WorldWideScience

Sample records for bremsstrahlung photons produced

  1. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: tajindersingh2k9@gmail.com [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)

    2017-06-15

    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  2. Angular distributions of bremsstrahlung photons from ECR plasma

    Science.gov (United States)

    Kumwenda, M. J.; Ahn, J. K.; Lee, J. W.; Lugendo, I. J.; Kim, S. J.; Park, J. Y.; Won, M. S.

    2017-12-01

    High-energy bremsstrahlung photon emission beyond a critical energy from electron cyclotron resonance (ECR) heating has long attracted much attention, and its nature has yet been unsolved. We have measured bremsstrahlung photons from the 28-GHz ECR ion source at Busan Center of Korean Basic Science Institute. The gamma-ray detection system consists of three NaI(Tl) scintillation detectors placed 62 cm radially from the beam axis and a NaI(Tl) scintillation detector at the extraction port for monitoring the photon intensity along the beam axis. Bremsstrahlung photon energy spectra were measured at nine azimuthal angles at the RF power of 1 kW. Azimuthal angular distributions of bremsstrahlung photons were found to be in coincidence with the structure the ECR ion source and the shape of ECR plasma.

  3. Monte Carlo simulation of bremsstrahlung produced at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    Beam lines of SPring-8 storage ring is now under operation after 1997. An energy range necessary for safety analysis is from some keV synchrotrons radiation to 8 GeV electrons, photons and photoneutrons, some of them have directional distribution. Simulations which includes empirical data are needed in some cases, these are: (1) gas bremsstrahlung radiation produced by the interaction between storage electrons and residual gases, (2) high energy photon behaviors caused by inverse-compton scattering, (3) neutrons produced by photonuclear reaction. A leakage flux caused by ground-shine of synchrotrons radiation is also estimated by simulation. Usually the beam line is set up on the extrapolated position of the straight line of the storage ring. In this case, gas bremsstrahlung from the storage ring is not negligible at the beam line. The Monte Carlo code (EGS4) on electromagnetic cascade interaction is used for estimation. Accuracy of the result is discussed with availability of assumptions including radial distribution. SPring-8 has the beam line in which high energy photons are produced by laser-electron interaction. In this case a photon has an energy of about 3.5 GeV. Local shielding for this gamma radiation is one of the key issues in the beam line design. The EGS4 code is used to simulate the effective shielding structure. The EGS4 code is also used to obtain track length distribution for gas bremsstrahlung photon to impinge the lead target. Safety analysis is made by the MCNP4b code. The wiggler and/or undulator installed in the storage ring produce complicated radiation spectrum. Computer codes (STAC8, ITS3.0, EGS4) are used to analyze photon transport. In this case, attenuation is very large, and time consuming calculation is needed. (Y. Tanaka)

  4. Precision gamma-ray polarimetry applied to studies of bremsstrahlung produced by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Oleksiy

    2015-12-16

    The thesis reports on the measurement of bremsstrahlung linear polarization produced in collisions of longitudinally and transversely polarized electrons with gold atoms. The experiment was performed at the Mainzer Microtron MAMI in the Institut fuer Kernphysik of Johannes Gutenberg-Universitaet Mainz, Germany. Spin-oriented electrons with 2.15 MeV kinetic energy collided with a thin golden target and produced bremsstrahlung. Linear polarization of the emitted photons was measured by means of Compton polarimetry applied to a segmented high-purity germanium detector. Experimental results reveal a strong correlation between the electron spin orientation and bremsstrahlung linear polarization. This indicates a dominant role of the electron spin in atomic-field bremsstrahlung and Coulomb scattering.

  5. Study of radionuclides created by {sup 181}Ta({gamma},xn yp) reactions for bremsstrahlung photons produced by 150-MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.A. [Wisconsin Univ., River Falls, WI (United States); Dickens, J.K. [Oak Ridge National Lab., TN (United States)

    1991-12-01

    Ten radionuclides, including isomers, from {sup 172}Ta to {sup 180}Ta and {sup 180m}Hf were produced by photon interactions with a sample of elemental tantalum and measured by counting photons using a high-resolution detection system. Relative yields of these radionuclides were obtained. In addition, precision half lives were obtained for {sup 175,176,180}Ta and {sup 180m}Hf. Those obtained for the three Ta isotopes agree with previously reported values. For {sup 180m}Hf, the present measurements resulted in a half life determination of 6.05{plus_minus}0.06 hr, or about 10% longer than the currently adopted value for this half life.

  6. Study of radionuclides created by sup 181 Ta(. gamma. ,xn yp) reactions for bremsstrahlung photons produced by 150-MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.A. (Wisconsin Univ., River Falls, WI (United States)); Dickens, J.K. (Oak Ridge National Lab., TN (United States))

    1991-12-01

    Ten radionuclides, including isomers, from {sup 172}Ta to {sup 180}Ta and {sup 180m}Hf were produced by photon interactions with a sample of elemental tantalum and measured by counting photons using a high-resolution detection system. Relative yields of these radionuclides were obtained. In addition, precision half lives were obtained for {sup 175,176,180}Ta and {sup 180m}Hf. Those obtained for the three Ta isotopes agree with previously reported values. For {sup 180m}Hf, the present measurements resulted in a half life determination of 6.05{plus minus}0.06 hr, or about 10% longer than the currently adopted value for this half life.

  7. Bremsstrahlung photons as a probe of hot nuclei

    NARCIS (Netherlands)

    MARTINEZ, G; MARQUES, FM; SCHUTZ, Y; WOLF, G; DIAZ, J; FRANKE, M; HLAVAC, S; HOLZMANN, R; LAUTRIDOU, P; LEFEVRE, F; Löhner, H.; MARIN, A; MATULEWICZ, T; MITTIG, W; OSTENDORF, RW; VANPOL, JHG; QUEBERT, J; ROUSSELCHOMAZ, P; SCHUBERT, A; SIEMSSEN, RH; SIMON, RS; SUJKOWSKI, Z; WAGNER, [No Value; WILSCHUT, HW

    1995-01-01

    Aside from the dominant production of hard photons in first-chance p-n collisions, a significant hard-photon production in a later stage of heavy-ion reactions is predicted by the BUU theory. These thermal hard photons are emitted from a nearly thermalized source and still originate from

  8. Z-dependence of thick-target bremsstrahlung produced by monoenergetic low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, S.; Short, A.; Williams, S., E-mail: scott.williams@angelo.edu

    2016-07-01

    The dependence of thick-target bremsstrahlung emitted by low-energy beams of monoenergetic electrons on the atomic number of the target material has been investigated experimentally for incident electron energies of 4.25 keV and 5.00 keV using thick aluminum, copper, silver, tungsten, and gold targets. Experimental data suggest that the intensity of the thick-target bremsstrahlung emitted is more strongly dependent on the atomic number of the target material for photons with energies that are approximately equal to the energy of the incident electrons than at lower energies, and also that the dependence of thick-target bremsstrahlung on the atomic number of the target material is stronger for incident electrons of higher energies than for incident electrons of lower energies. The results of the experiments are compared to the results of simulations performed using the PENELOPE program (which is commonly used in medical physics) and to thin-target bremsstrahlung theory, as well. Comparisons suggest that the experimental dependence of thick-target bremsstrahlung on the atomic number of the target material may be slightly stronger than the results of the PENELOPE code suggest.

  9. An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2009-03-01

    Full Text Available Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs, even for the same electron beam energy. The aims of this study were to simulate the NEPTUN 10PC linac electron beams and to calculate the photon contamination dose due to bremsstrahlung radiation in these beams using a Monte Carlo method. Materials and methods: A NEPTUN 10PC linac was simulated in its electron mode using the BEAMnrc code. This linac can provide three electron beam energies of 6, 8 and 10 MeV. Detailed information required for the simulation, including the geometry and materials of various components of the linac treatment head, was provided by the vender. For all simulations, the cut-off energies for electron and photon transport were set at ECUT=0.521 MeV and PCUT=0.010 MeV, respectively. The KS statistical test was used for validation of the simulated models. Then, relevant bremsstrahlung radiation doses for the three electron beam energies of the linac were calculated for the reference field using the Monte Carlo method.   Results: The KS test showed a good agreement between the calculated values (resulting from the simulations and the measured ones. The results showed that the amount of contaminated photon dose due to bremsstrahlung radiation from various components of the simulated linac at the surface of the phantom was between 0.2%-0.5% of the maximum dose for the three electron beam energies. Conclusion:  Considering the good agreement between the measured and simulated data, it can be concluded that the simulation method as well as the calculated bremsstrahlung doses have been made at a good level of accuracy and precision

  10. Studies of some isomeric yield ratios produced with bremsstrahlung

    CERN Document Server

    Kolev, D

    1998-01-01

    The experimental isomeric ratios for sup 5 sup 2 sup m sup , sup g Mn, sup 8 sup 6 sup m sup , sup g Y, sup 8 sup 7 sup m sup , sup g Y, sup 8 sup 9 sup m sup , sup g Zr, sup 1 sup 1 sup 0 sup m sup , sup g In, sup 1 sup 1 sup 1 sup m sup , sup g In, sup 1 sup 1 sup 2 sup m sup , sup g In, sup 1 sup 5 sup 2 sup m sup 1 sup , sup g Pm, sup 1 sup 5 sup 2 sup m sup 2 sup , sup m sup 1 Eu, sup 1 sup 6 sup 2 sup m sup , sup g Ho, sup 1 sup 6 sup 4 sup m sup , sup g Ho and sup 1 sup 7 sup 8 sup m sup , sup g Lu measured by the activation technique from different targets in (gamma, xnp) reactions (x<=3) at the bremsstrahlung end-point energy of 43 MeV are presented. The predictions of calculations performed by means of compound nucleus particle evaporation and final gamma-deexcitation were critically discussed. The importance of inclusion in the calculations of nonequilibrium particle emission and an adequate gamma-decay mode of isomeric nuclei was considered for some of the reactions investigated.

  11. Coherence effects in nuclear bremsstrahlung

    NARCIS (Netherlands)

    Lohner, H

    The production of nuclear bremsstrahlung (Egamma > 30 MeV) has been studied in heavy-ion collisions, as well as proton and alpha-particle collisions with nuclei. In heavy-ion reactions the measured photon spectra show an exponential shape dominated by the incoherent sum of photons produced in

  12. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Departamento de Fisica, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra, Coimbra (Portugal); Sona, P., E-mail: pietro.sona@fi.infn.it [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Ballestrero, S. [Department of Physics University of Johannesburg, Johannesburg (South Africa); CERN PH/ADT, Geneve (Switzerland); Uggerhoj, U.I.; Andersen, K.K. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2012-10-15

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are established. The separate contributions to spectral distortion of electromagnetic processes other than bremsstrahlung are also studied in detail.

  13. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  14. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M. [Institut fuer Kernphysik, Schlossgartenstr. 9, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, F-91128 Palaiseau (France); Vogt, K.; Bagnoud, V. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

    2011-08-15

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  15. Polarization Bremsstrahlung

    CERN Document Server

    Korol, Andrey V

    2014-01-01

    This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters.   The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications.  Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties.   Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential  information required f...

  16. Shielding calculation constants for use in effective dose evaluation for photons, neutrons and Bremsstrahlung from beta-ray

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yukio; Endo, Akira; Tsuda, Shuichi; Takahashi, Fumiaki; Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    Dose quantity in the shielding design calculation will be changed from the 1 cm depth dose equivalent to effective dose on the occasion of the introduction of International Commission on Radiological Protection (ICRP) 1990 Recommendations (ICRP Publication 60) into domestic laws. In the shielding calculation for the radiation facilities, simple dose estimation methods by using the shielding calculation constants instead of calculation of radiation energy spectra behind the shielding materials are effective and widely used. These shielding calculation constants depend on the dose quantity to be estimated and those for the evaluation of 1 cm depth dose equivalents should be replaced by those for the evaluation of effective dose. In the present report, the shielding calculation constants are summarized for photons, neutrons and Bremsstrahlung from beta-ray. For mono-energetic photons with energies from 0.015 MeV to 10 MeV, effective dose buildup factors, effective conversion coefficients from air kerma to effective dose and transmission data of effective dose were calculated. Effective dose rate constants, which represent an effective dose value at 1 m apart from a source without shielding, and transmission data of effective dose were also calculated for gamma-ray and X-ray from 33 radioisotopes, Bremsstrahlung from 13 radioisotopes beta-ray and 4 neutron sources. (author)

  17. Beta Emission and Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-13

    Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.

  18. Polarization bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Korol, Andrey V.; Solov' yov, Andrey V. [Frankfurt Univ. (Germany). Frankfurt Inst. for Advanced Studies

    2014-03-01

    Authored by leading experts in the field. Self-contained introduction to the subject matter. Suitable as graduate text on the topic. This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters. The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications. Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties. Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential information required for e.g. plasma diagnostics as well as astrophysical and medical applications (such as radiation therapy). This book primarily addresses graduate students and researchers with a background in atomic, molecular, optical or plasma physics, but will also be of benefit to anyone wishing to enter the field.

  19. Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom

    CERN Document Server

    Job, P K; Semones, E

    1999-01-01

    High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...

  20. Bremsstrahlung from an Equilibrating Quark-Gluon Plasma

    CERN Document Server

    Mustafa, Munshi G.; Mustafa, Munshi G.; Thoma, Markus H.

    2000-01-01

    The photon production rate from a chemically equilibrating quark-gluon plasma likely to be produced at RHIC (BNL) and LHC (CERN) energies is computed taking into account bremsstrahlung. The plasma is assumed to be in local thermal equilibrium, but with a phase space distribution that deviates from the Fermi or Bose distribution by space-time dependent factors (fugacities). The photon spectrum is obtained by integrating the photon rate over the space-time history of the plasma, adopting a boost invariant cylindrically symmetric transverse expansion of the system with different nuclear profile functions. Initial conditions obtained from a self-screened parton cascade calculation and, for comparison, from the HIJING model are used. Compared to the equilibrium case a suppression of the photon yield by one to three orders of magnitude is observed. Furthermore the photon production due to bremsstrahlung from the chemically nonequilibrated plasma dominates over the emission from Compton scattering and quark-antiquar...

  1. Comparisons of Exact Results for the Virtual Photon Contribution to Single Harg Bremsstrahlung in Radiative Return for $e^{+}e^{-}$ Annihilation

    CERN Document Server

    Jadach, Stanislaw; Yost, S A

    2006-01-01

    We compare fully differential exact results for the virtual photon correction to single hard photon bremsstrahlung obtained using independent calculations, both for electron-positron annihilation at high-energy colliders and for radiative returnapplications. The results are compared using Monte Carlo evaluations of the matrix elements as well as by direct analytical evaluation of certain critical limits. Special attention is given to the issues of numerical stability and the treatment of finite-mass corrections. It is found that agreement on the order of 10^{-5} or better is obtained over most of the range of hard photon energies, at CMS energies relevant to both high energy collisions and radiative return experiments.

  2. Simulation of Bremsstrahlung production

    Energy Technology Data Exchange (ETDEWEB)

    Patau, J.P.; Malbert, M.; Terrissol, M. (Centre de Physique Atomique, Toulouse (France))

    1981-10-01

    Electron slowing down and related phenomena are often greatly affected by bremsstrahlung production. Each creation of photon is individually simulated on the basis of a cross-section pack advised by Koch and Motz with corrections in the high energy frequency limit region. An accurate and fast sampling method is described. Its applicability covers a range between 50 keV and 80 MeV for target atoms whose atomic number is from 5 up to 90.

  3. Study of non-thermal photon production under different scenarios in solar flares. 2: The Compton inverse and Bremsstrahlung models and fittings

    Science.gov (United States)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    Energy spectra of photons emitted from Bremsstrahlung (BR) of energetic electrons with matter, is obtained from the deconvolution of the electron energy spectra. It can be inferred that the scenario for the production of X-rays and gamma rays in solar flares may vary from event to event. However, it is possible in many cases to associated low energy events to impulsive acceleration, and the high energy phase of some events to stochastic acceleration. In both cases, flare particles seem to be strongly modulated by local energy losses. Electric field acceleration, associated to neutral current sheets is a suitable candidate for impulsive acceleration. Finally, that the predominant radiation process of this radiation is the inverse Compton effect due to the local flare photon field.

  4. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    Science.gov (United States)

    Livingston, Ken

    2009-05-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  5. Photon dose produced by a high-intensity laser on a solid target

    Science.gov (United States)

    Compant La Fontaine, A.

    2014-08-01

    When a high-intensity laser pulse hits a solid target, its pedestal creates a preplasma. The interaction of the main laser pulse, linearly polarized, with this preplasma produces relativistic electrons. These electrons subsequently penetrate inside the target, with high atomic number, and produce bremsstrahlung emission, which constitutes an x-ray source that may be used in various applications such as radiography of high area density objects, photonuclear studies or positron production. This x-ray source is mainly defined by its photon dose, which depends upon the laser, preplasma and target characteristics. In new facilities the radioprotection layout design can be obtained by numerical simulations, which are somewhat tedious. A simple model giving the photon dose per laser energy unit is obtained by using the mean bremsstrahlung cross section of electrons interacting with the atoms of the conversion target. It is expressed versus the fraction ηel of the laser energy absorbed into the forward hot electrons, their mean kinetic energy E, the photon lobe emission mean angular aperture \\bar{{\\theta}} and the target characteristics, i.e. thickness, element, atomic mass and atomic number. The parameters ηel, E and \\bar{{\\theta}} are analysed by applying the energy and momentum flux conservation laws during the laser-plasma interaction in the relativistic regime in an underdense and overdense plasma, including the hole-boring effect. In addition, these quantities are parametrized versus the normalized laser vector potential a0 and the preplasma scale length Lp by using a full set of numerical simulations, in the laser intensity domain 1018-1021 W cm-2 and preplasma scale length range 0.03-400µm. These simulations are done in two- and three-dimensional geometry with the CALDER particle-in-cell code, which computes the laser-plasma interaction, and with the MCNP Monte Carlo code, which calculates the bremsstrahlung emission. The present model is compared with the

  6. Two-particle correlation via Bremsstrahlung

    Directory of Open Access Journals (Sweden)

    Cho Soyeon

    2017-01-01

    Full Text Available Ridge is the well-known structure in two-particle angular correlations at highenergy heavy-ion collisions. This structure is physically understood through elliptic and higher-order flows at nucleus-nucleus collisions. This behavior is also found in small systems, such as proton-proton collisions, recently. However, Ridge structure in small system is hard to be understood using hydrodynamics, since small systems are not dense enough to produce the Quark-Gluon plasma. Thus, we try to describe this phenomena through kinematic interaction between jets and medium partons. In high-energy heavy-ion collision, the energetic particles called jets go out in specific direction and lose their energy while passing through the medium. During such process, photons/gluons are emitted from interaction between jets and medium partons. We concentrate on energy loss via photon radiations, known as Bremsstrahlung. Recently, two symmetric double scattering processes between jet particle and medium parton are reported to be able to produce certain constructive interference, which gives collective motion and medium partons are aligned along incoming jet particles. We conjecture that similar behavior might happen in Bremsstrahlung processes, and therefore we consider the two symmetric diagrams of photon emission and medium parton scattering. We expect these two amplitudes to give constructive interference leading to the collective motion of medium. We check the correlation between emitted photon and final jet, and those between medium parton and final jet for high-energy jet. To describe parton momentum distribution in medium, we use the Maxwell-Boltzmann distribution. We discover collective motion in both angular correlations. We also check the tendency of the angular correlation for two particles according to the incident angle of jet particle, energy of emitted photon and temperature of systems, respectively. We can conclude that collective motion is able to be

  7. Studies of total bremsstrahlung spectra in the oxides of lanthanides

    Science.gov (United States)

    Singh, Amrit; Singh, Tajinder; Dhaliwal, A. S.

    2017-12-01

    Total bremsstrahlung spectral photon distribution generated in thick targets of oxides of lanthanides (Pr6O11, Gd2O3, Tb4O7 and Er2O3) by 89Sr beta particles has been investigated in the photon energy region 1-100 keV. The experimental results are compared with the theory describing ordinary bremsstrahlung and the theory which includes polarization bremsstrahlung into ordinary bremsstrahlung in stripped approximation. It has been found that contribution of polarization bremsstrahlung into total bremsstrahlung in a target is limited to a low energy region only and also varies with the effective atomic number (Zeff) of target material. Further, it has been found that the suppression of polarization bremsstrahlung has been observed due to the presence of large fraction of low Z element oxygen in the compounds.

  8. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    DEFF Research Database (Denmark)

    Mangiarotti, Alessio; Sona, Pietro; Ballestrero, Sergio

    2012-01-01

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are establi...

  9. Bremsstrahlung and fluorescence in PMTs causing fast afterpulses

    Energy Technology Data Exchange (ETDEWEB)

    Tippmann, Marc; Knoetig, Max; Appel, Simon; Beischler, German; Kaindl, Jill; Lewke, Timo; Meindl, Quirin; Moellenberg, Randolph; Oberauer, Lothar; Pfahler, Patrick; Prade, Ludwig; Stempfle, Tobias; Winter, Juergen; Zimmer, Vincenz [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Collaboration: AGUNA-LENA working group

    2013-07-01

    LENA (Low Energy Neutrino Astronomy) is a next-generation liquid-scintillator neutrino detector with 50kt target mass. The broad spectrum of physics goals ranging from the sub-MeV to the GeV regime sets high demands on the photosensors. Currently, photomultipliers (PMTs) are the sensor of choice. However, besides detecting photons, they also emit light through bremsstrahlung or fluorescence induced by the electron avalanche in the dynode chain, which can produce further pulses in the same PMT or adjacent sensors. In order to study these effects and their connection to afterpulses occurring in the PMT, measurements of light emission and fast afterpulses have been carried through in collaboration with the CTA project. Both bremsstrahlung and fluorescence have been observed, with the first also being the origin of a type of fast afterpulses.

  10. Quantum-mechanical suppression of bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Becker-Szendy, R.; Keller, L.; Niemi, G.; Perl, M.; Rochester, L. [Stanford Univ., CA (United States); Anthony, P. [Stanford Univ., CA (United States)]|[Lawrence Livermore National Lab., CA (United States); Bosted, P. [American Univ., Washington, DC (United States); Cavalli-Sforza, M.; Kelley, L.; Klein, S. [Univ. of California, Santa Cruz, CA (United States)] [and others

    1994-12-01

    The authors have studied quantum-mechanical suppression of bremsstrahlung of low-energy 1-500 MeV photons from high-energy 25 GeV electrons. They have measured the LPM effect, where multiple scattering of the radiating electron destroys coherence required for the emission of low-energy photons, and the dielectric effect, where the emitted photon traveling in the radiator medium interferes with itself. For the experiment, the collaboration developed a novel method of extracting a parasitic low-intensity high-energy electron beam into the fixed target area during normal SLC operation of the accelerator. The results agree quantitatively with Migdal`s calculation of the LPM effect. Surface effects, for which there is no satisfactory theoretical prediction, are visible at low photon energies. For very thin targets, the suppression disappears, as expected. Preliminary results on dielectric suppression of bremsstrahlung are in qualitative agreement with the expectation.

  11. A general semi-analytic method to simulate discrete bremsstrahlung at very low radiated photon energies by the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, Coimbra (Portugal); Sona, P., E-mail: pietro.sona@fi.infn.it [Dipartimento di Fisica, Universita degli Studi di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Ballestrero, S. [Department of Physics, University of Johannesburg, Johannesburg (South Africa); PH/ADT, CERN, CH-1211, Geneve (Switzerland); Uggerhoj, U.I. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2011-09-15

    A computer code for Monte-Carlo simulations in the framework of the GEANT 3 toolkit has been implemented for the description of the discrete bremsstrahlung radiation from high energy electrons crossing thick (semi-infinite) targets. The code is based on the Migdal theory which includes the LPM and dielectric suppression. Validation of the code has been performed by a comparison with the data from the SLAC E-146 experiment. The agreement between simulations and experimental data is generally very good.

  12. Bremsstrahlung component of the diffuse galactic gamma-ray emission at MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, W.; Schoenfelder, V.

    1984-04-15

    Recently the galactic plane has been resolved at low and medium ..gamma..-ray energies in the directions toward the center and anticenter. Spectral measurements are now available at those energies, where the contribution of ..pi../sup 0/-decay from nuclear reactions of cosmic-ray protons (and heavier nuclei) with interstellar matter can be neglected. Under the assumption that most of the observed ..gamma..-ray flux below 30 MeV is produced by electron bremsstrahlung, restrictions on the energy spectrum of cosmic-ray electrons in interstellar space below 100 MeV are derived. The most accurate bremsstrahlung production cross sections of Koch and Motz and of Blumental and Gould are used in order to derive the bremsstrahlung production spectrum in interstellar space down to 10 keV-photon energies. If the low-energy ..gamma..-ray emission, as seen by most observers, is indeed produced by electron bremsstrahlung, then a high interstellar electron flux at MeV energy results, which-at higher energies-connects to the upper limit derived by Cummings, Stone, and Vogt. Such a high low-energy electron flux would be able to explain the ionization rate of 1 x 10/sup -15/ ion pairs (H-atom/sup -1/ s/sup -1/) in H I regions. Because of uncertainties in the low-energy ..gamma..-ray measurements, however, no definite conclusion is possible yet.

  13. Bremsstrahlung background in inelastic electron-nucleus collisions

    Science.gov (United States)

    Jakubassa-Amundsen, D. H.; Krugmann, A.

    2017-04-01

    Bremsstrahlung emission by relativistic electrons in collisions with medium heavy spin-zero nuclei is calculated within the plane-wave Born approximation. Coulomb distortion is estimated by a comparison with the Dirac partial-wave theory at energies up to 20 MeV. When integrated over the photon emission angle, the bremsstrahlung spectra help to explain the background of the nuclear excitation spectra in 150Nd (e,e\\prime ) reactions which were recently measured on an absolute scale.

  14. Measurement of the bremsstrahlung spectra generated from thick ...

    Indian Academy of Sciences (India)

    ... agreement between the experimental data and the MC calculations is found for all the four targets within the experimental error of 16%. Furthermore, the ratios of DDCS of bremsstrahlung photons emitted from Ag, W and Pt with those from Ti as a function of photon energy are examined with a relatively lower uncertainty of ...

  15. Observation of the Muon Inner Bremsstrahlung at LEP1

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Bérat, C; Berggren, M; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Kokkinias, P; Leinonen, L; Katsoufis, E; Kernel, G; Kersevan, B P; Krumshtein, Z; Lesiak, T; Kerzel, U; Liebig, W; King, B T; Lamsa, J; Liko, D; Kjaer, N J; Leder, G; Kluit, P; Kourkoumelis, C; Leitner, R; Kuznetsov, O; Kucharczyk, M; Ledroit, F; Lopes, J H; Lemonne, J; Lepeltier, V; Lipniacka, A; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Paganoni, M; Nassiakou, M; Paiano, S; Navarria, F; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Ouraou, A; Parkes, C; Oblakowska-Mucha, A; Oyanguren, A; Obraztsov, V F; Olshevski, A; Palacios, J P; Onofre, A; Palka, H; Orava, R; Österberg, K; Pape, L; Papadopoulou, T D; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2008-01-01

    Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2 < E_gamma <= 1 GeV and transverse momentum with respect to the parent muon p_T < 40 MeV/c, and 1 < E_gamma <= 10 GeV and p_T < 80 MeV/c . A good agreement of the observed photon rate with predictions from QED for the muon inner bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z^0 decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06 +/- 0.12 +/- 0.07 in the photon energy range 0.2 < E_gamma <= 1 GeV and 1.04 +/- 0.09 +/- 0.12 in the photon energy range 1 < E_gamma <= 10 GeV. The bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP.

  16. Detection of pulsed, bremsstrahlung-induced, prompt neutron capture gamma-rays with HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.L.

    1996-08-01

    The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy (up to 8-MeV) electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced prompt gamma-rays acquired between accelerator pulses with a unique, high-purity germanium (HPGe) gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection system performance are described. Using a 6.5 MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaC1, and depleted uranium targets as soon as 30 {mu}s after each bremsstrahlung (or x-ray) flash.

  17. Low-energy theorems for virtual nucleon-nucleon bremsstrahlung; Formalism and results

    NARCIS (Netherlands)

    Korchin, AY; Scholten, O; VanNeck, D

    1996-01-01

    We present results for cross sections and response functions in virtual bremsstrahlung induced by nucleon-nucleon collisions NN --> NN + e(+)e(-), based on two different low-energy theorems, The first low-energy theorem is a generalization of Low's theorem for real-photon bremsstrahlung. The second

  18. The stonehenge technique: a new method of crystal alignment for coherent bremsstrahlung experiments

    Science.gov (United States)

    Livingston, Kenneth

    2005-08-01

    In the coherent bremsstrahlung technique a thin diamond crystal oriented correctly in an electron beam can produce photons with a high degree of linear polarization.1 The crystal is mounted on a goniometer to control its orientation and it is necessary to measure the angular offsets a) between the crystal axes and the goniometer axes and b) between the goniometer and the electron beam axis. A method for measuring these offsets and aligning the crystal was developed by Lohman et al, and has been used successfully in Mainz.2 However, recent attempts to investigate new crystals have shown that this approach has limitations which become more serious at higher beam energies where more accurate setting of the crystal angles, which scale with l/Ebeam, is required. (Eg. the recent installation of coherent bremsstrahlung facility at Jlab, with Ebeam = 6 GeV ) This paper describes a new, more general alignment technique, which overcomes these limitations. The technique is based on scans where the horizontal and vertical rotation axes of the goniometer are adjusted in a series of steps to make the normal to the crystal describe a cone of a given angle. For each step in the scan, the photon energy spectrum is measured using a tagging spectrometer, and the offsets between the electron beam and the crystal lattice are inferred from the resulting 2D plot. Using this method, it is possible to align the crystal with the beam quickly, and hence to set any desired orientation of the crystal relative to the beam. This is essential for any experiment requiring linearly polarized photons produced via coherent bremsstrahlung, and is also required for a systematic study of the channeling radiation produced by the electron beam incident on the crystal.

  19. Measurement of {sup 27}Al(γ,2pn){sup 24}Na Reaction Cross-sections with 55 -, 60 -, 65 - MeV Bremsstrahlung Employing MCNPX Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); KIm, G. N.; Kim, K. [Kyungpook National Univ., Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-05-15

    Aluminum is used for monitoring the photon flux. The photon flux during the activation can be measured by substituting the {sup 27}Al(γ,2pn){sup 24}Na reaction cross-section induced by bremsstrahlung to reactivity equation. Therefore, if this cross-section is more accurate, gamma-ray flux can be measure more accurately. In this work, the {sup 27}Al(γ,2pn){sup 24}Na reaction cross-sections induced by 55 - 65 MeV bremsstrahlung were measured by activation technique at the Pohang Neutron Facility (PNF) which has produced the nuclear data using Time-Of-Flight method and activation technique. In order to get the photon flux, MCNPX was used. These measurement values were compared with the data of Meyer et al (1968)

  20. Treatment of the electrons-photons cascade in the high energy gamma transport; Traitement de la cascade electrons - photons dans le transport des gammas de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D

    1999-10-01

    The electrons-photons cascade is an important phenomena occurring in gamma transport. This phenomena called also Bremsstrahlung happens whenever electrons, produced in a photon-atom interaction, trigger emission of photons while slowing down in the matter. Some previous calculations have shown that in particular circumstances, a flux of photons going through a lead plate can be multiplied by 3 when Bremsstrahlung is taken into account. This work is dedicated to a new method developed in CEA to take into account Bremsstrahlung in any gamma transport code using multigroup constants. An electron or a positron produced by an incident photon {gamma} will move till it has lost all its energy in collisions or in emissions of Bremsstrahlung {gamma}'. The path of the electron is short so all the Bremsstrahlung {gamma}' are assumed to be produced at the point of creation of the electron or positron. The result of this method is the knowledge of a transfer probability {gamma}{yields}{gamma}' that can be used in classical gamma transport codes. (A.C.)

  1. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    Science.gov (United States)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  2. Feasibility studies of the diffractive bremsstrahlung measurement at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chwastowski, Janusz J.; Czekierda, Sabina; Staszewski, Rafal; Turnau, Jacek; Trzebinski, Maciej [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow (Poland); Kycia, Radoslaw [Cracow University of Technology, Faculty of Physics, Mathematics and Computer Science, Cracow (Poland)

    2016-06-15

    Feasibility studies of an observation of the exclusive diffractive bremsstrahlung in proton-proton scattering at the centre of mass energy 13 TeV at the LHC are reported. These studies aim at the dedicated data taking periods with low instantaneous luminosity delivered by the LHC where the pile-up interactions can be neglected. A simplified approach to the photon and the scattered proton energy reconstruction is used. The background influence is discussed. (orig.)

  3. Virtual-bremsstrahlung production in proton-proton scattering and proton-deuteron capture

    NARCIS (Netherlands)

    Messchendorp, Johannes Gerhardus

    1999-01-01

    The well-known coupling of the photon with the nucleon together with the fact that photons (or any electromagnetic (e.m.) probe) interact only relatively weakly with nucleons, make bremsstrahlung production an ideal tool to study details of the nucleon-nucleon interaction. In this thesis dilepton

  4. Study of the K shell photoelectric parameters of Dy, Yb and W atoms using low energy Bremsstrahlung radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, S.B.; Naika, L.R.; Badiger, N.M. [Department of Studies in PhysicsKarnatak University, Dharwad - 580003 (India)

    2011-04-15

    Low energy external Bremsstrahlung (EB) photons were used to estimate the K shell photoelectric parameters; the K shell photoelectric cross section at the K edge, the K shell binding energy, the K shell jump ratio, the K shell jump factors, the Davisson-Kirchner ratio and the K shell oscillator strength for dysprosium (Dy), ytterbium (Yb) and tungsten (W) atoms. The EB photons are produced in the nickel (Ni) target by using the beta particles from a weak beta source of {sup 90}Sr-{sup 90}Y. These photons are made to fall on these elemental targets of our interest and the transmitted spectrum is measured using GMX 10P HPGe detector coupled to an 8K multichannel analyzer. The sharp decrease at the K edge in the measured spectrum is used to determine the K shell photoelectric parameters of these elements. The experimental results are in good agreement with the theoretical values. (authors)

  5. Study of the K shell photoelectric parameters of Dy, Yb and W atoms using low energy bremsstrahlung radiation

    Science.gov (United States)

    Hosur, S. B.; Naik, L. R.; Badiger, N. M.

    2011-04-01

    Low energy external bremsstrahlung (EB) photons were used to estimate the K shell photoelectric parameters; the K shell photoelectric cross section at the K edge, the K shell binding energy, the K shell jump ratio, the K shell jump factors, the Davisson-Kirchner ratio and the K shell oscillator strength for dysprosium (Dy), ytterbium (Yb) and tungsten (W) atoms. The EB photons are produced in the nickel (Ni) target by using the beta particles from a weak beta source of 90Sr-90Y. These photons are made to fall on these elemental targets of our interest and the transmitted spectrum is measured using GMX 10P HPGe detector coupled to an 8K multichannel analyzer. The sharp decrease at the K edge in the measured spectrum is used to determine the K shell photoelectric parameters of these elements. The experimental results are in good agreement with the theoretical values.

