WorldWideScience

Sample records for bremsstrahlung magnetic

  1. Effect of bremsstrahlung radiation emission on distributions of runaway electrons in magnetized plasmas

    CERN Document Server

    Embréus, Ola; Newton, Sarah; Papp, Gergely; Hirvijoki, Eero; Fülöp, Tünde

    2015-01-01

    Bremsstrahlung radiation is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of bremsstrahlung radiation reaction on the electron distribution in 2D momentum space. We show that the emission of bremsstrahlung radiation leads to non-monotonic features in the electron distribution function and describe how the simultaneous inclusion of synchrotron and bremsstrahlung radiation losses affects the dynamics of fast electrons. We give quantitative expressions for (1) the maximum electron energy attainable in the presence of bremsstrahlung losses and (2) when bremsstrahlung radiation losses are expected to have a stronger effect than synchrotron losses, and verify these expressions numerically. We find that, in typical tokamak scenarios, synchrotron radiation losses will dominate over bremsstrahlung losses, except in cases of very high density, such as during massive gas injection.

  2. Axion Bremsstrahlung

    CERN Document Server

    Melkumova, E Y; Kerner, R; Melkumova, Elena; Tsov, Dmitry V. Gal'; Kerner, Richard

    2003-01-01

    A new mechanism of cosmic axion production is proposed: axion bremsstrahlung from collisions of straight global strings. This effect is of the second order in the axion coupling constant, but the resulting cosmological estimate is likely to be of the same order as that corresponding to radiation from oscillating string loops. This may lead to a further restriction on the axion window.

  3. Polarization Bremsstrahlung

    CERN Document Server

    Korol, Andrey V

    2014-01-01

    This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters.   The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications.  Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties.   Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential  information required f...

  4. D-brane Bremsstrahlung

    CERN Document Server

    Bachlechner, Thomas C

    2013-01-01

    We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.

  5. D-brane bremsstrahlung

    Science.gov (United States)

    Bachlechner, Thomas C.; McAllister, Liam

    2013-10-01

    We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.

  6. A measurement of the magnetic dipole moment of the. delta. /sup + +/(1232) from the bremsstrahlung process. pi. p. -->. pi. p. gamma

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.A.

    1987-06-01

    We have measured the cross section from the bremsstrahlung process ..pi../sup +/p ..-->.. ..pi../sup +/p..gamma.. for incident pions of energy 299 MeV. We detected the out going pion in the angular range from 55 to 95/sup 0/ in the lab, and photons were detected near 240/sup 0/ in the lab. We compare this measured cross-section to the MIT theory in order to extract a measurement of the magnetic dipole moment of the ..delta../sup + +/(1232), ..mu../sub ..delta../. In order to compare our results with the MIT theory, we have folded the MIT theory into the acceptance of our apparatus. We find that for pion angles between 55 and 75/sup 0/ the theory gives us a dipole moment of: 2.3..mu../sub p/ < ..mu../sub ..delta../ < 3.3..mu../sup p/ where the quoted error arises from an experimental uncertainty of +-0.25..mu../sub p/ and from theoretical uncertainties of +-0.25 ..mu../sub p/. However, for pion angles between 75 and 95/sup 0/ we find that the MIT theory predicts a cross-section which is larger than our measured cross-section, and makes it difficult to extract a value of ..mu../sub ..delta../. This over prediction is not understood, but consistent with a similar effect when the MIT theory is fit to previous data. 78 figs., 29 tabs.

  7. Runaway electrons and Bremsstrahlung

    Science.gov (United States)

    Helander, Per

    2016-09-01

    If an electric field is applied to a plasma, it causes ‘runaway’ acceleration of some electrons—a phenomenon that has been known for almost a century. A paper by Embréus et al (2016 New J. Phys. 18 093023) calculates how the emission of Bremsstrahlung affects the upper end of the energy spectrum of these electrons, and finds that it is important to carefully account for finite energy of the emitted photons.

  8. Simulation of Bremsstrahlung production

    Energy Technology Data Exchange (ETDEWEB)

    Patau, J.P.; Malbert, M.; Terrissol, M. (Centre de Physique Atomique, Toulouse (France))

    1981-10-01

    Electron slowing down and related phenomena are often greatly affected by bremsstrahlung production. Each creation of photon is individually simulated on the basis of a cross-section pack advised by Koch and Motz with corrections in the high energy frequency limit region. An accurate and fast sampling method is described. Its applicability covers a range between 50 keV and 80 MeV for target atoms whose atomic number is from 5 up to 90.

  9. EXPERIMENTAL SET UP TO MEASURE COHERENT BREMSSTRAHLUNG AND BEAM PROFILES IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    TRBOJEVIC,D.; GASNER,D.; MACKAY,W.; MCINTYRE,G.; PEGGS,S.; TEPIKIAN,S.; SERBO,V.; KOTKIN,G.

    2002-06-03

    A proposal for an experiment to detect and measure with an array infrared detector either the infrared radiation from the beam-beam coherent bremsstrahlung or from the synchrotron light from the edge effect of large DX RHIC magnet is described. Predictions for the 100 GeV/nucleon gold and 250 GeV proton signals from both bremsstrahlung and synchtrotron radiation magnet edge effect are shown.

  10. Coherence effects in nuclear bremsstrahlung

    NARCIS (Netherlands)

    Lohner, H

    2002-01-01

    The production of nuclear bremsstrahlung (Egamma > 30 MeV) has been studied in heavy-ion collisions, as well as proton and alpha-particle collisions with nuclei. In heavy-ion reactions the measured photon spectra show an exponential shape dominated by the incoherent sum of photons produced in first-

  11. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    CERN Document Server

    Baring, M G; Ellison, D C; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    1999-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at b...

  12. Ultrahigh-intensity inverse bremsstrahlung

    Science.gov (United States)

    Kostyukov, I. Yu.; Rax, J.-M.

    1999-01-01

    We study inverse bremsstrahlung in the ultrahigh intensity relativistic regime. The fully relativistic ultrahigh intensity absorption (emission) coefficient is derived for an arbitrary scattering potential and small-angle scattering. We find that in the Coulomb field case this absorption (emission) coefficient can be calculated as a function of the quiver energy, drift momentum, and impact parameter in two complementary regimes: (i) for remote collisions when the impact parameter is larger than the amplitude of the quiver motion, and (ii) for instantaneous collisions when the scattering time is shorter than the period of the wave. Both circular and linear polarizations are considered, and this study reveals that in this relativistic regime inverse bremsstrahlung absorption can be viewed as a harmonic Compton resonance heating of the laser-driven electron by the virtual photon of the ion Coulomb field. The relativistic modification of Marcuse's effect [Bell Syst. Tech. J. 41, 1557 (1962)] are also discussed, and relations with previous nonrelativistic results are elucidated.

  13. Diffractive Bremsstrahlung in Hadronic Collisions

    Directory of Open Access Journals (Sweden)

    Roman Pasechnik

    2015-01-01

    Full Text Available Production of heavy photons (Drell-Yan, gauge bosons, Higgs bosons, and heavy flavors, which is treated within the QCD parton model as a result of hard parton-parton collision, can be considered a bremsstrahlung process in the target rest frame. In this review, we discuss the basic features of the diffractive channels of these processes in the framework of color dipole approach. The main observation is a dramatic breakdown of diffractive QCD factorisation due to the interplay between soft and hard interactions, which dominates these processes. This observation is crucial for phenomenological studies of diffractive reactions in high energy hadronic collisions.

  14. External bremsstrahlung spectra excited by 204Tl β particles in thick targets

    Science.gov (United States)

    Powar, M. S.; Ahmad, Salim; Singh, M.

    1980-06-01

    Spectral distributions of bremsstrahlung produced by 204Tl β particles in thick targets of Perspex, aluminum, copper, tin, and lead have been measured in a sandwich geometry. The contributions of internal bremsstrahlung produced along with the β particles have been determined by magnetic field deflection as well as the Z=O extrapolation method. Experimental results agree with Bethe-Heitler Born-approximation theory, corrected for Coulomb-field effects for low- and medium-Z targets, but show 25% positive deviation for high-Z targets. Again it is found that the bremsstrahlung produced in low-Z targets like Perspex is comparable with internal bremsstrahlung, and the corrections for its contribution to measurements by earlier workers can lead to large uncertainties.

  15. Neutrino-pair bremsstrahlung in a neutron star crust

    CERN Document Server

    Ofengeim, D D; Yakovlev, D G

    2014-01-01

    Based on the formalism by Kaminker et al. (Astron. Astrophys. 343 (1999) 1009) we derive an analytic approximation for neutrino-pair bremsstrahlung emissivity due to scattering of electrons by atomic nuclei in the neutron star crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm which we fit by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which the neutrino bremsstrahlung in the crust is affected by strong magnetic fields. The results can be applied for modelling of many phenomena in neutron stars, such as thermal relaxation in young isolated neutron stars and in accreting neutron stars with overheated crust in soft X-ray transients.

  16. Beta Bremsstrahlung dose in concrete shielding

    Science.gov (United States)

    Manjunatha, H. C.; Chandrika, B. M.; Rudraswamy, B.; Sankarshan, B. M.

    2012-05-01

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides (32P, 89Sr, 90Sr-90Y, 90Y, 91Y, 208Tl, 210Bi, 234Pa and 40K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to 90Sr-90Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Zmod) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study.

  17. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  18. Atomic Bremsstrahlung: retrospectives, current status and perspectives

    OpenAIRE

    Amusia, M. Ya.

    2005-01-01

    We describe here the Atomic bremsstrahlung - emission of continuous spectrum electromagnetic radiation, which is generated in collisions of particles that have internal deformable structure that includes positively and negatively charged constituents. The deformation of one of or both colliding partners induces multiple, mainly dipole, time-dependent electrical moments that become a source of radiation. The history of Atomic bremsstrahlung invention is presented and it's unusual in comparison...

  19. Coherent bremsstrahlung at colliding beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F. (Inst. of Mathematics, Novosibirsk (Russia)); Kotkin, G.L.; Serbo, V.G. (Novosibirsk State Univ. (Russia)); Polityko, S.I. (Irkutsk State Univ. (Russia))

    1992-07-30

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS). CBS can be treated as radiation of the first bunch particles caused by the collective electromagnetic field of the short second bunch. A general method for the calculation of this CBS is presented. The number of CBS photons per single collision is dN{sub {gamma}}{approx equal}N{sub 0}dE{sub {gamma}}/E{sub {gamma}} in the energy range E{sub {gamma}}

  20. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    ("ultraperipheral collisions"). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2γ times the position of the giant dipole resonance, that is, near 25γ....... In collisions with nuclear contact, though, substantial radiation is emitted. It overshoots the bremsstrahlung. However, despite the violence of contact events, the associated photon emission only exceeds the radiation from a hypothetical structureless pointlike nucleus [emitted energy per unit photon...

  1. Stabilization effect ofWeibel modes due to inverse bremsstrahlung absorption in laser fusion plasma using Krook collisions model

    Indian Academy of Sciences (India)

    S BELGHIT; A SID

    2016-12-01

    In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed. The main result obtained in this work is that the inclusion of self-generated magnetic field due to Weibel instability to the inverse bremsstrahlung absorption causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes.This decrease is accompanied by a reduction of two orders in the growth rate of instability or even stabilization of these modes. It has been shown that the previous analyses of the Weibel instability due to inverse bremsstrahlunghave overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the Weibel instability due to inverse bremsstrahlung should not affect the experiences of an inertial confinement fusion.

