is to show how nucleon scattering can be used to probe the structure of target nuclei, and how nucleon scattering observables can be interpreted in terms of nuclear structure using microscopic optical potentials. After a brief overview of the specificities of nucleon-nucleus scattering, and a quick reminder on scattering theory, the main part of this lecture is devoted to the construction of optical potentials in which the target nuclei structure information is folded with an effective interaction. Several examples of such microscopic optical model potentials are given. (author)

  11. Probing Nuclear Effects at the T2K Near Detector Using Transverse Kinematic Imbalance

    CERN Document Server

    Dolan, Stephen

    2016-01-01

    In this work we utilise variables characterising kinematic imbalance in the plane transverse to an incoming neutrino, which have recently been shown to act as a direct probe of nuclear effects (such as final state interactions, Fermi motion and multi-nucleon processes) in $\\mathcal{O}$(GeV) neutrino scattering. We present a methodology to measure the charged current differential cross-section with no final state pions and at least one final state proton ($CC0\\pi+Np, N \\geq 1$) in these variables at the near detector of the T2K experiment (ND280), using the upstream Fine Grained Detector (FGD1) as a hydrocarbon target. Overall these measurements will allow us to better understand the impact of nuclear effects on the observables in neutrino scattering, providing valuable constraints on the systematic uncertainties associated with neutrino oscillation and scattering measurements for both T2K and other experiments with similar energy neutrino beams.

  12. Probing an NV Center's Nuclear Spin Environment with Coherent Population Trapping

    Science.gov (United States)

    Levonian, David; Goldman, Michael; Singh, Swati; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail

    2016-05-01

    Nitrogen-vacancy (NV) centers in diamond have emerged as a versatile atom-like system, finding diverse applications in metrology and quantum information science, but interaction between the NV center's electronic spin and its nuclear spin environment represent a major source of decoherence. We use optical techniques to monitor and control the nuclear bath surrounding an NV center. Specifically, we create an optical Λ-system using the | +/- 1 > components of the NV center's spin-triplet ground state. When the Zeeman splitting between the two states is equal to the two-photon detuning between the lasers, population is trapped in the resulting dark state. Measuring the rate at which the NV center escapes from the dark state therefore gives information on how spin bath dynamics change the effective magnetic field experienced by the NV center. By monitoring statistics of the emitted photons, we plan to probe non-equilibrium dynamics of the bath.

  13. A Detailed Study of Pre-scission γ Emission as a Probe of Nuclear Dissipation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using a Langev'm equation coupled with a statistical model, we calculate pre-scission giant dipole resonance (GDR) γ-ray multiplicity of nuclei l94Pb, 200Pb, 206Pb, and 200Os. It is demonstrated that with increasing the isospin asymmetry of these fissioning nuclei the sensitivity of the emitted γ multiplicity to the nuclear viscosity coefficient is decreased significantly. For 200Os nucleus, this γ-ray emission is no longer sensitive to the magnitude of the viscosity coefficient. In addition, the effect of the isospin asymmetry on the γ rays as a probe of nuclear dissipation is reduced with increasing angular momentum. These results suggest that to obtain a more accurate information of the viscosity coefficient by the measurement of pre-scission GDR γ-ray multiplicity it is better to choose those compound systems with small isospin asymmetry and low spin.

  14. Radiative Corrections to High Energy Lepton Bremsstrahlung on Heavy Nuclei

    CERN Document Server

    Arbuzov, A B

    2008-01-01

    One-loop radiative corrections to the leptonic tensor in high energy bremsstrahlung on heavy nuclei are calculated. Virtual and real photon radiation is taken into account. Double bremsstrahlung is simulated by means of Monte Carlo. Numerical results are presented for the case of muon bremsstrahlung in conditions of the COMPASS experiment at CERN.

  15. Development of Nuclear Magnetic Resonance Pulse Sequences and Probes to Study Biomacromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, M; Krishnan, V V; Maxwell, R

    2001-02-26

    The determination of the three dimensional structures at high resolution of biomolecules, such as proteins and nucleic acids, enables us to understand their function at the molecular level. At the present time, there are only two methods available for determining such structures, nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Compared to well-established X-ray diffraction techniques, NMR methodology is relatively new and has many areas in which improvement can still be attained. In this project, we focused on the development of new NMR probes and pulse sequences that were tailored to tackle specific problems that are not adequately addressed by current technology. Probes are the hardware that contain the radio frequency (RF) circuitry used to both excite and detect the NMR signals. Pulse sequences are composed of a series of RF pulses and delays, which are applied to the sample held within the magnetic field by the probe, so as to manipulate the nuclear spins. Typically, a probe is developed for a specific set of nuclei and types of experiments and the pulse sequences are then written to use the probe in an optimal manner. In addition, the inter-development of instrumentation and methods are determined by the specific biological question to be examined. Thus our efforts focused on addressing an area of importance in NMR Structural Biology namely more effective ways to use the phosphorus ({sup 31}P) nucleus. Phosphorus is a very important biological element that is strategically located in nucleic acids, where it imparts negative charge and flexibility to RNA and DNA. It is also a component of the cellular membrane and thus interacts with membrane proteins. It is used in mechanisms to signal, activate or deactivate enzymes; and participates in energy storage and release. However, the phosphorus nucleus exhibits certain properties, such as poor spectral dispersion, low sensitivity of detection, and fast relaxation, which limit its effective use

  16. Probing nuclear dynamics in jet production with a global event shape

    CERN Document Server

    Kang, Zhong-Bo; Mantry, Sonny; Qiu, Jian-Wei

    2013-01-01

    We study single jet production in electron-nucleus collisions e^- + N_A -> J + X, using the 1-jettiness (\\tau_1) global event shape. It inclusively quantifies the pattern of radiation in the final state, gives enhanced sensitivity to soft radiation at wide angles from the nuclear beam and final-state jet, and facilitates the resummation of large Sudakov logarithms associated with the veto on additional jets. Through their effect on the observed pattern of radiation, 1-jettiness can be a useful probe of nuclear PDFs and power corrections from dynamical effects in the nuclear medium. This formalism allows for the standard jet shape analysis while simultaneously providing sensitivity to soft radiation at wide angles from the jet. We use a factorization framework for cross-sections differential in $\\tau_1$ and the transverse momentum (P_{J_T}) and rapidity (y) of the jet, in the region \\tau_1<< P_{J_T}. The restriction $\\tau_1 << P_{J_T}$ allows only soft radiation between the nuclear beam and jet dir...

  17. Goniometer Control System for Coherent Bremsstrahlung Production

    Science.gov (United States)

    Acousta, V. M.

    2002-08-01

    A system for the generation of a high-intensity, quasi-monochromatic photon beam is discussed. The theory behind coherent bremsstrahlung photon beam production is analyzed and developed. The mechanics of a goniometer control system are presented. The software developed for remote control of the goniometer is also discussed. Finally, the results from various performance measurements are included.

  18. Bremsstrahlung gamma rays from light Dark Matter

    CERN Document Server

    Cirelli, Marco; Zaharijas, Gabrijela

    2013-01-01

    We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moder...

  19. Noncoplanarity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Timmermans, RGE; Gibson, BF; Li, Y; Liou, MK

    2002-01-01

    Using the soft-photon approximation, we address the issue of the importance of noncoplanarity effects in proton-proton bremsstrahlung, We investigate the noncoplanar cross section as a function of the noncoplanarity angle (φ) over bar for the entire range of the photon polar angle psi(gamma). The (φ

  20. History and status of coherent bremsstrahlung

    Science.gov (United States)

    Überall, Herbert

    2005-08-01

    Coherent bremsstrahlung research originated with the 1955 papers by Dyson and Uberall, Ter-Mikaelian, and Ferretti. Its intermediate status thirty years later has been documented by Saenz and Uberall in the book Coherent Radiation Sources (A. W. Sáenz and H. Überall, editors), Springer, Berlin 1985. The first precision experiments were carried out by Diambrini-Palazzi et al. (1 960) in Frascati shortly after the theory had been developed; see also Timm (1 969). After experimentation by dozens of electron accelerator laboratories all over the world, there are presently measurements being made by Arends et al. at the University of Mainz (MAMI, 855 MeV), Klein et al. at the University of Bonn (ELSA, 3 GeV), at CERN (20-170 GeV) by Avakian of the Yerevan Physics Institute and others, and with electron energies of 6 GeV at the Jefferson Laboratory, Newport News, VA (F. J. Klein, Catholic University, spokesperson). At Jefferson Lab, linearly polarized quasi-monochromatic coherent-bremsstrahlung photons [peaked at 1.8GeV, with polarization (after collimation) of 84%] are being used for the production (off protons) of ρ and ω mesons among others. Recent theoretical research deals with coherent bremsstrahlung in quasicrystals (Fusina, Langworthy, and Saenz, 2001), and with planar and axial coherent bremsstrahlung in a diamond crystal (Chouffani, Endo, and Uberall 2001-2), both at low energies. In the latter study, in which the concept of axial coherent bremsstrahlung is now stressed (while in the related processes of planar and axial channeling radiation this distinction is well known), photon emission occurs here not necessarily in the forward direction.

  1. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    Science.gov (United States)

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  2. Development of a radioiodinated triazolopyrimidine probe for nuclear medical imaging of fatty acid binding protein 4.

    Directory of Open Access Journals (Sweden)

    Kantaro Nishigori

    Full Text Available Fatty acid binding protein 4 (FABP4 is the most well-characterized FABP isoform. FABP4 regulates inflammatory pathways in adipocytes and macrophages and is involved in both inflammatory diseases and tumor formation. FABP4 expression was recently reported for glioblastoma, where it may participate in disease malignancy. While FABP4 is a potential molecular imaging target, with the exception of a tritium labeled probe there are no reports of other nuclear imaging probes that target this protein. Here we designed and synthesized a nuclear imaging probe, [123I]TAP1, and evaluated its potential as a FABP4 targeting probe in in vitro and in vivo assays. We focused on the unique structure of a triazolopyrimidine scaffold that lacks a carboxylic acid to design the TAP1 probe that can undergo facilitated delivery across cell membranes. The affinity of synthesized TAP1 was measured using FABP4 and 8-anilino-1-naphthalene sulfonic acid. [125I]TAP1 was synthesized by iododestannylation of a precursor, followed by affinity and selectivity measurements using immobilized FABPs. Biodistributions in normal and C6 glioblastoma-bearing mice were evaluated, and excised tumors were subjected to autoradiography and immunohistochemistry. TAP1 and [125I]TAP1 showed high affinity for FABP4 (Ki = 44.5±9.8 nM, Kd = 69.1±12.3 nM. The FABP4 binding affinity of [125I]TAP1 was 11.5- and 35.5-fold higher than for FABP3 and FABP5, respectively. In an in vivo study [125I]TAP1 displayed high stability against deiodination and degradation, and moderate radioactivity accumulation in C6 tumors (1.37±0.24% dose/g 3 hr after injection. The radioactivity distribution profile in tumors partially corresponded to the FABP4 positive area and was also affected by perfusion. The results indicate that [125I]TAP1 could detect FABP4 in vitro and partly in vivo. As such, [125I]TAP1 is a promising lead compound for further refinement for use in in vivo FABP4 imaging.

  3. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.

    Science.gov (United States)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Islamian, Jalil Pirayesh

    2016-02-01

    Treatment efficacy of radioembolization using Yttrium-90 ((90)Y) microspheres is assessed by the (90)Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of (90)Y microspheres distribution. One of the main reasons of the poor image quality in (90)Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the (90)Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the (90)Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a (90)Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35-3.3mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for (90)Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3mm. Geometry of the ME parallel-hole collimator and energy

  4. 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

    CERN Document Server

    2014-01-01

    One of the premier meetings in the field of high-energy nuclear physics, the Hard Probes conference series brings together the experimental and theoretical communities interested in the hard and electromagnetic observables related to nuclear matter at extreme temperatures and densities. Prior to the conference, the University of Cape Town will host a summer school for young physicists in the field. High energy nuclear physics focuses on the science of a trillion degrees. These temperatures were last seen in nature a microsecond after the Big Bang, but mankind recreates them thousands of times a second in particle accelerators such as CERN's Large Hadron Collider and BNL's Relativistic Heavy Ion Collider. At these temperatures, 100,000 times hotter than the center of the sun, the strong force is dominant, and we hope to learn about the fundamental and non-trivial emergent many-body dynamics of the quarks and gluons that make up 99% of the mass of the visible universe. We anticipate the usual format for the H...

  5. Exact Bremsstrahlung and Effective Couplings

    CERN Document Server

    Mitev, Vladimir

    2015-01-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of $\\mathcal{N}=2$ SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the $\\mathcal{N}=4$ SYM ones, we obtain interpolating functions $f(g^2)$ such that a given $\\mathcal{N}=2$ SCFT observable is obtained by replacing in the corresponding $\\mathcal{N}=4$ SYM result the coupling constant by $f(g^2)$. These ``exact effective couplings'' encode the finite, relative renormalization between the $\\mathcal{N}=2$ and the $\\mathcal{N}=4$ gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  6. Exact Bremsstrahlung and effective couplings

    Science.gov (United States)

    Mitev, Vladimir; Pomoni, Elli

    2016-06-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of mathcal{N} = 2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the mathcal{N} = 4 SYM ones, we obtain interpolating functions f ( g 2) such that a given mathcal{N} = 2 SCFT observable is obtained by replacing in the corresponding mathcal{N} = 4 SYM result the coupling constant by f ( g 2). These "exact effective couplings" encode the finite, relative renormalization between the mathcal{N} = 2 and the mathcal{N} = 4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  7. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Mainz Univ. (Germany). Inst. fuer Physik, WA THEP; Humboldt-Univ. Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [DESY Hamburg (Germany). Theory Group; National Technical Univ., Athens (Greece). Physics Div.

    2015-11-15

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These ''exact effective couplings'' encode the finite, relative renormalization between the N = 2 and the N = 4 gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  8. Bremsstrahlung component of the diffuse galactic gamma-ray emission at MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, W.; Schoenfelder, V.

    1984-04-15

    Recently the galactic plane has been resolved at low and medium ..gamma..-ray energies in the directions toward the center and anticenter. Spectral measurements are now available at those energies, where the contribution of ..pi../sup 0/-decay from nuclear reactions of cosmic-ray protons (and heavier nuclei) with interstellar matter can be neglected. Under the assumption that most of the observed ..gamma..-ray flux below 30 MeV is produced by electron bremsstrahlung, restrictions on the energy spectrum of cosmic-ray electrons in interstellar space below 100 MeV are derived. The most accurate bremsstrahlung production cross sections of Koch and Motz and of Blumental and Gould are used in order to derive the bremsstrahlung production spectrum in interstellar space down to 10 keV-photon energies. If the low-energy ..gamma..-ray emission, as seen by most observers, is indeed produced by electron bremsstrahlung, then a high interstellar electron flux at MeV energy results, which-at higher energies-connects to the upper limit derived by Cummings, Stone, and Vogt. Such a high low-energy electron flux would be able to explain the ionization rate of 1 x 10/sup -15/ ion pairs (H-atom/sup -1/ s/sup -1/) in H I regions. Because of uncertainties in the low-energy ..gamma..-ray measurements, however, no definite conclusion is possible yet.

  9. Magnetism and Superconductivity in Iron-based Superconductors as Probed by Nuclear Magnetic Resonance

    CERN Document Server

    Hammerath, Franziska

    2012-01-01

    Nuclear Magnetic Resonance (NMR) has been a fundamental player in the studies of superconducting materials for many decades. This local probe technique allows for the study of the static electronic properties as well as of the low energy excitations of the electrons in the normal and the superconducting state. On that account it has also been widely applied to Fe-based superconductors from the very beginning of their discovery in February 2008. This dissertation comprises some of these very first NMR results, reflecting the unconventional nature of superconductivity and its strong link to magnetism in the investigated compounds LaO1–xFxFeAs and LiFeAs.

  10. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections.

  11. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    Science.gov (United States)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  12. D(s) meson as a quantitative probe of diffusion and hadronization in nuclear collisions.

    Science.gov (United States)

    He, Min; Fries, Rainer J; Rapp, Ralf

    2013-03-15

    The modifications of D(s)-meson spectra in ultrarelativistic heavy-ion collisions are identified as a quantitative probe of key properties of the hot nuclear medium. The unique valence-quark content of the D(s)=cs̄ couples the well-known strangeness enhancement with the collective-flow pattern of primordially produced charm quarks. This idea is illustrated utilizing a consistent strong-coupling treatment with hydrodynamic bulk evolution and nonperturbative T-matrix interactions for both heavy-quark diffusion and hadronization in the quark-gluon plasma (QGP). A large enhancement of the D(s) nuclear modification factor at Relativistic Heavy Ion Collider is predicted, with a maximum of ∼1.5-1.8 at transverse momenta around 2  GeV/c. This is a direct consequence of the strong coupling of the heavy quarks to the QGP and their hadronization via coalescence with strange quarks. We furthermore introduce the effects of diffusion in the hadronic phase and suggest that an increase of the D-meson elliptic flow compared to the D(s) can disentangle the transport properties of hadronic and QGP liquids.

  13. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    Directory of Open Access Journals (Sweden)

    J. C. Zier

    2014-06-01

    Full Text Available Intense pulsed active detection (IPAD is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU object in the bremsstrahlung far field by varying the anode-cathode (AK diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  14. Thermal Bremsstrahlung Radiation in a Two-Temperature Plasma

    Institute of Scientific and Technical Information of China (English)

    Bin Luo; Shuang-Nan Zhang

    2004-01-01

    In normal one-temperature plasma the motion of ions is usually neglected when calculating the Bremsstrahlung radiation of the plasma.We calculate the Bremsstrahlung radiation of a two-temperature plasma by taking into account of the motion of ions.Our results show that the total radiation power is always lower if the motion of ions is considered.We also apply the two-temperature Bremsstrahlung radiation mechanism for an analytical Advection-Dominated Accretion Flow(ADAF)model:we find the two-temperature correction to the total Bremsstrahlung radiation for ADAF is negligible.

  15. Non-Abelian bremsstrahlung and azimuthal asymmetries in high energy p+A reactions

    Science.gov (United States)

    Gyulassy, M.; Levai, P.; Vitev, I.; Biró, T. S.

    2014-09-01

    We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute to all orders in nuclear opacity the non-Abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, vnM{1}, and even numbered 2ℓ gluon distribution, vnM{2ℓ}, inclusive distributions in high-energy p +A reactions as a function of harmonic n, target recoil cluster number, M, and gluon number, 2ℓ, at the RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form color scintillation antenna (CSA) arrays that lead to characteristic boost-noninvariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of the intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to vn moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic nonflow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd vn without invoking kT factorization. A test of the CSA mechanism is the predicted nearly linear η rapidity dependence of the vn(kT,η). Non-Abelian beam jet bremsstrahlung may, thus, provide a simple analytic solution to the beam energy scan puzzle of the near √s independence of vn(pT) moments observed down to 10 AGeV, where large-x valence-quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of vn in p(D)+A and noncentral A+A at the same dN/dη multiplicity as observed at the RHIC and LHC.

  16. Synthesis and physicochemical characterization of novel phenotypic probes targeting the nuclear factor-kappa B signaling pathway

    Directory of Open Access Journals (Sweden)

    Paul M. Hershberger

    2013-05-01

    Full Text Available Activation of nuclear factor-kappa B (NF-κB and related upstream signal transduction pathways have long been associated with the pathogenesis of a variety of inflammatory diseases and has recently been implicated in the onset of cancer. This report provides a synthetic and compound-based property summary of five pathway-related small-molecule chemical probes identified and optimized within the National Institutes of Health-Molecular Libraries Probe Center Network (NIH-MLPCN initiative. The chemical probes discussed herein represent first-in-class, non-kinase-based modulators of the NF-κB signaling pathway, which were identified and optimized through either cellular phenotypic or specific protein-target-based screening strategies. Accordingly, the resulting new chemical probes may allow for better fundamental understanding of this highly complex biochemical signaling network and could advance future therapeutic translation toward the clinical setting.

  17. Vector dark matter annihilation with internal bremsstrahlung

    OpenAIRE

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound st...

  18. Using a nano-flare probe to detect RNA in live donor cells prior to somatic cell nuclear transfer.

    Science.gov (United States)

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Guo, Zhen-Hua; Zhu, Meng; Bai, Jing

    2016-01-01

    Many transgenes are silenced in mammalian cells (donor cells used for somatic cell nuclear transfer [SCNT]). Silencing correlated with a repressed chromatin structure or suppressed promoter, and it impeded the production of transgenic animals. Gene transcription studies in live cells are challenging because of the drawbacks of reverse-transcription polymerase chain reaction and fluorescence in situ hybridization. Nano-flare probes provide an effective approach to detect RNA in living cells. We used 18S RNA, a housekeeping gene, as a reference gene. This study aimed to establish a platform to detect RNA in single living donor cells using a Nano-flare probe prior to SCNT and to verify the safety and validity of the Nano-flare probe in order to provide a technical foundation for rescuing silenced transgenes in transgenic cloned embryos. We investigated cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts, characterized the distribution of the 18S RNA-Nano-flare probe in living cells and investigated the effect of the 18S RNA-Nano-flare probe on the development of cloned embryos after SCNT. The cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts was dose-dependent, and 18S RNA was detected using the 18S RNA-Nano-flare probe. In addition, treating donor cells with 500 pM 18S RNA-Nano-flare probe did not have adverse effects on the development of SCNT embryos at the pre-implantation stage. In conclusion, we established a preliminary platform to detect RNA in live donor cells using a Nano-flare probe prior to SCNT.

  19. Pion mass effects on axion emission from neutron stars through NN bremsstrahlung processes

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, S. [Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-6, 76900 Bucharest-Magurele (Romania); Horia Hulubei Foundation, Atomistilor 407, Bucharest-Magurele (Romania)], E-mail: stoica@theory.nipne.ro; Pastrav, B. [Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-6, 76900 Bucharest-Magurele (Romania)], E-mail: bpastrav@theory.nipne.ro; Horvath, J.E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900 Cidade Universitaria Sao Paulo, SP (Brazil)], E-mail: foton@astro.iag.usp.br; Allen, M.P. [CEFET-SP, R. Pedro Vicente 625, 01109-010 Caninde, Sao Paulo, SP (Brazil)

    2009-09-15

    The rates of axion emission by nucleon-nucleon bremsstrahlung are calculated with the inclusion of the full momentum contribution from a nuclear one pion exchange (OPE) potential. The contributions of the neutron-neutron (nn), proton-proton ( pp) and neutron-proton (np) processes in both the non-degenerate and degenerate limits are explicitly given. We find that the finite-momentum corrections to the emissivities are quantitatively significant for the non-degenerate regime and temperature-dependent, and should affect the existing axion mass bounds. The trend of these nuclear effects is to diminish the emissivities.

  20. Coherent bremsstrahlung at the HERA collider

    Energy Technology Data Exchange (ETDEWEB)

    Ginzberg, I.F. (Inst. of Mathematics, Novosibirsk (Russian Federation)); Kotkin, G.L. (Novosibirsk State Univ. (Russian Federation)); Polityko, S.I. (Irkutsk State Univ. (Russian Federation)); Serbo, V.G. (Irkutsk State Univ. (Russian Federation))

    1993-12-01

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS) which is the radiation of the first bunch particles caused by the collective electromagnetic field of the second bunch. The number of CBS photons for a single collision is dN[sub y][approx]N[sub 0]dE[sub y]/E[sub y] in the energy range E[sub y]< or [approx]E[sub c]=4y[sub 1][sup 2]hc/l[sub 2]. Here y[sub 1]=E[sub 1]/m[sub 1]c[sup 2]; l[sub 2] is the length of the opposing (second) bunch and N[sub 0] is proportional to N[sub 1]N[sub 2][sup 2] where N[sub j] is the j-th bunch population. For the HERA collider N[sub 0]=14, E[sub c]=73 eV in the case when photons are emitted by protons and N[sub 0]=6.10[sup 7], E[sub c]=24 keV - when photons are emitted by electrons. Unusual properties of such a coherent bremsstrahlung and the possibility to use CBS for fast beam steering and for luminosity optimization are discussed. (orig.)

  1. Coherent bremsstrahlung used for digital subtraction angiography

    Science.gov (United States)

    Überall, Herbert

    2007-05-01

    Digital subtraction angiography (DSA), also known as Dichromography, using synchrotron radiation beams has been developed at Stanford University (R. Hofstadter) and was subsequently taken over at the Brookhaven Synchrotron and later at Hamburg (HASYLAB) [see, e.g., W.R. Dix, Physik in unserer Zeit. 30 (1999) 160]. The imaging of coronary arteries is carried out with an iodine-based contrast agent which need not be injected into the heart. The radiation must be monochromatized and is applied above and below the K-edge of iodine (33.16 keV), with a subsequent digital subtraction of the two images. Monochromatization of the synchrotron radiation causes a loss of intensity of 10 -3. We propose instead the use of coherent bremsstrahlung [see, e.g., A.W. Saenz and H. Uberall, Phys. Rev. B25 (1982) 448] which is inherently monochromatic, furnishing a flux of 10 12 photon/sec. This requires a 10-20 MeV electron linac which can be obtained by many larger hospitals, eliminating the scheduling problems present at synchrotrons. The large, broad incoherent bremsstrahlung background underlying the monochromatic spike would lead to inadmissible overexposure of the patient. This problem can be solved with the use of Kumakhov's capillary optics [see e.g., S.B.Dabagov, Physics-Uspekhi 46 (2003) 1053]: the low-energy spiked radiation can be deflected towards the patient, while the higher energy incoherent background continues forward, avoiding the patient who is placed several meters from the source.

  2. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe.

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

    2010-05-01

    (33)S nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the (33)S nucleus. We have developed a 10 mm (33)S cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The (33)S NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The (33)S cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO(4)(2-) anions and -SO(3)(-) groups using the (33)S cryogenic probe, as the (33)S nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the (33)S cryogenic probe, as the (33)S nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

  3. Nuclear Reactor Simulations for Unveiling Diversion Scenarios: capabilities of the antineutrino probe

    Energy Technology Data Exchange (ETDEWEB)

    Bui, V.M.; Fallot, M.; Giot, L.; Guillon, B.; Martino, J.; Yermia, F. [SUBATECH - CNRS-IN2P3 - Univ. of Nantes - EMN, Nantes (France); Nuttin, A. [LPSC - CNRS-IN2P3/UJF/INPG, Grenoble (France)

    2009-06-15

    After many years of fundamental research, physicists have a good understanding of the neutrinos detection techniques. It is now possible to apply neutrino physics as a new tool to monitor nuclear power plants. We already know that modest size detectors are achievable to fulfill that task such as the SONGS 1 and the future Nucifer detectors. In parallel, sophisticated simulations of reactors and their associated antineutrino flux and energy spectrum have been developed to predict the neutrino signature of the fuel burnup and of a diversion. Taking advantage of the tremendous quantity of information available nowadays in nuclear databases, the total {beta} spectrum of a reactor is built by adding the contributions of all the {beta} branches involved in the decay of all fission products (FP). A package called MCNP Utility for Reactor Evolution (MURE) computes the fuel and FP inventories by simulating the neutronics and time evolution of a reactor core. MURE, initially developed by CNRS/IN2P3/LPSC Grenoble and IPN Orsay to study Generation IV reactors, is a precision code written in C++ which automates the preparation and computation of successive MCNP calculations either for precision burnup or thermal-hydraulics purpose. MURE will be soon available at NEA. The only user-defined inputs driving the time evolution of the isotopic composition of the core are the initial fuel composition, the refueling scheme, and the thermal power. The evolution of the antineutrino flux and energy spectrum with the fuel burnup, as well as the effect of neutron capture on various nuclei are taken into account. Nonproliferation scenarios and burnup monitoring with antineutrinos have been studied using these tools for PWR and Candu reactors. A full core simulation of an N4-PWR will be presented in a first part. Gross unveiling diversion scenarios using a PWR have been simulated in order to test the ability of the antineutrino probe. A channel of a Heavy Water Reactor (Candu 600) loaded with

  4. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    Science.gov (United States)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  5. Dynamical model for Pion-Nucleon Bremsstrahlung

    CERN Document Server

    Mariano, A V

    2000-01-01

    A dynamical model based on effective Lagrangians is proposed to describe the bremsstrahlung reaction $ \\pi N \\to \\pi N \\gamma$ at low energies. The $\\Delta(1232)$ degrees of freedom are incorporated in a way consistent with both, electromagnetic gauge invariance and invariance under contact transformations. The model also includes the initial and final state rescattering of hadrons via a T-matrix with off-shell effects. The $\\pi N \\gamma$ differential cross sections are calculated using three different T-matrix models and the results are compared with the soft photon approximation, and with experimental data. The aim of this analysis is to test the off-shell behavior of the different T-matrices under consideration.

  6. Axion bremsstrahlung from collisions of global strings

    CERN Document Server

    Galtsov, D V; Kerner, R

    2003-01-01

    We calculate axion radiation emitted in the collision of two straight global strings. The strings are supposed to be in the unexcited ground state, to be inclined with respect to each other, and to move in parallel planes. Radiation arises when the point of minimal separation between the strings moves faster than light. This effect exhibits a typical Cerenkov nature. Surprisingly, it allows an alternative interpretation as bremsstrahlung under a collision of point charges in 2+1 electrodynamics. This can be demonstrated by suitable world-sheet reparameterizations and dimensional reduction. Cosmological estimates show that our mechanism generates axion production comparable with that from the oscillating string loops and may lead to further restrictions on the axion window.

  7. Vector dark matter annihilation with internal bremsstrahlung

    Science.gov (United States)

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2017-03-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  8. Vector dark matter annihilation with internal bremsstrahlung

    Directory of Open Access Journals (Sweden)

    Gulab Bambhaniya

    2017-03-01

    Full Text Available We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion–antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  9. Vector dark matter annihilation with internal bremsstrahlung

    CERN Document Server

    Bambhaniya, Gulab; Marfatia, Danny; Nayak, Alekha C; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  10. Two-particle correlation via Bremsstrahlung

    Science.gov (United States)

    Cho, Soyeon; Park, Kayoung; Yoon, Jin-Hee

    2017-04-01

    Ridge is the well-known structure in two-particle angular correlations at highenergy heavy-ion collisions. This structure is physically understood through elliptic and higher-order flows at nucleus-nucleus collisions. This behavior is also found in small systems, such as proton-proton collisions, recently. However, Ridge structure in small system is hard to be understood using hydrodynamics, since small systems are not dense enough to produce the Quark-Gluon plasma. Thus, we try to describe this phenomena through kinematic interaction between jets and medium partons. In high-energy heavy-ion collision, the energetic particles called jets go out in specific direction and lose their energy while passing through the medium. During such process, photons/gluons are emitted from interaction between jets and medium partons. We concentrate on energy loss via photon radiations, known as Bremsstrahlung. Recently, two symmetric double scattering processes between jet particle and medium parton are reported to be able to produce certain constructive interference, which gives collective motion and medium partons are aligned along incoming jet particles. We conjecture that similar behavior might happen in Bremsstrahlung processes, and therefore we consider the two symmetric diagrams of photon emission and medium parton scattering. We expect these two amplitudes to give constructive interference leading to the collective motion of medium. We check the correlation between emitted photon and final jet, and those between medium parton and final jet for high-energy jet. To describe parton momentum distribution in medium, we use the Maxwell-Boltzmann distribution. We discover collective motion in both angular correlations. We also check the tendency of the angular correlation for two particles according to the incident angle of jet particle, energy of emitted photon and temperature of systems, respectively. We can conclude that collective motion is able to be understood through

  11. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  12. Integrated Bayesian Estimation of Zeff in the TEXTOR Tokamak from Bremsstrahlung and CX Impurity Density Measurements

    Science.gov (United States)

    Verdoolaege, G.; Von Hellermann, M. G.; Jaspers, R.; Ichir, M. M.; Van Oost, G.

    2006-11-01

    The validation of diagnostic date from a nuclear fusion experiment is an important issue. The concept of an Integrated Data Analysis (IDA) allows the consistent estimation of plasma parameters from heterogeneous data sets. Here, the determination of the ion effective charge (Zeff) is considered. Several diagnostic methods exist for the determination of Zeff, but the results are in general not in agreement. In this work, the problem of Zeff estimation on the TEXTOR tokamak is approached from the perspective of IDA, in the framework of Bayesian probability theory. The ultimate goal is the estimation of a full Zeff profile that is consistent both with measured bremsstrahlung emissivities, as well as individual impurity spectral line intensities obtained from Charge Exchange Recombination Spectroscopy (CXRS). We present an overview of the various uncertainties that enter the calculation of a Zeff profile from bremsstrahlung date on the one hand, and line intensity data on the other hand. We discuss a simple linear and nonlinear Bayesian model permitting the estimation of a central value for Zeff and the electron density ne on TEXTOR from bremsstrahlung emissivity measurements in the visible, and carbon densities derived from CXRS. Both the central Zeff and ne are sampled using an MCMC algorithm. An outlook is given towards possible model improvements.

  13. Nuclear Stopping as A Probe to In-medium Nucleon-nucleon Cross Section in Intermediate Energy Heavy Ion Collisions

    CERN Document Server

    Liu Jian Ye; Wang, S J; Zuo, W; Zhao, Q; Yang Yong Feng; Liu, Jian-Ye; Guo, Wen-Jun; Wang, Shun-Jin; Zuo, Wei; Zhao, Qiang; Yang, Yan-Fang

    2001-01-01

    Using an isospin-dependent quantum molecular dynamics, nuclear stopping in intermediate heavy ion collisions has been studied. The calculation has been done for colliding systems with different neutron-proton ratios in beam energy ranging from 15MeV/u to 150MeV/u. It is found that, in the energy region from above Fermi energy to 150MeV/u, nuclear stopping is very sensitive to the isospin dependence of in-medium nucleon-nucleon cross section, but insensitive to symmetry potential. From this investigation, we propose that nuclear stopping can be used as a new probe to extract the information on the isospin dependence of in-medium nucleon-nucleon cross section in intermediate energy heavy ion collisions.

  14. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2016-09-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator. We find that electrons accelerated by electric fields can reach significantly higher energies than predicted by the commonly used radiative stopping-power model. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution by causing pitch-angle scattering at a rate that increases with energy.

  15. Polarization Bremsstrahlung in collissions of fast ions with multiatomic targets

    CERN Document Server

    Amusia, M Ya

    2013-01-01

    We consider the processes of polarization bremsstrahlung in collisions of fast ions with linear chains consisting of isolated atoms. We obtained intensities and angular distributions of radiation spectra for arbitrary number of atoms in the chain. It appeared that interference in the photon radiation amplitudes lead to prominent variation of spectral angular distributions of polarization bremsstrahlung as compared to these distribuitions in collisions with an isolated atom. The mean loss of energy due to radiation or the so-called rediative friction is estimated. The results obtained permit standard generalization to the case of polarization bremsstrahlung in fast ion chanelling above surfaces an and in solid body.

  16. Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions

    CERN Document Server

    Takigawa, N; Kuyucak, S

    1997-01-01

    Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the $sd-$ and $sdf-$ interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.

  17. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  18. Probing sub-GeV Dark Matter with conventional detectors

    CERN Document Server

    Kouvaris, Chris

    2016-01-01

    The direct detection of Dark Matter particles with mass below the GeV-scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic Dark Matter nucleus scattering sets a principal limit on detectability. Here we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission in the nuclear recoil. Our proposed method allows to set the first limits on MeV-scale Dark Matter in the plane of Dark Matter mass and cross section with nucleons. In situations where a Dark Matter-electron coupling is suppressed, Bremsstrahlung may constitute the only path to probe low-mass Dark Matter awaiting new detector technologies with lowered recoil energy thresholds.

  19. Polarimetry of electron beams by means of bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav [Heidelberg Univ. (Germany). Physikalisches Inst.; Baeck, Torbjoern; Cederwall, Bo; Khaplanov, Anton; Schaessburger, Kai-Uwe [Royal Institute of Technology, Stockholm (Sweden); Barday, Roman; Enders, Joachim; Poltoratska, Yulia [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Surzhykov, Andrey [Heidelberg Univ. (Germany). Physikalisches Inst.; GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2012-07-01

    The dominant photon emission process in electron-atom collisions, bremsstrahlung has long been considered to be sensitive to the spin of the electron. However only recently experimental studies in this direction became possible. The first measurement of the correlation between the orientation of the electron spin and photon linear polarization in bremsstrahlung is presented. The particular attention is given to the applications of this technique for polarimetry of electron beams. The results of the proof-of-principle measurement are presented.

  20. Slow Molecular Motions in Ionic Liquids Probed by Cross-Relaxation of Nuclear Spins During Overhauser Dynamic Nuclear Polarization.