  6. Validation of the GEANT4 simulation of bremsstrahlung from thick targets below 3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pandola, L., E-mail: pandola@lns.infn.it [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, I-95125 Catania (Italy); INFN, Gran Sasso Science Institute, Viale Francesco Crispi 7, I-67100 L’Aquila (Italy); Andenna, C. [INAIL, Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti ed Insediamenti Antropici, Via Alessandria 220, I-00198 Roma (Italy); Caccia, B. [Dipartimento Tecnologie e Salute, Istituto Superiore di Sanità and INFN, Gruppo Collegato dell’Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Roma (Italy)

    2015-05-01

    The bremsstrahlung spectra produced by electrons impinging on thick targets are simulated using the GEANT4 Monte Carlo toolkit. Simulations are validated against experimental data available in literature for a range of energy between 0.5 and 2.8 MeV for Al and Fe targets and for a value of energy of 70 keV for Al, Ag, W and Pb targets. The energy spectra for the different configurations of emission angles, energies and targets are considered. Simulations are performed by using the three alternative sets of electromagnetic models that are available in GEANT4 to describe bremsstrahlung. At higher energies (0.5–2.8 MeV) of the impinging electrons on Al and Fe targets, GEANT4 is able to reproduce the spectral shapes and the integral photon emission in the forward direction. The agreement is within 10–30%, depending on energy, emission angle and target material. The physics model based on the Penelope Monte Carlo code is in slightly better agreement with the measured data than the other two. However, all models over-estimate the photon emission in the backward hemisphere. For the lower energy study (70 keV), which includes higher-Z targets, all models systematically under-estimate the total photon yield, providing agreement between 10% and 50%. The results of this work are of potential interest for medical physics applications, where knowledge of the energy spectra and angular distributions of photons is needed for accurate dose calculations with Monte Carlo and other fluence-based methods.

  7. Jovian bremsstrahlung X-rays - A Ulysses prediction

    Science.gov (United States)

    Waite, J. H., Jr.; Boice, D. C.; Hurley, K. C.; Stern, S. A.; Sommer, M.

    1992-01-01

    Modeling results reported here show that precipitating auroral electrons with sufficient energy to be consistent with the Voyager UVS observations produce bremsstrahlung X-rays with sufficient energy and intensity to be detected by the Solar Flare X-ray and Cosmic-Ray-Burst Instrument on board the Ulysses spacecraft. The detection of such bremsstrahlung X-rays at Jupiter would provide strong evidence for the electron-precipitation mechanism, although it does not rule out the possibility of some heavy ion involvement, and thus makes a significant contribution toward solving the mystery of the Jovian aurora.

  8. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    Science.gov (United States)

    Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.

    2013-12-01

    Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  9. Secondary photons and neutrinos from cosmic rays produced by distant blazars.

    Science.gov (United States)

    Essey, Warren; Kalashev, Oleg E; Kusenko, Alexander; Beacom, John F

    2010-04-09

    Secondary photons and neutrinos produced in the interactions of cosmic ray protons emitted by distant active galactic nuclei (AGN) with the photon background along the line of sight can reveal a wealth of new information about the intergalactic magnetic fields, extragalactic background light, and the acceleration mechanisms of cosmic rays. The secondary photons may have already been observed by gamma-ray telescopes. We show that the secondary neutrinos improve the prospects of discovering distant blazars by IceCube, and we discuss the ramifications for the cosmic backgrounds, magnetic fields, and AGN models.

  10. Target, purging magnet and electron collector design for scanned high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Roger; Aasell, Mats; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, PO Box 260, S-171 76 Stockholm (Sweden)

    1998-05-01

    A new method for producing very narrow and intense 50 MV bremsstrahlung beams with a half-width as low as 35 mm at a distance of 1 m from the target is presented. Such a beam is well suited for intensity modulation using scanned photon beams. An algorithm has been developed to minimize the width of the bremsstrahlung beam generated in a multilayer target by varying the individual layer thicknesses and atomic numbers under given constraints on the total target thickness and the mean energy of the transmitted electrons. Under such constraints the narrowest possible bremsstrahlung beam is obtained with a target composed of layers of monotonically increasing atomic number starting with the lowest possible value at the entrance side where the electrons impinge. It is also shown that the narrowest photon beam profile is associated with the highest possible forward photon yield. To be able to use the optimized target clinically it is desirable to be able to collect and stop all the electrons that are transmitted through the target. The electrons are most efficiently collected if they are kept close together, i.e. by minimizing the multiple scatter of the electrons and consequently the half-width of the generated bremsstrahlung beam. This is achieved by a thin low-atomic-number target. A dedicated electron stopper has been developed and integrated with the purging magnet. When the electron stopper is combined with a purging magnet, a primary photon collimator and a multileaf collimator, almost all of the transmitted electrons and their associated bremsstrahlung contamination can effectively be collected. The narrow photon beams from thin low-atomic-number targets have the additional advantage of producing the hardest and most penetrative photon spectrum possible, which is ideal for treating large deep-seated tumours. (author)

  11. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  12. Non-relativistic Bremsstrahlung in QED: Hamiltonian vs. Path Integral Approach

    OpenAIRE

    Jahan, A.

    2012-01-01

    An alternative derivation of the radiation intensity in non-relativistic bremsstrahlung is provided utilizing the path integral formalism. By integrating out the gauge field, one obtains the effective action which it's imaginary part is interpreted as the rate of photon production during the collision.

  13. Sensitivity analysis the influence of the average energy and FWHM of the initial fluence electrons in the determination of a spectrum of photons Bremsstrahlung of a linear accelerator; Analisis de sensibilidad de la influencia de la energia media y FWHM de la fluencia inicial de electrones en la determinacion de un espectro de fotones Bremsstrahlung de accelerador lineal

    Energy Technology Data Exchange (ETDEWEB)

    Justo, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.

    2011-07-01

    The main objective of this work is to study the effects of the initial beam characteristics of electrons in the absorbed dose distribution calculated by Monte Carlo for a photons beam of 6 MeV emitted by a medical linear accelerator.

  14. Prospects for Photon-Photon and Photon-Proton Measurements with Forward Proton Taggers in ATLAS

    CERN Document Server

    Trzebinski, Maciej; The ATLAS collaboration

    2017-01-01

    Talk for Photon2017 conference. Topics covered: ALFA and AFP detectors. Physics: elastic scattering, diffractive bremsstrahlung, exclusive pion pair production, anomalous gauge couplings, new physics (e.g. magnetic monopoles).

  15. Neutron–proton bremsstrahlung as a possible probe of high-momentum component in nucleon momentum distribution

    Directory of Open Access Journals (Sweden)

    Hui Xue

    2016-04-01

    Full Text Available Neutron-proton bremsstrahlung in intermediate energy nucleus–nucleus collisions is proposed as a possible probe to study the high-momentum component in nucleon momentum distribution of finite nucleus. Based on the Boltzmann–Uehling–Uhlenbeck (BUU transport model, the effects of high-momentum component on the production of bremsstrahlung photons in the reaction of C12+12C collisions at different incident beam energies are studied. It is found that the high-momentum component increases the high-energy bremsstrahlung photon production remarkably. Furthermore, the ratio of photon production at different incident beam energies is suggested as a potential observable to probe the high-momentum component in nucleon momentum distribution of finite nucleus.

  16. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  17. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  18. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  19. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  20. Sensitivity analysis of the influence of the medium energy and initial fluence FWHM of electron determining a Bremsstrahlung photon spectrum of a linear accelerator; Analisis de sensibilidad de la influencia de la energia media FWHM de la influencia inicial de electrones en la determinacion de un espectro de fotones Bremsstrahlung de un acelerador lineal

    Energy Technology Data Exchange (ETDEWEB)

    Juste, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.

    2012-11-01

    A correct dose calculation in patient under radiotherapy treatments requires and accurate description of the radiation source. The main goal of the present work is to study the effects of initial electron beam characteristics on Monte Carlo calculated absorbed dose distribution for a 6 MeV linac photon beam. To that, we propose a methodology to determine the initial electron fluence before hitting the accelerator target for an Elektra Precis a medical linear accelerator. The method used for the electron radiation source description is based on a Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations using the MCNP5 transport code. This electron spectrum has been validated by means of comparison of its resulting depth dose curve in a water cube with experimental data being the mean difference below the 1%. (Author)

  1. Effects of Soft-Core Potentials and Coulombic Potentials on Bremsstrahlung Radiation during Laser Matter Interaction

    Science.gov (United States)

    Pandit, Rishi; Sentoku, Yasuhiko; Sawada, Hiroshi; Ramunno, Lora; Ackad, Edward

    2017-10-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we compare a theory of Bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and coulombic potential. A new scaling for the radiation cross-section and Emissivity via bremsstrahlung are derived for soft-core potential which depends on the potential depth, used to avoid coulomb singularity and for coulombic potential and implemented in a particle in cell code (PICLS). The radiation cross-section and emissivity via bremsstrahlung is found to increase rapidly with increases in potential depth up to 100 eV and then becomes mostly saturated for larger depths of a soft-core potential. For both cases, the radiation cross-section and emissivity of Bremsstrahlung increases with increases in laser wavelength. The bremsstrahlung emission may provide a broadband light source for diagnostics. This work was supported by Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0247.

  2. Calculation of gamma-ray buildup factors up to depths of 100 mfp by the method of invariant embedding. (2) Improved treatment of bremsstrahlung

    CERN Document Server

    Shimizu, A

    2003-01-01

    An improved method to calculate the gamma-ray buildup factors including bremsstrahlung has been developed. The exposure buildup factors with bremsstrahlung were computer by the present method for lead, iron and water at the source energy of 10.0 MeV up to depths of 100 mfp. The accuracy of the present method was checked by comparison with the calculations by use of EGS4. Excellent agreement was obtained between the calculations by both methods about the exposure buildup factors per energy (energy spectrum of transmitted photons) for lead up to depths of 10 mfp and the ratio of the exposure buildup factor with bremsstrahlung to that without bremsstrahlung for lead, iron and water up to depths of 40 mfp. It is confirmed that the present method has an accuracy sufficient to be used to the generation of an improved set of gamma-ray buildup factors including bremsstrahlung. (author)

  3. Channeling and coherent bremsstrahlung effects for relativistic positrons and electrons. [16 to 28 MeV, orientation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R. L.

    1976-03-22

    Channeling of positrons in single crystals of silicon was observed in transmission and scattering measurements for incident energies from 16 to 28 MeV. In addition, the spectral dependence upon crystal orientation of the forward coherent bremsstrahlung produced by beams of 28-MeV positrons and electrons incident upon a 5 ..mu..m thick single crystal of silicon was measured with a NaI photon spectrometer. Effects of channeling and perhaps of the nonvalidity of the first Born approximation were observed for beam directions near the (111) axis of the crystal, and coherent peaks near 0.5 MeV were observed for a compound interference direction, in agreement with first-order theoretical calculations. 32 fig.

  4. Parameter Estimation with Entangled Photons Produced by Parametric Down-Conversion

    Science.gov (United States)

    Cable, Hugo; Durkin, Gabriel A.

    2010-01-01

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  5. Determination of photon contamination dose of clinical electron beams using the generalized simulated annealing method; Determinação da dose dos fótons contaminantes de feixes de elétrons clínicos usando o Método de Recozimento Simulado Generalizado

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Jorge H. Wilches; Costa, Alessandro M. da, E-mail: jhwilchev@gmail.com [Universidade de Sao Paulo (USP), Ribeirão Preto, SP (Brazil). Faculdade de Filosofia, Ciências e Letras

    2017-07-01

    Clinical electron beams are composed of a mixture of pure electrons and Bremsstrahlung photons produced in the structures of the accelerator head as well as in the air. Accurate knowledge of these components is important for calculating the dose and for treatment planning. There are at least two approaches to deter-mine the contribution of the photons in the percentage depth dose of clinical electrons: a) Analytical Method that calculates the dose of the photons from the previous determination of the spectrum of the incident Bremsstrahlung photons; b) Adjustment method based on a semi-empirical biexponential formula where four parameters must be established from optimization methods. The results show that the generalized simulated annealing method can calculate the photon contamination dose by overestimating the dose in the tail no more than 0.6% of the maximum dose (electrons and photons). (author)

  6. Internal bremsstrahlung of strongly interacting charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurgalin, S. D. [Voronezh State University (Russian Federation); Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Churakova, T. A. [Voronezh State University (Russian Federation)

    2016-11-15

    A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the {sup 214}Po nucleus, as well as for the decay of the {sup 222}Ra nucleus via the emission of a {sup 14}C cluster and for the decay of the {sup 113}Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal, subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.

  7. Shielding implications for secondary neutrons and photons produced within the patient during IMPT

    Energy Technology Data Exchange (ETDEWEB)

    DeMarco, J.; Kupelian, P.; Santhanam, A.; Low, D. [UCLA Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2013-07-15

    Purpose: Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV.Methods: Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons.Results: A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 Multiplication-Sign 10{sup -3} mSv per proton Gy) was greatest along the direction of the incident proton spot (0 Degree-Sign -10 Degree-Sign ) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the

  8. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.

    Science.gov (United States)

    DeMarco, J; Kupelian, P; Santhanam, A; Low, D

    2013-07-01

    Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV. Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons. A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 × 10(-3) mSv per proton Gy) was greatest along the direction of the incident proton spot (0°-10°) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the backward direction (170°-180°) with a mean energy of 4.4 MeV. An 8 × 8

  9. arXiv Search for dark photons produced in 13 TeV $pp$ collisions

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bordyuzhin, Igor; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, Plamen Hristov; Hu, Wenhua; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pisani, Flavio; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Toriello, Francis; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xu, Menglin; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2018-02-09

    Searches are performed for both promptlike and long-lived dark photons, A′, produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A′→μ+μ- decays and a data sample corresponding to an integrated luminosity of 1.6  fb-1 collected with the LHCb detector. The promptlike A′ search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A′ search is restricted to the low-mass region 214photons are the most stringent to date for the mass range 10.6photons is the first to achieve sensitivity using a displaced-vertex signature.

  10. Search for dark photons produced in 13 TeV $pp$ collisions

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bordyuzhin, Igor; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, Plamen Hristov; Hu, Wenhua; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pisani, Flavio; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Toriello, Francis; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xu, Menglin; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2017-01-01

    Searches are performed for both prompt-like and long-lived dark photons, $A^{\\prime}$, produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using $A^{\\prime}\\to\\mu^+\\mu^-$ decays and a data sample corresponding to an integrated luminosity of 1.6 fb$^{-1}$ collected with the LHCb detector. The prompt-like $A^{\\prime}$ search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived $A^{\\prime}$ search is restricted to the low-mass region $214 < m (A^{\\prime})< 350$ MeV. No evidence for a signal is found, and $90\\%$ confidence level exclusion limits are placed on the $\\gamma$-$A^{\\prime}$ kinetic-mixing strength. The constraints placed on prompt-like dark photons are the most stringent to date for the mass range $10.6 < m(A^{\\prime}) < 70$ GeV, and are comparable to the best existing limits for $m(A^{\\prime}) < 0.5$ GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature.

  11. Efficiency improvements of x-ray simulations in EGSnrc user-codes using bremsstrahlung cross-section enhancement (BCSE).

    Science.gov (United States)

    Ali, E S M; Rogers, D W O

    2007-06-01

    This paper presents the implementation of the bremsstrahlung cross-section enhancement (BCSE) variance-reduction technique into the EGSnrc/BEAMnrc system. BCSE makes the simulation of x-ray production from bremsstrahlung targets more efficient; it does so by artificially making the rare event of bremsstrahlung emission more abundant, which increases the number of statistically-independent photons that contribute to reducing the variance of the quantity of interest without increasing the CPU time appreciably. BCSE does not perturb the charged-particle transport in EGSnrc and it is made compatible with all other variance-reduction techniques already used in EGSnrc and BEAMnrc, including range rejection, uniform bremsstrahlung splitting, and directional bremsstrahlung splitting. When optimally combining BCSE with splitting to simulate typical situations of interest in medical physics research and in clinical practice, efficiencies can be up to five orders of magnitude larger than those obtained with analog simulations, and up to a full order of magnitude larger than those obtained with optimized splitting alone (which is the state-of-the-art of the EGSnrc/BEAMnrc system before this study was carried out). This study recommends that BCSE be combined with the existing splitting techniques for all EGSnrc/BEAMnrc simulations that involve bremsstrahlung targets, both in the kilovoltage and megavoltage range. Optimum crosssection enhancement factors for typical situations in diagnostic x-ray imaging and in radiotherapy are recommended, along with an easy algorithm for simulation optimization.

  12. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  13. Bremsstrahlung radiation detection for small animal imaging using a CCD detector.

    Science.gov (United States)

    Spinelli, Antonello E; Boschi, Federico

    2016-05-01

    The use of optical methods for the detection of radionuclides is becoming an established tool for preclinical molecular imaging experiments. In this paper we present a set of proof of principle experiments showing that planar bremsstrahlung radiation images can be detected with an intensifying screen using a small animal optical imager based on charge coupled device detector. We develop a bremsstrahlung source using a (32)P-ATP vial placed in a Plexiglas box, the source with an intensifying screen on top was placed inside a small animal optical imaging system. Bremsstrahlung radiation images were produced with the (32)P-ATP source only and also with a pair of pliers placed between the source and the screen. We found that the pair of pliers absorption image matches the shape of the object. Spatial resolution measurements were not performed however, the bremsstrahlung image of the pliers show that the resolution is relatively poor due to a large penumbra effect. We conclude that it is possible to produce planar bremsstrahlung images using optical imaging devices. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation

    Science.gov (United States)

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-01

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10-7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  15. Bremsstrahlung sum rule and nuclear charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dellafiore, A. (Florence Univ. (Italy). Ist. di Fisica Teorica; Istituto Nazionale di Fisica Nucleare, Florence (Italy)); Lipparini, E. (Trento Univ. (Italy). Dipartimento di Fisica)

    1982-11-01

    We derive a model-independent relation between the nuclear charge radius Rsub(c), the bremsstrahlung-weighted photoabsorption sum rule sigmasub(-)/sub 1/ and the mean proton distance. Such a relation allows the mean proton distance to be determined from available experimental data. We also discuss the Foldy sum rule in the light of our result.

  16. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption ...

    Indian Academy of Sciences (India)

    The electron–ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities ...

  17. A Single Bremsstrahlung Monitor to Measure Luminosity at LEP

    CERN Multimedia

    2002-01-01

    The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...

  18. Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography

    Science.gov (United States)

    Sizyuk, T.; Hassanein, A.

    2012-08-01

    Current challenges in the development of efficient laser produced plasma sources for the next generation extreme ultraviolet lithography (EUVL) are increasing EUV power and maximizing lifetime and therefore, reducing cost of devices. Mass-limited targets such as small tin droplets are considered among the best choices for cleaner operation of the optical system because of lower mass of atomic debris produced by the laser beam. The small diameter of droplets, however, decreases the conversion efficiency (CE) of EUV photons emission, especially in the case of CO2 laser, where laser wavelength has high reflectivity from the tin surface. We investigated ways of improving CE in mass-limited targets. We considered in our modeling various possible target phases and lasers configurations: from solid/liquid droplets subjected to laser beam energy with different intensities and laser wavelength to dual-beam lasers, i.e., a pre-pulse followed by a main pulse with adjusted delay time in between. We studied the dependence of vapor expansion rate, which can be produced as a result of droplet heating by pre-pulse laser energy, on target configuration, size, and laser beam parameters. As a consequence, we studied the influence of these conditions and parameters on the CE and debris mass accumulation. For better understanding and more accurate modeling of all physical processes occurred during various phases of laser beam/target interactions, plasma plume formation and evolution, EUV photons emission and collection, we have implemented in our heights package state-of-the art models and methods, verified, and benchmarked against laboratory experiments in our CMUXE center as well as various worldwide experimental results.

  19. Photon Production Within Storage Capsules

    CERN Document Server

    Rittmann, P D

    2003-01-01

    This report provides tables and electronic worksheets that list the photon production rate within SrF2 and CsC1 storage capsules, particularly the continuous spectrum of bremsstrahlung photons from the slowing down of the emitted electrons (BREMCALC).

  20. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    origin of the soft Galactic gamma-ray continuum through inverse bremsstrahlung. A flux of low-energy cosmic rays strong enough to produce the observed spectrum of gamma-rays implies substantial gamma-ray emission at a few MeV through nuclear de-excitation. It is shown that the existing limits on excess 3......-7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...

  1. A photonic heterostructure produces diverse iridescent colours in duck wing patches.

    Science.gov (United States)

    Eliason, Chad M; Shawkey, Matthew D

    2012-09-07

    The colours of birds are diverse but limited relative to the colours they can perceive. This mismatch may be partially caused by the properties of their colour-production mechanisms. Aside from pigments, several classes of highly ordered nanostructures (thin films, amorphous three-dimensional arrays) can produce a range of colours. However, the variability of any single nanostructural class has rarely been explored. Dabbling ducks are a speciose clade with substantial interspecific variation in the iridescent coloration of their wing patches (specula). Here, we use electron microscopy, spectrophotometry, polarization and refractive index-matching experiments, and optical modelling to examine these colours. We show that, in all species examined, speculum colour is produced by a photonic heterostructure consisting of both a single thin-film of keratin and a two-dimensional hexagonal lattice of melanosomes in feather barbules. Although the range of possible variations of this heterostructure is theoretically broad, only relatively close-packed, energetically stable variants producing more saturated colours were observed, suggesting that ducks are either physically constrained to these configurations or are under selection for the colours that they produce. These data thus reveal a previously undescribed biophotonic structure and suggest that both physical variability and constraints within single nanostructural classes may help explain the broader patterns of colour across Aves.

  2. Candidate for a W->μν decay, with the W boson produced in association with a photon

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Candidate for a W->μν decay, with the W boson produced in association with a photon, collected on 28 October 2010. The transverse mass of the W boson is 65 GeV. The muon and the photon are well isolated. Further event properties: PT(mu) = 38 GeV PT(gamma) = 39 GeV ETmiss = 30 GeV

  3. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

  4. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band.

    Science.gov (United States)

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-05-26

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems.

  5. Deuteron bremsstrahlung-weighted photonuclear sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Bohigas, O.; Lipparini, E.

    1987-11-01

    The various contributions to the deuteron bremsstrahlung-weighted photonuclear sum rule sigma/sub -1/ are analyzed. It is shown that the unretarded normal L = 1 sum rule is model independent and that retardation, higher multipoles, and interaction effects are negligible. An accurate estimation of sigma/sub -1/ is provided by the knowledge of the charge deuteron radius and of the spin gyromagnetic factors of the proton and of the neutron.

  6. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption ...

    Indian Academy of Sciences (India)

    (λ, T ; Ne,Ni) = k q.c. i.b.. (λ, T ; Ne,Ni) · Gi.b.(λ, T ),. (2) where Gi.b.(λ, T ) is the sought Gaunt factor. The determination of such averaged. Gaunt factor as a function of λ and T was the object of investigation in majority of the previous papers devoted to the inverse Bremsstrahlung process. This is illustrated in Figure 1, where ...

  7. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy; Bremsstrahlung thermique comme sonde de la multifragmentation nucleaire dans les collisions noyau-noyau aux energies de Fermi

    Energy Technology Data Exchange (ETDEWEB)

    D' Enterria, D.G

    2000-05-15

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E{sub {gamma}} > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar{sup 36} + Au{sup 197}, Ag{sup 107}, Ni{sup 58}, C{sup 12} at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4{pi}. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pn{gamma}) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  8. Pion-proton bremsstrahlung calculation and the experimental'' magnetic moment of. Delta. sup ++ (1232)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.; Liou, M.K. (Department of Physics and Institute for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York (USA)); Ding, Z.M. (Department of Physics, Central State University, Edmond, Oklahoma (USA) Department of Physics, Normandale Community College, Bloomington, Minnesota (USA))

    1991-11-01

    A bremsstrahlung amplitude in the special two-energy-two-angle (TETAS) approximation, which is relativistic, gauge invariant, and consistent with the soft-photon theorem, is derived for the pion-proton bremsstrahlung ({pi}{sup +}{ital p}{gamma}) process near the {Delta}{sup ++}(1232) resonance. In order to take into account bremsstrahlung emission from an internal {Delta}{sup ++} line with both charge and the anomalous magnetic moment {lambda}{sub {Delta}}, we have applied a radiation decomposition identity to modify Low's standard prescription for constructing a soft-photon amplitude. This modified procedure is very general; it can be used to derive the TETAS amplitude for any bremsstrahlung process with resonance. The derived TETAS amplitude is applied to calculate all {pi}{sup +}{ital p}{gamma} cross sections which can be compared with the experimental data. Treating {lambda}{sub {Delta}} as a free parameter in these calculations, we extract the experimental'' magnetic moment of the {Delta}{sup ++}, {mu}{sub {Delta}}, from recent data. The extracted values of {mu}{sub {Delta}} are (3.7--4.2){ital e}/(2{ital m}{sub {ital p}}) from the University of California, Los Angeles data and (4.6--4.9){ital e}/(2{ital m}{sub {ital p}}) from the Paul Scherrer Institute data. Here, {ital m}{sub {ital p}} is the proton mass.

  9. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light

    Science.gov (United States)

    Chu, Xiao-Liu; Götzinger, Stephan; Sandoghdar, Vahid

    2017-01-01

    A two-level atom cannot emit more than one photon at a time. As early as the 1980s, this quantum feature was identified as a gateway to 'single-photon sources', where a regular excitation sequence would create a stream of light particles with photon number fluctuations below the shot noise. Such an intensity-squeezed beam of light would be desirable for a range of applications, such as quantum imaging, sensing, enhanced precision measurements and information processing. However, experimental realizations of these sources have been hindered by large losses caused by low photon-collection efficiencies and photophysical shortcomings. By using a planar metallodielectric antenna applied to an organic molecule, we demonstrate the most regular stream of single photons reported to date. The measured intensity fluctuations were limited by our detection efficiency and amounted to 2.2 dB squeezing.

  10. Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z 0 decays

    Science.gov (United States)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; DELPHI Collaboration

    2010-06-01

    An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behavior to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.

  11. Investigation of Bremsstrahlung spectra of 6 MV medical linear accelerator

    CERN Document Server

    Zhang Song Bai; Bao Shang Lian; Zhao Hong Bin; Han Shu Kui

    2003-01-01

    The energy spectra of the Bremsstrahlung X-rays from the 6 MV medical linear accelerator are measured by attenuation analysis of the transmission data. An universal Monte-Carlo program EGS4 is also used to calculate the Bremsstrahlung spectra of the 6 MV medical linear accelerator. The measurement results are in good agreement with the calculation results

  12. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  13. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    DEFF Research Database (Denmark)

    Köhn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2017-01-01

    concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times......Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show...

  14. The Virtual Correction to Bremsstrahlung in High-Energy e+ e- Annihilation: Comparison of Exact Results

    CERN Document Server

    Yost, S.A.; Jadach, S.; Ward, B.F.L.

    2004-01-01

    We have compared the virtual corrections to single hard bremsstrahlung as calculated by S. Jadach, M. Melles, B.F.L. Ward and S.A. Yost to several other expressions. The most recent of these comparisons is to the leptonic tensor calculated by J.H. Kuhn and G. Rodrigo for radiative return. Agreement is found to within a part in 10^5 or better, as a fraction of the Born cross section, for most of the range of photon energies. The massless limits have been shown to agree analytically to NLL order.

  15. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goosman, D.R.

    1984-08-14

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table.

  16. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, Ollie [Los Alamos National Laboratory; Ropponen, Tommi [JYFL; Jones, Peter [JYFL; Kalvas, Taneli [JYFL

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  17. Probing QCD with photons and jets produced in pp collisions with the ATLAS detector

    CERN Document Server

    Vachon, Brigitte; The ATLAS collaboration

    2017-01-01

    The production of jets and prompt isolated photons at hadron colliders provides a stringent test of perturbative QCD at the highest energies. These processes can also be used to constrain the proton structure. Recent measurements obtained using data collected by the ATLAS detector at a center-of-mass energy of 8 TeV and 13 TeV will be presented. These include the measurements of the inclusive jet and multi-jet production cross-section as well as measurements of the cross-section of inclusive prompt photon and di-photon production. The study of the dynamics of isolated photon plus jet production in proton-proton collisions will also be discussed. All results are compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions. Finally, a determination of the strong coupling constant based on the measurement of the transverse energy-energy correlation function and its associated azimuthal asymmetry in events with high transverse momentum jets will be pres...

  18. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  19. Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production

    Science.gov (United States)

    D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko

    2017-10-01

    Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.

  20. Radiative Corrections to Bremsstrahlung in Radiative Return

    CERN Document Server

    Yost, S A; Ward, B F L; Yost, Scott A.

    2005-01-01

    Radiating a photon from the initial state provides a useful tool for studying a range of low energy physics using a high-energy e+ e- accelerator. Accurate results require careful calculation of the first order virtual photon corrections. We compare exact results for initial state radiative corrections, finding agreement to an order of 10^{-5} or better as a fraction of the Born cross-section for most of the range of photon energies, at CMS energies relevant in both high-energy collision and radiative return experiments.

  1. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  2. K$^{-}$ over K$^{+}$ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy

    CERN Document Server

    Akhunzyanov, R.; The COMPASS collaboration; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Burtsev, V.E.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Chumakov, A.G.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr., M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pesaro, G.; Pešek, M.; Pešková, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmieden, H.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veit, B.M.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Wilfert, M.; Windmolders, R.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.

    2018-01-01

    The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, the results contradict expectations obtained using the formalism of (next-to-)leading order perturbative quantum chromodynamics. This may imply that cross-section factorisation or/and universality of (kaon) fragmentation functions do not hold. Our studies suggest that within this formalism an additional correction may be required, which takes into account th...

  3. Towards the exact Bremsstrahlung function of ABJM theory

    Science.gov (United States)

    Bianchi, Marco S.; Griguolo, Luca; Mauri, Andrea; Penati, Silvia; Preti, Michelangelo; Seminara, Domenico

    2017-08-01

    We present the three-loop calculation of the Bremsstrahlung function associated to the 1/2-BPS cusp in ABJM theory, including color subleading corrections. Using the BPS condition we reduce the computation to that of a cusp with vanishing angle. We work within the framework of heavy quark effective theory (HQET) that further simplifies the analytic evaluation of the relevant cusp anomalous dimension in the near-BPS limit. The result passes nontrivial tests, such as exponentiation, and is in agreement with the conjecture made in [1] for the exact expression of the Bremsstrahlung function, based on the relation with fermionic latitude Wilson loops.

  4. Monte Carlo Generation of the 2BN Bremsstrahlung Distribution

    CERN Document Server

    Peralta, L; Trindade, A

    2003-01-01

    The 2BN bremsstrahlung cross-section is a well-adapted distribution to describe the radiative processes at low electron kinetic energy (Ek<500 keV). In this work a method to implement this distribution in a Monte Carlo generator is developed.

  5. On the bremsstrahlung background correction to the high-energy ...

    Indian Academy of Sciences (India)

    A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time that the BS ...

  6. Effects of relativity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Martinus, G.H.; Scholten, O.; Tjon, J.A.

    1997-01-01

    We investigate the influence of negative-energy states in proton-proton bremsstrahlung in a fully relativistic framework using the T matrix of Fleischer and Tjon. The contribution from negative-energy states in the single-scattering diagrams is shown to be large, indicating that relativistic effects

  7. Proton-proton virtual bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, GH; Scholten, O; Tjon, J

    1999-01-01

    Lepton-pair production (virtual bremsstrahlung) in proton-proton scattering is investigated using a relativistic covariant model. The effects of negative-energy slates and two-body currents are studied. These are shown to have large effects in some particular structure functions, even at the

  8. On the bremsstrahlung background correction to the high-energy ...

    Indian Academy of Sciences (India)

    Abstract. A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The. BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time ...

  9. Stabilization effect of Weibel modes due to inverse bremsstrahlung ...

    Indian Academy of Sciences (India)

    In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed. The main result obtained in this work is that the inclusion ...

  10. Decay energy of 55 Fe from its inner Bremsstrahlung spectrum

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Several measurements of decay energy using the inner Bremsstrahlung spectrum (IB) due to radiative electron capture in 55Fe has been made. But the results are not uniform. Hence another attempt has been made at the same. Experimental data was obtained with a 4.445 cm. dia × 5.08 cm thick NaI (Tl) ...

  11. Coherence effects and neutrino pair bremsstrahlung in neutron stars

    NARCIS (Netherlands)

    Sedrakian, A; Dieperink, A

    1999-01-01

    We calculate the rate of energy radiation by bremsstrahlung of neutrino pairs by baryons in neutron stars employing a transport model where neutrinos couple to baryons with spectral width. The: coherence effects, which are included by computing the self energies with fully dressed propagators, lead

  12. Stabilization effect of Weibel modes due to inverse bremsstrahlung ...

    Indian Academy of Sciences (India)

    2016-11-04

    Nov 4, 2016 ... Abstract. In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed. The main result obtained in ...

  13. Photon Collider Physics with Real Photon Beams

    Energy Technology Data Exchange (ETDEWEB)

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  14. Bose-Einstein correlations between hard photons produced in heavy ions collisions; Correlations Bose-Einstein entre photons durs produits dans les collisions d`ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F.M.

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: {sup 86}KR + {sup nat}Ni at 60.0 A.MeV, and {sup 181}Ta + {sup 197}Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi{sup 0}, e{sup +-} and {gamma}{gamma} correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs.

  15. Time evolution of bremsstrahlung and ion production of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, Ollie [Los Alamos National Laboratory; Ropponen, Tommi [UNIV OF JYVASKYLA; Jones, Peter [UNIV OF JYVASKYLA; Peura, Pauli [UNIV OF JYVASKYLA

    2008-01-01

    Bremsstrahlung radiation measurement is one of the most commonly used plasma diagnostics methods. Most of the bremsstrahlung measurements with electron cyclotron resonance (ECR) ion sources have been performed in continuous operation mode yielding information only on the steady state bremsstrahlung emission. This article describes the results of bremsstrahlung and ion current measurement with the JYFL 14 GHz ECRIS operated in pulsed mode. The experiments reveal information about the bremsstrahlung radiation in plasma conditions before reaching the equilibrium. The time scale of bremsstrahlung production is compared to ion production time scale for different charge states. The bremsstrahlung data is presented with 2 millisecond time intervals as a function of neutral gas pressure and microwave power. Data from hundreds of microwave pulses is combined in order to have a sufficient amount of events at each time step. The relevant plasma physics phenomena during both, the leading and the trailing edge of the RF pulse, are discussed.

  16. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  17. Photon pair production in astrophysical transrelativistic plasmas

    Science.gov (United States)

    Stoeger, W. R.

    1977-01-01

    Photon pair-production processes in marginally relativistic (transrelativistic) accretion plasmas are investigated in both Planckian and non-Planckian cases. Pair production in a plasma with an equilibrium (Planck) spectrum is reviewed, and pair-concentration calculations are performed for three general non-Planckian situations most relevant to black-hole accretion scenarios: steady-state transrelativistic plasmas of relatively high density characterized by a pure bremsstrahlung spectrum, a comptonized bremsstrahlung spectrum, and an unsaturated Compton scattering spectrum. The results obtained indicate that for transrelativistic temperatures (600 million to 6 billion K) photon pair production is not generally a dominant process for a plasma with a pure bremsstrahlung spectrum, but becomes dominant for plasmas where comptonization is important. It is also shown that photon pair-creation processes in a transrelativistic bremsstrahlung-radiating plasma that is more than marginally optically thick to Compton scattering significantly alter the plasma's spectrum by forcing it to become black-body before it reaches relativistic temperatures. Pair production and instabilities in unsteady-state plasmas are briefly considered

  18. Development of an efficient scanning and purging magnet system for IMRT with narrow high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern, E-mail: bjorn.andreassen@gmail.co [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Svensson, Roger; Holmberg, Rickard [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Danared, Hakan [Manne Siegbahn Laboratory, Stockholm University, Frescativaegen 26, SE-114 18 Stockholm (Sweden); Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden)

    2009-12-21

    Due to the clinical advantages of Intensity Modulated Radiation Therapy (IMRT) high flexibility and accuracy in intensity modulated dose delivery is desirable to really maximize treatment outcome. Although it is possible to deliver IMRT by using broad beams in combination with dynamic multileaf collimation the process is rather time consuming and inefficient. By using narrow scanned high energy photon beams the treatment outcome can be improved, the treatment time reduced and accurate 3D in vivo dose delivery monitoring is possible by PET-CT based dose delivery imaging of photo nuclear reactions in human tissues. Narrow photon beams can be produced by directing a low emittance high energy electron beam on a thin target, and then cleaning the therapeutic photon beam from transmitted high energy electrons, and photon generated charged leptons, with a dedicated purging magnet placed directly downstream of the target. To have an effective scanning and purging magnet system the purging magnet should be placed immediately after the bremsstrahlung target to deflect the transmitted electrons to an efficient electron stopper. In the static electron stopper the electrons should be safely collected independent of the desired direction of the therapeutic scanned photon beam. The SID (Source to Isocenter Distance) should preferably be short while retaining the ability to scan over a large area on the patient and consequently there are severe requirements both on the strength and the geometry of the scanning and purging magnets. In the present study an efficient magnet configuration with a purging and scanning magnet assembly is developed for electron energies in the 50-75 MeV range and a SID of 75 cm. For a bremsstrahlung target of 3 mm Be these electron energies produce a photon beam of 25-17 mm FWHM (Full Width Half Maximum) at a SID of 75 cm. The magnet system was examined both in terms of the efficiency in scanning the narrow bremsstrahlung beam and the deflection of

  19. Effect of degenerate particles on internal bremsstrahlung of Majorana dark matter

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2015-11-01

    Full Text Available Gamma-rays induced by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-rays generated by internal bremsstrahlung of Majorana and real scalar dark matter is promising since it can be a leading emission of sharp gamma-rays. However in the case of Majorana dark matter, its cross section for internal bremsstrahlung cannot be large enough to be observed by future gamma-ray experiments if the observed relic density is assumed to be thermally produced. In this paper, we introduce some degenerate particles with Majorana dark matter, and show they lead enhancement of the cross section. As a result, increase of about one order of magnitude for the cross section is possible without conflict with the observed relic density, and it would be tested by the future gamma-ray experiments such as GAMMA-400 and Cherenkov Telescope Array (CTA. In addition, the constraints of perturbativity, positron observation by the AMS experiment and direct search for dark matter are discussed.