  2. Radiative Corrections to High Energy Lepton Bremsstrahlung on Heavy Nuclei

    CERN Document Server

    Arbuzov, A B

    2008-01-01

    One-loop radiative corrections to the leptonic tensor in high energy bremsstrahlung on heavy nuclei are calculated. Virtual and real photon radiation is taken into account. Double bremsstrahlung is simulated by means of Monte Carlo. Numerical results are presented for the case of muon bremsstrahlung in conditions of the COMPASS experiment at CERN.

  3. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    CERN Document Server

    Komarov, S; Churazov, E; Schekochihin, A

    2016-01-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g., conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is $\\sim 0.1 \\%$ at energies $\\gtrsim kT$. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scale...

  4. Bremsstrahlung gamma rays from light Dark Matter

    CERN Document Server

    Cirelli, Marco; Zaharijas, Gabrijela

    2013-01-01

    We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moder...

  5. Noncoplanarity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Timmermans, RGE; Gibson, BF; Li, Y; Liou, MK

    2002-01-01

    Using the soft-photon approximation, we address the issue of the importance of noncoplanarity effects in proton-proton bremsstrahlung, We investigate the noncoplanar cross section as a function of the noncoplanarity angle (φ) over bar for the entire range of the photon polar angle psi(gamma). The (φ

  6. Goniometer Control System for Coherent Bremsstrahlung Production

    Science.gov (United States)

    Acousta, V. M.

    2002-08-01

    A system for the generation of a high-intensity, quasi-monochromatic photon beam is discussed. The theory behind coherent bremsstrahlung photon beam production is analyzed and developed. The mechanics of a goniometer control system are presented. The software developed for remote control of the goniometer is also discussed. Finally, the results from various performance measurements are included.

  7. History and status of coherent bremsstrahlung

    Science.gov (United States)

    Überall, Herbert

    2005-08-01

    Coherent bremsstrahlung research originated with the 1955 papers by Dyson and Uberall, Ter-Mikaelian, and Ferretti. Its intermediate status thirty years later has been documented by Saenz and Uberall in the book Coherent Radiation Sources (A. W. Sáenz and H. Überall, editors), Springer, Berlin 1985. The first precision experiments were carried out by Diambrini-Palazzi et al. (1 960) in Frascati shortly after the theory had been developed; see also Timm (1 969). After experimentation by dozens of electron accelerator laboratories all over the world, there are presently measurements being made by Arends et al. at the University of Mainz (MAMI, 855 MeV), Klein et al. at the University of Bonn (ELSA, 3 GeV), at CERN (20-170 GeV) by Avakian of the Yerevan Physics Institute and others, and with electron energies of 6 GeV at the Jefferson Laboratory, Newport News, VA (F. J. Klein, Catholic University, spokesperson). At Jefferson Lab, linearly polarized quasi-monochromatic coherent-bremsstrahlung photons [peaked at 1.8GeV, with polarization (after collimation) of 84%] are being used for the production (off protons) of ρ and ω mesons among others. Recent theoretical research deals with coherent bremsstrahlung in quasicrystals (Fusina, Langworthy, and Saenz, 2001), and with planar and axial coherent bremsstrahlung in a diamond crystal (Chouffani, Endo, and Uberall 2001-2), both at low energies. In the latter study, in which the concept of axial coherent bremsstrahlung is now stressed (while in the related processes of planar and axial channeling radiation this distinction is well known), photon emission occurs here not necessarily in the forward direction.

  8. Bremsstrahlung Energy Losses for Cosmic Ray Electrons and Positrons

    CERN Document Server

    Widom, A; Srivastava, R

    2015-01-01

    Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.

  9. Thermal Bremsstrahlung Radiation in a Two-Temperature Plasma

    Institute of Scientific and Technical Information of China (English)

    Bin Luo; Shuang-Nan Zhang

    2004-01-01

    In normal one-temperature plasma the motion of ions is usually neglected when calculating the Bremsstrahlung radiation of the plasma.We calculate the Bremsstrahlung radiation of a two-temperature plasma by taking into account of the motion of ions.Our results show that the total radiation power is always lower if the motion of ions is considered.We also apply the two-temperature Bremsstrahlung radiation mechanism for an analytical Advection-Dominated Accretion Flow(ADAF)model:we find the two-temperature correction to the total Bremsstrahlung radiation for ADAF is negligible.

  10. Vector dark matter annihilation with internal bremsstrahlung

    OpenAIRE

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound st...

  11. Coherent bremsstrahlung at the HERA collider

    Energy Technology Data Exchange (ETDEWEB)

    Ginzberg, I.F. (Inst. of Mathematics, Novosibirsk (Russian Federation)); Kotkin, G.L. (Novosibirsk State Univ. (Russian Federation)); Polityko, S.I. (Irkutsk State Univ. (Russian Federation)); Serbo, V.G. (Irkutsk State Univ. (Russian Federation))

    1993-12-01

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS) which is the radiation of the first bunch particles caused by the collective electromagnetic field of the second bunch. The number of CBS photons for a single collision is dN[sub y][approx]N[sub 0]dE[sub y]/E[sub y] in the energy range E[sub y]< or [approx]E[sub c]=4y[sub 1][sup 2]hc/l[sub 2]. Here y[sub 1]=E[sub 1]/m[sub 1]c[sup 2]; l[sub 2] is the length of the opposing (second) bunch and N[sub 0] is proportional to N[sub 1]N[sub 2][sup 2] where N[sub j] is the j-th bunch population. For the HERA collider N[sub 0]=14, E[sub c]=73 eV in the case when photons are emitted by protons and N[sub 0]=6.10[sup 7], E[sub c]=24 keV - when photons are emitted by electrons. Unusual properties of such a coherent bremsstrahlung and the possibility to use CBS for fast beam steering and for luminosity optimization are discussed. (orig.)

  12. Coherent bremsstrahlung used for digital subtraction angiography

    Science.gov (United States)

    Überall, Herbert

    2007-05-01

    Digital subtraction angiography (DSA), also known as Dichromography, using synchrotron radiation beams has been developed at Stanford University (R. Hofstadter) and was subsequently taken over at the Brookhaven Synchrotron and later at Hamburg (HASYLAB) [see, e.g., W.R. Dix, Physik in unserer Zeit. 30 (1999) 160]. The imaging of coronary arteries is carried out with an iodine-based contrast agent which need not be injected into the heart. The radiation must be monochromatized and is applied above and below the K-edge of iodine (33.16 keV), with a subsequent digital subtraction of the two images. Monochromatization of the synchrotron radiation causes a loss of intensity of 10 -3. We propose instead the use of coherent bremsstrahlung [see, e.g., A.W. Saenz and H. Uberall, Phys. Rev. B25 (1982) 448] which is inherently monochromatic, furnishing a flux of 10 12 photon/sec. This requires a 10-20 MeV electron linac which can be obtained by many larger hospitals, eliminating the scheduling problems present at synchrotrons. The large, broad incoherent bremsstrahlung background underlying the monochromatic spike would lead to inadmissible overexposure of the patient. This problem can be solved with the use of Kumakhov's capillary optics [see e.g., S.B.Dabagov, Physics-Uspekhi 46 (2003) 1053]: the low-energy spiked radiation can be deflected towards the patient, while the higher energy incoherent background continues forward, avoiding the patient who is placed several meters from the source.

  13. Vector dark matter annihilation with internal bremsstrahlung

    Science.gov (United States)

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2017-03-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  14. Vector dark matter annihilation with internal bremsstrahlung

    Directory of Open Access Journals (Sweden)

    Gulab Bambhaniya

    2017-03-01

    Full Text Available We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion–antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  15. Vector dark matter annihilation with internal bremsstrahlung

    CERN Document Server

    Bambhaniya, Gulab; Marfatia, Danny; Nayak, Alekha C; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  16. Axion bremsstrahlung from collisions of global strings

    CERN Document Server

    Galtsov, D V; Kerner, R

    2003-01-01

    We calculate axion radiation emitted in the collision of two straight global strings. The strings are supposed to be in the unexcited ground state, to be inclined with respect to each other, and to move in parallel planes. Radiation arises when the point of minimal separation between the strings moves faster than light. This effect exhibits a typical Cerenkov nature. Surprisingly, it allows an alternative interpretation as bremsstrahlung under a collision of point charges in 2+1 electrodynamics. This can be demonstrated by suitable world-sheet reparameterizations and dimensional reduction. Cosmological estimates show that our mechanism generates axion production comparable with that from the oscillating string loops and may lead to further restrictions on the axion window.

  17. Dynamical model for Pion-Nucleon Bremsstrahlung

    CERN Document Server

    Mariano, A V

    2000-01-01

    A dynamical model based on effective Lagrangians is proposed to describe the bremsstrahlung reaction $ \\pi N \\to \\pi N \\gamma$ at low energies. The $\\Delta(1232)$ degrees of freedom are incorporated in a way consistent with both, electromagnetic gauge invariance and invariance under contact transformations. The model also includes the initial and final state rescattering of hadrons via a T-matrix with off-shell effects. The $\\pi N \\gamma$ differential cross sections are calculated using three different T-matrix models and the results are compared with the soft photon approximation, and with experimental data. The aim of this analysis is to test the off-shell behavior of the different T-matrices under consideration.

  18. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2016-09-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator. We find that electrons accelerated by electric fields can reach significantly higher energies than predicted by the commonly used radiative stopping-power model. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution by causing pitch-angle scattering at a rate that increases with energy.

  19. Electron spectroscopy in the fundamental process of electron-nucleus bremsstrahlung; Elektronenspektroskopie im Fundamentalprozess der Elektron-Kern-Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, Pierre-Michel

    2013-07-15

    Within the scope of this thesis the fundamental process of electron-nucleus bremsstrahlung was studied in inverse kinematics at the Experimental Storage Ring ESR at GSI. For the system U{sup 88+} + N{sub 2} at 90 MeV/u it was shown, that by using inverse kinematics coincidence measurements between the scattered electron and the emitted photon can be performed for the case, in which the incoming electron transfers almost all of its kinetic energy onto the emitted photon. The sensitivity to the fundamental process could be achieved by measuring triple differential cross sections as a function of the emission angle of the photon and the scattered electron as well as the energy of the scattered electron. The optics of the magnetic electron spectrometer used were thoroughly revised and optimized to the experimental requirements. Analyzing different coincidences in this collision system, it was possible to determine the contributions to the electron distribution arising from radiative electron capture to the projectile continuum, nonradiative electron capture to the projectile continuum, and electron loss to the projectile continuum. The experimental results of each of these processes were compared to theoretical calculations. The electron spectra for the radiative and the nonradiative electron capture to continuum clearly reproduce the opposite asymmetry predicted by theory. Furthermore electron spectra for collisions of U{sup 28+} with different gases were measured.

  20. Angular bremsstrahlung during $\\alpha$-decay and unified formula of the bremsstrahlung probability

    CERN Document Server

    Maydanyuk, Sergei P

    2009-01-01

    The multipolar model of angular bremsstrahlung of photons accompanying $\\alpha$-decay is presented. A probability of the photons emission calculated on the basis of the model without any normalization on experimental data are found at $90^{\\circ}$ of the angle $\\vartheta_{\\alpha\\gamma}$ between directions of motion of the $\\alpha$-particle (with its tunneling under barrier) and emission of photons to be in a good agreement with the newest experimental data for the $^{210}{\\rm Po}$, $^{214}{\\rm Po}$, and $^{226}{\\rm Ra}$ nuclei. The spectrum for $^{244}{\\rm Cm}$ is found at $\\vartheta_{\\alpha\\gamma} = 25^{\\circ}$ to be in satisfactory agreement with high limit of errors of experimental data of Japanese group. A comparative analysis for the angular formalisms of the multipole and dipole approaches, and for the spectra calculated for $^{210}{\\rm Po}$ both in the absolute scale and with normalization on experimental data is presented. Distribution of the bremsstrahlung probability on the numbers of protons and nu...