    Science.gov (United States)

    Banerjee, Abhishek; Dey, Arnab; Chandrakumar, Narayanan

    2016-11-14

    Solution-state Overhauser dynamic nuclear polarization (ODNP) at moderate fields, performed by saturating the electron spin resonance (ESR) of a free radical added to the sample of interest, is well known to lead to significant NMR signal enhancements in the steady state, owing to electron-nuclear cross-relaxation. Here it is shown that under conditions which limit radical access to the molecules of interest, the time course of establishment of ODNP can provide a unique window into internuclear cross-relaxation, and reflects relatively slow molecular motions. This behavior, modeled mathematically by a three-spin version of the Solomon equations (one unpaired electron and two nuclear spins), is demonstrated experimentally on the (19) F/(1) H system in ionic liquids. Bulky radicals in these viscous environments turn out to be just the right setting to exploit these effects. Compared to standard nuclear Overhauser effect (NOE) work, the present experiment offers significant improvement in dynamic range and sensitivity, retains usable chemical shift information, and reports on molecular motions in the sub-megahertz (MHz) to tens of MHz range-motions which are not accessed at high fields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Difficulties in Probing Nuclear Physics: A Study of $^{44}$Ti and $^{56}$Ni

    CERN Document Server

    Hungerford, Aimee; Timmes, Francis X; Young, Patrick; Bennett, Michael; Diehl, Steven; Herwig, Falk; Hirschi, Raphael; Pignatari, Marco; Magkotsios, Georgios; Rockefeller, Gabriel

    2008-01-01

    The nucleosynthetic yield from a supernova explosion depends upon a variety of effects: progenitor evolution, explosion process, details of the nuclear network, and nuclear rates. Especially in studies of integrated stellar yields, simplifications reduce these uncertainties. But nature is much more complex, and to actually study nuclear rates, we will have to understand the full, complex set of processes involved in nucleosynthesis. Here we discuss a few of these complexities and detail how the NuGrid collaboration will address them.

  2. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    CERN Document Server

    Xiao, Zhi-Gang; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2013-01-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions especially those induced by radioactive beams but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the pion-/pion+ ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the pion-/pion+ ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the pion-/pion+ ratio are still quite model dependent mostly because of the complexity of modeling pion ...

  3. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  4. A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo.

    Science.gov (United States)

    Dickinson, Bryan C; Tang, Yan; Chang, Zengyi; Chang, Christopher J

    2011-08-26

    Hydrogen peroxide (H(2)O(2)) can serve as a beneficial signaling agent or toxin depending on its concentration and location within a cell or organism. Methods to measure the localized accumulation of H(2)O(2) in living specimens remain limited. Motivated to meet this need, we have developed a nuclear-localized fluorescent probe for H(2)O(2), Nuclear Peroxy Emerald 1 (NucPE1), to selectively interrogate ROS fluxes within this sensitive organelle. NucPE1 selectively accumulates in the nuclei of a variety of mammalian cell lines as well as in whole model organisms like Caenorhabditis elegans, where it can respond to subcellular changes in H(2)O(2) fluxes. Moreover, in vivo NucPE1 imaging reveals a reduction in nuclear H(2)O(2) levels in worms overexpressing sir-2.1 compared with wild-type congeners, supporting a link between this longevity-promoting sirtuin protein and enhanced regulation of nuclear ROS pools.

  5. Angular bremsstrahlung during $\\alpha$-decay and unified formula of the bremsstrahlung probability

    CERN Document Server

    Maydanyuk, Sergei P

    2009-01-01

    The multipolar model of angular bremsstrahlung of photons accompanying $\\alpha$-decay is presented. A probability of the photons emission calculated on the basis of the model without any normalization on experimental data are found at $90^{\\circ}$ of the angle $\\vartheta_{\\alpha\\gamma}$ between directions of motion of the $\\alpha$-particle (with its tunneling under barrier) and emission of photons to be in a good agreement with the newest experimental data for the $^{210}{\\rm Po}$, $^{214}{\\rm Po}$, and $^{226}{\\rm Ra}$ nuclei. The spectrum for $^{244}{\\rm Cm}$ is found at $\\vartheta_{\\alpha\\gamma} = 25^{\\circ}$ to be in satisfactory agreement with high limit of errors of experimental data of Japanese group. A comparative analysis for the angular formalisms of the multipole and dipole approaches, and for the spectra calculated for $^{210}{\\rm Po}$ both in the absolute scale and with normalization on experimental data is presented. Distribution of the bremsstrahlung probability on the numbers of protons and nu...

  6. Influence of angular momentum on evaporation residue cross section as a probe of nuclear dissipation

    Institute of Scientific and Technical Information of China (English)

    YE Wei; WU Feng

    2008-01-01

    By calculating the excess of the evaporation residue cross sections of the 200pb nucleus over that predicted by the standard statistical model as a function of nuclear viscosity coefficient using a Langevin equation combined with a statistical decay model, it is found that high angular momentum not only amplifies the dissipation effects on the excess of the evaporation residue cross sections, but also considerably increases the sensitivity of this excess to the nuclear viscosity coefficient. These results suggest that on the experimental side, to accurately obtain the information of nuclear dissipation inside the saddle point by measuring the evaporation residue cross section, it had better populate those compound systems with high spins.

  7. Probing the nuclear equation-of-state and the symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Verde Giuseppe

    2014-03-01

    Full Text Available The present status of studies aimed at constraining the nuclear equation of state with heavy-ion collision dynamics is presented. Multifragmentation phenomena, including their isotopic distributions, charge correlations and emission time-scales, may revel the existence of liquid-gas transitions in the phase diagram. Exploring the isotopic degree of freedom in nuclear dynamics is then required in order to constrain the equation of state of asymmetric nuclear matter which presently represents a major priority due to its relevance to both nuclear physics and astrophysics. Some observables that have successfully constrained the density dependence of the symmetry energy are presented, such as neutron-proton yield ratios and isospin diffusion and drift phenomena. The reported results and status of the art is discussed by also considering some of the present problems and some future perspectives for the heavy-ion collision community.

  8. Nuclear radiation as a probe of chemical bonding: the current interplay between theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M D

    1978-01-01

    After a survey of appropriate theoretical formalisms, recent confrontations of theory and experiment in the areas of neutron scattering, Moessbauer spectroscopy, and positron chemistry are discussed, with major emphasis on the degree to which simple concepts of chemical bonding can be refined by complementary use of the above experimental probes and the powerful techniques of computational quantum chemistry.

  9. Probing the nuclear equation of state by heavy-ion reactions and neutron star properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, P.K.; Cassing, W.; Thoma, M.H. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany)

    1998-06-01

    We discuss the nuclear equation of state (EOS) using a non-linear relativistic transport model. From the baryon flow for Ni + Ni as well as Au + Au systems we find that the strength of the vector potential has to be reduced at high density or at high relative momenta to describe the experimental flow data at 1-2 A GeV. We use the same dynamical model to calculate the nuclear EOS and then employ this EOS to neutron star structure calculations. We consider the core of the neutron star to be composed of neutrons with an admixture of protons, electrons, muons, sigmas and lambdas at zero temperature. We find that the nuclear equation of state is softer at high densities and hence the maximum mass and the radius of the neutron star are in the observable range of M {proportional_to} 1.7 M{sub s}un and R = 8 km, respectively. (orig.)

  10. Dynamic Isovector Reorientation of Deuteron as a Probe to Nuclear Symmetry Energy.

    Science.gov (United States)

    Ou, Li; Xiao, Zhigang; Yi, Han; Wang, Ning; Liu, Min; Tian, Junlong

    2015-11-20

    We present the calculations on a novel reorientation effect of deuteron attributed to isovector interaction in the nuclear field of heavy target nuclei. The correlation angle determined by the relative momentum vector of the proton and the neutron originating from the breakup deuteron, which is experimentally detectable, exhibits significant dependence on the isovector nuclear potential but is robust against the variation of the isoscaler sector. In terms of sensitivity and cleanness, the breakup reactions induced by the polarized deuteron beam at about 100 MeV/u provide a more stringent constraint to the symmetry energy at subsaturation densities.

  11. The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta

    CERN Document Server

    Newton, William G; Hooker, Joshua; Li, Bao-An

    2013-01-01

    X-ray observations of the neutron star in the Cas A supernova remnant over the past decade suggest the star is undergoing rapid cooling, with a drop in surface temperature of $\\approx$ 2-5.5%. One of the leading explanations suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent neutron star crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy $L$ of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal "nuclear pasta". Using a conservative range of possible neutron star masses and envelope compositions, we find $L\\lesssim70$ MeV, competitive with constraints from terrestrial experimental constraints and other astrophysical observations. If one demands that $M\\gtrsim 1.4 M_{\\odot}$, the constraint becomes more res...

  12. THE COOLING OF THE CASSIOPEIA A NEUTRON STAR AS A PROBE OF THE NUCLEAR SYMMETRY ENERGY AND NUCLEAR PASTA

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Li, Bao-An [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States); Murphy, Kyleah [Umpqua Community College, Roseburg, OR 97470 (United States)

    2013-12-10

    X-ray observations of the neutron star (NS) in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of ≈2%-5.5%. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent NS crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy L of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal ''nuclear pasta''. Modeling cooling over a conservative range of NS masses and envelope compositions, we find L ≲ 70 MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of M ≳ 1.65 M {sub ☉}, the constraint becomes more restrictive 35 ≲ L ≲ 55 MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when L ≲ 45 MeV, taking all masses into consideration, corresponding to NS radii ≲ 11 km.

  13. Nuclear Resonance Scattering of Synchrotron Radiation as a Unique Electronic, Structural, and Thermodynamic Probe

    Science.gov (United States)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    Discovery of Mössbauer effect [1] in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. Thus, Mössbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Mössbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physicists, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Mössbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or "in-beam" Mössbauer experiments with implanted radioactive ions. More recently, two Mössbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time.

  14. Bremsstrahlung signatures of dark matter annihilation in the Sun

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Marfatia, Danny

    2012-01-01

    The nonrelativistic annihilation of Majorana dark matter in the Sun to a pair of light fermions is chirality-suppressed. Annihilation to 3-body final states $\\ell^+f^-V$, where $V=W,Z,\\gamma$, and $\\ell$ and $f$ are light fermions (that may be the same), becomes dominant since bremsstrahlung relaxes the chirality suppression. We evaluate the neutrino spectra at the source, including spin and helicity dependent effects, and assess the detectability of each significant bremsstrahlung channel at IceCube/DeepCore. We also show how to combine the sensitivities to the dark matter-nucleon scattering cross section in individual channels, since typically several channels contribute in models.

  15. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    CERN Document Server

    Embréus, Ola; Fülöp, Tünde

    2016-01-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons. We find that electrons accelerated by electric fields can reach significantly higher energies than what is expected from energy-loss considerations. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution.

  16. Probing Nuclear PDF and Gluon Saturation At The LHC with Forward Direct Photons arXiv

    CERN Document Server

    Cosentino, Mauro R.

    In relativistic nuclear collisions some of the important aspects to be addressed are the effects of the nuclear PDF and the gluon saturation. In the LHC the best way to address these questions is by means of pA collisions and in particular through the measurement of direct photon production in the forward direction. In order to achieve this measurement a new forward calorimeter (FoCal) is proposed as an upgrade to the ALICE experiment. The proposed detector will cover the range 3.5 4 GeV. We will discuss performance studies and demonstrate that extremely high-granularity calorimetry is required for such measurement. We will also present a few results from R\\&D for this project.

  17. Dose estimative in operators during petroleum wells logging with nuclear wireless probes through computer modelling; Estimativa da dose em operadores durante procedimentos de perfilagem de pocos de petroleo com sondas wireless nucleares atraves de modelagem computacional

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lima, Inaya C.B., E-mail: inaya@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto Politecnico do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil); Correa, Samanda Cristine Arruda, E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil); Rocha, Paula L.F., E-mail: ferrucio@acd.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ)., RJ (Brazil). Dept. de Geologia

    2011-10-26

    This paper evaluates the absorbed dose and the effective dose on operators during the petroleum well logging with nuclear wireless that uses gamma radiation sources. To obtain the data, a typical scenery of a logging procedure will be simulated with MCNPX Monte Carlo code. The simulated logging probe was the Density Gamma Probe - TRISOND produced by Robertson Geolloging. The absorbed dose values were estimated through the anthropomorphic simulator in male voxel MAX. The effective dose values were obtained using the ICRP 103

  18. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Montesi, M C; Russo, P

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 mu m pitch) or to the Medipix2 chip (256x256 pixel, 55 mu m pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-mu m thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 mu m circular holes with 170 mu m pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order ...

  19. High homogeneity B(1) 30.2 MHz Nuclear Magnetic Resonance Probe for off-resonance relaxation times measurements.

    Science.gov (United States)

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2011-01-01

    This paper reports on design and construction of a double coil high-homogeneity ensuring Nuclear Magnetic Resonance Probe for off-resonance relaxation time measurements. NMR off-resonance experiments pose unique technical problems. Long irradiation can overheat the sample, dephase the spins because of B(1) field inhomogeneity and degrade the signal received by requiring the receiver bandwidth to be broader than that needed for normal experiment. The probe proposed solves these problems by introducing a separate off-resonance irradiation coil which is larger than the receiver coil and is wound up on the dewar tube that separates it from the receiver coil thus also thermally protects the sample from overheating. Large size of the irradiation coil also improves the field homogeneity because as a ratio of the sample diameter to the magnet (coil) diameter increases, the field inhomogeneity also increases (Blümich et al., 2008) [1]. The small receiver coil offers maximization of the filling factor and a high signal to the noise ratio. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Probing for heavy element impurities in the shell of the Pacific oyster, Crassostrea gigas, with nuclear microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A. E-mail: a.markwitz@gns.cri.nz; Barry, B.; Gauldie, R.W.; Roberts, R.D

    2003-09-01

    Nuclear microscopy was performed on shells of the Pacific oyster, Crassostrea gigas, to probe for heavy element impurities. For the studies 14 shells from the Auckland and the Marlborough Sounds region were chosen. In sections, the shells appear as opaque with white and grey zones, which are related to alternating layers of calcite and aragonite. Raster scans with 2.5 MeV protons over the sections (scan area 5 x 5 mm) were used in the experiment to measure trace elements in the ppm region using proton induced X-ray spectroscopy. Two dimensional maps and line scans revealed the presence of bromine in all shells investigated. Bromine was found to be related with the pattern of calcium. Hot spots of iron proved to be a common feature in the shells as well. In some shells, copper and zinc were also measured in hot spots of a few micrometers in diameter. Spatially resolved results on the micrometer level indicate the usefulness of nuclear microscopy for the detection of heavy elements in shells of the Pacific oyster.

  1. Medium effect in high-density nuclear matter probed by systematic analyses of nucleus-nucleus elastic scattering

    CERN Document Server

    Furumoto, T; Yamamoto, Y

    2016-01-01

    We investigate the property of the high-density nuclear matter probed by the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. The medium effect including three-body-force (TBF) effect is investigated with present two methods based on the frozen density approximation. With the both methods, the medium effect in the high density region is clearly seen on the potential and the elastic cross section of the $^{16}$O + $^{16}$O system at $E/A =$ 70 MeV. The crucial role of the medium effect for the high-density nuclear matter is also confirmed with other effective nucleon-nucleon ($NN$) interactions. In addition, present methods are applied to other heavy-ion elastic scattering systems. Again, the medium effect in the high-density region is clearly seen in the heavy-ion elastic cross section. The effect on the elastic cross section becomes invisible with the increase of the target mass and the incident energy within existing the experiment...

  2. The K{sup +} as a probe of nuclear medium effects

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.

    1992-09-01

    The study of the K+ total cross sections on a wide range of nuclei has revealed important modifications of the free-space K+ -nucleon interaction when the nucleon is embedded in a nucleus. In addition to the previously published data on carbon and deuterium we report here the extension of such measurements to lithium, silicon, and calcium. We demonstrate that the previous reported medium modifications for carbon occur quite generally. The results are discussed as evidence for partial quark deconfinement at nuclear densities.

  3. Roles of Isospin in Evaporation Residue Cross Section as a Probe of Nuclear Dissipation

    Institute of Scientific and Technical Information of China (English)

    JIA Wen-Zhi; CHEN Na; WANG Shun-Jin; YE Wei

    2008-01-01

    The influence of isospin on the excess of evaporation residue cross section over its standard statistical-model value for nuclei 194Pb, 200pb, and 206pb is studied via a Langevin equation coupled with a statistical decay model. The magnitude of this excess for a low-isospin fissioning nucleus is shown to be larger and its dependence on the nuclear viscosity coefficient to be stronger than those of a high-isospin fissioning nucleus. These results suggest that to obtain a more accurate information of viscosity coefficient inside the saddle point by measuring evaporation residue cross sections, we had better choose those compound systems with small isospin.

  4. Feasibility Studies of Exclusive Diffractive Bremsstrahlung Measurement at RHIC Energies

    OpenAIRE

    Chwastowski, Janusz; Cyz, Antoni; Fulek, Łukasz; Kycia, Radosław; Pawlik, Bogdan; Sikora, Rafał; Turnau, Jacek

    2015-01-01

    Feasibility studies of an observation of the exclusive diffractive bremsstrahlung at RHIC at $\\sqrt{s} = 200$~GeV and at $\\sqrt{s} = 500$~GeV are reported. A simplified approach to the photon and the scattered proton energy reconstruction is used. Influence of possible backgrounds is discussed.

  5. Observation of the Muon Inner Bremsstrahlung at LEP1

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Bérat, C; Berggren, M; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Kokkinias, P; Leinonen, L; Katsoufis, E; Kernel, G; Kersevan, B P; Krumshtein, Z; Lesiak, T; Kerzel, U; Liebig, W; King, B T; Lamsa, J; Liko, D; Kjaer, N J; Leder, G; Kluit, P; Kourkoumelis, C; Leitner, R; Kuznetsov, O; Kucharczyk, M; Ledroit, F; Lopes, J H; Lemonne, J; Lepeltier, V; Lipniacka, A; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Paganoni, M; Nassiakou, M; Paiano, S; Navarria, F; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Ouraou, A; Parkes, C; Oblakowska-Mucha, A; Oyanguren, A; Obraztsov, V F; Olshevski, A; Palacios, J P; Onofre, A; Palka, H; Orava, R; Österberg, K; Pape, L; Papadopoulou, T D; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2008-01-01

    Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2 < E_gamma <= 1 GeV and transverse momentum with respect to the parent muon p_T < 40 MeV/c, and 1 < E_gamma <= 10 GeV and p_T < 80 MeV/c . A good agreement of the observed photon rate with predictions from QED for the muon inner bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z^0 decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06 +/- 0.12 +/- 0.07 in the photon energy range 0.2 < E_gamma <= 1 GeV and 1.04 +/- 0.09 +/- 0.12 in the photon energy range 1 < E_gamma <= 10 GeV. The bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP.

  6. Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering

    NARCIS (Netherlands)

    Haeringen, W. van

    1960-01-01

    The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between

  7. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information o

  8. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information o

  9. Observation of the muon inner bremsstrahlung at LEP1

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J.; Antilogus, P.; Augustin, J.E.; Baubillier, M.; Berggren, M.; Silva, W. da; Kapusta, F.; Savoy-Navarro, A. [Univ. Paris VI et VII, LPNHE, IN2P3-CNRS, Paris Cedex 05 (France); Abreu, P.; Andringa, S.; Anjos, N.; Castro, N.; Espirito Santo, M.C.; Goncalves, P.; Moreno, S.; Onofre, A.; Peralta, L.; Pimenta, M.; Tome, B.; Veloso, F. [LIP, IST, Lisboa Codex (Portugal); Adam, W.; Buschbeck, B.; Leder, G.; Liko, D.; MacNaughton, J.; Mandl, F.; Mitaroff, W.; Strauss, J. [Institut fuer Hochenergiephysik, Oesterr. Akad. d. Wissensch., Vienna (Austria); Adzic, P.; Fanourakis, G.; Kokkinias, P.; Loukas, D.; Markou, A.; Mastroyiannopoulos, N.; Nassiakou, M.; Tzamarias, S.; Zupan, M. [Institute of Nuclear Physics, N.C.S.R. Demokritos, P.O. Box 60228, Athens (Greece); Albrecht, T.; Allmendinger, T.; Apel, W.D.; Boer, W. de; Feindt, M.; Haag, C.; Hauler, F.; Hennecke, M.; Jungermann, L.; Kerzel, U.; Moch, M.; Rehn, J.; Sander, C.; Stanitzki, M.; Weiser, C. [Universitaet Karlsruhe, Institut fuer Experimentelle Kernphysik, Postfach 6980, Karlsruhe (Germany); Alemany-Fernandez, R.; Ask, S.; Augustinus, A.; Baillon, P.; Battaglia, M.; Camporesi, T.; Carena, F.; Charpentier, P.; Chierici, R.; Chudoba, J.; Chung, S.U.; Collins, P.; Elsing, M.; Foeth, H.; Gavillet, P.; Herr, H.; Holt, P.J.; Joram, C.; Kjaer, N.J.; Marin, J.C.; Mariotti, C.; Pape, L.; Parzefall, U.; Piotto, E.; Poireau, V.; Rebecchi, P.; Schwickerath, U.; Spassov, T.; Treille, D.; Eldik, J. van; Vulpen, I. van; Wicke, D. [CERN, Geneva 23 (Switzerland); Allport, P.P.; Booth, P.S.L.; Bowcock, T.J.V.; Houlden, M.A.; Jackson, J.N.; King, B.T.; Mc Nulty, R.; Palacios, J.P.; Tobin, M.; Washbrook, A.J. [University of Liverpool, Department of Physics, P.O. Box 147, Liverpool (United Kingdom); Amaldi, U.; Bonesini, M.; Calvi, M.; Matteuzzi, C.; Paganoni, M.; Pullia, A.; Tabarelli, T.; Tonazzo, A. [Universita di Milano-Bicocca and INFN-MILANO, Dipartimento di Fisica, Milan (Italy)] [and others

    2008-10-15

    Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z{sup 0} decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06{+-}0.12{+-}0.07 in the photon energy range 0.2bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP. (orig.)

  10. Effects of relativity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Martinus, G.H.; Scholten, O.; Tjon, J.A.

    1997-01-01

    We investigate the influence of negative-energy states in proton-proton bremsstrahlung in a fully relativistic framework using the T matrix of Fleischer and Tjon. The contribution from negative-energy states in the single-scattering diagrams is shown to be large, indicating that relativistic effects

  11. Meson exchange currents in neutron-proton bremsstrahlung

    NARCIS (Netherlands)

    Li, Yi; Liou, M.K.; Schreiber, W.M.; Gibson, B.F.; Timmermans, R.G.E.

    2008-01-01

    Background: The meson exchange current (MEC) contribution is important in the neutron-proton bremsstrahlung process (np gamma) when the two nucleon-scattering angles are small. However, our understanding of such effects is limited, and the reason why meson exchange current effects dominate the np ga

  12. Spectra and rates of bremsstrahlung neutrino emission in stars

    CERN Document Server

    Guo, Gang

    2016-01-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average $\\bar{\

  13. The interference effect of laser-assisted bremsstrahlung emission in Coulumb fields of two nuclei

    CERN Document Server

    Li, Ankang; Ren, Na; Wang, Pingxiao; Zhu, Wenjun; Li, Xiaoya; Hoehn, Ross; Kais, S

    2013-01-01

    In this paper, the spontaneous bremsstrahlung emission from an electron scattered by two fixed nuclei in an intense laser field is investigated in details based upon the Volkov state and the Dirac-Volkov propagator. It has been found that the fundamental harmonic spectrum from the electron radiation exhibits distinctive fringes, which is dependent not only upon the internucleus distance and orientation, but also upon the initial energy of the electron and the laser intensity. By analyzing the differential cross section, we are able to explain these effects in terms of interference among the electron scattering by the nuclei. These results could have promising applications in probing the atomic or molecular dressed potentials in intense laser fields.

  14. Fundamental nucleon-nucleon interaction: probing exotic nuclear structure using GEANIE at LANCE/WNR

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, L

    2000-02-25

    The initial goal of this project was to study the in-medium nucleon-nucleon interaction by testing the fundamental theory of nuclear structure, the shell model, for nuclei between {sup 8}Zr and {sup 100}Sn. The shell model predicts that nuclei with ''magic'' (2,8,20,28,40,50, and 82) numbers of protons or neutrons form closed shells in the same fashion as noble gas atoms [may49]. A ''doubly magic'' nucleus with a closed shell of both protons and neutrons has an extremely simple structure and is therefore ideal for studying the nucleon-nucleon interaction. The shell model predicts that doubly magic nuclei will be spherical and that they will have large first-excited-state energies ({approx} 1 to 3 MeV). Although the first four doubly-magic nuclei exhibit this behavior, the N = Z = 40 nucleus, {sup 80}Zr, has a very low first-excited-state energy (290 keV) and appears to be highly deformed. This breakdown is attributed to the small size of the shell gap at N = Z = 40. If this description is accurate, then the N = Z = 50 doubly magic nucleus, {sup 100}Sn, will exhibit ''normal'' closed-shell behavior. The unique insight provided by doubly-magic nuclei from {sup 80}Zr to {sup 100}Sn has made them the focus of tremendous interest in the nuclear structure community. However, doubly-magic nuclei heavier than {sup 56}Ni become increasingly difficult to form due to the coulomb repulsion between the protons which favors the formation of neutron-rich nuclei. The coulomb repulsion creates a ''proton drip-line'' beyond which the addition of any additional bound protons is energetically impossible. The drip line renders the traditional experimental technique used in their formation, the heavy-ion reaction, less than ideal as a method of forming doubly-magic nuclei beyond {sup 80}Zr. The result has been a lack of an new spectroscopic information on doubly magic nuclei in more than a decade [lis87

  15. Dynamics of ferrocene in molecular sieves probed by Mossbauer spectroscopy and nuclear resonant scattering

    Energy Technology Data Exchange (ETDEWEB)

    Asthalter, T [Institut fuer Physikalische Chemie, Universitat Stuttgart, D-70569 Stuttgart (Germany); Sergueev, I [European Synchrotron Radiation Facility, F-38043 Grenoble (France); Buerck, U van; Wagner, F E [Experimentalphysik E13, Technische Universitaet Muenchen, D-85747 Garching (Germany); Haerter, P [Anorganische Chemie, Technische Universitaet Muenchen, D-85747 Garching (Germany); Kornatowski, J [Max-Planck-Institut fuer Kohlenforschung, D-45470 Muelheim (Germany); Klingelhoefer, S; Behrens, P, E-mail: t.asthalter@ipc.uni-stuttgart.d [Anorganische Chemie, Leibniz-Universitaet Hannover, D-30167 Hannover (Germany)

    2010-03-01

    A detailed study on the slow dynamics of ferrocene in the unidimensional channels of the molecular sieves SSZ-24 and AlPO{sub 4}-5 has been carried out, using Moessbauer spectroscopy (MS), nuclear forward scattering (NFS) and synchrotron radiation-based perturbed angular correlations (SRPAC). In both host systems, anisotropic rotational dynamics is observed above 100 K. For SSZ-24, this anisotropy persists even above the bulk melting temperature of ferrocene. Various theoretical models are exploited for the study of anisotropic discrete jump rotations for the first time. The experimental data can be described fairly well by a jump model that involves reorientations of the molecular axis on a cone mantle with an opening angle dependant on temperature.

  16. Charge density A probe for the nuclear interaction in microscopic transport models

    CERN Document Server

    Galíchet, E; Lecolley, J F; Bougault, R; Butà, A; Colin, J; Cussol, D; Durand, D; Guinet, D; Lautesse, P; Rivet, M F; Borderie, B; Auger, G; Bouriquet, B; Chbihi, A; Frankland, J D; Guiot, B; Hudan, S; Charvet, J L; Dayras, R; Lavaud, F; Neindre, N L; López, O; Manduci, L; Marie, J; Nalpas, L; Normand, J; Pârlog, M; Pawlowski, P; Plagnol, E; Rosato, E; Steckmeyer, J C; Tamain, B; Lauwe, A V; Vient, E; Volant, C; Wieleczko, J P

    2003-01-01

    The transport properties of the sup 3 sup 6 Ar+ sup 5 sup 8 Ni system at 95 A .MeV measured with the INDRA array, are studied within the BNV kinetic equation. A general protocol of comparison between the N-body experimental fragment information and the one-body distribution function is developed using global variables, with a special focus on charge density. This procedure avoids any definition of sources and any use of an afterburner in the simulation. We shall discuss the feasibility of such an approach and the distortions induced by the finite detection efficiency and the completeness requirements of the data selection. The sensitivity of the different global observables to the macroscopic parameters of the effective nuclear interaction will be studied in detail.

  17. Probing nuclear dynamics and architecture using single-walled carbon nanotubes

    Science.gov (United States)

    Jung, Yoon; Li, Junang; Fakhri, Nikta

    Chromatin is a multiscale dynamic architecture that acts as a template for many biochemical processes such as transcription and DNA replication. Recent developments such as Hi-C technology enable an identification of chromatin interactions across an entire genome. However, a single cell dynamic view of chromatin organization is far from understood. We discuss a new live cell imaging technique to probe the dynamics of the nucleus at a single cell level using single-walled carbon nanotubes (SWNTs). SWNTs are non-perturbing rigid rods (diameter of 1 nm and length of roughly 100 nm) that fluoresce in the near infrared region. Due to their high aspect ratio, they can diffuse in tight spaces and report on the architecture and dynamics of the nucleoplasm. We develop 3D imaging and tracking of SWNTs in the volume of the nucleus using double helix point spread function microscopy (DH-PSF) and discuss the capabilities of the DH-PSF for inferring the 3D orientation of nanotubes based on vectorial diffraction theory.

  18. Effect of pre-equilibrium emission on probing postsaddle nuclear dissipation with neutrons

    Science.gov (United States)

    Tian, Jian; Ye, Wei

    2016-09-01

    Using the stochastic Langevin model coupled with a statistical decay model, we study the influence of pre-equilibrium (PE) emission on probing postsaddle friction (β) with neutrons. A postsaddle friction value of (14 - 16.5) × 1021 s-1 and (11 - 13) × 1021 s-1 is obtained from comparing calculated and measured prescission neutron multiplicities of heavy fissioning systems 248Fm and 256Fm in the absence and presence of the deformation factor. Moreover, it is found that a larger β is required to fit multiplicity data after the PE effect is accounted for, and that the effect becomes stronger when more energy is removed by PE particles. Our findings suggest that, to more accurately determine the postsaddle friction strength through the measurement of prescission neutrons, in addition to incorporating the contribution of PE evaporation source into the experimental multi-source analysis for particle energy spectra in coincidence with fission fragments, on the theoretical side, it is very important to make a precise evaluation of the energy that PE emission carries away from excited compound systems produced in heavy-ion fusion reactions. Supported by National Nature Science Foundation of China (11575044)

  19. Multimodal super-resolution optical microscopy using a transition metal-based probe provides unprecedented capabilities for imaging both nucle-ar chromatin and mitochondria.

    Science.gov (United States)

    Sreedharan, Sreejesh; Gill, Martin; Garcia, Esther; Saeed, Hiwa K; Robinson, Darren; Byrne, Aisling; Cadby, Ashley James; Keyes, Tia E; Smythe, Carl G W; Pellett, Patrina; Bernardino de la Serna, Jorge; Thomas, Jim Antony

    2017-10-04

    Detailed studies on the live cell uptake properties of a dinuclear membrane permeable permeable RuII cell probe show that, at low concentrations, the complex localizes and images mitochondria. At concentrations above ~20 μM the complex images nuclear DNA. Since the complex is extremely photostable, has a large Stokes shift, and displays intrinsic subcellular targeting, its compatibility with super-resolution techniques was investigated. It was found to be very well suited to image mitochondria and nuclear chromatin in two col-our, 2C-SIM; and STED and 3D-STED both in fixed and live cell. In particular, due to its vastly improved photostability compared to conventional SR probes, it can provide images of nuclear DNA at unprecedented resolution.

  20. Effect of bremsstrahlung radiation emission on distributions of runaway electrons in magnetized plasmas

    CERN Document Server

    Embréus, Ola; Newton, Sarah; Papp, Gergely; Hirvijoki, Eero; Fülöp, Tünde

    2015-01-01

    Bremsstrahlung radiation is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of bremsstrahlung radiation reaction on the electron distribution in 2D momentum space. We show that the emission of bremsstrahlung radiation leads to non-monotonic features in the electron distribution function and describe how the simultaneous inclusion of synchrotron and bremsstrahlung radiation losses affects the dynamics of fast electrons. We give quantitative expressions for (1) the maximum electron energy attainable in the presence of bremsstrahlung losses and (2) when bremsstrahlung radiation losses are expected to have a stronger effect than synchrotron losses, and verify these expressions numerically. We find that, in typical tokamak scenarios, synchrotron radiation losses will dominate over bremsstrahlung losses, except in cases of very high density, such as during massive gas injection.

  1. Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Carvalho, B.; Brandao, T. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955, S. Mamede de Infesta (Portugal); Gil, Ana M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2011-09-30

    Graphical abstract: The use of nuclear magnetic resonance (NMR) metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging (at 45 deg. C for up to 18 days) is described. Both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and an aging trend was observed. Inspection of PLS-DA loadings and peak integration revealed the importance of well known markers (e.g. 5-HMF) as well as of other compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. 2D correlation analysis enabled relevant compound variations to be confirmed and inter-compound correlations to be assessed, thus offering improved insight into the chemical aspects of beer aging. Highlights: {center_dot} Use of NMR metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging. {center_dot} Compositional variations evaluated by principal component analysis and partial least squares-discriminant analysis. {center_dot} Results reveal importance of known markers and other compounds: amino and organic acids, higher alcohols, dextrins. {center_dot} 2D correlation analysis reveals inter-compound relationships, offering insight into beer aging chemistry. - Abstract: This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 deg. C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known

  2. Impact of bremsstrahlung on the neutrinosphere for muon and tau neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Hannah; Bartl, Alexander [Institut fuer Kernphysik, TU Darmstadt (Germany); Arcones, Almudena [Institut fuer Kernphysik, TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    Core-collapse supernovae present a challenging and exciting problem that strongly depends on all forces (strong, weak, electromagnetism, and gravity). Neutrinos, although weakly interacting, are key to transporting energy and momentum. Therefore, detailed treatment of neutrino reactions is critical to understand these high energy events. We have studied the impact of different neutrino reactions on the position of the neutrinosphere (i.e., region where neutrinos decouple from matter). Since the density in this region is high the effect of nuclear interactions has to be considered for bremsstrahlung: N+N→N+N+ν+ anti ν. We have employed new, improved approaches to calculate the inverse process and show the effect on the position of the neutrinosphere for muon and tau neutrinos.

  3. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E.

    1996-05-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials.

  4. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons At Long Standoff Distances

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Jones; J.W. Sterbentz; W.Y. Yoon

    2009-06-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung distribution) or as a set of one or more discrete photon energies (i.e., monoenergetic distribution). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). The latter paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). Specifically, this paper will pursue this higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions for air and an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of any secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening atmosphere. *Supported in part by the Defense Threat Reduction Agency and Department of Energy (DOE) Idaho Operations Office under Contract Number DE-AC07-05ID14517.

  5. The LPM effect in sequential bremsstrahlung: 4-gluon vertices

    CERN Document Server

    Arnold, Peter; Iqbal, Shahin

    2016-01-01

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper completes the calculation of the rate for real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; $\\hat q$ approximation; and large $N_c$) by now including processes involving 4-gluon vertices.

  6. Features of Low Energy Classical Bremsstrahlung From Neutral Atoms.

    Science.gov (United States)

    Florescu, A.; Obolensky, O. I.; Pratt, R. H.

    2002-05-01

    We study classical bremsstrahlung from neutral atoms and investigate the features characteristic for the low incident energy region. These features include oscillations in the energy dependence of the bremsstrahlung cross section and structures in the asymmetry parameter of radiation. We use soft-photon limit results to elucidate the physical origins of the features. We show that there is a correspondence between classical and quantum results [1]. In both cases the features result from the suppression of contributions to the radiation from certain angular momenta at certain energies. In quantum mechanics this corresponds to zeroes in certain radiation matrix elements. In the classical case the lack of contribution from some interval of angular momentum is caused by behaviors of elastic electron scattering in screened potentials. [1] A. Florescu, O. I. Obolensky, C. D. Shaffer, and R. H. Pratt 2001 AIP Conference Proceedings 576, 60-64.

  7. Neutrino-pair bremsstrahlung in a neutron star crust

    CERN Document Server

    Ofengeim, D D; Yakovlev, D G

    2014-01-01

    Based on the formalism by Kaminker et al. (Astron. Astrophys. 343 (1999) 1009) we derive an analytic approximation for neutrino-pair bremsstrahlung emissivity due to scattering of electrons by atomic nuclei in the neutron star crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm which we fit by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which the neutrino bremsstrahlung in the crust is affected by strong magnetic fields. The results can be applied for modelling of many phenomena in neutron stars, such as thermal relaxation in young isolated neutron stars and in accreting neutron stars with overheated crust in soft X-ray transients.