  20. Determination of EPID convolution kernels for portal imaging using carbon target bremsstrahlung

    Directory of Open Access Journals (Sweden)

    Lüdeke Sascha

    2017-09-01

    Full Text Available Improving the accuracy and reproducibility during patient positioning is of paramount importance. Hence, the goal of this work is to characterize the aspects of image blurring occurring during carbon target bremsstrahlung portal imaging and to assess the applicability of a deconvolution algorithm. Blurring effects involved in this method of portal imaging are electron scattering inside the EPID, geometric blurring due to the photon source size and photon scattering inside the patient. These effects can all be described by convolutions using as the convolutional kernel a Lorentz function, whose FWHM is 2λ. The λ values measured for these effects range from 0.2 mm to 0.45 mm, and an iterative 2D-deconvolution of carbon target portal images was performed accordingly. A significant decrease in the image blurring of test objects has been achieved and confirmed by analyzing the RMTF. However for clinical images, the deconvolution method is presently faced with the problem of the associated increase of image noise.

  1. Relation between hard photon production and impact parameter in heavy ion collisions at intermediate energies; Dependance de la production de photons durs avec le parametre d`impact dans les collisions entre ions lourds aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Garcia, G.

    1994-06-01

    Hard photons produced in heavy-ions collisions at intermediate energies have been used in order to study hot and compresses nuclear matter created in these collisions (at Ganil). It was found that Bremsstrahlung radiation emitted in np collisions is the main mechanism of hard-photon production for the whole range of impact parameter. Moreover, it was observed a substantial decrease of the hardness of hard-photon spectrum. The BUU model reproduces very well the experimental results, showing that the hardness of the spectrum reflects, mainly, nuclear-matter compression in the first stage of the collision. A new method was developed to measure the density of the nuclear matter created at the beginning of the collision. BUU results and some experimental evidences point out that a significant contribution of hard photons are produced in the last stage of the collision: thermal hard photons. These photons are sensitive to the density oscillation of nuclear matter. Its production cross-section will constitute a measurement of the compressibility of nuclear matter and its spectrum a measure of the temperature. (from author) 64 figs., 60 refs.

  2. Virtual-pion and two-photon production in pp scattering

    NARCIS (Netherlands)

    Scholten, O; Korchin, AY

    Two-photon production in pp scattering is proposed as a means of studying virtual-pion emission. Such a process is complementary to real-pion emission in pp scattering. The virtual-pion signal is embedded in a background of double-photon bremsstrahlung. We have developed a model to describe this

  3. Search for Invisible Decays of a Dark Photon Produced in e^{+}e^{-} Collisions at BaBar.

    Science.gov (United States)

    Lees, J P; Poireau, V; Tisserand, V; Grauges, E; Palano, A; Eigen, G; Brown, D N; Derdzinski, M; Giuffrida, A; Kolomensky, Yu G; Fritsch, M; Koch, H; Schroeder, T; Hearty, C; Mattison, T S; McKenna, J A; So, R Y; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Lankford, A J; Gary, J W; Long, O; Eisner, A M; Lockman, W S; Panduro Vazquez, W; Chao, D S; Cheng, C H; Echenard, B; Flood, K T; Hitlin, D G; Kim, J; Miyashita, T S; Ongmongkolkul, P; Porter, F C; Röhrken, M; Huard, Z; Meadows, B T; Pushpawela, B G; Sokoloff, M D; Sun, L; Smith, J G; Wagner, S R; Bernard, D; Verderi, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Santoro, V; Calcaterra, A; de Sangro, R; Finocchiaro, G; Martellotti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rotondo, M; Zallo, A; Passaggio, S; Patrignani, C; Lacker, H M; Bhuyan, B; Mallik, U; Chen, C; Cochran, J; Prell, S; Ahmed, H; Gritsan, A V; Arnaud, N; Davier, M; Le Diberder, F; Lutz, A M; Wormser, G; Lange, D J; Wright, D M; Coleman, J P; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Cowan, G; Banerjee, Sw; Brown, D N; Davis, C L; Denig, A G; Gradl, W; Griessinger, K; Hafner, A; Schubert, K R; Barlow, R J; Lafferty, G D; Cenci, R; Jawahery, A; Roberts, D A; Cowan, R; Robertson, S H; Dey, B; Neri, N; Palombo, F; Cheaib, R; Cremaldi, L; Godang, R; Summers, D J; Taras, P; De Nardo, G; Sciacca, C; Raven, G; Jessop, C P; LoSecco, J M; Honscheid, K; Kass, R; Gaz, A; Margoni, M; Posocco, M; Simi, G; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Calderini, G; Chauveau, J; Marchiori, G; Ocariz, J; Biasini, M; Manoni, E; Rossi, A; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Chrzaszcz, M; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Rama, M; Rizzo, G; Walsh, J J; Smith, A J S; Anulli, F; Faccini, R; Ferrarotto, F; Ferroni, F; Pilloni, A; Piredda, G; Bünger, C; Dittrich, S; Grünberg, O; Heß, M; Leddig, T; Voß, C; Waldi, R; Adye, T; Wilson, F F; Emery, S; Vasseur, G; Aston, D; Cartaro, C; Convery, M R; Dorfan, J; Dunwoodie, W; Ebert, M; Field, R C; Fulsom, B G; Graham, M T; Hast, C; Innes, W R; Kim, P; Leith, D W G S; Luitz, S; MacFarlane, D B; Muller, D R; Neal, H; Ratcliff, B N; Roodman, A; Sullivan, M K; Va'vra, J; Wisniewski, W J; Purohit, M V; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Burchat, P R; Puccio, E M T; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Spanier, S M; Ritchie, J L; Schwitters, R F; Izen, J M; Lou, X C; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Albert, J; Beaulieu, A; Bernlochner, F U; King, G J; Kowalewski, R; Lueck, T; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Prepost, R; Wu, S L

    2017-09-29

    We search for single-photon events in 53  fb^{-1} of e^{+}e^{-} collision data collected with the BABAR detector at the PEP-II B-Factory. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with production of a spin-1 particle A^{'} through the process e^{+}e^{-}→γA^{'}; A^{'}→invisible. Such particles, referred to as "dark photons," are motivated by theories applying a U(1) gauge symmetry to dark matter. We find no evidence for such processes and set 90% confidence level upper limits on the coupling strength of A^{'} to e^{+}e^{-} in the mass range m_{A^{'}}≤8  GeV. In particular, our limits exclude the values of the A^{'} coupling suggested by the dark-photon interpretation of the muon (g-2)_{μ} anomaly, as well as a broad range of parameters for the dark-sector models.

  4. Search for Invisible Decays of a Dark Photon Produced in e+e- Collisions at BaBar

    Science.gov (United States)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Derdzinski, M.; Giuffrida, A.; Kolomensky, Yu. G.; Fritsch, M.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2017-09-01

    We search for single-photon events in 53 fb-1 of e+e- collision data collected with the BABAR detector at the PEP-II B -Factory. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with production of a spin-1 particle A' through the process e+e-→γ A' ; A'→invisible . Such particles, referred to as "dark photons," are motivated by theories applying a U (1 ) gauge symmetry to dark matter. We find no evidence for such processes and set 90% confidence level upper limits on the coupling strength of A' to e+e- in the mass range mA'≤8 GeV . In particular, our limits exclude the values of the A' coupling suggested by the dark-photon interpretation of the muon (g -2 )μ anomaly, as well as a broad range of parameters for the dark-sector models.

  5. Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids

    CERN Document Server

    Astapenko, Valeriy

    2013-01-01

    The book is devoted to the modern theory and experimental manifestation of Polarization Bremsstrahlung (PB) which arises due to scattering of charged particles from various targets: atoms, nanostructures (including atomic clusters, nanoparticle in dielectric matrix, fullerens, graphene-like two-dimensional atomic structure) and in condensed matter (monocrystals, polycrystals, partially ordered crystals and amorphous matter) The present book addresses mainly researchers interested in the radiative processes during the interaction between fast particles and matter. It also will be useful for post-graduate students specializing in radiation physics and related fields.

  6. Secondary-electron-bremsstrahlung imaging for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Mitsutaka; Nagao, Yuto [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan); Ando, Koki; Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-Ku, Nagoya, Aichi (Japan); Kataoka, Jun [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo (Japan); Kawachi, Naoki [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan)

    2016-10-11

    A feasibility study on an imaging technique of a therapeutic proton-beam trajectory using a gamma camera by measuring secondary electron bremsstrahlung (SEB) was performed by means of Monte Carlo simulations and a beam-irradiation experiment. From the simulation and experimental results, it was found that a significant amount of SEB yield exists between the beam-injection surface and the range position along the beam axis and the beam trajectory is clearly imaged by the SEB yield. It is concluded that the SEB imaging is a promising technique for monitoring of therapeutic proton-beam trajectories.

  7. Study of Diffractive Bremsstrahlung at 13 TeV LHC

    CERN Document Server

    Czekierda, Sabina

    2016-01-01

    Feasibility studies of the diffractive bremsstrahlung measurement at the LHC at $\\sqrt s$ = 13 TeV are presented. The method considered for this measurement uses the ATLAS detector and, in particular, the Zero Degree Calorimeter and the ATLAS Forward Proton detectors. The signal and background processes were generated with GenEx and PYTHIA 8.2 generators, respectively. The obtained fiducial cross sections are 1.2 ub for the signal and 6 ub for the background. Further reduction of the background is possible by the optimisation of event selection cuts.

  8. Bremsstrahlung and K(alpha) fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C D; Patel, P K; Hey, D S; Mackinnon, A J; Key, M H; Akli, K U; Bartal, T; Beg, F N; Chawla, S; Chen, H; Freeman, R R; Higginson, D P; Link, A; Ma, T Y; MacPhee, A G; Stephens, R B; Van Woerkom, L D; Westover, B; Porkolab, M

    2009-07-24

    The Bremsstrahlung and K-shell emission from 1 mm x 1 mm x 1 mm planar targets irradiated by a short-pulse 3 x 10{sup 18}-8 x 10{sup 19} W/cm{sup 2} laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device (CCD). From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3-12%, representing 20-40% total conversion efficiencies were inferred for intensities up to 8 x 10{sup 19} W/cm{sup 2}. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons.

  9. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  10. Photon-induced positron annihilation for standoff bomb detection

    Science.gov (United States)

    Bradley, D. A.; Hashim, S.; Cabello, J.; Wells, K.; Dunn, W. L.

    2010-07-01

    We describe an approach to detect improvised explosive devices (IEDs) by using photon-induced positron annihilation radiation (PIPAR). This system relies on back-scattered γ photons from the target and surrounding objects following exposure to high energy X-rays from a betatron. In this work we simulate the use of Bremsstrahlung source operating at 3.5 MeV, with a scintillation detector, working in PIPAR mode, in order to reduce noise produced by undesired back-scattering from the surrounding objects. In this paper, we describe the basic imaging method and preliminary results on simulating a suitable betatron source. Two types of X-ray filters copper (Cu) and aluminium (Al), have been used in the simulation to observe their differences in the deposited energy spectrum in the iron target. It was found that the use of iron target in conjunction with 2 mm Al filter is capable of detecting annihilation γ photons. An initiated experiment with an interlaced source also shows promise.

  11. Secondary radiation measurements for particle therapy applications: prompt photons produced by $^{4}$He, $^{12}$C and $^{16}$O ion beams in a PMMA target

    CERN Document Server

    Mattei, Ilaria; De Lucia, Erika; Faccini, Riccardo; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Muraro, Silvia; Paramatti, Riccardo; Patera, Vincenzo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Camillocci, Elena Solfaroli; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Battistoni, Giuseppe

    2016-01-01

    Charged particle beams are used in Particle Therapy (PT) to treat oncological patients due to their selective dose deposition in tissues and to their high biological effect in killing cancer cells with respect to photons and electrons used in conventional radiotherapy. Nowadays, protons and carbon ions are used in PT clinical routine but, recently, the interest on the potential application of helium and oxygen beams is growing due to their reduced multiple scattering inside the body and increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands for online dose monitoring techniques, crucial to improve the quality assurance of treatments. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Prompt photons are produced by nuclear de-excitation processes and, at present, different dose monitoring and beam range verification t...

  12. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casado, A [Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla (Spain); Guerra, S [Centro Asociado de la Universidad Nacional de Educacion a Distancia de Las Palmas de Gran Canaria (Spain); Placido, J [Departamento de Fisica, Universidad de Las Palmas de Gran Canaria (Spain)], E-mail: acasado@us.es

    2008-02-28

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements.

  13. On the Partial-Wave Analysis of Mesonic Resonances Decaying to Multiparticle Final States Produced by Polarized Photons

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Carlos W. [Norfolk State University, Norfolk, VA (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weygand, Dennis P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  14. Photon-hadron correlations and jet fragmentation in Au+Au 200 GeV collisions measured with PHENIX

    Science.gov (United States)

    Rowan, Zachary; Phenix Collaboration

    2017-09-01

    Because of the observed jet suppression in heavy ion collisions, typical jet reconstruction, or high pt hadron jet tagging, results in a surface bias. Prompt photons, produced in the Compton scattering and annihilation of quarks, easily escape the quark gluon plasma and, when used to tag away side jets, introduce no such bias. However a bias towards quark jets is introduced as the Compton production process dominates, making these tagging methods complimentary. With the additional benefit of the photon pT being a suitable proxy for the jet pT, photon-hadron correlations in Au+Au 200 GeV collisions are analyzed with PHENIX. Through the analysis of mixed events with reaction plane classification, the background contribution to the azimuthal correlation function can be removed, revealing an away side jet peak. By characterizing the structure in multiple centrality classes; photon emission angles measured with respect to reaction plane orientation; and photon energies, the collision geometry and relative levels of bremsstrahlung and fragmentation photons can be varied, allowing for a detailed study of path length dependent jet fragmentation. The status of this analysis will be discussed.

  15. Optimization of energy window for 90Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch.

    Science.gov (United States)

    Rong, Xing; Ghaly, Michael; Frey, Eric C

    2013-06-01

    In yttrium-90 ((90)Y) microsphere brachytherapy (radioembolization) of unresectable liver cancer, posttherapy (90)Y bremsstrahlung single photon emission computed tomography (SPECT) has been used to document the distribution of microspheres in the patient and to help predict potential side effects. The energy window used during projection acquisition can have a significant effect on image quality. Thus, using an optimal energy window is desirable. However, there has been great variability in the choice of energy window due to the continuous and broad energy distribution of (90)Y bremsstrahlung photons. The area under the receiver operating characteristic curve (AUC) for the ideal observer (IO) is a widely used figure of merit (FOM) for optimizing the imaging system for detection tasks. The IO implicitly assumes a perfect model of the image formation process. However, for (90)Y bremsstrahlung SPECT there can be substantial model-mismatch (i.e., difference between the actual image formation process and the model of it assumed in reconstruction), and the amount of the model-mismatch depends on the energy window. It is thus important to account for the degradation of the observer performance due to model-mismatch in the optimization of the energy window. The purpose of this paper is to optimize the energy window for (90)Y bremsstrahlung SPECT for a detection task while taking into account the effects of the model-mismatch. An observer, termed the ideal observer with model-mismatch (IO-MM), has been proposed previously to account for the effects of the model-mismatch on IO performance. In this work, the AUC for the IO-MM was used as the FOM for the optimization. To provide a clinically realistic object model and imaging simulation, the authors used a background-known-statistically and signal-known-statistically task. The background was modeled as multiple compartments in the liver with activity parameters independently following a Gaussian distribution; the signal was

  16. NA64 Search for Dark Photons

    CERN Document Server

    Shiakas, Christos

    2017-01-01

    The NA64 experiment, known as P348 before official approval, was proposed to the CERN SPSC on January 2014 with main goal the search for the following decay modes A′ → invisible A′ → e−e+ (1) In March 2016 P348 was granted approval by the CERN Research Board and received the title NA64. Since having been promoted, the experiment has been conducting the searches the searches for the processes mentioned above at the CERN SPS. NA64 is a fixed target experiment which utilizes the active beam dump. The detection of rare processes is based on the missing energy techniques. Such techniques are used for particles whose interaction with the detector is very small, so that they escape the detection and carry away some energy. A significant missing energy in the experiment means that such particles are produced. The method of the search for the A′ → invisible decay is as follows. If the A′ exists it could be produced via the kinetic mixing with bremsstrahlung photons in the reaction of high-energy elec...

  17. Multifragmentation of heavy nuclei induced by coherent Bremsstrahlung protons with E subgamma sup m sup a sup x = 4.1 GeV

    CERN Document Server

    Bayatyan, G L; Grigoryan, N K; Knyazyan, S G; Margaryan, A; Marikian, G G; Rostomyan, T A; Likhachev, V P

    2002-01-01

    New experimental results on the multifragmentation of nuclei sup 1 sup 9 sup 7 Au, sup 2 sup 0 sup 9 Bi, sup 2 sup 3 sup 8 U, and sup 2 sup 4 sup 3 Am induced by the coherent Bremsstrahlung photon beam of the Yerevan Synchrotron, which has an end-point energy of 4.1 GeV, are reported. The measured yields of four or more fragments, observed for the first time for these nuclei are in the range approx (1-3) x 10 sup - sup 3 of the total inelastic cross section. The yields of fragments are isotropic

  18. Simultaneous production of mixed electron--photon beam in a medical LINAC: A feasibility study.

    Science.gov (United States)

    Khaledi, Navid; Arbabi, Azim; Sardari, Dariush; Mohammadi, Mohammad; Ameri, Ahmad

    2015-06-01

    The electron or photon beams might be used for treatment of tumors. Each beam has its own advantage and disadvantages. Combo beam can increase the advantages. No investigation has been performed for producing simultaneous mixed electron and photon beam. In current study a device has been added to the Medical Linac to produce a mixed photon-electron beam. Firstly a Varian 2300CD head was simulated by MCNP Monte Carlo Code. Two sets of perforated lead sheets with 1 and 2 mm thickness and 0.2, 0.3, and 0.5 cm punches then placed at the top of the applicator holder tray. This layer produces bremsstrahlung x-ray upon impinging fraction electrons on it. The remaining fraction of electrons passes through the holes. The simulation was performed for 10 × 10, 6 × 6, and 4 × 4 cm(2) field size. For 10 × 10 cm(2) field size, among the punched targets, the largest penumbra difference between the depth of 1 and 7 cm was 72%. This difference for photon and electron beams were 31% and 325% respectively. A maximum of 39% photon percentage was produced by 2 mm target with 0.2 cm holes diameter layer. The minimum surface dose value was 4% lesser than pure electron beam. For small fields, unlike the pure electron beam, the PDD, penumbra, and flatness variations were negligible. The advantages of mixing the electron and photon beam is reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Structural color produced by a three-dimensional photonic polycrystal in the scales of a longhorn beetle: Pseudomyagrus waterhousei (Coleoptera: Cerambicidae)

    Science.gov (United States)

    Simonis, Priscilla; Vigneron, Jean Pol

    2011-01-01

    The cuticle of the longhorn beetle Pseudomyagrus waterhousei shows a diffuse pattern of mixed blue and violet colors. These colorations arise from a dense layer of droplet-shaped scales covering the dorsal parts of the cuticle. In spite of their lack of iridescence, these colors are shown to be structural and produced by an aggregate of internally ordered photonic-crystal grains. Computer simulations confirm that the blue and violet colors are caused by face-centered-cubic crystallites which dominantly expose their (111) surface to illumination and viewing.

  20. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-01

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range of energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.

  1. The double copy: Bremsstrahlung and accelerating black holes

    CERN Document Server

    Luna, Andres; Nicholson, Isobel; O'Connell, Donal; White, Chris D

    2016-01-01

    Advances in our understanding of perturbation theory suggest the existence of a correspondence between classical general relativity and Yang-Mills theory. A concrete example of this correspondence, which is known as the double copy, was recently introduced for the case of stationary Kerr-Schild spacetimes. Building on this foundation, we examine the simple time-dependent case of an accelerating, radiating point source. The gravitational solution, which generalises the Schwarzschild solution, includes a non-trivial stress-energy tensor. This stress-energy tensor corresponds to a gauge theoretic current in the double copy. We interpret both of these sources as representing the radiative part of the field. Furthermore, in the simple example of Bremsstrahlung, we determine a scattering amplitude describing the radiation, maintaining the double copy throughout. Our results provide the strongest evidence yet that the classical double copy is directly related to the BCJ double copy for scattering amplitudes.

  2. Internal bremsstrahlung endpoint energy of {sup 54}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Hindi, M. M. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Larimer, R.-M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Norman, E. B. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rech, G. A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-05-01

    For {sup 54}Mn there is a discrepancy between the Q{sub EC} obtained from the endpoint energy of the internal bremsstrahlung (IB) spectrum which accompanies the electron capture decay (Q{sub EC}=1353{+-}8 keV) and that obtained from the accepted mass differences (Q{sub EC}=1377{+-}1 keV). This Q value is needed to deduce the partial-half life of the astrophysically interesting {beta}{sup -} decay of {sup 54}Mn from the recently measured {beta}{sup +} partial half-life. To resolve this discrepancy, we have remeasured the endpoint energy of the IB spectrum, by recording coincidences between the IB and the 835-keV {gamma} ray, both detected in Compton-suppressed Ge detectors. The Q{sub EC} we deduce is 1379{+-}8 keV, in agreement with the accepted mass differences. (c) 2000 The American Physical Society.

  3. The double copy: Bremsstrahlung and accelerating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); O’Connell, Donal [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); White, Chris D. [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom)

    2016-06-06

    Advances in our understanding of perturbation theory suggest the existence of a correspondence between classical general relativity and Yang-Mills theory. A concrete example of this correspondence, which is known as the double copy, was recently introduced for the case of stationary Kerr-Schild spacetimes. Building on this foundation, we examine the simple time-dependent case of an accelerating, radiating point source. The gravitational solution, which generalises the Schwarzschild solution, includes a non-trivial stress-energy tensor. This stress-energy tensor corresponds to a gauge theoretic current in the double copy. We interpret both of these sources as representing the radiative part of the field. Furthermore, in the simple example of Bremsstrahlung, we determine a scattering amplitude describing the radiation, maintaining the double copy throughout. Our results provide the strongest evidence yet that the classical double copy is directly related to the BCJ double copy for scattering amplitudes.

  4. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters.

    Science.gov (United States)

    Chen, C D; King, J A; Key, M H; Akli, K U; Beg, F N; Chen, H; Freeman, R R; Link, A; Mackinnon, A J; MacPhee, A G; Patel, P K; Porkolab, M; Stephens, R B; Van Woerkom, L D

    2008-10-01

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with image plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code INTEGRATED TIGER SERIES 3.0 and the dosimeters calibrated with radioactive sources. An electron distribution with a slope temperature of 1.3 MeV is inferred from the Bremsstrahlung spectra.

  5. A Bremsstrahlung Spectrometer using k-edge and Differential Filters with Image plate dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Mackinnon, A; Beg, F; Chen, H; Key, M; King, J A; Link, A; MacPhee, A; Patel, P; Porkolab, M; Stephens, R; VanWoerkom, L; Akli, K; Freeman, R

    2008-05-02

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with Image Plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code Integrated Tiger Series 3.0 and the dosimeters calibrated with radioactive sources. Electron distributions with slope temperatures in the MeV range are inferred from the Bremsstrahlung spectra.

  6. Photon beam asymmetry Σ for η and η′ photoproduction from the proton

    Directory of Open Access Journals (Sweden)

    P. Collins

    2017-08-01

    Full Text Available Measurements of the linearly-polarized photon beam asymmetry Σ for photoproduction from the proton of η and η′ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the γp→ηp reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the γp→η′p reaction. For γp→ηp, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For γp→η′p, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. Initial analysis of the data reported here with the Bonn–Gatchina model strengthens the evidence for four nucleon resonances – the N(18951/2−, N(19003/2+, N(21001/2+ and N(21203/2− resonances – which presently lack the “four-star” status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.

  7. Photon beam asymmetry Σ for η and η‧ photoproduction from the proton

    Science.gov (United States)

    Collins, P.; Ritchie, B. G.; Dugger, M.; Anisovich, A. V.; Döring, M.; Klempt, E.; Nikonov, V. A.; Rönchen, D.; Sadasivan, D.; Sarantsev, A.; Adhikari, K. P.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Balossino, I.; Bashkanov, M.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, Frank Thanh; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wei, X.; Zachariou, N.; Zhang, J.

    2017-08-01

    Measurements of the linearly-polarized photon beam asymmetry Σ for photoproduction from the proton of η and η‧ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the γp → ηp reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the γp →η‧ p reaction. For γp → ηp, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For γp →η‧ p, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. Initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances - the N (1895) 1 /2-, N (1900) 3 /2+, N (2100) 1 /2+ and N (2120) 3 /2- resonances - which presently lack the ;four-star; status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.

  8. Secondary radiation measurements for particle therapy applications: prompt photons produced by4He,12C and16O ion beams in a PMMA target.

    Science.gov (United States)

    Mattei, I; Bini, F; Collamati, F; De Lucia, E; Frallicciardi, P M; Iarocci, E; Mancini-Terracciano, C; Marafini, M; Muraro, S; Paramatti, R; Patera, V; Piersanti, L; Pinci, D; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Battistoni, G

    2017-02-21

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from

  9. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

    Science.gov (United States)

    Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.

    2017-02-01

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature

  10. Enhancing Bremsstrahlung production from ultraintense laser-solid interactions with front surface structures

    Science.gov (United States)

    Jiang, Sheng; Krygier, Andrew G.; Schumacher, Douglass W.; Akli, Kramer U.; Freeman, Richard R.

    2014-10-01

    We report the results of a combined study of particle-in-cell and Monte Carlo modeling that investigates the production of Bremsstrahlung radiation produced when an ultraintense laser interacts with a tower-structured target. These targets are found to significantly narrow the electron angular distribution as well as produce significantly higher energies. These features combine to create a significant enhancement in directionality and energy of the Bremstrahlung radiation produced by a high-Z converter target. These studies employ short-pulse, high intensity laser pulses, and indicate that novel target design has potential to greatly enhance the yield and narrow the directionality of high energy electrons and γ-rays. We find that the peak γ-ray brightness for this source is 6.0 × 1019 s-1 mm-2 mrad-2 at 10 MeV and 1.4 × 1019 s-1 mm-2 mrad-2 at 100 MeV (0.1% bandwidth). Contribution to the Topical Issue "X-ray generation from ultrafast lasers", edited by Germán J. de Valcárcel, Luis Roso and Amelle Zaïr.

  11. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    Science.gov (United States)

    Melville, G; Meriarty, H; Metcalfe, P; Knittel, T; Allen, B J

    2007-09-01

    The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. The production of Ac-225 has been achieved using bremsstrahlung photons from an 18 MV medical linear accelerator (linac) to bombard a Ra-226 target. A linac dose of 2800 Gy produced about 64 microCi of Ra-225, which decays to Ac-225. This result, while consistent with the theoretical calculations, is far too low to be of practical use. A more powerful linac is required that runs at a higher current, longer pulse length and higher frequency for practical production. This process could also lead to the reduction of the nuclear waste product Ra-226.

  12. Calculation of Nuclear Particles Production at High-Energy Photon Beams from a Linac Operating at 6, 10 and 15 MV.

    Science.gov (United States)

    Marchesini, Renato; Bettega, Daniela; Calzolari, Paola; Pignoli, Emanuele

    2017-05-01

    Production of photonuclear particles in a tissue-equivalent medium has been calculated for linacs at 6, 10 and 15 MV from Varian TrueBeam. Based on the knowledge of bremsstrahlung fluence spectra and linac photon beam parameters, numerical integration was performed on the cross sections for photoparticle production of the constituent elements of tissue (2H,12C,13C,16O,17O,18O,14N,15N). At 15 MV, at the depth of photon maximum dose, the total absorbed dose due to neutrons, protons, alphas and residual nuclei from photon reactions in tissue (5.5E-05 Gy per Gy of photons) is comparable to that due to neutrons from accelerator head. Results reasonably agree with data reported in the literature using Monte Carlo models simulating linac head components. This work suggests a simple method to estimate the dose contributed by the photon-induced nuclear particles for high-energy photon beams produced by linacs in use, as it might be relevant for late stochastic effects. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Generation of bremsstrahlung during multiple passes of accelerated electrons through a thin target in a betatron

    Science.gov (United States)

    Bespalov, V. I.; Kashkovsky, V. V.; Chakhlov, V. L.

    2003-01-01

    In the present work a method of bremsstrahlung generation in a betatron during multiple passes of the accelerated electrons through a thin target-converter is explored with the help of statistical modeling. The results are obtained on a basis of experimentally measured field distributions for the betatrons: MB-6 and B-35. The data of electron orbit dynamics and characteristics of bremsstrahlung field are given depending on parameters of the electron's dumping onto the target and sizes of the target.

  14. Tomography of the fast electron Bremsstrahlung emission during lower hybrid current drive on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Imbeaux, F. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France)

    1999-04-01

    A new tomography dedicated to detailed studies of the fast electron Bremsstrahlung emission in the hard X-ray (HXR) energy range between 20 and 200 keV during lower hybrid (LH) current drive experiments on the TORE SUPRA tokamak [Equipe TORE SUPRA, in Proceedings of the 15. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995), 1, AIEA-CN-60 / A1-5, p. 105] is presented. Radiation detection is performed by cadmium telluride(CdTe) semiconductors, which have most of the desirable features for a powerful diagnosing of magnetically confined hot plasmas - compact size, high X-ray stopping efficiency, fast timing characteristics, good energy resolution, no sensitivity to magnetic field, reasonable susceptibility to performance degradation from neutron/{gamma}-induced damages. This instrument is made of two independent cameras viewing a poloidal cross-section of the plasma, with respectively 21 and 38 detectors. A coarse spectrometry - 8 energy channels - is carried out for each chord, with an energy resolution of 20 keV. The spatial resolution in the core of the plasma is 4-5 cm, while the time sampling may be lowered down to of 2-4 ms. Powerful inversion techniques based on maximum entropy or regularization algorithms take fully advantage of the large number of line-integrated measurements for very robust estimates of the local HXR profiles as a function of time and photon energy. A detailed account of main characteristics and performances of the diagnostic is reported as well as preliminary results on LH current drive experiments. (authors)

  15. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon: Potential application to PET

    Energy Technology Data Exchange (ETDEWEB)

    Amaudruz, P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: amaudruz@triumf.ca; Bryman, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: bryman@phas.ubc.ca; Kurchaninov, L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: kurchan@triumf.ca; Lu, P. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: philipfl@phas.ubc.ca; Marshall, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: cammarsh@triumf.ca; Martin, J.P. [University of Montreal, CP 6128 Succursale Centre-Ville, Montreal, Quebec, H3C 3J7 (Canada)], E-mail: jpmartin@lps.umontreal.ca; Muennich, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: muennich@triumf.ca; Retiere, F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: fretiere@triumf.ca; Sher, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: sher@triumf.ca

    2009-08-21

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10% (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  16. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon: Potential application to PET

    Science.gov (United States)

    Amaudruz, P.; Bryman, D.; Kurchaninov, L.; Lu, P.; Marshall, C.; Martin, J. P.; Muennich, A.; Retiere, F.; Sher, A.

    2009-08-01

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10% (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  17. Status of soft photon production in hadronic interactions

    CERN Document Server

    Spyropoulou-Stassinaki, M

    2000-01-01

    A review of experimental results on soft photon production in hadronic collisions is presented. Results from WA27, NA22, HELIOS, WA83, WA91 experiments are discussed. A more detailed presentation of SOPHIE/WA83 and WA91 experimental analysis of data on pi /sup -/p at 280 GeV/c interactions at the CERN OMEGA spectrometer is given. Both experiments show a similar excess of soft photons over the inner hadronic Bremsstrahlung, concentrated mainly, in the energy region 0.20) but not with HELIOS results with photons measured at Y/sub cms/

  18. High energy high intensity coherent photon beam for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of ..pi../sup 0/ in the neutral beam, are converted to e/sup +/e/sup -/ pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator.

  19. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  20. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  1. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  2. New results for a photon-photon collider

    Energy Technology Data Exchange (ETDEWEB)

    David Asner et al.

    2002-09-26

    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.

  3. First Measurement of the Quark-to-Photon Fragmentation Function

    CERN Document Server

    Thompson, J

    1995-01-01

    Earlier measurements at LEP of isolated hard photons in hadronic $Z$ decays attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon production {\\em inside} hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energy $z\\geq 0.7$. After statistical subtraction of non-prompt photons, the quark- to-photon fragmentation function, $D(z)$, is extracted directly from the measured prompt production rate. By taking into account the perturbative contributions to $D(z)$ obtained from an $\\cal{O}(\\alpha \\alpha_S)$ QCD calculation, the unknown non-perturbative component of $D(z)$ is determined at high $z$. This measurement is compared with an earlier theoretical parametrisation widely used to determine the level of quark bremsstrahlung present in prompt photon production at the hadron colliders.

  4. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Accelerator Systems Division (APS)

    2010-11-01

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon

  5. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  6. A theoretical model for the production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    Science.gov (United States)

    Melville, G; Fan Liu, Sau; Allen, B J

    2006-09-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation on a small scale by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) to produce Ra-225, which subsequently decays to Ac-225, which can be used as a generator to produce Bi-213 for use in 'targeted alpha therapy' for cancer. This paper examines the possibility of producing Ac-225 with a linac using an accurate theoretical model in which the bremsstrahlung photon spectrum at 18 MV linac electron energy is convoluted with the corresponding photonuclear cross sections of Ra-226. The total integrated yield can then be obtained and is compared with a computer simulation. This study shows that at 18 MV, the photonuclear reaction on Ra-226 can produce low activities of Ac-225 with a linac. However, a high power linac with high current, pulse length and frequency is needed to produce practical amounts of Ac-225 and a useful reduction of Ra-226.

  7. Use of bremsstrahlung radiation to identify hidden weak β‑ sources: feasibility and possible use in radio-guided surgery

    Science.gov (United States)

    Carlotti, D.; Collamati, F.; Faccini, R.; Fresch, P.; Iacoangeli, F.; Mancini-Terracciano, C.; Marafini, M.; Mirabelli, R.; Recchia, L.; Russomando, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Bocci, V.