  1. Impulsive solar X-ray bursts. 3: Polarization and directivity of bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    The spectrum, directivity and state of polarization is presented of the bremsstrahlung radiation expected from a beam of high energy electrons spiraling along radial magnetic field lines toward the photosphere. The results are used for calculation of the characteristics of the reflected plus direct flux.

  2. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    CERN Document Server

    Embréus, Ola; Fülöp, Tünde

    2016-01-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons. We find that electrons accelerated by electric fields can reach significantly higher energies than what is expected from energy-loss considerations. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution.

  3. Bremsstrahlung signatures of dark matter annihilation in the Sun

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Marfatia, Danny

    2012-01-01

    The nonrelativistic annihilation of Majorana dark matter in the Sun to a pair of light fermions is chirality-suppressed. Annihilation to 3-body final states $\\ell^+f^-V$, where $V=W,Z,\\gamma$, and $\\ell$ and $f$ are light fermions (that may be the same), becomes dominant since bremsstrahlung relaxes the chirality suppression. We evaluate the neutrino spectra at the source, including spin and helicity dependent effects, and assess the detectability of each significant bremsstrahlung channel at IceCube/DeepCore. We also show how to combine the sensitivities to the dark matter-nucleon scattering cross section in individual channels, since typically several channels contribute in models.

  4. Spectra and rates of bremsstrahlung neutrino emission in stars

    CERN Document Server

    Guo, Gang

    2016-01-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average $\\bar{\

  5. Observation of the muon inner bremsstrahlung at LEP1

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J.; Antilogus, P.; Augustin, J.E.; Baubillier, M.; Berggren, M.; Silva, W. da; Kapusta, F.; Savoy-Navarro, A. [Univ. Paris VI et VII, LPNHE, IN2P3-CNRS, Paris Cedex 05 (France); Abreu, P.; Andringa, S.; Anjos, N.; Castro, N.; Espirito Santo, M.C.; Goncalves, P.; Moreno, S.; Onofre, A.; Peralta, L.; Pimenta, M.; Tome, B.; Veloso, F. [LIP, IST, Lisboa Codex (Portugal); Adam, W.; Buschbeck, B.; Leder, G.; Liko, D.; MacNaughton, J.; Mandl, F.; Mitaroff, W.; Strauss, J. [Institut fuer Hochenergiephysik, Oesterr. Akad. d. Wissensch., Vienna (Austria); Adzic, P.; Fanourakis, G.; Kokkinias, P.; Loukas, D.; Markou, A.; Mastroyiannopoulos, N.; Nassiakou, M.; Tzamarias, S.; Zupan, M. [Institute of Nuclear Physics, N.C.S.R. Demokritos, P.O. Box 60228, Athens (Greece); Albrecht, T.; Allmendinger, T.; Apel, W.D.; Boer, W. de; Feindt, M.; Haag, C.; Hauler, F.; Hennecke, M.; Jungermann, L.; Kerzel, U.; Moch, M.; Rehn, J.; Sander, C.; Stanitzki, M.; Weiser, C. [Universitaet Karlsruhe, Institut fuer Experimentelle Kernphysik, Postfach 6980, Karlsruhe (Germany); Alemany-Fernandez, R.; Ask, S.; Augustinus, A.; Baillon, P.; Battaglia, M.; Camporesi, T.; Carena, F.; Charpentier, P.; Chierici, R.; Chudoba, J.; Chung, S.U.; Collins, P.; Elsing, M.; Foeth, H.; Gavillet, P.; Herr, H.; Holt, P.J.; Joram, C.; Kjaer, N.J.; Marin, J.C.; Mariotti, C.; Pape, L.; Parzefall, U.; Piotto, E.; Poireau, V.; Rebecchi, P.; Schwickerath, U.; Spassov, T.; Treille, D.; Eldik, J. van; Vulpen, I. van; Wicke, D. [CERN, Geneva 23 (Switzerland); Allport, P.P.; Booth, P.S.L.; Bowcock, T.J.V.; Houlden, M.A.; Jackson, J.N.; King, B.T.; Mc Nulty, R.; Palacios, J.P.; Tobin, M.; Washbrook, A.J. [University of Liverpool, Department of Physics, P.O. Box 147, Liverpool (United Kingdom); Amaldi, U.; Bonesini, M.; Calvi, M.; Matteuzzi, C.; Paganoni, M.; Pullia, A.; Tabarelli, T.; Tonazzo, A. [Universita di Milano-Bicocca and INFN-MILANO, Dipartimento di Fisica, Milan (Italy)] [and others

    2008-10-15

    Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z{sup 0} decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06{+-}0.12{+-}0.07 in the photon energy range 0.2bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP. (orig.)

  6. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information o

  7. Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering

    NARCIS (Netherlands)

    Haeringen, W. van

    1960-01-01

    The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between

  8. Feasibility Studies of Exclusive Diffractive Bremsstrahlung Measurement at RHIC Energies

    OpenAIRE

    Chwastowski, Janusz; Cyz, Antoni; Fulek, Łukasz; Kycia, Radosław; Pawlik, Bogdan; Sikora, Rafał; Turnau, Jacek

    2015-01-01

    Feasibility studies of an observation of the exclusive diffractive bremsstrahlung at RHIC at $\\sqrt{s} = 200$~GeV and at $\\sqrt{s} = 500$~GeV are reported. A simplified approach to the photon and the scattered proton energy reconstruction is used. Influence of possible backgrounds is discussed.

  9. Effects of relativity in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Martinus, G.H.; Scholten, O.; Tjon, J.A.

    1997-01-01

    We investigate the influence of negative-energy states in proton-proton bremsstrahlung in a fully relativistic framework using the T matrix of Fleischer and Tjon. The contribution from negative-energy states in the single-scattering diagrams is shown to be large, indicating that relativistic effects

  10. Observation of the Muon Inner Bremsstrahlung at LEP1

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Bérat, C; Berggren, M; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Kokkinias, P; Leinonen, L; Katsoufis, E; Kernel, G; Kersevan, B P; Krumshtein, Z; Lesiak, T; Kerzel, U; Liebig, W; King, B T; Lamsa, J; Liko, D; Kjaer, N J; Leder, G; Kluit, P; Kourkoumelis, C; Leitner, R; Kuznetsov, O; Kucharczyk, M; Ledroit, F; Lopes, J H; Lemonne, J; Lepeltier, V; Lipniacka, A; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Paganoni, M; Nassiakou, M; Paiano, S; Navarria, F; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Ouraou, A; Parkes, C; Oblakowska-Mucha, A; Oyanguren, A; Obraztsov, V F; Olshevski, A; Palacios, J P; Onofre, A; Palka, H; Orava, R; Österberg, K; Pape, L; Papadopoulou, T D; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2008-01-01

    Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2 < E_gamma <= 1 GeV and transverse momentum with respect to the parent muon p_T < 40 MeV/c, and 1 < E_gamma <= 10 GeV and p_T < 80 MeV/c . A good agreement of the observed photon rate with predictions from QED for the muon inner bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z^0 decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06 +/- 0.12 +/- 0.07 in the photon energy range 0.2 < E_gamma <= 1 GeV and 1.04 +/- 0.09 +/- 0.12 in the photon energy range 1 < E_gamma <= 10 GeV. The bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP.

  11. Constructing the nuclear caloric curve from thermal bremsstrahlung

    NARCIS (Netherlands)

    Ortega, R

    2004-01-01

    The behavior of the emission of thermal bremsstrahlung with the reaction centrality has been studied in Xe-121 + Sn-nat reactions at 50A MeV. A thermal hard photon component is present along the measured impact parameter range (0.1 less than or equal to b/b(max) less than or equal to 0.6) showing th

  12. Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung

    Science.gov (United States)

    Sawada, H.; Sentoku, Y.; Bass, A.; Griffin, B.; Pandit, R.; Beg, F.; Chen, H.; McLean, H.; Link, A. J.; Patel, P. K.; Ping, Y.

    2015-11-01

    Energy distribution of high-power, short-pulse laser produced fast electrons was experimentally and numerically studied using high-energy bremsstrahlung x-rays. The hard x-ray photons and escaping electrons from various metal foils, irradiated by the 50 TW Leopard laser at Nevada Terawatt Facility, were recorded with a differential filter stack spectrometer that is sensitive to photons produced by mainly 0.5-2 MeV electrons and an electron spectrometer measuring >2 MeV electrons. The experimental bremsstrahlung and the slope of the measured escaped electrons were compared with an analytic calculation using an input electron spectrum estimated with the ponderomotive scaling. The result shows that the electron spectrum entering a Cu foil could be continuous single slope with the slope temperature of ˜1.5 MeV in the detector range. The experiment and analytic calculation were then compared with a 2D particle-in-cell code, PICLS, including a newly developed radiation transport module. The simulation shows that a two-temperature electron distribution is generated at the laser interaction region, but only the hot component of the fast electrons flow into the target during the interaction because the low energy electron component is trapped by self-generated magnetic field in the preformed plasma. A significant amount of the photons less than 100 keV observed in the experiment could be attributed to the low energy electrons entering the foil a few picoseconds later after the gating field disappears.

  13. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  14. The LPM effect in sequential bremsstrahlung: 4-gluon vertices

    CERN Document Server

    Arnold, Peter; Iqbal, Shahin

    2016-01-01

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper completes the calculation of the rate for real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; $\\hat q$ approximation; and large $N_c$) by now including processes involving 4-gluon vertices.

  15. Features of Low Energy Classical Bremsstrahlung From Neutral Atoms.

    Science.gov (United States)

    Florescu, A.; Obolensky, O. I.; Pratt, R. H.

    2002-05-01

    We study classical bremsstrahlung from neutral atoms and investigate the features characteristic for the low incident energy region. These features include oscillations in the energy dependence of the bremsstrahlung cross section and structures in the asymmetry parameter of radiation. We use soft-photon limit results to elucidate the physical origins of the features. We show that there is a correspondence between classical and quantum results [1]. In both cases the features result from the suppression of contributions to the radiation from certain angular momenta at certain energies. In quantum mechanics this corresponds to zeroes in certain radiation matrix elements. In the classical case the lack of contribution from some interval of angular momentum is caused by behaviors of elastic electron scattering in screened potentials. [1] A. Florescu, O. I. Obolensky, C. D. Shaffer, and R. H. Pratt 2001 AIP Conference Proceedings 576, 60-64.

  16. Feasibility studies of the diffractive bremsstrahlung measurement at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chwastowski, Janusz J.; Czekierda, Sabina; Staszewski, Rafal; Turnau, Jacek; Trzebinski, Maciej [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow (Poland); Kycia, Radoslaw [Cracow University of Technology, Faculty of Physics, Mathematics and Computer Science, Cracow (Poland)

    2016-06-15

    Feasibility studies of an observation of the exclusive diffractive bremsstrahlung in proton-proton scattering at the centre of mass energy 13 TeV at the LHC are reported. These studies aim at the dedicated data taking periods with low instantaneous luminosity delivered by the LHC where the pile-up interactions can be neglected. A simplified approach to the photon and the scattered proton energy reconstruction is used. The background influence is discussed. (orig.)

  17. Internal bremsstrahlung signatures in light of direct dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik Dept. T30d

    2013-06-15

    Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of minimal mass-degenerate scenarios. The constraints set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to (light) quarks. We examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires boost factors larger than {proportional_to}10.