  8. A new combined nuclear magnetic resonance and Raman spectroscopic probe applied to in situ investigations of catalysts and catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    Camp, Jules C. J.; Mantle, Michael D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); York, Andrew P. E. [Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH (United Kingdom); McGregor, James, E-mail: james.mcgregor@sheffield.ac.uk [Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2014-06-15

    Both Raman and nuclear magnetic resonance (NMR) spectroscopies are valuable analytical techniques capable of providing mechanistic information and thereby providing insights into chemical processes, including catalytic reactions. Since both techniques are chemically sensitive, they yield not only structural information but also quantitative analysis. In this work, for the first time, the combination of the two techniques in a single experimental apparatus is reported. This entailed the design of a new experimental probe capable of recording simultaneous measurements on the same sample and/or system of interest. The individual datasets acquired by each spectroscopic method are compared to their unmodified, stand-alone equivalents on a single sample as a means to benchmark this novel piece of equipment. The application towards monitoring reaction progress is demonstrated through the evolution of the homogeneous catalysed metathesis of 1‑hexene, with both experimental techniques able to detect reactant consumption and product evolution. This is extended by inclusion of magic angle spinning (MAS) NMR capabilities with a custom made MAS 7 mm rotor capable of spinning speeds up to 1600 Hz, quantified by analysis of the spinning sidebands of a sample of KBr. The value of this is demonstrated through an application involving heterogeneous catalysis, namely the metathesis of 2-pentene and ethene. This provides the added benefit of being able to monitor both the reaction progress (by NMR spectroscopy) and also the structure of the catalyst (by Raman spectroscopy) on the very same sample, facilitating the development of structure-performance relationships.

  9. Bremsstrahlung emission of photons accompanying ternary fission of 252Cf

    Science.gov (United States)

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.; Saccá, C.

    2011-02-01

    We present the first results on the bremsstrahlung emission of photons accompanying ternary spontaneous fission of the 252Cf nucleus. We also compare our calculations on the basis of quantum model with preliminary experimental data and find a good agreement between theory and experiment for photon energies up to 500 keV, when the α-particle emission is in presence of the field of two fission fragments of the daughter nucleus.

  10. Feasibility studies of the diffractive bremsstrahlung measurement at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chwastowski, Janusz J.; Czekierda, Sabina; Staszewski, Rafal; Turnau, Jacek; Trzebinski, Maciej [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow (Poland); Kycia, Radoslaw [Cracow University of Technology, Faculty of Physics, Mathematics and Computer Science, Cracow (Poland)

    2016-06-15

    Feasibility studies of an observation of the exclusive diffractive bremsstrahlung in proton-proton scattering at the centre of mass energy 13 TeV at the LHC are reported. These studies aim at the dedicated data taking periods with low instantaneous luminosity delivered by the LHC where the pile-up interactions can be neglected. A simplified approach to the photon and the scattered proton energy reconstruction is used. The background influence is discussed. (orig.)

  11. Nuclear 111Cd probes detect a hidden symmetry change at the γ → α transition in cerium considered isostructural for 60 years

    Science.gov (United States)

    Tsvyashchenko, A. V.; Nikolaev, A. V.; Velichkov, A. I.; Salamatin, A. V.; Fomicheva, L. N.; Ryasny, G. K.; Sorokin, A. A.; Kochetov, O. I.; Budzynski, M.

    2010-10-01

    We use the time-differential perturbed angular correlation technique to study nuclear electric quadupole hyperfine interactions of probe 111Cd nuclei in cerium lattice sites at room temperature under pressures up to 8 GPa. We have found that the well known γ → α phase transition in cerium is not isostructural. In α-Ce, the probe 111Cd nuclei reveal a quadrupole electron charge density component that is absent in γ-Ce. The hidden spacial structure of electronic quadrupoles in α-Ce is triple-q antiferroquadrupolar, as was suggested in [14]. We relate our findings to the current understanding of the γ → α phase transition and also report on nuclear quadrupole interactions in other high-pressure phases of cerium: α″ ( C2/ m space symmetry) and α' (α-U structure).

  12. Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions

    CERN Document Server

    Gyulassy, M; Vitev, I; Biro, T

    2014-01-01

    We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, $v_n^M\\{1\\}$, and even number $2\\ell$ gluon, $v_n^M\\{2\\ell\\}$ inclusive distributions in high energy p+A reactions as a function of harmonic $n$, %independent target recoil cluster number, $M$, and gluon number, $2\\ell$, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to characteristic boost non-invariant trapezoidal rapidity distributions in asymmetric $B+A$ nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in $\\eta$ nature of the non-abelian \\br leads to $v_n$ moments that are similar to results from hydrodynamic models, but due entirely to non-abelian...

  13. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    Science.gov (United States)

    Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.

    2008-04-01

    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.

  14. Saturation of Nuclear Matter and Roles of Many-Body Forces: nuclear matter in neutron stars probed by nucleus-nucleus scattering

    CERN Document Server

    Sakuragi, Y

    2016-01-01

    Yoichiro Nambu put a great foot print in nuclear physics in the era of its fundamental developments including his pioneering insight into essential ingredients of repulsive core of nuclear force and its relation to the saturation of nuclear matter. The present review article focuses onto recent developments of the interaction models between colliding nuclei in terms of Brueckner's G-matrix theory staring from realistic nuclear forces and the saturation property of symmetric nuclear matter as well as neutron-star matter. A recently proposed unique scenario of extracting the saturation property of nuclear matter and stiffness of neutron stars through the analysis of nucleus-nucleus elastic scattering in laboratories is presented in some detail.

  15. Study of Diffractive Bremsstrahlung at 13 TeV LHC

    CERN Document Server

    Czekierda, Sabina

    2016-01-01

    Feasibility studies of the diffractive bremsstrahlung measurement at the LHC at $\\sqrt s$ = 13 TeV are presented. The method considered for this measurement uses the ATLAS detector and, in particular, the Zero Degree Calorimeter and the ATLAS Forward Proton detectors. The signal and background processes were generated with GenEx and PYTHIA 8.2 generators, respectively. The obtained fiducial cross sections are 1.2 ub for the signal and 6 ub for the background. Further reduction of the background is possible by the optimisation of event selection cuts.

  16. Angular Distribution of Photons in Coherent Bremsstrahlung in Deformed Crystals

    CERN Document Server

    Parazian, V V

    2010-01-01

    We investigate the angular distribution of photons in the coherent bremsstrahlung process by high-energy electrons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  17. Measurements of 1.9 MeV electron Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pino, Neivy; Cabal, Fatima Padilla; D' Alessandro, Katia [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Maidana, Nora Lia; Vanin, Vito Roberto; Martins, Marcos Nogueira; Malafronte, Alexandre; Bonini, Alfredo L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Sempau, Josep [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2011-07-01

    Full text: Bremsstrahlung Cross section of 1.9 MeV electrons in Ti, Ag, and Au were measured at the Microtron accelerator of the IFUSP. Target mass surface density was in the range 0.1 to 1 mg/cm{sup 2} and the electron current varied from 3 to 30 nA, measured by a Faraday cup. The spectra were measured at three angles (30 deg; 90 deg and 60 deg) using a shielded p-type HPGe detector with an spectroscopy amplifier with pile-up rejection and a fast ADC. A 20 cm in length and 1.2 cm in diameter Pb collimator was placed in front of the detector to reduce the contribution of radiation scattered in the irradiation chamber or other background sources. With the goal of increasing the peak to total gamma-ray efficiency, the collimator hole was placed with its axis parallel to the coaxial detector symmetry axis, but displaced 1.4 cm to the right of the detector crystal axis. Hence, the Ge thickness exposed directly to the Bremsstrahlung beam was about 5 times bigger than that in the crystal axis, where the n-contact hole is located. The detector response functions were obtained by Monte Carlo simulations based on experimentally determined detector dimensions, in a procedure described in a companion paper submitted to this conference (Response function of a p-type Ge detector). Two energy bins: 50 keV and 1 keV were used in the Bremsstrahlung spectrum deconvolution. The first one was employed to determine the energy differential cross section from 0.1 to 1.9 MeV, and the second one for a more specific spectra study, in the high frequency limit or 'tip region'. The experimental spectrum was corrected for pile-up, with a simple model that assumes that the amplifier pile-up rejection resolving time is the same for all measured energies, and the photon background, measured with the target retracted from the beam. The Bremsstrahlung spectra B were obtained as: B = R{sup -}1 X E, where R is the matrix of the detector response function and E the recorded spectrum vector

  18. Generation of Long-Lived Isomeric States via Bremsstrahlung Irradiation

    CERN Document Server

    Cheng, Y; Tang, C; Liu, Y; Jin, Q; Cheng, Yao; Xia, Bing; Tang, Chuanxiang; Liu, Yinong; Jin, Qingxiu

    2006-01-01

    A method to generate long-lived isomeric states effectively for Mossbauer applications is reported. We demonstrate that this method is better and easier to provide highly sensitive Mossbauer effect of long-lived isomers (>1ms) such as 103Rh. Excitation of (gamma,gamma) process by synchrotron radiation is painful due mainly to their limited linewidth. Instead,(gamma,gamma') process of bremsstrahlung excitation is applied to create these long-lived isomers. Isomers of 45Sc, 107Ag, 109Ag, and 103Rh have been generated from this method. Among them, 103Rh is the only one that we have obtained the gravitational effect at room temperature.

  19. Nitrogen nuclear spin flips in nitroxide spin probes of different sizes in glassy o-terphenyl: Possible relation with α- and β-relaxations

    Science.gov (United States)

    Isaev, N. P.; Dzuba, S. A.

    2011-09-01

    The pulsed electron-electron double resonance (ELDOR) technique was employed to study nitroxide spin probes of three different sizes dissolved in glassy o-terphenyl. A microwave pulse applied to the central hyperfine structure (hfs) component of the nitroxide electron paramagnetic resonance spectrum was followed by two echo-detecting pulses of different microwave frequency to probe the magnetization transfer (MT) to the low-field hfs component. The MT between hfs components is readily related to flips in the nitrogen nuclear spin, which in turn are induced by molecular motion. The MT on the time scale of tens of microseconds was observed over a wide temperature range, including temperatures near and well below the glass transition. For a bulky nitroxide, it was found that MT rates approach dielectric α (primary) relaxation frequencies reported for o-terphenyl in the literature. For small nitroxides, MT rates were found to match the frequencies of dielectric β (secondary) Johari-Goldstein relaxation. The most probable motional mechanism inducing the nitrogen nuclear spin flips is large-angle angular jumps, between some orientations of unequal occupation probabilities. The pulsed ELDOR of nitroxide spin probes may provide additional insight into the nature of Johari-Goldstein relaxation in glassy media and may serve as a tool for studying this relaxation in substances consisting of non-rigid molecules (such as branched polymers) and in heterogeneous and non-polar systems (such as a core of biological membranes).

  20. The Schiff angular bremsstrahlung distribution from composite media

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.L., E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Dalton, B.; Franich, R.D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne (Australia)

    2012-12-15

    The Schiff differential for the angular distribution of bremsstrahlung is widely employed, but calculations involving composite materials (i.e. compounds and mixtures) are often undertaken in a somewhat ad hoc fashion. In this work, we suggest an alternative approach to power-law estimates of the effective atomic number utilising Seltzer and Berger's combined approach in order to generate single-valued effective atomic numbers applicable over a large energy range (in the worst case deviation from constancy of about 2% between 10 keV and 1 GeV). Differences with power-law estimates of Z for composites are potentially significant, particularly for low-Z media such as biological or surrogate materials as relevant within the context of medical physics. As an example, soft tissue differs by >70% and cortical bone differs by >85%, while for high-Z composites such as a tungsten-rhenium alloy the difference is of the order of 1%. Use of the normalised Schiff formula for shape only does not exhibit strong Z dependence. Consequently, in such contexts the differences are negligible - the power-law approach overestimates the magnitude by 1.05% in the case of water and underestimates it by <0.1% for the high-Z alloys. The differences in the distribution are most pronounced for small angles and where the bremsstrahlung quanta are low energy.

  1. Molecular Bremsstrahlung Radiation at GHz Frequencies in Air

    CERN Document Server

    Samarai, I Al; Deligny, O; Letessier-Selvon, A; Montanet, F; Settimo, M; Stassi, P

    2016-01-01

    A detection technique for ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons/neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be $2\\times10^{-21} $W cm$^{-2}$ GHz$^{-1}$ at 10 km from the shower core for a vertical shower induced by a proton of $10^{17.5}$ eV. In addition, a recent measurement of Bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.

  2. Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom

    CERN Document Server

    Job, P K; Semones, E

    1999-01-01

    High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...

  3. Probes for inspections of heat exchanges installed at nuclear power plants type PWR by eddy current method; Sondas para inspecao de trocadores de calor instalados em usinas nucleares tipo PWR pelo metodo de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alonso F.O. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Enghenharia Mecanica]. E-mail: kauzz21@yahoo.com; Alencar, Donizete A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: daa@cdtn.br

    2007-07-01

    From all non destructive examination methods usable to perform integrity evaluation of critical equipment installed at nuclear power plants (NPP), eddy current test (ET) may be considered the most important one, when examining heat exchangers. For its application, special probes and reference calibration standards are employed. In pressurized water reactor (PWR) NPPs, a particularly critical equipment is the steam generator (SG), a huge heat exchanger that contains thousands of U-bend thin wall tubes. Due to its severe working conditions (pressure and temperature), that component is periodically examined by means of ET. In this paper a revision of the operating fundamentals of the main ET probes, used to perform SG inspections is presented. (author)

  4. Intensity Effects on the Inverse Bremsstrahlung Electron Accelerator

    Science.gov (United States)

    Pakter, Renato

    1998-11-01

    In the inverse bremsstrahlung electron acceleration(S. Kawatana, et al., Phys. Rev. Lett. 66), 2072 (1991); M. S. Hussein and M. P. Pato, ibid. 68, 1136 (1992)., where electrons interact with both an electrostatic wiggler and a large amplitude electromagnetic wave, high particle densities are necessary in order to obtain efficient energy transfer between the laser and the beam. However, beam plasma effects become pronounced at high densities, imposing a limitation on particle energy gain. In this paper, we analyze beam current effects in this acceleration scheme. In particular, a self-consistent Hamiltonian formalism that takes into account both particle and wave dynamics is developed(R. Pakter, Phys. Rev. E, to appear) (1998). A method is presented to overcome the limitation on particle energy gain imposed by beam plasma effects.

  5. Electroweak bremsstrahlung for wino-like Dark Matter annihilations

    CERN Document Server

    Ciafaloni, Paolo; De Simone, Andrea; Riotto, Antonio; Urbano, Alfredo

    2012-01-01

    If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W+W-, while the annihilation into light fermions is helicity suppressed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermion channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.

  6. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    CERN Document Server

    Komarov, S; Churazov, E; Schekochihin, A

    2016-01-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g., conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is $\\sim 0.1 \\%$ at energies $\\gtrsim kT$. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scale...

  7. Bremsstrahlung Energy Losses for Cosmic Ray Electrons and Positrons

    CERN Document Server

    Widom, A; Srivastava, R

    2015-01-01

    Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.

  8. Decay energy of 55Fe from its inner Bremsstrahlung spectrum

    Indian Academy of Sciences (India)

    S L Keshava; K Gopala; P Venkataramaiah

    2001-06-01

    Several measurements of decay energy using the inner Bremsstrahlung spectrum (IB) due to radiative electron capture in 55Fe has been made. But the results are not uniform. Hence another attempt has been made at the same. Experimental data was obtained with a 4.445 cm. dia × 5.08 cm thick NaI (Tl) detector. It was subjected to suitable statistical treatment and various corrections using Liden and Starfelt procedure. The corrected spectrum agrees well with the Glauber and Martin theory for 1s electron capture beyond 100 keV. From the Jauch plot, the decay energy of 232.36 ± 0.64 keV was obtained.

  9. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    CERN Document Server

    van de Bruck, Carsten; Morrice, Jack

    2016-01-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  10. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    Science.gov (United States)

    van de Bruck, Carsten; Burrage, Clare; Morrice, Jack

    2016-08-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  11. Studies of some isomeric yield ratios produced with bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, Dimitar

    1998-05-11

    The experimental isomeric ratios for {sup 52m,g}Mn, {sup 86m,g}Y, {sup 87m,g}Y, {sup 89m,g}Zr, {sup 110m,g}In, {sup 111m,g}In, {sup 112m,g}In, {sup 152m1,g}Pm, {sup 152m2,m1}Eu, {sup 162m,g}Ho, {sup 164m,g}Ho and {sup 178m,g}Lu measured by the activation technique from different targets in ({gamma}, xnp) reactions (x{<=}3) at the bremsstrahlung end-point energy of 43 MeV are presented. The predictions of calculations performed by means of compound nucleus particle evaporation and final {gamma}-deexcitation were critically discussed. The importance of inclusion in the calculations of nonequilibrium particle emission and an adequate {gamma}-decay mode of isomeric nuclei was considered for some of the reactions investigated.

  12. Rhodium M(o)ssbauer Effect Generated by Bremsstrahlung Excitation

    Institute of Scientific and Technical Information of China (English)

    CHENG Yao; XIA Bing; LIU Yi-Nong; JIN Qing-Xiu

    2005-01-01

    @@ A method for effectively generating long-lived Mossbauer photons and methods for proving the associated Mossbauer effects are reported. For the first time, we observed resonant propagation and resonant absorption of 40-keV Mossbauer photons emitted from 103Rh through (γ,γ′) process excited by bremsstrahlung. This is a new efficient way to generate long-lived isomer (> 1 ms) for Mossbauer spectroscopy with sufficient brilliance.An abnormally large ratio of resonant absorption between horizontal and vertical directions indicates horizontal trapping of Mossbauer photons and anisotropic Mossbauer emission, which can be attributed to gravitational effect on the 103Rh Mossbauer isomer with extremely narrow 10-19 eV linewidth.

  13. Spectra and rates of bremsstrahlung neutrino emission in stars

    Science.gov (United States)

    Guo, Gang; Qian, Yong-Zhong

    2016-08-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average ν¯e and ν¯x(x =μ ,τ ) energies, for this process with those for e± pair annihilation, plasmon decay, and photoneutrino emission over a wide range of temperature and density. We also compare our updated energy loss rates for the above thermal neutrino emission processes with the fitting formulas widely used in stellar evolution models and determine the temperature and density domain in which each process dominates. We discuss the implications of our results for detection of ν¯e from massive stars during their presupernova evolution and find that pair annihilation makes the predominant contribution to the signal from the thermal emission processes.

  14. Calculation of Bremsstrahlung energy spectrum induced by beta ray

    CERN Document Server

    Fukano, S

    2003-01-01

    Bremsstrahlung energy spectra induced by beta ray from radionuclides sup 3 H, sup 6 sup 3 Ni, sup 1 sup 4 C, sup 1 sup 4 sup 7 Pm, sup 9 sup 0 Sr, sup 3 sup 2 P and sup 9 sup 0 Y are calculated by using numerical data of radiation yield published by Berger et. al. and compared with those obtained from classical approximate expressions of Wu and Segre. The results for sup 3 H, sup 6 sup 3 Ni, sup 1 sup 4 C and sup 1 sup 4 sup 7 Pm are in good agreement with those from Segre's, while spectra from such as sup 3 sup 2 P and sup 9 sup 0 Y are similar to those obtained by using Wu's expression. The result for sup 9 sup 0 Sr is in fair agreement with those from Wu's and Segre's.

  15. The LPM effect in sequential bremsstrahlung: dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Peter; Chang, Han-Chih [Department of Physics, University of Virginia,382 McCormick Road, Charlottesville, VA 22894-4714 (United States); Iqbal, Shahin [National Centre for Physics,Quaid-i-Azam University Campus, Islamabad, 45320 (Pakistan)

    2016-10-19

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-level amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.

  16. Internal bremsstrahlung endpoint energy of {sup 54}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Hindi, M. M. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Larimer, R.-M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Norman, E. B. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rech, G. A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-05-01

    For {sup 54}Mn there is a discrepancy between the Q{sub EC} obtained from the endpoint energy of the internal bremsstrahlung (IB) spectrum which accompanies the electron capture decay (Q{sub EC}=1353{+-}8 keV) and that obtained from the accepted mass differences (Q{sub EC}=1377{+-}1 keV). This Q value is needed to deduce the partial-half life of the astrophysically interesting {beta}{sup -} decay of {sup 54}Mn from the recently measured {beta}{sup +} partial half-life. To resolve this discrepancy, we have remeasured the endpoint energy of the IB spectrum, by recording coincidences between the IB and the 835-keV {gamma} ray, both detected in Compton-suppressed Ge detectors. The Q{sub EC} we deduce is 1379{+-}8 keV, in agreement with the accepted mass differences. (c) 2000 The American Physical Society.

  17. The LPM effect in sequential bremsstrahlung: dimensional regularization

    Science.gov (United States)

    Arnold, Peter; Chang, Han-Chih; Iqbal, Shahin

    2016-10-01

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-level amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.

  18. The LPM effect in sequential bremsstrahlung: dimensional regularization

    CERN Document Server

    Arnold, Peter; Iqbal, Shahin

    2016-01-01

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-level amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.

  19. The double copy: Bremsstrahlung and accelerating black holes

    CERN Document Server

    Luna, Andres; Nicholson, Isobel; O'Connell, Donal; White, Chris D

    2016-01-01

    Advances in our understanding of perturbation theory suggest the existence of a correspondence between classical general relativity and Yang-Mills theory. A concrete example of this correspondence, which is known as the double copy, was recently introduced for the case of stationary Kerr-Schild spacetimes. Building on this foundation, we examine the simple time-dependent case of an accelerating, radiating point source. The gravitational solution, which generalises the Schwarzschild solution, includes a non-trivial stress-energy tensor. This stress-energy tensor corresponds to a gauge theoretic current in the double copy. We interpret both of these sources as representing the radiative part of the field. Furthermore, in the simple example of Bremsstrahlung, we determine a scattering amplitude describing the radiation, maintaining the double copy throughout. Our results provide the strongest evidence yet that the classical double copy is directly related to the BCJ double copy for scattering amplitudes.

  20. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Dey, R. [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

    2013-07-15

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×10{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  1. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    Science.gov (United States)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  2. Photodissociation of p-process nuclei studied by bremsstrahlung induced activation

    CERN Document Server

    Erhard, M; Beyer, R; Grosse, E; Klug, J; Kosev, K; Nair, C; Nankov, N; Rusev, G; Schilling, K D; Schwengner, R; Wagner, A

    2006-01-01

    A research program has been started to study experimentally the near-threshold photodissociation of nuclides in the chain of cosmic heavy element production with bremsstrahlung from the ELBE accelerator. An important prerequisite for such studies is good knowledge of the bremsstrahlung distribution which was determined by measuring the photodissociation of the deuteron and by comparison with model calculations. First data were obtained for the astrophysically important target nucleus 92-Mo by observing the radioactive decay of the nuclides produced by bremsstrahlung irradiation at end-point energies between 11.8 MeV and 14.0 MeV. The results are compared to recent statistical model calculations.

  3. X-rays from Proton Bremsstrahlung: Evidence from Fusion Reactors and Its Implication in Astrophysics

    CERN Document Server

    Luo, Nie

    2009-01-01

    In a fusion reactor, a proton and a neutron generated in previous reactions may again fuse with each other. Or they can in turn fuse with or be captured by an un-reacted deuteron. The average center-of-mass (COM) energy for such reaction is around 10 keV in a typical fusion reactor, but could be as low as 1 keV. At this low COM energy, the reacting nucleons are in an s-wave state in terms of their relative angular momentum. The single-gamma radiation process is thus strongly suppressed due to conservation laws. Instead the gamma ray released is likely to be accompanied by x-ray photons from a nuclear bremsstrahlung process. The x-ray thus generated has a continuous spectrum and peaks around a few hundred eV to a few keV. The average photon energy and spectrum properties of such a process are calculated with a semiclassical approach. The results give a peak near 1.1 keV for the proton-deuteron fusion and a power-to-the-minus-second law in the spectrum's high-energy limit. An analysis of some prior tokamak disc...

  4. Higher-order corrections to electron-nucleus bremsstrahlung cross sections above a few MeV

    Science.gov (United States)

    Mangiarotti, A.; Martins, M. N.

    2016-08-01

    Despite the fact that the first calculations of nuclear bremsstrahlung cross sections were performed for relativistic electrons more than 80 years ago by Sauter, Bethe and Heitler, and Racah, a fully satisfactory solution to this problem is still missing up to the present day. Numerical approaches are impractical for electrons with energies above a few MeV because they require a prohibitively large number of partial waves. Analytic formulae need to describe simultaneously and accurately the interaction with the Coulomb field of the nucleus and the screening effect of the atomic electrons. In the present paper, a state-of-the-art analytic calculation will be discussed. In particular, higher-order corrections to the interaction with the Coulomb field of the nucleus, a subject seldom tackled in the past, are included and compared extensively with published data. The emerged difficulties will be highlighted, but unfortunately they can be overcome only with future large coordinated theoretical and experimental efforts.

  5. Probing nuclear bubble configuration by the π{sup -} / π{sup +} ratio in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Gao-Chan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2016-05-15

    It is theoretically and experimentally argued that there may exist bubble or toroid-shaped configurations in some nucleus systems. Based on the isospin-dependent transport model of nucleus-nucleus collisions, here we propose a method to probe the bubble configuration in the nucleus. That is, one could use the value of the π{sup -}/π{sup +} ratio especially its kinetic energy distribution in head-on collision at intermediate energies to probe whether there is bubble configuration or not in projectile and target nuclei. Due to different maximum compressions and the effect of symmetry energy, the value of the π{sup -}/π{sup +} ratio in the collision of bubble nuclei is evidently larger than that in the collision of normal nuclei. (orig.)

  6. External bremsstrahlung spectra excited by 204Tl β particles in thick targets

    Science.gov (United States)

    Powar, M. S.; Ahmad, Salim; Singh, M.

    1980-06-01

    Spectral distributions of bremsstrahlung produced by 204Tl β particles in thick targets of Perspex, aluminum, copper, tin, and lead have been measured in a sandwich geometry. The contributions of internal bremsstrahlung produced along with the β particles have been determined by magnetic field deflection as well as the Z=O extrapolation method. Experimental results agree with Bethe-Heitler Born-approximation theory, corrected for Coulomb-field effects for low- and medium-Z targets, but show 25% positive deviation for high-Z targets. Again it is found that the bremsstrahlung produced in low-Z targets like Perspex is comparable with internal bremsstrahlung, and the corrections for its contribution to measurements by earlier workers can lead to large uncertainties.

  7. Precision gamma-ray polarimetry applied to studies of bremsstrahlung produced by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Oleksiy

    2015-12-16

    The thesis reports on the measurement of bremsstrahlung linear polarization produced in collisions of longitudinally and transversely polarized electrons with gold atoms. The experiment was performed at the Mainzer Microtron MAMI in the Institut fuer Kernphysik of Johannes Gutenberg-Universitaet Mainz, Germany. Spin-oriented electrons with 2.15 MeV kinetic energy collided with a thin golden target and produced bremsstrahlung. Linear polarization of the emitted photons was measured by means of Compton polarimetry applied to a segmented high-purity germanium detector. Experimental results reveal a strong correlation between the electron spin orientation and bremsstrahlung linear polarization. This indicates a dominant role of the electron spin in atomic-field bremsstrahlung and Coulomb scattering.

  8. EXPERIMENTAL SET UP TO MEASURE COHERENT BREMSSTRAHLUNG AND BEAM PROFILES IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    TRBOJEVIC,D.; GASNER,D.; MACKAY,W.; MCINTYRE,G.; PEGGS,S.; TEPIKIAN,S.; SERBO,V.; KOTKIN,G.

    2002-06-03

    A proposal for an experiment to detect and measure with an array infrared detector either the infrared radiation from the beam-beam coherent bremsstrahlung or from the synchrotron light from the edge effect of large DX RHIC magnet is described. Predictions for the 100 GeV/nucleon gold and 250 GeV proton signals from both bremsstrahlung and synchtrotron radiation magnet edge effect are shown.

  9. DILEPTON PRODUCTION FROM VIRTUAL BREMSSTRAHLUNG INDUCED BY PROTON CAPTURE

    NARCIS (Netherlands)

    Van Neck, D.; Dieperink, A. E. L.; Scholten, O.

    1994-01-01

    Dilepton production following radiative capture of a proton on a nuclear target is studied in the impulse approximation. The cross section is decomposed in terms of four time-like nuclear structure functions through a longitudinal-transverse separation of the nuclear current. Using a simple PWIA mod

  10. Laser spectroscopy of cadmium isotopes: probing the nuclear structure between the neutron 50 and 82 shell closures

    CERN Multimedia

    Blaum, K; Stroke, H H; Krieger, A R

    We propose to study the isotopic chain of cadmium with high-resolution laser spectroscopy for the first time. Our goal is to determine nuclear spins, moments and root-mean-square charge radii of ground and isomeric states between the neutron 50 and 82 shell closures, contributing decisively to a better understanding of the nuclear structure in the vicinity of the doubly-magic $^{100}$Sn and $^{132}$Sn. On the neutron-rich side this is expected to shed light on a shell-quenching hypothesis and consequently on the duration of the r-process along the waiting-point nuclei below $^{130}$Cd. On the neutron-deficient side it may elucidate the role of the cadmium isotopes in the rp-process for rapidly accreting neutron stars.

  11. Effects of N/Z on Spin Distribution of Evaporation Residue Cross Section as a Probe of Nuclear Dissipation

    Institute of Scientific and Technical Information of China (English)

    YE Wei; YANG Hong-Wei; CHEN Na

    2008-01-01

    The spin distribution of the evaporation residue cross section of nuclei 194Pb,200Pb,206Pb,and 200Os are calculated via a Langevin equation coupled with a statistical decay model.It is shown that with increasing the neutron-to-proton ratio (N/Z) of the system,the sensitivity of the spin distribution to the nuclear dissipation is decreased significantly.Moreover,for 200Os this spin distribution is no longer sensitive to the nuclear dissipation.These results suggest that to obtain a more accurate pre-saddle viscosity coefficient through the measurement of the evaporation residue spin distribution,it is best to yield those compound systems with low N/Z.

  12. Studies of some isomeric yield ratios produced with bremsstrahlung

    CERN Document Server

    Kolev, D

    1998-01-01

    The experimental isomeric ratios for sup 5 sup 2 sup m sup , sup g Mn, sup 8 sup 6 sup m sup , sup g Y, sup 8 sup 7 sup m sup , sup g Y, sup 8 sup 9 sup m sup , sup g Zr, sup 1 sup 1 sup 0 sup m sup , sup g In, sup 1 sup 1 sup 1 sup m sup , sup g In, sup 1 sup 1 sup 2 sup m sup , sup g In, sup 1 sup 5 sup 2 sup m sup 1 sup , sup g Pm, sup 1 sup 5 sup 2 sup m sup 2 sup , sup m sup 1 Eu, sup 1 sup 6 sup 2 sup m sup , sup g Ho, sup 1 sup 6 sup 4 sup m sup , sup g Ho and sup 1 sup 7 sup 8 sup m sup , sup g Lu measured by the activation technique from different targets in (gamma, xnp) reactions (x<=3) at the bremsstrahlung end-point energy of 43 MeV are presented. The predictions of calculations performed by means of compound nucleus particle evaporation and final gamma-deexcitation were critically discussed. The importance of inclusion in the calculations of nonequilibrium particle emission and an adequate gamma-decay mode of isomeric nuclei was considered for some of the reactions investigated.

  13. Scalar Dark Matter Models with Significant Internal Bremsstrahlung

    CERN Document Server

    Giacchino, Federica; Tytgat, Michel H G

    2013-01-01

    There has been interest recently on particle physics models that may give rise to sharp gamma ray spectral features from dark matter annihilation. Because dark matter is supposed to be electrically neutral, it is challenging to build weakly interacting massive particle models that may accommodate both a large cross section into gamma rays at, say, the Galactic center, and the right dark matter abundance. In this work, we consider the gamma ray signatures of a class of scalar dark matter models that interact with Standard Model dominantly through heavy vector-like fermions (the vector-like portal). We focus on a real scalar singlet S annihilating into lepton-antilepton pairs. Because this two-body final-state annihilation channel is d-wave suppressed in the chiral limit, we show that virtual internal bremsstrahlung emission of a gamma ray gives a large correction, both today and at the time of freeze-out. For the sake of comparison, we confront this scenario to the familiar case of a Majorana singlet annihilat...

  14. A Single Bremsstrahlung Monitor to Measure Luminosity at LEP

    CERN Multimedia

    2002-01-01

    The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...

  15. $\\beta$-asymmetry measurements in nuclear $\\beta$-decay as a probe for non-standard model physics

    CERN Multimedia

    Roccia, S

    2002-01-01

    We propose to perform a series of measurements of the $\\beta$-asymmetry parameter in the decay of selected nuclei, in order to investigate the presence of possible time reversal invariant tensor contributions to the weak interaction. The measurements have the potential to improve by a factor of about four on the present limits for such non-standard model contributions in nuclear $\\beta$-decay.

  16. Indole-based cyanine as a nuclear RNA-selective two-photon fluorescent probe for live cell imaging.

    Science.gov (United States)

    Guo, Lei; Chan, Miu Shan; Xu, Di; Tam, Dick Yan; Bolze, Frédéric; Lo, Pik Kwan; Wong, Man Shing

    2015-05-15

    We have demonstrated that the subcellular targeting properties of the indole-based cyanines can be tuned by the functional substituent attached onto the indole moiety in which the first example of a highly RNA-selective and two-photon active fluorescent light-up probe for high contrast and brightness TPEF images of rRNA in the nucleolus of live cells has been developed. It is important to find that this cyanine binds much stronger toward RNA than DNA in a buffer solution as well as selectively stains and targets to rRNA in the nucleolus. Remarkably, the TPEF brightness (Φσmax) is dramatically increased with 11-fold enhancement in the presence of rRNA, leading to the record high Φσmax of 228 GM for RNA. This probe not only shows good biocompatibility and superior photostability but also offers general applicability to various live cell lines including HeLa, HepG2, MCF-7, and KB cells and excellent counterstaining compatibility with commercially available DNA or protein trackers.

  17. Electron spectroscopy in the fundamental process of electron-nucleus bremsstrahlung; Elektronenspektroskopie im Fundamentalprozess der Elektron-Kern-Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, Pierre-Michel

    2013-07-15

    Within the scope of this thesis the fundamental process of electron-nucleus bremsstrahlung was studied in inverse kinematics at the Experimental Storage Ring ESR at GSI. For the system U{sup 88+} + N{sub 2} at 90 MeV/u it was shown, that by using inverse kinematics coincidence measurements between the scattered electron and the emitted photon can be performed for the case, in which the incoming electron transfers almost all of its kinetic energy onto the emitted photon. The sensitivity to the fundamental process could be achieved by measuring triple differential cross sections as a function of the emission angle of the photon and the scattered electron as well as the energy of the scattered electron. The optics of the magnetic electron spectrometer used were thoroughly revised and optimized to the experimental requirements. Analyzing different coincidences in this collision system, it was possible to determine the contributions to the electron distribution arising from radiative electron capture to the projectile continuum, nonradiative electron capture to the projectile continuum, and electron loss to the projectile continuum. The experimental results of each of these processes were compared to theoretical calculations. The electron spectra for the radiative and the nonradiative electron capture to continuum clearly reproduce the opposite asymmetry predicted by theory. Furthermore electron spectra for collisions of U{sup 28+} with different gases were measured.

  18. Probing the specificity of binding to the major nuclear localization sequence-binding site of importin-alpha using oriented peptide library screening.

    Science.gov (United States)

    Yang, Sundy N Y; Takeda, Agnes A S; Fontes, Marcos R M; Harris, Jonathan M; Jans, David A; Kobe, Bostjan

    2010-06-25

    Importin-alpha is the nuclear import receptor that recognizes the classic monopartite and bipartite nuclear localization sequences (cNLSs), which contain one or two clusters of basic amino acids, respectively. Different importin-alpha paralogs in a single organism are specific for distinct repertoires of cargos. Structural studies revealed that monopartite cNLSs and the C-terminal basic clusters of the bipartite cNLSs bind to the same site on importin-alpha, termed the major cNLS-binding site. We used an oriented peptide library approach with five degenerate positions to probe the specificity of the major cNLS-binding site in importin-alpha. We identified the sequences KKKRR, KKKRK, and KKRKK as the optimal sequences for binding to this site for mouse importin-alpha2, human importin-alpha1, and human importin-alpha5, respectively. The crystal structure of mouse importin-alpha2 with its optimal peptide confirmed the expected binding mode resembling the binding of simian virus 40 large tumor-antigen cNLS. Binding assays confirmed that the peptides containing these sequences bound to the corresponding proteins with low nanomolar affinities. Nuclear import assays showed that the sequences acted as functional cNLSs, with specificity for particular importin-alphas. This is the first time that structural information has been linked to an oriented peptide library screening approach for importin-alpha; the results will contribute to understanding of the sequence determinants of cNLSs, and may help identify as yet unidentified cNLSs in novel proteins.