    2017-11-01

    The recent interest in β^‑ radionuclides for radio-guided surgery derives from the feature of the β radiation to release energy in few millimeters of tissue. Such feature can be used to locate residual tumors with a probe located in its immediate vicinity, determining the resection margins with an accuracy of millimeters. The drawback of this technique is that it does not allow to identify tumors hidden in more than few mm of tissue. Conversely, the bremsstrahlung X-rays emitted by the interaction of the β‑ radiation with the nuclei of the tissue are relatively penetrating. To complement the β‑ probes, we have therefore developed a detector based on cadmium telluride, an X-ray detector with a high quantum efficiency working at room temperature. We measured the secondary emission of bremsstrahlung photons in a target of Polymethylmethacrylate (PMMA) with a density similar to living tissue. The results show that this device allows to detect a 1 ml residual or lymph-node with an activity of 1 kBq hidden under a layer of 10 mm of PMMA with a 3:1 signal to noise, i.e. with a five sigma discrimination in less than 5 s.

  8. Design of field flattening filters for a high-power bremsstrahlung converter by full Monte Carlo simulation

    Science.gov (United States)

    Van Laere, K.; Mondelaers, W.

    1997-03-01

    To compensate for off-axis dose reduction, biconical-shaped Pb field flattening filters were constructed for a specific high-power static TaC bremsstrahlung target configuration, at end-point energies 5 and 10 MeV. The filter design was optimized by full Monte Carlo simulation. The absolute dose calculation was compared to experimental ionization and Fricke measurements. Spectral data were analysed and the influence of incident electron beam parameters (diameter, oblique incidence) was simulated. With the constructed filtered set-up we are able to produce any required γ-dose rate up to a maximum value of 35 kGy/h in a water phantom at SSD 25 cm. The accomplished homogeneity at this distance is better than a few per cent over a surface of 25 cm diameter perpendicular to the beam axis, for both energies.

  9. Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data

    Energy Technology Data Exchange (ETDEWEB)

    Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.; Solberg, Timothy D.; Chetty, Indrin J. [Henry Ford Health System, Detroit, Michigan 48202 (United States); National Research Council of Canada, Ottawa, Ontario K1A OR6 (Canada); University of California, San Francisco, California 94143-0226 (United States); UT Southwestern Medical Center, Dallas, Texas 75390-9183 (United States); Henry Ford Health System, Detroit, Michigan 48202 (United States)

    2009-12-15

    In this work, an investigation of efficiency enhancing methods and cross-section data in the BEAMnrc Monte Carlo (MC) code system is presented. Additionally, BEAMnrc was compared with VMC++, another special-purpose MC code system that has recently been enhanced for the simulation of the entire treatment head. BEAMnrc and VMC++ were used to simulate a 6 MV photon beam from a Siemens Primus linear accelerator (linac) and phase space (PHSP) files were generated at 100 cm source-to-surface distance for the 10x10 and 40x40 cm{sup 2} field sizes. The BEAMnrc parameters/techniques under investigation were grouped by (i) photon and bremsstrahlung cross sections, (ii) approximate efficiency improving techniques (AEITs), (iii) variance reduction techniques (VRTs), and (iv) a VRT (bremsstrahlung photon splitting) in combination with an AEIT (charged particle range rejection). The BEAMnrc PHSP file obtained without the efficiency enhancing techniques under study or, when not possible, with their default values (e.g., EXACT algorithm for the boundary crossing algorithm) and with the default cross-section data (PEGS4 and Bethe-Heitler) was used as the ''base line'' for accuracy verification of the PHSP files generated from the different groups described previously. Subsequently, a selection of the PHSP files was used as input for DOSXYZnrc-based water phantom dose calculations, which were verified against measurements. The performance of the different VRTs and AEITs available in BEAMnrc and of VMC++ was specified by the relative efficiency, i.e., by the efficiency of the MC simulation relative to that of the BEAMnrc base-line calculation. The highest relative efficiencies were {approx}935 ({approx}111 min on a single 2.6 GHz processor) and {approx}200 ({approx}45 min on a single processor) for the 10x10 field size with 50 million histories and 40x40 cm{sup 2} field size with 100 million histories, respectively, using the VRT directional bremsstrahlung

  10. LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Abhijit; Wang, Xin-Nian

    2005-07-26

    Gluon bremsstrahlung induced by multiple parton scattering in a finite dense medium has a unique angular distribution with respect to the initial parton direction. A dead-cone structure with an opening angle; theta2{sub 0}; approx 2(1-z)/(zLE) for gluons with fractional energy z arises from the Landau-Pomeran chuck-Migdal (LPM) interference. In a medium where the gluon's dielectric constant is; epsilon>1, the LPM interference pattern is shown to become Cherenkov-like with an increased opening angle determined by the dielectric constant$/cos2/theta{sub c}=z+(1-z)//epsilon$. For a large dielectric constant/epsilon; gg 1+2/z2LE, the corresponding total radiative parton energy loss is about twice that from normal gluon bremsstrahlung. Implications of this Cherenkov-like gluon bremsstrahlung to the jet correlation pattern in high-energy heavy-ion collisions is discussed.

  11. Bremsstrahlung emission probability in the {alpha} decay of {sup 210}Po

    Energy Technology Data Exchange (ETDEWEB)

    Boie, Hans-Hermann

    2009-06-03

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed. The measured differential emission probabilities, which could be followed up to {gamma}-energies of {proportional_to} 500 keV, allow for the first time for a serious test of various model calculations of the bremsstrahlung accompanied {alpha} decay. It is shown that corrections to the {alpha}-{gamma} angular correlation due to the interference between the electric dipole and quadrupole amplitudes and due to the relativistic character of the process have to be taken into account. With the experimentally derived angular correlation the measured energydifferential bremsstrahlung emission probabilities show excellent agreement with the fully quantum mechanical calculation. (orig.)

  12. Lectures from the workshop on nucleon-nucleon bremsstrahlung, January 25--26, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, B.F.; Schillaci, M.E.; Wender, S.A. (comps.)

    1990-07-01

    The Nucleon-Nucleon Bremsstrahlung Workshop was convened at LAMPF on 25--26 January 1990 in order to review the theoretical and experimental aspects of that reaction with focus on a possible new initiative to measure neutron-proton bremsstrahlung using the intermediate-energy, white-spectrum neutron source at the LAMPF/WNR facility. Over the course of this intense day-and-a-half workshop, experts in the field established the historical perspective for both theory and experiment, presented result of recent calculations, and examined new approaches to the difficult neutron-proton bremsstrahlung experiment. Theoretical and experimental working groups generated recommendations for action and actually converged upon a plan for an experimental program, not just a single measurement.

  13. Comparison of methods of measuring the primary charge-cloud shape produced by an X-ray photon inside the CCD

    CERN Document Server

    Tsunemi, H; Yoshita, K; Miyata, E; Ohtani, M

    2000-01-01

    We report here the comparison of two methods of directly measuring the charge-cloud shapes produced by X-ray photons inside a CCD. The measurements are performed using a mesh technique in which we can confine the X-ray interaction location with subpixel resolution. There are two methods: a DD (double differential) method employs all X-ray events and a CG (center of gravity) method employs only split events. The DD method reveals the mean charge-cloud shape generated in a relatively shallow region, while the CG method reveals one generated in a relatively deep region. We performed the measurement using Al-K X-rays and Mo-L X-rays. The charge-cloud sizes generated by these X-rays are 0.7 approx 1.7 mu m (standard deviation). The charge-clouds clearly show asymmetric shape, elongated perpendicular to the charge transfer direction. This is probably due to the nonuniformity of the electric field inside the CCD.

  14. Generation of bremsstrahlung during multiple passes of accelerated electrons through a thin target in a betatron

    Energy Technology Data Exchange (ETDEWEB)

    Bespalov, V.I. E-mail: bvi@chair12.phtd.tpu.edu.ru; Kashkovsky, V.V.; Chakhlov, V.L

    2003-01-01

    In the present work a method of bremsstrahlung generation in a betatron during multiple passes of the accelerated electrons through a thin target-converter is explored with the help of statistical modeling. The results are obtained on a basis of experimentally measured field distributions for the betatrons: MB-6 and B-35. The data of electron orbit dynamics and characteristics of bremsstrahlung field are given depending on parameters of the electron's dumping onto the target and sizes of the target.

  15. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF XPD beamline.

    Science.gov (United States)

    Beigzadeh Jalali, H; Salimi, E; Rahighi, J

    2017-11-01

    Gas bremsstrahlung is generated in high energy electron storage ring and accompanies the synchrotron radiation into the beamlines, where both strike the various components of the beamline. In this paper, radiation shielding calculations for secondary gas bremsstrahlung are performed for the First Optics Enclosure (FOE) of X-ray powder diffraction (XPD) beamline of the Iranian Light Source Facility. Dose equivalent rate (DER) calculations are accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof are given. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Heavy Photon Search experiment at Jefferson Laboratory

    Directory of Open Access Journals (Sweden)

    De Napoli Marzio

    2015-01-01

    Full Text Available Many beyond Standard Model theories predict a new massive gauge boson, aka “dark” or “heavy photon”, directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab, in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α′/α in the range 10−5 to 10−10. HPS will look for the e+e− decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  17. Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.

    Science.gov (United States)

    Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki

    2018-01-01

    Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.

  18. On electromagnetic off-shell effects in proton-proton bremsstrahlung

    OpenAIRE

    Kondratyuk, S.; Martinus, G.; Scholten, O.

    1997-01-01

    We study the influence of the off-shell structure of the nucleon electromagnetic vertex on proton-proton bremsstrahlung observables. Realistic choices for these off-shell effects are found to have considerable influences on observables such as cross sections and analyzing powers. The rescattering contribution diminishes the effects of off-shell modifications in negative-energy states.

  19. Proton-proton bremsstrahlung cross-sections including the kinematical singularity

    NARCIS (Netherlands)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E. D.; Gasparic, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Scholten, O.

    Integrated cross-section data for proton-proton bremsstrahlung including the points with the phase-space singularity, which occurs close to the maximum non-coplanarity angle, are presented. A numerical integration of theoretical cross-sections is performed over the non-coplanarity angle to integrate

  20. Near-infrared Bremsstrahlung radiation measurements in an advanced beam-driven FRC plasma

    Science.gov (United States)

    Nations, Marcel; Gupta, Deepak; Bolte, Nathan; Thompson, Matthew C.; TAE Team

    2017-10-01

    In magnetically confined fusion plasmas, the effective ionic charge (Zeff) is a measure of plasma impurity content. Knowledge of Zeff profiles is critical since impurities can account for substantial radiative power losses. One method to determine Zeff is to measure the Bremsstrahlung continuum over a small spectral range free from line radiation. In TAE's C-2 and C-2U machines, impurities in apparently line-free regions near 523 nm overwhelmed the expected Bremsstrahlung signals and resulted in overestimated values of Zeff. The near-infrared region is less affected by impurities and better suited for accurate Bremsstrahlung continuum measurements. For C-2W, an upgraded diagnostic system will be deployed to measure Bremsstrahlung signals near 1000 nm. The near-infrared system uses a suite of silicon avalanche photodetectors paired with a Dα system to remove contributions from neutrals and attain improved Zeff estimates. A design scheme for measurements in an FRC at multiple lines-of-sight is presented and discussed.

  1. Photon emission from quark-gluon plasma out of equilibrium

    Science.gov (United States)

    Hauksson, Sigtryggur; Jeon, Sangyong; Gale, Charles

    2018-01-01

    The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the nonequilibrium nature of the medium.

  2. Bibliography of Photon Total Cross Section (Attenuation Coefficient) Measurements

    CERN Document Server

    Hubbell, J H

    A bibliography is presented of papers reporting absolute measurements of photon (XUV, x-ray, gamma-ray, bremsstrahlung) total interaction cross sections or attenuation coefficients for the elements and some compounds. The energy range covered is from 10 eV to above 10 GeV. These papers are part of the reference collection of the National Institute of Standards and Technology Photon and Charged Particle Data Center. They cover the period from 1907 through 1995. Included with each reference are annotations specifying the energy range covered and the substances studied. This updated bibliography now includes 580 non-duplicative references to available measured data, plus 42 references to critical evaluatio

  3. Coherent Bremsstrahlung, Coherent Pair Production, Birefringence and Polarimetry in the 20-170 GeV energy range using aligned crystals

    CERN Document Server

    Apyan, A; Badelek, B; Ballestrero, S; Biino, C; Birol, I; Cenci, P; Connell, S H; Eichblatt, S; Fonseca, T; Freund, A; Gorini, B; Groess, R; Ispirian, K; Ketel, T; Kononets, Y V; López, A; Mangiarotti, A; Sellschop, J P Friedel; Shieh, M; Sona, P; Strakhovenko, V M; Uggerhøj, U; Uggerhøj, Erik; Van Rens, B; Velasco, M; Vilakazi, Z Z; Wessely, O; Ünel, G; Kononets, Yu V

    2008-01-01

    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed these phenomena as well as their polarization dependence to be evaluated under conditions where single-photon cross-sections could be measured. This proved very important as the theoretical description of CB and CPP is an area of active theoretical debate and development. The theoretical approach used in this paper predicts both the cross sections and polarization observables very well for the experimental conditions investigated, indicating that the understanding of CB and CPP is reliable up to energies of 170 GeV. A birefringence effect in CPP was studied and it was demonstrated this enabled new technologies for high energy photon beam optics, such as polarimeters (for both linear and circular polarization) and phase plates. We also present new results regarding the features of coherent high energy photon emis...

  4. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  5. Photons and photoneutrons spectra of a Linac of 15 MV; Espectros de fotones y fotoneutrones de un LINAC de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L.; Carrillo C, A. [Centro Estatal de Cancerologia de Nayarit, Av. Enfermeria, Fracc. Fray Junipero Serra, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Velazquez F, J. B., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico)

    2011-10-15

    Using the Monte Carlo code MCNP-5, the photons and photoneutrons spectra generated in the head stock of the lineal accelerator (Linac) Varian of 15 MV of the Cancerology State of Nayarit were determined. For the calculations a heterogeneous head stock was modeled, more compatible with the work conditions. In the center of the head stock a tungsten target was located on a copper support, followed by the flattened filter. The photons and photoneutrons spectra were obtained accelerating electrons and making them collide against the target to produce photons by Bremsstrahlung, these photons were transported inside the head stock and the photons and photoneutrons spectra were calculated in a punctual detector located under the flattened filter and in the isocenter. The spectra were evaluated in punctual detectors that were located in the plane from the isocenter to the long of the X and Y axes each 20 cm, in an equidistant way, up to 2 m, so much in the longitudinal and transversal axes. In the calculations were used histories 5E(6) with the purpose of obtaining smaller uncertainties to 1%. It was found that the photons spectrum in the punctual detector inside the head stock presents a pick of 1.25 MeV in the energy interval of 0.5 and 1.5 MeV, later suffers a filtration and diminishes in asymptote form. This spectrum modifies when the beam reaches the isocenter, diminishing the low energy photons. Inside the head stock the photoneutrons spectrum shows a structure with two picks, one before 1 MeV and other after 1 MeV; this is for effect of the collimators geometry and the distance. Finally an increment of the total neutrons flow to 60 cm of distance of the isocenter on the Y axis was observed, due to the design geometry of the modeling heterogeneous head stock. (Author)

  6. Search for Pair-Produced Neutralinos in Events with Photons and Missing Energy from $e^{+}e^{-}$ Collisions at $\\Sqrt{s}=130-183$ GeV

    CERN Document Server

    Abreu, P; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Gris, P; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Masik, J; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolaenko, V; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Silvestre, R; Simard, L C; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1999-01-01

    The events with two photons and missing (transverse) energy collected by the DELPHI detector at centre-of-mass energies between 130~GeV and 183~GeV have been studied to search for processes of the type $\\mbox{e}^+\\mbox{e}^- \\to \\mbox{Y} \\mbox{Y}$ with the subsequent decay $\\mbox{Y} \\to \\mbox{X} \\gamma$, where X is an undetectable neutral particle. Reactions of this kind are expected in supersymmetric models, where the Y particle can be either the lightest neutralino, decaying to a photon and a gravitino, or the next-to-lightest neutralino, decaying to a photon and the lightest neutralino. To study the case of long-lived Y particles, a search for single-photon events with the reconstructed photon axis pointing far from the beam interaction region has also been performed. No evidence for a deviation from Standard Model expectations has been observed in the data and upper limits have been derived on the signal cross-section as a function of the the X and Y masses and of the Y mean decay path.

  7. Photonic structures in biology

    Science.gov (United States)

    Vukusic, Pete; Sambles, J. Roy

    2003-08-01

    Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

  8. Benefits from bremsstrahlung distribution evaluation to get unknown information from specimen in SEM and TEM

    Science.gov (United States)

    Eggert, F.; Camus, P. P.; Schleifer, M.; Reinauer, F.

    2018-01-01

    The energy-dispersive X-ray spectrometer (EDS or EDX) is a commonly used device to characterise the composition of investigated material in scanning and transmission electron microscopes (SEM and TEM). One major benefit compared to wavelength-dispersive X-ray spectrometers (WDS) is that EDS systems collect the entire spectrum simultaneously. Therefore, not only are all emitted characteristic X-ray lines in the spectrum, but also the complete bremsstrahlung distribution is included. It is possible to get information about the specimen even from this radiation, which is usually perceived more as a disturbing background. This is possible by using theoretical model knowledge about bremsstrahlung excitation and absorption in the specimen in comparison to the actual measured spectrum. The core aim of this investigation is to present a method for better bremsstrahlung fitting in unknown geometry cases by variation of the geometry parameters and to utilise this knowledge also for characteristic radiation evaluation. A method is described, which allows the parameterisation of the true X-ray absorption conditions during spectrum acquisition. An ‘effective tilt’ angle parameter is determined by evaluation of the bremsstrahlung shape of the measured SEM spectra. It is useful for bremsstrahlung background approximation, with exact calculations of the absorption edges below the characteristic peaks, required for P/B-ZAF model based quantification methods. It can even be used for ZAF based quantification models as a variable input parameter. The analytical results are then much more reliable for the different absorption effects from irregular specimen surfaces because the unknown absorption dependency is considered. Finally, the method is also applied for evaluation of TEM spectra. In this case, the real physical parameter optimisation is with sample thickness (mass thickness), which is influencing the emitted and measured spectrum due to different absorption with TEM

  9. Photon energy scale determination and commissioning with radiative Z decays

    Directory of Open Access Journals (Sweden)

    Bondu Olivier

    2012-06-01

    Full Text Available The CMS electromagnetic calorimeter (ECAL is composed of 75848 lead-tungstate scintillating crystals. It has been designed to be fast, compact, and radiation hard, with fine granularity and excellent energy resolution. Obtaining the design resolution is a crucial challenge for the SM Higgs search in the two photon channel at the LHC, and more generally good photon calibration and knowledge of the photon energy scale is required for analyses with photons in the final state. The behavior of photons and electrons in the calorimeter is not identical, making the use of a dedicated standard candle for photons, complementary to the canonical highyield Z decay to electrons, highly desirable. The use of Z decays to a pair of muons, where one of the muons emits a Bremsstrahlung photon, can be such a standard candle. These events, which can be cleanly selected, are a source of high-purity, relatively high-pt photons. Their kinematics are well-constrained by the Z boson mass and the precision on the muon momenta, and can be used for numerous calibration and measurement purposes. This proceeding presents the event selection method and the results of the photon energy scale measurement via Z0 → μμγ events as well as their use in evaluating the efficiency of photon identification requirements, based on data recorded by the CMS experiment in 2010.

  10. Creation of high energy bremsstrahlung and intensity by a multitarget and refocusing of the scattered electrons by small-angle backscatter at the wall of a cone and magnetic fields

    CERN Document Server

    Ulmer, W

    2011-01-01

    The yield of bremsstrahlung from collisions of fast electrons (energy at least 6 MeV) with a tungsten target can be significantly improved by exploitation of Tungsten wall scatter in a multi-layered target. The Tungsten wall can serve to refocuse small angle scattered electrons. It is necessary that the thickness of one Tungsten layer does not exceed 0.02 mm. Further refocusing of electrons results from suitable magnetic fields with field strength between 0.5 Tesla and 6 Tesla (if the cone with multi-layered targets is rather narrow). Linear accelerators in radiation therapy only need refocusing by wall scatter without further magnetic fields (standard case: ca. 100 - 000 plates with 0.01 mm thickness and 1 mm distance between the plates). The construction of a very narrow bremsstrahlung beam with extremely high photon intensity requires an additional strong magnetic field (order 1 - 6 Tesla), which provides the possibility to check Heisenberg-Euler scatter of high energy photons.

  11. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  12. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    Science.gov (United States)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  13. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.-W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  14. Radial scanning diagnostics of bremsstrahlung and line emission in T-10 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nemets, A. R., E-mail: Nemets-AR@nrcki.ru; Krupin, V. A.; Klyuchnikov, L. A., E-mail: lklyuchnikov@list.ru; Korobov, K. V.; Nurgaliev, M. R. [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation)

    2016-12-15

    The paper describes the scanning spectroscopic diagnostics designed for measurement of line integrated plasma radiation in two visible spectral ranges. This diagnostic system is aimed at measuring the bremsstrahlung absolute values and profile with high spatial resolution. The bremsstrahlung absolute values are used to determine the value and radial distribution of effective plasma ion charge Z{sub eff}(r) in T-10 discharges. The importance of Z{sub eff} measurement is due to its strong influence on plasma heating, confinement, and stability. The spatial distribution of emission for one of the chosen spectral lines is measured simultaneously with bremsstrahlung. The spatial resolution of measurements is ~1 cm, and the temporal resolution is up to 10 ms. The spectral equipment and methods for its calibration are described. Examples of line integrated brightness distribution in a “continuum window” of 5236 ± 6 Å and brightness of the lines C{sup 5+} (5291 Å), He{sup 1+} (4686 Å), and D{sub β} (4861 Å) are given. Flattening of the bremsstrahlung brightness profile in the central region of the plasma column in some discharges with sawtooth oscillations in the T-10 is observed. The measured effective ion charge profiles in ohmic discharges with high plasma density and low discharge currents demonstrate accumulation of light impurities at the column axis; as a consequence, quenching of sawtooth oscillations in some discharges is observed. The developed diagnostics provides necessary data for investigation of heat, particle, and current transport in the plasma of the T-10. Successful application of the obtained data on Z{sub eff}(r) for investigation of geodesic acoustic modes of plasma oscillations in the T-10 should be specially noted.

  15. Virtual Corrections to Bremsstrahlung in High-Energy Collider Physics LHC and $e^+ e^-$ Colliders

    CERN Document Server

    Yost, S A; Yost, Scott A.

    2006-01-01

    We describe radiative corrections to bremsstrahlung and their application to high energy collider physics, focusing on the applications to luminosity measurement, fermion pair production and radiative return. We review the status of one loop radiative corrections in BHLUMI and the KKMC, including cross checks with newer results developed independently for radiative return. We outline a YFS-exponentiated approach to the Drell-Yan process for LHC physics, including a discussion of the relevant radiative corrections.

  16. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.

    Science.gov (United States)

    Hong, Seung-Ho; Song, Jang-Kun

    2017-04-01

    The mechanism of the iridescent color reflection from dried thin graphene oxide (GO) film on Si wafer is clarified. Dissimilarly to the photonic crystalline reflection in aqueous GO dispersion, the color reflection in dried GO film originates from the thin film interference. The peak reflection can reach 23% by optimizing the GO thickness and the substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The electron and photon reconstruction in ATLAS has moved towards the use of a dynamical, topo- logical cell-based approach for cluster building, owing to advancements in the calibration procedure which allow for such a method to be applied. The move to this new technique allows for improved measurements of electron and photon energies, particularly in situations where an electron radiates a bremsstrahlung photon, or a photon converts to an electron-poistron pair. This note details the changes to the ATLAS electron and photon reconstruction software, and assesses its performance under current LHC luminosity conditions using simulated data. Changes to the converted photon reconstruction are also detailed, which improve the reconstruction efficiency of double-track converted photons, as well as reducing the reconstruction of spurious one-track converted photons. The performance of the new reconstruction algorithm is also presented in a number of important topologies relevant to precision Standard Model physics,...

  18. Validation of Monte Carlo simulation of 6 MV photon beam produced by Varian Clinac 2100 linear accelerator using BEAMnrc code and DOSXYZnrc code

    Science.gov (United States)

    Bencheikh, Mohamed; Maghnouj, Abdelmajid; Tajmouati, Jaouad; Didi, Abdessamad; Ezzati, Ahad Olah

    2017-09-01

    The Monte Carlo model for the photon-beam output from the Varian Clinac 2100 linear accelerator was validated to compare the calculated to measured PDD and beam dose profiles The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The objective of this study is to build a Monte Carlo geometry of Varian Clinac 2100 linear accelerator as realistically as possible. The Monte Carlo codes used in this work were the BEAMnrc code to simulate the photons beam and the DOSXYZnrc code to examinate the absorbed dose in the water phantom. We have calculated percentage depth dose (PDD) and beam profiles of the 6 MV photon beam for the 6 × 6 cm2, 10 × 10 cm2 and 15 × 15 cm2 field sizes. We have used the gamma index technique for the quantitative evaluation to compare the measured and calculated distributions. Good agreement was found between calculated PDD and beam profile compared to measured data. The comparison was evaluated using the gamma index method and the criterions were 3% for dose difference and 3 mm for distance to agreement. The gamma index acceptance rate was more than 97% of both distribution comparisons PDDs and dose profiles and our results were more developed and accurate. The Varian Clinac 2100 linear accelerator was accurately modeled using Monte Carlo codes: BEAMnrc and DOSXYZnrc codes package.

  19. Photon emission produced by Kr{sup +} ions bombardment of Cr and Cr{sub 2}O{sub 3} targets

    Energy Technology Data Exchange (ETDEWEB)

    Boujlaidi, A. El, E-mail: a.elboujlaidi@uca.ma [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco); Hammoum, K. [Laboratoire de Mécanique, Structures et Energétique, Université Mouloud Mammeri de Tizi-Ouzou (Algeria); Jadoual, L.; Jourdani, R. [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco); Ait El Fqih, M. [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco); Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Université Hassan II Mohammedia – Casablanca (Morocco); Aouchiche, H. [Laboratoire de Mécanique, Structures et Energétique, Université Mouloud Mammeri de Tizi-Ouzou (Algeria); Kaddouri, A. [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco)

    2015-01-15

    The sputter induced photon spectroscopy technique was used to study the luminescence spectra of the species sputtered from chromium powder and its oxide Cr{sub 2}O{sub 3}, during 5 keV Kr{sup +} ions bombardment in vacuum better than 10{sup −7} torr. The optical spectra recorded between 350 and 470 nm exhibit discrete lines which are attributed to neutral excited atoms of chromium (Cr I lines). The experiments are also performed under 10{sup −5} torr ultra pure oxygen partial pressure. The results demonstrate that the measured intensities of the emitted photons are always higher in the presence of oxygen and even higher than those obtained for Cr{sub 2}O{sub 3} target. In the presence of oxygen vapor we assume that an oxide film is formed on the chromium surface which is responsible of the increase of photon emission. This variation in the intensities is correctly explained in the model of electron transfer processes between the excited sputtered atom and the bombarded surface. This model suggests that the structure formed on the Cr surface in the case of oxygenated chromium is closer to that of Cr{sub 2}O{sub 3} oxide.

  20. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based...... on the positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  1. Total momentum transfer produced by the photons of a multi-pass laser beam as an evident avenue for optical and mass metrology.

    Science.gov (United States)

    Vasilyan, Suren; Fröhlich, Thomas; Manske, Eberhard

    2017-08-21

    The use of the radiation pressure of a laser field, as an effect of the momentum transfer of the absorbed and re-emitted photons, suggests rather a complementary than an alternative possibility for metrology to generate calibration forces or to calibrate the optical power directly traceable to the International System of Units (SI). This paper reports a method and experimentally measured evidence on options to extend the effective use of radiation pressure for generating optical forces in the sub-microNewton (μN) range. Among other features and results presented, we emphasize the variability in controlling the accuracy of these forces through the proper utilization of the power of a multi-pass laser beam (semi- or completely) locked within confined systems. The direct measurements of these forces, augmented due to the partial or total momentum transfer of the photons of a multi-pass laser beam extended from several hundreds of picoNewton (pN) up to sub-μN range for the same power of laser source, are done by a precision force measurement system and compared with basic theoretical computations. We also discuss the opportunities to probe the fundamental physical limits associated with this method and to the considerable extent other competing contributing effects that might be regarded as sources of errors in metrological tasks.

  2. Measurement of Direct Photon Emission in K+-->π+π0γ Decay

    Science.gov (United States)

    Adler, S.; Aoki, M.; Ardebili, M.; Atiya, M. S.; Bergbusch, P. C.; Blackmore, E. W.; Bryman, D. A.; Chiang, I.-H.; Convery, M. R.; Diwan, M. V.; Frank, J. S.; Haggerty, J. S.; Inagaki, T.; Ito, M. M.; Kabe, S.; Kettell, S. H.; Kishi, Y.; Kitching, P.; Kobayashi, M.; Komatsubara, T. K.; Konaka, A.; Kuno, Y.; Kuriki, M.; Kycia, T. F.; Li, K. K.; Littenberg, L. S.; MacDonald, J. A.; McPherson, R. A.; Meyers, P. D.; Mildenberger, J.; Muramatsu, N.; Nakano, T.; Numao, T.; Poutissou, J.-M.; Poutissou, R.; Redlinger, G.; Sato, T.; Shinkawa, T.; Shoemaker, F. C.; Soluk, R.; Stone, J. R.; Strand, R. C.; Sugimoto, S.; Witzig, C.; Yoshimura, Y.

    2000-12-01

    We have performed a measurement of the K+-->π+π0γ decay and have observed 2×104 events. The best fit to the decay spectrum gives a branching ratio for direct photon emission of \\(4.7+/-0.8+/-0.3\\)×10-6 in the π+ kinetic energy region of 55 to 90 MeV and requires no component due to interference with inner bremsstrahlung.

  3. Measurement of Direct Photon Emission in K{sup +}{yields}{pi}{sup +}{pi}

    Energy Technology Data Exchange (ETDEWEB)

    Adler, S.; Aoki, M.; Ardebili, M.; Atiya, M. S.; Bergbusch, P. C.; Blackmore, E. W.; Bryman, D. A.; Chiang, I.-H.; Convery, M. R.; Diwan, M. V. (and others)

    2000-12-04

    We have performed a measurement of the K{sup +}{yields}{pi}{sup +}{pi}{sup 0}{gamma} decay and have observed 2x10{sup 4} events. The best fit to the decay spectrum gives a branching ratio for direct photon emission of (4.7{+-}0.8{+-}0.3)x10{sup -6} in the {pi}{sup +} kinetic energy region of 55 to 90MeV and requires no component due to interference with inner bremsstrahlung.

  4. Measurement of direct photon emission in K+-->pi(+)pi(0)gamma decay

    Science.gov (United States)

    Adler; Aoki; Ardebili; Atiya; Bergbusch; Blackmore; Bryman; Chiang; Convery; Diwan; Frank; Haggerty; Inagaki; Ito; Kabe; Kettell; Kishi; Kitching; Kobayashi; Komatsubara; Konaka; Kuno; Kuriki; Kycia; Li; Littenberg

    2000-12-04

    We have performed a measurement of the K+-->pi(+)pi(0)gamma decay and have observed 2x10(4) events. The best fit to the decay spectrum gives a branching ratio for direct photon emission of (4.7+/-0.8+/-0. 3)x10(-6) in the pi(+) kinetic energy region of 55 to 90 MeV and requires no component due to interference with inner bremsstrahlung.

  5. Response of monitoring instruments to high-energy photon radiation

    CERN Document Server

    Haridas, G; Pradhan, S D; Nayak, A R; Bhagwat, A M

    2000-01-01

    Response of commercially available monitoring instruments to high-energy photon radiation was studied under the stored beam condition of a few milliamperes in the storage ring of the Synchrotron Radiation Source, INDUS-I, at Centre for Advanced Technology (CAT), Indore. The storage ring has a circumference of 18.96 m, where electrons at 450 MeV are stored for a few hours, during which the emitted synchrotron radiation is exploited for scientific research and other applications. Radiation environment near storage ring has bremsstrahlung photons of various energies (maximum 450 MeV). A study has indicated underestimation of dose by conventional radiation monitoring instruments by a factor of 2-4. Response after transmission of photons through massive shield was also studied, which indicated spectral degradation and good response by the survey meters.

  6. Photonic band structure

    Energy Technology Data Exchange (ETDEWEB)

    Yablonovitch, E. [Univ. of California, Los Angeles, CA (United States)

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  7. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  8. Model dependence of the bremsstrahlung effects from the superluminal neutrino at OPERA

    CERN Document Server

    Bezrukov, Fedor

    2012-01-01

    We revisit the bremsstrahlung process of a superluminal neutrino motivated by OPERA results. From a careful analysis of the plane wave solutions of the superluminal neutrino, we find that the squared matrix elements contain additional terms from Lorentz violation due to the modified spin sum for the neutrino. We point out that the coefficients of the decay rate and the energy loss rate significantly depend on the details of the model, although the results are parametrically similar to the ones obtained by Cohen and Glashow [1]. We illustrate this from the modified neutral current interaction of neutrino with Lorentz violation of the same order as in the modified dispersion relation.

  9. Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale

    CERN Document Server

    Ciafaloni, Marcello; Veneziano, Gabriele

    2015-01-01

    We argue that, as a consequence of the graviton's spin-2, its bremsstrahlung in trans-planckian-energy ($E\\gg M_P$) gravitational scattering at small deflection angle can be nicely expressed in terms of helicity-transformation phases and their transfer within the scattering process. The resulting spectrum exhibits deeply sub-planckian characteristic energies of order $M_P^2/E \\ll M_P$ (reminiscent of Hawking radiation), a suppressed fragmentation region, and a reduced rapidity plateau, in broad agreement with recent classical estimates.

  10. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  11. The probability density function of energy loss for an electron by bremsstrahlung radiation in a thickness of a target

    Science.gov (United States)

    Kia, Mohammad Reza

    2017-10-01

    The probability density function (PDF) of energy loss for an electron by bremsstrahlung radiation in a thickness of a target is obtained by solving the collision term of the Boltzmann equation for the Bethe-Heitler differential cross section. It is demonstrated that the values of the energy loss for an electron by bremsstrahlung radiation will be important in order to calculate the total energy loss when the amount of screening from the atomic electrons becomes important. In this case, a stochastic equation based on the electron energy and the target properties is derived to calculate the energy loss of an electron by bremsstrahlung radiation in a thickness of a target. The results obtained from this analysis are in good agreement with the experimental data and the folding theory for the PDFs of total energy loss for an electron at a certain depth of a target reported in the literature.

  12. Search for the Higgs boson decaying to two photons and produced in association with a pair of top quarks in the CMS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00419555; Julie, Malclès

    In this thesis, the measurement of the Higgs boson properties in the diphoton decay channel with the CMS experiment at the Large Hadron Collider is presented. The focus of this work is the $t\\bar{t}H$ production mode, as it is the only direct access to the top quark Yukawa coupling, a fundamental parameter of the Standard Model. $t\\bar{t}H$ is a very rare process, two orders of magnitude smaller than the dominant Higgs boson production by gluon fusion. At 13 TeV, $t\\bar{t}H$ production is about 4 times larger than at 8 TeV. This thesis takes over the studies performed at 8 TeV, where the statistics was not enough for an observation of $t\\bar{t}H$. Despite a very small branching ratio (only about 0.2\\%), the two photons decay channel of the Higgs boson is very promising, because of its excellent mass resolution (about 1\\%). Moreover, its signature in the detector is very clear. The diphoton decay channel is also of particular interest as it is the only channel allowing the study of all production modes: gluon ...

  13. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  14. Formation region effects in transition radiation, bremsstrahlung, and ionization loss of ultrarelativistic electrons

    Directory of Open Access Journals (Sweden)

    S. V. Trofymenko

    2016-11-01

    Full Text Available The processes of transition radiation and bremsstrahlung by an ultrarelativistic electron as well as the effect of transition radiation influence upon the electron ionization loss in thin layer of substance are theoretically investigated in the case when radiation formation region has macroscopically large size. Special attention is drawn to transition radiation (TR generated during the traversal of thin metallic plate by the electron previously deflected from its initial direction of motion. In this case TR characteristics are calculated for realistic (circular shape of the electron deflection trajectory. The difference of such characteristics under certain conditions from the ones obtained previously with the use of approximation of anglelike shape of the electron trajectory (instant deflection is shown. The problem of measurement of bremsstrahlung characteristics in the prewave zone is investigated. The expressions defining the measured radiation distribution for arbitrary values of the size and the position of the detector used for radiation registration are derived. The problem of TR influence upon the electron ionization loss in thin plate and in a system of two plates is discussed. The proposal for experimental investigation of such effect is formulated.