  18. Measurements of 1.9 MeV electron Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pino, Neivy; Cabal, Fatima Padilla; D' Alessandro, Katia [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Maidana, Nora Lia; Vanin, Vito Roberto; Martins, Marcos Nogueira; Malafronte, Alexandre; Bonini, Alfredo L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Sempau, Josep [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2011-07-01

    Full text: Bremsstrahlung Cross section of 1.9 MeV electrons in Ti, Ag, and Au were measured at the Microtron accelerator of the IFUSP. Target mass surface density was in the range 0.1 to 1 mg/cm{sup 2} and the electron current varied from 3 to 30 nA, measured by a Faraday cup. The spectra were measured at three angles (30 deg; 90 deg and 60 deg) using a shielded p-type HPGe detector with an spectroscopy amplifier with pile-up rejection and a fast ADC. A 20 cm in length and 1.2 cm in diameter Pb collimator was placed in front of the detector to reduce the contribution of radiation scattered in the irradiation chamber or other background sources. With the goal of increasing the peak to total gamma-ray efficiency, the collimator hole was placed with its axis parallel to the coaxial detector symmetry axis, but displaced 1.4 cm to the right of the detector crystal axis. Hence, the Ge thickness exposed directly to the Bremsstrahlung beam was about 5 times bigger than that in the crystal axis, where the n-contact hole is located. The detector response functions were obtained by Monte Carlo simulations based on experimentally determined detector dimensions, in a procedure described in a companion paper submitted to this conference (Response function of a p-type Ge detector). Two energy bins: 50 keV and 1 keV were used in the Bremsstrahlung spectrum deconvolution. The first one was employed to determine the energy differential cross section from 0.1 to 1.9 MeV, and the second one for a more specific spectra study, in the high frequency limit or 'tip region'. The experimental spectrum was corrected for pile-up, with a simple model that assumes that the amplifier pile-up rejection resolving time is the same for all measured energies, and the photon background, measured with the target retracted from the beam. The Bremsstrahlung spectra B were obtained as: B = R{sup -}1 X E, where R is the matrix of the detector response function and E the recorded spectrum vector

  19. Angular Distribution of Photons in Coherent Bremsstrahlung in Deformed Crystals

    CERN Document Server

    Parazian, V V

    2010-01-01

    We investigate the angular distribution of photons in the coherent bremsstrahlung process by high-energy electrons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  20. Generation of Long-Lived Isomeric States via Bremsstrahlung Irradiation

    CERN Document Server

    Cheng, Y; Tang, C; Liu, Y; Jin, Q; Cheng, Yao; Xia, Bing; Tang, Chuanxiang; Liu, Yinong; Jin, Qingxiu

    2006-01-01

    A method to generate long-lived isomeric states effectively for Mossbauer applications is reported. We demonstrate that this method is better and easier to provide highly sensitive Mossbauer effect of long-lived isomers (>1ms) such as 103Rh. Excitation of (gamma,gamma) process by synchrotron radiation is painful due mainly to their limited linewidth. Instead,(gamma,gamma') process of bremsstrahlung excitation is applied to create these long-lived isomers. Isomers of 45Sc, 107Ag, 109Ag, and 103Rh have been generated from this method. Among them, 103Rh is the only one that we have obtained the gravitational effect at room temperature.

  1. Molecular Bremsstrahlung Radiation at GHz Frequencies in Air

    CERN Document Server

    Samarai, I Al; Deligny, O; Letessier-Selvon, A; Montanet, F; Settimo, M; Stassi, P

    2016-01-01

    A detection technique for ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons/neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be $2\\times10^{-21} $W cm$^{-2}$ GHz$^{-1}$ at 10 km from the shower core for a vertical shower induced by a proton of $10^{17.5}$ eV. In addition, a recent measurement of Bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.

  2. Molecular bremsstrahlung radiation at GHz frequencies in air

    Science.gov (United States)

    Al Samarai, Imen; Bérat, Corinne; Deligny, Olivier; Letessier-Selvon, Antoine; Montanet, François; Settimo, Mariangela; Stassi, Patrick

    2016-03-01

    A detection technique for ultra-high-energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons and neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be 2 ×1 0-21 W cm-2 GHz-1 at 10 km from the shower core for a vertical shower induced by a proton of 1 017.5 eV . In addition, a recent measurement of bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.

  3. The Schiff angular bremsstrahlung distribution from composite media

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.L., E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Dalton, B.; Franich, R.D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne (Australia)

    2012-12-15

    The Schiff differential for the angular distribution of bremsstrahlung is widely employed, but calculations involving composite materials (i.e. compounds and mixtures) are often undertaken in a somewhat ad hoc fashion. In this work, we suggest an alternative approach to power-law estimates of the effective atomic number utilising Seltzer and Berger's combined approach in order to generate single-valued effective atomic numbers applicable over a large energy range (in the worst case deviation from constancy of about 2% between 10 keV and 1 GeV). Differences with power-law estimates of Z for composites are potentially significant, particularly for low-Z media such as biological or surrogate materials as relevant within the context of medical physics. As an example, soft tissue differs by >70% and cortical bone differs by >85%, while for high-Z composites such as a tungsten-rhenium alloy the difference is of the order of 1%. Use of the normalised Schiff formula for shape only does not exhibit strong Z dependence. Consequently, in such contexts the differences are negligible - the power-law approach overestimates the magnitude by 1.05% in the case of water and underestimates it by <0.1% for the high-Z alloys. The differences in the distribution are most pronounced for small angles and where the bremsstrahlung quanta are low energy.

  4. Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom

    CERN Document Server

    Job, P K; Semones, E

    1999-01-01

    High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...

  5. Studies of some isomeric yield ratios produced with bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, Dimitar

    1998-05-11

    The experimental isomeric ratios for {sup 52m,g}Mn, {sup 86m,g}Y, {sup 87m,g}Y, {sup 89m,g}Zr, {sup 110m,g}In, {sup 111m,g}In, {sup 112m,g}In, {sup 152m1,g}Pm, {sup 152m2,m1}Eu, {sup 162m,g}Ho, {sup 164m,g}Ho and {sup 178m,g}Lu measured by the activation technique from different targets in ({gamma}, xnp) reactions (x{<=}3) at the bremsstrahlung end-point energy of 43 MeV are presented. The predictions of calculations performed by means of compound nucleus particle evaporation and final {gamma}-deexcitation were critically discussed. The importance of inclusion in the calculations of nonequilibrium particle emission and an adequate {gamma}-decay mode of isomeric nuclei was considered for some of the reactions investigated.

  6. Spectra and rates of bremsstrahlung neutrino emission in stars

    Science.gov (United States)

    Guo, Gang; Qian, Yong-Zhong

    2016-08-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average ν¯e and ν¯x(x =μ ,τ ) energies, for this process with those for e± pair annihilation, plasmon decay, and photoneutrino emission over a wide range of temperature and density. We also compare our updated energy loss rates for the above thermal neutrino emission processes with the fitting formulas widely used in stellar evolution models and determine the temperature and density domain in which each process dominates. We discuss the implications of our results for detection of ν¯e from massive stars during their presupernova evolution and find that pair annihilation makes the predominant contribution to the signal from the thermal emission processes.

  7. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    Science.gov (United States)

    van de Bruck, Carsten; Burrage, Clare; Morrice, Jack

    2016-08-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  8. Calculation of Bremsstrahlung energy spectrum induced by beta ray

    CERN Document Server

    Fukano, S

    2003-01-01

    Bremsstrahlung energy spectra induced by beta ray from radionuclides sup 3 H, sup 6 sup 3 Ni, sup 1 sup 4 C, sup 1 sup 4 sup 7 Pm, sup 9 sup 0 Sr, sup 3 sup 2 P and sup 9 sup 0 Y are calculated by using numerical data of radiation yield published by Berger et. al. and compared with those obtained from classical approximate expressions of Wu and Segre. The results for sup 3 H, sup 6 sup 3 Ni, sup 1 sup 4 C and sup 1 sup 4 sup 7 Pm are in good agreement with those from Segre's, while spectra from such as sup 3 sup 2 P and sup 9 sup 0 Y are similar to those obtained by using Wu's expression. The result for sup 9 sup 0 Sr is in fair agreement with those from Wu's and Segre's.

  9. Decay energy of 55Fe from its inner Bremsstrahlung spectrum

    Indian Academy of Sciences (India)

    S L Keshava; K Gopala; P Venkataramaiah

    2001-06-01

    Several measurements of decay energy using the inner Bremsstrahlung spectrum (IB) due to radiative electron capture in 55Fe has been made. But the results are not uniform. Hence another attempt has been made at the same. Experimental data was obtained with a 4.445 cm. dia × 5.08 cm thick NaI (Tl) detector. It was subjected to suitable statistical treatment and various corrections using Liden and Starfelt procedure. The corrected spectrum agrees well with the Glauber and Martin theory for 1s electron capture beyond 100 keV. From the Jauch plot, the decay energy of 232.36 ± 0.64 keV was obtained.

  10. Rhodium M(o)ssbauer Effect Generated by Bremsstrahlung Excitation

    Institute of Scientific and Technical Information of China (English)

    CHENG Yao; XIA Bing; LIU Yi-Nong; JIN Qing-Xiu

    2005-01-01

    @@ A method for effectively generating long-lived Mossbauer photons and methods for proving the associated Mossbauer effects are reported. For the first time, we observed resonant propagation and resonant absorption of 40-keV Mossbauer photons emitted from 103Rh through (γ,γ′) process excited by bremsstrahlung. This is a new efficient way to generate long-lived isomer (> 1 ms) for Mossbauer spectroscopy with sufficient brilliance.An abnormally large ratio of resonant absorption between horizontal and vertical directions indicates horizontal trapping of Mossbauer photons and anisotropic Mossbauer emission, which can be attributed to gravitational effect on the 103Rh Mossbauer isomer with extremely narrow 10-19 eV linewidth.

  11. Electroweak bremsstrahlung for wino-like Dark Matter annihilations

    CERN Document Server

    Ciafaloni, Paolo; De Simone, Andrea; Riotto, Antonio; Urbano, Alfredo

    2012-01-01

    If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W+W-, while the annihilation into light fermions is helicity suppressed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermion channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.

  12. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    CERN Document Server

    van de Bruck, Carsten; Morrice, Jack

    2016-01-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  13. The LPM effect in sequential bremsstrahlung: dimensional regularization

    Science.gov (United States)

    Arnold, Peter; Chang, Han-Chih; Iqbal, Shahin

    2016-10-01

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-level amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.

  14. The LPM effect in sequential bremsstrahlung: dimensional regularization

    CERN Document Server

    Arnold, Peter; Iqbal, Shahin

    2016-01-01

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-level amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.

  15. Internal bremsstrahlung endpoint energy of {sup 54}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Hindi, M. M. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Larimer, R.-M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Norman, E. B. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rech, G. A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-05-01

    For {sup 54}Mn there is a discrepancy between the Q{sub EC} obtained from the endpoint energy of the internal bremsstrahlung (IB) spectrum which accompanies the electron capture decay (Q{sub EC}=1353{+-}8 keV) and that obtained from the accepted mass differences (Q{sub EC}=1377{+-}1 keV). This Q value is needed to deduce the partial-half life of the astrophysically interesting {beta}{sup -} decay of {sup 54}Mn from the recently measured {beta}{sup +} partial half-life. To resolve this discrepancy, we have remeasured the endpoint energy of the IB spectrum, by recording coincidences between the IB and the 835-keV {gamma} ray, both detected in Compton-suppressed Ge detectors. The Q{sub EC} we deduce is 1379{+-}8 keV, in agreement with the accepted mass differences. (c) 2000 The American Physical Society.