  19. Nuclear clusters as a probe for expansion flow in heavy ion reactions at 10-15A GeV

    CERN Document Server

    Mattiello, R; Stöcker, H; Greiner, W

    1996-01-01

    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low p_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.

  20. Hard probes 2006 Asilomar

    CERN Multimedia

    2006-01-01

    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  1. Tomography of the fast electron Bremsstrahlung emission during lower hybrid current drive on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Imbeaux, F. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France)

    1999-04-01

    A new tomography dedicated to detailed studies of the fast electron Bremsstrahlung emission in the hard X-ray (HXR) energy range between 20 and 200 keV during lower hybrid (LH) current drive experiments on the TORE SUPRA tokamak [Equipe TORE SUPRA, in Proceedings of the 15. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995), 1, AIEA-CN-60 / A1-5, p. 105] is presented. Radiation detection is performed by cadmium telluride(CdTe) semiconductors, which have most of the desirable features for a powerful diagnosing of magnetically confined hot plasmas - compact size, high X-ray stopping efficiency, fast timing characteristics, good energy resolution, no sensitivity to magnetic field, reasonable susceptibility to performance degradation from neutron/{gamma}-induced damages. This instrument is made of two independent cameras viewing a poloidal cross-section of the plasma, with respectively 21 and 38 detectors. A coarse spectrometry - 8 energy channels - is carried out for each chord, with an energy resolution of 20 keV. The spatial resolution in the core of the plasma is 4-5 cm, while the time sampling may be lowered down to of 2-4 ms. Powerful inversion techniques based on maximum entropy or regularization algorithms take fully advantage of the large number of line-integrated measurements for very robust estimates of the local HXR profiles as a function of time and photon energy. A detailed account of main characteristics and performances of the diagnostic is reported as well as preliminary results on LH current drive experiments. (authors)

  2. PROBING THE FERMI BUBBLES IN ULTRAVIOLET ABSORPTION: A SPECTROSCOPIC SIGNATURE OF THE MILKY WAY'S BICONICAL NUCLEAR OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrew J.; Bordoloi, Rongmon; Hernandez, Svea; Tumlinson, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Savage, Blair D.; Wakker, Bart P. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Lockman, Felix J. [National Radio Astronomy Observatory, P.O. Box 2, Rt. 28/92, Green Bank, WV 24944 (United States); Jenkins, Edward B.; Bowen, David V. [Princeton University Observatory, Princeton, NJ 08544 (United States); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Kim, Tae-Sun [Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste (Italy); Benjamin, Robert A., E-mail: afox@stsci.edu [Department of Physics, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190 (United States)

    2015-01-20

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (ℓ, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v {sub LSR} = –235 and +250 km s{sup –1}, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of ≳900 km s{sup –1} and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles.

  3. Z-dependence of thick-target bremsstrahlung produced by monoenergetic low-energy electrons

    Science.gov (United States)

    Czarnecki, S.; Short, A.; Williams, S.

    2016-07-01

    The dependence of thick-target bremsstrahlung emitted by low-energy beams of monoenergetic electrons on the atomic number of the target material has been investigated experimentally for incident electron energies of 4.25 keV and 5.00 keV using thick aluminum, copper, silver, tungsten, and gold targets. Experimental data suggest that the intensity of the thick-target bremsstrahlung emitted is more strongly dependent on the atomic number of the target material for photons with energies that are approximately equal to the energy of the incident electrons than at lower energies, and also that the dependence of thick-target bremsstrahlung on the atomic number of the target material is stronger for incident electrons of higher energies than for incident electrons of lower energies. The results of the experiments are compared to the results of simulations performed using the PENELOPE program (which is commonly used in medical physics) and to thin-target bremsstrahlung theory, as well. Comparisons suggest that the experimental dependence of thick-target bremsstrahlung on the atomic number of the target material may be slightly stronger than the results of the PENELOPE code suggest.

  4. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    Science.gov (United States)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  5. Semi-classical methods in nuclear physics

    Science.gov (United States)

    Brink, David M.

    These lecture notes present an introduction to some semi-classical techniques which have applications in nuclear physics. Topics discussed include the WKB method, approaches based on the Feynman path integral, the Gutzwiller trace formula for level density fluctuations and the Thomas-Fermi approximation and the Vlasov equation for many-body problems. There are applications to heavy ion fusion reactions, bremsstrahlung emission in alpha decay and nuclear response functions.

  6. In vivo assessment of cardiac insulin resistance by nuclear probes using an iodinated tracer of glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Briat, Arnaud; Slimani, Lotfi; Perret, Pascale; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine [INSERM, E0340, Radiopharmaceutiques Biocliniques, Grenoble (France); Univ Grenoble, Grenoble (France); Halimi, Serge [Univ Grenoble, Grenoble (France); Hopital Michallon, Service de Diabetologie, CHRU Grenoble, Grenoble (France); Demongeot, Jacques [Univ Grenoble, Grenoble (France); CNRS, UMR 5525, Grenoble (France)

    2007-11-15

    Insulin resistance, implying depressed cellular sensitivity to insulin, is a risk factor for type 2 diabetes and cardiovascular disease. This study is the first step towards the development of a technique of insulin resistance measurement in humans with a new tracer of glucose transport, [{sup 123}I]6-deoxy-6-iodo-D-glucose (6DIG). We investigated 6DIG kinetics in anaesthetised control rats and in three models of insulin-resistant rats: fructose fed, Zucker and ZDF. The study of myocardial 6DIG activity was performed under two conditions: first, 6DIG was injected under the baseline condition and then it was injected after a bolus injection of insulin. After each injection, radioactivity was measured over 45 min by external detection via NaI probes, in the heart and blood. A tri-compartment model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the heart. These coefficients were significantly increased with insulin in control rats and did not change significantly in insulin-resistant rats. The ratio of the coefficient obtained under insulin to that obtained under basal conditions gave an index of cardiac insulin resistance for each animal. The mean values of these ratios were significantly lower in insulin-resistant than in control rats: 1.16 {+-} 0.06 vs 2.28 {+-} 0.18 (p < 0.001) for the fructose-fed group, 0.92 {+-} 0.05 vs 1.62 {+-} 0.25 (p < 0.01) for the Zucker group and 1.34 {+-} 0.06 vs 2.01 {+-} 0.26 (p < 0.05) for the ZDF group. These results show that 6DIG could be a useful tracer to image cardiac insulin resistance. (orig.)

  7. Probing Nuclear forces beyond the drip-line using the mirror nuclei $^{16}$N and $^{16}$F

    CERN Document Server

    Stefan, I; Sorlin, O; Davinson, T; Lewitowicz, M; Dumitru, G; Angélique, J C; Angélique, M; Berthoumieux, E; Borcea, C; Borcea, R; Buta, A; Daugas, J M; De Grancey, F; Fadil, M; Grévy, S; Kiener, J; Lefebvre-Schuhl, A; Lenhardt, M; Mrazek, J; Negoita, F; Pantelica, D; Pellegriti, M G; Perrot, L; Ploszajczak, M; Roig, O; Laurent, M G Saint; Ray, I; Stanoiu, M; Stodel, C; Tatischeff, V; Thomas, J C

    2014-01-01

    Radioactive beams of $^{14}$O and $^{15}$O were used to populate the resonant states 1/2$^+$, 5/2$^+$ and $0^-,1^-,2^-$ in the unbound $^{15}$F and $^{16}$F nuclei respectively by means of proton elastic scattering reactions in inverse kinematics. Based on their large proton spectroscopic factor values, the resonant states in $^{16}$F can be viewed as a core of $^{14}$O plus a proton in the 2s$_{1/2}$ or 1d$_{5/2}$ shell and a neutron in 1p$_{1/2}$. Experimental energies were used to derive the strength of the 2s$_{1/2}$-1p$_{1/2}$ and 1d$_{5/2}$-1p$_{1/2}$ proton-neutron interactions. It is found that the former changes by 40% compared with the mirror nucleus $^{16}$N, and the second by 10%. This apparent symmetry breaking of the nuclear force between mirror nuclei finds explanation in the role of the large coupling to the continuum for the states built on an $\\ell=0$ proton configuration.

  8. Dilepton bremsstrahlung from pion-pion scattering in a relativistic OBE model

    CERN Document Server

    Eggers, H C; Gale, C; Haglin, K L

    1996-01-01

    We have made a detailed and quantitative study of dilepton production via bremsstrahlung of a virtual photon during pion-pion collisions. Most calculations of electromagnetic radiation from strong interaction processes rely on the soft photon approximation (SPA). The conditions underlying this approximation are generally violated when dilepton spectra are calculated in terms of their invariant mass, so that an approach going beyond the SPA becomes necessary. Superseding previous derivations, we derive an exact formula for the bremsstrahlung cross section. The resulting formulation is compared to various forms based on the SPA, the two-particle phase space approximation and R\\"uckl's formula using a relativistic One Boson Exchange (OBE) model. Within the OBE approach, we show that approximations to the bremsstrahlung dilepton cross sections often differ greatly from the exact result; discrepancies become greater both with rising temperature and with invariant mass. Integrated dilepton production rates are over...

  9. Thermalisation and hard X-ray bremsstrahlung efficiency of self-interacting solar flare fast electrons

    CERN Document Server

    Galloway, R K; MacKinnon, A L; Brown, J C

    2010-01-01

    Most theoretical descriptions of the production of solar flare bremsstrahlung radiation assume the collision of dilute accelerated particles with a cold, dense target plasma, neglecting interactions of the fast particles with each other. This is inadequate for situations where collisions with this background plasma are not completely dominant, as may be the case in, for example, low-density coronal sources. We aim to formulate a model of a self-interacting, entirely fast electron population in the absence of a dense background plasma, to investigate its implications for observed bremsstrahlung spectra and the flare energy budget. We derive approximate expressions for the time-dependent distribution function of the fast electrons using a Fokker-Planck approach. We use these expressions to generate synthetic bremsstrahlung X-ray spectra as would be seen from a corresponding coronal source. We find that our model qualitatively reproduces the observed behaviour of some flares. As the flare progresses, the model's...

  10. Bremsstrahlung emission probability in the {alpha} decay of {sup 210}Po

    Energy Technology Data Exchange (ETDEWEB)

    Boie, Hans-Hermann

    2009-06-03

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed. The measured differential emission probabilities, which could be followed up to {gamma}-energies of {proportional_to} 500 keV, allow for the first time for a serious test of various model calculations of the bremsstrahlung accompanied {alpha} decay. It is shown that corrections to the {alpha}-{gamma} angular correlation due to the interference between the electric dipole and quadrupole amplitudes and due to the relativistic character of the process have to be taken into account. With the experimentally derived angular correlation the measured energydifferential bremsstrahlung emission probabilities show excellent agreement with the fully quantum mechanical calculation. (orig.)

  11. Anomalous inverse bremsstrahlung heating of laser-driven plasmas

    Science.gov (United States)

    Kundu, Mrityunjay

    2016-05-01

    Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.

  12. Nuclear Magnetic Resonance as a Probe of Meso-timescale Dynamics: Ion and H2O Behavior at Mineral-H2O Interfaces

    Science.gov (United States)

    Bowers, G. M.; Kirkpatrick, R. J.; Singer, J. W.

    2012-12-01

    One of the important meso-scales in geochemistry is the meso-timescale that is characteristic of processes too slow to probe with light spectroscopy but too fast to probe macroscopically. Nuclear magnetic resonance (NMR) spectroscopy is one of the only analytical methods with dynamic sensitivity to motions with correlation times on the 10-9 to 1 s timescales and is thus a uniquely powerful probe of meso-timescale dynamic behavior. Here, we describe the results of several studies exploring the meso-timescale motion of ions and H2O at the mineral-H2O interface of hectorite, a smectite clay mineral.1-3 2H, 23Na, 39K and 43Ca NMR results show that H2O molecules associated with the interface undergo anisotropic reorientation due to proximity to the surface and surface-associated cations. This motion can be described by rotational diffusion of the H2O molecule about its C2 symmetry axis at GHz frequencies combined with hopping of the H2O molecule about the normal to the smectite surface at ~>200 kHz. This model describes well the observed 2H NMR spectra of Na+, K+, and Ca2+ hectorites over a range temperatures between -80°C and 50°C, with the specific range dependent only on the total system H2O content. At temperatures above -20°C, systems with excess H2O with respect to a two-layer hydrate (low-H2O pastes through dilute aqueous suspensions) experience additional dynamic averaging due to H2O exchange between cation hydration shells, surface-sorbed species, and bulk inter-particle water. The extent of 2H averaging due to this exchange mechanism is strongly affected by the total H2O content in the system, the identity of the charge balancing cation, and the temperature. The dynamic averaging mechanisms affecting the cationic NMR resonances in these systems become dominated by diffusional processes at progressively lower temperatures as the hydration energy of the cation increases. These interfacial cation dynamics and binding sites are strongly affected by surface

  13. Measurement of yields for the {sup 197}Au(γ,xn){sup 197-x}Au reactions induced by 2.5 GeV Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shahid, Muhammad; Zaman, Muhammah; Nadeem, Muhammad [Kyungpook National University, Daegu (Korea, Republic of); Khue, Pham Duc; Thanh, Kim Tien; Do, Nguyen Van [Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2015-05-15

    Studies of high-energy nuclear reactions are of great important. It may help in deeper understanding of the reaction mechanisms and in extending of various fields of applications such as astrophysics, radiation physics, intense neutron source production and nuclear waste transmutation. The aim of the present work is to investigate the multineutron photonuclear on {sup 197}Au bombarded by 2.5 GeV Bremsstrahlung. Most of the photodisintegration products of gold with half-lives sufficient for the activity measurement. In this work, the necessary corrections were made in order to improve the accuracy of the experimental results The obtained experimental results are in good agreement with the calculated values. The yields for the {sup 197}Au(γ,xn){sup 197}-xAu reactions depend not only on the excitation energies but also on the number of neutrons ejected.

  14. SPECT/CT 90Y-Bremsstrahlung images for dosimetry during therapy

    OpenAIRE

    Fabbri, C.; Sarti, G.; Agostini, M; Di Dia, A; Paganelli, G

    2008-01-01

    Background: the characteristics of 90Y, suitable for therapy, are denoted by the lack of γ-emission. Alternative methods, using analogues labelled with 111In or 86Y, are generally applied to image 90Y-conjugates, with some inevitable drawbacks. New generation SPECT/CT image systems offer improved Bremsstrahlung images. The intent of this brief communication is to show that high quality 90Y-Bremsstrahlung SPECT-CT images can be obtained, allowing the biodistribution of pure β-emitter therapeut...

  15. On the influence of acoustic waves on coherent bremsstrahlung in crystals

    CERN Document Server

    Saharian, A A; Parazian, V V; Grigoryan, L S

    2004-01-01

    We investigate the coherent bremsstrahlung by relativistic electrons in a single crystal excited by hypersonic vibrations. The formula for the corresponding differential cross-section is derived in the case of a sinusoidal wave. The conditions are specified under which the influence of the hypersound is essential. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. It is shown that in dependence of the parameters, the presence of hypersonic waves can either enhance or reduce the bremsstrahlung cross-section.

  16. Probing the water distribution in porous model sands with two immiscible fluids: A nuclear magnetic resonance micro-imaging study

    Science.gov (United States)

    Lee, Bum Han; Lee, Sung Keun

    2017-10-01

    The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first

  17. (113)Cd Nuclear Magnetic Resonance as a Probe of Structural Dynamics in a Flexible Porous Framework Showing Selective O2/N2 and CO2/N2 Adsorption.

    Science.gov (United States)

    Haldar, Ritesh; Inukai, Munehiro; Horike, Satoshi; Uemura, Kazuhiro; Kitagawa, Susumu; Maji, Tapas Kumar

    2016-05-02

    Two new isomorphous three-dimensional porous coordination polymers, {[Cd(bpe)0.5(bdc)(H2O)]·EtOH}n (1) and {[Cd(bpe)0.5(bdc)(H2O)]·2H2O}n (2) [bpe = 1,2-bis(4-pyridyl)ethane, and H2bdc = 1,4-benzenedicarboxylic acid], have been synthesized by altering the solvent media. Both structures contain one-dimensional channels filled with metal-bound water and guest solvent molecules, and desolvated frameworks show significant changes in structure. However, exposure to the solvent vapors (water and methanol) reverts the structure back to the as-synthesized structure, and thus, the reversible flexible nature of the structure was elucidated. The flexibility and permanent porosity were further reinforced from the CO2 adsorption profiles (195 and 273 K) that show stepwise uptake. Moreover, a high selectivity for O2 over N2 at 77 K was realized. The framework exhibits interesting solvent vapor adsorption behavior with dynamic structural transformation depending upon the size, polarity, and coordination ability of the solvent molecules. Further investigation was conducted by solid state (113)Cd nuclear magnetic resonance (NMR) spectroscopy that unambiguously advocates the reversible transformation "pentagonal-bipyramidal CdO6N → octahedral CdO5N" geometry in the desolvated state. For the first time, (113)Cd NMR has been used as a probe of structural flexibility in a porous coordination polymer system.

  18. Experimental bremsstrahlung yields for MeV proton bombardment of beryllium and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)], E-mail: dcz@ansto.gov.au; Stelcer, Eduard; Siegele, Rainer; Ionescu, Mihail; Prior, Michael [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)

    2008-04-15

    Experimental bremsstrahlung yields for 2, 3 and 4 MeV protons on thin beryllium and carbon targets have been measured. The yields have been corrected for detector efficiency, self-absorption in the target and fitted to 9th order polynomials over the X-ray energy range 1-10 keV for easy comparison with theoretical calculations.

  19. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    Science.gov (United States)

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  20. Influence of time characteristics of beam extraction on coherent Bremsstrahlung spectra

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avetisyan, A.E.; Sarkisyan, R.T.; Simonyan, K.A.; Taroyan, S.P.; Zapol' skii, N.A.

    1985-09-01

    This paper describes a new method of increasing the degree of polarization chromaticity of the coherent Bremsstrahlung spectra. The authors consider the time characteristics of electron-beam extraction from the Erevan synchrotron. By adjusting the extraction regime, the Bresstrahlung beam parameters can be controlled. Practical applications of the new method are discussed.

  1. EFFECTS OF MESON-DECAY DIAGRAMS IN PROTON-PROTON BREMSSTRAHLUNG

    NARCIS (Netherlands)

    DEJONG, F; NAKAYAMA, K

    1995-01-01

    We investigate the effect of meson-decay diagrams on the proton-proton bremsstrahlung process. We explicitly include short-range correlations by calculating single- and double-scattering diagrams using an NN T-matrix interaction. We find that in general these diagrams interfere destructively with th

  2. Structure Design and Analysis of Bremsstrahlung Converter for High-power Irradiation Electron Accelerator

    Institute of Scientific and Technical Information of China (English)

    LI; Chun-guang; LIU; Bao-jie; LI; Jin-hai

    2015-01-01

    X-ay has strong penetrating power.It has been widely used in food preservation,medical sterilization,materials modification and so on,and it can supplement the shortcomings of electron beam irradiation.Recently,there is more and more research and application about bremsstrahlung

  3. The influence of negative-energy states on proton-proton bremsstrahlung

    NARCIS (Netherlands)

    deJong, F; Nakayama, K

    1996-01-01

    We investigate the effect of negative-energy states on proton-proton bremsstrahlung using a manifestly covariant amplitude based on a T-matrix constructed in a spectator model. We show that there is a large cancellation among the zeroth-order, single- and double-scattering diagrams involving negativ

  4. Experimental simulation of a stellar photon bath by bremsstrahlung the astrophysical $\\gamma$-process

    CERN Document Server

    Mohr, P J; Babilon, M; Enders, J; Hartmann, T; Hutter, C; Rauscher, T; Volz, S; Zilges, A

    2000-01-01

    The nucleosynthesis of heavy proton-rich nuclei in a stellar photon bath at temperatures of the astrophysical $\\gamma$-process was investigated where the photon bath was simulated by the superposition of bremsstrahlung spectra with different endpoint energies. The method was applied to derive ($\\gamma$,n) cross sections and reaction rates for several platinum isotopes.

  5. Efficient computation of electron-electron bremsstrahlung emission in a hot thermal plasma

    Science.gov (United States)

    Haug, E.

    1989-07-01

    A formula for the cross section of electron-electron bremsstrahlung (EEB) in the center-of-mass system is used to calculate the spectrum of EEB in a hot thermal plasma as well as the total rate of energy loss due to EEB with a minimum amount of computing time.

  6. The scattering of a bremsstrahlung radiation of electrons with energy 13 and 22 MeV from plane targets

    CERN Document Server

    Asatov, U T

    2002-01-01

    In the present work the characteristics of backward (90 sup d egbremsstrahlung radiation of electrons with energy 13 and 22 MeV with plane targets of different thickness from glass textolite, aluminium, iron, lead and their combination are investigated. The dependence of thickness of saturation of 'forward' scattered gamma radiation, a on angles of detection (theta sub s) and orientation (phi) of plane targets depending on a direction of probing beam was observed for the first time. For the first time, the numerical performances of beams of forward scattered gamma radiation from different targets were investigated and determined depending on their orientation and thickness. The new and corrected data on numerical performances of beams of the inverse scattered gamma radiation is obtained. The distinction in characteristics of beams of the scattered gamma radiation is s...

  7. Experimental verification of beam quality in high-contrast imaging with orthogonal bremsstrahlung photon beams.

    Science.gov (United States)

    Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B

    2007-07-01

    Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.

  8. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  9. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  10. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  11. Radial Turgor and Osmotic Pressure Profiles in Intact and Excised Roots of Aster tripolium: Pressure Probe Measurements and Nuclear Magnetic Resonance-Imaging Analysis.

    Science.gov (United States)

    Zimmermann, U; Rygol, J; Balling, A; Klöck, G; Metzler, A; Haase, A

    1992-05-01

    High-resolution nuclear magnetic resonance images (using very short spin-echo times of 3.8 milliseconds) of cross-sections of excised roots of the halophyte Aster tripolium showed radial cell strands separated by air-filled spaces. Radial insertion of the pressure probe (along the cell strands) into roots of intact plants revealed a marked increase of the turgor pressure from the outermost to the sixth cortical layer (from about 0.1-0.6 megapascals). Corresponding measurements of intracellular osmotic pressure in individual cortical cells (by means of a nanoliter osmometer) showed an osmotic pressure gradient of equal magnitude to the turgor pressure. Neither gradient changed significantly when the plants were grown in, or exposed for 1 hour to, media of high salinity. Differences were recorded in the ability of salts and nonelectrolytes to penetrate the apoplast in the root. The reflection coefficients of the cortical cells were approximately 1 for all the solutes tested. Excision of the root from the stem resulted in a collapse of the turgor and osmotic pressure gradients. After about 15 to 30 minutes, the turgor pressure throughout the cortex attained an intermediate (quasistationary) level of about 0.3 megapascals. This value agreed well with the osmotic value deduced from plasmolysis experiments on excised root segments. These and other data provided conclusions about the driving forces for water and solute transport in the roots and about the function of the air-filled radial spaces in water transport. They also showed that excised roots may be artifactual systems.

  12. Measurement of flux-weight average cross-sections of natZn(γ,xn) reactions in the bremsstrahlung end-point energies of 50, 55, 60, and 65 MeV

    Science.gov (United States)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Cho, Young-Sik; Lee, Young-Ok; Shin, Sung-Gyun; Cho, Moo-Hyun; Kang, Yeong-Rok; Lee, Man-Woo

    2017-04-01

    The flux-weighted average cross-sections of (γ , xn) reactions on natZn induced by the bremsstrahlung end-point energies of 50, 55, 60, and 65 MeV have been determined by activation and off-line γ-ray spectrometric technique, using the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The theoretical photon-induced reaction cross-sections of natZn as a function of photon energy were taken from TENDL-2014 nuclear data library based on TALYS 1.6 program. The flux-weighted average cross-sections were obtained from the literature data and the theoretical values of TENDL-2014 based on mono-energetic photon. The flux-weighted reaction cross-sections from the present work and literature data at different bremsstrahlung end-point energies are in good agreement with the theoretical values. It was found that the individual natZn(γ , xn) reaction cross-sections increase sharply from reaction threshold to certain values where the next reaction channel opens. There after it remains constant for a while, where the next reaction channel increases. Then it decreases slowly with increase of bremsstrahlung end-point energy due to opening of different reaction channels.

  13. Nuclear Probing of Dense Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Richard Petrasso

    2007-02-14

    The object of inertial confinement fusion (ICF) is to compress a fuel capsule to a state with high enough density and temperature to ignite, starting a self-sustaining fusion burn that consumes much of the fuel and releases a large amount of energy. The national ICF research program is trying to reach this goal, especially through experiments at the OMEGA laser facility of the University of Rochester Laboratory of Laser Energetics (LLE), planned experiments at the National Ignition Facility (NIF) under construction at the Lawrence Livermore National Laboratory (LLNL), and experimental and theoretical work at other national laboratories. The work by MIT reported here has played several important roles in this national program. First, the development of new and improved charged-particle-based plasma diagnostics has allowed the gathering of new and unique diagnostic information about the implosions of fuel capsules in ICF experiments, providing new means for evaluating experiments and for studying capsule implosion dynamics. Proton spectrometers have become the standard for evaluating the mass assembly in compressed capsules in experiments at OMEGA; the measured energy downshift of either primary or secondary D3He fusion protons to determines the areal density, or ?R, of imploded capsules. The Proton Temporal Diagnostic measures the time history of fusion burn, and multiple proton emission imaging cameras reveal the 3-D spatial distribution of fusion burn. A new compact neutron spectrometer, for measuring fusion yield, is described here for the first time. And of especially high importance to future work is the Magnetic Recoil Spectrometer (MRS), which is a neutron spectrometer that will be used to study a range of important performance parameters in future experiments at the NIF. A prototype is currently being prepared for testing at OMEGA, using a magnet funded by this grant. Second, MIT has used these diagnostic instruments to perform its own physics experiments and analysis with implosions at OMEGA, to provide essential data to other experimenters at LLE, and to work collaboratively with researchers from all the national laboratories (including LLNL, Los Alamos National Laboratory, and Sandia National Laboratory). Some of the implosion dynamics physics studies reported here involve the relationships between drive asymmetries and implosion asymmetries (in terms of both mass assembly and fusion burn); the time evolution of mass assembly and mass asymmetries; the behavior of shock coalescence; and the nature of fuel-shell mix. Third, the MIT program has provided unique educational and research opportunities for both graduate and undergraduate students. The graduate students are deeply engaged in every aspect of our research program, and spend considerable time at OMEGA working on experiments and working with our collaborators from OMEGA and from the National Labs. Many undergraduates have gotten a taste of ICF research, sometimes making significant contributions. We believe that the introduction of energetic and gifted students to the challenging problems of this field and the excitement of the national lab environment leads naturally to the infusion of bright, talented young scientists into our field, and several PhD recipients from this group have become important forces in the field. Finally, this work has provided the foundation for continuing advances during upcoming research, with other experimental and theoretical studies of implosion dynamics. In addition to the continuing application of diagnostic instrumentation used during this grant, important contributions will be made with new diagnostics such as the MRS and with new techniques based on the knowledge obtained here, such as proton radiography.

  14. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2013-01-01

    to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  15. Effect of Degenerated Particles on Internal Bremsstrahlung of Majorana Dark Matter

    CERN Document Server

    Okada, Hiroshi

    2014-01-01

    Gamma-ray generated by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-ray coming from internal bremsstrahlung of dark matter is promising since it can be a leading emission of sharp gamma-ray. However if thermal production of Majorana dark matter is considered, the derived cross section for internal bremsstrahlung becomes too small to be observed by future gamma-ray experiments. We consider a framework to achieve an enhancement of the cross section by taking into account degenerated particles with dark matter. We find that the enhancement of about order one is possible without conflict with the dark matter relic density. Due to the enhancement, it would be tested by the future experiments such as GAMMA-400 and CTA.

  16. Photodisintegration of light nuclei by coherent and incoherent bremsstrahlung from high-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, A.R.; Vartapetyan, G.A.; Grigoryan, E.O.; Deme-dieresiskhina, N.A.

    1986-08-01

    We have investigated the cross sections for photodisintegration reactions in Al, Si, and S calculated by the regularization method proposed by A. N. Tikhonov for solution of the Fredholm integral equation of the first kind. The yields of photoproduction of /sup 24/Na, /sup 18/F, /sup 11/C, and /sup 7/Be were measured in bombardment of targets by coherent and incoherent photon beams obtained in a diamond crystal with bremsstrahlung of 3.57-GeV electrons. The excitation functions of the reactions studied were calculated from the threshold to the maximum energy of the bremsstrahlung spectrum. A characteristic property of the cross sections of all reactions is a clearly expressed resonance structure of the energy dependence.

  17. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Science.gov (United States)

    Tsechanski, A.; Bielajew, A. F.; Archambault, J. P.; Mainegra-Hing, E.

    2016-01-01

    A new "one-stage" approach for production of 99Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of 99Mo via the photoneutron reaction 100Mo(γ,n)99Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r0) W target, for target thickness z > 1.84r0, where r0 is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r0) for target thickness case: z ⩾ 2.0r0. It is shown for the one-stage approach with thicknesses of (1.84-2.0)r0, that the 99Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r0) in the traditional two-stage approach (W converter and separate 99Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the 99Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity for the one-stage approach of three enriched 100Mo-targets of a 2 cm diameter and

  18. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  19. The effect of rf pulse pattern on bremsstrahlung and ion current time evolution of an ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T.; Tarvainen, O.; Toivanen, V.; Peura, P.; Jones, P.; Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, Jyvaeskylae FI-40014 (Finland); Noland, J.; Leitner, D. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2010-02-15

    Time-resolved helium ion production and bremsstrahlung emission from JYFL 14 GHz ECRIS is presented with different radio frequency pulse lengths. rf on times are varied from 5 to 50 ms and rf off times from 10 to 1000 ms between different measurement sets. It is observed that the plasma breakdown occurs a few milliseconds after launching the rf power into the plasma chamber, and in the beginning of the rf pulses a preglow transient is seen. During this transient the ion beam currents are increased by several factors compared to a steady state situation. By adjusting the rf pulse separation the maximum ion beam currents can be maintained during the so-called preglow regime while the amount of bremsstrahlung radiation is significantly decreased.

  20. Radial scanning diagnostics of bremsstrahlung and line emission in T-10 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nemets, A. R., E-mail: Nemets-AR@nrcki.ru; Krupin, V. A.; Klyuchnikov, L. A., E-mail: lklyuchnikov@list.ru; Korobov, K. V.; Nurgaliev, M. R. [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation)

    2016-12-15

    The paper describes the scanning spectroscopic diagnostics designed for measurement of line integrated plasma radiation in two visible spectral ranges. This diagnostic system is aimed at measuring the bremsstrahlung absolute values and profile with high spatial resolution. The bremsstrahlung absolute values are used to determine the value and radial distribution of effective plasma ion charge Z{sub eff}(r) in T-10 discharges. The importance of Z{sub eff} measurement is due to its strong influence on plasma heating, confinement, and stability. The spatial distribution of emission for one of the chosen spectral lines is measured simultaneously with bremsstrahlung. The spatial resolution of measurements is ~1 cm, and the temporal resolution is up to 10 ms. The spectral equipment and methods for its calibration are described. Examples of line integrated brightness distribution in a “continuum window” of 5236 ± 6 Å and brightness of the lines C{sup 5+} (5291 Å), He{sup 1+} (4686 Å), and D{sub β} (4861 Å) are given. Flattening of the bremsstrahlung brightness profile in the central region of the plasma column in some discharges with sawtooth oscillations in the T-10 is observed. The measured effective ion charge profiles in ohmic discharges with high plasma density and low discharge currents demonstrate accumulation of light impurities at the column axis; as a consequence, quenching of sawtooth oscillations in some discharges is observed. The developed diagnostics provides necessary data for investigation of heat, particle, and current transport in the plasma of the T-10. Successful application of the obtained data on Z{sub eff}(r) for investigation of geodesic acoustic modes of plasma oscillations in the T-10 should be specially noted.

  1. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.-W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  2. Self-absorption correction factor for a sample excited by the bremsstrahlung radiation

    CERN Document Server

    Mandal, A C; Mitra, D; Sarkar, M; Bhattacharya, D P

    2002-01-01

    A method of calculating the self-absorption correction factor for fluorescent X-rays from a sample excited by the bremsstrahlung has been described. As a typical example, the correction factors for K subalpha of Si and Cu for different tube voltages have been calculated. Polynomial fit of the correction factor against the tube voltage in the range 10-100 kV has been given for both the elements.

  3. Bremsstrahlung measurements for characterization of intense short-pulse, laser produced fast electrons with OMEGA EP

    Science.gov (United States)

    Daykin, Tyler; Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Chen, Cliff; Beg, Farhat; Chen, Hui; McLean, Harry; Patel, Pravesh; Tommasini, Riccardo

    2016-10-01

    Understanding relativistic fast electron generation and transport inside solids is important for applications such as generation of high energy x-ray sources and fast ignition. An experiment was carried out to study the scaling of the fast electron spectrum and bremsstrahlung generation in multi-pico second laser interactions using 1 ps and 10 ps OMEGA EP short-pulse beam to generate fast electrons at a similar peak intensity of 5x1018 W/cm2. The bremsstrahlung produced by collisions of the fast electrons with background ions was recorded using differential filter stacked spectrometers. A preliminary analysis with a Monte Carlo Code ITS shows that the electrons injection having an electron slope 1.8 MeV matched well with the high energy component of the 1 ps and 10 ps bremsstrahlung measurements. Details of the data analysis and modeling with Monte Carlo and a hybrid particle-in-cell codes will be presented at the conference. Work supported by the UNR Office of the Provost and by DOE/OFES under Contract No. DE-SC0008827. This collaborative work was partially supported under the auspices of the US DOE by LLNL under Contracts No. DE-AC52-07NA27344 and No. DE-FG-02-05ER54834.

  4. High level tritiated water monitoring by Bremsstrahlung counting using a silicon drift detector

    Energy Technology Data Exchange (ETDEWEB)

    Niemes, S.; Sturm, M.; Michling, R.; Bornschein, B. [Institute for Technical Physics - ITEP, Tritium Laboratory Karlsruhe - TLK, Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)

    2015-03-15

    The β-ray induced X-ray spectrometry (BIXS) is a promising technique to monitor the tritium concentration in a fuel cycle of a fusion reactor. For in-situ measurements of high level tritiated water by Bremsstrahlung counting, the characteristics of a low-noise silicon drift detector (SDD) have been examined at the Tritium Laboratory Karlsruhe (TLK). In static measurements with constant sample volume and tritium concentration, the Bremsstrahlung spectra of tritiated water samples in a concentration range of 0.02 to 15 MBq/ml have been obtained. The volume has been kept constant at 5 cm{sup 3}. The observed spectra are well above the noise threshold. In addition to X-rays induced by β-rays, the spectra feature X-ray fluorescence peaks of the surrounding materials. No indications of memory effects have been observed. A linear relation between the X-ray intensity and the tritium concentration was obtained and the lower detection limit of the setup has been determined to 1 MBq ml{sup -1}, assessed by the Curie criterion. In addition, the spectra obtained experimentally could be reproduced with high agreement by Monte-Carlo simulations using the GEANT4-tool-kit. It was found that the present detection system is applicable to non-invasive measurements of high-level tritiated water and the SDD is a convenient tool to detect the low energy Bremsstrahlung X-rays. (authors)

  5. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, Keyvan; Sarfehnia, Arman; Podgorsak, Ervin B; Seuntjens, Jan P [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 avenue Cedar, Montreal, Quebec H3G 1A4 (Canada)

    2007-02-21

    The basic characteristics of orthogonal bremsstrahlung beams are studied and the feasibility of improved contrast imaging with such a beam is evaluated. In the context of this work, orthogonal bremsstrahlung beams represent the component of the bremsstrahlung distribution perpendicular to the electron beam impinging on an accelerator target. The BEAMnrc Monte Carlo code was used to study target characteristics, energy spectra and relative fluences of orthogonal beams to optimize target design. The reliability of the simulations was verified by comparing our results with benchmark experiments. Using the results of the Monte Carlo optimization, the targets with various materials and a collimator were designed and built. The primary pencil electron beam from the research port of a Varian Clinac-18 accelerator striking on Al, Pb and C targets was used to create orthogonal beams. For these beams, diagnostic image contrast was tested by placing simple Lucite objects in the path of the beams and comparing image contrast obtained in the orthogonal direction to the one obtained in the forward direction. The simulations for various target materials and various primary electron energies showed that a width of 80% of the continuous-slowing-down approximation range (R{sub CSDA}) is sufficient to remove electron contamination in the orthogonal direction. The photon fluence of the orthogonal beam for high Z targets is larger compared to low Z targets, i.e. by a factor of 20 for W compared to Be. For a 6 MeV electron beam, the mean energy for low Z targets is calculated to be 320 keV for Al and 150 keV for Be, and for a high Z target like Pb to be 980 keV. For irradiation times of 1.2 s in an electron mode of the linac, the contrast of diagnostic images created with orthogonal beams from the Al target is superior to that in the forward direction. The image contrast and the beam profile of the bremsstrahlung beams were also studied. Both the Monte Carlo study and experiment showed

  6. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging

    Science.gov (United States)

    Jabbari, Keyvan; Sarfehnia, Arman; Podgorsak, Ervin B.; Seuntjens, Jan P.