  15. Tomographic bremsstrahlung imaging with yttrium-90 in the context of radioembolisation of liver tumors; Tomografische Bildgebung mit Yttrium-90-Bremsstrahlung im Rahmen der Radioembolisation von Lebertumoren

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, Oliver Stephan

    2013-04-12

    Establish tomographic Bremsstrahlung SPECT imaging (BSPECT) for the clinical validation of Selective Internal Radiotherapy (SIRT) with Yttrium-90 ({sup 90}Y) labelled microspheres. Various energy ranges (75 ± 3.8 keV; 135 ± 6.8 keV; 167 ± 8.4 keV) and the summation window were studied to see if they were suitable for BSPECT. To this end, clinically available reconstruction techniques were analysed for their suitability for BSPECT. The tomographic examinations were performed on a cylindrical phantom filled with spheres of different diameters d = [28; 35; 40; 50; 60] mm in a non-active waterfilled background. The spheres were filled with identical {sup 90}Y activity concentration (AC). Measurements were conducted at AC = [14.58; 5.20; 1.98; 0.66] MBq/cm{sup 3}. The BSPECT were reconstructed with filtered back-projection (FBP), a 2D Ordered-Subset Expectation Maximisation Algorithm (2D-OSEM) and a 3D Geometric Mean Algorithm (3D-GMA). Evaluation was made visually and on the basis of objective performance parameters such as contrast, signal-to-noise ratio (SNR) and image noise. While the 75 keV ± 3.8 keV window was identified as suitable for the BSPECT, limitations were revealed as to use of different implementations of the Point Spread Function (PSF). It was found for all reconstruction techniques that, at a given sphere diameter, there existed a linear relationship between the AC in the spheres and the reconstructed pulse rate per volume element. The recovery effect was verified for small spheres. The iterative techniques were found to be suitable for the BSPECT at all AC. At low AC, the 3D-GMA exhibited the least noise and the highest SNR. The FBP turned out to be entirely inappropriate for the BSPECT. The narrow energy window in which the bremsstrahlung interferes with the characteristic X-radiation of lead can be used for BSPECT. In this approach, the tomographic data reconstructed with different algorithms exhibited a varying image quality, with the iterative

  16. Photon heterodyning.

    Science.gov (United States)

    Okawa, Youhei; Omura, Fuminori; Yasutake, Yuhsuke; Fukatsu, Susumu

    2017-08-21

    Single-photon interference experiments are attempted in the time domain using true single-photon streams. Self-heterodyning beats are clearly observed by letting the field associated with a single photon interfere with itself on a field-quadratic detector, which is a time analogue of Young's two-slit interference experiment. The temporal first-order coherence of single-photon fields, i.e., transient interference fringes, develops as cumulative detection events are mapped point-by-point onto a virtual capture frame by properly correlating the time-series data. The ability to single out photon counts at a designated timing paves the way for digital heterodyning with faint light for such use as phase measurement and quantum information processing.

  17. Measurement of two-photon exchange effect by comparing elastic e±p cross sections

    Science.gov (United States)

    Rimal, D.; Adikaram, D.; Raue, B. A.; Weinstein, L. B.; Arrington, J.; Brooks, W. K.; Ungaro, M.; Adhikari, K. P.; Afanasev, A. V.; Akbar, Z.; Pereira, S. Anefalos; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mestayer, M. D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2017-06-01

    Background: The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four-momentum transfer (Q2). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Purpose: We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. Methods: We produced a mixed simultaneous electron-positron beam in Jefferson Lab's Hall B by passing the 5.6-GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron-positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm-long liquid hydrogen (LH2) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons, we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented. Results: We present previously unpublished results for the quantity R2 γ, the TPE correction to the elastic-scattering cross section, at Q2≈0.85 and 1.45 GeV2 over a large range of virtual photon polarization ɛ . Conclusions: Our results, along with recently published results from VEPP-3, demonstrate a nonzero contribution from TPE effects and are in excellent agreement with the calculations that include TPE

  18. A measurement of the magnetic dipole moment of the. delta. /sup + +/(1232) from the bremsstrahlung process. pi. p. -->. pi. p. gamma

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.A.

    1987-06-01

    We have measured the cross section from the bremsstrahlung process ..pi../sup +/p ..-->.. ..pi../sup +/p..gamma.. for incident pions of energy 299 MeV. We detected the out going pion in the angular range from 55 to 95/sup 0/ in the lab, and photons were detected near 240/sup 0/ in the lab. We compare this measured cross-section to the MIT theory in order to extract a measurement of the magnetic dipole moment of the ..delta../sup + +/(1232), ..mu../sub ..delta../. In order to compare our results with the MIT theory, we have folded the MIT theory into the acceptance of our apparatus. We find that for pion angles between 55 and 75/sup 0/ the theory gives us a dipole moment of: 2.3..mu../sub p/ < ..mu../sub ..delta../ < 3.3..mu../sup p/ where the quoted error arises from an experimental uncertainty of +-0.25..mu../sub p/ and from theoretical uncertainties of +-0.25 ..mu../sub p/. However, for pion angles between 75 and 95/sup 0/ we find that the MIT theory predicts a cross-section which is larger than our measured cross-section, and makes it difficult to extract a value of ..mu../sub ..delta../. This over prediction is not understood, but consistent with a similar effect when the MIT theory is fit to previous data. 78 figs., 29 tabs.

  19. Photons and electrons: advances in using cold plasma, irradiation, UV and other energy-based treatments for fresh and fresh-cut produce

    Science.gov (United States)

    Conventional antimicrobial treatments for fresh produce rely on chemical compounds and physical contact to inactivate and remove bacterial contamination. Recent research has identified a number of energy-based alternative technologies to improve the safety of fresh and fresh-cut fruits and vegetable...

  20. Study of the Dependence of Direct Soft Photon Production on the Jet Characteristics in Hadronic $Z^0$ Decays

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W-D; Arnoud, Y; Ask, S; Asman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K-H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Berat, C; Berggren, M; Bertrand, D; Besancon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Bruckman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, Ph; Checchia, P; Chierici, R; Chliapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D; Cuevas, J; D'Hondt, J; da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; De Boer, W; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; de Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelof, T; Ellert, M; Elsing, M; Espirito Santo, M C; Fanourakis, G; Fassouliotis, D; Feindt, M; Fernandez, J; Ferrer, A; Ferro, F; Flagmeyer, U; Foeth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; Garcia, C; Gavillet, Ph; Gazis, E; Gokieli, R; Golob, B; Gomez-Ceballos, G; Goncalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Hoffman, J; Holmgren, S-O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kouznetsov, O; Krumstein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; Lopez, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Marechal, B; Margoni, M; Marin, J-C; Mariotti, C; Markou, A; Martinez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; Mc Nulty, R; Meroni, C; Migliore, E; Mitaroff, W; Mjoernmark, U; Moa, T; Moch, M; Moenig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Mueller, U; Muenich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, F; Nawrocki, K; Nemecek, S; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V; Olshevski, A; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, Th D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdniakov, V; Pukhaeva, N; Pullia, A; Radojicic, D; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P; Richard, F; Ridky, J; Rivero, M; Rodriguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovsky, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassov, T; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tome, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M-L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; Van Dam, P; Van Eldik, J; van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2010-01-01

    An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behaviour to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet ne...

  1. Etude de la production de photons a grande impulsion transverse dans les collisions hadroniques avec le detecteur UA2

    CERN Document Server

    Bourliaud, Martial

    NOUS ETUDIONS LA PRODUCTION INCLUSIVE DE PHOTONS A GRANDE IMPULSION TRANSVERSE ET A FAIBLE PSEUDORAPIDITE DANS LES COLLISIONS HADRONIQUES. NOUS PRESENTONS DEUX ANALYSES ORIGINALES REALISEES SUR 13 PICOBARN MOINS UN DE COLLISIONS PROTON-ANTIPROTON COLLECTEES PAR LA COLLABORATION UA2' AUPRES DU COLLISIONNEUR SPPS DU CERN. QCD PREDIT QUE CES PHOTONS SONT SOIT EMIS PAR LES QUARKS LORS DES INTERACTIONS A GRAND MOMENT DE TRANSFERT (PHOTONS DIRECTS), SOIT CREES PAR BREMSSTRAHLUNG LORS DE LA FRAGMENTATION DES JETS. LA SECTION EFFICACE TOTALE DE PRODUCTION DE CES PHOTONS A ETE POUR L'ESSENTIEL CALCULEE A L'APPROXIMATION DES LOGARITHMES SOUS-DOMINANTS, AVEC TOUTEFOIS DES INCERTITUDES SUR LA PROPORTION DE PHOTONS DE BREMSSTRAHLUNG AUX FAIBLES VALEURS DE X#T. DU POINT DE VUE EXPERIMENTAL LES PHOTONS OFFRENT L'AVANTAGE D'ETRE BIEN MIEUX MESURES QUE LES JETS, ET NOS MESURES CONSTITUENT DES TESTS DU MODELE DES PARTONS DE QCD. LES PREDICTIONS THEORIQUES ET LES APPLICATIONS IMPORTANTES DE LA PRODUCTION HADRONIQUE DE PHOTONS E...

  2. Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at $\\sqrt{s}=13$ TeV with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Afik, Yoav; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; {\\AA}kesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; \\'{A}lvarez Piqueras, Dami\\'{a}n; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Oliver Keith; Bakker, Pepijn Johannes; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimar\\~{a}es da Costa, Jo\\~{a}o; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bauer, Kevin Thomas; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, J\\"urg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Bertsche, Carolyn; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Bonilla, Johan Sebastian; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; B\\"uscher, Daniel; B\\"uscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; C-Q, Changqiao; Cabrera Urb\\'an, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carr\\'a, Sonia; Carrillo-Montoya, German D; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, David; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgeniya; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioar\\u{a}, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Mui\\~no, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corrigan, Eric Edward; Corriveau, Francois; Cortes-Gonzalez, Arely; Costa, Giuseppe; Costa, Mar\\'ia Jos\\'e; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Cr\\'ep\\'e-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; C\\'uth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; D\\'iez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubinin, Filipp; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; D\\"uhrssen, Michael; Dulsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; D\\"uren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Ernst, Michael; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Minyu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filip\\v{c}i\\v{c}, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Fomin, Nikolai; Forcolin, Giulio Tiziano; Formica, Andrea; F\\"orster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Spolidoro Freund, Werner; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garc\\'ia, Carmen; Garc\\'ia Navarro, Jos\\'e Enrique; Garc\\'ia Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-H\\'el\\`ene; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Ge\\ss{}ner, Gregor; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, B{\\o}rge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gon\\c calo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonnella, Francesco; Gonski, Julia; Gonz\\'alez de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorini, Benedetto; Gorini, Edoardo; Gori\\v{s}ek, Andrej; Goshaw, Alfred; G\\"ossling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Goy, Corinne; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Graham, Emily Charlotte; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gurbuz, Saime; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageb\\"ock, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Kunlin; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handl, David Michael; Haney, Bijan; Hanke, Paul; Hansen, J{\\o}rgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hern\\'andez Jim\\'enez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Hig\\'on-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis Holub; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche, Franziska; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, G\\"oran; Javadov, Namig; Jav\\r{u}rek, Tom\\'{a}\\v{s}; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; J\\'ez\\'equel, St\\'ephane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; K\\"{o}hler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James; Keoshkerian, Houry; Kepka, Oldrich; Ker\\v{s}evan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; K\\"ohler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Nataliia; K\\"oneke, Karsten; K\\"onig, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kr\\"uger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lan\\c con, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J \\"{o}rn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Lev\\^eque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebig, Wolfgang; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Simon; Lin, Tai-Hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; L{\\"o}sel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Ma\\v{c}ek, Bo\\v{s}tjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maiani, Camilla; Maidantchik, Carmen; Maier, Thomas; Maio, Am\\'elia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandi\\'{c}, Igor; Maneira, Jos\\'e; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; M\\"attig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Thomas; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McNicol, Christopher John; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijovi\\'{c}, Liza; Mikenberg, Giora; Mikestikova, Marcela; Miku\\v{z}, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mj\\"ornmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; M\\"onig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Ll\\'acer, Mar\\'ia; Morettini, Paolo; Morgenstern, Marcus; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Mu\\v{s}kinja, Miha; Mwewa, Chilufya; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Sam Yanwing; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olsson, Joakim; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, Ant\\'onio; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orgill, Emily Claire; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pomm\\`es, Kathy; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia Mar\\'ia; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Risti\\'{c}, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; R{\\o}hne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; R\\"uhr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; R{\\"u}ttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, Jos\\'e; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; S\\'anchez, Javier; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, Jo\\~ao; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Sch\\"afer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, Jos\\'e; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; \\v{S}filigoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, Jos\\'e; Silva Jr, Manuel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sj\\"{o}lin, J\\"{o}rgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; S{\\o}gaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Sopczak, Andre; Sosa, David; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Span\\`o, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; St\\"arz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Str\\"ohmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timoth\\'ee; Thiele, Fabian; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tok\\'ar, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torr\\'o Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocm\\'e, Benjamin; Trofymov, Artur; Troncon, Clara; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Val\\'ery, Lo\\"ic; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; von Buddenbrock, Stefan; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Renjie; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Sebastian Mario; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemaityte, Gabija; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; \\v{Z}eni\\v{s}, Tibor; Zerwas, Dirk; Zhang, Dengfeng; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; \\v{Z}ivkovi\\'{c}, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2018-01-01

    This Letter presents a search for new light resonances decaying to pairs of quarks and produced in association with a high-$p_{\\textrm{T}}$ photon or jet. The dataset consists of proton-proton collisions with an integrated luminosity of 36.1 fb$^{-1}$ at a centre-of-mass energy of $\\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Resonance candidates are identified as massive large-radius jets with substructure consistent with a particle decaying into a quark pair. The mass spectrum of the candidates is examined for local excesses above background. No evidence of a new resonance is observed in the data, which are used to exclude the production of a lepto-phobic axial-vector $Z^\\prime$ boson. These results improve upon the limits on light dijet resonances obtained at lower centre-of-mass energies.

  3. Measurements of the spatial structure and directivity of 100 KeV photon sources in solar flares using PVO and ISEE-3 spacecraft

    Science.gov (United States)

    Anderson, Kinsey A.

    1991-01-01

    The objective of this grant was to measure the spatial structure and directivity of the hard X-ray and low energy gamma-ray (100 keV-2 MeV) continuum sources in solar flares using stereoscopic observations made with spectrometers aboard the Pioneer Venus Orbiter (PVO) and Third International Sun Earth Explorer (ISEE-3) spacecraft. Since the hard X-ray emission is produced by energetic electrons through the bremsstrahlung process, the observed directivity can be directly related to the 'beaming' of electrons accelerated during the flare as they propagate from the acceleration region in the corona to the chromosphere/transition region. Some models (e.g., the thick-target model) predict that most of the impulsive hard X-ray/low energy gamma-ray source is located in the chromosphere, the effective height of the X-ray source above the photosphere increasing with the decrease in the photon energy. This can be verified by determining the height-dependence of the photon source through stereoscopic observations of those flares which are partially occulted from the view of one of the two spacecraft. Thus predictions about beaming of electrons as well as their spatial distributions could be tested through the analysis proposed under this grant.

  4. Hallo photons calls photon; Allo photon appelle photon

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-09-01

    When a pair of photons is created, it seems that these 2 photons are bound together by a mysterious link. This phenomenon has been discovered at the beginning of the seventies. In this new experiment the 2 photons are separated and have to follow different ways through optic cables until they face a quantum gate. At this point they have to chose between a short and a long itinerary. Statistically they have the same probability to take either. In all cases the 2 photons agree to do the same choice even if the 2 quantum gates are distant of about 10 kilometers. Some applications in ciphering and coding of messages are expected. (A.C.)

  5. Direct Photons at RHIC

    OpenAIRE

    David, G.; Collaboration, for the PHENIX

    2004-01-01

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum ($p_T$) range. The $p$ + $p$ measurements allow a fundamental test of QCD, and serve as a bas...

  6. Detecting Dark Photons with Reactor Neutrino Experiments

    Science.gov (United States)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ mass dark photons.

  7. Entangled-photon coincidence fluorescence imaging.

    Science.gov (United States)

    Scarcelli, Giuliano; Yun, Seok H

    2008-09-29

    We describe fluorescence imaging using the second-order correlation of entangled photon pairs. The proposed method is based on the principle that one photon of the pair carries information on where the other photon has been absorbed and has produced fluorescence in a sample. Because fluorescent molecules serve as "detectors" breaking the entanglement, multiply-scattered fluorescence photons within the sample do not cause image blur. We discuss experimental implementations.

  8. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  9. Photon diffraction

    Science.gov (United States)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  10. The Heavy Photon Search experiment at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    De Napoli, Marzio [Istituto Nazionale di Fisica Nucleare (INFN), Catania (Italy). Lab. et al.

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  11. BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marco S. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstraße 15, 12489 Berlin (Germany); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parmaand INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICETCiudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Penati, Silvia [Dipartimento di Fisica, Università di Milano-Bicoccaand INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenzeand INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2014-06-19

    We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the appearance of framing-like phases and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.

  12. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  13. Model dependence of the bremsstrahlung effects from the superluminal neutrino at OPERA

    Science.gov (United States)

    Bezrukov, Fedor; Lee, Hyun Min

    2012-02-01

    We revisit the bremsstrahlung process of a superluminal neutrino motivated by OPERA results. From a careful analysis of the plane-wave solutions of the superluminal neutrino, we find that the squared matrix elements contain additional terms from Lorentz violation due to the modified spin sum for the neutrino. We point out that the coefficients of the decay rate and the energy loss rate significantly depend on the details of the model, although the results are parametrically similar to the ones obtained by Cohen and Glashow [A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 107, 181803 (2011).PRLTAO0031-900710.1103/PhysRevLett.107.181803]. We illustrate this from the modified neutral current interaction of neutrino with Lorentz violation of the same order as in the modified dispersion relation.

  14. Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    The behavior of high-energy electrons in the ATLAS Inner Detector is dominated by radiative energy losses (bremsstrahlung)as they traverse matter. These can be significant considering the substantial amount of material that the Inner Detector contains and can give rise to deviations from the original charged particle's path as it propagates through the magnetic field. As a result, significant inefficiencies, both during the electron trajectory reconstruction and in the determination of the corresponding track parameters in the bending plane, can be observed. In this note, we present a modification of the electron reconstruction in ATLAS that uses track refitting with the Gaussian Sum Filter (GSF) algorithm, with the aim of improving the estimated electron track parameters. The performance of this new scheme is compared to that of the existing standard electron reconstruction, for electron transverse energies between 7 GeV and 80 GeV.

  15. Bremsstrahlung x ray spectra of Jupiter and Saturn: Predictions for future planetary spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, D.D. (Univ. of California, Los Angeles (USA))

    1990-07-01

    Calculations of X ray spectra due to bremsstrahlung from precipitating auroral electrons at Jupiter and Saturn are presented. The model assumes that a field-aligned potential drop accelerates a primary beam of electrons into the atmosphere where a population of secondary electrons having a power law energy dependence is generated. The spectrum at Jupiter is normalized to the soft X ray observations of Metzger et al (1983) at the low-energy end and constrained at the high-energy end by UV auroral energy requirements. The spectrum at Saturn is constructed by analogy to the Jovian case allowing for variation of the beam energy, energy flux, and scale size of the Saturnian aurora. The resulting indicate that a significant flux of X rays is emanating from both planets which may serve as a basis for conducting planetary X ray astronomy as part of future spacecraft missions to the planets.

  16. Two-photon and two-photon-assisted slow light.

    Science.gov (United States)

    Bautista, E Sánchez; Cabrera-Granado, E; Weigand, R

    2011-03-01

    We show that light pulses propagating in two-photon absorbing systems may present time delays like slow light produced via coherent population oscillations in one-photon interactions. Two regimes are numerically studied for a simplified two-level system: (a) a light pulse at frequency ω/2 undergoes two-photon absorption (TPA) and is delayed by the absorbing system (two-photon slow light) and (b) a light pulse at frequency ω is delayed in a system prepared by TPA of a light pulse at frequency ω/2 (two-photon-assisted slow light). The study carried out in solutions of dyes and dendrites shows significant delays, low distortion, and good transmission for easily reachable experimental conditions. The working principle can be applied to other media and can be used in telecommunications technology.

  17. Testing QCD in Photon-Photon Interactions

    OpenAIRE

    Soldner-Rembold, Stefan

    1998-01-01

    At high energies photon-photon interactions are dominated by quantum fluctuations of the photons into fermion-antifermion pairs and into vector mesons. This is called photon structure. Electron-positron collisions at LEP are an ideal laboratory for studying photon structure and for testing QCD.

  18. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  19. Nuclear photonics

    Science.gov (United States)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  20. Evidence for an excess of soft photons in hadronic decays of $Z^{0}$

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschbeck, Brigitte; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2006-01-01

    Soft photons inside hadronic jets converted in front of the DELPHI main tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the experimental data as compared to the Monte Carlo predictions is observed. This excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/- 0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected level of the inner hadronic bremsstrahlung (which is not included in the Monte Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8), which is similar in strength to the anomalous soft photon signal observed in fixed target experiments with hadronic beams.

  1. Photonic Bandgaps in Photonic Molecules

    Science.gov (United States)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  2. Assessment of Impact of Monoenergetic Photon Sources on Prioritized Nonproliferation Applications: Simulation Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-12-30

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current broad-band, bremsstrahlung photon sources (e.g., linacs and betatrons) deliver unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations, and must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they are technically challenging to produce. Candidate MPS technologies for nonproliferation applications are now being developed, each of which have different properties (e.g. broad divergence vs. narrow). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. To guide development, requirements for each application of interest must be defined and simulations conducted to define MPS parameters that deliver benefit relative to current systems. The present project conducted a broad assessment of potential nonproliferation applications where MPSs may provide new capabilities or significant performance enhancement (reported separately), which led to prioritization of several applications for detailed analysis. The applications prioritized were: cargo screening and interdiction of Special Nuclear Materials (SNM), detection of hidden SNM, treaty/dismantlement verification, and spent fuel dry storage cask content verification. High resolution imaging for stockpile stewardship was considered as a sub-area of the treaty topic, as it is also of

  3. Heavy-quark correlations in direct photon-photon collisions

    CERN Document Server

    Krämer, M; Kramer, Michael; Laenen, Eric

    1996-01-01

    In two-photon collisions at LEP2 and a future e^+e^- linear collider heavy quarks (mainly charm) will be pair-produced rather copiously. The production via direct and resolved photons can be distinguished experimentally via a remnant-jet tag. We study correlations of the heavy quarks at next-to-leading order in QCD in the direct channel, which is free from phenomenological parton densities in the photon. These correlations are therefore directly calculable in perturbative QCD and provide a stringent test of the production mechanism.

  4. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C; Pruet, J

    2006-10-26

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence.

  5. Photon Rao

    Indian Academy of Sciences (India)

    Volume 2 Issue 5 May 1997 pp 69-72 Feature Article. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao · More Details Fulltext PDF. Volume 16 Issue 12 December 2011 pp 1303-1306. Molecule of the Month - Molecular-Chameleon: Solvatochromism at its Iridescent Best!

  6. Photon differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Revall Frisvad, Jeppe; Erleben, Kenny

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  7. Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  8. Photon spectra from WIMP annihilation

    OpenAIRE

    Ruiz Cembranos, José Alberto; Cruz Dombriz, Álvaro de la; Dobado González, Antonio; Lineros, R. A.; López Maroto, Antonio

    2010-01-01

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation int...

  9. Photon-Photon Scattering at the Photon Linear Collider

    OpenAIRE

    Jikia, G.; Tkabladze, A.

    1993-01-01

    Photon-photon scattering at the Photon Linear Collider is considered. Explicit formulas for helicity amplitudes due to $W$ boson loops are presented. It is shown that photon-photon scattering should be easily observable at PLC and separation of the $W$ loop contribution (which dominates at high energies) will be possible at $e^+e^-$ c.m. energy of 500~GeV or higher.

  10. Photon-Photon Interaction in a Photon Gas

    OpenAIRE

    Thoma, Markus H.

    2000-01-01

    Using the effective Lagrangian for the low energy photon-photon interaction the lowest order photon self energy at finite temperature and in non-equilibrium is calculated within the real time formalism. The Debye mass, the dispersion relation, the dielectric tensor, and the velocity of light following from the photon self energy are discussed. As an application we consider the interaction of photons with the cosmic microwave background radiation.

  11. Comparison of Exact Results for the Virtual Corrections to Bremsstrahlung in Electron-Positron Annihilation at High Energies

    CERN Document Server

    Yost, S.A.; Jadach, S.; Ward, B.F.L.

    2004-01-01

    We have compared the virtual corrections to electron-positron annihilation to fermion pairs with single hard bremsstrahlung as calculated by S. Jadach, M. Melles, B.F.L. Ward and S.A. Yost to several other expressions. The most recent of these comparisons is to the leptonic tensor calculated by J.H. Kuhn and G. Rodrigo for radiative return. Agreement is found to within $10^{-5}$ or better, as a fraction of the Born cross section.

  12. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    Science.gov (United States)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  13. Induced depletion of ^108mAg with 6 MeV bremsstrahlung

    Science.gov (United States)

    Carroll, J.; Litz, M.; Netherton, K.; Henriquez, S.; Pereira, N.; Karamian, S.

    2012-03-01

    The nuclide ^108Ag possesses an interesting combination of a long-lived isomer (T1/2 = 418 years, I^π = 6^+, E = 109 keV) and a short-lived ground state (T1/2 = 2.37 minutes, I^π = 1^+). The ground state decays primarily by β^- emission with Qβ- = 1,649 keV. A search of the available nuclear data (e. g., ENSDF and Phys. Rev. C 52, 104 (1995)) suggests two possible transitions at energies below 500 keV from the isomer to higher-lying levels, whose subsequent decay can branch to the ground state. This process would lead to a partial depletion of any population trapped within the isomeric state, ^108mAg. Currently, the cross section for induced isomer depletion via these transitions cannot be accurately deduced due to unknown branching ratios, and level widths and spins. Other ``depletion'' levels requiring excitation > 500 keV are also likely. An experimental test of ^108mAg depletion has been performed using 6 MeV bremsstrahlung at the US Army Research Laboratory, with isomeric targets and a computer-controlled repetitive measurement system. The design of the system and experimental results will be discussed.

  14. A review of electron-nucleus bremsstrahlung cross sections between 1 and 10 MeV

    Science.gov (United States)

    Mangiarotti, A.; Martins, M. N.

    2017-12-01

    More than 80 years have passed since the first calculations of electron-nucleus bremsstrahlung cross sections were published by Sommerfeld, for non-relativistic electrons, and, independently, by Sauter, Bethe and Heitler, and Racah, for relativistic electrons. The Bethe-Heitler expression, that is based on the first Born approximation and includes the screening of the Coulomb field of the nucleus by the atomic electrons, has proven to work well at moderately high energies where the Landau-Pomeranchuk-Migdal effect is negligible. We review the current theoretical and experimental status with a highlight on electrons with kinetic energies between 1 and 10 MeV. The choice is motivated by the peculiar difficulties present in this energy region, where it is necessary to treat simultaneously the interaction with the Coulomb field beyond the first Born approximation and the effect of screening. A fully numerical approach within the S-matrix formalism has proven to be extremely difficult above a few MeV, because the number of partial waves needed for an accurate evaluation is prohibitively large. Here we focus on analytic results, including the more complex ones employing the Furry-Sommerfeld-Maue wave functions and taking into account the next-to-leading order, and discuss the advantages and limitations in light of the best available data. The influence of multiple scattering in the target is investigated under the actual experimental conditions. A comparison with the widely used cross section tabulations by Seltzer and Berger is also presented.

  15. Twisted photons

    Science.gov (United States)

    Molina-Terriza, Gabriel; Torres, Juan P.; Torner, Lluis

    2007-05-01

    The orbital angular momentum of light represents a fundamentally new optical degree of freedom. Unlike linear momentum, or spin angular momentum, which is associated with the polarization of light, orbital angular momentum arises as a subtler and more complex consequence of the spatial distribution of the intensity and phase of an optical field - even down to the single photon limit. Consequently, researchers have only begun to appreciate its implications for our understanding of the many ways in which light and matter can interact, or its practical potential for quantum information applications. This article reviews some of the landmark advances in the study and use of the orbital angular momentum of photons, and in particular its potential for realizing high-dimensional quantum spaces.

  16. Vesicle Photonics

    Science.gov (United States)

    Vasdekis, A. E.; Scott, E. A.; Roke, S.; Hubbell, J. A.; Psaltis, D.

    2013-07-01

    Amphiphiles, under appropriate conditions, can self-assemble into nanoscale thin membrane vessels (vesicles) that encapsulate and hence protect and transport molecular payloads. Vesicles assemble naturally within cells but can also be artificially synthesized. In this article, we review the mechanisms and applications of light-field interactions with vesicles. By being associated with light-emitting entities (e.g., dyes, fluorescent proteins, or quantum dots), vesicles can act as imaging agents in addition to cargo carriers. Vesicles can also be optically probed on the basis of their nonlinear response, typically from the vesicle membrane. Light fields can be employed to transport vesicles by using optical tweezers (photon momentum) or can directly perturb the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy). We conclude with emerging vesicle applications in biology and photochemical microreactors.

  17. Photonic Molecules and Spectral Engineering

    Science.gov (United States)

    Boriskina, Svetlana V.

    This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and enhanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically induced transparency, and enhancing sensitivity of microcavity-based bio-, stress-, and rotation sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.

  18. Photonic Nanojets.

    Science.gov (United States)

    Heifetz, Alexander; Kong, Soon-Cheol; Sahakian, Alan V; Taflove, Allen; Backman, Vadim

    2009-09-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet's minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter d(ν) perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as d(ν)3 for a fixed λ. This perturbation is much slower than the d(ν)6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000(th) the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage.

  19. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    Science.gov (United States)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  20. Effect of soft-core potentials on inverse bremsstrahlung heating during laser matter interactions

    Science.gov (United States)

    Pandit, Rishi R.; Sentoku, Yasuhiko; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Cheatham, Jonathan; Ramunno, Lora; Ackad, Edward

    2017-07-01

    Inverse bremsstrahlung heating (IBH) is studied by using scattering theory for the interaction of intense lasers with matter using soft-core potentials. This involves three different kinds of interactions: (i) the interaction of the electrons with the external laser field, (ii) the electron-ion interaction, and (iii) the electron-electron interaction. In the interaction of rare-gas clusters with ultrashort laser pulses, nano-plasmas with high densities are created. A new scaling for the differential cross-section and the rate of energy absorption via IBH is derived which depends on the external laser field as well as electric field due to the other particles. When the particles are treated as charge distributions, the electric fields due to the other particles depend on a parameter of the non-Coulombic soft-core field, the potential depth, often used to avoid the Coulomb singularity. Thus, the rate of IBH also depends on the potential depth. Calculations are performed for electrons in a range of wavelength regimes from the vacuum ultraviolet to the mid-infrared. The rate of energy absorption via IBH is found to increase rapidly with increases in the potential depth and then quickly becomes mostly saturated at the Coulomb value for greater depths. The rate of energy absorption via IBH is found to be non-linear with laser intensities. The differential cross-section as well as the rate of energy absorption of IBH is found to increase with increases in laser wavelength. Finally, lower laser intensities saturate more slowly, requiring a larger potential depth to saturate.

  1. Non-thermal photon production in the quark-gluon plasma

    Science.gov (United States)

    Greif, Moritz; Greiner, Carsten; Xu, Zhe

    2017-08-01

    We have implemented leading order photon production processes in nonequilibrium partonic transport simulations. These include Compton scattering, quark-antiquark annihilation and bremsstrahlung. We use BAMPS (Boltzmann Approach To Multi-Parton Scatterings), a numerical code which solves the 3+1d ultrarelativistic Boltzmann equation for massless on-shell quarks and gluons with Monte-Carlo methods. It allows us to study photon production microscopically, including strong nonequilibrium effects. BAMPS is applicable for the whole evolution of the quark-gluon plasma (QGP) in RHIC and LHC heavy-ion collisions, where the photon production is influenced by the chemical and thermal non-equilibrium state in the early phase. Highly energetic quark- and gluon jets will convert into or radiate photons, effects we include by default. We show results for photon spectra from the QGP and investigate its role for the elliptic flow of photons. The yield is smaller than results from other groups, the reason is the slow quark chemical equilibration. Photons induced by jet-like particles show very different momentum anisotropies compared to a hydrodynamically flowing medium.

  2. Measurement of direct photons in Au+Au collisions at √(s(NN))=200 GeV.

    Science.gov (United States)

    Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Jamel, A; Alexander, J; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Chujo, T; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Hachiya, T; Hadj Henni, A; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Iinuma, H; Imai, K; Imrek, J; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vértesi, R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L

    2012-10-12

    We report the measurement of direct photons at midrapidity in Au+Au collisions at √(s(NN))=200 GeV. The direct photon signal was extracted for the transverse momentum range of 4 GeV/cphotons from the inclusive photon sample. The direct photon nuclear modification factor R(AA) was calculated as a function of p(T) for different Au+Au collision centralities using the measured p+p direct photon spectrum and compared to theoretical predictions. R(AA) was found to be consistent with unity for all centralities over the entire measured p(T) range. Theoretical models that account for modifications of initial direct photon production due to modified parton distribution functions in Au and the different isospin composition of the nuclei predict a modest change of R(AA) from unity. They are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.

  3. Optimal generation of pulsed entangled photon pairs

    Science.gov (United States)

    Hodelin, Juan F.; Khoury, George; Bouwmeester, Dirk

    2006-07-01

    We experimentally investigate a double-pass parametric down-conversion scheme for producing pulsed, polarization-entangled photon pairs with high visibility. The amplitudes for creating photon pairs on each pass interfere to compensate for distinguishing characteristics that normally degrade two-photon visibility. The result is a high-flux source of polarization-entangled photon pulses that does not require spectral filtering. We observe quantum interference visibility of over 95% without the use of spectral filters for 200fs pulses, and up to 98.1% with 5nm bandwidth filters.

  4. Approximation of the energy spectrum of a high-intense Bremsstrahlung source by the moments method using the attenuation curve

    CERN Document Server

    Nedavnij, O I

    2001-01-01

    A method of approximating energy spectrum of high-intensity Bremsstrahlung sources by the method of moments along attenuation curve is suggested. The method is based on preliminary differentiation of dependence of effective factor of radiation attenuation, calculation of random energy value moments and use of orthogonal polynomials. Analysis of results of mathematical experiment suggests that the method is fit for approximating energy spectra. Root-mean-square error of the approximation in the specific example made up 5% at most at initial error of 0.2%

  5. A search for bremsstrahlung solar axions using the Majorana low-background BEGe detector at Kimballton (MALBEK)

    OpenAIRE

    Abgrall, N.; Aguayo, E.; Avignone III, F.T.; Barabash, A.S.; Bertrand, F. E.; Boswell, M; Brudanin, V.; Busch, M; Caldwell, A.S.; Chan, Y-D.; Christofferson, C. D.(South Dakota School of Mines and Technology, Rapid City, SD 57701, USA); Combs, D. C.; Cooper, R. J.; Creswick, R J; Detwiler, J.A.

    2014-01-01

    A low-background, high-purity germanium detector has been used to search for evidence of low-energy, bremsstrahlung-generated solar axions. An upper bound of $1.36\\times 10^{-11}$ $(95% CL)$ is placed on the direct coupling of DFSZ model axions to electrons. The prospects for the sensitivity of the Majorana Demonstrator array of point-contact germanium detectors to solar axions are discussed in the context of the model-independent annual modulation due to the seasonal variation of the earth-s...