  16. The double copy: Bremsstrahlung and accelerating black holes

    CERN Document Server

    Luna, Andres; Nicholson, Isobel; O'Connell, Donal; White, Chris D

    2016-01-01

    Advances in our understanding of perturbation theory suggest the existence of a correspondence between classical general relativity and Yang-Mills theory. A concrete example of this correspondence, which is known as the double copy, was recently introduced for the case of stationary Kerr-Schild spacetimes. Building on this foundation, we examine the simple time-dependent case of an accelerating, radiating point source. The gravitational solution, which generalises the Schwarzschild solution, includes a non-trivial stress-energy tensor. This stress-energy tensor corresponds to a gauge theoretic current in the double copy. We interpret both of these sources as representing the radiative part of the field. Furthermore, in the simple example of Bremsstrahlung, we determine a scattering amplitude describing the radiation, maintaining the double copy throughout. Our results provide the strongest evidence yet that the classical double copy is directly related to the BCJ double copy for scattering amplitudes.

  17. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Dey, R. [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

    2013-07-15

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×10{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  18. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    Science.gov (United States)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  19. Photodissociation of p-process nuclei studied by bremsstrahlung induced activation

    CERN Document Server

    Erhard, M; Beyer, R; Grosse, E; Klug, J; Kosev, K; Nair, C; Nankov, N; Rusev, G; Schilling, K D; Schwengner, R; Wagner, A

    2006-01-01

    A research program has been started to study experimentally the near-threshold photodissociation of nuclides in the chain of cosmic heavy element production with bremsstrahlung from the ELBE accelerator. An important prerequisite for such studies is good knowledge of the bremsstrahlung distribution which was determined by measuring the photodissociation of the deuteron and by comparison with model calculations. First data were obtained for the astrophysically important target nucleus 92-Mo by observing the radioactive decay of the nuclides produced by bremsstrahlung irradiation at end-point energies between 11.8 MeV and 14.0 MeV. The results are compared to recent statistical model calculations.

  20. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  1. Precision gamma-ray polarimetry applied to studies of bremsstrahlung produced by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Oleksiy

    2015-12-16

    The thesis reports on the measurement of bremsstrahlung linear polarization produced in collisions of longitudinally and transversely polarized electrons with gold atoms. The experiment was performed at the Mainzer Microtron MAMI in the Institut fuer Kernphysik of Johannes Gutenberg-Universitaet Mainz, Germany. Spin-oriented electrons with 2.15 MeV kinetic energy collided with a thin golden target and produced bremsstrahlung. Linear polarization of the emitted photons was measured by means of Compton polarimetry applied to a segmented high-purity germanium detector. Experimental results reveal a strong correlation between the electron spin orientation and bremsstrahlung linear polarization. This indicates a dominant role of the electron spin in atomic-field bremsstrahlung and Coulomb scattering.

  2. Studies of some isomeric yield ratios produced with bremsstrahlung

    CERN Document Server

    Kolev, D

    1998-01-01

    The experimental isomeric ratios for sup 5 sup 2 sup m sup , sup g Mn, sup 8 sup 6 sup m sup , sup g Y, sup 8 sup 7 sup m sup , sup g Y, sup 8 sup 9 sup m sup , sup g Zr, sup 1 sup 1 sup 0 sup m sup , sup g In, sup 1 sup 1 sup 1 sup m sup , sup g In, sup 1 sup 1 sup 2 sup m sup , sup g In, sup 1 sup 5 sup 2 sup m sup 1 sup , sup g Pm, sup 1 sup 5 sup 2 sup m sup 2 sup , sup m sup 1 Eu, sup 1 sup 6 sup 2 sup m sup , sup g Ho, sup 1 sup 6 sup 4 sup m sup , sup g Ho and sup 1 sup 7 sup 8 sup m sup , sup g Lu measured by the activation technique from different targets in (gamma, xnp) reactions (x<=3) at the bremsstrahlung end-point energy of 43 MeV are presented. The predictions of calculations performed by means of compound nucleus particle evaporation and final gamma-deexcitation were critically discussed. The importance of inclusion in the calculations of nonequilibrium particle emission and an adequate gamma-decay mode of isomeric nuclei was considered for some of the reactions investigated.

  3. Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung

    Science.gov (United States)

    Stoica, S.; Paun, V. P.; Negoita, A. G.

    2004-06-01

    The rates of neutrino pair emission by nucleon-nucleon (NN) bremsstrahlung are calculated with the inclusion of the full contribution from a nuclear one pion exchange potential (OPEP). We compute the contributions from the neutron-neutron (nn), proton-proton (pp), and neutron-proton (np) processes for physical conditions encountered in supernovae and neutron stars, both in the degenerate (D) and nondegenerate (ND) limits. We find a significant reduction of these rates, especially for the nn and pp processes, in comparison with the case when the whole nuclear contribution was replaced by constants, representing the high-momentum limits of the expressions of the nuclear potential. Furthermore, we also perform the calculations by including contributions due to the ρ meson exchange between nucleons, in the OPEP. This may be relevant for processes produced in the inner core of neutron stars, where the density may exceed several times the standard nuclear density, and the short-range part of the NN interaction should be taken into account. These corrections lead to an additional suppression of the neutrino emission rates between (8 and 36)%, depending on the process [nn (pp) or np] and physical conditions (temperature and degeneracy of the nucleons).

  4. A Single Bremsstrahlung Monitor to Measure Luminosity at LEP

    CERN Multimedia

    2002-01-01

    The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...

  5. Scalar Dark Matter Models with Significant Internal Bremsstrahlung

    CERN Document Server

    Giacchino, Federica; Tytgat, Michel H G

    2013-01-01

    There has been interest recently on particle physics models that may give rise to sharp gamma ray spectral features from dark matter annihilation. Because dark matter is supposed to be electrically neutral, it is challenging to build weakly interacting massive particle models that may accommodate both a large cross section into gamma rays at, say, the Galactic center, and the right dark matter abundance. In this work, we consider the gamma ray signatures of a class of scalar dark matter models that interact with Standard Model dominantly through heavy vector-like fermions (the vector-like portal). We focus on a real scalar singlet S annihilating into lepton-antilepton pairs. Because this two-body final-state annihilation channel is d-wave suppressed in the chiral limit, we show that virtual internal bremsstrahlung emission of a gamma ray gives a large correction, both today and at the time of freeze-out. For the sake of comparison, we confront this scenario to the familiar case of a Majorana singlet annihilat...

  6. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  7. Z-dependence of thick-target bremsstrahlung produced by monoenergetic low-energy electrons

    Science.gov (United States)

    Czarnecki, S.; Short, A.; Williams, S.

    2016-07-01

    The dependence of thick-target bremsstrahlung emitted by low-energy beams of monoenergetic electrons on the atomic number of the target material has been investigated experimentally for incident electron energies of 4.25 keV and 5.00 keV using thick aluminum, copper, silver, tungsten, and gold targets. Experimental data suggest that the intensity of the thick-target bremsstrahlung emitted is more strongly dependent on the atomic number of the target material for photons with energies that are approximately equal to the energy of the incident electrons than at lower energies, and also that the dependence of thick-target bremsstrahlung on the atomic number of the target material is stronger for incident electrons of higher energies than for incident electrons of lower energies. The results of the experiments are compared to the results of simulations performed using the PENELOPE program (which is commonly used in medical physics) and to thin-target bremsstrahlung theory, as well. Comparisons suggest that the experimental dependence of thick-target bremsstrahlung on the atomic number of the target material may be slightly stronger than the results of the PENELOPE code suggest.

  8. Can a many-nucleon structure be visible in bremsstrahlung emission during $\\alpha$ decay?

    CERN Document Server

    Maydanyuk, Sergei P; Zou, Li-Ping

    2015-01-01

    We analyze if the nucleon structure of the $\\alpha$ decaying nucleus can be visible in the experimental bremsstrahlung spectra of the emitted photons which accompany such a decay. We develop a new formalism of the bremsstrahlung model taking into account distribution of nucleons in the $\\alpha$ decaying nuclear system. We conclude the following: (1) After inclusion of the nucleon structure into the model the calculated bremsstrahlung spectrum is changed very slowly for a majority of the $\\alpha$ decaying nuclei. However, we have observed that visible changes really exist for the $^{106}{\\rm Te}$ nucleus ($Q_{\\alpha}=4.29$ MeV, $T_{1/2}$=70 mks) even for the energy of the emitted photons up to 1 MeV. This nucleus is a good candidate for future experimental study of this task. (2) Inclusion of the nucleon structure into the model increases the bremsstrahlung probability of the emitted photons. (3) We find the following tendencies for obtaining the nuclei, which have bremsstrahlung spectra more sensitive to the ...

  9. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    Science.gov (United States)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  10. Anomalous inverse bremsstrahlung heating of laser-driven plasmas

    Science.gov (United States)

    Kundu, Mrityunjay

    2016-05-01

    Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.

  11. Impact of nucleon-nucleon bremsstrahlung rates beyond one-pion exchange

    Science.gov (United States)

    Bartl, A.; Bollig, R.; Janka, H.-T.; Schwenk, A.

    2016-10-01

    Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only ≲5 % changes of the neutrino luminosities and an increase of ≲0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by ≲0.5 - 1 s .

  12. Impact of Nucleon-Nucleon Bremsstrahlung Rates Beyond One-Pion Exchange

    CERN Document Server

    Bartl, Alexander; Janka, Hans-Thomas; Schwenk, Achim

    2016-01-01

    Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on a modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only $\\lesssim$5% changes of the neutrino luminosities and an increase of $\\lesssim$0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by $\\lesssim$0.5-1 s.

  13. Thermalisation and hard X-ray bremsstrahlung efficiency of self-interacting solar flare fast electrons

    CERN Document Server

    Galloway, R K; MacKinnon, A L; Brown, J C

    2010-01-01

    Most theoretical descriptions of the production of solar flare bremsstrahlung radiation assume the collision of dilute accelerated particles with a cold, dense target plasma, neglecting interactions of the fast particles with each other. This is inadequate for situations where collisions with this background plasma are not completely dominant, as may be the case in, for example, low-density coronal sources. We aim to formulate a model of a self-interacting, entirely fast electron population in the absence of a dense background plasma, to investigate its implications for observed bremsstrahlung spectra and the flare energy budget. We derive approximate expressions for the time-dependent distribution function of the fast electrons using a Fokker-Planck approach. We use these expressions to generate synthetic bremsstrahlung X-ray spectra as would be seen from a corresponding coronal source. We find that our model qualitatively reproduces the observed behaviour of some flares. As the flare progresses, the model's...

  14. Dilepton bremsstrahlung from pion-pion scattering in a relativistic OBE model

    CERN Document Server

    Eggers, H C; Gale, C; Haglin, K L

    1996-01-01

    We have made a detailed and quantitative study of dilepton production via bremsstrahlung of a virtual photon during pion-pion collisions. Most calculations of electromagnetic radiation from strong interaction processes rely on the soft photon approximation (SPA). The conditions underlying this approximation are generally violated when dilepton spectra are calculated in terms of their invariant mass, so that an approach going beyond the SPA becomes necessary. Superseding previous derivations, we derive an exact formula for the bremsstrahlung cross section. The resulting formulation is compared to various forms based on the SPA, the two-particle phase space approximation and R\\"uckl's formula using a relativistic One Boson Exchange (OBE) model. Within the OBE approach, we show that approximations to the bremsstrahlung dilepton cross sections often differ greatly from the exact result; discrepancies become greater both with rising temperature and with invariant mass. Integrated dilepton production rates are over...