    2007-02-01

    The basic characteristics of orthogonal bremsstrahlung beams are studied and the feasibility of improved contrast imaging with such a beam is evaluated. In the context of this work, orthogonal bremsstrahlung beams represent the component of the bremsstrahlung distribution perpendicular to the electron beam impinging on an accelerator target. The BEAMnrc Monte Carlo code was used to study target characteristics, energy spectra and relative fluences of orthogonal beams to optimize target design. The reliability of the simulations was verified by comparing our results with benchmark experiments. Using the results of the Monte Carlo optimization, the targets with various materials and a collimator were designed and built. The primary pencil electron beam from the research port of a Varian Clinac-18 accelerator striking on Al, Pb and C targets was used to create orthogonal beams. For these beams, diagnostic image contrast was tested by placing simple Lucite objects in the path of the beams and comparing image contrast obtained in the orthogonal direction to the one obtained in the forward direction. The simulations for various target materials and various primary electron energies showed that a width of 80% of the continuous-slowing-down approximation range (RCSDA) is sufficient to remove electron contamination in the orthogonal direction. The photon fluence of the orthogonal beam for high Z targets is larger compared to low Z targets, i.e. by a factor of 20 for W compared to Be. For a 6 MeV electron beam, the mean energy for low Z targets is calculated to be 320 keV for Al and 150 keV for Be, and for a high Z target like Pb to be 980 keV. For irradiation times of 1.2 s in an electron mode of the linac, the contrast of diagnostic images created with orthogonal beams from the Al target is superior to that in the forward direction. The image contrast and the beam profile of the bremsstrahlung beams were also studied. Both the Monte Carlo study and experiment showed an

  7. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    Science.gov (United States)

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  8. The Design of A Probe Used in Nuclear Quadrupole Resonance Detection System%一种核四极共振探测系统中天线探头的设计方法

    Institute of Scientific and Technical Information of China (English)

    阳燕; 孙宜斌; 何学辉; 朱凯然; 苏涛

    2013-01-01

    To meet the practical demands for nuclear quadrupole resonance (NQR)-based explosive detection system, a probe was designed for suppressing the ring tails. The probe included a high-Q value tune circuit, an impedance matching circuit and a circuit for ring tails suppression. Simulation results showed that the proposed probe design can suppress ring tails effectively, shorten recovery time, and improve the reliability of the detection system.%针对基于核四极共振技术的爆炸物探测系统实际要求提出一种抑制振铃拖尾的天线设计方法.该天线探头由高Q值调谐电路、阻抗匹配电路以及振铃拖尾抑制电路组成.电路仿真结果表明,所设计的天线探头可以有效地抑制振铃拖尾,缩短天线的恢复时间,大大提高探测系统的可靠性.

  9. An Introduction to Drug Discovery by Probing Protein-Substrate Interactions Using Saturation Transfer Difference-Nuclear Magnetic Resonance (STD-NMR)

    Science.gov (United States)

    Guegan, Jean-Paul; Daniellou, Richard

    2012-01-01

    NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…

  10. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology

    Science.gov (United States)

    Zhu, Yizheng; Terry, Neil G.; Woosley, John T.; Shaheen, Nicholas J.; Wax, Adam

    2011-01-01

    We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is enabled by an endoscopic fiber-optic probe that employs a 2.3-m-long coherent fiber bundle and is compatible with the standard 2.8-mm-diam biopsy channel of a gastroscope. The probe allows for real-time data acquisition by collecting the scattering from multiple angles in parallel, enabled by the Fourier domain approach. The performance of the probe is characterized through measurement of critical parameters. The depth-resolved sizing capability of the system is demonstrated using single- and double-layer microsphere phantoms with subwavelength sizing precision and accuracy achieved. Initial results from a clinical feasibility test are also presented to show in vivo application in the human esophagus.

  11. On the bremsstrahlung background correction to the high-energy Compton spectroscopy

    Indian Academy of Sciences (India)

    S Mathur; B L Ahuja

    2005-07-01

    A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time that the BS background contribution in high-energy Compton profile experiments like those employing third generation synchrotron radiation sources comes out to be significant and non-linear. Further, it is found that the incorporation of BS correction in data reduction of such an experiment performed on Hg at 662 keV energy helps in reconciliation of theory and experiment.

  12. Interference Peak in the Spectrum of Bremsstrahlung on Two Amorphous Targets

    CERN Document Server

    Bondarenco, M V

    2014-01-01

    We investigate the interference pattern in the spectrum of non-dipole bremsstrahlung on two amorphous foils. Apart from suppression at lowest $\\omega$, the spectrum exhibits an enhancement adjacent to it. In classical electrodynamics, the net effect of suppression and enhancement proves to be zero. We study the location and the origin of the spectral features, comparing predictions of full Moli\\`ere averaging with those of the Gaussian averaging with Coulomb corrections to the rms multiple scattering angle. Comparison with experimental data, and with previous theoretical predictions is presented.

  13. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    -7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...... in case of energetic heavy nuclei the limits are violated by about an order of magnitude, for a large population of low-energy protons the implied gamma-ray line flux and pi(0)-decay continuum intensity are larger than the existing limits by at least a factor of 2....

  14. Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale.

    Science.gov (United States)

    Ciafaloni, Marcello; Colferai, Dimitri; Veneziano, Gabriele

    2015-10-23

    We argue that, as a consequence of the graviton's spin-2, its bremsstrahlung in trans-Planckian-energy (E≫M(P)) gravitational scattering at small deflection angle can be nicely expressed in terms of helicity-transformation phases and their transfer within the scattering process. The resulting spectrum exhibits deeply sub-Planckian characteristic energies of order M(P)(2)/E≪M(P) (reminiscent of Hawking radiation), a suppressed fragmentation region, and a reduced rapidity plateau, in broad agreement with recent classical estimates.

  15. A Comparative Time Differential Perturbed Angular Correlation Study of the Nuclear Quadrupole Interaction in HfF4·HF·2H2O Using 180mHf and 181Hf(β-)181Ta as Nuclear Probes: Is Ta an Innocent Spy?

    Science.gov (United States)

    Butz, Tilman; Das, Satyendra K.; Manzhur, Yurij

    2009-02-01

    We report on a comparative study of the nuclear quadrupole interaction of the nuclear probes 180mHf and 181Hf(β -)181Ta in HfF4・HF・2H2O using time differential perturbed angular correlations (TDPAC) at 300 K. For the first probe, assuming a Lorentzian frequency distribution, we obtained ωQ= 103(4) Mrad/s, an asymmetry parameter η = 0.68(3), a linewidth δ = 7.3(3.9)%, and full anisotropy within experimental accuracy. For the second probe, assuming a Lorentzian frequency distribution, we obtained three fractions: (1) with 56.5(7)%, ωQ= 126.64(4) Mrad/s and η = 0.9241(4) with a rather small distribution δ = 0.40(8)% which is attributed to HfF4・HF・2H2O; (2) with 4.6(4)%, ωQ = 161.7(3) Mrad/s and η = 0.761(4) assuming no line broadening which is tentatively attributed to a small admixture of Hf2OF6・H2O; (3) the remainder of 39.0(7)% accounts for a rapid loss of anisotropy and is modelled by a perturbation function with a sharp frequency multiplied by an exponential factor exp(-λ t) with λ = 0.55(2) ns-1. Whereas the small admixture of Hf2OF6・H2O escapes detection by the 180mHf probe, there is no rapid loss of roughly half the anisotropy as is the case with 181Hf(β -)181Ta. This loss could in principle be due to fluctuating electric field gradients originating from movements of nearest neighbour HF adducts and/or H2O molecules after nuclear transmutation to the foreign atom Ta which are absent for the isomeric probe. Alternatively, paramagnetic Ta ions could lead to fluctuating magnetic dipole fields which, when combined with fluctuating electric field gradients, could also lead to a rapid loss of anisotropy. In any case, Ta is not an "innocent spy" in this compound. Although 180mHf is not a convenient probe for conventional spectrometers, the use of fast digitizers and software coincidences would allow to use all γ -quanta in the stretched cascade which would greatly improve the efficiency of the spectrometer. 180mHf could also serve as a Pu

  16. Radioembolization with {sup 90}Y-labeled microspheres. Post-therapeutic therapy validation with Bremsstrahlung-SPECT; Radioembolisation mit {sup 90}Y-markierten Mikrosphaeren. Posttherapeutische Therapievalidierung mit Bremsstrahlungs-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, Oliver S. [Universitaetsklinikum Magdeburg A.oe.R. (Germany). Klinik fuer Radiologie und Nuklearmedizin; Medizinische Hochschule Hannover (Germany). Stabsstelle Strahlenschutz und Medizinische Physik; Nultsch, Madeleine; Laatz, Kathleen [Universitaetsklinikum Magdeburg A.oe.R. (Germany). Klinik fuer Radiologie und Nuklearmedizin] [and others

    2011-07-01

    During the last years angiographic Selective Internal Radiotherapy (SIRT) with {sup 90}Y-labelled microspheres has become a common technique for the local-ablative treatment of cancer patients. SIRT is a palliative therapy concept for the treatment of liver malignancies. As a result of {sup 90}Y-decay as {beta}{sup -}-emitter without a concomitant gamma radiation, Bremsstrahlung imaging is needed to validate the distribution achieved by radioembolisation. This article demonstrates the method of imaging through phantom measurement and shows the advantages of post-therapeutic tomography by means of a patient study. Approaches for further optimization of Bremsstrahlung imaging are discussed. (orig.)

  17. Determination of level widths in 15N using nuclear resonance fluorescence

    Directory of Open Access Journals (Sweden)

    Szücs T.

    2015-01-01

    Full Text Available Level widths in 15N have been measured with the nuclear resonance fluorescence (NRF technique. Solid nitrogen compounds, bremsstrahlung, and HPGe detectors have been used as target, beam, and detectors, respectively. The preliminarily level widths are in agreement with the literature values, but more precise.

  18. Stabilization effect ofWeibel modes due to inverse bremsstrahlung absorption in laser fusion plasma using Krook collisions model

    Indian Academy of Sciences (India)

    S BELGHIT; A SID

    2016-12-01

    In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed. The main result obtained in this work is that the inclusion of self-generated magnetic field due to Weibel instability to the inverse bremsstrahlung absorption causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes.This decrease is accompanied by a reduction of two orders in the growth rate of instability or even stabilization of these modes. It has been shown that the previous analyses of the Weibel instability due to inverse bremsstrahlunghave overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the Weibel instability due to inverse bremsstrahlung should not affect the experiences of an inertial confinement fusion.

  19. Does sub-barrier bremsstrahlung in alpha-decay of sup 2 sup 1 sup 0 Po exist?

    CERN Document Server

    Maydanyuk, S P

    2003-01-01

    A quantum mechanical model for the description of the alpha-decay of heavy nuclei with accompanying photons emission is presented. The model is based on a quantum mechanical one-particle model of alpha-decay through a decay barrier. The bremsstrahlung spectrum calculation employs multipole expansion of the vector potential of the Coulomb field of the daughter nucleus and takes into account the dependence on the angle between the directions of the alpha-particle propagation and the photon emission. Spectra of sup 2 sup 1 sup 0 Po are obtained for the angles 25deg and 90deg, and the best agreement with the experimental data in the 90deg case in a comparison with other existing models is achieved. From the angular analysis, the model gives monotonic behavior of the bremsstrahlung spectrum for any value of the angle. We find that sub-barrier photon emission exists but gives a small contribution to the total bremsstrahlung spectrum. (author)

  20. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    ANDA VS; EDGEMON GL; HAGENSEN AR; BOOMER KD; CAROTHERS KG

    2009-01-08

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation.

  1. Bremsstrahlung suppression due to the Landau-Pomeranchuk-Migdal and dielectric effects in a variety of materials

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, P.L.; Becker-Szendy, R.; Keller, L.P.; Niemi, G.; Perl, M.L.; Rochester, L.S.; White, J.L. [Stanford Linear Accelerator Center, Stanford, California 94309 (United States); Bosted, P.E.; White, J.L. [The American University, Washington, D.C. 20016 (United States); Cavalli-Sforza, M.; Kelley, L.A.; Klein, S.R. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064 (United States); Klein, S.R. [Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)

    1997-08-01

    The cross section for bremsstrahlung from highly relativistic particles is suppressed due to interference caused by multiple scattering in dense media, and due to photon interactions with the electrons in all materials. We present here a detailed study of bremsstrahlung production of 200 keV to 500 MeV photons from 8 and 25 GeV electrons traversing a variety of target materials. For most targets, we observe the expected suppressions to a good accuracy. We observe that finite thickness effects are important for thin targets. {copyright} {ital 1997} {ital The American Physical Society}

  2. Formation region effects in transition radiation, bremsstrahlung, and ionization loss of ultrarelativistic electrons

    Directory of Open Access Journals (Sweden)

    S. V. Trofymenko

    2016-11-01

    Full Text Available The processes of transition radiation and bremsstrahlung by an ultrarelativistic electron as well as the effect of transition radiation influence upon the electron ionization loss in thin layer of substance are theoretically investigated in the case when radiation formation region has macroscopically large size. Special attention is drawn to transition radiation (TR generated during the traversal of thin metallic plate by the electron previously deflected from its initial direction of motion. In this case TR characteristics are calculated for realistic (circular shape of the electron deflection trajectory. The difference of such characteristics under certain conditions from the ones obtained previously with the use of approximation of anglelike shape of the electron trajectory (instant deflection is shown. The problem of measurement of bremsstrahlung characteristics in the prewave zone is investigated. The expressions defining the measured radiation distribution for arbitrary values of the size and the position of the detector used for radiation registration are derived. The problem of TR influence upon the electron ionization loss in thin plate and in a system of two plates is discussed. The proposal for experimental investigation of such effect is formulated.

  3. Formation region effects in transition radiation, bremsstrahlung, and ionization loss of ultrarelativistic electrons

    Science.gov (United States)

    Trofymenko, S. V.; Shul'ga, N. F.

    2016-11-01

    The processes of transition radiation and bremsstrahlung by an ultrarelativistic electron as well as the effect of transition radiation influence upon the electron ionization loss in thin layer of substance are theoretically investigated in the case when radiation formation region has macroscopically large size. Special attention is drawn to transition radiation (TR) generated during the traversal of thin metallic plate by the electron previously deflected from its initial direction of motion. In this case TR characteristics are calculated for realistic (circular) shape of the electron deflection trajectory. The difference of such characteristics under certain conditions from the ones obtained previously with the use of approximation of anglelike shape of the electron trajectory (instant deflection) is shown. The problem of measurement of bremsstrahlung characteristics in the prewave zone is investigated. The expressions defining the measured radiation distribution for arbitrary values of the size and the position of the detector used for radiation registration are derived. The problem of TR influence upon the electron ionization loss in thin plate and in a system of two plates is discussed. The proposal for experimental investigation of such effect is formulated.

  4. Validation of the Geant4 simulation of bremsstrahlung from thick targets below 3 MeV

    CERN Document Server

    Pandola, Luciano; Caccia, Barbara

    2014-01-01

    The bremsstrahlung spectra produced by electrons impinging on thick targets are simulated using the Geant4 Monte Carlo toolkit. Simulations are validated against experimental data available in literature for a range of energy between 0.5 and 2.8 MeV for Al and Fe targets and for a value of energy of 70 keV for Al, Ag, W and Pb targets. All three independent sets of electromagnetic models available in Geant4 to simulate bremsstrahlung are tested. A quantitative analysis is performed reproducing with each model the energy spectrum for the different configurations of emission angles, energies and targets. At higher energies (0.5-2.8 MeV) of the impinging electrons on Al and Fe targets, Geant4 is able to reproduce the spectral shapes and the integral photon emission in the forward direction (at better than 10%). The physics model based on the Penelope Monte Carlo code seems slightly preferable over the other two. However, all models over-estimate the photon emission in the backward hemisphere. For the lower energ...

  5. Characterization of the hot electron population with bremsstrahlung and backscatter measurements at the National Ignition Facility

    Science.gov (United States)

    Albert, Felicie; Hohenberger, Matthias; Michel, Pierre; Divol, Laurent; Doeppner, Tilo; Dewald, Edward; Bachmann, Benjamin; Ralph, Joseph; Turnbull, David; Goyon, Clement; Thomas, Cliff; Landen, Otto; Moody, John

    2016-10-01

    In indirect-drive ignition experiments, the hot electron population, produced by laser-plasma interactions, can be inferred from the bremsstrahlung generated by the interaction of the hot electrons with the target. At the National Ignition Facility (NIF), the upgraded filter-fluorescer x-ray diagnostic (FFLEX), a 10-channel, time-resolved hard x-ray spectrometer operating in the 20- to 500-keV range, provides measurements of the bremsstrahlung spectrum. It typically shows a two-temperature distribution of the hot electron population inside the hohlraum. In SRS, where the laser is coupled to an electron plasma wave, the backscattered spectrum, measured with the NIF full-aperture backscatter system (FABS), is used to infer the plasma wave phase velocity. We will present FFLEX time-integrated and time-resolved measurements of the hot electron population low-temperature component. We will correlate them with electron plasma wave phase velocities inferred from FABS spectra for a range of recent shots performed at the National Ignition Facility. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung

    Science.gov (United States)

    Sawada, H.; Sentoku, Y.; Bass, A.; Griffin, B.; Pandit, R.; Beg, F.; Chen, H.; McLean, H.; Link, A. J.; Patel, P. K.; Ping, Y.

    2015-11-01

    Energy distribution of high-power, short-pulse laser produced fast electrons was experimentally and numerically studied using high-energy bremsstrahlung x-rays. The hard x-ray photons and escaping electrons from various metal foils, irradiated by the 50 TW Leopard laser at Nevada Terawatt Facility, were recorded with a differential filter stack spectrometer that is sensitive to photons produced by mainly 0.5-2 MeV electrons and an electron spectrometer measuring >2 MeV electrons. The experimental bremsstrahlung and the slope of the measured escaped electrons were compared with an analytic calculation using an input electron spectrum estimated with the ponderomotive scaling. The result shows that the electron spectrum entering a Cu foil could be continuous single slope with the slope temperature of ˜1.5 MeV in the detector range. The experiment and analytic calculation were then compared with a 2D particle-in-cell code, PICLS, including a newly developed radiation transport module. The simulation shows that a two-temperature electron distribution is generated at the laser interaction region, but only the hot component of the fast electrons flow into the target during the interaction because the low energy electron component is trapped by self-generated magnetic field in the preformed plasma. A significant amount of the photons less than 100 keV observed in the experiment could be attributed to the low energy electrons entering the foil a few picoseconds later after the gating field disappears.

  7. Effect of degenerate particles on internal bremsstrahlung of Majorana dark matter

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2015-11-01

    Full Text Available Gamma-rays induced by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-rays generated by internal bremsstrahlung of Majorana and real scalar dark matter is promising since it can be a leading emission of sharp gamma-rays. However in the case of Majorana dark matter, its cross section for internal bremsstrahlung cannot be large enough to be observed by future gamma-ray experiments if the observed relic density is assumed to be thermally produced. In this paper, we introduce some degenerate particles with Majorana dark matter, and show they lead enhancement of the cross section. As a result, increase of about one order of magnitude for the cross section is possible without conflict with the observed relic density, and it would be tested by the future gamma-ray experiments such as GAMMA-400 and Cherenkov Telescope Array (CTA. In addition, the constraints of perturbativity, positron observation by the AMS experiment and direct search for dark matter are discussed.

  8. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  9. Tomographic bremsstrahlung imaging with yttrium-90 in the context of radioembolisation of liver tumors; Tomografische Bildgebung mit Yttrium-90-Bremsstrahlung im Rahmen der Radioembolisation von Lebertumoren

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, Oliver Stephan

    2013-04-12

    Establish tomographic Bremsstrahlung SPECT imaging (BSPECT) for the clinical validation of Selective Internal Radiotherapy (SIRT) with Yttrium-90 ({sup 90}Y) labelled microspheres. Various energy ranges (75 ± 3.8 keV; 135 ± 6.8 keV; 167 ± 8.4 keV) and the summation window were studied to see if they were suitable for BSPECT. To this end, clinically available reconstruction techniques were analysed for their suitability for BSPECT. The tomographic examinations were performed on a cylindrical phantom filled with spheres of different diameters d = [28; 35; 40; 50; 60] mm in a non-active waterfilled background. The spheres were filled with identical {sup 90}Y activity concentration (AC). Measurements were conducted at AC = [14.58; 5.20; 1.98; 0.66] MBq/cm{sup 3}. The BSPECT were reconstructed with filtered back-projection (FBP), a 2D Ordered-Subset Expectation Maximisation Algorithm (2D-OSEM) and a 3D Geometric Mean Algorithm (3D-GMA). Evaluation was made visually and on the basis of objective performance parameters such as contrast, signal-to-noise ratio (SNR) and image noise. While the 75 keV ± 3.8 keV window was identified as suitable for the BSPECT, limitations were revealed as to use of different implementations of the Point Spread Function (PSF). It was found for all reconstruction techniques that, at a given sphere diameter, there existed a linear relationship between the AC in the spheres and the reconstructed pulse rate per volume element. The recovery effect was verified for small spheres. The iterative techniques were found to be suitable for the BSPECT at all AC. At low AC, the 3D-GMA exhibited the least noise and the highest SNR. The FBP turned out to be entirely inappropriate for the BSPECT. The narrow energy window in which the bremsstrahlung interferes with the characteristic X-radiation of lead can be used for BSPECT. In this approach, the tomographic data reconstructed with different algorithms exhibited a varying image quality, with the iterative

  10. Calculation of gamma-ray buildup factors up to depths of 100 mfp by the method of invariant embedding. (2) Improved treatment of bremsstrahlung

    CERN Document Server

    Shimizu, A

    2003-01-01

    An improved method to calculate the gamma-ray buildup factors including bremsstrahlung has been developed. The exposure buildup factors with bremsstrahlung were computer by the present method for lead, iron and water at the source energy of 10.0 MeV up to depths of 100 mfp. The accuracy of the present method was checked by comparison with the calculations by use of EGS4. Excellent agreement was obtained between the calculations by both methods about the exposure buildup factors per energy (energy spectrum of transmitted photons) for lead up to depths of 10 mfp and the ratio of the exposure buildup factor with bremsstrahlung to that without bremsstrahlung for lead, iron and water up to depths of 40 mfp. It is confirmed that the present method has an accuracy sufficient to be used to the generation of an improved set of gamma-ray buildup factors including bremsstrahlung. (author)

  11. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: tajindersingh2k9@gmail.com [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)

    2017-06-15

    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  12. Estimation of Electron Dose Delivered by a 0.4 MeV Accelerator from Bremsstrahlung Dose Measurements

    DEFF Research Database (Denmark)

    Karadjov, A. G.; Hansen, Jørgen-Walther

    1980-01-01

    Determination of a 0.4 MeV electron dose from a bremsstrahlung dose measurement using a converter-detector system is considered. The detector used is a Frickle dosimeter, and the converters are aluminum, copper and lead foils. Optimal converter thickness is ascertained experimentally for each mat...

  13. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Departamento de Fisica, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra, Coimbra (Portugal); Sona, P., E-mail: pietro.sona@fi.infn.it [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Ballestrero, S. [Department of Physics University of Johannesburg, Johannesburg (South Africa); CERN PH/ADT, Geneve (Switzerland); Uggerhoj, U.I.; Andersen, K.K. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2012-10-15

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are established. The separate contributions to spectral distortion of electromagnetic processes other than bremsstrahlung are also studied in detail.

  14. Theoretical Methods in the Calculation of the Bremsstrahlung Recoil Force in a Nonequilibrium Beam-Plasma System.

    Science.gov (United States)

    1984-05-01

    HDL technical report). H. E. Brandt, Bremsstrahlung Recoil Force on the Third-Order Nonlinear kip Dynamic Polarization Charge of a Relativistic Test...ASTROPHYSICS ATTN CENTER FOR RADIATION RESEARCH ATTN K. THORNE ATTN C. TEAGUE 130-33 ATTN E. MARX PASADENA, CA 91125 WASHINGTON, DC 20234 UNIVERSITY OF

  15. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johan B.C.; Khatib, Mohammed G.; Koelmans, Wabe W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data chan

  16. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    2016-01-01

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  17. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Commaux, N.; Shiraki, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California, San Diego, La Jolla, California 92093-0533 (United States)

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  18. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    Science.gov (United States)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  19. Nuclear power in space. Use of reactors and radioactive substances as power sources in satellites and space probes; Kaernkraft i rymden. Anvaendningen av reaktorer och radioaktiva aemnen som kraftkaellor i satelliter och rymdsonder

    Energy Technology Data Exchange (ETDEWEB)

    Hoestbaeck, Lars

    2008-11-15

    Today solar panels are the most common technique to supply power to satellites. Solar panels will work as long as the power demand of the satellite is limited and the satellite can be equipped with enough panels, and kept in an orbit that allows enough sunlight to hit the panels. There are various types of space missions that do not fulfil these criteria. With nuclear power these types of missions can be powered regardless of the sunlight and as early as 1961 the first satellite with a nuclear power source was placed in orbit. Out of seventy known space missions that has made use of nuclear power, ten have had some kind of failure. In no case has the failure been associated with the nuclear technology used. This report discusses to what degree satellites with nuclear power are a source for potential radioactive contamination of Swedish territory. It is not a discussion for or against nuclear power in space. Neither is it an assessment of consequences if radioactive material from a satellite would reach the earth's surface. Historically two different kinds of Nuclear Power Sources (NPS) have been used to generate electric power in space. The first is the reactor where the energy is derived from nuclear fission of 235U and the second is the Radioisotope Thermoelectric Generator (RTG) where electricity is generated from the heat of naturally decaying radionuclides. NPS has historically only been used in space by United States and the Soviet Union (and in one failing operation Russia). Nuclear Power Sources have been used in three types of space objects: satellites, space probes and moon/Mars vehicles. USA has launched one experimental reactor into orbit, all other use of NPS by the USA has been RTG:s. The Soviet Union, in contrast, only launched a few RTG:s but nearly forty reactors. The Soviet use of NPS is less transparent than the use in USA and some data published on Soviet systems are more or less well substantiated assessments. It is likely that also future

  20. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    Science.gov (United States)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  1. The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes

    CERN Document Server

    Aranha, R F; Soares, I Damião; Tonini, E V

    2008-01-01

    We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the characteristic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency $\\Delta$ of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter $q \\simeq 1/2$; the result extends and validates analysis based on the linearized t...

  2. Energy dependence of hard bremsstrahlung production in proton-proton collisions in the Delta(1232) region

    CERN Document Server

    Tsirkov, D; Azaryan, T; Chiladze, D; Dymov, S; Dzyuba, A; Hartmann, M; Kacharava, A; Khoukaz, A; Kulikov, A; Kurbatov, V; Macharashvili, G; Merzliakov, S; Mielke, M; Mikirtychiants, S; Nekipelov, M; Rathmann, F; Serdyuk, V; Stroeher, H; Uzikov, Yu; Valdau, Yu; Wilkin, C

    2010-01-01

    Hard bremsstrahlung production in proton-proton collisions has been studied with the ANKE spectrometer at COSY-Juelich in the energy range of 353-800 MeV by detecting the final proton pair {pp}_s from the pp -> {pp}_s reaction with very low excitation energy. Differential cross sections were measured at small diproton c.m. angles from 0 to 20 degrees and the average over this angular interval reveals a broad peak at a beam energy around 650 MeV with a FWHM of about 220 MeV, suggesting the influence of Delta(1232)N intermediate states. Comparison with deuteron photodisintegration shows that the cross section for diproton production is up to two orders of magnitude smaller, due largely to differences in the selection rules.

  3. BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marco S. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstraße 15, 12489 Berlin (Germany); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parmaand INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICETCiudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Penati, Silvia [Dipartimento di Fisica, Università di Milano-Bicoccaand INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenzeand INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2014-06-19

    We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the appearance of framing-like phases and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.

  4. Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution.

    Science.gov (United States)

    Weng, Su-Ming; Sheng, Zheng-Ming; Zhang, Jie

    2009-11-01

    Inverse bremsstrahlung (IB) absorption and evolution of the electron distribution function (EDF) in a wide laser intensity range (10;{12}-10;{17} W/cm;{2}) have been studied systematically by a two velocity-dimension Fokker-Planck code. It is found that Langdon's IB operator overestimates the absorption rate at high laser intensity, consequently with an overdistorted non-Maxwellian EDF. According to the small anisotropy of EDF in the oscillation frame, we introduce an IB operator which is similar to Langdon's but without the low laser intensity limit. This operator is appropriate for self-consistently tackling the nonlinear effects of high laser intensity as well as non-Maxwellian EDF. Particularly, our operator is capable of treating IB absorption properly in the indirect and direct-drive inertial confinement fusion schemes with the National Ignition Facility and Laser MegaJoule laser parameters at focused laser intensity beyond 10;{15} W/cm;{2} .

  5. Thick-target external-bremsstrahlung spectra of 147Pm and 35S β rays

    Science.gov (United States)

    Dhaliwal, A. S.; Powar, M. S.; Singh, M.

    1993-08-01

    External-bremsstrahlung spectra excited by soft β particles of 147Pm (Emaxβ=225 keV) and 35S (Emaxβ=167 keV) in targets of Al, Cu, Sn, and Pb have been studied. The experimental and theoretical results are compared in terms of the number of photons of energy k per m0c2 per unit photon yield to exclude the uncertainty in the source strength measurement and overcome the inherent inadequacy of the normalization procedure used by earlier workers. The results of present measurements for medium- and high-Z elements show better agreement with the theory of Tseng and Pratt [Phys. Rev. A 3, 1714 (1976)] than with Elwert's corrections [Ann. Phys. (N.Y.) 34, 78 (1939)] to the Bethe-Heitler theory [Proc. R. Soc. London Ser. A 14, 83 (1934)], particularly at the higher-energy ends. However, for low-Z elements, both theories are found to be adequate.

  6. New exclusion limits for dark gauge forces from proton Bremsstrahlung in beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Aix-Marseille Univ. CNRS/IN2P3 (France). CPPM

    2013-11-15

    We re-analyze published proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. More recently, limits on dark gauge forces have been derived from this data set, considering a dark photon production from {pi}{sup 0}-decay. Here we determine extended mass and coupling exclusion bounds for dark gauge bosons ranging to masses m{sub {gamma}'} of 624 MeV at admixture parameters {epsilon}{approx_equal}10{sup -6} considering high-energy Bremsstrahlung of the U-boson of the initial proton beam and different detection mechanisms.

  7. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors

    Indian Academy of Sciences (India)

    A. A. Mihajlov; V. A. Srećković; N. M. Sakan

    2015-12-01

    The electron–ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities and temperatures. The relevant quantum mechanical method of the calculation of the corresponding spectral coefficient processes is described and discussed. The results obtained for the plasmas with the electron densities from 1014 cm$^{-3}$ to 2 · 1019 cm$^{−3}$ and temperatures from 5 · 103 K to 3 · 104 K in the wavelength region 100 nm < < 3000 nm are presented. Also, these results can be of interest for different laboratory plasmas.

  8. Search for a 17 keV neutrino in the internal bremsstrahlung spectrum of 125I

    Science.gov (United States)

    Hindi, M. M.; Kozub, R. L.; Robinson, S. J.

    1994-06-01

    We have searched for evidence of the emission of a 17 keV neutrino in the internal bremsstrahlung (IB) spectrum accompanying the electron capture decay of 125I. The IB spectrum, recorded in a planar Ge detector, has 1.2×106 counts per keV at 17 keV below the 2p end point. We set an upper limit of 0.4% for the admixture of a 17 keV neutrino, at the 90% confidence level, and exclude a 0.8% admixture at the 99.6% confidence level. The QEC value is found to be 185.77+/-0.06 keV. We also find that the recent calculations of Surić et al., which employ relativistic self-consistent-field atomic wave functions, reproduce the shape and relative intensity of IB partial spectra within a few percent.

  9. Study of the continuous internal bremsstrahlung spectrum from (204)Tl by using singular value decomposition.

    Science.gov (United States)

    Almaz, Ekrem

    2015-05-01

    Internal bremsstrahlung (IB) accompanying the β(-) decay of (204)Tl was measured using a 5.08×5.08cm(2) NaI(Tl) detector employing a magnetic deflection method in the range of 10-760keV. A novel approach, the Singular Value Decomposition (SVD), is applied to unfold the raw detector spectrum of (204)Tl. Unfolded IB spectrum is compared with the KUB theory. The measured spectrum is found to show fairly good agreement with the KUB theory in the energy range of 100-600keV. The distribution beyond the 600keV takes a positive deviation from the theory. Copyright © 2015. Published by Elsevier Ltd.

  10. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  11. 42 MeV bremsstrahlung spectrum analysis by a photoactivation method

    Energy Technology Data Exchange (ETDEWEB)

    Calzado, A.; Vano, E.; Delgado, V.; Gonzalez, L. (Universidad Complutense de Madrid (Spain). Catedra de Fisica Medica; Junta de Energia Nuclear, Madrid (Spain). Inst. de Estudios Nucleares)

    1984-08-01

    The evaluation of 42 MeV, bremsstrahlung spectra from a clinical betatron by using the photoactivation method is described. Photonuclear reactions, mainly of the (..gamma.., n) type, are used as activation detectors. After measurements of photon-induced activities from residual nuclei are performed, the spectral distribution of photons is evaluated by solving the unfolding problem. The latter is carried out through the use of two independent methods, orthonormal expansion and Monte Carlo. In both cases prior conditions to the solution are imposed. Spectra evaluated by both methods and making use of two different size flattening filters are presented. An empirical method to estimate the 'effective' thickness of the Pt target is described.

  12. NLO QED corrections to hard-bremsstrahlung emission in Bhabha scattering

    Energy Technology Data Exchange (ETDEWEB)

    Actis, Stefano [Institut fuer Theoretische Physik E, RWTH Aachen University, D-52056 Aachen (Germany); Mastrolia, Pierpaolo [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ossola, Giovanni, E-mail: gossola@citytech.cuny.ed [Physics Department, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States)

    2010-01-04

    We present a numerical implementation of the one-loop QED corrections to the hard-bremsstrahlung process e{sup -}e{sup +}->e{sup -}e{sup +}gamma. These corrections can be included in the Monte Carlo event generators employed for simulating Bhabha scattering events at low-energy high-luminosity electron-positron colliders. The calculation is performed by employing the reduction method developed by Ossola, Papadopoulos and Pittau. Our results are implemented in a modular code for the numerical evaluation of the scattering amplitudes for any given phase-space point. In a similar way, we evaluate also the one-loop QED corrections to e{sup -}e{sup +}->mu{sup -}mu{sup +}gamma, and show an interesting application of the method in the presence of two different mass scales in the loops.

  13. NLO QED Corrections to Hard-Bremsstrahlung Emission in Bhabha Scattering

    CERN Document Server

    Actis, Stefano; Ossola, Giovanni

    2010-01-01

    In this paper we present a numerical implementation of the one-loop QED corrections to the hard-bremsstrahlung process e- e+ \\to e- e+ gamma. These corrections can be included in the Monte Carlo event generators employed for simulating Bhabha scattering events at low-energy high-luminosity electron-positron colliders. The calculation is performed by employing the reduction method developed by Ossola, Papadopoulos and Pittau. Our results are implemented in a modular code for the numerical evaluation of the scattering amplitudes for any given phase-space point. In a similar way, we also evaluate the one-loop QED corrections to e- e+ \\to mu- mu+ gamma, which represents an interesting application of the method in the presence of two different mass scales in the loops.

  14. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  15. Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation

    CERN Document Server

    Bringmann, Torsten; Ibarra, Alejandro; Vogl, Stefan; Weniger, Christoph

    2012-01-01

    A commonly encountered obstacle in indirect searches for galactic dark matter is how to disentangle possible signals from astrophysical backgrounds. Given that such signals are most likely subdominant, the search for pronounced spectral features plays a key role for indirect detection experiments; monochromatic gamma-ray lines or similar features related to internal bremsstrahlung, in particular, provide smoking gun signatures. We perform a dedicated search for the latter in the data taken by the Fermi gamma-ray space telescope during its first 43 months. To this end, we use a new adaptive procedure to select optimal target regions that takes into account both standard and contracted dark matter profiles. The behaviour of our statistical method is tested by a bootstrap analysis of the full sky data and found to reproduce the theoretical expectations very well. The limits on the dark matter annihilation cross-section that we derive are stronger than what can be obtained from the observation of dwarf galaxies a...

  16. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2016-01-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  17. Validation of the GEANT4 simulation of bremsstrahlung from thick targets below 3 MeV

    Science.gov (United States)

    Pandola, L.; Andenna, C.; Caccia, B.