  6. Use of bremsstrahlung information for the nondestructive characterization of radioactive waste packages; Nutzung von Bremsstrahlungsinformation zur zerstoerungsfreien Charakterisierung radioaktiver Abfallgebinde

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmoser, Benjamin Paul

    2016-11-10

    In order to minimize pseudo activity whilst storage of radioactive waste packages it is required to determine the nuclide inventory as precisely as possible. The in Gamma spectra contained parts of bremsstrahlung can be used to identify and quantify certain beta nuclides. For this an analytical method has been developed. This was mainly tested with beta-emitter Sr-90 and Tm-170, as well as commonly present gamma-emitters in laboratory scale and actual 200 liter waste packages. As a result, non-destructive determination of radioactive wastes can be conducted more precisely.

  7. Disordered photonics

    Science.gov (United States)

    Wiersma, Diederik S.

    2013-03-01

    What do lotus flowers have in common with human bones, liquid crystals with colloidal suspensions, and white beetles with the beautiful stones of the Taj Mahal? The answer is they all feature disordered structures that strongly scatter light, in which light waves entering the material are scattered several times before exiting in random directions. These randomly distributed rays interfere with each other, leading to interesting, and sometimes unexpected, physical phenomena. This Review describes the physics behind the optical properties of disordered structures and how knowledge of multiple light scattering can be used to develop new applications. The field of disordered photonics has grown immensely over the past decade, ranging from investigations into fundamental topics such as Anderson localization and other transport phenomena, to applications in imaging, random lasing and solar energy.

  8. Cross sections and modelling results for TGF- and positron spectrum produced by a negative stepped lightning leader

    NARCIS (Netherlands)

    C. Köhn (Christoph); U. Ebert (Ute)

    2012-01-01

    textabstractWe model the energy resolved angular distribution of TGFs and of positrons produced by a negative lightning leader stepping upwards in a thundercloud. First we present our new results for doubly differential cross sections for Bremsstrahlung and pair production based on the triply

  9. Weak localization of photon noise

    NARCIS (Netherlands)

    Scalia, Paolo S.; Muskens, Otto L.; Lagendijk, Aart

    2013-01-01

    We present an experimental study of coherent backscattering (CBS) of photon noise from multiple scattering media. We use a pseudothermal light source with a microsecond coherence time to produce a noise spectrum covering a continuous transition, from wave fluctuations to shot noise over several MHz.

  10. Maximization Of Bremsstrahlung And K-Series Production Efficiencies In Flash X-Ray Tubes

    Science.gov (United States)

    Krehl, Peter

    1986-08-01

    Historically, x-ray output of flash x-ray tubes was maximized empirically by changing the electrode geometry and varying the capacitance of the pulse generator. With the advent of high-voltage, low-impedance transmission lines, short-duration, high-current pulses could be generated with ease. An appropriate line scaling should assure that dose maximization is not reached at the expense of pulse prolongation which would reduce stop motion capability, but rather that dose rate should be maximized. Additionally, anode evaporation in the arc phase should be minimized to enhance tube life. Typically, the impedance of flash tubes changes during the discharge from infinity in the beginning to nearly zero in the arc phase and, either for field emission or high-vacuum discharge tubes, can well be modeled by a time-varying ohmic resistor Zx(t). Using a modification of Bergeron's method of travelling wave analysis, transient tube voltage and current can be determined out of a closed-form solution. This allows to calculate corresponding dose rate-time profiles of each spectrum. An ideal pulsed transmission line, charged up to a dc potential U0, has been assumed, characterized by its characteristic impedance Z0 and characteristic time T. Three typical examples illustrate the importance of optimum line scaling and K-series excitation voltage on tube performance such as dose, maximum dose rate, discharge delay time and pulse width. These examples encompass a transmission line with (a) constant initially stored energy E0 = UO2T/4Z0, but various combinations of Zo and T; (b) increasing energy E0 by decreasing Z0, but T = const; and (c) constant line parameters Z0 and T, but assumption of various Zx(t) profiles. Basic matching rules have been worked out in order to approach ideal operation for a given tube impedance time profile. A parametric analysis revealed that, with decreasing pulser impedance, there are increases in the bremsstrahlung and K-series radiation emissions, but that

  11. Measurement of direct photon emission in the K(L) ---> pi+ pi- gamma decay mode

    Energy Technology Data Exchange (ETDEWEB)

    Abouzaid, E.; /Chicago U., EFI; Arenton, M.; /Virginia U.; Barker, A.R.; /Colorado U.; Bellantoni, L.; /Fermilab; Bellavance, A.; /Rice U.; Blucher, E.; /Chicago U., EFI; Bock,; /Fermilab; Cheu, E.; /Arizona U.; Coleman, R.; /Fermilab; Corcoran, M.D.; /Rice U.; Corti, G.; /Virginia U. /Wisconsin U., Madison

    2006-04-01

    In this paper the KTeV collaboration reports the analysis of 112.1 x 10{sup 3} candidate K{sub L} {yields} {pi}{sup +}{pi}{sup -}{gamma} decays including a background of 671 {+-} 41 events with the objective of determining the photon production mechanisms intrinsic to the decay process. These decays have been analyzed to extract the relative contributions of the Cp violating bremsstrahlung process and the CP conserving M1 and CP violating E1 direct photon emission processes. The M1 direct photon emission amplitude and its associated vector form factor parameterized as |{bar g}{sub M1}|(1 + a{sub 1}/a{sub 2}/(M{sub {rho}}{sup 2}-M{sub K}{sup 2}) + 2M{sub K}E{sub {gamma}}) have been measured to be |{bar g}{sub M1}| = 1.198 {+-} 0.035(stat) {+-} 0.086(syst) and a{sub 1}/a{sub 2} = =0.738 {+-} 0.007(stat) {+-} 0.018(syst) GeV{sup 2}/c{sup 2} respectively. An upper limit for the CP violating E1 direct emission amplitude |g{sub E1}| {le} 0.1 (90%CL) has been found. The overall ratio of direct photon emission (DE) to total photon emission including the bremsstrahlung process (IB) has been determined to be DE/(DE + IB) = 0.689 {+-} 0.021 for E{sub {gamma}} {ge} 20 MeV.

  12. Photon-photon interactions via Rydberg blockade.

    Science.gov (United States)

    Gorshkov, Alexey V; Otterbach, Johannes; Fleischhauer, Michael; Pohl, Thomas; Lukin, Mikhail D

    2011-09-23

    We develop the theory of light propagation under the conditions of electromagnetically induced transparency in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We show that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-photon gates, as well as for studying many-body phenomena with strongly correlated photons.

  13. Photonics and Optoelectronics

    Science.gov (United States)

    2013-03-07

    Photonic Crystals, Metamaterials , nano-materials & 2D materials & Nano-Probes & Novel Sensing - Integrated Photonics & Silicon Photonics...nanostructures, plasmonics, metamaterials --Overcoming current interconnect challenges --Need for Design Tools for photonic IC’s: scattered landscape...DARPA NNI/NNCO BRI (2D Materials & Devices Beyond Graphene – planning phase) LRIR PIs Szep – RY: PICS Quantum Information

  14. RR photons

    CERN Document Server

    Camara, Pablo G; Marchesano, Fernando

    2011-01-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge $U(1)_Y$ (hence with the photon). In this paper we study in detail different avenues by which $U(1)_{RR}$ bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by St\\"uckelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional $p$-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that ty...

  15. Measurements of Fragmentation Photons with the PHENIX Detector

    OpenAIRE

    Hanks, Ali; Collaboration, for the PHENIX

    2009-01-01

    Direct photons associated with jets provide a direct measurement of the effects of energy loss on the fragmentation of the parton as it propagates through the medium. Perturbative QCD calculations describe the direct photon cross section well at next-to-leading order, predicting a significant contribution from photons produced through parton fragmentation. Non-perturbative quantities such as the photon fragmentation function, which is poorly constrained, lead to large theoretical uncertaintie...

  16. Using Photon Activation Analysis To Determine Concentrations Of Unknown Components In Reference Materials

    Science.gov (United States)

    Green, Jaromy; Zaijing, Sun; Wells, Doug; Maschner, Herb

    2011-06-01

    Using certified multi-element reference materials for instrumental analyses one frequently is confronted with the embarrassing fact that the concentration of some desired elements are not given in the respective certificate, nonetheless are detectable, e.g. by photon activation analysis (PAA). However, these elements might be determinable with sufficient quality of the results using scaling parameters and the well-known quantities of a reference element within the reference material itself. Scaling parameters include: activation threshold energy, Giant Dipole Resonance (GDR) peak and endpoint energy of the bremsstrahlung continuum; integrated photo-nuclear cross sections for the isotopes of the reference element; bremsstrahlung continuum integral; target thickness; photon flux density. Photo-nuclear cross sections from the unreferenced elements must be known, too. With these quantities, the integral was obtained for both the known and unknown elements resulting in an inference of the concentration of the unreported element based upon the reported value, thus also the concentration of the unreferenced element in the reference material. A similar method to determine elements using the basic nuclear and experimental data has been developed for thermal neutron activation analysis some time ago (k0 Method).

  17. Electron bremsstrahlung angular-distribution fits for atomic numbers 1 less than or equal to Z less than or equal to 92, and incident-electron energies 1 keV less than or equal to T less than or equal to 500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, L.

    1982-01-01

    The analytic fit of a simple expression to the electron bremsstrahlung angular distribution cross section d/sup 2/sigma/dkd..cap omega.. (differential in the emitted photon energy k and angle ..cap omega..) is investigated. Optimal choices for the fit parameters are determined and fit coefficients are tabulated for a large number of neutral-atom cases. Results are also presented for fits to the relativistic Coulomb-Born approximation. Comparisons between the screened neutral-atom results and the Coulomb-Born results are made. Discrepancies reported to exist between angular distribution cross sections and fit coefficients published by Tseng, Pratt and Lee are confirmed and understood in terms of their choice of fit weight function.

  18. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical

  19. Phenomenology of collinear photon emission from quark-gluon plasma in AA collisions

    Science.gov (United States)

    Zakharov, B. G.

    2017-09-01

    We study the role of running coupling and the effect of variation of the thermal quark mass on contribution of the collinear bremsstrahlung and annihilation to photon emission in AA collisions in a scheme similar to that used in our previous jet quenching analyses. We find that for a scenario with the thermal quark mass m q ˜ 50-100 MeV contribution of the higher order collinear processes summed with the 2 → 2 processes can explain a considerable part (˜ 50 %) of the experimental photon spectrum at k T ˜ 2-3 GeV for Au+Au collisions at √s = 0.2 TeV. But for m q = 300 MeV and for the thermal quark mass predicted by the HTL scheme the theoretical predictions underestimate considerably the experimental spectrum.

  20. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  1. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  2. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  3. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  4. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A. [Fermilab; Fox, Patrick J. [Fermilab; Kearney, John [Fermilab

    2017-05-23

    We study models that produce a Higgs boson plus photon ($h^0 \\gamma$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $h^0 \\gamma$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $h^0 \\gamma$ branching fraction is typically of order $10^{-5}$ or smaller. Nevertheless, there are models that would allow the observation of $Z' \\to h^0 \\gamma$ at $\\sqrt{s} = 13$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $h^0 \\gamma$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $h^0 \\gamma$ resonance. In this model, the $h^0 \\gamma$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $h^0 \\gamma$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. We comment on prospects of observing an $h^0 \\gamma$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.

  5. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    Energy Technology Data Exchange (ETDEWEB)

    Senderovich, Igor [Univ. of Connecticut, Storrs, CT (United States)

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning them to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b1 π → ω π+1 π-1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.

  6. High-Performance Single-Photon Sources via Spatial Multiplexing

    Science.gov (United States)

    2014-01-01

    ingredient for tasks such as quantum cryptography , quantum repeater, quantum teleportation, quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  7. Jet and hadron production in photon-photon collisions

    OpenAIRE

    Soldner-Rembold, Stefan

    1999-01-01

    Di-jet and inclusive charged hadron production cross-sections measured in photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep scattering by H1 and in photon-proton scattering by ZEUS are shown to be consistent in similar kinematic ranges. New results from TOPAZ on prompt photon production in photon-photon interactions are presented.

  8. Photon-photon measurements in CMS

    CERN Document Server

    Chudasama, Ruchi

    2017-01-01

    We discuss the measurement of photon-photon processes using data collected by the CMS experiment in pp collisions at $\\sqrt{s}$ = 7 and 8 TeV and in PbPb collisions at $\\sqrt{s_{_{{\\rm NN}}}}= 5.02$ TeV.

  9. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  10. Beam-helicity azimuthal asymmetry measured with the recoil detector in exclusive electroproduction of real photons at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Yu Weilin

    2009-11-15

    The experiments at the HERA storage ring at DESY yielded a large contribution to the understanding of the nucleon structure. They used for this the deep inelastic scattering (DIS) in the collision of electrons/positrons and protons. The HERMES experiment at DESY applied the longitudinally polarized electron or positron beam with an energy of 27.6 GeV together with a polarized or unpolarized gas target in order to study the spin structure of the nucleon. By the measurement of deeply virtual Compton scattering (DVCS) the generalized parton distributions (GPDs) can be determined. These allow a unified description of the nucleon structure. Furthermore they give an experimental approach to the orbital angular momenta of the quarks. However the DVCS process is not discriminable from the Bethe-Heitler (BH) process, in which the scattered electron produces by bremsstrahlung processes a real photon. But it was proved that the interference caused by this indiscriminability of BH and DVCS presents the approach to the DVCS amplitude. This pursues by the measurement of asymmetries of the BH-DVCS cross section in relation to the beam charge, the beam polarization, or the target polarization. The HERMES spectrometer was constructed in order to measure semi-inclusive and inclusive DIS processes. The extraction of the azimutal asymmetries in relation to the beam helicity from the data of 2007 at the hydrogen target were performed in this thesis. The extracted asymmetry amplitudes from the elastic BH/DVCS process agree well with the earlier measurements of HERMES. Furthermore for the first time the asymmetry of {delta}{sup +} resonances was extracted, however the events are because of the low statistics affect with large uncertainties.

  11. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.

  12. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    of photonic crystals to control electromagnetic radiation, study of photonic band gaps in photonic crystals is a must. The photonic band gaps in photonic crystals depend upon the arrangement of the constituent air holes/dielectric rods, fill factor and dielectric contrast of the two mediums used in forming photonic crystals. In.

  13. Study of an efficient application of the tagged bremsstrahlung in double-polarization experiments in the GeV range and the use of the inelastic electron scattering under extremely forward angles as alternative to the tagged bremsstrahlung; Studie eines effizienten Einsatzes der markierten Bremsstrahlung bei Doppelpolarisationsexperimenten im GeV-Bereich und der Nutzung der inelastischen Elektronstreuung unter extremen Vorwaertswinkeln als Alternative zur markierten Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, M.

    2006-03-15

    For the preparation of photonic probes for hadron physics the determination of energy and polarization of the photons is essential. In this dissertation in a first part a possibility of the determination of the degree of polarization by use of the asymmetry observables is presented. In a second part a possibility isd discussed to perform an energy and polarization tagging of nearly real photons in electron scattering under small Q{sup 2}. By this method it should be possible to tag billions of photons per second.

  14. UK photonics in defence and security

    Science.gov (United States)

    Gracie, C.; Tooley, I.; Wilson, A.

    2008-10-01

    The UK is globally recognised as strong in Photonics. However its Photonics sector is fragmented and the size and sectors of interest have not previously been established. The UK government has instigated the formation of the Photonics Knowledge Transfer Network (PKTN) to bring the Photonics community together. The UK features in Defence & Security; Communications; Measurement; Medical Technology; Lighting; Solar Energy; Information Technology and Flat Panels. This expertise is scattered through out the UK in geographic areas each with a breadth of Photonic interests. The PKTN has mapped the UK capability in all Photonics sectors. This paper will present the capability of the Companies, Research Institutions and Infrastructure making up the Defence & Security Photonics scene in the UK. Large Defence companies in the UK are well known throughout the world. However, there are a large number of SMEs, which may not be as well known in the supply chain. These are being actively encouraged by the UK MoD to engage with the Defence & Security Market and shall be discussed here. The presentation will reference a number of organisations which help to fund and network the community, such as the Defence Technology Centres. In addition the Roadmap for Defence & Security in the UK, produced for the UK Photonics Strategy (July 2006) by the Scottish Optoelectronics Association will be described and the plans in taking it forward under the PKTN will be revealed.

  15. Spectral compression of single-photon-level laser pulse

    Science.gov (United States)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-02-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window.

  16. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  17. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  18. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  19. Twisting Light by Nonlinear Photonic Crystals

    Science.gov (United States)

    Bloch, Noa Voloch; Shemer, Keren; Shapira, Asia; Shiloh, Roy; Juwiler, Irit; Arie, Ady

    2012-06-01

    We report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum. Here we study the case of second-order harmonic vortex beams, generated from a Gaussian pump beam. These crystals can be used to produce multidimensional entanglement of photons by angular momentum states or for shaping the vortex’s structure and polarization.

  20. Laser written waveguide photonic quantum circuits.

    Science.gov (United States)

    Marshall, Graham D; Politi, Alberto; Matthews, Jonathan C F; Dekker, Peter; Ams, Martin; Withford, Michael J; O'Brien, Jeremy L

    2009-07-20

    We report photonic quantum circuits created using an ultrafast laser processing technique that is rapid, requires no lithographic mask and can be used to create three-dimensional networks of waveguide devices. We have characterized directional couplers--the key functional elements of photonic quantum circuits--and found that they perform as well as lithographically produced waveguide devices. We further demonstrate high-performance interferometers and an important multi-photon quantum interference phenomenon for the first time in integrated optics. This direct-write approach will enable the rapid development of sophisticated quantum optical circuits and their scaling into three-dimensions.

  1. Electron and Photon ID

    CERN Document Server

    Hryn'ova, Tetiana; The ATLAS collaboration

    2017-01-01

    The identification of prompt photons and the rejection of background coming mostly from photons from hadron decays relies on the high granularity of the ATLAS calorimeter. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. Several methods are used to measure with data the efficiency of the photon identification requirements, to cover a broad energy spectrum. At low energy, photons from radiative Z decays are used. In the medium energy range, similarities between electrons and photon showers are exploited using Z->ee decays. At high energy, inclusive photon samples are used. The measurement of the efficiencies of the electron identification and isolation cuts are performed with the data using tag and probe techniques with large statis...

  2. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic......This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...

  3. Inclusive hard processes in photon-photon and photon-proton interactions

    OpenAIRE

    Glasman, Claudia

    1999-01-01

    Measurements of jet, prompt photon, high-pT hadron and heavy quark production in photon-induced processes provide tests of QCD and are sensitive to the photon parton densities. A review of the latest experimental results in photon-photon and photon-proton interactions is presented. Next-to-leading-order QCD calculations for these measurements are discussed.

  4. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices

    Directory of Open Access Journals (Sweden)

    Lee Carroll

    2016-12-01

    Full Text Available Dedicated multi-project wafer (MPW runs for photonic integrated circuits (PICs from Si foundries mean that researchers and small-to-medium enterprises (SMEs can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved.

  5. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  6. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  7. PHENIX Low Momentum Direct Photon Analysis

    Science.gov (United States)

    Fan, Wenqing; Phenix Collaboration

    2016-09-01

    The PHENIX experiment operates with one of the major detectors at the RHIC collider. One of the major goals of PHENIX is to identify and study Quark Gluon Plasma (QGP). Direct photons turn out to be an excellent probe due to their small interaction cross section with the collision produced medium hence carrying information of its properties from the space-time production points. In the PHENIX direct photon measurement, a large excess of low-pT photons in Au+Au collisions at 200 GeV is discovered compared to reference p+p collisions, which has been interpreted as thermal radiation from the QGP and hadron-gas (HG) medium. At the same time the excess photons have a large azimuthal anisotropy, expressed as Fourier coefficients v2 and v3. Measurements at a lower collision energy may provide new insight on the origin of the low-pT direct photons. In the experiment the current effort is to reduce the experimental uncertainties in Au+Au and p+p collisions via the photons' external conversion to di-electron pairs, and measure the direct photon yield in Cu+Au and p+Au collisions at 200 GeV as well as the yield in Au+Au collisions at lower 39 GeV and 62.4 GeV. We will present the improvements and the status of the ongoing analyses.

  8. Heavy Quark Pair Production in Polarized Photon--Photon Collisions

    OpenAIRE

    Jikia, George; Tkabladze, Avto

    2000-01-01

    We present the next-to-leading-order cross sections of the heavy quark-antiquark pair production in polarized photon-photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including one-loop QCD radiative corrections.

  9. Photoactivation of the p-nucleus {sup 92}Mo at the bremsstrahlung measurement place of ELBE; Photoaktivierung des p-Kerns {sup 92}Mo am Bremsstrahlungsmessplatz von ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Erhard, Martin Andreas

    2010-02-26

    By the high intensity of the bremsstrahlung of up to 20 MeV to 10{sup 9} MeV{sup -1}cm{sup -2}s{sup -1} in the energy range up to 20 MeV in the framework of this thesis for the first time not only the ({gamma},n), but also the ({gamma},p) reactions could be studied on {sup 92}Mo at astrophysically relevant energies.

  10. Comparisons of Fully Differential Exact Results for O(alpha) Virtual Corrections to Single Hard Bremsstrahlung in e+e- Annihilation at High Energies

    CERN Document Server

    Glosser, C; Ward, B F L; Yost, S A

    2004-01-01

    We present comparisons of the fully differential exact virtual correction to the important single hard bremsstrahlung process in e+e- annihilation at high energies, which is essential for precision studies of the Standard Model from 1 GeV to 1 TeV, as calculated by two completely independent methods and groups. We show that the two sets of results are in excellent agreement. Phenomenological implications are discussed.

  11. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  12. Temporal Multimode Storage of Entangled Photon Pairs.

    Science.gov (United States)

    Tiranov, Alexey; Strassmann, Peter C; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B; Nam, Sae Woo; Mirin, Richard P; Lita, Adriana E; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-09

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  13. Studies of photon spectra from a thallium-204 foil source as an aid to dosimetry and shielding

    CERN Document Server

    Francis, T M

    1976-01-01

    Beta ray foil sources incorporating nuclides such as thallium-204, promethium-147 and strontium-90 plus yttrium-90 ar increasingly used in industrial devices such as thickness gauges. These sources are so constructed that they give rise to complex photon spectra containing low energy Bremsstrahlung and X-rays characteristic of the constructional materials. The energy response of practical monitoring instruments is such that they are likely to underestimate the dose due to such spectra unless they are calibrated using appropriate spectra. This report describes a series of measurements carried out on a commercially available thallium-204 foil source and five commonly used shielding materials. The measurements made with a NaI(T1) spectrometer have been corrected for instrumental distortions to obtain the photon spectra in air. These spectra are presented and have been used to compute dose in air with the help of published data on mass energy-absorption coefficients. Also included in the report are data derived f...

  14. NAL Proposal for Study of Photons and Leptons Produced in Meson-Nucleon Collisions in the Deep Scattering Region; Search for Intermediate Bosons, Heavy Leptons, Anomalous Hadronic Processes and Study of Multi-Gamma-Ray Final States

    Energy Technology Data Exchange (ETDEWEB)

    Guiragossian, Z.G.T.; Hofstadter, R.; Schilling, R.F.; Yearian, M.R.; /Stanford U.; Hungerford III, E.V.; Mutchler, G.S.; Phillips, G.C.; /Rice U.; Mayes, B.W.; /Houston U.

    1972-10-01

    We propose to observe gamma rays and leptons carrying high transverse momentum, in pairs or singles, emerging from meson-nucleon collisions at high energies. These meson-nucleon collisions probe the constituent structure of nucleons and reveal anomalous hadronic interaction processes at small distances. We will search for structure in the effective mass continuum of various (wide angle) pair combinations and in the transverse momentum spectra of singles and pairs. An experimental sensitivity corresponding to a cross section times branching ratio of {approx} 10{sup -37}-10{sup -38} cm{sup 2} is provided for the production of intermediate bosons, Lee-Wick heavy photons and sequential heavy leptons from meson-nucleon collisions. With a 300 GeV/ c meson beam the mass range up to {approx}22 GeV will be explored with good resolution. The forward (small angle) production of multi-gamma-ray final states will be studied systematically with a mass resolution of < 2%, to search for massive bosons and to reveal dynamical properties of multi-gamma-ray states.

  15. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  16. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  17. Advanced Photon Source (APS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratoryprovides this nation's (in fact, this hemisphere's) brightest storage...

  18. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  19. The scattering of a bremsstrahlung radiation of electrons with energy 13 and 22 MeV from plane targets

    CERN Document Server

    Asatov, U T

    2002-01-01

    In the present work the characteristics of backward (90 sup d egbremsstrahlung radiation of electrons with energy 13 and 22 MeV with plane targets of different thickness from glass textolite, aluminium, iron, lead and their combination are investigated. The dependence of thickness of saturation of 'forward' scattered gamma radiation, a on angles of detection (theta sub s) and orientation (phi) of plane targets depending on a direction of probing beam was observed for the first time. For the first time, the numerical performances of beams of forward scattered gamma radiation from different targets were investigated and determined depending on their orientation and thickness. The new and corrected data on numerical performances of beams of the inverse scattered gamma radiation is obtained. The distinction in characteristics of beams of the scattered gamma radiation is s...

  20. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  1. Photon - Hadron Correlations in Heavy Ion Collisions from PHENIX

    Science.gov (United States)

    Danley, Tyler; Phenix Collaboration

    2017-09-01

    Direct photon-jet pairs are produced in the initial hard scattering of nucleons in A+A collisions in which a quark-gluon plasma is formed. The photon is not affected by the quark-gluon plasma, while the jet loses energy. This allows the direct photon to be an energy calibrator for the jet which can then be studied through photon-hadron pair correlations. Obtaining direct photons is challenging because of the myriad of background photons. Typically, a statistical subtraction method is used in A+A at RHIC. In addition to a statistical method, we have also developed a direct method to obtain isolated photons in A+A by using an isolation cut like those used in direct photon identification in p+p collisions. The isolation cut provides for a cleaner sample of direct photons, potentially reducing the systematic uncertainties on direct photon-hadron correlations when compared to the statistical subtraction sample but presents its own new challenges in the A+A high multiplicity environment. We present the status of centrality-dependent direct photon-hadron angular correlations and fragmentation functions in A+A collisions as well as recent results from recent high-statistics PHENIX datasets.

  2. Temporal shaping of single photons enabled by entanglement

    Science.gov (United States)

    Averchenko, Valentin; Sych, Denis; Schunk, Gerhard; Vogl, Ulrich; Marquardt, Christoph; Leuchs, Gerd

    2017-10-01

    We present a method to produce pure single photons with an arbitrary designed temporal shape in a heralded way. As an indispensable resource, the method uses pairs of time-energy entangled photons. One photon of a pair undergoes temporal amplitude-phase modulation according to the desired shape. Subsequent frequency-resolved detection of the modulated photon heralds its entangled counterpart in a pure quantum state. The temporal shape of the heralded photon is indirectly affected by the modulation in the heralding arm. We derive conditions for which the shape of the heralded photon is given by the modulation function. The method can be implemented with various sources of time-energy entangled photons. In particular, using entangled photons from parametric down-conversion the method provides a simple means to generate pure shaped photons with an unprecedented broad range of temporal durations, from tenths of femtoseconds to microseconds. This shaping of single photons will push forward the implementation of scalable multidimensional quantum information protocols, efficient photon-matter coupling, and quantum control at the level of single quanta.

  3. Resonances in photon-photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1988-06-01

    Selected topics in meson spectroscoy are reviewed as they are illuminated by photon-photon collisons. Subjects include the S*/f/sub 0/ (975) and delta/a/sub 0/ (980) as /ovr qq/qq candidates, the /iota///eta/ (1460) and theta/f/sub 2/ (1700) as glueball candidates, and the spin 1 X(1420) seen in tagged events which represents new physics whether its parity is positive, J/sup PC/ = 1/sup + +/, or negative with exotic J/sup PC/ = 1/sup /minus/+/. 57 refs., 2 figs., 1 tab.

  4. All-fiber photon-pair source at telecom wavelengths

    DEFF Research Database (Denmark)

    Christensen, Erik Nicolai; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2017-01-01

    Single photon sources are a key element for quantum computing, quantum key distribution (QKD) and quantum communications. In particular, producing single photons at telecommunications wavelengths is valuable for QKD protocols and would enable realizing the quantum internet. The preferred method f...

  5. Subthreshold photons in heavy-ion reactions at intermediate energies

    NARCIS (Netherlands)

    Martinez, G

    1998-01-01

    In the present talk, I discuss about the properties of the energetic photons produced in heavy-ion reactions. I show that they are sensitive to the maximum density reached in the first stage of the nuclear reaction. Then, the existence of a thermal contribution to the photon differential

  6. Generation of sub-Poissonian photon number distribution

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Ramanujam, P. S.

    1990-01-01

    An optimization of a nonlinear Mach-Zehnder interferometer to produce sub-Poissonian photon number distribution is proposed. We treat the system quantum mechanically and estimate the mirror parameters, the nonlinearity of the medium in the interferometer, and the input power to obtain minimal...... output uncertainty in the photon number. The power efficiency of the system is shown to be high....

  7. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  8. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  9. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  10. Technical Assessment: Integrated Photonics

    Science.gov (United States)

    2015-10-01

    Photonics for accessible Biomedical Diagnostics” [16] to advance the frontiers of biophotonics research in mid- IR materials systems, integrated photonic...An example of the ongoing research includes recent work from Universiti Teknologi, Malaysia where ring resonator is being targeted for Salmonella

  11. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  12. Photonic layered media

    Science.gov (United States)

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  13. Two Photon Polymerization of Ormosils

    Science.gov (United States)

    Matei, A.; Zamfirescu, M.; Jipa, F.; Luculescu, C.; Dinescu, M.; Buruiana, E. C.; Buruiana, T.; Sima, L. E.; Petrescu, S. M.

    2010-10-01

    In this work, 3D structures of hybrid polymers—ORMOSILS (organically modified silicates) were produced via Two Photon Polymerization (2PP) of hybrid methacrylates based on silane derivates. Synthetic routes have been used to obtain series of hybrid monomers, their structure and purity being checked by NMR Spectroscopy and Fourier Transform Infrared Spectroscopy. Two photon polymerization method (a relatively new technology which allows fast micro and nano processing of three-dimensional structures with application in medical devices, tissue scaffolds, photonic crystals etc) was used for monomers processing. As laser a Ti: Sapphire laser was used, with 200 fs pulse duration and 2 kHz repetition rate, emitting at 775 nm. A parametric study on the influence of the processing parameters (laser fluence, laser scanning velocity, photo initiator) on the written structures was carried out. The as prepared polymeric scaffolds were tested in mesenchymal stem cells and fibroblasts cell cultures, with the aim of further obtaining bone and dermal grafts. Cells morphology, proliferation, adhesion and alignment were analyzed for different experimental conditions.

  14. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  15. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic...

  16. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  17. Ion photon emission microscope

    Science.gov (United States)

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  18. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic......Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  19. Prospects for Photon-Photon and Photon-Proton Measurements with Forward Proton Taggers in ATLAS

    CERN Document Server

    Trzebinski, Maciej; The ATLAS collaboration

    2017-01-01

    geometric acceptance. The main results of the total, elastic and inelastic cross sections measurements performed with the ATLAS/ALFA detectors are presented. Possibility of diffractive bremsstrahlung and exclusive pion-pair photoproduction studies with the data from ATLAS/ALFA are discussed. Finally, the advantage of using a proton tagging technique for a high-statistics data recorded by the AFP detectors in the precision measurements of anomalous gauge couplings and invisible objects is discussed.

  20. Rotational character of the 12C spectrum investigated through inelastic cross sections via photon emission

    Directory of Open Access Journals (Sweden)

    Garrido E.

    2016-01-01

    Full Text Available In this work the bremsstrahlung and photon dissociation cross sections for transitions between 0+, 2+, and 4+ states in 12C are computed. The nucleus is described within the three-alpha model, and the wave functions are computed by means of the hyperspherical adiabatic expansion method. The continuum states are discretized by imposing a box boundary condition. The transition strengths are obtained from the cross sections, and compared to schematic rotational model predictions. The computed results strongly suggest that the two lowest bands are made, respectively, by the states with angular momentum and parity {01+, 21+, 42+} and {02+, 22+, 41+}. The transitions between the states in the first band are consistent with the rotational pattern corresponding to three alphas in an equilateral triangular structure. For the second band, the transitions are also consistent with a rotational pattern, but with the three alphas in an aligned distribution.

  1. Photon trapping effects in DEMO divertor plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, K.; Tokunaga, S.; Asakura, N. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Sawada, K.; Idei, R. [Faculty of Engineering, Shinshu Univ., Nagano (Japan); Shimizu, K. [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Ohno, N. [Graduate School of Engineering, Nagoya Univ, Aichi (Japan)

    2016-08-15

    In the DEMO divertor, the neutral density becomes high to produce the full detachment and therefore the photon trapping can become important. In this paper, effects of the photon trapping on the DEMO divertor plasma has been studied. The pre-evaluation of the photon trapping effects on the fixed background plasma profile was carried out by using an iterative self-consistent collisional radiative model. The recombining plasma near the inner target and the private region changed to the ionizing plasma by the photon-excitation. Based on the preevaluation result, the database of the effective ionization rate coefficient including the photon transport inside a 2 mm sphere. Advantage of the 2 mm sphere approximation is that the extra calculation cost is not necessary. Iterative calculation of the SONIC including the photon trapping effects was carried out. While the electron density increased and the neutral density decreased in the wide region, the electron density decreases close to the inner strike point. This may be due to decrease in the ionization rate by decrease in the neutral density. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  3. The significance of Bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzadehfar, Hojjat; Muckle, Marianne; Sabet, Amir; Biermann, Kim; Haslerud, Torjan; Biersack, Hans-Juergen; Ezziddin, Samer [University Hospital Bonn, Department of Nuclear Medicine, Bonn (Germany); Wilhelm, Kai [University Hospital Bonn, Department of Radiology, Bonn (Germany); Kuhl, Christiane [University Hospital Aachen, Department of Radiology, Aachen (Germany)

    2012-02-15

    Unwanted deposition of {sup 90}Y microspheres in organs other than the liver during radioembolization of liver tumours may cause severe side effects such as duodenal ulcer. The aim of this study was to evaluate the significance of posttherapy bremsstrahlung (BS) SPECT/CT images of the liver in comparison to planar and SPECT images in the prediction of radioembolization-induced extrahepatic side effects. A total of 188 radioembolization procedures were performed in 123 patients (50 women, 73 men) over a 2-year period. Planar, whole-body and BS SPECT/CT imaging were performed 24 h after treatment as a part of therapy work-up. Any focally increased extrahepatic accumulation was evaluated as suspicious. Clinical follow-up and gastroduodenoscopy served as reference standards. The studies were reviewed to evaluate whether BS SPECT/CT imaging was of benefit. In the light of anatomic data obtained from SPECT/CT, apparent extrahepatic BS in 43% of planar and in 52% of SPECT images proved to be in the liver and hence false-positive. The results of planar scintigraphy could not be analysed further since 12 images were not assessable due to high scatter artefacts. On the basis of the gastrointestinal (GI) complications and the results of gastroduodenoscopy, true-positive, true-negative, false-positive and false-negative results of BS SPECT and SPECT/CT imaging in the prediction of GI ulcers were determined. The sensitivity, specificity, positive and negative predictive values and the accuracy of SPECT and SPECT/CT in the prediction of GI ulcers were 13%, 88%, 8%, 92% and 82%, and 87%, 100%, 100%, 99% and 99%, respectively. Despite the low quality of BS images, BS SPECT/CT can be used as a reliable method to confirm the safe distribution of {sup 90}Y microspheres and in the prediction of GI side effects. (orig.)