  15. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... at a very low value. Incoherent interaction with single target electrons gives rise to two additional bremsstrahlung components, a modest component due to scattering of virtual photons of the electrons on the projectile and a strong low-energy component due to scattering of the virtual photons...... of the projectile on the electrons. The difference in radiation levels can be traced to the mass of the scatterer. Since target electrons are more widely distributed than nuclei in a crystal channel the variation of the electron component of the bremsstrahlung with incidence angle to a major crystallographic...

  16. Bremsstrahlung emission probability in the {alpha} decay of {sup 210}Po

    Energy Technology Data Exchange (ETDEWEB)

    Boie, Hans-Hermann

    2009-06-03

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed. The measured differential emission probabilities, which could be followed up to {gamma}-energies of {proportional_to} 500 keV, allow for the first time for a serious test of various model calculations of the bremsstrahlung accompanied {alpha} decay. It is shown that corrections to the {alpha}-{gamma} angular correlation due to the interference between the electric dipole and quadrupole amplitudes and due to the relativistic character of the process have to be taken into account. With the experimentally derived angular correlation the measured energydifferential bremsstrahlung emission probabilities show excellent agreement with the fully quantum mechanical calculation. (orig.)

  17. SPECT/CT 90Y-Bremsstrahlung images for dosimetry during therapy

    OpenAIRE

    Fabbri, C.; Sarti, G.; Agostini, M; Di Dia, A; Paganelli, G

    2008-01-01

    Background: the characteristics of 90Y, suitable for therapy, are denoted by the lack of γ-emission. Alternative methods, using analogues labelled with 111In or 86Y, are generally applied to image 90Y-conjugates, with some inevitable drawbacks. New generation SPECT/CT image systems offer improved Bremsstrahlung images. The intent of this brief communication is to show that high quality 90Y-Bremsstrahlung SPECT-CT images can be obtained, allowing the biodistribution of pure β-emitter therapeut...

  18. On the influence of acoustic waves on coherent bremsstrahlung in crystals

    CERN Document Server

    Saharian, A A; Parazian, V V; Grigoryan, L S

    2004-01-01

    We investigate the coherent bremsstrahlung by relativistic electrons in a single crystal excited by hypersonic vibrations. The formula for the corresponding differential cross-section is derived in the case of a sinusoidal wave. The conditions are specified under which the influence of the hypersound is essential. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. It is shown that in dependence of the parameters, the presence of hypersonic waves can either enhance or reduce the bremsstrahlung cross-section.

  19. Experimental simulation of a stellar photon bath by bremsstrahlung the astrophysical $\\gamma$-process

    CERN Document Server

    Mohr, P J; Babilon, M; Enders, J; Hartmann, T; Hutter, C; Rauscher, T; Volz, S; Zilges, A

    2000-01-01

    The nucleosynthesis of heavy proton-rich nuclei in a stellar photon bath at temperatures of the astrophysical $\\gamma$-process was investigated where the photon bath was simulated by the superposition of bremsstrahlung spectra with different endpoint energies. The method was applied to derive ($\\gamma$,n) cross sections and reaction rates for several platinum isotopes.

  20. Efficient computation of electron-electron bremsstrahlung emission in a hot thermal plasma

    Science.gov (United States)

    Haug, E.

    1989-07-01

    A formula for the cross section of electron-electron bremsstrahlung (EEB) in the center-of-mass system is used to calculate the spectrum of EEB in a hot thermal plasma as well as the total rate of energy loss due to EEB with a minimum amount of computing time.

  1. Virtual-bremsstrahlung production in proton-proton scattering and proton-deuteron capture

    NARCIS (Netherlands)

    Messchendorp, Johannes Gerhardus

    1999-01-01

    The well-known coupling of the photon with the nucleon together with the fact that photons (or any electromagnetic (e.m.) probe) interact only relatively weakly with nucleons, make bremsstrahlung production an ideal tool to study details of the nucleon-nucleon interaction. In this thesis dilepton pr

  2. EFFECTS OF MESON-DECAY DIAGRAMS IN PROTON-PROTON BREMSSTRAHLUNG

    NARCIS (Netherlands)

    DEJONG, F; NAKAYAMA, K

    1995-01-01

    We investigate the effect of meson-decay diagrams on the proton-proton bremsstrahlung process. We explicitly include short-range correlations by calculating single- and double-scattering diagrams using an NN T-matrix interaction. We find that in general these diagrams interfere destructively with th

  3. Influence of time characteristics of beam extraction on coherent Bremsstrahlung spectra

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avetisyan, A.E.; Sarkisyan, R.T.; Simonyan, K.A.; Taroyan, S.P.; Zapol' skii, N.A.

    1985-09-01

    This paper describes a new method of increasing the degree of polarization chromaticity of the coherent Bremsstrahlung spectra. The authors consider the time characteristics of electron-beam extraction from the Erevan synchrotron. By adjusting the extraction regime, the Bresstrahlung beam parameters can be controlled. Practical applications of the new method are discussed.

  4. Structure Design and Analysis of Bremsstrahlung Converter for High-power Irradiation Electron Accelerator

    Institute of Scientific and Technical Information of China (English)

    LI; Chun-guang; LIU; Bao-jie; LI; Jin-hai

    2015-01-01

    X-ay has strong penetrating power.It has been widely used in food preservation,medical sterilization,materials modification and so on,and it can supplement the shortcomings of electron beam irradiation.Recently,there is more and more research and application about bremsstrahlung

  5. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    Science.gov (United States)

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  6. The influence of negative-energy states on proton-proton bremsstrahlung

    NARCIS (Netherlands)

    deJong, F; Nakayama, K

    1996-01-01

    We investigate the effect of negative-energy states on proton-proton bremsstrahlung using a manifestly covariant amplitude based on a T-matrix constructed in a spectator model. We show that there is a large cancellation among the zeroth-order, single- and double-scattering diagrams involving negativ

  7. Experimental bremsstrahlung yields for MeV proton bombardment of beryllium and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)], E-mail: dcz@ansto.gov.au; Stelcer, Eduard; Siegele, Rainer; Ionescu, Mihail; Prior, Michael [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)

    2008-04-15

    Experimental bremsstrahlung yields for 2, 3 and 4 MeV protons on thin beryllium and carbon targets have been measured. The yields have been corrected for detector efficiency, self-absorption in the target and fitted to 9th order polynomials over the X-ray energy range 1-10 keV for easy comparison with theoretical calculations.

  8. Experimental verification of beam quality in high-contrast imaging with orthogonal bremsstrahlung photon beams.

    Science.gov (United States)

    Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B

    2007-07-01

    Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.

  9. Numerical test of polarization sum rules for the triply differential bremsstrahlung cross section in electron-nucleus encounters

    CERN Document Server

    Jakubassa-Amundsen, D H

    2016-01-01

    Inspired by the work of Pratt and coworkers on a sum rule for the polarization correlations in electron bremsstrahlung when the outgoing electron is not observed, we derive the corresponding sum rule for the elementary process of bremsstrahlung. This sum rule is valid for arbitrary electron wavefunctions provided the electron is emitted in the reaction plane. The numerical evaluation of this sum rule within the Dirac partial-wave theory for bare inert spin-zero nuclei and collision energies in the range of 1-10 MeV reveals violations for high nuclear charge. Such violations serve as a measure of the inaccuracies in the bremsstrahlung calculations.

  10. Neutrino-pair emission in a strong magnetic field

    NARCIS (Netherlands)

    van Dalen, ENE; Dieperink, AEL; Sedrakian, A; Timmermans, RGE

    2000-01-01

    We study the neutrino emissivity of strongly magnetized neutron stars due to the charged and neutral current couplings of neutrinos to baryons in strong magnetic fields. The leading order neutral current process is the one-body neutrino-pair bremsstrahlung, which does not have an analogue in the zer

  11. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.

    Science.gov (United States)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Islamian, Jalil Pirayesh

    2016-02-01

    Treatment efficacy of radioembolization using Yttrium-90 ((90)Y) microspheres is assessed by the (90)Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of (90)Y microspheres distribution. One of the main reasons of the poor image quality in (90)Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the (90)Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the (90)Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a (90)Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35-3.3mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for (90)Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3mm. Geometry of the ME parallel-hole collimator and energy

  12. Effect of Degenerated Particles on Internal Bremsstrahlung of Majorana Dark Matter

    CERN Document Server

    Okada, Hiroshi

    2014-01-01

    Gamma-ray generated by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-ray coming from internal bremsstrahlung of dark matter is promising since it can be a leading emission of sharp gamma-ray. However if thermal production of Majorana dark matter is considered, the derived cross section for internal bremsstrahlung becomes too small to be observed by future gamma-ray experiments. We consider a framework to achieve an enhancement of the cross section by taking into account degenerated particles with dark matter. We find that the enhancement of about order one is possible without conflict with the dark matter relic density. Due to the enhancement, it would be tested by the future experiments such as GAMMA-400 and CTA.

  13. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  14. Photodisintegration of light nuclei by coherent and incoherent bremsstrahlung from high-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, A.R.; Vartapetyan, G.A.; Grigoryan, E.O.; Deme-dieresiskhina, N.A.

    1986-08-01

    We have investigated the cross sections for photodisintegration reactions in Al, Si, and S calculated by the regularization method proposed by A. N. Tikhonov for solution of the Fredholm integral equation of the first kind. The yields of photoproduction of /sup 24/Na, /sup 18/F, /sup 11/C, and /sup 7/Be were measured in bombardment of targets by coherent and incoherent photon beams obtained in a diamond crystal with bremsstrahlung of 3.57-GeV electrons. The excitation functions of the reactions studied were calculated from the threshold to the maximum energy of the bremsstrahlung spectrum. A characteristic property of the cross sections of all reactions is a clearly expressed resonance structure of the energy dependence.

  15. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Science.gov (United States)

    Tsechanski, A.; Bielajew, A. F.; Archambault, J. P.; Mainegra-Hing, E.

    2016-01-01

    A new "one-stage" approach for production of 99Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of 99Mo via the photoneutron reaction 100Mo(γ,n)99Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r0) W target, for target thickness z > 1.84r0, where r0 is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r0) for target thickness case: z ⩾ 2.0r0. It is shown for the one-stage approach with thicknesses of (1.84-2.0)r0, that the 99Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r0) in the traditional two-stage approach (W converter and separate 99Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the 99Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity for the one-stage approach of three enriched 100Mo-targets of a 2 cm diameter and

  16. Polarised bremsstrahlung nuclear resonance fluorescence set-up at the 15 MeV linac in Gent

    Science.gov (United States)

    Govaert, K.; Mondelaers, W.; Jacobs, E.; De Frenne, D.; Persyn, K.; Pommé, S.; Yoneama, M.-L.; Lindenstruth, S.; Huber, K.; Jung, A.; Starck, B.; Stock, R.; Wesselborg, C.; Heil, R.-D.; Kneissl, U.; Pitz, H. H.

    1994-01-01

    Nuclear resonance fluorescence experiments using unpolarised as well as off-axis linearly polarised bremsstrahlung represent an outstanding tool to determine in a completely model independent way transition probabilities, multipole orders and parities of electromagnetic transitions to bound states in nuclei. A new polarised bremsstrahlung facility has been constructed at the 15 MeV linac in Gent. The experimental arrangement is discussed and first results are presented.

  17. Non-Abelian bremsstrahlung and azimuthal asymmetries in high energy p+A reactions

    Science.gov (United States)

    Gyulassy, M.; Levai, P.; Vitev, I.; Biró, T. S.