    2015-05-01

    The bremsstrahlung spectra produced by electrons impinging on thick targets are simulated using the GEANT4 Monte Carlo toolkit. Simulations are validated against experimental data available in literature for a range of energy between 0.5 and 2.8 MeV for Al and Fe targets and for a value of energy of 70 keV for Al, Ag, W and Pb targets. The energy spectra for the different configurations of emission angles, energies and targets are considered. Simulations are performed by using the three alternative sets of electromagnetic models that are available in GEANT4 to describe bremsstrahlung. At higher energies (0.5-2.8 MeV) of the impinging electrons on Al and Fe targets, GEANT4 is able to reproduce the spectral shapes and the integral photon emission in the forward direction. The agreement is within 10-30%, depending on energy, emission angle and target material. The physics model based on the Penelope Monte Carlo code is in slightly better agreement with the measured data than the other two. However, all models over-estimate the photon emission in the backward hemisphere. For the lower energy study (70 keV), which includes higher-Z targets, all models systematically under-estimate the total photon yield, providing agreement between 10% and 50%. The results of this work are of potential interest for medical physics applications, where knowledge of the energy spectra and angular distributions of photons is needed for accurate dose calculations with Monte Carlo and other fluence-based methods.

  18. Bremsstrahlung production at 50 MeV in different target materials and configurations.

    Science.gov (United States)

    Sätherberg, A; Andreo, P; Karlsson, M

    1996-04-01

    A combination of Monte Carlo, convolution, and experimental techniques have been used to investigate bremsstrahlung production at 50 MeV in full-range targets to produce narrow elementary photon beams for scanning. Calculations using the ITS 3.0 Monte Carlo system for various target designs, including particle transport through the treatment head of an MM5O racetrack microtron and a water phantom, have been compared to experimental dose profiles from narrow photon beams at 10-cm depth in water. A reduction in the ITS 3.0 default substep size has been found necessary even for incomplete agreement, in consistency with the findings of Faddegon and Rogers [Nucl. Instrum. Meth. A 327, 556-565 (1993)] for a different experimental setup and energy using the previous version of ITS. Results show that the calculated shape of the tail of dose distributions from narrow photon beams agrees well with measurements, but CYLTRAN/ITS 3.0 fails to reproduce the central part of the distribution. The discrepancy at small angles, reported previously for EGS4 and ITS 2.1 simulations, possess a limitation to Monte Carlo simulations of narrow photon beams used in scanned systems of clinical accelerators. Radial dose profiles have been calculated by convolution of the energy fluence at the exit of the target with one polyenergetic Monte Carlo calculated dose kernel and also a database consisting of ten different dose kernels corresponding to different monoenergetic photon pencil beams for comparison. The agreement with the much slower fully detailed Monte Carlo calculations was better when using the database kernels than the polyenergetic kernel. Results for the mean energy, mean polar angle, and energy fluence at different depths within various targets have been obtained. These are discussed in the context of the design characteristics of bremsstrahlung targets with emphasis on their utilization for scanning photon beam techniques.

  19. Magnetic and superconducting properties of a heavy-fermion CeCoIn5 epitaxial film probed by nuclear quadrupole resonance

    Science.gov (United States)

    Yamanaka, Takayoshi; Shimozawa, Masaaki; Shishido, Hiroaki; Kitagawa, Shunsaku; Ikeda, Hiroaki; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji; Ishida, Kenji

    2017-08-01

    Since the progress in the fabrication techniques of thin films of exotic materials such as strongly correlated heavy-fermion compounds, microscopic studies of the magnetic and electronic properties inside the films have been needed. Herein, we report the observation of 115In nuclear quadrupole resonance (NQR) in an epitaxial film of the heavy-fermion superconductor CeCoIn5, for which the microscopic field gradient within the unit cell as well as magnetic and superconducting properties at zero field are evaluated. We find that the nuclear spin-lattice relaxation rate in the film is in excellent agreement with that of bulk crystals, whereas the NQR spectra show noticeable shifts and significant broadening indicating a change in the electric-field distribution inside the film. The analysis implies a displacement of In layers in the film, which, however, does not affect the magnetic fluctuations and superconducting pairing. This implies that inhomogeneity of the electronic field gradient in the film sample causes no pair-breaking effect.

  20. Investigation of the nuclear structure of 33Al through beta-decay of 33Mg to probe the island of inversion

    Science.gov (United States)

    Zidar, Tammy; Griffin Collaboration

    2016-09-01

    Away from the valley of stability, some nuclei have been found to have ground state properties that are different than those naively expected from the nuclear shell model. Around the ``island of inversion'', N = 20 closed shell nucleus 32Mg has large ground state deformations occur in association with intruder configurations from the f7 / 2 shell. The nuclear structure of transitional nuclei, in which the normal and intruder configurations compete, can be used to inform theoretical models used to explain the inversion mechanism. 32Mg is known to have a deformed ground-state configuration, while 34Si displays a normal one. In the present work we studied the intermediate 33Al through the β-decay of 33Mg to clarify conflicting previous results regarding its structure. 33Mg was delivered to the GRIFFIN high-purity germanium γ-ray spectrometer coupled with the SCEPTAR plastic scintillator β particle detector. High efficiency of the GRIFFIN detector provides new γ- γ coincidences to elucidate the excited state structure of 33Al, and its capability to detect weak transitions has provided β-decay branching ratios for the 33Mg -> 33Al -> 33Si decay chain. The Canadian Foundation for Innovation, The National Research Council of Canada and the Natural Sciences and Engineering Research Council of Canada.

  1. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: Effects of nuclear fragmentation and its simulation with PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, Takuya [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamashita, Shinichi; Taguchi, Mitsumasa [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Baldacchino, Gerard [CEA Saclay, IRAMIS, UMR 3299 CEA-CNRS SIS2M, Laboratoire de Radiolyse, F-91191 Gif sur Yvette Cedex (France); Sihver, Lembit [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Department of Nuclear Engineering, Texas A and M University, TX 77843-3133 (United States); Department of Roanoke College, Salem, VA 24153 (United States); Department of Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Murakami, Takeshi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-12-15

    The G(OH) values in aqueous coumarin-3-carboxylic-acid (3-CCA) solutions irradiated with {sup 12}C{sup 6+} beams having the energies of 135, 290 and 400 MeV/u were measured by a fluorescent method around the Bragg peak, with 0.6 mm intervals, and quartz cells of 1 cm optical lengths, at the Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS). For each ion, the G(OH) has been calculated as a function of dose average LET and position. The calculated results have been compared to measurements, and the results, reproducibility and reliability of the calculations are discussed in the paper. - Highlights: > Therapeutic ion beam has energy of several hundred MeV/u because it is necessary for a few tens cm range. > With such high energy, nuclear fragmentations of carbon ions occur resulting in production of lighter ions. > In this study, OH yield in water radiolysis near the Bragg peak of therapeutic ion beams was measured. > Measured yields are discussed considering nuclear fragmentation by PHITS code.

  2. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  3. Sub-femtosecond nuclear dynamics and high-harmonic generation: Can muonated species be used as a probe of isotope effects?

    Science.gov (United States)

    Jayachander Rao, B.; Varandas, A. J. C.

    2016-06-01

    Sub-femtosecond nuclear dynamics and high-order harmonic generation (HHG) studies are reported for the X ˜ 2B1 and A ˜ 2A1 states of Mu2O+ . The photoelectron spectra and autocorrelation functions are calculated by solving the time-dependent Schrödinger equation, and the HHG signals from the autocorrelation functions for the two cationic states. Good agreement is observed with our earlier studies, with the autocorrelation function ratios revealing maxima as a function of time. Expectation values of bond lengths and bond angle show quasiperiodic oscillations that reflect repeated passages of the wavepacket at minima of the potential surfaces, thence being responsible for the HHG peaks.

  4. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2011-08-15

    Highlights: > Microstructural changes in stainless steel electroslag weld-overlay cladding. > Thermal aging caused progress of spinodal decomposition and precipitation of G phases in the {delta}-ferrite phase. > The degree of the spinodal decomposition had a linear relationship to the hardness. - Abstract: The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% {delta}-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 deg. C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M{sub 23}C{sub 6} type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  5. Mass yield distributions of fission products from photo-fission of {sup 238}U induced by 11.5-17.3 MeV bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Carrel, Frederick; Laine, Frederic; Sari, Adrien [SAPHIR Facility, Gif-sur-Yvette (France); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Normand, S. [Laboratory of Sensors and Elctronics Architectures CEA, Gif-sur-Yvette (France)

    2013-07-15

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of {sup 238}U have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley (P/V) ratio, average light mass (left angle A{sub L} right angle) and heavy mass (left angle A{sub H} right angle) and average number of neutrons (left angle v right angle) in the bremsstrahlung-induced fission of {sup 238}U at different excitation energies were obtained from the mass yield data. From the present and literature data in the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the {sup 238}U ({gamma}, f) reaction at various energies of the present work are double-humped, similar to those of the {sup 238}U (n, f) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the {sup 238}U ({gamma}, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the {sup 238}U ({gamma}, f) than in the {sup 238}U (n, f), whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley (P/V ratio in the {sup 238}U ({gamma}, f) reaction is similar to the {sup 238}U (n, f) reaction. v) The increase of left angle v right angle with excitation energy is also similar between the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions. However, it is surprising to see that the left angle A{sub L} right angle and

  6. Mass yield distributions of fission products from photo-fission of 238U induced by 11.5-17.3 MeV bremsstrahlung

    Science.gov (United States)

    Naik, H.; Carrel, Frédérick; Kim, G. N.; Laine, Frédéric; Sari, Adrien; Normand, S.; Goswami, A.

    2013-07-01

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of 238U have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley ( P/ V ratio, average light mass () and heavy mass () and average number of neutrons () in the bremsstrahlung-induced fission of 238U at different excitation energies were obtained from the mass yield data. From the present and literature data in the 238U ( γ, f ) and 238U ( n, f ) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the 238U ( γ, f ) reaction at various energies of the present work are double-humped, similar to those of the 238U ( n, f ) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the 238U ( γ, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the 238U ( γ, f ) than in the 238U ( n, f ) , whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley ( P/ V ratio in the 238U ( γ, f) reaction is similar to the 238U ( n, f) reaction. v) The increase of with excitation energy is also similar between the 238U ( γ, f ) and 238U ( n, f) reactions. However, it is surprising to see that the and values with excitation energy behave entirely differently from the 238U ( γ, f ) and 238U ( n, f ) reactions.

  7. Oxygen as a paramagnetic probe for nuclear magnetic resonance: structure and paramagnetic profile of a lipid bilayer/membrane model system

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abdul Wahid, M.S

    2005-07-01

    Paramagnetic contact shifts and relaxation rate enhancements from molecular oxygen dissolved in a model membrane, were studied by nuclear magnetic resonance spectroscopy. The model membrane system was an isotropic bicelle formed using 1-myristelaidoyl-2-myristoyl-d27-sn- glycero-3-phosphocholine (MLMPC), a custom phospholipid, and 1-2-dihexanoyl-d22-sn-glycero-3-phosphocholine (DHPC). The {sup 13}C and {sup 1}H spectra of MLMPC were assigned. Molecular oxygen was delivered at external pressures of 20 and 50 atm. Paramagnetic contact shifts were found to scale with the oxygen solubility gradient in the lipid bilayer, were found to be invariant to temperature changes in the region studied (288K to 331K), and scaled linearly with changes in oxygen pressure. Relaxation rate enhancements from oxygen were low in the headgroup region and increased to a roughly constant rate in the acyl chain region. Rates were comparable to values predicted by simple thermodynamic theories which take into account the observed gradients in diffusion rates and solubility of oxygen in bilayers. (author)

  8. Absorbed dose distributions in a tissue-equivalent absorber for Bremsstrahlung produced at the beamlines of the European Synchrotron Radiation Facility

    CERN Document Server

    Pisharody, M; Berkvens, P; Colomp, P

    2000-01-01

    The absorbed-dose distributions for Bremsstrahlung, incident on a tissue-equivalent phantom, were measured with LiF : Mg,Ti thermoluminescent dosimeters at two insertion device beamlines of the European Synchrotron Radiation Facility (ESRF). The measurements were carried out for two different electron beam energies of 4 and 6 GeV. The corresponding Bremsstrahlung spectra and power were measured using a high-resolution lead glass total absorption calorimeter. The results are compared with similar measurements carried out at other facilities. The normalized Bremsstrahlung absorbed dose in a cross-sectional area of 100 mm sup sup 2 , at a depth of 150 mm of the phantom, was measured as 6.1 and 3.6 kGy h sup sup - sup sup 1 W sup sup - sup sup 1 for the corresponding Bremsstrahlung spectra of 4 and 6 GeV.

  9. Monoclonal antibodies to proliferating cell nuclear antigen (PCNA)/cyclin as probes for proliferating cells by immunofluorescence microscopy and flow cytometry.

    Science.gov (United States)

    Kurki, P; Ogata, K; Tan, E M

    1988-04-22

    Proliferating cell nuclear antigen (PCNA)/cyclin is an intranuclear polypeptide antigen that is found in both normal and transformed proliferating cells. We have recently described two mouse monoclonal antibodies reacting with PCNA. In this report we describe the application of these antibodies to the study of proliferating human cells by indirect immunofluorescence microscopy and by flow cytometry. A fixation/permeation procedure was developed in order to obtain satisfactory binding of monoclonal PCNA-specific antibodies to proliferating cells. This method involved fixation with 1% paraformaldehyde followed by methanol treatment. For the staining of cells in suspension with the IgM type monoclonal antibodies lysolecithin was added to the paraformaldehyde solution to achieve a better permeation by the antibody molecules. This procedure gave a good ratio of specific staining relative to the background staining. It also preserved the shape and normal architecture of the cells as judged by visual microscopic observation and by light scatter measurements using a flow cytometer. Furthermore, this fixation technique permits simultaneous labeling of DNA by propidium iodide and PCNA by monoclonal antibodies. PCNA was detected in various types of normal and transformed proliferating cells by indirect immunofluorescence. Quiescent peripheral blood mononuclear cells were PCNA-negative whereas a fraction of lectin-stimulated lymphocytes became PCNA-positive. Similarly, early passages of fetal skin fibroblasts were PCNA-positive but non-proliferating senescent fibroblasts of later passages were PCNA-negative. The association of PCNA-staining by monoclonal antibodies with cell proliferation was confirmed by flow cytometry. Simultaneous labeling of PCNA and DNA showed that the PCNA signal increased during the G1 phase of the cell cycle, reached its maximum in the S-phase, and declined during the G2/M phase. Using cell sorting we demonstrated that mitotic cells had a very low PCNA

  10. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Vogtt K.

    2005-01-01

    Full Text Available COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC and under high pressure conditions at low temperature (3.75 kbar, -13ºC. Moreover, the influence of co-solvents (sorbitol, urea on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  11. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    Science.gov (United States)

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Carbon-13 nuclear magnetic resonance spectroscopy of lipids: Differential line broadening due to cross-correlation effects as a probe of membrane structure

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, E.; Adebodun, F.; Chung, J.; Montez, B.; Ki Deok Park; Hongbiao Le; Phillips, B. (Univ. of Illinois, Urbana (United States))

    1991-11-19

    The authors have obtained proton-coupled carbon-13 nuclear magnetic resonance (NMR) spectra of a variety of lipid-water and lipid-drug-water systems, at 11.7 T, as a function of temperature, using the 'magic-angle' sample-spinning (MAS) NMR technique. The resulting spectra show a wide range of line shapes, due to interferences between dipole-dipole and dipole-chemical shielding anisotropy interactions. The differential line-broadening effects observed are particularly large for aromatic and olefinic (sp{sup 2}) carbon atom sites. Coupled spectra of the tricyclic antidepressants desipramine and imipramine, in 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophases, show well-resolved doublets having different line shapes for each of the four aromatic methine groups, due to selective averaging of the four C-H dipolar interactions due to rapid motion about the director (or drug C{sub 2}) axis. {sup 2}H NMR spectra of (2,4,6,8-{sup 2}H{sub 4})desipramine (and imipramine) in the same 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophase exhibit quadrupole splittings of {approximately}0-2 and {approximately}20 kHz, indicating an approximate magic-angle orientation of the C2-{sup 2}H({sup 1}H) and C8-{sup 2}H({sup 1}H) vectors with respect to an axis of motional averaging, in accord with the {sup 13}C NMR results. The good qualitative agreement between {sup 13}C and {sup 2}H NMR results suggests that useful orientational ({sup 2}H NMR like) information can be deduced from natural-abundance {sup 13}C NMR spectra of a variety of mobile solids.

  13. Mobile probes

    DEFF Research Database (Denmark)

    2016-01-01

    A project investigating the effectiveness of a collection of online resources for teachers' professional development used mobile probes as a data collection method. Teachers received questions and tasks on their mobile in a dialogic manner while in their everyday context as opposed to in an inter......A project investigating the effectiveness of a collection of online resources for teachers' professional development used mobile probes as a data collection method. Teachers received questions and tasks on their mobile in a dialogic manner while in their everyday context as opposed...... to in an interview. This method provided valuable insight into the contextual use, i.e. how did the online resource transfer to the work practice. However, the research team also found that mobile probes may provide the scaffolding necessary for individual and peer learning at a very local (intra-school) community...... level. This paper is an initial investigation of how the mobile probes process proved to engage teachers in their efforts to improve teaching. It also highlights some of the barriers emerging when applying mobile probes as a scaffold for learning....

  14. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  15. Bremsstrahlung information for the non-destructive characterization of radioactive waste packages. Final report; Nutzung von Bremsstrahlungsinformationen fuer die zerstoerungsfreie Charakterisierung radioaktiver Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Rohrmoser, B.; Lierse von Gostomski, C.

    2013-04-15

    The report describes a feasibility study on non-destructive characterization of radioactive waste package using bremsstrahlung information within the gamma spectra. A multi-step was developed for the identification of the bremsstrahlung in the measured gamma spectra under defined boundary conditions. The experimental investigations were performed using a stationary HPGe detector system, a mobile HPGe detector system and a mobile gamma scanner. Further studies are necessary with respect to the possible beta emitting radionuclides in a radioactive waste package.

  16. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets.

    Science.gov (United States)

    Morris, C L; Bourke, M; Byler, D D; Chen, C F; Hogan, G; Hunter, J F; Kwiatkowski, K; Mariam, F G; McClellan, K J; Merrill, F; Morley, D J; Saunders, A

    2013-02-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  17. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  18. Studies of plasma breakdown and electron heating on a 14 GHz ECR ion source through measurement of plasma bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T; Machicoane, G; Leitner, D [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Tarvainen, O; Toivanen, V; Koivisto, H; Kalvas, T; Peura, P; Jones, P [University of Jyvaeskylae, Department of Physics, PO Box 35 (YFL), 40500 Jyvaeskylae (Finland); Izotov, I; Skalyga, V; Zorin, V [Institute of Applied Physics, RAS, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Noland, J, E-mail: tommi.ropponen@gmail.com, E-mail: olli.tarvainen@jyu.fi [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2011-10-15

    Temporal evolution of plasma bremsstrahlung emitted by a 14 GHz electron cyclotron resonance ion source (ECRIS) operated in pulsed mode is presented in the energy range 1.5-400 keV with 100 {mu}s resolution. Such a high temporal resolution together with this energy range has never been measured before with an ECRIS. Data are presented as a function of microwave power, neutral gas pressure, magnetic field configuration and seed electron density. The saturation time of the bremsstrahlung count rate is almost independent of the photon energy up to 100 keV and exhibits similar characteristics with the neutral gas balance. The average photon energy during the plasma breakdown is significantly higher than that during the steady state and depends strongly on the density of seed electrons. The results are consistent with a theoretical model describing the evolution of the electron energy distribution function during the preglow transient.

  19. Spontaneous Bremsstrahlung in Scattering of an Electron by a Nucleus in the Field of Two Light Waves

    CERN Document Server

    Roshchupkin, S P; Roshchupkin, Sergey P.; Lysenko, Oleg B.

    1999-01-01

    We theoretically investigate nonresonant spontaneous bremsstrahlung in the scattering of an electron by a nucleus in the field of two linearly polarized light waves propagating in the same direction in the general relativistic case. It is demonstrated that there are two substantially different kinematic ranges: the noninterference range, where the Bunkin-Fedorov quantum parameters serve as multiphoton parameters,and the interference range, where interference effects become significant, and quantum interference parameters play the role of multiphoton parameters. We determine the cross sections of electron-nucleus spontaneous bremsstrahlung in these kinematic ranges. It is demonstrated that the partial cross section in the interference range with emission (absorption) of photons at combination frequencies may considerably exceed the corresponding cross section for any other geometry.

  20. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  1. SU-E-E-08: Applications of the Quantization of Coupled Circuits in Radiation Physics (design of Klystron, Bremsstrahlung, Synchrotron)

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, W

    2015-06-15

    Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4). The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to

  2. Implementation of the LPM effect in the discrete-bremsstrahlung simulation of GEANT 3 and GEANT 4

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Parti' culas, Coimbra (Portugal); Ballestrero, S. [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Sona, P. [Dipartimento di Fisica, Universita degli Studi di Firenze, Polo Scientifico, Sesto F.no, Via G. Sansone 1, Sesto Fiorentino 50019 , Firenze (Italy)], E-mail: pietro.sona@fi.infn.it; Uggerhoj, U.I. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2008-12-15

    Experimental data, recently measured at CERN, on the LPM effect have been used to benchmark the description of the discrete bremsstrahlung incorporated into the GEANT 3 and GEANT 4 codes. The limited accuracy of the native versions required a major revision in the framework of the original Migdal theory. The results obtained with the new implementation agree quite satisfactorily with measurements. The stability of the calculations when several parameters are varied has been thoroughly investigated.

  3. Spontaneous Bremsstrahlung in Scattering of an Electron by a Nucleus in the Field of Two Light Waves

    OpenAIRE

    Roshchupkin, Sergey P.; Lysenko, Oleg B.

    2001-01-01

    We theoretically investigate nonresonant spontaneous bremsstrahlung in the scattering of an electron by a nucleus in the field of two linearly polarized light waves propagating in the same direction in the general relativistic case. It is demonstrated that there are two substantially different kinematic ranges: the noninterference range, where the Bunkin-Fedorov quantum parameters serve as multiphoton parameters,and the interference range, where interference effects become significant, and qu...

  4. Atomic scale structure of amorphous aluminum oxyhydroxide, oxide and oxycarbide films probed by very high field (27)Al nuclear magnetic resonance.

    Science.gov (United States)

    Baggetto, L; Sarou-Kanian, V; Florian, P; Gleizes, A N; Massiot, D; Vahlas, C

    2017-03-15

    The atomic scale structure of aluminum in amorphous alumina films processed by direct liquid injection chemical vapor deposition from aluminum tri-isopropoxide (ATI) and dimethyl isopropoxide (DMAI) is investigated by solid-state (27)Al nuclear magnetic resonance (SSNMR) using a very high magnetic field of 20.0 T. This study is performed as a function of the deposition temperature in the range 300-560 °C, 150-450 °C, and 500-700 °C, for the films processed from ATI, DMAI (+H2O), and DMAI (+O2), respectively. While the majority of the films are composed of stoichiometric aluminum oxide, other samples are partially or fully hydroxylated at low temperature, or contain carbidic carbon when processed from DMAI above 500 °C. The quantitative analysis of the SSNMR experiments reveals that the local structure of these films is built from AlO4, AlO5, AlO6 and Al(O,C)4 units with minor proportions of the 6-fold aluminum coordination and significant amounts of oxycarbides in the films processed from DMAI (+O2). The aluminum coordination distribution as well as the chemical shift distribution indicate that the films processed from DMAI present a higher degree of structural disorder compared to the films processed from ATI. Hydroxylation leads to an increase of the 6-fold coordination resulting from the trend of OH groups to integrate into AlO6 units. The evidence of an additional environment in films processed from DMAI (+O2) by (27)Al SSNMR and first-principle NMR calculations on Al4C3 and Al4O4C crystal structures supports that carbon is located in Al(O,C)4 units. The concentration of this coordination environment strongly increases with increasing process temperature from 600 to 700 °C favoring a highly disordered structure and preventing from crystallizing into γ-alumina. The obtained results are a valuable guide to the selection of process conditions for the CVD of amorphous alumina films with regard to targeted applications.

  5. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Bremsstrahlung mechanism application on mini X-ray source%轫致辐射X光源初步研究

    Institute of Scientific and Technical Information of China (English)

    顾小冯; 罗小为; 戴建枰

    2009-01-01

    Recently, increasing research effort have been made on mini X-ray sources, which are of small size with high quality and low cost. Among them, a mini X-ray source based on bremsstrahlung is of better perspective. In this paper, we report our work on two kinds of bremsstrahlung mechanisms for mini X-ray sources. The photon production per electron of the X-ray production mechanisms are deduced and compared, so as to find the ways to improve them. Experiment on X-ray imaging with thin target bremsstrahlung was carried out to study the imaging quality and the influence on electron beam for the mini X-ray sources.%对高能电子打薄靶和低能电子打厚靶两种不同轫致辐射方式的微型轫致辐射光源进行了研究.推导并比较了两种方式的单位电子光子产生率,给出了提高光子产额的方法.以BFEL直线加速器为平台,利用高能电子薄靶的轫致辐射光进行X光成像实验,研究薄靶对电子束流参数的影响,并对轫致辐射微型X光源的特性进行了讨论.

  7. Measurement of doubly differential electron bremsstrahlung cross sections at the end point (tip) for C, Al, Te, Ta and Au

    Science.gov (United States)

    García-Alvarez, J. A.; Fernández-Varea, J. M.; Vanin, V. R.; Santos, O. C. B.; Barros, S. F.; Malafronte, A. A.; Rodrigues, C. L.; Martins, M. N.; Koskinas, M. F.; Maidana, N. L.

    2017-08-01

    We have used the low-energy beam line of the São Paulo Microtron accelerator to study the maximum energy transfer point (tip) of electron-atom bremsstrahlung spectra for C, Al, Te, Ta and Au. Absolute cross sections differential in energy and angle of the emitted photon were measured for various electron kinetic energies between 20 and 100 keV, and photon emission angles of 35◦, 90◦ and 131◦. The bremsstrahlung spectra were collected with three HPGe detectors and their response functions were evaluated analytically. Rutherford backscattering spectrometry allowed us to obtain the thicknesses of the targets with good accuracy. We propose a simple model for the tip region of the bremsstrahlung spectrum emitted at a given angle, whose adjustable parameters are the mean energy of the incident beam and its spread as well as an amplitude. The model was fitted simultaneously to the pulse-height distributions recorded at the three angles, determining the doubly differential cross sections from the corresponding amplitudes. The measured values have uncertainties between 3% and 13%. The agreement of the experimental results with the theoretical partial-wave calculations of Pratt and co-workers depends on the analyzed element and angle but is generally satisfactory. In the case of Al and Au, the uncertainty attributed to the theory is probably overestimated.

  8. The small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield of cosmic ray shower particles

    Science.gov (United States)

    Al Samarai, Imen; Deligny, Olivier; Rosado, Jaime

    2016-10-01

    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C 3Πu electronic level of nitrogen molecules to the B 3Πg one amounting to Y[ 337 ] =(6.05 ± 1.50) MeV-1 at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be Y[330-400]MBR = 0.10 MeV-1 in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This means that out of ≃175 photons with wavelength between 330 and 400 nm detected by fluorescence detectors, one of them has been produced by molecular Bremsstrahlung radiation. Although small, this contribution is not negligible in regards to the total budget of systematic uncertainties when considering the absolute energy scale of fluorescence detectors.

  9. ;Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe

    Science.gov (United States)

    Brachet, Jean-Christophe; Hamon, Didier; Le Saux, Matthieu; Vandenberghe, Valérie; Toffolon-Masclet, Caroline; Rouesne, Elodie; Urvoy, Stéphane; Béchade, Jean-Luc; Raepsaet, Caroline; Lacour, Jean-Luc; Bayon, Guy; Ott, Frédéric

    2017-05-01

    This paper gives an overview of a multi-scale experimental study of the secondary hydriding phenomena that can occur in nuclear fuel cladding materials exposed to steam at high temperature (HT) after having burst (loss-of-coolant accident conditions). By coupling information from several facilities, including neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and micro laser induced breakdown spectroscopy, it was possible to map quantitatively, at different scales, the distribution of oxygen and hydrogen within M5™ clad segments having experienced ballooning and burst at HT followed by steam oxidation at 1100 and 1200 °C and final direct water quenching down to room temperature. The results were very reproducible and it was confirmed that internal oxidation and secondary hydriding at HT of a cladding after burst can lead to strong axial and azimuthal gradients of hydrogen and oxygen concentrations, reaching 3000-4000 wt ppm and 1.0-1.2 wt% respectively within the β phase layer for the investigated conditions. Consistent with thermodynamic and kinetics considerations, oxygen diffusion into the prior-β layer was enhanced in the regions highly enriched in hydrogen, where the α(O) phase layer is thinner and the prior-β layer thicker. Finally the induced post-quenching hardening of the prior-β layer was mainly related to the local oxygen enrichment. Hardening directly induced by hydrogen was much less significant.

  10. Coherent bremsstrahlung and a new possibility to monitor collisions of beams at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L. [Novosibirskij Gosudarstvennyj Univ. (Russian Federation); Serbo, V.G. [Novosibirskij Gosudarstvennyj Univ. (Russian Federation)

    1996-09-21

    We consider the coherent bremsstrahlung (CBS) at colliders with short bunches. CBS is radiation of particles of one bunch in the collective electromagnetic field of the oncoming bunch. It seems that CBS can be a potential tool for fast control over collisions and for measuring beam parameters. The bunch length {sigma}{sub z} can be found from the critical energy of the CBS spectrum E{sub c}{proportional_to}1/{sigma}{sub z}; the transverse bunch size {sigma} {sub perpendicular} {sub to} is related to the photon rate dN{sub {gamma}}{proportional_to}1/{sigma} {sub perpendicular} {sub to} {sup 2}. A specific dependence of dN{sub {gamma}} on the impact parameter between the beams allows for a fast control over the beam displacement. We present the main characteristics of CBS calculated for B and {phi} factories, LHC (in the p-p and Pb-Pb modes), RHIC, VEPP-2M and VEPP-4M. (orig.).

  11. Hidden Photon Compton and Bremsstrahlung in White Dwarf Anomalous Cooling and Luminosity Functions

    CERN Document Server

    Chang, Chia-Feng

    2016-01-01

    We computed the contribution of the Compton and Bremsstrahlung processes with a hidden light $U(1)_D$ neutral boson $\\gamma_D$ to the white dwarf G117-B15A anomalous cooling rate, as well as the white dwarf luminosity functions (WDLF). We demonstrated that for a light mass of hidden photon ($m_{\\gamma_D} \\ll$ a few keV), compatible results are obtained for the recent Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey observation, but the stringent limits would be imposed on the kinetic mixing $\\epsilon$. We performed $\\chi^2$-tests to acquire a quantitative assessment on the WDLF data in the context of our model, computed under the assumption of different kinetic mixing $\\epsilon$, the age of the oldest computed stars $T_D$, and a constant star formation rate $\\psi$. Then taken together, the WDLF analysis of 2$\\sigma$ confidence interval $\\epsilon = \\left( 0.37^{+0.35}_{-0.37}\\right) \\times 10^{-14}$ is barely consistent with the cooling rate analysis at 2$\\sigma$ regime $\\epsilon = \\left( 0.97^{+0.35}_{...

  12. Tritium measurement in water using bremsstrahlung X-rays and a silicon drift detector

    Energy Technology Data Exchange (ETDEWEB)

    Niemes, Simon [Karlsruhe Institut of Technology, Institute for Technical Physics - Tritium Laboratory, Karlsruhe (Germany)

    2013-07-01

    Applications like future fusion plants or scientific experiments like KATRIN need a closed tritium infrastructure to cycle and handle tritium safely. At some process stages tritiated water (HTO) is generated, making measuring the tritium content in HTO vital for process control, accountancy and safety. There are several methods used to measure HTO, primarily Liquid Scintillation Counting (LSC). A new technique promising fast, in-line and wasteless measurement compared to LSC is the Beta Induced X-ray Spectroscopy (BIXS). The principle of BIXS is detecting the bremsstrahlung spectrum from the decelerated decay electrons in water and calibrate it to known concentrations. A novel approach utilizing a Silicon Drift Detector (SDD) to measure the emitted X-ray spectrum has several advantages over other detector types like scintillation counters. A SDD is a semiconductor detector with very low noise and good energy resolution, suitable for detecting the low intensity, low energy signal from BIXS. In this talk an overview of the experimental setup and detector is given, and first results are presented.

  13. Study of the inner Bremsstrahlung following the electron-capture decay of {sup 193} Pt

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J.Y.Z.; Cruz, M.T.F. da; Martins, M.N.; Santos, R.T. dos [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zamboni, C.B.; Hamada, M.M.; Camargo, S.P. de; Medeiros, J.A.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Hindi, M.M. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    1997-12-31

    We are measuring the inner Bremsstrahlung (I B) photons emitted in some of the electron-capture decays of {sup 193} Pt. The source was prepared with highly pure metal Pt. It was irradiated with neutron for 52 days and let to cool down for eight months. The remaining activities were due to {sup 193} Pt{sup g} (half-life 50 yr) and {sup 192} Ir (half-life 74 d), the latter coming from (n, {gamma}) reactions on a small content of Ir. We have used a radiochemistry method to reduce the Ir content of the source. The resulting Pt compound will be dissolved in a plastic scintillator disk. Most of the {sup 192} Ir decays are {beta}{sup -} and their signal in the plastic will be used as a veto for the I B-photon detector. We have performed simulations of the efficiency and absorption effects in the detection geometry. (author) 6 refs., 1 fig.; juan at if.usp.br; czamboni at net.ipen.br; hindi at hindi.physics.tntech.edu

  14. Pollution Probe.

    Science.gov (United States)

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  15. Transmutation of nuclear wastes using photonuclear reactions triggered by Compton backscattering photons at the Shanghai laser electrongamma source

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-Gen; YUAN Ren-Yong; XU Jia-Qiang; YAN Zhe; FAN Gong-Tao; SHEN Wen-Qing; XU Wang; WANG Hong-Wei; GUO Wei; MA Yu-Gang; CAI Xiang-Zhou; LU Guang-Cheng; XU Yi; PAN Qiang-Yan

    2008-01-01

    Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS),the transmutation for nuclear wastes such as 137Cs and 129I is investigated.It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons.The nuclear activities of 137Cs and 129I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser.Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons,the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.

  16. Nuclear Medicine

    Science.gov (United States)

    ... for Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive ... NIBIB-funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that ...

  17. The effect of magnetic field strength on the time evolution of high energy bremsstrahlung radiation created by an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Jones, P.; Peura, P.; Kalvas, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); Suominen, P. [Prizztech Ltd/Magnet Technology Centre, Tiedepuisto 4, FI-28600 Pori (Finland); Koivisto, H.; Arje, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2009-03-11

    An electron cyclotron resonance (ECR) ion source is one of the most used ion source types for high charge state heavy ion production. In ECR plasma the electrons are heated by radio frequency microwaves in order to provide ionization of neutral gases. As a consequence, ECR heating also generates very high electron energies (up to MeV region) which can produce a vast amount of bremsstrahlung radiation causing problems with radiation shielding and heating superconducting cryostat of an ECR ion source. To gain information about the time evolution of the electron energies in ECR plasma radial bremsstrahlung measurements were performed. JYFL 14 GHz ECR ion source was operated in pulsed mode and time evolution measurements were done with different axial magnetic field strengths with oxygen and argon plasmas. Bremsstrahlung data were analyzed with a time interval of 2 ms yielding information at unprecedented detail about the time evolution of high energy bremsstrahlung radiation from an ECR ion source. It was observed, for example, that reaching the steady state phase of the plasma bremsstrahlung requires several hundred milliseconds and the steady state time can be different with different gases.

  18. Stripline probes for nuclear magnetic resonance

    NARCIS (Netherlands)

    van Bentum, P.J.M.; Janssen, J.W.G.; Kentgens, A.P.M.; Bart, J.; Gardeniers, Johannes G.E.

    2007-01-01

    A novel route towards chip integrated NMR analysis is evaluated. The basic element in the design is a stripline RF ‘coil’ which can be defined in a single layer lithographic process and which is fully scalable to smaller dimensions. The sensitivity of such a planar structure can be superior to that

  19. Low lying excitations in odd deformed nucleus studied by nuclear resonance fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.E. Almeida [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Margraf, J.; Nord, A. [Stuttgart Univ. (Germany). Inst. fuer Strahlenphysik] [and others

    1997-12-31

    Nuclear resonance fluorescence experiment was performed on {sup 153} Eu using the Bremsstrahlung beam of the Stuttgart Dynamitron and high resolution Ge-{gamma}-spectrometers. Detailed information was obtained on excitation energies, decay widths, transition probabilities, and branching ratios to study the fragmentation of the M1 scissors mode, and try establishing a systematics to explain the different fragmentation behavior of the dipole strengths in the odd isotopes recently studied. (author) 11 refs., 1 fig.; emilia at axpfep1.if.usp.br

  20. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy Bremsstrahlung beam, onboard aircraft radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Jadrnickova, I. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic); Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, Brehova 7, 115 19 Prague 1 (Czech Republic); Spurny, F. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic)

    2006-07-01

    The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/{mu}m. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)

  1. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    CERN Document Server

    Scott, R H H; Perez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H -P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A

    2013-01-01

    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.