  4. Electroweak and Higgs boson internal bremsstrahlung. General considerations for Majorana dark matter annihilation and application to MSSM neutralinos

    Science.gov (United States)

    Bringmann, Torsten; Calore, Francesca; Galea, Ahmad; Garny, Mathias

    2017-09-01

    It is well known that the annihilation of Majorana dark matter into fermions is helicity suppressed. Here, we point out that the underlying mechanism is a subtle combination of two distinct effects, and we present a comprehensive analysis of how the suppression can be partially or fully lifted by the internal bremsstrahlung of an additional boson in the final state. As a concrete illustration, we compute analytically the full amplitudes and annihilation rates of supersymmetric neutralinos to final states that contain any combination of two standard model fermions, plus one electroweak gauge boson or one of the five physical Higgs bosons that appear in the minimal supersymmetric standard model. We classify the various ways in which these three-body rates can be large compared to the two-body rates, identifying cases that have not been pointed out before. In our analysis, we put special emphasis on how to avoid the double counting of identical kinematic situations that appear for two-body and three-body final states, in particular on how to correctly treat differential rates and the spectrum of the resulting stable particles that is relevant for indirect dark matter searches. We find that both the total annihilation rates and the yields can be significantly enhanced when taking into account the corrections computed here, in particular for models with somewhat small annihilation rates at tree-level which otherwise would not be testable with indirect dark matter searches. Even more importantly, however, we find that the resulting annihilation spectra of positrons, neutrinos, gamma-rays and antiprotons differ in general substantially from the model-independent spectra that are commonly adopted, for these final states, when constraining particle dark matter with indirect detection experiments.

  5. Coherent dynamics of a telecom-wavelength entangled photon source.

    Science.gov (United States)

    Ward, M B; Dean, M C; Stevenson, R M; Bennett, A J; Ellis, D J P; Cooper, K; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2014-01-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell's inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  6. Progress in neuromorphic photonics

    Science.gov (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  7. Tomography of photon-added and photon-subtracted states

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the

  8. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Hard production of photons and dileptons. One of the big successes in electromagnetic radiation measurements in relativistic heavy- ion collisions is the observation of high pT direct photons that are produced in the initial hard scattering [9]. Figures 4a and 4b show the latest direct photon pT spectra in Au+ ...

  9. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  10. Physics of photonic devices

    CERN Document Server

    Chuang, Shun Lien

    2009-01-01

    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  11. Single photon quantum cryptography.

    Science.gov (United States)

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  12. Fundamentals of photonics

    CERN Document Server

    Saleh, Bahaa E A

    2007-01-01

    Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advan

  13. Low-Mass Planar Photonic Imaging Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach replaces the large optics and structures required by a conventional telescope with PICs based on emerging photonic technologies that are produced...

  14. Increasing Entanglement between Gaussian States by Coherent Photon Subtraction

    DEFF Research Database (Denmark)

    Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa

    2007-01-01

    We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...

  15. HARD PHOTONS AS A PROBE TO STUDY DISSIPATION MECHANISMS

    NARCIS (Netherlands)

    VANPOL, JHG; BALLESTER, F; DIAZ, J; FRANKE, M; HLAVAC, S; HOLZMANN, R; KUHN, W; KUGLER, A; LAUTRIDOU, P; LEFEVRE, F; LOHNER, H; MARIN, A; MARQUES, M; MARTINEZ, G; MATULEWICZ, T; MITTIG, W; NOTHEISEN, M; NOVOTNY, R; OSTENDORF, RW; ROUSSELCHOMAZ, P; SIEMSSEN, RH; SCHUBERT, A; SCHUTZ, Y; SIMON, RS; WAGNER, [No Value; WILSCHUT, HW

    1995-01-01

    The probability for Bremsstrahlung has been measured as function of the mass of the projectile-like fragment in peripheral reactions of Ar-36 + Tb-159 at 44 MeV/nucleon. The Bremsstrahlung probability is found to depend on the amount of mass transferred and the direction of the transfer.

  16. ATLAS event containing two high energy photons

    CERN Multimedia

    ATLAS

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background.

  17. Compton sources for the observation of elastic photon-photon scattering events

    Directory of Open Access Journals (Sweden)

    D. Micieli

    2016-09-01

    Full Text Available We present the design of a photon-photon collider based on conventional Compton gamma sources for the observation of elastic γγ scattering. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two primary gamma rays through Compton backscattering with two high energy lasers. The elastic photon-photon scattering is analyzed by start-to-end simulations from the photocathodes to the detector. A new Monte Carlo code has been developed ad hoc for the counting of the QED events. Realistic numbers of the secondary gamma yield, obtained by using the parameters of existing or approved Compton devices, a discussion of the feasibility of the experiment and of the nature of the background are presented.

  18. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standard...... fiber squeezing experiments. Explicit we produce squeezed states in counter propagating pulses along the same fiber axis to achieve near identical dispersion properties. This enables the production of polarization squeezing through interference in a polarization type Sagnac interferometer. We observe...

  19. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  20. Hybrid photonic crystal fiber

    National Research Council Canada - National Science Library

    Arismar Cerqueira S. Jr; F. Luan; C. M. B. Cordeiro; A. K. George; J. C. Knight

    2006-01-01

    We present a hybrid photonic crystal fiber in which a guided mode is confined simultaneously by modified total internal reflection from an array of air holes and antiresonant reflection from a line...

  1. A Study of Direct Photon Production

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to improve the measurement of events with direct single photons in pp and p@* collisions. Higher rates and lower backgrounds than in R806 are obtained by the use of two arrays of small NaI blocks in conjunction with the R807 calorimeter. The direct production of two photons will be studied at both low and high p^t. These detectors will also be used to investigate electrons produced in association with jets, and low transverse momentum electron production.

  2. Orbital Angular Momentum of Gauge Fields: Excitation of AN Atom by Twisted Photons

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Mukherjee, Asmita

    2014-01-01

    Twisted photon states, or photon states with large (> ℏ) angular momentum projection in the direction of motion, can photoexcite atomic final states of differing quantum numbers. If the photon symmetry axis coincides with the center of an atom, there are known selection rules that require exact matching between the quantum numbers of the photon and the photoexcited states. The more general case of arbitrarily positioned beams relaxes the selection rules but produces a distribution of quantum numbers of the final atomic states that is novel and distinct from final states produced by plane-wave photons. Numerical calculations are presented using a hydrogen atom as an example.

  3. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    Science.gov (United States)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  4. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.S. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ice, L.D. [Arizona State Univ., Tempe, AZ (United States); Khaneft, D. [Mainz Univ. (Germany); Collaboration: OLYMPUS Collaboration; and others

    2016-12-15

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R{sub 2γ}, a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb{sup -1} was collected. In the extraction of R{sub 2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R{sub 2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  5. Photonics in switching

    CERN Document Server

    Midwinter, John E; Kelley, Paul

    1993-01-01

    Photonics in Switching provides a broad, balanced overview of the use of optics or photonics in switching, from materials and devices to system architecture. The chapters, each written by an expert in the field, survey the key technologies, setting them in context and highlighting their benefits and possible applications. This book is a valuable resource for those working in the communications industry, either at the professional or student level, who do not have extensive background knowledge or the underlying physics of the technology.

  6. Photon mass and electrogenesis

    National Research Council Canada - National Science Library

    Dolgov, Alexander; Pelliccia, Diego N

    2007-01-01

    ... and the vanishing of the photon mass. Attempts to break the electric current conservation theoretically [4,5] or to observe it experimentally [6,7] have a long history. If the photon mass is zero, then the Maxwell equations automatically imply the current conservation. Indeed, from (1) ∇ μ F μ ν = 4 π J ν follows (2) ∇ ν J ν = 1 − g ∂ ν ( − g J ν ) = 0 , bec...

  7. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  8. Magnetic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lyubchanskii, I L [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Dadoenkova, N N [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Lyubchanskii, M I [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Shapovalov, E A [Department of Physics, Donetsk National University, 24, Universitetskaya St., 83055 Donetsk (Ukraine); Rasing, Th [NSRIM Institute, University of Nijmegen, 6525 ED, Nijmegen (Netherlands)

    2003-09-21

    In this paper we outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation. The main (and principal) characteristic of this new class of PCs is the presence of magnetically ordered components (or external magnetic field). The linear and nonlinear optical properties of such magnetic PCs are discussed. (topical review)

  9. PHOTONIC CRYSTAL WAVEGUIDE BIOSENSOR

    Directory of Open Access Journals (Sweden)

    A. A. ZANISHEVSKAYA

    2013-04-01

    Full Text Available The hollow core photonic crystal waveguide biosensor is designed and described. The biosensor was tested in experiments for artificial sweetener identification in drinks. The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids filling up the hollow core. The compactness, good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promising for various biomedical applications.

  10. QUANTUM CRYPTOGRAPHY: Single Photons.

    Science.gov (United States)

    Benjamin, S

    2000-12-22

    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  11. Handbook of silicon photonics

    CERN Document Server

    Pavesi, Lorenzo

    2013-01-01

    The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors, multiplexers, light sources, and various subsystems, have been developed that take advantage of state-of-the-art silicon technology.

  12. Photonics Explorer: revolutionizing photonics in the classroom

    Science.gov (United States)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  13. Programmable Quantum Photonic Processor Using Silicon Photonics

    Science.gov (United States)

    2017-04-01

    al, ’’ Semiconductor Quantum Technologies for Information Processing and Sensing,,’’ Canadian Institute for Advanced Research - Quantum Information... Graphene Optoelectronic Devices for Optical Interconnects,’’ , CLEO/Europe-EQEC 2015, Munich, Germany (6/21/2015) ● Jacob Mower, Nicholas C. Harris...Processing Using Active Silicon Photonic Integrated Circuits,’’ CLEO/Europe-EQEC 2015, Munich, Germany (6/22/2015) ● D. Englund et al, ’’ Semiconductor

  14. Photonic crystals and metamaterials

    Science.gov (United States)

    Lourtioz, Jean-Michel

    2008-01-01

    Recent results obtained on semiconductor-based photonic crystal devices are of great promise for future developments of photonic crystals and their applications to 'all-photonic' integrated circuits. Device performance mostly relies on the strong confinement of light thanks to photonic bandgap effects, but photonic crystals also exhibit remarkable dispersion properties in their transmission bands, thus opening the perspective of new optical functionalities. Slow light, supercollimation, superprism, and negative refraction effects are among the fascinating phenomena which strongly motivate the community. Studies in these directions parallel those on metamaterials, which are expected to provide a simultaneous control of the dielectric permittivity and of the magnetic permeability. In this article, we briefly review some important advances on photonic crystals and metamaterials, as these two topics received a particular attention during the "Nanosciences et Radioélectricité" workshop organized by CNFRS in Paris on the 20th and 21st of March 2007. To cite this article: J.-M. Lourtioz, C. R. Physique 9 (2008).

  15. Study of the radiation X-UV produced during the relativistic interaction between a femtosecond laser and an helium plasma; Etude du rayonnement X-UV produit lors de l'interaction relativiste entre un laser femtoseconde et un plasme d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Ta Phuoc, K

    2002-10-15

    The aim of this work is to design a new source of X-radiation that is both femtosecond and polychromatic. We have studied the Larmor radiation emitted during the relativistic interaction between an intense femtosecond laser and an under dense helium plasma. When the value of a{sub 0}, the laser force parameter, is below 1 and when the interaction is volume is important, the characteristics of the emitted radiation are those of Bremsstrahlung radiation and radiative recombination. When the value of a{sub 0} is about 5 the emitted radiation is strongly different and look like much more the Larmor radiation. Nevertheless some features such as the shape of the angular distribution or the amplitude of the laser polarization effect are not yet well understood. The spectra of the X-ray produced is peaked around 150 eV and spreads up to 2 keV. The number of photons produced by laser shot is over 10{sup 9} and the duration of the X-ray impulse is expected to be in the same order of magnitude as that of the laser impulse: 30 fs. The average photon flux is 2*10{sup 3} ph/s/0.1%BW at 2 keV and reaches 6*10{sup 7} ph/s/0.1%BW at 0.15 keV. The average brilliance is 1.5*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 2 keV and 8*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 0.15 keV. Different ways are considered to improve the characteristics of this new X-ray source. (A.C.)

  16. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' ' Carlos Haya' ' , Avda. Carlos Haya s/n, E-29010 Malaga (Spain); Unidad de Radiofisica Hospitalaria, Hospital Xanit Internacional, Avda. de los Argonautas s/n, E-29630 Benalmadena (Malaga) (Spain); NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Hufelandstr. 55, D-45122 Essen (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2010-07-15

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within {approx}3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  17. Narrowband photon pair source for quantum networks.

    Science.gov (United States)

    Monteiro, F; Martin, A; Sanguinetti, B; Zbinden, H; Thew, R T

    2014-02-24

    We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a short cavity. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs (s. mW. MHz)(-1) is reported. The cavity parameters are chosen such that the photon pair modes emitted can be matched to telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.

  18. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...... which allows for simultaneous modal phase matching with the pump beam in a higher-order mode. Paired photons generated in each process are cross polarized and guided by different guiding mechanisms, which produces entanglement in both polarization and spatial mode. Theoretical analysis shows...... that the output quantum state has a high quality of hyperentanglement by spectral filtering with a bandwidth of a few nanometers, while off-chip compensation is not needed. This technique offers a path to realize an electrically pumped hyperentangled photon source....

  19. Feasibility of bremsstrahlung dosimetry for direct dose estimation in patients undergoing treatment with {sup 90}Y-ibritumomab tiuxetan

    Energy Technology Data Exchange (ETDEWEB)

    Arrichiello, C.; Aloj, L.; Mormile, M.; D' Ambrosio, L.; Caraco, C.; De Martinis, F. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Frigeri, F.; Arcamone, M.; Pinto, A. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Hematology-Oncology, Napoli (Italy); Stem Cells Transplantation Unit, Department of Hematology, Napoli (Italy); Lastoria, S. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , IRCCS, Napoli (Italy)

    2012-06-15

    on patient-specific dosimetry, the administered activity may be increased by an average factor of 2.4, indicating that most patients could be undertreated. The relative dosimetry approach based on planar imaging largely underestimates doses relative to reference values. Dosimetry based on planar bremsstrahlung imaging is not a dependable alternative to {sup 111}In dosimetry. (orig.)

  20. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    Science.gov (United States)

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  1. Multi-photon absorption limits to heralded single photon sources

    Science.gov (United States)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  2. Development and construction of the low-energy photon tagger NEPTUN

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberg, K.

    2007-07-15

    Within the scope of this thesis a photon tagging system was designed and constructed at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The set-up consists of a deflecting magnet, an array of focal plane detectors, the data acquisition system and new beam-line components. The system provides tagged photons in an energy range from 6 MeV to 20 MeV with the emphasis on best possible resolution and intensity. The absolute energy resolution of photons at 10 MeV is better than 25 keV. With the current focal-plane detectors a maximum rate of tagged photons of 10{sup 4}/(keV.s) can be achieved. An upgrade to more than 10{sup 5}/(keV.s) with an alternative detector array is under investigation. The design values mentioned above are the requirements for planned experiments in the fields of nuclear astrophysics and nuclear structure. The most important constraints which have to be considered arise from the special demands of ({gamma},n) reactions above but close to the particle threshold which generates slow neutrons with energies of a few hundreds of keV. The unambiguous assignment of slow neutrons to prompt electrons is done on-line in special buffered time-to-digital converters. With a design of the data acquisition for this scenario one also covers the requirements for experiments with prompt detection of the ejectiles such as in nuclear resonance fluorescence and ({gamma},n) far above the threshold. This photon tagging system enables to measure ({gamma},x) cross sections as a function of excitation energy and decay patterns after particle evaporation. It is an important extension to the high-flux activation experiments and the nuclear resonance fluorescence experiments below the threshold with untagged bremsstrahlung. (orig.)

  3. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  4. Optimization of the image contrast in SPECT-CT bremsstrahlung imaging for Selective Internal Radiation Therapy of liver malignancies with Y-90 microspheres

    CERN Document Server

    Bonutti, Faustino; Magro, Giuseppe; Cecotti, Andrea; Della Schiava, Emanuele; Del Dò, Elena; Longo, Francesco; Herassi, Yassine; Bentayeb, Farida; Rossi, Marina; Ferretti, Guido; Geatti, Onelio; Padovani, Renato

    2015-01-01

    The quality of SPECT Bremsstrahlung images of patients treated with Y-90 is poor, mainly because of scattered radiation and collimator septa penetration. To minimize the latter effect, High Energy (HE) or Medium Energy (ME) collimators can be used. Scatter correction is not possible through the methods commonly used for the diagnostic radionuclides (Tc-99m, etc.) because the Bremsstrahlung radiation does not have distinct photopeaks, but a broad spectrum of energies ranging from zero to the maximum one detectable by the gamma-camera crystal is registered. Scatter radiation and collimator septa penetration affect the Contrast and the Contrast Recovery Coefficient (CRC) : our research focused on finding the best energy position for the acquisition window in order to maximize these parameters. To be guided in this finding, we first made a Monte Carlo (MC) simulation of a SPECT acquisition of a Y-90 cylindrical phantom and then we measured at different energies the Line Spread Function (LSF) of a linear Y-90 sour...

  5. Fuel Effective Photonic Propulsion

    Science.gov (United States)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  6. Observing Photons in Space

    Science.gov (United States)

    Huber, Martin C. E.; Pauluhn, Anuschka; Timothy, J. Gethyn

    This first chapter of the book "Observing Photons in Space" serves to illustrate the rewards of observing photons in space, to state our aims, and to introduce the structure and the conventions used. The title of the book reflects the history of space astronomy: it started at the high-energy end of the electromagnetic spectrum, where the photon aspect of the radiation dominates. Nevertheless, both the wave and the photon aspects of this radiation will be considered extensively. In this first chapter we describe the arduous efforts that were needed before observations from pointed, stable platforms, lifted by rocket above the Earth"s atmosphere, became the matter of course they seem to be today. This exemplifies the direct link between technical effort -- including proper design, construction, testing and calibration -- and some of the early fundamental insights gained from space observations. We further report in some detail the pioneering work of the early space astronomers, who started with the study of γ- and X-rays as well as ultraviolet photons. We also show how efforts to observe from space platforms in the visible, infrared, sub-millimetre and microwave domains developed and led to today"s emphasis on observations at long wavelengths.

  7. Photonic topological insulators.

    Science.gov (United States)

    Khanikaev, Alexander B; Mousavi, S Hossein; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H; Shvets, Gennady

    2013-03-01

    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

  8. Antigravity Acts on Photons

    Science.gov (United States)

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  9. The production of a diphoton resonance via photon-photon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, L.A. [Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT (United Kingdom); Khoze, V.A. [Institute for Particle Physics Phenomenology, University of Durham,South Road, Durham, DH1 3LE (United Kingdom); Petersburg Nuclear Physics Institute, NRC Kurchatov Institute,Gatchina, St. Petersburg, 188300 (Russian Federation); Ryskin, M.G. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute,Gatchina, St. Petersburg, 188300 (Russian Federation)

    2016-03-25

    Motivated by the recent LHC observation of an excess of diphoton events around an invariant mass of 750 GeV, we discuss the possibility that this is due to the decay of a new scalar or pseudoscalar resonance dominantly produced via photon-photon fusion. We present a precise calculation of the corresponding photon-photon luminosity in the inclusive and exclusive scenarios, and demonstrate that the theoretical uncertainties associated with these are small. In the inclusive channel, we show how simple cuts on the final state may help to isolate the photon-photon induced cross section from any gluon-gluon or vector boson fusion induced contribution. In the exclusive case, that is where both protons remain intact after the collision, we present a precise cross section evaluation and show how this mode is sensitive to the parity of the object, as well as potential CP-violating effects. We also comment on the case of heavy-ion collisions and consider the production of new heavy colourless fermions, which may couple to such a resonance.

  10. Compact photonic spin filters

    Science.gov (United States)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  11. Photon kinetics in plasmas

    Directory of Open Access Journals (Sweden)

    V.G. Morozov

    2009-01-01

    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  12. Models for Photon-photon Total Cross-sections

    OpenAIRE

    Godbole, RM; Grau, A.; Pancheri, G.

    1999-01-01

    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  13. How well does QCD work for photon-photon collisions?

    OpenAIRE

    Wengler, Thorsten

    2002-01-01

    The performance of QCD in describing hadronic photon-photon collisions is investigated in the light of recent measurements from LEP on di-jet production, light hadron transverse momentum spectra, and heavy quark production.

  14. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  15. Two-photon excitation based photochemistry and neural imaging

    Science.gov (United States)

    Hatch, Kevin Andrew

    Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, two-photon microscopy was used to observe the effects of the application of the neurotransmitter dopamine to the mushroom body neural structures of Drosophila melanogaster to investigate dopamine's connection to cognitive degeneration.

  16. Dressed photons concepts of light-matter fusion technology

    CERN Document Server

    Ohtsu, Motoichi

    2014-01-01

    Authored by the developer of dressed photon science and technology as well as nanophotonics, this book outlines concepts of the subject using a novel theoretical framework that differs from conventional wave optics. It provides a quantum theoretical description of optical near fields and related problems that puts matter excitation such as electronic and vibrational ones on an equal footing with photons. By this description, optical near fields are interpreted as quasi-particles and named dressed photons which carry the material excitation energy in a nanometric space. The author then explores novel nanophotonic devices, fabrications, and energy conversion based on the theoretical picture of dressed photons. Further, this book looks at how the assembly of nanophotonic devices produces information and communication systems.  Dressed photon science and technology is on its way to revolutionizing various applications in devices, fabrications, and systems. Promoting further exploration in the field, this book pr...

  17. National photonics skills standards for technicians

    Science.gov (United States)

    Hull, Darrell M.

    1995-10-01

    Photonics is defined as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of phonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's communication systems, from the laser that generates the digital information transported along a fiber- optic cable to the detector that decodes the information. Whether the transmitted information is a phone call from across the street or across the globe, photonics brings it to you. Where your health is concerned, photonics allows physicians to do minimally invasive surgery using fiber-optic endoscopes and lasers. Researches using spectroscopy and microscopy are pushing the frontiers of biotechnology in activities as widespread as diagnosing disease and probing the mysteries of the genetic code. Advanced sensing and imaging techniques monitor the environment, gathering data on crops and forests, analyzing the ocean's currents and contents, and probing the atmosphere of pollutants. Transportation needs are being impacted by photonic sensors and laser rangefinders that will soon monitor and control the traffic on our nation's highways. In our factories, photonics provides machine vision systems that give a level of quality control human inspectors could never achieve. In manufacturing, lasers are replacing a variety of cutting, welding, and marking techniques, while imaging systems teamed with neural networks are producing intelligent robots. In short, photonics is paving our way into the new millennium. The skill standard is intended to define the knowledge and capabilities - the skills - that workers in the phonics industry need. Phonics will be one of the primary battlefields of the world economic conflict, and it is imperative that U.S. photonics technicians be skilled enough to allow the United States to remain competitive in a global marketplace. The

  18. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  19. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir...

  20. Photon Localization Revisited

    Directory of Open Access Journals (Sweden)

    Izumi Ojima

    2015-09-01

    Full Text Available In the light of the Newton–Wigner–Wightman theorem of localizability question, we have proposed before a typical generation mechanism of effective mass for photons to be localized in the form of polaritons owing to photon-media interactions. In this paper, the general essence of this example model is extracted in such a form as quantum field ontology associated with the eventualization principle, which enables us to explain the mutual relations, back and forth, between quantum fields and various forms of particles in the localized form of the former.

  1. Latest ALICE results of photon and jet measurements arXiv

    CERN Document Server

    Haake, Rüdiger

    Highly energetic jets and photons are complementary probes for the kinematics and the topology of nuclear collisions. Jets are collimated sprays of charged and neutral particles, which are produced in the fragmentation of hard scattered partons in an early stage of the collision. While traversing the medium formed in nuclear collisions, they lose energy and therefore carry information about the interaction of partons with the medium. The jet substructure is particularly interesting to learn about in-medium modification of the jets and several observables exists to probe it. In contrast to jets, photons are created in all collision stages. There are prompt photons from the initial collision, thermal photons produced in the medium, and decay- and fragmentation photons from later collision stages. Photons escape the medium essentially unaffected after their creation. This article presents recent ALICE results on jet substructure and direct photon measurements in pp, p-Pb and Pb-Pb collisions.

  2. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...... of GaAs and defined by reactive-ion etching....

  3. Studying 750 GeV Di-photon Resonance at Photon-Photon Collider

    OpenAIRE

    Ito, Hayato; Moroi, Takeo; Takaesu, Yoshitaro

    2016-01-01

    Motivated by the recent LHC discovery of the di-photon excess at the invariant mass of ~ 750 GeV, we study the prospect of investigating the scalar resonance at a future photon-photon collider. We show that, if the di-photon excess observed at the LHC is due to a new scalar boson coupled to the standard-model gauge bosons, such a scalar boson can be observed and studied at the photon-photon collider with the center-of-mass energy of ~ 1 TeV in large fraction of parameter space.

  4. Comparison of photon-photon and photon-magnetic field pair production rates. [in neutron stars

    Science.gov (United States)

    Burns, M. L.; Harding, A. K.

    1983-01-01

    Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense (10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field (gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.

  5. Comparison of Photon-photon and Photon-magnetic Field Pair Production Rates

    Science.gov (United States)

    Burns, M. L.; Harding, A. K.

    1983-01-01

    Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense ( 10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field ( gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.

  6. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Rosen) cor- relations as codified in Bell's inequalities have been tested for the polarization-entangled states of two photons. Similarly, quantum teleportation and quantum encryption have also been accomplished using photon polarization states.

  7. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  8. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  9. Hidden Photons in Extra Dimensions

    OpenAIRE

    Wallace, Chris J.; Jaeckel, Joerg; Roy, Sabyasachi

    2013-01-01

    Additional U(1) gauge symmetries and corresponding vector bosons, called hidden photons, interacting with the regular photon via kinetic mixing are well motivated in extensions of the Standard Model. Such extensions often exhibit extra spatial dimensions. In this note we investigate the effects of hidden photons living in extra dimensions. In four dimensions such a hidden photon is only detectable if it has a mass or if there exists additional matter charged under it. We note that in extra di...

  10. Photons, photon jets, and dark photons at 750 GeV and beyond.

    Science.gov (United States)

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro

    2016-01-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance [Formula: see text] can be mimicked by a process of the form [Formula: see text], where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an [Formula: see text] pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to [Formula: see text], where there are no photons at all but the dark photon [Formula: see text] decays to [Formula: see text] pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  11. GZK Photons as Ultra High Energy Cosmic Rays

    CERN Document Server

    Gelmini, G; Semikoz, D V; Gelmini, Graciela; Kalashev, Oleg; Semikoz, Dmitry V.

    2005-01-01

    We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic protons through the resonant photoproduction of pions, the so called Greisen-Zatsepin-Kuzmin (GZK) effect. We show that if the UHECR are mostly protons, depending on the UHECR spectrum, the slope of the proton flux at the source, distribution of sources and intervening backgrounds, between $10^{-4}$ and $10^{-2}$ of the UHECR above $10^{19}$ eV and between $10^{-5}$ and 0.6 of the UHECR above $10^{20}$ eV are photons (the range being much higher for the AGASA than for the HiRes spectrum). Detection of these photons would open the way for UHECR gamma-ray astronomy. Detection of a larger photon flux would imply the emission of photons at the source or new physics. In fact, we find that at energiesclose to $10^{20}$ eV the maximum expected GZK photon fraction is comparable to (for the AGASA spectrum) or much smaller than (for the HiRes spectrum) the minimum photon ratio...

  12. ALICE Photon Spectrometer

    CERN Multimedia

    Kharlov, Y

    2013-01-01

    PHOS provides unique coverage of the following physics topics: - Study initial phase of the collision of heavy nuclei via direct photons, - Jet-quenching as a probe of deconfinement, studied via high Pτ ϒ and π0, - Signals of chiral-symmetry restoration, - QCD studies in pp collisions via identified neutral spectra.

  13. Mechanochromic photonic gels.

    Science.gov (United States)

    Chan, Edwin P; Walish, Joseph J; Urbas, Augustine M; Thomas, Edwin L

    2013-08-07

    Polymer gels are remarkable materials with physical structures that can adapt significantly and quite rapidly with changes in the local environment, such as temperature, light intensity, electrochemistry, and mechanical force. An interesting phenomenon observed in certain polymer gel systems is mechanochromism - a change in color due to a mechanical deformation. Mechanochromic photonic gels are periodically structured gels engineered with a photonic stopband that can be tuned by mechanical forces to reflect specific colors. These materials have potential as mechanochromic sensors because both the mechanical and optical properties are highly tailorable via incorporation of diluents, solvents, nanoparticles, or polymers, or the application of stimuli such as temperature, pH, or electric or strain fields. Recent advances in photonic gels that display strain-dependent optical properties are discussed. In particular, this discussion focuses primarily on polymer-based photonic gels that are directly or indirectly fabricated via self-assembly, as these materials are promising soft material platforms for scalable mechanochromic sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Additive photonic colors in the Brazilian diamond weevil: entimus imperialis

    Science.gov (United States)

    Mouchet, S.; Vigneron, J.-P.; Colomer, J.-F.; Vandenbem, C.; Deparis, O.

    2012-10-01

    Structurally colored nano-architectures found in living organisms are complex optical materials, giving rise to multiscale visual effects. In arthropods, these structures often consist of porous biopolymers and form natural photonic crystals. A signature of the structural origin of coloration in insects is iridescence, i.e., color changes with the viewing angle. In the scales located on the elytra of the Brazilian weevil Entimus imperialis (Curculionidae), three-dimensional photonic crystals are observed. On one hand, each of them interacts independently with light, producing a single color which is observed by optical microscopy and ranges from blue to orange. On the other hand, the color perceived by the naked eye is due to multi-length-scale light effects involving different orientations of a single photonic crystal. This disorder in crystal orientations alters the light propagation in such a way that the crystal iridescence is removed. Entimus imperialis is therefore a remarkable example of additive photonic colors produced by a complex multi-scale organic architecture. In order to study this specific natural photonic structure, electron microscopy is used. The structure turns out to be formed of a single type of photonic crystal with different orientations within each scale on the elytra. Our modeling approach takes into account the disorder in the photonic crystals and explains why the structure displays bright colors at the level of individual scales and a non-iridescent green color in the far-field.

  15. Direct photon detection in PbPb collisions in the ALICE experiment at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Conesa, G. [Laboratori Nazionale Di Frascati, INFN, Via Enrico Fermi, 40, P.O box 13, I-00044 Frascati (Italy); Ippolitov, M. [RRC ' Kurchatov Institute' , Kurchatov sq.1, Moscow, 123182 (Russian Federation); Kharlov, Yu. [Institute for High Energy Physics, Protvino, 142281 (Russian Federation)]. E-mail: Yuri.Kharlov@cern.ch; Manko, V. [RRC ' Kurchatov Institute' , Kurchatov sq.1, Moscow, 123182 (Russian Federation); Peressounko, D. [RRC ' Kurchatov Institute' , Kurchatov sq.1, Moscow, 123182 (Russian Federation); Sadovsky, S. [Institute for High Energy Physics, Protvino, 142281 (Russian Federation); Schutz, Y. [CERN, Geneva CH-1211 (Switzerland)

    2007-02-01

    Direct photons are considered as one of the most important signatures of thermalized quark-gluon matter produced in relativistic heavy-ion collisions. The ALICE experiment at LHC, which is being prepared to study heavy-ion collisions at the energies 5.5A TeV, will be equipped by the photon spectrometer PHOS to detect direct photons and measure their spectrum in a wide momentum range 0 < p {sub T} < 100 GeV/c with high precision. Expected yields of direct photons at the LHC energies, as well as experimental methods to measure photon spectrum in the PHOS detector, are discussed in the paper.

  16. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  17. Direct Photon Results from CDF

    Directory of Open Access Journals (Sweden)

    Yang Tingjun

    2013-11-01

    Full Text Available Direct (prompt photon production is a field of very high interest in hadron colliders. It provides probes to search for new phenomena and to test QCD predictions. In this article, two recent cross-section results for direct photon production using the full CDF Run II data set are presented: diphoton production and photon production in association with a heavy quark.

  18. Two-photon spectroscopy of excitons with entangled photons.

    Science.gov (United States)

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  19. Silicon Photomultiplier - New Era of Photon Detection

    OpenAIRE

    Saveliev, Valeri

    2010-01-01

    Silicon photomultipliers is novel type of the semiconductor photodetector for the detecting of low photon flux. Already now the technology is developed and suitable for many critical application as medical imaging, and biology, homeland security, optic communications, experimental physics and military applications. Few world well known companies Hamamatsu, Sensl, Kotura are already producing or close to production of silicon photomultiplier type sensors. Near future of silicon photomultiplier...

  20. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    Science.gov (United States)

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  1. Methods and apparatus for producing and storing positrons and protons

    Science.gov (United States)

    Akers, Douglas W [Idaho Falls, ID

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  2. Physics with Photons in ATLAS

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fine granularity ATLAS electromagnetic calorimeter provides a precise measurement of the photon energy and direction, as well as efficient rejection of background from fake photons, while the high precision inner detector allows also the reconstruction of photons that convert into electron-positron pairs.Isolated photons are measured using well-defined infrared-safe isolation criteria corrected for underlying event and the effects of additional proton-proton collisions. Differential cross sections for inclusive photons and diphotons are presented, and the spectrum of diphoton production is used to search for the Higgs boson in this decay channel.

  3. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  4. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  5. REVIEW: Review and history of photon cross section calculations

    Science.gov (United States)

    Hubbell, J. H.

    2006-07-01

    Photon (x-ray, gamma-ray, bremsstrahlung) mass attenuation coefficients, μ/ρ, are among the most widely used physical parameters employed in medical diagnostic and therapy computations, as well as in diverse applications in other fields such as nuclear power plant shielding, health physics and industrial irradiation and monitoring, and in x-ray crystallography. This review traces the evolution of this data base from its empirical beginnings totally derived from measurements beginning in 1907 by Barkla and Sadler and continuing up through the 1935 Allen compilation (published virtually unchanged in all editions up through 1971-1972 of the Chemical Rubber Handbook), to the 1949 semi-empirical compilation of Victoreen, as our theoretical understanding of the constituent Compton scattering, photoabsorption and pair production interactions of photons with atoms became more quantitative. The 1950s saw the advent of completely theoretical (guided by available measured data) systematic compilations such as in the works of Davisson and Evans, and by White-Grodstein under the direction of Fano, using mostly theory developed in the 1930s (pre-World War II) by Sauter, Bethe, Heitler and others. Post-World War II new theoretical activity, and the introduction of the electronic automatic computer, led to the more extensive and more accurate compilations in the 1960s and 1970s by Storm and Israel, and by Berger and Hubbell. Today's μ/ρ compilations by Cullen et al, by Seltzer, Berger and Hubbell, and by others, collectively spanning the ten decades of photon energy from 10 eV to 100 GeV, for all elements Z= 1 to 100, draw heavily on the 1970s shell-by-shell photoabsorption computations of Scofield, the 1960s coherent and incoherent scattering computations of Cromer et al, and the 1980 computations of electron-positron pair and triplet computations of Hubbell, Gimm and Øverbø, these names being representative of the vast legions of other researchers whose work fed into these

  6. Why I am optimistic about the silicon-photonic route to quantum computing

    Directory of Open Access Journals (Sweden)

    Terry Rudolph

    2017-03-01

    Full Text Available This is a short overview explaining how building a large-scale, silicon-photonic quantum computer has been reduced to the creation of good sources of 3-photon entangled states (and may simplify further. Given such sources, each photon needs to pass through a small, constant, number of components, interfering with at most 2 other spatially nearby photons, and current photonics engineering has already demonstrated the manufacture of thousands of components on two-dimensional semiconductor chips with performance that, once scaled up, allows the creation of tens of thousands of photons entangled in a state universal for quantum computation. At present the fully integrated, silicon-photonic architecture we envisage involves creating the required entangled states by starting with single-photons produced non-deterministically by pumping silicon waveguides (or cavities combined with on-chip filters and nanowire superconducting detectors to herald that a photon has been produced. These sources are multiplexed into being near-deterministic, and the single photons then passed through an interferometer to non-deterministically produce small entangled states—necessarily multiplexed to near-determinism again. This is followed by a “ballistic” scattering of the small-scale entangled photons through an interferometer such that some photons are detected, leaving the remainder in a large-scale entangled state which is provably universal for quantum computing implemented by single-photon measurements. There are a large number of questions regarding the optimum ways to make and use the final cluster state, dealing with static imperfections, constructing the initial entangled photon sources and so on, that need to be investigated before we can aim for millions of qubits capable of billions of computational time steps. The focus in this article is on the theoretical side of such questions.