    2014-09-01

    We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute to all orders in nuclear opacity the non-Abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, vnM{1}, and even numbered 2ℓ gluon distribution, vnM{2ℓ}, inclusive distributions in high-energy p +A reactions as a function of harmonic n, target recoil cluster number, M, and gluon number, 2ℓ, at the RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form color scintillation antenna (CSA) arrays that lead to characteristic boost-noninvariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of the intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to vn moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic nonflow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd vn without invoking kT factorization. A test of the CSA mechanism is the predicted nearly linear η rapidity dependence of the vn(kT,η). Non-Abelian beam jet bremsstrahlung may, thus, provide a simple analytic solution to the beam energy scan puzzle of the near √s independence of vn(pT) moments observed down to 10 AGeV, where large-x valence-quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of vn in p(D)+A and noncentral A+A at the same dN/dη multiplicity as observed at the RHIC and LHC.

  18. Nuclear effects on axions emission rates from nucleon-nucleon bremsstrahlung

    Science.gov (United States)

    Pastrav, B.; Scafes, A. C.

    2010-11-01

    The rates of axion emissions by nucleon-nucleon bremsstrahlung from neutron stars obtained with the inclusion of the full angular momentum contribution from a nuclear one-pion-exchange potential (OPEP), are studied in different conditions of temperature and degeneracy in both, non degenerate (ND) and degenerate (D) regimes. The comparison with the previous results obtained in literature, where only the high momentum limit of the OPEP expressions are used, is done and the differences discussed.

  19. Self-absorption correction factor for a sample excited by the bremsstrahlung radiation

    CERN Document Server

    Mandal, A C; Mitra, D; Sarkar, M; Bhattacharya, D P

    2002-01-01

    A method of calculating the self-absorption correction factor for fluorescent X-rays from a sample excited by the bremsstrahlung has been described. As a typical example, the correction factors for K subalpha of Si and Cu for different tube voltages have been calculated. Polynomial fit of the correction factor against the tube voltage in the range 10-100 kV has been given for both the elements.

  20. Proof of Principle for Active Detection of Fissionable Material Using Intense, Pulsed-Bremsstrahlung-Induced Photofission

    Science.gov (United States)

    2014-10-07

    depleted uranium. Fission products are measured using He-3 proportional counters, and plastic (BC408), sodium-iodide (NaI:Tl), and bismuth- germinate -oxide...16,17,18 Delayed -rays were measured with bismuth- germinate -oxide (BGO) and sodium-iodide (NaI:Tl) scintillator detectors. Measurement of a...calculation is divided into two steps to reduce computation time. In the first step , irradiation of the DU by the computed bremsstrahlung spectrum is used

  1. Reconstruction of full electron energy distributions by Poisson-regularized spectral inversion of x-ray Bremsstrahlung emissions in the PFRC device

    Science.gov (United States)

    Swanson, Charles; Jandovitz, Peter; Bosh, Alexandra; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity Rotating Magnetic Field (RMF) driven Field-Reversed Configuration plasma confinement experiment equipped with Si-PIN and SDD x-ray detectors. It is predicted that the electron energy distribution is non-thermal when the RMF is active. Using a novel inversion technique, we present full electron distribution functions as reconstructed (``spectrally inverted'') from the x-ray Bremsstrahlung emissions. This method regularizes the inverse treating the measurement as a Poisson random variable, as opposed to state-of-the-art methods which assume a Normal random variable. The method maximizes the log-likelihood of the solution, determined from Bayes' Theorem. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  2. Bremsstrahlung measurements for characterization of intense short-pulse, laser produced fast electrons with OMEGA EP

    Science.gov (United States)

    Daykin, Tyler; Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Chen, Cliff; Beg, Farhat; Chen, Hui; McLean, Harry; Patel, Pravesh; Tommasini, Riccardo

    2016-10-01

    Understanding relativistic fast electron generation and transport inside solids is important for applications such as generation of high energy x-ray sources and fast ignition. An experiment was carried out to study the scaling of the fast electron spectrum and bremsstrahlung generation in multi-pico second laser interactions using 1 ps and 10 ps OMEGA EP short-pulse beam to generate fast electrons at a similar peak intensity of 5x1018 W/cm2. The bremsstrahlung produced by collisions of the fast electrons with background ions was recorded using differential filter stacked spectrometers. A preliminary analysis with a Monte Carlo Code ITS shows that the electrons injection having an electron slope 1.8 MeV matched well with the high energy component of the 1 ps and 10 ps bremsstrahlung measurements. Details of the data analysis and modeling with Monte Carlo and a hybrid particle-in-cell codes will be presented at the conference. Work supported by the UNR Office of the Provost and by DOE/OFES under Contract No. DE-SC0008827. This collaborative work was partially supported under the auspices of the US DOE by LLNL under Contracts No. DE-AC52-07NA27344 and No. DE-FG-02-05ER54834.

  3. High level tritiated water monitoring by Bremsstrahlung counting using a silicon drift detector

    Energy Technology Data Exchange (ETDEWEB)

    Niemes, S.; Sturm, M.; Michling, R.; Bornschein, B. [Institute for Technical Physics - ITEP, Tritium Laboratory Karlsruhe - TLK, Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)

    2015-03-15

    The β-ray induced X-ray spectrometry (BIXS) is a promising technique to monitor the tritium concentration in a fuel cycle of a fusion reactor. For in-situ measurements of high level tritiated water by Bremsstrahlung counting, the characteristics of a low-noise silicon drift detector (SDD) have been examined at the Tritium Laboratory Karlsruhe (TLK). In static measurements with constant sample volume and tritium concentration, the Bremsstrahlung spectra of tritiated water samples in a concentration range of 0.02 to 15 MBq/ml have been obtained. The volume has been kept constant at 5 cm{sup 3}. The observed spectra are well above the noise threshold. In addition to X-rays induced by β-rays, the spectra feature X-ray fluorescence peaks of the surrounding materials. No indications of memory effects have been observed. A linear relation between the X-ray intensity and the tritium concentration was obtained and the lower detection limit of the setup has been determined to 1 MBq ml{sup -1}, assessed by the Curie criterion. In addition, the spectra obtained experimentally could be reproduced with high agreement by Monte-Carlo simulations using the GEANT4-tool-kit. It was found that the present detection system is applicable to non-invasive measurements of high-level tritiated water and the SDD is a convenient tool to detect the low energy Bremsstrahlung X-rays. (authors)

  4. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  5. Integrated Bayesian Estimation of Zeff in the TEXTOR Tokamak from Bremsstrahlung and CX Impurity Density Measurements

    Science.gov (United States)

    Verdoolaege, G.; Von Hellermann, M. G.; Jaspers, R.; Ichir, M. M.; Van Oost, G.

    2006-11-01

    The validation of diagnostic date from a nuclear fusion experiment is an important issue. The concept of an Integrated Data Analysis (IDA) allows the consistent estimation of plasma parameters from heterogeneous data sets. Here, the determination of the ion effective charge (Zeff) is considered. Several diagnostic methods exist for the determination of Zeff, but the results are in general not in agreement. In this work, the problem of Zeff estimation on the TEXTOR tokamak is approached from the perspective of IDA, in the framework of Bayesian probability theory. The ultimate goal is the estimation of a full Zeff profile that is consistent both with measured bremsstrahlung emissivities, as well as individual impurity spectral line intensities obtained from Charge Exchange Recombination Spectroscopy (CXRS). We present an overview of the various uncertainties that enter the calculation of a Zeff profile from bremsstrahlung date on the one hand, and line intensity data on the other hand. We discuss a simple linear and nonlinear Bayesian model permitting the estimation of a central value for Zeff and the electron density ne on TEXTOR from bremsstrahlung emissivity measurements in the visible, and carbon densities derived from CXRS. Both the central Zeff and ne are sampled using an MCMC algorithm. An outlook is given towards possible model improvements.

  6. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, Keyvan; Sarfehnia, Arman; Podgorsak, Ervin B; Seuntjens, Jan P [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 avenue Cedar, Montreal, Quebec H3G 1A4 (Canada)

    2007-02-21

    The basic characteristics of orthogonal bremsstrahlung beams are studied and the feasibility of improved contrast imaging with such a beam is evaluated. In the context of this work, orthogonal bremsstrahlung beams represent the component of the bremsstrahlung distribution perpendicular to the electron beam impinging on an accelerator target. The BEAMnrc Monte Carlo code was used to study target characteristics, energy spectra and relative fluences of orthogonal beams to optimize target design. The reliability of the simulations was verified by comparing our results with benchmark experiments. Using the results of the Monte Carlo optimization, the targets with various materials and a collimator were designed and built. The primary pencil electron beam from the research port of a Varian Clinac-18 accelerator striking on Al, Pb and C targets was used to create orthogonal beams. For these beams, diagnostic image contrast was tested by placing simple Lucite objects in the path of the beams and comparing image contrast obtained in the orthogonal direction to the one obtained in the forward direction. The simulations for various target materials and various primary electron energies showed that a width of 80% of the continuous-slowing-down approximation range (R{sub CSDA}) is sufficient to remove electron contamination in the orthogonal direction. The photon fluence of the orthogonal beam for high Z targets is larger compared to low Z targets, i.e. by a factor of 20 for W compared to Be. For a 6 MeV electron beam, the mean energy for low Z targets is calculated to be 320 keV for Al and 150 keV for Be, and for a high Z target like Pb to be 980 keV. For irradiation times of 1.2 s in an electron mode of the linac, the contrast of diagnostic images created with orthogonal beams from the Al target is superior to that in the forward direction. The image contrast and the beam profile of the bremsstrahlung beams were also studied. Both the Monte Carlo study and experiment showed

  7. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging

    Science.gov (United States)

    Jabbari, Keyvan; Sarfehnia, Arman; Podgorsak, Ervin B.; Seuntjens, Jan P.

    2007-02-01

    The basic characteristics of orthogonal bremsstrahlung beams are studied and the feasibility of improved contrast imaging with such a beam is evaluated. In the context of this work, orthogonal bremsstrahlung beams represent the component of the bremsstrahlung distribution perpendicular to the electron beam impinging on an accelerator target. The BEAMnrc Monte Carlo code was used to study target characteristics, energy spectra and relative fluences of orthogonal beams to optimize target design. The reliability of the simulations was verified by comparing our results with benchmark experiments. Using the results of the Monte Carlo optimization, the targets with various materials and a collimator were designed and built. The primary pencil electron beam from the research port of a Varian Clinac-18 accelerator striking on Al, Pb and C targets was used to create orthogonal beams. For these beams, diagnostic image contrast was tested by placing simple Lucite objects in the path of the beams and comparing image contrast obtained in the orthogonal direction to the one obtained in the forward direction. The simulations for various target materials and various primary electron energies showed that a width of 80% of the continuous-slowing-down approximation range (RCSDA) is sufficient to remove electron contamination in the orthogonal direction. The photon fluence of the orthogonal beam for high Z targets is larger compared to low Z targets, i.e. by a factor of 20 for W compared to Be. For a 6 MeV electron beam, the mean energy for low Z targets is calculated to be 320 keV for Al and 150 keV for Be, and for a high Z target like Pb to be 980 keV. For irradiation times of 1.2 s in an electron mode of the linac, the contrast of diagnostic images created with orthogonal beams from the Al target is superior to that in the forward direction. The image contrast and the beam profile of the bremsstrahlung beams were also studied. Both the Monte Carlo study and experiment showed an

  8. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  9. Pion mass effects on axion emission from neutron stars through NN bremsstrahlung processes

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, S. [Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-6, 76900 Bucharest-Magurele (Romania); Horia Hulubei Foundation, Atomistilor 407, Bucharest-Magurele (Romania)], E-mail: stoica@theory.nipne.ro; Pastrav, B. [Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-6, 76900 Bucharest-Magurele (Romania)], E-mail: bpastrav@theory.nipne.ro; Horvath, J.E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900 Cidade Universitaria Sao Paulo, SP (Brazil)], E-mail: foton@astro.iag.usp.br; Allen, M.P. [CEFET-SP, R. Pedro Vicente 625, 01109-010 Caninde, Sao Paulo, SP (Brazil)

    2009-09-15

    The rates of axion emission by nucleon-nucleon bremsstrahlung are calculated with the inclusion of the full momentum contribution from a nuclear one pion exchange (OPE) potential. The contributions of the neutron-neutron (nn), proton-proton ( pp) and neutron-proton (np) processes in both the non-degenerate and degenerate limits are explicitly given. We find that the finite-momentum corrections to the emissivities are quantitatively significant for the non-degenerate regime and temperature-dependent, and should affect the existing axion mass bounds. The trend of these nuclear effects is to diminish the emissivities.