  2. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors.

    Science.gov (United States)

    Scott, R H H; Clark, E L; Pérez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H-P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A

    2013-08-01

    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

  3. PET/CT and Bremsstrahlung Imaging After 90Y DOTANOC Therapy for Rectal Net With Liver Metastases.

    Science.gov (United States)

    Abdülrezzak, Ümmühan; Kula, Mustafa; Tutuş, Ahmet; Buyukkaya, Fikret; Karaca, Halit

    2015-10-01

    Peptide receptor radionuclide therapy with Lu or Y is promising with successful results in somatostatin receptor-positive tumors. In all radiation therapies, knowledge of the radiation dose received by the target, and other organs in the body is essential to evaluate the risks and benefits of any procedure. We report a case of liver metastases from a rectal neuroendocrine tumor, which was treated with Y DOTANOC. Posttreatment whole-body planar images were acquired through Bremsstrahlung radiations of Y on a γ-camera, and thoracolumbar PET/CT images were acquired on PET.

  4. A search for bremsstrahlung solar axions using the Majorana low-background BEGe detector at Kimballton (MALBEK)

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Cooper, R J; Creswick, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Elliott, S R; Fast, J E; Finnerty, P; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; MacMullin, J; MacMullin, S; Marino, M G; Martin, R D; Mertens, S; Orrell, J L; O'Shaughnessy, C; Overman, N R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Robertson, R G H; Ronquest, M C; Schubert, A G; Shanks, B; Shirchenko, M; Snavely, K J; Snyder, N; Steele, D; Suriano, A M; Thompson, J; Timkin, V; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Xu, W; Yakushev, E; Young, A R; Yu, C H; Yumatov, V

    2014-01-01

    A low-background, high-purity germanium detector has been used to search for evidence of low-energy, bremsstrahlung-generated solar axions. An upper bound of $1.36\\times 10^{-11}$ $(95\\% CL)$ is placed on the direct coupling of DFSZ model axions to electrons. The prospects for the sensitivity of the Majorana Demonstrator array of point-contact germanium detectors to solar axions are discussed in the context of the model-independent annual modulation due to the seasonal variation of the earth-sun distance.

  5. Probing the Tautomerism of Histidine

    Science.gov (United States)

    Bermudez, C.; Cabezas, C.; Mata, S.; Alonso, J. L.

    2013-06-01

    The rotational spectrum of histidine, showing a complex nuclear quadrupole interactions arising from three ^{14}N nuclei in non-equivalent positions have been resolved and completely analyzed. Solid samples (m.p. 290°C) were vaporized by laser ablation and probed by Fourier transform microwave spectroscopy in a supersonic expansion. The experimental constants clearly lead to the unambiguous identification of the \\varepsilon tautomer in the gas phase.

  6. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  7. Effect of frequency tuning on bremsstrahlung spectra, beam intensity, and shape in the 10 GHz NANOGAN electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Mal, Kedar; Kumar, Narender; Lakshmy, P. S.; Mathur, Y.; Kumar, P.; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    Studies on the effect of the frequency tuning on the bremsstrahlung spectra, beam intensities, and beam shape of various ions have been carried out in the 10 GHz NANOGAN ECR ion source. The warm and cold components of the electrons were found to be directly correlated with beam intensity enhancement in case of Ar{sup 9+} but not so for O{sup 5+}. The warm electron component was, however, much smaller compared to the cold component. The effect of the fine tuning of the frequency on the bremsstrahlung spectrum, beam intensities and beam shape is presented.

  8. An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung

    CERN Document Server

    Ovanesyan, Grigory

    2011-01-01

    Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCET$_{\\rm G}$ recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCET$_{\\rm G}$ we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchun...

  9. Bremsstrahlung and K(alpha) fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C D; Patel, P K; Hey, D S; Mackinnon, A J; Key, M H; Akli, K U; Bartal, T; Beg, F N; Chawla, S; Chen, H; Freeman, R R; Higginson, D P; Link, A; Ma, T Y; MacPhee, A G; Stephens, R B; Van Woerkom, L D; Westover, B; Porkolab, M

    2009-07-24

    The Bremsstrahlung and K-shell emission from 1 mm x 1 mm x 1 mm planar targets irradiated by a short-pulse 3 x 10{sup 18}-8 x 10{sup 19} W/cm{sup 2} laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device (CCD). From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3-12%, representing 20-40% total conversion efficiencies were inferred for intensities up to 8 x 10{sup 19} W/cm{sup 2}. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons.

  10. The Small Contribution of Molecular Bremsstrahlung Radiation to the Air-Fluorescence Yield of Cosmic Ray Shower Particles

    CERN Document Server

    Samarai, I Al; Rosado, J

    2016-01-01

    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C $^3\\Pi_{\\mathrm{u}}$ electronic level of nitrogen molecules to the B $^3\\Pi_{\\mathrm{g}}$ one amounting to $Y_{[337]}=(6.05\\pm 1.50)~$ MeV$^{-1}$ at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be $Y_{[330-400]}^{\\mathrm{MBR}}=0.10~$ MeV$^{-1}$ in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This m...

  11. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Accelerator Systems Division (APS)

    2010-11-01

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon

  12. Probing N=2 superconformal field theories with localization

    CERN Document Server

    Fiol, Bartomeu; Torrents, Genis

    2015-01-01

    We use supersymmetric localization to study probes of four dimensional Lagrangian N=2 superconformal field theories. We first derive a unique equation for the eigenvalue density of these theories. We observe that these theories have a Wigner eigenvalue density precisely when they satisfy a necessary condition for having a holographic dual with a sensible higher-derivative expansion. We then compute in the saddle-point approximation the vacuum expectation value of 1/2-BPS circular Wilson loops, and the two-point functions of these Wilson loops with the Lagrangian density and with the stress-energy tensor. This last computation also provides the corresponding Bremsstrahlung functions and entanglement entropies. As expected, whenever a finite fraction of the matter is in the fundamental representation, the results are drastically different from those of N=4 supersymmetric Yang-Mills theory.

  13. Probing N=2 superconformal field theories with localization

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu [Departament de Física Fonamental i Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain); Garolera, Blai [Escuela de Física, Universidad de Costa Rica,11501-2060 San José (Costa Rica); Torrents, Genís [Departament de Física Fonamental i Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-27

    We use supersymmetric localization to study probes of four dimensional Lagrangian N=2 superconformal field theories. We first derive a unique equation for the eigenvalue density of these theories. We observe that these theories have a Wigner eigenvalue density precisely when they satisfy a necessary condition for having a holographic dual with a sensible higher-derivative expansion. We then compute in the saddle-point approximation the vacuum expectation value of 1/2-BPS circular Wilson loops, and the two-point functions of these Wilson loops with the Lagrangian density and with the stress-energy tensor. This last computation also provides the corresponding Bremsstrahlung functions and entanglement entropies. As expected, whenever a finite fraction of the matter is in the fundamental representation, the results are drastically different from those of N=4 supersymmetric Yang-Mills theory.

  14. Photofission product yields of 238U and 239Pu with 22-MeV bremsstrahlung

    Science.gov (United States)

    Wen, Xianfei; Yang, Haori

    2016-06-01

    In homeland security and nuclear safeguards applications, non-destructive techniques to identify and quantify special nuclear materials are in great demand. Although nuclear materials naturally emit characteristic radiation (e.g. neutrons, γ-rays), their intensity and energy are normally low. Furthermore, such radiation could be intentionally shielded with ease or buried in high-level background. Active interrogation techniques based on photofission have been identified as effective assay approaches to address this issue. In designing such assay systems, nuclear data, like photofission product yields, plays a crucial role. Although fission yields for neutron-induced reactions have been well studied and readily available in various nuclear databases, data on photofission product yields is rather scarce. This poses a great challenge to the application of photofission techniques. In this work, short-lived high-energy delayed γ-rays from photofission of 238U were measured in between linac pulses. In addition, a list-mode system was developed to measure relatively long-lived delayed γ-rays from photofission of 238U and 239Pu after the irradiation. Time and energy information of each γ-ray event were simultaneously recorded by this system. Cumulative photofission product yields were then determined using the measured delayed γ-ray spectra.

  15. Optical imaging probes in oncology.

    Science.gov (United States)

    Martelli, Cristina; Lo Dico, Alessia; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa

    2016-07-26

    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.

  16. Nuclear Confidence

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Fukushima nuclear accident provides valuable lessons for China national nuclear Corp.as it continues to expand its operations AS Japan’s Fukushima nuclear crisis sparks a global debate over nuclear safety,China National Nuclear Corp. (CNNC),the country’s largest nuclear plant operator, comes under the spotlight.

  17. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    DEFF Research Database (Denmark)

    Köhn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2017-01-01

    concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times...

  18. Impulsive solar X-ray bursts. 3: Polarization and directivity of bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    The spectrum, directivity and state of polarization is presented of the bremsstrahlung radiation expected from a beam of high energy electrons spiraling along radial magnetic field lines toward the photosphere. The results are used for calculation of the characteristics of the reflected plus direct flux.

  19. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  20. EDITORIAL: Probing the nanoworld Probing the nanoworld

    Science.gov (United States)

    Miles, Mervyn

    2009-10-01

    In nanotechnology, it is the unique properties arising from nanometre-scale structures that lead not only to their technological importance but also to a better understanding of the underlying science. Over the last twenty years, material properties at the nanoscale have been dominated by the properties of carbon in the form of the C60 molecule, single- and multi-wall carbon nanotubes, nanodiamonds, and recently graphene. During this period, research published in the journal Nanotechnology has revealed the amazing mechanical properties of such materials as well as their remarkable electronic properties with the promise of new devices. Furthermore, nanoparticles, nanotubes, nanorods, and nanowires from metals and dielectrics have been characterized for their electronic, mechanical, optical, chemical and catalytic properties. Scanning probe microscopy (SPM) has become the main characterization technique and atomic force microscopy (AFM) the most frequently used SPM. Over the past twenty years, SPM techniques that were previously experimental in nature have become routine. At the same time, investigations using AFM continue to yield impressive results that demonstrate the great potential of this powerful imaging tool, particularly in close to physiological conditions. In this special issue a collaboration of researchers in Europe report the use of AFM to provide high-resolution topographical images of individual carbon nanotubes immobilized on various biological membranes, including a nuclear membrane for the first time (Lamprecht C et al 2009 Nanotechnology 20 434001). Other SPM developments such as high-speed AFM appear to be making a transition from specialist laboratories to the mainstream, and perhaps the same may be said for non-contact AFM. Looking to the future, characterisation techniques involving SPM and spectroscopy, such as tip-enhanced Raman spectroscopy, could emerge as everyday methods. In all these advanced techniques, routinely available probes will

  1. An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2009-03-01

    Full Text Available Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs, even for the same electron beam energy. The aims of this study were to simulate the NEPTUN 10PC linac electron beams and to calculate the photon contamination dose due to bremsstrahlung radiation in these beams using a Monte Carlo method. Materials and methods: A NEPTUN 10PC linac was simulated in its electron mode using the BEAMnrc code. This linac can provide three electron beam energies of 6, 8 and 10 MeV. Detailed information required for the simulation, including the geometry and materials of various components of the linac treatment head, was provided by the vender. For all simulations, the cut-off energies for electron and photon transport were set at ECUT=0.521 MeV and PCUT=0.010 MeV, respectively. The KS statistical test was used for validation of the simulated models. Then, relevant bremsstrahlung radiation doses for the three electron beam energies of the linac were calculated for the reference field using the Monte Carlo method.   Results: The KS test showed a good agreement between the calculated values (resulting from the simulations and the measured ones. The results showed that the amount of contaminated photon dose due to bremsstrahlung radiation from various components of the simulated linac at the surface of the phantom was between 0.2%-0.5% of the maximum dose for the three electron beam energies. Conclusion:  Considering the good agreement between the measured and simulated data, it can be concluded that the simulation method as well as the calculated bremsstrahlung doses have been made at a good level of accuracy and precision

  2. Production of isotopes and isomers with irradiation of Z = 47–50 targets by 23-MeV bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Carroll, J. J. [US Army Research Laboratory (United States); Aksenov, N. V.; Albin, Yu. A.; Belov, A. G.; Bozhikov, G. A.; Dmitriev, S. N.; Starodub, G. Ya. [Joint Institute for Nuclear Research (Russian Federation)

    2015-09-15

    The irradiations of Ag to Sn targets by bremsstrahlung generated with 23-MeV electron beams are performed at the MT-25 microtron. Gamma spectra of the induced activities have been measured and the yields of all detected radionuclides and isomers are carefully measured and analyzed. A regular dependence of yields versus changed reaction threshold is confirmed. Many isomers are detected and the suppression of the production probability is observed with growing product spin. Special peculiarities for the isomer-to-ground state ratios were deduced for the {sup 106m}Ag, {sup 108m}Ag, {sup 113m}In, {sup 115m}In, and {sup 123m}Sn isomers. The production of such nuclides as {sup 108m}Ag, {sup 115m}In, {sup 117g}In, and {sup 113m}Cd is of interest for applications, especially when economic methods are available.

  3. Energy dependence of the cross sections of some copper photospallation reactions induced by photons of coherent and incoherent bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, A.R.; Vartapetyan, G.A.; Grigoryan, E.O.; Deme-dieresiskhina, N.A.

    1986-09-01

    Cross sections have been calculated for the photospallation of copper with production of the residual nuclei /sup 57/Ni, /sup 56/Co, /sup 56/Mn, /sup 54/Mn, /sup 52/Mn, /sup 44//sup m/Sc, /sup 43/K, /sup 42/K, and /sup 24/Na. The calculation was carried out by solution of the Fredholm equation of the first kind by the Tikhonov regularization method. The yields of these reactions were measured in bombardment of a copper target by coherent and incoherent photon beams obtained from bremsstrahlung in a diamond crystal of electrons accelerated to energy 3.75 GeV. The excitation functions obtained as the result of the calculations showed that in the cross sections of all reactions investigated a broad maximum is observed in the region 300--500 MeV made with data on the spallation of copper by high-energy protons.

  4. Laser interaction based on resonance saturation (LIBORS): an alternative to inverse bremsstrahlung for coupling laser energy into a plasma.

    Science.gov (United States)

    Measures, R M; Drewell, N; Cardinal, P

    1979-06-01

    Resonance saturation represents an efficient and rapid method of coupling laser energy into a gaseous medium. In the case of a plasma superelastic collision quenching of the laser maintained resonance state population effectively converts the laser beam energy into translational energy of the free electrons. Subsequently, ionization of the laser pumped species rapidly ensues as a result of both the elevated electron temperature and the effective reduction of the ionization energy for those atoms maintained in the resonance state by the laser radiation. This method of coupling laser energy into a plasma has several advantages over inverse bremsstrahlung and could therefore be applicable to several areas of current interest including plasma channel formation for transportation of electron and ion beams, x-ray laser development, laser fusion, negative ion beam production, and the conversion of laser energy to electricity.

  5. Role of medium modifications for neutrino-pair processes from nucleon-nucleon bremsstrahlung - Impact on the protoneutron star deleptonization

    CERN Document Server

    Fischer, Tobias

    2016-01-01

    In this article the neutrino-pair production from nucleon-nucleon (NN) bremsstrahlung is explored via medium-modifications of the strong interactions at the level of the one-pion exchange approximation. It governs the bulk part of the NN interaction at low densities relevant for the neutrino physics in core-collapse supernova studies. The resulting medium modified one-pion exchange rate for the neutrino-pair processes is implemented in simulations of core collapse supernovae in order to study the impact on the neutrino signal emitted from the deleptonization of the nascent proto-neutron star. Consequences for the nucleosynthesis of heavy elements of the material ejected from the PNS surface are discussed.

  6. Channeling and coherent bremsstrahlung effects for relativistic positrons and electrons. [16 to 28 MeV, orientation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R. L.

    1976-03-22

    Channeling of positrons in single crystals of silicon was observed in transmission and scattering measurements for incident energies from 16 to 28 MeV. In addition, the spectral dependence upon crystal orientation of the forward coherent bremsstrahlung produced by beams of 28-MeV positrons and electrons incident upon a 5 ..mu..m thick single crystal of silicon was measured with a NaI photon spectrometer. Effects of channeling and perhaps of the nonvalidity of the first Born approximation were observed for beam directions near the (111) axis of the crystal, and coherent peaks near 0.5 MeV were observed for a compound interference direction, in agreement with first-order theoretical calculations. 32 fig.

  7. Nuclear safeguards; Salvaguardias nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zurron, O.

    2015-07-01

    Safeguards control at the Juzbado Plant is implemented through the joint IAEA/EURATOM partnership approach in force within the European Union for all nuclear facilities. this verification agreement is designed to minimize burden on the operators whilst ensuring that both inspectorate achieve the objectives related to their respective safeguards regimes. This paper outlines the safeguards approaches followed by the inspectorate and the particularities of the Juzbado Plants nuclear material accountancy and control system. (Authors)

  8. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization.

    Directory of Open Access Journals (Sweden)

    Mattijs Elschot

    Full Text Available BACKGROUND: After yttrium-90 ((90Y microsphere radioembolization (RE, evaluation of extrahepatic activity and liver dosimetry is typically performed on (90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, (90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of (90Y and on the accuracy of liver dosimetry. METHODOLOGY/PRINCIPAL FINDINGS: SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere to 11% (37-mm sphere for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. CONCLUSIONS/SIGNIFICANCE: In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the

  9. Studies of total bremsstrahlung in thick targets of Al, Ti, Sn and Pb for 90Sr beta particles in the photon energy region of 1-100 keV

    Science.gov (United States)

    Singh, Amrit; Dhaliwal, A. S.

    2016-02-01

    Total bremsstrahlung (BS) spectra in thick targets of Al, Ti, Sn and Pb produced by beta emitter 90Sr (End point energy=546 keV) are studied in the photon energy range of 1-100 keV. The experimentally measured BS spectra are compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler [Fmod BH] theory for ordinary bremsstrahlung (OB) and the Avdonina and Pratt [Fmod BH+PB] theory, which include the contribution of polarization bremsstrahlung (PB) into OB. The present results are indicating the correctness of Fmod BH+PB theory in the low energy region, where PB dominates into the BS, but at the middle and higher photon energy region of the bremsstrahlung spectrum, the Fmod BH theory is more close to the experimental results. The description of the bremsstrahlung process in stripped atom (SA) approximation, which indicates the suppression of the bremsstrahlung at higher energy ends due to the production of PB in the low energy region, needs further considerations. Hence, the present measurements for BS for different target materials indicates that the considerations of the screening effects along with other secondary effects during the interaction of incident electrons with the target nuclei are important while describing the production of bremsstrahlung, particularly for the higher energy regions.

  10. Nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Sang, David (Bishop Luffa Comprehensive School, Chichester (UK))

    1990-01-01

    Nuclear Physics covers the aspects of radioactivity and nuclear physics dealt with in the syllabuses of all the A-level examination boards; in particular, it provides detailed coverage of the Joint Matriculation Board option in nuclear physics. It deals with the discovery of the atomic nucleus, the physics of nuclear processes, and nuclear technology. (author).

  11. Probe tip heating assembly

    Science.gov (United States)

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  12. Nuclear ventriculography

    Science.gov (United States)

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  13. Nuclear Medicine.

    Science.gov (United States)

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  14. Investigation of relativistic laser-plasmas using nuclear diagnostics; Untersuchung relativistischer Laserplasmen mittels nukleardiagnostischer Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc M.

    2011-01-19

    The present work explores with the development of a novel nuclear diagnostic method for the investigation of the electron dynamics in relativistic laser-plasma interactions. An additional aim of this work was the determination of the real laser peak intensity via the interaction of an intense laser short-pulse with a solid target. The nuclear diagnostics is based on a photo-neutron disintegration nuclear activation method. The main constituent of the nuclear diagnostic are novel pseudoalloic activation targets as a kind of calorimeter to measure the high-energy bremsstrahlung produced by relativistic electrons. The targets are composed of several stable isotopes with different ({gamma},xn)-reaction thresholds. The activated nuclides were identified via the characteristic gamma-ray decay spectrum by using high-resolution gamma spectroscopy after the laser irradiation. Via the gamma spectroscopy the ({gamma},xn)-reaction yields were determined. The high-energy bremsstrahlung spectrum has been deconvolved using a novel analysis method based on a modified Penfold-Leiss method. This facilitates the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the corresponding bremsstrahlung electrons in the interaction zone is accessible immediately. The consolidated findings about the properties of the relativistic electrons were used to determine the real peak intensity at the laser-plasma interaction zone. In the context of this work, experiments were performed at three different laser facilities. First Experiments were carried out at the 100 TW laser facility at Laboratoire pour l'Utilisation des Lasers Intense (LULI) in France and supplementary at the Vulcan laser facility at Rutherford Appleton Laboratory (RAL) in United Kingdom. The main part of the activation experiments were performed at the PHELIX laser facility (Petawatt High Energy Laser for heavy Ion EXperiments) at GSI

  15. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  16. Nuclear Theory - Nuclear Power

    Science.gov (United States)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-01-01

    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  17. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  18. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Science.gov (United States)

    Yamanaka, N.; Sahoo, B. K.; Yoshinaga, N.; Sato, T.; Asahi, K.; Das, B. P.

    2017-03-01

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.

  19. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  20. Optimization of energy window for {sup 90}Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Rong Xing; Ghaly, Michael; Frey, Eric C. [Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287-0859 (United States)

    2013-06-15

    Purpose: In yttrium-90 ({sup 90}Y) microsphere brachytherapy (radioembolization) of unresectable liver cancer, posttherapy {sup 90}Y bremsstrahlung single photon emission computed tomography (SPECT) has been used to document the distribution of microspheres in the patient and to help predict potential side effects. The energy window used during projection acquisition can have a significant effect on image quality. Thus, using an optimal energy window is desirable. However, there has been great variability in the choice of energy window due to the continuous and broad energy distribution of {sup 90}Y bremsstrahlung photons. The area under the receiver operating characteristic curve (AUC) for the ideal observer (IO) is a widely used figure of merit (FOM) for optimizing the imaging system for detection tasks. The IO implicitly assumes a perfect model of the image formation process. However, for {sup 90}Y bremsstrahlung SPECT there can be substantial model-mismatch (i.e., difference between the actual image formation process and the model of it assumed in reconstruction), and the amount of the model-mismatch depends on the energy window. It is thus important to account for the degradation of the observer performance due to model-mismatch in the optimization of the energy window. The purpose of this paper is to optimize the energy window for {sup 90}Y bremsstrahlung SPECT for a detection task while taking into account the effects of the model-mismatch. Methods: An observer, termed the ideal observer with model-mismatch (IO-MM), has been proposed previously to account for the effects of the model-mismatch on IO performance. In this work, the AUC for the IO-MM was used as the FOM for the optimization. To provide a clinically realistic object model and imaging simulation, the authors used a background-known-statistically and signal-known-statistically task. The background was modeled as multiple compartments in the liver with activity parameters independently following a

  1. Probe mobility in native phosphocaseinate suspensions and in a concentrated rennet gel: effect of probe flexibility and size

    NARCIS (Netherlands)

    Salami, S.; Rondeau-Mouro, C.; Duynhoven, van J.P.M.; Mariette, F.

    2013-01-01

    Pulsed field gradient nuclear magnetic resonance and proton nuclear magnetic resonance relaxometry were used to study the self-diffusion coefficients and molecular dynamics of linear (PEGs) and spherical probes (dendrimers) in native phosphocaseinate suspensions and in a concentrated rennet gel. It

  2. Photoactivation of the p-nucleus {sup 92}Mo at the bremsstrahlung measurement place of ELBE; Photoaktivierung des p-Kerns {sup 92}Mo am Bremsstrahlungsmessplatz von ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Erhard, Martin Andreas

    2010-02-26

    By the high intensity of the bremsstrahlung of up to 20 MeV to 10{sup 9} MeV{sup -1}cm{sup -2}s{sup -1} in the energy range up to 20 MeV in the framework of this thesis for the first time not only the ({gamma},n), but also the ({gamma},p) reactions could be studied on {sup 92}Mo at astrophysically relevant energies.

  3. A general semi-analytic method to simulate discrete bremsstrahlung at very low radiated photon energies by the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, Coimbra (Portugal); Sona, P., E-mail: pietro.sona@fi.infn.it [Dipartimento di Fisica, Universita degli Studi di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Ballestrero, S. [Department of Physics, University of Johannesburg, Johannesburg (South Africa); PH/ADT, CERN, CH-1211, Geneve (Switzerland); Uggerhoj, U.I. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2011-09-15

    A computer code for Monte-Carlo simulations in the framework of the GEANT 3 toolkit has been implemented for the description of the discrete bremsstrahlung radiation from high energy electrons crossing thick (semi-infinite) targets. The code is based on the Migdal theory which includes the LPM and dielectric suppression. Validation of the code has been performed by a comparison with the data from the SLAC E-146 experiment. The agreement between simulations and experimental data is generally very good.

  4. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  5. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  6. Nuclear control

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wan Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    International cooperation in nuclear industries requires nuclear control as prerequisites. The concept of nuclear control is based on the Treaty on the Non-proliferation of Nuclear Weapon (NPT). The International Atomic Energy Agency (IAEA) plays central role in implementing nuclear control. Nuclear control consists of nuclear safeguards, physical protection, and export/import control. Each member state of NPT is subject to the IAEA`s safeguards by concluding safeguards agreements with the IAEA. IAEA recommends member states to implement physical protection on nuclear materials by `The Physical Protection of Nuclear Material` and `The Convention on the Physical Protection of Nuclear Material` of IAEA. Export/Import Control is to deter development of nuclear weapons by controlling international trade on nuclear materials, nuclear equipments and technology. Current status of domestic and foreign nuclear control implementation including recent induction of national inspection system in Korea is described and functions of recently set-up Technology Center for Nuclear Control (TCNC) under the Korea Atomic Energy Research Institute (KAERI) are also explained. 6 tabs., 11 refs. (Author).

  7. Properties of Ultrasound Probes

    OpenAIRE

    Rusina, M.

    2015-01-01

    This work deals with the measurement properties of ultrasound probes. Ultrasound probes and their parameters significantly affect the quality of the final image. In this work there are described the possibility of measuring the spatial resolution, sensitivity of the probe and measuring the length of the dead zone. Ultrasound phantom ATS Multi Purpose Phantom Type 539 was used for measurements.

  8. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  9. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Sylla, F.; Goddet, J.-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P.; Conejero, E.; Ruiz, C.; Ta Phuoc, K.; Malka, V.

    2016-09-01

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  10. Optical time of flight studies of lithium plasma in double pulse laser ablation: Evidence of inverse Bremsstrahlung absorption

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumaran, V.; Joshi, H. C.; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-06-15

    The early stage of formation of lithium plasma in a collinear—double pulse laser ablation mode has been studied using optical time of flight (OTOF) spectroscopy as a function of inter-pulse delay time, the distance from the target surface and the fluence of the ablation lasers. The experimental TOF measurements were carried out for lithium neutral (670.8 nm and 610.3 nm), and ionic (548.4 nm and 478.8 nm) lines. These experimental observations have been compared with that for single pulse laser ablation mode. It is found that depending on the fluence and laser pulse shape of the first pre-ablation laser and the second main ablation laser, the plasma plume formation and its characteristic features can be described in terms of plume-plume or laser-plume interaction processes. Moreover, the enhancement in the intensity of Li neutral and ionic lines is observed when the laser-plume interaction is the dominant process. Here, we see the evidence of the role of inverse Bremsstrahlung absorption process in the initial stage of formation of lithium plasma in this case.

  11. Electron elastic scattering and low-frequency bremsstrahlung on A@$C_{60}$: A model static approximation

    CERN Document Server

    Dolmatov, V K; Cooper, M B; Hunter, M E

    2015-01-01

    Electron elastic-scattering phase shifts and cross sections along with the differential and total cross sections and polarization of low-frequency bremsstrahlung upon low-energy electron collision with endohedral fullerenes $A$@C$_{60}$ are theoretically scrutinized versus the nature, size and spin of the encapsulated atom $A$. The case-study-atoms $A$ are N, Ar, Cr, Mn, Mo, Tc, Xe, Ba, and Eu. They are thoughtfully picked out of different rows of the periodic table. The study is performed in the framework of a model static approximation. There, both the encapsulated atom $A$ and C$_{60}$ cage are regarded as non-polarizable targets. The C$_{60}$ cage is modeled by an attractive spherical annular potential well. The study provides the most complete initial understanding of how the processes of interest might evolve upon electron collision with various $A$@C$_{60}$. Calculated results identify the most interesting and/or useful future measurements or more rigorous calculations of an electron+$A$@C$_{60}$ colli...

  12. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    CERN Document Server

    Döpp, A; Thaury, C; Lifschitz, A; Sylla, F; Goddet, J-P; Tafzi, A; Iaquanello, G; Lefrou, T; Rousseau, P; Conejero, E; Ruiz, C; Phuoc, K Ta; Malka, V

    2016-01-01

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately linear with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance wit...

  13. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  14. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  15. Nuclear Chemistry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  16. Research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Kozub, R.L.; Hindi, M.M.

    1992-06-01

    This report discusses the following topics: electron capture decay of {sup 179}Ta; search for 17-keV neutrinos in the Internal Bremsstrahlung Spectrum of {sup 125}I; and {beta}{sup +} decay and cosmic-ray half-life of {sup 91}Nb.

  17. Experiment for nuclear data production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Guin Yun [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, D. S. [Daegu Univ., Daegu (Korea, Republic of); Ro, T. I.; Lee, S. Y. [Donga Univ., Busan (Korea, Republic of); Lee, J. H. [Dongeui Univ., Busan (Korea, Republic of); Ahn, J. K. [Pusan Nat. Univ., Busan (Korea, Republic of); Lee, H. S. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2005-04-15

    We measured the neutron capture cross-sections for {sup 161,162,163,164D}y and {sup 155,156,157,158,160}Gd in the range of thermal neutron to 10 keV at the Research Reactor Institute, Kyoto University (KURRI) which is based on an electron linac and in the range of 10 keV to 100 keV and 550 keV at a pulsed neutron facility based on a Pelletron accelerator at the Laboratory of Nuclear Engineer, Tokyo Institute of Technology (TIT) in Japan. We also measured the neutron capture cross-sections and the total cross-sections for {sup 232}Th and {sup 93}Nb in the neutron energy regions from 21.5 eV to 10 keV at FLNP, Dubna. We improved the Pohang Neutron Facility in order to measure the nuclear data more effectively: upgrade the electron linac, collimators inside the TOF beam pipe, the development and installation of an automatic sample changer, the data acquisition system, and the extension of the TOF beam line. We measured neutron total cross-sections in the energy regions of thermal to 100 eV for twelve samples such as Ta, W, Ti, Dy, Sm, Ag, Hf, Zr, In, Cu, Mo, and Bi by using the neutron TOF technique. The resonance parameters were extracted from the transmission data using the SAMMY code. We measured the neutron and the gamma flux generated around the Ta-target by using the activation method. We also studied the Bremsstrahlung gamma production at the thin W-target by using the activation method, which can be used a basic study for the cross-section measurement of a gamma reaction.

  18. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  19. Nuclear Ambitions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China will begin to build the world’s first third-generation nuclear power plant at the Sanmen Nuclear Power Project in Sanmen City, coastal Zhejiang Province, in March 2009, accord-ing to the State Nuclear Power Technology Corp.

  20. Nuclear structure

    CERN Document Server

    Nazarewicz, W

    1999-01-01

    Current developments in nuclear structure are discussed from a theoretical perspective. The studies of the nuclear many-body system provide us with invaluable information about the nature of the nuclear interaction, nucleonic correlations at various energy-distance scales, and the modes of the nucleonic matter.

  1. The significance of Bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzadehfar, Hojjat; Muckle, Marianne; Sabet, Amir; Biermann, Kim; Haslerud, Torjan; Biersack, Hans-Juergen; Ezziddin, Samer [University Hospital Bonn, Department of Nuclear Medicine, Bonn (Germany); Wilhelm, Kai [University Hospital Bonn, Department of Radiology, Bonn (Germany); Kuhl, Christiane [University Hospital Aachen, Department of Radiology, Aachen (Germany)

    2012-02-15

    Unwanted deposition of {sup 90}Y microspheres in organs other than the liver during radioembolization of liver tumours may cause severe side effects such as duodenal ulcer. The aim of this study was to evaluate the significance of posttherapy bremsstrahlung (BS) SPECT/CT images of the liver in comparison to planar and SPECT images in the prediction of radioembolization-induced extrahepatic side effects. A total of 188 radioembolization procedures were performed in 123 patients (50 women, 73 men) over a 2-year period. Planar, whole-body and BS SPECT/CT imaging were performed 24 h after treatment as a part of therapy work-up. Any focally increased extrahepatic accumulation was evaluated as suspicious. Clinical follow-up and gastroduodenoscopy served as reference standards. The studies were reviewed to evaluate whether BS SPECT/CT imaging was of benefit. In the light of anatomic data obtained from SPECT/CT, apparent extrahepatic BS in 43% of planar and in 52% of SPECT images proved to be in the liver and hence false-positive. The results of planar scintigraphy could not be analysed further since 12 images were not assessable due to high scatter artefacts. On the basis of the gastrointestinal (GI) complications and the results of gastroduodenoscopy, true-positive, true-negative, false-positive and false-negative results of BS SPECT and SPECT/CT imaging in the prediction of GI ulcers were determined. The sensitivity, specificity, positive and negative predictive values and the accuracy of SPECT and SPECT/CT in the prediction of GI ulcers were 13%, 88%, 8%, 92% and 82%, and 87%, 100%, 100%, 99% and 99%, respectively. Despite the low quality of BS images, BS SPECT/CT can be used as a reliable method to confirm the safe distribution of {sup 90}Y microspheres and in the prediction of GI side effects. (orig.)

  2. Electroweak and Higgs boson internal bremsstrahlung. General considerations for Majorana dark matter annihilation and application to MSSM neutralinos

    Science.gov (United States)

    Bringmann, Torsten; Calore, Francesca; Galea, Ahmad; Garny, Mathias

    2017-09-01

    It is well known that the annihilation of Majorana dark matter into fermions is helicity suppressed. Here, we point out that the underlying mechanism is a subtle combination of two distinct effects, and we present a comprehensive analysis of how the suppression can be partially or fully lifted by the internal bremsstrahlung of an additional boson in the final state. As a concrete illustration, we compute analytically the full amplitudes and annihilation rates of supersymmetric neutralinos to final states that contain any combination of two standard model fermions, plus one electroweak gauge boson or one of the five physical Higgs bosons that appear in the minimal supersymmetric standard model. We classify the various ways in which these three-body rates can be large compared to the two-body rates, identifying cases that have not been pointed out before. In our analysis, we put special emphasis on how to avoid the double counting of identical kinematic situations that appear for two-body and three-body final states, in particular on how to correctly treat differential rates and the spectrum of the resulting stable particles that is relevant for indirect dark matter searches. We find that both the total annihilation rates and the yields can be significantly enhanced when taking into account the corrections computed here, in particular for models with somewhat small annihilation rates at tree-level which otherwise would not be testable with indirect dark matter searches. Even more importantly, however, we find that the resulting annihilation spectra of positrons, neutrinos, gamma-rays and antiprotons differ in general substantially from the model-independent spectra that are commonly adopted, for these final states, when constraining particle dark matter with indirect detection experiments.

  3. Probing cell mechanical properties with microfluidic devices

    Science.gov (United States)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  4. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part B focuses on the ways in which experimental data may be analyzed to furnish information about nuclear parameters and nuclear models in terms of which the data are interpreted.This book discusses the elastic and inelastic potential scattering amplitudes, role of beta decay in nuclear physics, and general selection rules for electromagnetic transitions. The nuclear shell model, fundamental coupling procedure, vibrational spectra, and empirical determination of the complex potential are also covered. This publication is suitable for graduate students preparing for exper

  5. Probe into the interior of compact stars

    CERN Document Server

    Nana, Pan

    2007-01-01

    The interior of neutron stars contains nuclear matter at very high density for numerous subatomic particles compete with each other. Therefore, confirming the components and properties there is our significant task. Here we summarize the possible methods especial the way of r-mode instability to probe into the neutron star and show our some results. The KHz pulsar in XTE J1739-285 may give a significant implication

  6. Atom probe crystallography

    National Research Council Canada - National Science Library

    Gault, Baptiste; Moody, Michael P; Cairney, Julie M; Ringer, Simon P

    2012-01-01

    This review addresses new developments in the emerging area of "atom probe crystallography", a materials characterization tool with the unique capacity to reveal both composition and crystallographic...