  7. Photonic Counterparts of Cooper Pairs

    Science.gov (United States)

    Saraiva, André; Júnior, Filomeno S. de Aguiar; de Melo e Souza, Reinaldo; Pena, Arthur Patrocínio; Monken, Carlos H.; Santos, Marcelo F.; Koiller, Belita; Jorio, Ado

    2017-11-01

    The microscopic theory of superconductivity raised the disruptive idea that electrons couple through the elusive exchange of virtual phonons, overcoming the strong Coulomb repulsion to form Cooper pairs. Light is also known to interact with atomic vibrations, as, for example, in the Raman effect. We show that photon pairs exchange virtual vibrations in transparent media, leading to an effective photon-photon interaction identical to that for electrons in the BCS theory of superconductivity, in spite of the fact that photons are bosons. In this scenario, photons may exchange energy without matching a quantum of vibration of the medium. As a result, pair correlations for photons scattered away from the Raman resonances are expected to be enhanced. An experimental demonstration of this effect is provided here by time-correlated Raman measurements in different media. The experimental data confirm our theoretical interpretation of a photonic Cooper pairing, without the need for any fitting parameters.

  8. Photons in a ball

    Science.gov (United States)

    Mück, Wolfgang

    2015-12-01

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation.

  9. Photonics meet digital art

    Science.gov (United States)

    Curticapean, Dan; Israel, Kai

    2014-09-01

    The paper focuses on the work of an interdisciplinary project between photonics and digital art. The result is a poster collection dedicated to the International Year of Light 2015. In addition, an internet platform was created that presents the project. It can be accessed at http://www.magic-of-light.org/iyl2015/index.htm. From the idea to the final realization, milestones with tasks and steps will be presented in the paper. As an interdisciplinary project, students from technological degree programs were involved as well as art program students. The 2015 Anniversaries: Alhazen (1015), De Caus (1615), Fresnel (1815), Maxwell (1865), Einstein (1905), Penzias Wilson, Kao (1965) and their milestone contributions in optics and photonics will be highlighted.

  10. Photonics an introduction

    CERN Document Server

    Reider, Georg A

    2016-01-01

    This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors. The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light–matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively. The book is intended for both students of physics and elect...

  11. Quantum Communication with Photons

    Science.gov (United States)

    Krenn, Mario; Malik, Mehul; Scheidl, Thomas; Ursin, Rupert; Zeilinger, Anton

    The secure communication of information plays an ever increasing role in our society today. Classical methods of encryption inherently rely on the difficulty of solving a problem such as finding prime factors of large numbers and can, in principle, be cracked by a fast enough machine. The burgeoning field of quantum communication relies on the fundamental laws of physics to offer unconditional information security. Here we introduce the key concepts of quantum superposition and entanglement as well as the no-cloning theorem that form the basis of this field. Then, we review basic quantum communication schemes with single and entangled photons and discuss recent experimental progress in ground and space-based quantum communication. Finally, we discuss the emerging field of high-dimensional quantum communication, which promises increased data rates and higher levels of security than ever before. We discuss recent experiments that use the orbital angular momentum of photons for sharing large amounts of information in a secure fashion.

  12. Essentials of photonics

    CERN Document Server

    Rogers, Alan; Baets, Roel

    2008-01-01

    Photons and ElectronsHistorical SketchThe Wave Nature of LightPolarizationThe Electromagnetic SpectrumEmission and Absorption ProcessesPhoton Statistics The Behaviour of Electrons LasersSummaryWave Properties of LightThe Electromagnetic SpectrumWave RepresentationElectromagnetic WavesReflection and RefractionTotal Internal ReflectionInterference of LightLight WaveguidingInterferometersDiffractionGaussian Beams and Stable Optical ResonatorsPolarization OpticsThe Polarization EllipseCrystal OpticsRetarding WaveplatesA Variable Waveplate: The Soleil-Babinet Compensator Polarizing PrismsLinear BirefringenceCircular BirefringenceElliptical BirefringencePractical Polarization EffectsPolarization AnalysisThe Form of the Jones MatricesLight and Matter Emission, Propagation, and Absorption ProcessesClassical Theory of Light Propagation in Uniform Dielectric Media Optical Dispersion Emission and Absorption of LightOptical Coherence and CorrelationIntroductionMeasure of Coherence Wiener-Khinchin TheoremDual-Beam Interfe...

  13. The ubiquitous photonic wheel

    CERN Document Server

    Aiello, Andrea

    2016-01-01

    A circularly polarized electromagnetic plane wave carries an electric field that rotates clockwise or counterclockwise around the propagation direction of the wave. According to the handedness of this rotation, its \\emph{longitudinal} spin angular momentum density is either parallel or antiparallel to the propagation of light. However, there are also light waves that are not simply plane and carry an electric field that rotates around an axis perpendicular to the propagation direction, thus yielding \\emph{transverse} spin angular momentum density. Electric field configurations of this kind have been suggestively dubbed "photonic wheels". It has been recently shown that photonic wheels are commonplace in optics as they occur in electromagnetic fields confined by waveguides, in strongly focused beams, in plasmonic and evanescent waves. In this work we establish a general theory of electromagnetic waves {propagating along a well defined direction, which carry} transverse spin angular momentum density. We show th...

  14. The lattice photon propagator

    Science.gov (United States)

    Coddington, P.; Hey, A.; Mandula, J.; Ogilvie, M.

    1987-10-01

    The photon propagator in the Landau gauge is calculated for a U(1) lattice gauge theory. In the confined, strong coupling phase, the propagator resembles that of a massive particle. In the weak coupling phase, the propagator is that of a massless particle. An abrupt change occurs at the transition point. The results are compared to simulations of the gluon propagator in SU(3) lattice gauge theory.

  15. Superluminal noncommutative photons

    OpenAIRE

    Cai, Rong-Gen

    2001-01-01

    With the help of the Seiberg-Witten map, one can obtain an effective action of a deformed QED from a noncommutative QED. Starting from the deformed QED, we investigate the propagation of photons in the background of electromagnetic field, up to the leading order of the noncommutativity parameter. In our setting (both the electric and magnetic fields are parallel to the coordinate axis $x^1$ and the nonvanishing component of the noncommutativity parameter is $\\theta^{23}$), we find that the el...

  16. Active photonic metamaterials

    OpenAIRE

    Sámson, Z.L; Gholipour, B; De Angelis, F.; Li, S.; Knight, K. J.; Zhang, J.; Uchino, T.; Huang, C. C.; MacDonald, K. F.; Ashburn, P.; Di Fabrizio, E.; Hewak, D W; Zheludev, N. I.

    2010-01-01

    Nanostructured photonic metamaterials with narrow-band responses provide a promising platform for applications ranging from slow-light and polarization control to optical modulation and the 'lasing spaser'. We show that the introduction of functional (nonlinear, switchable, gain, etc.) media into such structures provides a powerful paradigm for the active control of their resonant properties, for the enhancement of nonlinear responses and for strong switching performance in sub-wavelength dev...

  17. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  18. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  19. Active Photonic Devices

    Science.gov (United States)

    Della Valle, Giuseppe; Osellame, Roberto

    The chapter is devoted to active photonic devices fabricated by fs-laser writing. After a brief introduction focused on the role played by fs-laser written active devices, Sect. 10.2 briefly reviews the spectroscopical properties of the most interesting active ions so far exploited, namely erbium, ytterbium, neodimium, and bismuth. In Sect. 10.3 the main figures of merit for an active waveguide, namely the internal gain, the insertion loss, the net gain, and the noise figure are introduced and the experimental procedure for accurate gain measurement is also detailed. A thorough review of the active photonic devices demonstrated with the femtosecond laser microfabrication technique is presented in Sects. 10.4, 10.5, and 10.6, where several active waveguides and amplifiers, prototypal lasers, as well as more functionalized laser devices (operating under single longitudinal mode or stable mode-locking regime) are illustrated, respectively. Finally, conclusions and future perspectives of femtosecond-laser micromachining of active photonic devices are provided.

  20. Integrated photonic quantum walks

    Science.gov (United States)

    Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander

    2016-10-01

    Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.

  1. Entangled photon spectroscopy

    Science.gov (United States)

    Schlawin, Frank

    2017-10-01

    This tutorial outlines the theory of nonlinear spectroscopy with quantum light, and in particular with entangled photons. To this end, we briefly review molecular quantum electrodynamics, and discuss the approximations involved. Then we outline the perturbation theory underlying nonlinear spectroscopy. In contrast to the conventional semiclassical theory, our derivation starts from Glauber's photon counting formalism, and naturally includes the semiclassical theory as a special case. Finally, we review previous work, which we sort into work depending on the unusual features of quantum noise, and work relying upon quantum correlations in entangled photons. This work naturally draws from both quantum optics and chemical physics. Even though it is impossible to provide a comprehensive overview of both fields in one tutorial, this text aims to be self-contained. We refer to specialised reviews, where we cannot provide details. We do not attempt to provide an exhaustive review of all the literature, but rather focus on specific examples intended to elucidate the underlying physics, and merely cite the remaining publications.

  2. Photon pair generation in multimode optical fibers via intermodal phase-matching

    CERN Document Server

    Pourbeyram, Hamed

    2016-01-01

    We present a detailed study of photon-pair generation in a multimode optical fiber via nonlinear four-wave mixing and intermodal phase-matching. We show that in multimode optical fibers, it is possible to generate correlated photon pairs in different fiber modes with large spectral shifts from the pump wavelength, such that the photon pairs are immune to contamination from spontaneous Raman scattering and residual pump photons. We also show that it is possible to generate factorable two-photon states exhibiting minimal spectral correlations between the photon pair components in conventional multimode fibers using commonly available pump lasers. It is also possible to simultaneously generate multiple factorable states from different FWM processes in the same fiber and over a wide range of visible spectrum by varying the pump wavelength without affecting the factorability of the states. Therefore, photon-pair generation in multimode optical fibers exhibits considerable potential for producing state engineered p...

  3. Photon-triggered nanowire transistors

    Science.gov (United States)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  4. Electrospinning for nano- to mesoscale photonic structures

    Science.gov (United States)

    Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.

    2017-08-01

    The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this

  5. Photon Structure Functions: Target Photon Mass Effects and QCD Corrections

    OpenAIRE

    Mathews, Prakash(Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700 064, India); Ravindran, V.

    1994-01-01

    We present a systematic analysis of the polarised and unpolarised processes $e^+ ~e^- \\rightarrow e^+ ~e^- X$ in the deep inelastic limit and study the effects of target photon mass (virtuality) on the photon structure functions. The effect of target photon virtuality manifests as new singly polarised structure functions and also alters the physical interpretation of the unpolarised structure functions. The physical interpretation of these structure functions in terms of hadronic components i...

  6. Parametric optimization of optical devices based on strong photonic localization

    Science.gov (United States)

    Gui, Minmin; Yang, Xiangbo

    2017-07-01

    Symmetric two-segment-connected triangular defect waveguide networks (STSCTDWNs) can produce strong photonic localization, which is useful for designing highly efficient energy storage devices, high power superluminescent light emitting diodes, all-optical switches, and more. Although STSCTDWNs have been studied in previous works, in this paper we systematically optimize the parameters of STSCTDWNs to further enhance photonic localization so that the function of optical devices based on strong photonic localization can be improved. When optimizing the parameters, we find a linear relationship between the logarithm of photonic localization and the broken degree of networks. Furthermore, the slope and intercept of the linear relationship are larger than previous results. This means that the increasing speed of photonic localization is improved. The largest intensity of photonic localizations can reach 1036, which is 16 orders of magnitude larger than previous reported results. These optimized networks provide practical solutions for all optical devices based on strong photonic localization in the low frequency range, such as nanostructured devices.

  7. On the Squeezing and Over-Squeezing of Photons

    Science.gov (United States)

    Shalm, Lynden Krister

    Quantum mechanics allows us to use nonclassical states of light to make measurements with a greater precision than comparable classical states. Here an experiment is presented that squeezes the polarization state of three photons. We demonstrate the deep connection that exists between squeezing and entanglement, unifying the squeezed state and multi-photon entangled state approaches to quantum metrology. For the first time we observe the phenomenon of over-squeezing where a system is squeezed to the point that further squeezing leads to a counter-intuitive increase in measurement uncertainty. Quasi-probability distributions on the surface of a Poincare sphere are the most natural way to represent the topology of our polarization states. Using this representation it is easy to observe the squeezing and over-squeezing behaviour of our photon states. Work is also presented on two different technologies for generating nonclassical states of light. The first is based on the nonlinear process of spontaneous parametric downconversion to produce pairs of photons. With this source up to 200,000 pairs of photons/s have been collected into single-mode fibre, and over 100 double pairs/s have been detected. This downconversion source is suitable for use in a wide variety of multi-qubit quantum information applications. The second source presented is a single-photon source based on semiconductor quantum dots. The single-photon character of the source is verified using a Hanbury Brown-Twiss interferometer.

  8. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  9. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  10. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  11. Proposal for a QND which-path measurement using photons

    Science.gov (United States)

    Raymer, M. G.; Yang, S.

    1992-01-01

    A scheme is proposed for experimentally realizing the famous two-slit gedaenken experiment using photons. As elegantly discussed for electrons by Feynman, a particle's quantum pathways interfere to produce fringes in the probability density for the particle to be found at a particle location. If the path taken by the particle is experimentally determined, the complementarity principle says that the fringes must disappear. To carry out this experiment with photons is difficult because normally the act of determining a photon's location destroys it. We propose to overcome this difficulty by putting a type-2 optical parametric amplifier (OPA) in each arm of a Mach-Zehnder interferometer, and observing fringes at the output. An OPA responds to an input photon by increasing its probability to produce a pair of photons with polarization orthogonal to the input, the detection of which allows partial inference about the path taken by the input photon without destroying it. Thus, the measurement is of the quantum nondemolition (QND) type.

  12. SINGLE: single photon sensitive cryogenic light detectors

    Science.gov (United States)

    Biassoni, Matteo; SINGLE Collaboration

    2017-09-01

    Thermal detectors operated at few mK as calorimeters are a powerful tool for the study of rare particle physics processes. In order to implement particle identification, light detection can be effectively performed by means of other thermal detectors operated as light sensors. This configuration can be used also in large scale, thousand-channels setups, but the light sensors must be sensitive enough to detect few, possibly a single, photons. The SINGLE project described here aims at producing silicon based, large area devices that can be operated as thermal detectors with single-photon sensitivity, and demonstrate the reliability of the performance, scalability of the production process and integrability with present and next generation cryogenic experiments for the search for rare events.

  13. Two-photon imaging of stem cells

    Science.gov (United States)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  14. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  15. Reconstruction and Identification of Photons

    CERN Document Server

    The ATLAS Collaboration

    2009-01-01

    This note presents the description and performance of photon identification methods in ATLAS. The reconstruction of an electromagnetic object begins in the calorimeter, and the inner detector information determines whether the object is a photon - either converted or unconverted - or an electron. Three photon identification methods are presented: a simple cut-based method, a Loglikelihood- ratio-based method and a covariance-matrix-based method. The shower shape variables based on calorimeter information and track information used in all three methods are described. The efficiencies for single photons and for photons from the benchmark H !gg signal events, as well as the rejection of the background from jet samples, are presented. The performance of the cut-based method on high-pT photons from a graviton decay process G!gg is also discussed.

  16. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  17. Photonic arms, legs, and skin

    Science.gov (United States)

    Nocentini, Sara; Martella, Daniele; Nuzhdin, Dmitri; Parmeggiani, Camilla; Wiersma, Diederik S.

    2017-08-01

    In this contribution, we will report on a new adventure in the field of photonics, combining the optical control of photonic materials with that of true micro meter scale robotics. We will show how one can create complex photonic structures using polymers that respond to optical stimuli, and how this technology can be used to create moving elements, photonic skin, and even complete micro meter size robots that can walk and swim. Using light as the only source of energy. The materials that we have developed to that end can also be used to realize tunable photonic components that respond to light and adapt their photonic response on the basis of the illumination conditions.

  18. Signatures of photon-scalar interaction in astrophysical situations

    Science.gov (United States)

    Ganguly, Avijit K.; Jaiswal, Manoj K.

    2018-01-01

    Dimension-5 photon ( γ) scalar ( ϕ) interaction term usually appear in the Lagrangians of bosonic sector of unified theories of electromagnetism and gravity. This interaction makes the medium dichoric and induces optical activity. Considering a toy model of an ultra-cold magnetized compact star (white dwarf (WD) or neutron star (NS)), we have modeled the propagation of very low energy photons with such interaction, in the environment of these stars. Assuming synchro-curvature process as the dominant mechanism of emission in such environments, we have tried to understand the polarimetric implications of photon-scalar coupling on the produced spectrum of the same. Further more assuming the `emission-energy vs emission-altitude' relation, that is believed to hold in such ( i.e., cold magnetized WD or NS) environments, we have tried to point out the possible modifications to the radiation spectrum when the same is incorporated along with dimension-5 photon-scalar mixing operator.

  19. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  20. Direct photons in WA98

    CERN Document Server

    Aggarwal, M M; Ahammed, Z; Angelis, Aris L S; Antonenko, V G; Arefev, V; Astakhov, V A; Avdeichikov, V; Awes, T C; Baba, P V K S; Badyal, S K; Barlag, C; Bathe, S; Batyunya, B; Bernier, T; Bhalla, K B; Bhatia, V S; Blume, C; Bock, R; Bohne, E M; Böröcz, Z K; Bucher, D; Buijs, A; Büsching, H; Carlén, L; Chalyshev, V; Chattopadhyay, S; Cherbachev, R; Chujo, T; Claussen, A; Das, A C; Decowski, M P; Delagrange, H; Dzhordzhadze, V; Dönni, P; Dubovik, I; Dutt, S; Dutta-Majumdar, M R; El-Chenawi, K F; Eliseev, S; Enosawa, K; Foka, P Y; Fokin, S L; Ganti, M S; Garpman, S; Gavrishchuk, O P; Geurts, F J M; Ghosh, T K; Glasow, R; Gupta, S K; Guskov, B; Gustafsson, Hans Åke; Gutbrod, H H; Higuchi, R; Hrivnacova, I; Ippolitov, M S; Kalechofsky, H; Kamermans, R; Kampert, K H; Karadzhev, K; Karpio, K; Kato, S; Kees, S; Klein-Bösing, C; Knoche, S; Kolb, B W; Kosarev, I G; Kucheryaev, I; Krümpel, T; Kugler, A; Kulinich, P A; Kurata, M; Kurita, K; Kuzmin, N A; Langbein, I; Lee, Y Y; Löhner, H; Luquin, Lionel; Mahapatra, D P; Man'ko, V I; Martin, M; Martínez, G; Maksimov, A; Mgebrishvili, G; Miake, Y; Mir, M F; Mishra, G C; Miyamoto, Y; Mohanty, B; Morrison, D; Mukhopadhyay, D S; Naef, H; Nandi, B K; Nayak, S K; Nayak, T K; Neumaier, S; Nyanin, A; Nikitin, V A; Nikolaev, S; Nilsson, P O; Nishimura, S; Nomokonov, V P; Nystrand, J; Obenshain, F E; Oskarsson, A; Otterlund, I; Pachr, M; Pavlyuk, S; Peitzmann, Thomas; Petracek, V; Pinganaud, W; Plasil, F; Von Poblotzki, U; Purschke, M L; Rak, J; Raniwala, R; Raniwala, S; Ramamurthy, V S; Rao, N K; Retière, F; Reygers, K; Roland, G; Rosselet, L; Rufanov, I A; Roy, C; Rubio, J M; Sako, H; Sambyal, S S; Santo, R; Sato, S; Schlagheck, H; Schmidt, H R; Schutz, Y; Shabratova, G; Shah, T H; Sibiryak, Yu; Siemiarczuk, T; Silvermyr, D; Sinha, B C; Slavin, N V; Söderström, K; Solomey, Nickolas; Sood, G; Sørensen, S P; Stankus, P; Stefanek, G; Steinberg, P; Stenlund, E; Stüken, D; Sumbera, M; Svensson, S; Trivedi, M D; Tsvetkov, A A; Tykarski, L; Urbahn, J; Van den Pijll, E C; van Eijndhoven, N; van Nieuwenhuizen, G J; Vinogradov, A; Viyogi, Y P; Vodopyanov, A S; Vörös, S; Wyslouch, B; Yagi, K; Yokota, Y; Young, G R

    2002-01-01

    A measurement of direct photon production in /sup 208/Pb+/sup 208/Pb collisions at 158 A GeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons was extracted as a function of transverse momentum in the interval 0.51.5 GeV/c. the result constitutes the first observation of direct photons in ultrarelativistic heavy-ion collisions. (19 refs).

  1. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  2. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  3. Photonic local oscillator development

    Science.gov (United States)

    Kimberk, Robert; Tong, Edward; Hunter, Todd R.; Christensen, Robert; Blundell, Ray

    2006-12-01

    In the receiver lab, we have developed a 200 GHz to 230 GHz local oscillator constructed from mostly commercially available 1550 nm laser communication components. Theoretical and experimental work show that the laser adds negligible phase noise to this photonic local oscillator system and that spectral purity and phase stability are similar to Gunn oscillator based local oscillator output. The optical path consists of a single 1550 nm diode laser, a lithium niobate optical phase modulator, a Mach Zehnder interferometer (MZI) with a free spectral range of 75 GHz, and a 160 GHz to 260 GHz photomixer whose output is connected to a horn antenna. All of the optical devices and connections are polarization maintaining, and the photomixer was designed and fabricated at the CCLRC Rutherford Appleton Laboratory. The electrical path consists of a YIG synthesizer, operating in the frequency range 14-20 GHz, a frequency doubler, and a power amplifier connected to the RF port of the phase modulator. At the SMA on Mauna Kea, we incorporated the photonic LO into one element (Antenna 6) of a five antenna array for test observations of CO J=2-1 made towards the ultracompact HII region G138.295+1.555. Spectral features of comparable width occur on baselines with and without antenna 6, and noise increases with baseline length independent of antenna number. Continuum observations were also made toward the quasar 3c454.3 for a period of about one hour. In summary, the SMA has proven that the photonic local oscillator operates with adequate phase and frequency stability for radio-interferometry.

  4. Photonic quantum computing (Conference Presentation)

    Science.gov (United States)

    O'Brien, Jeremy L.

    2017-05-01

    Of the various approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation at the single photon level; while the challenge of entangling interactions between photons can be met via measurement induced non-linearities. However, the real excitement with this architecture is the promise of ultimate manufacturability: All of the components--inc. sources, detectors, filters, switches, delay lines--have been implemented on chip, and increasingly sophisticated integration of these components is being achieved. We will discuss the opportunities and challenges of a fully integrated photonic quantum computer.

  5. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  6. Spaceborne Photonics Institute

    Science.gov (United States)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  7. Advanced Photonic Hybrid Materials

    Science.gov (United States)

    2015-07-01

    Rev. 8/98) Prescribed by ANSI Std. Z39.18 Advanced photonic hybrid materials    Final report from S. Parola, Laboratoire de  Chimie  ENS Lyon...Meeting, San Francisco, USA, April 2013.  ‐ Nanoparticules hybrides fluorescentes pour l’imagerie, S. Parola, GDR Imagerie,  Chimie  et Microscopie, Lyon

  8. Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.

    Science.gov (United States)

    Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M

    2017-04-04

    Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.

  9. Photon Differentials in Space and Time

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny

    2011-01-01

    We present a novel photon mapping algorithm for animations. We extend our previous work on photon differentials [12] with time differentials. The result is a first order model of photon cones in space an time that effectively reduces the number of required photons per frame as well as efficiently...... reduces temporal aliasing without any need for in-between-frame photon maps....

  10. Towards a measurement of the two-photon decay width of the Higgs boson at a photon collider

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rosca, A. [West Univ. of Timisoara (Romania)

    2007-05-15

    A study of the measurement of the two photon decay width times the branching ratio of a Higgs boson with the mass of 120 GeV in photon-photon collisions is presented, assuming a {gamma}{gamma} integrated luminosity of 80 fb{sup -1} in the high energy part of the spectrum. The analysis is based on the reconstruction of the Higgs events produced in the {gamma}{gamma}{yields}H process, followed by the decay f the Higgs into a b anti b pair. A statistical error of the measurement of the two-photon width, {gamma}(H{yields}{gamma}{gamma}), times the branching ratio of the Higgs boson, BR(H {yields}b anti b) is found to be 2.1 % for one year of data taking. (orig.)

  11. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  12. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  13. Non-Poissonian photon statistics from macroscopic photon cutting materials

    NARCIS (Netherlands)

    De Jong, Mathijs; Meijerink, A; Rabouw, Freddy T.

    2017-01-01

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and

  14. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann

    2011-01-01

    We present a new adaptive photon tracing algorithm which can handle illumination settings that are considered difficult for photon tracing approaches such as outdoor scenes, close-ups of a small part of an illuminated region, and illumination coming through a small gap. The key contribution in our...... algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...

  15. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber.

    Science.gov (United States)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-12

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  16. Progress in 2D photonic crystal Fano resonance photonics

    Science.gov (United States)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  17. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  18. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  19. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...... fabricated on silicon-on-insulator chips and have advantages of compactness and capability to integrate with electronics....

  20. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  1. Nanowire-based Quantum Photonics

    NARCIS (Netherlands)

    Bulgarini, G.

    2014-01-01

    In this thesis work, I studied individual quantum dots embedded in one-dimensional nanostructures called nanowires. Amongst the effects given by the nanometric dimensions, quantum dots enable the generation of single light particles: photons. Single photon emitters and detectors are central building

  2. Candidate for a Z boson decaying into leptons, produced in association with jets and collected at the ATLAS Experiment

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Candidate for Z→μμ decay, with the Z produced in association with three jets, collected on 10 May 2010. In the xy projection, the 144 GeV transverse momentum of the Z boson is especially apparent. The muon transverse momenta are 96 GeV and 68 GeV, and their invariant mass is 79 GeV. The harder muon has left a significant energy deposit (see lego-plot projection), presumably through bremsstrahlung; this is not included in the standard Z mass calculation. The jet transverse energies are 168, 105, and 45 GeV.

  3. An all-silicon single-photon source by unconventional photon blockade.

    Science.gov (United States)

    Flayac, Hugo; Gerace, Dario; Savona, Vincenzo

    2015-06-10

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area.

  4. Feasibility of tunable MEMS photonic crystal devices.

    Science.gov (United States)

    Rajic, S; Corbeil, J L; Datskos, P G

    2003-01-01

    Periodic photonic crystal structures channel electromagnetic waves much as semiconductors/quantum wells channel electrons. Photonic bandgap crystals (PBC) are fabricated by arranging sub-wavelength alternating materials with high and low dielectric constants to produce a desired effective bandgap. Photons with energy within this bandgap cannot propagate through the structure. This property has made these structures useful for microwave applications such as frequency-selective surfaces, narrowband filters, and antenna substrates when the dimensions are on the order of millimeters. They are also potentially very useful, albeit much more difficult to fabricate, in the visible/near-infrared region for various applications when the smallest dimensions are at the edge of current micro-lithography fabrication tools. We micro-fabricated suspended free standing micro-structure bridge waveguides to serve as substrates for PBC features. These micro-bridges were fabricated onto commercial silicon-on-insulator wafers. Nanoscale periodic features were fabricated onto these micro-structure bridges to form a tunable system. When this combined structure is perturbed, such as mechanical deflection of the suspended composite structure at resonance, there can be a realtime shift in the material effective bandgap due to slight geometric alterations due to the induced mechanical stress. Extremely high resonance frequencies/device speeds are possible with these very small dimension MEMS.

  5. Advanced Photon Source: science retrospect and prospect

    Science.gov (United States)

    Shenoy, G. K.

    2004-07-01

    This overview will provide a brief introduction to the development of the synchrotron radiation field and discuss the science drivers that defined the advanced photon source. Successful efforts over the years towards higher spatial, temporal, momentum, and energy resolution, as well as use of X-ray polarization and partial coherence in the transverse direction are continuing to produce forefront science at the advanced photon source. These advances have resulted from continued enhancement in the average brightness of X-ray beams, control of polarization, X-ray pulse delivery pattern, constant intensity operation, and matching X-ray optical schemes. The success will be illustrated through selected examples. The ascending scientific success of the advanced photon source will continue through the development of superior real-time and real-space techniques to study spin and charge dynamics and through further enhancement of average brightness, which will increase the feasibility of many energy- and momentum-resolution experiments that are currently marginal. Before the turn of the decade, we expect the merger of the techniques in the synchrotron radiation field and laser field to result in X-ray free-electron lasers, which will provide fully coherent beams of X-rays with unprecedented peak brightness and femtosecond resolution. It is the intent of this overview to set the stage for more detailed discussions consistent with the objective of the workshop.

  6. Applied photonic therapy in veterinary medicine

    Science.gov (United States)

    Wood, Terry R.; McLaren, Brian C.

    2005-04-01

    There can be no question that specific systemic physiological results occur, when red light (660nm) is applied to the skin, it is now more a question of detailed mechanisms. Before gathering statistically signifcant clinical trial data, it is important to first enumerate the type of results observed in practice. Case histories are presented highlighting the use of photonic therapy in veterinary medicine. Over 900 surgical procedures have been performed and documented, utilizing the principles of photonic therapy, and while hemostasis, pain relief, and nausea relief, were the primary goals, the peri-operative death rate, the post-operative seroma, and post-operative infection were reduced to almost zero, and there was a noticeable increase in the healing rate. Scientifically applied photonic therapy, rather than supplanting conventional veterinary medicine, compliments and increases the veterinarian's set of skills. This paper proposes a hypothesis of how 660 nm light applied to specific points on the skin, produces various physiological changes in animals. By using animals, there can be no placebo, hypnotic or psychosomatic confounding effects.

  7. Photon intensity interferometry with multidetectors

    Energy Technology Data Exchange (ETDEWEB)

    Badala, A. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Barbera, R. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy) Dipartimento di Fisica dell' Universita di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Palmeri, A. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Pappalardo, G.S. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Riggi, F. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy) Dipartimento di Fisica dell' Universita di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Russo, A.C. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Russo, G. (Dipartimento di Fisica dell' Universita di Catania, 57, Corso Italia, I-95129 Catania (Italy) Istit

    1994-12-01

    The technique of two-photon interferometry in heavy ion collisions at the intermediate energies is discussed and the importance of a new methodology, used in the treatment of the experimental data, is evidenced. For the first time, both the relative momentum, q[sub rel], and the relative energy, q[sub 0], of the two correlated photons have been simultaneously used to extract the source size and lifetime of the emitting source. As an application, the performances of the BaF[sub 2] ball of the MEDEA multidetector as a photon intensity interferometer have been evaluated. The response of such a detector to correlated pairs of photons has been studied through full GEANT3 simulations. The effects of the experimental filter on the photon correlation function have been investigated, and the noise, induced in the correlation signal by cosmic radiation, neutral pion decay, and [gamma]-conversion, has also been estimated. ((orig.))

  8. Photon intensity interferometry with multidetectors

    Science.gov (United States)

    Badalà, A.; Barbera, R.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.; Russo, A. C.; Russo, G.; Turrisi, R.

    1994-12-01

    The technique of two-photon interferometry in heavy ion collisions at the intermediate energies is discussed and the importance of a new methodology, used in the treatment of the experimental data, is evidenced. For the first time, both the relative momentum, qrel, and the relative energy, q0, of the two correlated photons have been simultaneously used to extract the source size and lifetime of the emitting source. As an application, the performances of the BaF 2 ball of the MEDEA multidetector as a photon intensity interferometer have been evaluated. The response of such a detector to correlated pairs of photons has been studied through full GEANT3 simulations. The effects of the experimental filter on the photon correlation function have been investigated, and the noise, induced in the correlation signal by cosmic radiation, neutral pion decay, and γ-conversion, has also been estimated.

  9. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  10. On Self Sustained Photonic Globes

    CERN Document Server

    Eswaran, K

    2013-01-01

    In this paper we consider a classical treatment of a very dense collection of photons forming a self-sustained globe under its own gravitational influence. We call this a "photonic globe" We show that such a dense photonic globe will have a radius closely corresponding to the Schwarzschild radius. Thus lending substance to the conjuncture that the region within the Schwarzschild radius of a black hole contains only pure radiation. As an application example, we consider the case of a very large photonic globe whose radius corresponds to the radius of the universe and containing radiation of the frequency of the microwave background (160.2 GHZ). It so turns out that such a photonic globe has an average density which closely corresponds to the observed average density of our universe.

  11. Photonic quantum information: science and technology.

    Science.gov (United States)

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  12. Spatial photon correlations in multiple scattering media

    DEFF Research Database (Denmark)

    Smolka, Stephan; Muskens, O.; Lagendijk, A.

    2010-01-01

    We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....

  13. Electron-photon shower distribution function tables for lead, copper and air absorbers

    CERN Document Server

    Messel, H

    2013-01-01

    Electron-Photon Shower Distribution Function: Tables for Lead, Copper and Air Absorbers presents numerical results of the electron-photon shower distribution function for lead, copper, and air absorbers. Electron or photon interactions, including Compton scattering, elastic Coulomb scattering, and the photo-electric effect, are taken into account in the calculations. This book consists of four chapters and begins with a review of both theoretical and experimental work aimed at deducing the characteristics of the cascade produced from the propagation of high energy electrons and photons through

  14. Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths.

    Science.gov (United States)

    Kuo, Paulina S; Gerrits, Thomas; Verma, Varun B; Nam, Sae Woo

    2016-11-01

    We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down-conversion paths. The observed interference signature is closely related to the spectral correlations between photons in a Hong-Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two down-conversion paths, which is required for high entanglement visibility.

  15. Nonlocal hyperconcentration on entangled photons using photonic module system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhang, Ru [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, Chuan, E-mail: wangchuan@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-06-15

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  16. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  17. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  18. Twist Defect in Chiral Photonic Structures

    Science.gov (United States)

    Kopp, Victor I.; Genack, Azriel Z.

    2002-06-01

    We demonstrate that twisting one part of a chiral photonic structure about its helical axis produces a single circularly polarized localized mode that gives rise to an anomalous crossover in propagation. Up to a crossover thickness, this defect results in a peak in transmission and exponential scaling of the linewidth for a circularly polarized wave with the same handedness as structure. Above the crossover, however, the linewidth saturates and the defect mode can be excited only by the oppositely polarized wave, resulting in a peak in reflection instead of transmission.

  19. Advances in DNA photonics

    Science.gov (United States)

    Heckman, Emily M.; Aga, Roberto S.; Fehrman Cory, Emily M.; Ouchen, Fahima; Lesko, Alyssa; Telek, Brian; Lombardi, Jack; Bartsch, Carrie M.; Grote, James G.

    2012-10-01

    In this paper we present our current research in exploring a DNA biopolymer for photonics applications. A new processing technique has been adopted that employs a modified soxhlet-dialysis (SD) rinsing technique to completely remove excess ionic contaminants from the DNA biopolymer, resulting in a material with greater mechanical stability and enhanced performance reproducibility. This newly processed material has been shown to be an excellent material for cladding layers in poled polymer electro-optic (EO) waveguide modulator applications. Thin film poling results are reported for materials using the DNA biopolymer as a cladding layer, as are results for beam steering devices also using the DNA biopolymer. Finally, progress on fabrication of a Mach Zehnder EO modulator with DNA biopolymer claddings using nanoimprint lithography techniques is reported.

  20. Regenerative photonic therapy: Review

    Science.gov (United States)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.