  7. Cryocoil magic-angle-spinning solid-state nuclear magnetic resonance probe system utilized for sensitivity enhancement in multiple-quantum magic-angle-spinning spectroscopy for a low-γ quadrupolar nucleus of 85Rb

    Science.gov (United States)

    Nakai, Toshihito; Toda, Mitsuru; Ashida, Jun; Hobo, Fumio; Endo, Yuki; Utsumi, Hiroaki; Nemoto, Takahiro; Mizuno, Takashi

    2017-06-01

    Sensitivity enhancement in solid-state nuclear magnetic resonance using a cryocoil magic-angle-spinning system was investigated, by comparing, at room temperature and at cryogenic temperature, the signal-to-noise ratios of the multiple-quantum magic-angle-spinning spectra as well as the conventional spectra for a low-γ nucleus 85Rb in RbNO3. The increase of the sample-coil quality-factor and the thermal noise reduction were found to enhance the sensitivities by approximately 4.5 times; the former yielded the further doubled signal increase in the multiple-quantum spectroscopy via the increase of the radio-frequency field strengths. Eventually, 20-30 times of the sensitivity enhancement were realized in the two-dimensional multiple-quantum magic-angle-spinning spectra.

  8. The Science of Nuclear Materials Detection using gamma-ray beams: Nuclear Resonance Fluorescence

    Science.gov (United States)

    Ohgaki, Hideaki

    2014-09-01

    An atomic nucleus is excited by absorption of incident photons with an energy the same as the excitation energy of the level, and subsequently a gamma-ray is emitted as it de-excites. This phenomenon is called Nuclear Resonance Fluorescence and mostly used for studies on Nuclear Physics field. By measuring the NRF gamma-rays, we can identify nuclear species in any materials because the energies of the NRF gamma-rays uniquely depend on the nuclear species. For example, 235U has an excitation level at 1733 keV. If we irradiate a material including 235U with a gamma-ray tuned at this excitation level, the material absorbs the gamma-ray and re-emits another gamma-ray immediately to move back towards the ground state. Therefore we can detect the 235U by measuring the re-emitted (NRF) gamma-rays. Several inspection methods using gamma-rays, which can penetrate a thick shielding have been proposed and examined. Bertozzi and Ledoux have proposed an application of nuclear resonance fluorescence (NRF) by using bremsstrahlung radiations. However the signal-to-noise (SN) ratio of the NRF measurement with the bremsstrahlung radiation is, in general, low. Only a part of the incident photons makes NRF with a narrow resonant band (meV-eV) whereas most of incident radiation is scattered by atomic processes in which the reaction rate is higher than that of NRF by several orders of magnitudes and causes a background. Thus, the NRF with a gamma-ray quasi-monochromatic radiation beam is proposed. The monochromatic gamma-rays are generated by using laser Compton scattering (LCS) of electrons and intense laser photons by putting a collimator to restrict the gamma-ray divergence downstream. The LCS gamma-ray, which is energy-tunable and monochromatic, is an optimum apparatus for NRF measurements We have been conducted NRF experiment for nuclear research, especially with high linear polarized gamma-ray generated by LCS, to survey the distribution of M1 strength in MeV region in LCS

  9. The effect of the dc bias voltage on the x-ray bremsstrahlung and beam intensities of medium and highly charged ions of argon.

    Science.gov (United States)

    Rodrigues, G; Lakshmy, P S; Baskaran, R; Kanjilal, D; Roy, A

    2010-02-01

    X-ray bremsstrahlung measurements from the 18 GHz High Temperature Superconducting Electron Cyclotron Resonance Ion Source, Pantechnik-Delhi Ion Source were measured as a function of negative dc bias voltage, keeping all other source operating parameters fixed and the extraction voltage in the off condition. The optimization of medium and highly charged ions of argon with similar source operating parameters is described. It is observed that the high temperature component of the electron is altered significantly with the help of bias voltage, and the electron population has to be maximized for obtaining higher current.

  10. A general semi-analytic method to simulate discrete bremsstrahlung at very low radiated photon energies by the Monte Carlo method

    CERN Document Server

    Sona, P; Mangiarotti, A; Uggerhoj, U I

    2011-01-01

    A computer code for Monte-Carlo simulations in the framework of the GEANT 3 toolkit has been implemented for the description of the discrete bremsstrahlung radiation from high energy electrons crossing thick (semi-infinite) targets. The code is based on the Migdal theory which includes the LPM and dielectric suppression. Validation of the code has been performed by a comparison with the data from the SLAC E-146 experiment. The agreement between simulations and experimental data is generally very good. (C) 2011 Elsevier B.V. All rights reserved.

  11. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  12. Sensitive Probe for Symmetry Potential

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; XIAO Guo-Qing; GUO Wen-Jun; REN ZhongZhou; ZUO Wei; LEE Xi-Guo

    2007-01-01

    Based on both very obvious isospin effect of the neutron-proton number ratio of nucleon emissions (n/p)nucl on symmetry potential and (n/p)nucl's sensitive dependence on symmetry potential in the nuclear reactions induced by halo-neutron projectiles, compared to the same mass stable projectile, probing symmetry potential is investigated within the isospin-dependent quantum molecular dynamics with isospin and momentum-dependent interactions for different symmetry potentials U1sym and U2sym. It is found that the neutron-halo projectile induces very obvious increase of (n/p)nucl and strengthens the dependence of (n/p)nucl on the symmetry potential for all the beam energies and impact parameters, compared to the same mass stable projectile under the same incident channel condition. Therefore (n/p)nucl induced by the neutron-halo projectile is a more favourable probe than the normal neutron-rich and neutron-poor projectiles for extracting the symmetry potential.

  13. Nuclear isoscaling and fair sampling

    Science.gov (United States)

    Lopez, Jorge

    2008-10-01

    The isoscaling phenomenon was first observed in nuclear multifragmentation experiments and has become a hot topic as it could provide a probe of the nuclear equation of state to understand nuclear matter at extreme condition of isospin such as in neutron stars. The present work studies isoscaling using 1) classical molecular dynamics simulations, 2) percolation and 3) probabilistic arguments, and determines that isoscaling is a general phenomenon that can exist independent of the nuclear reaction, and it is expected to occur in disassemblying systems with no more than fair sampling. In collaboration with Alan Davila, University of Texas at Austin; Claudio Dorso, Universidad de Buenos Aires; Carlos Hernandez, Universidad de Colima; Christian Escudero, University of Texas at El Paso; and Jorge Muñoz, CalTech.

  14. Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  15. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  16. Pioneer Jupiter orbiter probe mission 1980, probe description

    Science.gov (United States)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  17. Interplay between QCD and nuclear responses

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Magda [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)]|[Theory division, CERN, CH-12111 Geneva (Switzerland); Chanfray, Guy [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)

    2007-03-15

    We establish the interrelation between the QCD scalar response of the nuclear medium and its response to a scalar probe coupled to nucleons, such as the scalar meson responsible for the nuclear binding. The relation that we derive applies at the nucleonic as well as at the nuclear levels. Non trivial consequences follow. One concerns the scalar QCD susceptibility of the nucleon. The other opens the possibility of relating medium effects in the scalar meson exchange of nuclear physics to QCD lattice studies of the nucleon mass. (authors)

  18. Feasibility of bremsstrahlung dosimetry for direct dose estimation in patients undergoing treatment with {sup 90}Y-ibritumomab tiuxetan

    Energy Technology Data Exchange (ETDEWEB)

    Arrichiello, C.; Aloj, L.; Mormile, M.; D' Ambrosio, L.; Caraco, C.; De Martinis, F. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Frigeri, F.; Arcamone, M.; Pinto, A. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Hematology-Oncology, Napoli (Italy); Stem Cells Transplantation Unit, Department of Hematology, Napoli (Italy); Lastoria, S. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , IRCCS, Napoli (Italy)

    2012-06-15

    on patient-specific dosimetry, the administered activity may be increased by an average factor of 2.4, indicating that most patients could be undertreated. The relative dosimetry approach based on planar imaging largely underestimates doses relative to reference values. Dosimetry based on planar bremsstrahlung imaging is not a dependable alternative to {sup 111}In dosimetry. (orig.)

  19. A Review of Neutron Scattering Applications to Nuclear Materials

    OpenAIRE

    VOGEL, Sven.C

    2013-01-01

    The growing demand for electric energy will require expansion of the amount of nuclear power production in many countries of the world. Research and development in this field will continue to grow to further increase safety and efficiency of nuclear power generation. Neutrons are a unique probe for a wide range of problems related to these efforts, ranging from crystal chemistry of nuclear fuels to engineering diffraction on cladding or structural materials used in nuclear reactors. Increased...

  20. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  1. Optimization of the image contrast in SPECT-CT bremsstrahlung imaging for Selective Internal Radiation Therapy of liver malignancies with Y-90 microspheres

    CERN Document Server

    Bonutti, Faustino; Magro, Giuseppe; Cecotti, Andrea; Della Schiava, Emanuele; Del Dò, Elena; Longo, Francesco; Herassi, Yassine; Bentayeb, Farida; Rossi, Marina; Ferretti, Guido; Geatti, Onelio; Padovani, Renato

    2015-01-01

    The quality of SPECT Bremsstrahlung images of patients treated with Y-90 is poor, mainly because of scattered radiation and collimator septa penetration. To minimize the latter effect, High Energy (HE) or Medium Energy (ME) collimators can be used. Scatter correction is not possible through the methods commonly used for the diagnostic radionuclides (Tc-99m, etc.) because the Bremsstrahlung radiation does not have distinct photopeaks, but a broad spectrum of energies ranging from zero to the maximum one detectable by the gamma-camera crystal is registered. Scatter radiation and collimator septa penetration affect the Contrast and the Contrast Recovery Coefficient (CRC) : our research focused on finding the best energy position for the acquisition window in order to maximize these parameters. To be guided in this finding, we first made a Monte Carlo (MC) simulation of a SPECT acquisition of a Y-90 cylindrical phantom and then we measured at different energies the Line Spread Function (LSF) of a linear Y-90 sour...

  2. Fission product yield distribution in the 12, 14, and 16 MeV bremsstrahlung-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Kim, G.N.; Kim, K. [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Schwengner, R.; John, R.; Massarczyk, R.; Junghans, A.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India)

    2015-11-15

    The absolute cumulative yields of various fission products in the 12, 14, and 16 MeV bremsstrahlung-induced fission of {sup 232}Th were determined using a recoil catcher and an off-line γ -ray spectrometric technique using the ELBE electron linac of Helmholtz-Zentrum Dresden-Rossendorf in Dresden, Germany. The mass chain yields were obtained from the absolute cumulative yields by correcting the charge distribution. The peak-to-valley ratio, average light mass (left angle A{sub L} right angle) and heavy mass (left angle A{sub H} right angle) values, and average number of neutrons (left angle n right angle {sub exp}) in the bremsstrahlung-induced fission of {sup 232}Th at different excitation energies were obtained from the mass chain yield data. The present study and existing literature data for the {sup 232}Th(γ, f) reaction are compared with similar data for the {sup 238}U(γ, f) reaction at various excitation energies, and surprisingly different behavior was found in the two fissioning systems. (orig.)

  3. Coherent bremsstrahlung, coherent pair production, birefringence, and polarimetry in the 20–170 GeV energy range using aligned crystals

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available The processes of coherent bremsstrahlung (CB and coherent pair production (CPP based on aligned crystal targets have been studied in the energy range 20–170 GeV. The experimental arrangement allowed for measurements of single photon properties of these phenomena including their polarization dependences. This is significant as the theoretical description of CB and CPP is an area of active debate and development. With the approach used in this paper, both the measured cross sections and polarization observables are predicted very well. This indicates a proper understanding of CB and CPP up to energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to determine the polarization parameters in our measurements. New technologies for high-energy photon beam optics including phase plates and polarimeters for linear and circular polarization are demonstrated in this experiment. Coherent bremsstrahlung for the strings-on-strings (SOS orientation yields a larger enhancement for hard photons than CB for the channeling orientations of the crystal. Our measurements and our calculations indicate low photon polarizations for the high-energy SOS photons.

  4. Parametric interference effect in nonresonant spontaneous bremsstrahlung of an electron in the field of a nucleus and two pulsed laser waves

    Science.gov (United States)

    Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.; Dubov, V. V.

    2016-07-01

    Nonresonant spontaneous bremsstrahlung of an electron scattered by a nucleus in the field of two moderately strong pulsed waves is studied theoretically. The process is studied in detail within the interference kinematic region. This region is determined by scattering of particles in the same plane at predetermined angles, at which stimulated absorption and emission of photons of external pulsed waves by an electron occur in a correlated manner. It is shown that the probability of the partial process with correlated emission (absorption) by an electron of the equal number of photons of the both waves is of an order of the magnitude greater than the corresponding probability in any other scattering kinematics. The cross section of spontaneous bremsstrahlung in two pulsed waves may be two times greater than the cross section of a free-field process after summation over all stimulated processes of correlated emission and absorption. Obtained results may be experimentally verified, for example, by scientific facilities at sources of pulsed laser radiation (SLAC, FAIR, ELI, XCELS).

  5. ASCA View of the Supernova Remnant Gamma Cygni (G78.2+2.1) Bremsstrahlung X-ray Spectrum from Loss-flattened Electron Distribution

    CERN Document Server

    Uchiyama, Y; Aharonian, F A; Mattox, J R; Uchiyama, Yasunobu; Takahashi, Tadayuki; Aharonian, Felix; Mattox, John

    2002-01-01

    We perform X-ray studies of the shell-type supernova remnant (SNR) gamma-Cygni associated with the brightest EGRET unidentified source 3EG J2020+4017. In addition to the thermal emissions with characteristic temperature of kT = 0.5-0.9 keV, we found an extremely hard X-ray component from several clumps localized in the northern part of the remnant. This component is described by a power-law with a photon index of 0.8-1.5. Both the absolute flux and the spectral shape of the nonthermal X-rays cannot be explained by the synchrotron or inverse-Compton mechanisms. We argue that the unusually hard X-ray spectrum can be naturally interpreted in terms of nonthermal bremsstrahlung from Coulomb-loss-flattened electron distribution in dense environs with the gas density about 10 to 100 cm^-3 . For given spectrum of the electron population, the ratio of the bremsstrahlung X- and gamma-ray fluxes depends on the position of the ``Coulomb break'' in the electron spectrum. The bulk of gamma-rays detected by EGRET would come...

  6. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High Energy Emission from the Inner 2deg by 1deg of the Galactic Center

    CERN Document Server

    Yusef-Zadeh, F; Wardle, M; Tatischeff, V; Roberts, D; Cotton, W; Uchiyama, H; Nobukawa, M; Tsuru, T G; Heinke, C; Royster, M

    2012-01-01

    The high energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray and gamma-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of FeI 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra and the H.E.S.S. observatories. The inferred physical quantities from modeling multi-wavelength emission in the context of bremsstrahlung emission...

  7. Measurement of the bremsstrahlung spectra generated from thick targets with =2–78 under the impact of 10 keV electrons

    Indian Academy of Sciences (India)

    Namita Yadav; Pragya Bhatt; Raj Singh; V S Subrahmanyam; R Shanker

    2010-04-01

    We present new experimental data on thick target bremsstrahlung spectra generated from the interaction of energetic electrons with bulk matter. The ‘photon yields’ in terms of double differential cross-sections (DDCS) are measured for pure elements of thick targets: Ti ( = 22), Ag ( = 47), W ( = 74) and Pt ( = 78) under the impact of 10 keV electrons. Comparison of DDCS obtained from the experimental data is made with those predicted by Monte-Carlo (MC) calculations using PENELOPE code. A close agreement between the experimental data and the MC calculations is found for all the four targets within the experimental error of 16%. Furthermore, the ratios of DDCS of bremsstrahlung photons emitted from Ag, W and Pt with those from Ti as a function of photon energy are examined with a relatively lower uncertainty of about 10% and they are compared with MC calculations. A satisfactory agreement is found between the experiment and the calculations within some normalizing factors. The variations of DDCS as a function of Z and of photon energy are also studied which show that the DDCS vary closely with Z; however, some deviations are observed for ‘tip’ photons emitted from high Z targets.

  8. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  9. An Ultrasonographic Periodontal Probe

    Science.gov (United States)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.

  10. Nuclear questions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-01-01

    The future of nuclear power has returned to centre stage. Freezing weather on both sides of the Atlantic and last month's climate-change talks in Montreal have helped to put energy and the future of nuclear power right back on the political agenda. The issue is particularly pressing for those countries where existing nuclear stations are reaching the end of their lives. In the UK, prime minister Tony Blair has commissioned a review of energy, with a view to deciding later this year whether to build new nuclear power plants. The review comes just four years after the Labour government published a White Paper on energy that said the country should keep the nuclear option open but did not follow this up with any concrete action. In Germany, new chancellor and former physicist Angela Merkel is a fan of nuclear energy and had said she would extend the lifetime of its nuclear plants beyond 2020, when they are due to close. However, that commitment has had to be abandoned, at least for the time being, following negotiations with her left-wing coalition partners. The arguments in favour of nuclear power will be familiar to all physicists - it emits almost no carbon dioxide and can play a vital role in maintaining a diverse energy supply. To over-rely on imported supplies of oil and gas can leave a nation hostage to fortune. The arguments against are equally easy to list - the public is scared of nuclear power, it generates dangerous waste with potentially huge clean-up costs, and it is not necessarily cheap. Nuclear plants could also be a target for terrorist attacks. Given political will, many of these problems can be resolved, or at least tackled. China certainly sees the benefits of nuclear power, as does Finland, which is building a new 1600 MW station - the world's most powerful - that is set to open in 2009. Physicists, of course, are essential to such developments. They play a vital role in ensuring the safety of such plants and developing new types of

  11. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to char...... a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging....

  12. Photofission product yields of {sup 238}U and {sup 239}Pu with 22-MeV bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xianfei; Yang, Haori, E-mail: haori.yang@oregonstate.edu

    2016-06-11

    In homeland security and nuclear safeguards applications, non-destructive techniques to identify and quantify special nuclear materials are in great demand. Although nuclear materials naturally emit characteristic radiation (e.g. neutrons, γ-rays), their intensity and energy are normally low. Furthermore, such radiation could be intentionally shielded with ease or buried in high-level background. Active interrogation techniques based on photofission have been identified as effective assay approaches to address this issue. In designing such assay systems, nuclear data, like photofission product yields, plays a crucial role. Although fission yields for neutron-induced reactions have been well studied and readily available in various nuclear databases, data on photofission product yields is rather scarce. This poses a great challenge to the application of photofission techniques. In this work, short-lived high-energy delayed γ-rays from photofission of {sup 238}U were measured in between linac pulses. In addition, a list-mode system was developed to measure relatively long-lived delayed γ-rays from photofission of {sup 238}U and {sup 239}Pu after the irradiation. Time and energy information of each γ-ray event were simultaneously recorded by this system. Cumulative photofission product yields were then determined using the measured delayed γ-ray spectra.

  13. Eddy Current Flexible Probes for Complex Geometries

    Science.gov (United States)

    Gilles-Pascaud, C.; Decitre, J. M.; Vacher, F.; Fermon, C.; Pannetier, M.; Cattiaux, G.

    2006-03-01

    The inspection of materials used in aerospace, nuclear or transport industry is a critical issue for the safety of components exposed to stress or/and corrosion. The industry claims for faster, more sensitive, and more flexible techniques. Technologies based on Eddy Current (EC) flexible array probe and magnetic sensor with high sensitivity such as giant magneto-resistance (GMR) could be a good solution to detect surface-breaking flaws in complex shaped surfaces. The CEA has recently developed, with support from the French Institute for Radiological Protection and Nuclear Safety (IRSN), a flexible array probe based on micro-coils etched on Kapton. The probe's performances have been assessed for the inspection of reactor residual heat removal pipes, and for aeronautical applications within the framework of the European project VERDICT. The experimental results confirm the very good detection of narrow cracks on plane and curve shaped surfaces. This paper also describes the recent progresses concerning the application of GMR sensors to EC testing, and the results obtained for the detection of small surface breaking flaws.

  14. Nuclear Physics

    CERN Document Server

    Savage, Martin J

    2016-01-01

    Lattice QCD is making good progress toward calculating the structure and properties of light nuclei and the forces between nucleons. These calculations will ultimately refine the nuclear forces, particularly in the three- and four-nucleon sector and the short-distance interactions of nucleons with electroweak currents, and allow for a reduction of uncertainties in nuclear many-body calculations of nuclei and their reactions. After highlighting their importance, particularly to the Nuclear Physics and High-Energy Physics experimental programs, I discuss the progress that has been made toward achieving these goals and the challenges that remain.

  15. Contribution to the study of molecular movements in cyclohexane by electron spin resonance and electron-nuclear double resonance using a radical probe; Contribution a l'etude des mouvements moleculaires dans le cyclohexane par resonance paramagnetique electronique et double resonance electronique-nucleaire a l'aide d'une sonde radicalaire

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Solutions of stable free radicals of the nitroxide type have been studied as a function of temperature. In the plastic or globular state, the cyclohexane molecules have rapid rotational and diffusional movements. They transmit this movement to dissolved free radicals. Conversely, measurements by electron spin resonance of the absolute movement of the radicals, and by electron nuclear double resonance of their movement relative to the cyclohexane molecules give very precise methods for local analyses of the movement present in the cyclohexane matrix. The principle of these techniques makes up the 'radical probe method'. (author) [French] Des solutions de radicaux libres stables, du type nitroxyde dans le cyclohexane ont ete etudiees, en fonction de la temperature. Les molecules de cyclohexane, dans l'etat plastique ou globulaire, sont animees de mouvements rapides de rotation sur elles-memes et de diffusion. Elles transmettent leur mobilite aux radicaux libres dissous. Reciproquement, la mesure du mouvement absolu des radicaux, a l'aide de la resonance paramagnetique electronique, et celle du mouvement relatif des radicaux et des molecules de cyclohexane par double resonance electronique-nucleaire, constituent des methodes tres precises pour analyser localement les mouvements presents dans la matrice de cyclohexane. Ce principe et ces techniques constituent la 'methode de la sonde radicalaire'. (auteur)

  16. Nuclear reaction

    CERN Multimedia

    Penwarden, C

    2001-01-01

    At the European Research Organization for Nuclear Research, Nobel laureates delve into the mysteries of particle physics. But when they invited artists from across the continent to visit their site in Geneva, they wanted a new kind of experiment.

  17. Nuclear Disarmament.

    Science.gov (United States)

    Johnson, Christopher

    1982-01-01

    Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)

  18. Nuclear Data

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  19. Nuclear Structure

    Science.gov (United States)

    Gargano, Angela

    2003-04-01

    An account of recent studies in the field of theoretical nuclear structure is reported. These studies concern essentially research activities performed under the Italian project "Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi". Special attention is addressed to results obtained during the last two years as regards the development of new many-body techniques as well as the interpretation of new experimental aspects of nuclear structure.

  20. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Bruxelles (Belgium); Takahashi, K. [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  1. Nuclear astrophysics

    Science.gov (United States)

    Arnould, M.; Takahashi, K.

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  2. Nuclear Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  3. Direct photon production in high-energy nuclear collisions

    NARCIS (Netherlands)

    Peitzmann, T.

    2016-01-01

    Direct photons have always been considered a promising probe for the very early phases of high-energy nuclear collisions. Prompt photons reveal information about the initial state and its possible modifications in nuclei. In this context they should be one of the best probes for effects of gluon sat

  4. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    DEFF Research Database (Denmark)

    Madsen, Christian Bruun; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters...... as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4...... and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane....

  5. Constraining nuclear PDFs with CMS

    CERN Document Server

    Chapon, Emilien

    2017-01-01

    Nuclear parton distribution functions are essential to the understanding of proton-lead collisions. We will review several measurements from CMS that are particularly sensitive to nPDFs. W and Z bosons are medium-blind probes of the initial state of the collisions, and we will present the measurements of their production cross sections in pPb collisions at 5.02 TeV, and as well a asymmetries with an increased sensitivity to nPDFs. We will also report measurements of charmonium production, including the nuclear modification factor of J/psi and psi(2S) in pPb collisions at 5.02 TeV, though other cold nuclear matter effects may also be at play in those processes. At last, we will present measurements of the pseudo-rapidity of dijets in pPb collisions at 5.02 TeV.

  6. Nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as {sup 99}Mo and {sup 131}I, among several others, used in nuclear medicine, by operating

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  9. General Nuclear Medicine

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of ... limitations of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  13. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  14. Influence of the transverse dimensions of colliding beams on processes of bremsstrahlung and production of e/sup +/e/sup -/ pairs

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Polityko, S.I.; Serbo, V.G.

    1985-09-01

    For high energies of colliding e/sup +/e/sup -/, ep, and ..gamma..e beams in processes of bremsstrahlung and production of e/sup +/e/sup -/ pairs, an important role is played by impact parameters much greater than the transverse dimensions of the beams. This leads to a decrease of the number of observed events in comparison with the standard calculations. Exact formulas and a number of convenient approximate formulas are obtained for the number of events in an arbitrary reaction with allowance for the finite dimensions of the beams. Concrete calculations are given for production of e/sup +/e/sup -/ pairs.The deviations from the standard calculations for e/sup +/e/sup -/ collisions under the conditions of LEP, SLC, and VLEPP are 1, 4, and 15%, respectively, and for ..gamma..e collisions under the conditions of SLC and VLEPP they are 20 and 35%, respectively.

  15. Measurement of isomeric-yield ratios of 109m,gPd and 115m,gCd with 50-, 60-, and 70-MeV bremsstrahlung

    Science.gov (United States)

    Rahman, Md. Shakilur; Lee, Manwoo; Kim, Kyung-Sook; Kim, Guinyun; Kim, Eunae; Cho, Moo-Hyun; Shvetshov, Valery; Khue, Pham Duc; Van Do, Nguyen

    2012-04-01

    The isomeric-yield ratios of 109m,gPd and 115m,gCd were measured by the activation method with uncollimated bremsstrahlung beams of 50-, 60-, and 70-MeV generated from an electron linear accelerator at Pohang Accelerator Laboratory. The induced activities in the irradiated foils were measured by the high-resolution γ-ray spectrometric system consisting of a high-purity germanium detector and a multichannel analyzer. The obtained isomeric-yield ratios in the formation of 109m,gPd and 115m,gCd are compared with the corresponding values found in the other experiments and the calculated values based on the statistical model code TALYS. The present results for 109m,gPd and 115m,gCd in this energy region are the first measurement.

  16. Reconstruction of full electron energy distributions by Poisson-regularized spectral inversion of x-ray Bremsstrahlung emissions in the PFRC device

    Science.gov (United States)

    Swanson, Charles; Jandovitz, Peter; Bosh, Alexandra; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity Rotating Magnetic Field (RMF) driven Field-Reversed Configuration plasma confinement experiment equipped with Si-PIN and SDD x-ray detectors. It is predicted that the electron energy distribution is non-thermal when the RMF is active. Using a novel inversion technique, we present full electron distribution functions as reconstructed (``spectrally inverted'') from the x-ray Bremsstrahlung emissions. This method regularizes the inverse treating the measurement as a Poisson random variable, as opposed to state-of-the-art methods which assume a Normal random variable. The method maximizes the log-likelihood of the solution, determined from Bayes' Theorem. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  17. MONTE CARLO SIMULATION OF THE BREMSSTRAHLUNG RADIATION FOR THE MEASUREMENT OF AN INTERNAL CONTAMINATION WITH PURE-BETA EMITTERS IN VIVO.

    Science.gov (United States)

    Fantínová, K; Fojtík, P; Malátová, I

    2016-09-01

    Rapid measurement techniques are required for a large-scale emergency monitoring of people. In vivo measurement of the bremsstrahlung radiation produced by incorporated pure-beta emitters can offer a rapid technique for the determination of such radionuclides in the human body. This work presents a method for the calibration of spectrometers, based on the use of UPh-02T (so-called IGOR) phantom and specific (90)Sr/(90)Y sources, which can account for recent as well as previous contaminations. The process of the whole- and partial-body counter calibration in combination with application of a Monte Carlo code offers readily extension also to other pure-beta emitters and various exposure scenarios. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Science.gov (United States)

    Zhang, Xiaodong; Ayaz-Maierhafer, Birsen; Laubach, Mitchell A.; Hayward, Jason P.

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse ( 50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1-2.5 nC yields the best resolving capability between the DU and lead targets.

  19. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    Science.gov (United States)

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  20. Delayed gamma studies from photo-fission of {sup 237}Np for nuclear waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, P.M. [CEA Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France); Berthoumieux, E. [CEA Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)], E-mail: Eric.Berthoumieux@cea.fr; Dore, D. [CEA Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France); Laborie, J.M.; Ledoux, X. [CEA, DPTA/SPN, Bruyeres-le-Chatel, 91297 Arpajon (France); Macary, V.; Panebianco, S.; Ridikas, D. [CEA Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2009-04-15

    An active and non-destructive method is being established for detection of {sup 237}Np in nuclear waste barrels. The unique high energy decay gamma signature produced after photo-fission is analysed to deduce decay time parameters. A high purity {sup 237}Np sample was irradiated with bremsstrahlung photons and high energy gamma decay spectra were measured with BGO detectors for various irradiation durations. The analysis of decay spectra resulted in the formation of five decay groups, which can reproduce the experimental decay spectra within 10% accuracy. These parameters together with neutron decay groups are absolutely essential to quantify the nuclear material in waste barrels by photo-fission. The delayed decay gamma groups for {sup 237}Np nucleus are being reported for the first time.

  1. Delayed gamma studies from photo-fission of {sup 237}Np for nuclear waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, P.M.; Berthoumieux, E.; Dore, D.; Macary, V.; Panebianco, S.; Ridikas, D. [CEA/DSM Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France); Laborie, J.M.; Ledoux, X. [CEA/DAM Ile-de-France, DPTA/SPN, 91680 Bruyeres-le-Chatel (France)

    2008-07-01

    An active and non destructive method is being established for detection of {sup 237}Np in nuclear waste barrels. The unique high-energy decay-gamma signature produced after photo-fission is analysed to deduce decay time parameters. High purity {sup 237}Np sample was irradiated with Bremsstrahlung photons and high energies gamma decay spectra were measured with BGO detectors for various irradiation durations. The analysis of decay spectra resulted in formation of five decay groups, which can reproduce the experimental decay spectra within 10 % accuracy. These parameters together with neutron decay groups are absolutely essential to quantify the nuclear material in waste barrels by photo-fission. The delayed decay gamma groups for {sup 237}Np nucleus are being reported for the first time. (authors)

  2. Nuclear scales

    Energy Technology Data Exchange (ETDEWEB)

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  3. Nuclear Scales

    CERN Document Server

    Friar, J L

    1998-01-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the $\\pi$-$\\gamma$ force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  4. Nuclear astrophysics

    CERN Document Server

    Arnould, M

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding some of the many facets of the Universe through the knowledge of the microcosm of the atomic nucleus. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other sub-fields of physics and chemistry have also contributed to that advance. Many long-standing problems remain to be solved, however, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endanger old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experime...

  5. Study of an efficient application of the tagged bremsstrahlung in double-polarization experiments in the GeV range and the use of the inelastic electron scattering under extremely forward angles as alternative to the tagged bremsstrahlung; Studie eines effizienten Einsatzes der markierten Bremsstrahlung bei Doppelpolarisationsexperimenten im GeV-Bereich und der Nutzung der inelastischen Elektronstreuung unter extremen Vorwaertswinkeln als Alternative zur markierten Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, M.

    2006-03-15

    For the preparation of photonic probes for hadron physics the determination of energy and polarization of the photons is essential. In this dissertation in a first part a possibility of the determination of the degree of polarization by use of the asymmetry observables is presented. In a second part a possibility isd discussed to perform an energy and polarization tagging of nearly real photons in electron scattering under small Q{sup 2}. By this method it should be possible to tag billions of photons per second.

  6. Nuclear Models

    Science.gov (United States)

    Fossión, Rubén

    2010-09-01

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  7. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    R J Fries

    2010-08-01

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  8. Hard Probes at ATLAS

    CERN Document Server

    Citron, Z; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has measured several hard probe observables in Pb+Pb and p+Pb collisions at the LHC. These measurements include jets which show modification in the hot dense medium of heavy ion collisions as well as color neutral electro-weak bosons. Together, they elucidate the nature of heavy ion collisions.

  9. Endocavity Ultrasound Probe Manipulators.

    Science.gov (United States)

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2013-06-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure.

  10. One-Probe Search

    DEFF Research Database (Denmark)

    Östlin, Anna; Pagh, Rasmus

    2002-01-01

    We consider dictionaries that perform lookups by probing a single word of memory, knowing only the size of the data structure. We describe a randomized dictionary where a lookup returns the correct answer with probability 1 - e, and otherwise returns don't know. The lookup procedure uses an expan...

  11. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  12. One-Probe Search

    DEFF Research Database (Denmark)

    Östlin, Anna; Pagh, Rasmus

    2002-01-01

    We consider dictionaries that perform lookups by probing a single word of memory, knowing only the size of the data structure. We describe a randomized dictionary where a lookup returns the correct answer with probability 1 - e, and otherwise returns don't know. The lookup procedure uses an expan...

  13. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  14. Nuclear Assessment

    Institute of Scientific and Technical Information of China (English)

    CHARLES K.EBINGER; JOHN P.BANKS

    2010-01-01

    @@ In President Barack Obama's State of the Union address in January 2009,he called for the building of "a new generation of safe,clean nuclear power plants" This was followed by his highprofile speech in Prague in April 2009,in which he noted the need "to harness the power of nuclear energy on behalf of our efforts to combat climate change."In December 2009 in Copenhagen,he pledged the United States will reduce carbon dioxide (CO2) emissions 17 percent from 2005 levels by 2020.

  15. Initial results from a multiple monoenergetic gamma radiography system for nuclear security

    Science.gov (United States)

    O'Day, Buckley E.; Hartwig, Zachary S.; Lanza, Richard C.; Danagoulian, Areg

    2016-10-01

    The detection of assembled nuclear devices and concealed special nuclear materials (SNM) such as plutonium or uranium in commercial cargo traffic is a major challenge in mitigating the threat of nuclear terrorism. Currently available radiographic and active interrogation systems use ∼1-10 MeV bremsstrahlung photon beams. Although simple to build and operate, bremsstrahlung-based systems deliver high radiation doses to the cargo and to potential stowaways. To eliminate problematic issues of high dose, we are developing a novel technique known as multiple monoenergetic gamma radiography (MMGR). MMGR uses ion-induced nuclear reactions to produce two monoenergetic gammas for dual-energy radiography. This allows us to image the areal density and effective atomic number (Zeff) of scanned cargo. We present initial results from the proof-of-concept experiment, which was conducted at the MIT Bates Research and Engineering Center. The purpose of the experiment was to assess the capabilities of MMGR to measure areal density and Zeff of container cargo mockups. The experiment used a 3.0 MeV radiofrequency quadrupole accelerator to create sources of 4.44 MeV and 15.11 MeV gammas from the 11B(d,nγ)12C reaction in a thick natural boron target; the gammas are detected by an array of NaI(Tl) detectors after transmission through cargo mockups . The measured fluxes of transmitted 4.44 MeV and 15.11 MeV gammas were used to assess the areal density and Zeff. Initial results show that MMGR is capable of discriminating the presence of high-Z materials concealed in up to 30 cm of iron shielding from low- and mid-Z materials present in the cargo mockup.

  16. Nuclear winter or nuclear fall?

    Science.gov (United States)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  17. Nuclear Assessment

    Institute of Scientific and Technical Information of China (English)

    CHARLES; K.; EBINGER; JOHN; P.; BANKS

    2010-01-01

    The United States needs a comprehensive policy and market-based solutions to address the challenges and demands of energy provision in President Barack Obama’s State of the Union address in January 2009, he called for the building of "a new generation of safe, clean nuclear power plants." This was followed by his high- profile speech in Prague in April 2009,

  18. Nuclear Science.

    Science.gov (United States)

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  19. Novel nuclear phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs.

  20. Nuclear trafficking in health and disease.

    Science.gov (United States)

    Mor, Amir; White, Michael A; Fontoura, Beatriz M A

    2014-06-01

    In eukaryotic cells, the cytoplasm and the nucleus are separated by a double-membraned nuclear envelope (NE). Thus, transport of molecules between the nucleus and the cytoplasm occurs via gateways termed the nuclear pore complexes (NPCs), which are the largest intracellular channels in nature. While small molecules can passively translocate through the NPC, large molecules are actively imported into the nucleus by interacting with receptors that bind nuclear pore complex proteins (Nups). Regulatory factors then function in assembly and disassembly of transport complexes. Signaling pathways, cell cycle, pathogens, and other physiopathological conditions regulate various constituents of the nuclear transport machinery. Here, we will discuss several findings related to modulation of nuclear transport during physiological and pathological conditions, including tumorigenesis, viral infection, and congenital syndrome. We will also explore chemical biological approaches that are being used as probes to reveal new mechanisms that regulate nucleocytoplasmic trafficking and that are serving as starting points for drug development.