  10. Interference Peak in the Spectrum of Bremsstrahlung on Two Amorphous Targets

    CERN Document Server

    Bondarenco, M V

    2014-01-01

    We investigate the interference pattern in the spectrum of non-dipole bremsstrahlung on two amorphous foils. Apart from suppression at lowest $\\omega$, the spectrum exhibits an enhancement adjacent to it. In classical electrodynamics, the net effect of suppression and enhancement proves to be zero. We study the location and the origin of the spectral features, comparing predictions of full Moli\\`ere averaging with those of the Gaussian averaging with Coulomb corrections to the rms multiple scattering angle. Comparison with experimental data, and with previous theoretical predictions is presented.

  11. On the bremsstrahlung background correction to the high-energy Compton spectroscopy

    Indian Academy of Sciences (India)

    S Mathur; B L Ahuja

    2005-07-01

    A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time that the BS background contribution in high-energy Compton profile experiments like those employing third generation synchrotron radiation sources comes out to be significant and non-linear. Further, it is found that the incorporation of BS correction in data reduction of such an experiment performed on Hg at 662 keV energy helps in reconciliation of theory and experiment.

  12. Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale.

    Science.gov (United States)

    Ciafaloni, Marcello; Colferai, Dimitri; Veneziano, Gabriele

    2015-10-23

    We argue that, as a consequence of the graviton's spin-2, its bremsstrahlung in trans-Planckian-energy (E≫M(P)) gravitational scattering at small deflection angle can be nicely expressed in terms of helicity-transformation phases and their transfer within the scattering process. The resulting spectrum exhibits deeply sub-Planckian characteristic energies of order M(P)(2)/E≪M(P) (reminiscent of Hawking radiation), a suppressed fragmentation region, and a reduced rapidity plateau, in broad agreement with recent classical estimates.

  13. Radioembolization with {sup 90}Y-labeled microspheres. Post-therapeutic therapy validation with Bremsstrahlung-SPECT; Radioembolisation mit {sup 90}Y-markierten Mikrosphaeren. Posttherapeutische Therapievalidierung mit Bremsstrahlungs-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, Oliver S. [Universitaetsklinikum Magdeburg A.oe.R. (Germany). Klinik fuer Radiologie und Nuklearmedizin; Medizinische Hochschule Hannover (Germany). Stabsstelle Strahlenschutz und Medizinische Physik; Nultsch, Madeleine; Laatz, Kathleen [Universitaetsklinikum Magdeburg A.oe.R. (Germany). Klinik fuer Radiologie und Nuklearmedizin] [and others

    2011-07-01

    During the last years angiographic Selective Internal Radiotherapy (SIRT) with {sup 90}Y-labelled microspheres has become a common technique for the local-ablative treatment of cancer patients. SIRT is a palliative therapy concept for the treatment of liver malignancies. As a result of {sup 90}Y-decay as {beta}{sup -}-emitter without a concomitant gamma radiation, Bremsstrahlung imaging is needed to validate the distribution achieved by radioembolisation. This article demonstrates the method of imaging through phantom measurement and shows the advantages of post-therapeutic tomography by means of a patient study. Approaches for further optimization of Bremsstrahlung imaging are discussed. (orig.)

  14. Neutron–proton bremsstrahlung as a possible probe of high-momentum component in nucleon momentum distribution

    Directory of Open Access Journals (Sweden)

    Hui Xue

    2016-04-01

    Full Text Available Neutron-proton bremsstrahlung in intermediate energy nucleus–nucleus collisions is proposed as a possible probe to study the high-momentum component in nucleon momentum distribution of finite nucleus. Based on the Boltzmann–Uehling–Uhlenbeck (BUU transport model, the effects of high-momentum component on the production of bremsstrahlung photons in the reaction of C12+12C collisions at different incident beam energies are studied. It is found that the high-momentum component increases the high-energy bremsstrahlung photon production remarkably. Furthermore, the ratio of photon production at different incident beam energies is suggested as a potential observable to probe the high-momentum component in nucleon momentum distribution of finite nucleus.

  15. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  16. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  18. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  19. Formation region effects in transition radiation, bremsstrahlung, and ionization loss of ultrarelativistic electrons

    Science.gov (United States)

    Trofymenko, S. V.; Shul'ga, N. F.

    2016-11-01

    The processes of transition radiation and bremsstrahlung by an ultrarelativistic electron as well as the effect of transition radiation influence upon the electron ionization loss in thin layer of substance are theoretically investigated in the case when radiation formation region has macroscopically large size. Special attention is drawn to transition radiation (TR) generated during the traversal of thin metallic plate by the electron previously deflected from its initial direction of motion. In this case TR characteristics are calculated for realistic (circular) shape of the electron deflection trajectory. The difference of such characteristics under certain conditions from the ones obtained previously with the use of approximation of anglelike shape of the electron trajectory (instant deflection) is shown. The problem of measurement of bremsstrahlung characteristics in the prewave zone is investigated. The expressions defining the measured radiation distribution for arbitrary values of the size and the position of the detector used for radiation registration are derived. The problem of TR influence upon the electron ionization loss in thin plate and in a system of two plates is discussed. The proposal for experimental investigation of such effect is formulated.

  20. Effect of degenerate particles on internal bremsstrahlung of Majorana dark matter

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2015-11-01

    Full Text Available Gamma-rays induced by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-rays generated by internal bremsstrahlung of Majorana and real scalar dark matter is promising since it can be a leading emission of sharp gamma-rays. However in the case of Majorana dark matter, its cross section for internal bremsstrahlung cannot be large enough to be observed by future gamma-ray experiments if the observed relic density is assumed to be thermally produced. In this paper, we introduce some degenerate particles with Majorana dark matter, and show they lead enhancement of the cross section. As a result, increase of about one order of magnitude for the cross section is possible without conflict with the observed relic density, and it would be tested by the future gamma-ray experiments such as GAMMA-400 and Cherenkov Telescope Array (CTA. In addition, the constraints of perturbativity, positron observation by the AMS experiment and direct search for dark matter are discussed.

  1. Validation of the Geant4 simulation of bremsstrahlung from thick targets below 3 MeV

    CERN Document Server

    Pandola, Luciano; Caccia, Barbara

    2014-01-01

    The bremsstrahlung spectra produced by electrons impinging on thick targets are simulated using the Geant4 Monte Carlo toolkit. Simulations are validated against experimental data available in literature for a range of energy between 0.5 and 2.8 MeV for Al and Fe targets and for a value of energy of 70 keV for Al, Ag, W and Pb targets. All three independent sets of electromagnetic models available in Geant4 to simulate bremsstrahlung are tested. A quantitative analysis is performed reproducing with each model the energy spectrum for the different configurations of emission angles, energies and targets. At higher energies (0.5-2.8 MeV) of the impinging electrons on Al and Fe targets, Geant4 is able to reproduce the spectral shapes and the integral photon emission in the forward direction (at better than 10%). The physics model based on the Penelope Monte Carlo code seems slightly preferable over the other two. However, all models over-estimate the photon emission in the backward hemisphere. For the lower energ...

  2. Characterization of the hot electron population with bremsstrahlung and backscatter measurements at the National Ignition Facility

    Science.gov (United States)

    Albert, Felicie; Hohenberger, Matthias; Michel, Pierre; Divol, Laurent; Doeppner, Tilo; Dewald, Edward; Bachmann, Benjamin; Ralph, Joseph; Turnbull, David; Goyon, Clement; Thomas, Cliff; Landen, Otto; Moody, John

    2016-10-01

    In indirect-drive ignition experiments, the hot electron population, produced by laser-plasma interactions, can be inferred from the bremsstrahlung generated by the interaction of the hot electrons with the target. At the National Ignition Facility (NIF), the upgraded filter-fluorescer x-ray diagnostic (FFLEX), a 10-channel, time-resolved hard x-ray spectrometer operating in the 20- to 500-keV range, provides measurements of the bremsstrahlung spectrum. It typically shows a two-temperature distribution of the hot electron population inside the hohlraum. In SRS, where the laser is coupled to an electron plasma wave, the backscattered spectrum, measured with the NIF full-aperture backscatter system (FABS), is used to infer the plasma wave phase velocity. We will present FFLEX time-integrated and time-resolved measurements of the hot electron population low-temperature component. We will correlate them with electron plasma wave phase velocities inferred from FABS spectra for a range of recent shots performed at the National Ignition Facility. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Bremsstrahlung suppression due to the Landau-Pomeranchuk-Migdal and dielectric effects in a variety of materials

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, P.L.; Becker-Szendy, R.; Keller, L.P.; Niemi, G.; Perl, M.L.; Rochester, L.S.; White, J.L. [Stanford Linear Accelerator Center, Stanford, California 94309 (United States); Bosted, P.E.; White, J.L. [The American University, Washington, D.C. 20016 (United States); Cavalli-Sforza, M.; Kelley, L.A.; Klein, S.R. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064 (United States); Klein, S.R. [Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)

    1997-08-01

    The cross section for bremsstrahlung from highly relativistic particles is suppressed due to interference caused by multiple scattering in dense media, and due to photon interactions with the electrons in all materials. We present here a detailed study of bremsstrahlung production of 200 keV to 500 MeV photons from 8 and 25 GeV electrons traversing a variety of target materials. For most targets, we observe the expected suppressions to a good accuracy. We observe that finite thickness effects are important for thin targets. {copyright} {ital 1997} {ital The American Physical Society}

  4. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  5. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  6. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  7. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  8. Calculation of gamma-ray buildup factors up to depths of 100 mfp by the method of invariant embedding. (2) Improved treatment of bremsstrahlung

    CERN Document Server

    Shimizu, A

    2003-01-01

    An improved method to calculate the gamma-ray buildup factors including bremsstrahlung has been developed. The exposure buildup factors with bremsstrahlung were computer by the present method for lead, iron and water at the source energy of 10.0 MeV up to depths of 100 mfp. The accuracy of the present method was checked by comparison with the calculations by use of EGS4. Excellent agreement was obtained between the calculations by both methods about the exposure buildup factors per energy (energy spectrum of transmitted photons) for lead up to depths of 10 mfp and the ratio of the exposure buildup factor with bremsstrahlung to that without bremsstrahlung for lead, iron and water up to depths of 40 mfp. It is confirmed that the present method has an accuracy sufficient to be used to the generation of an improved set of gamma-ray buildup factors including bremsstrahlung. (author)

  9. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  11. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Departamento de Fisica, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra, Coimbra (Portugal); Sona, P., E-mail: pietro.sona@fi.infn.it [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Ballestrero, S. [Department of Physics University of Johannesburg, Johannesburg (South Africa); CERN PH/ADT, Geneve (Switzerland); Uggerhoj, U.I.; Andersen, K.K. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2012-10-15

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are established. The separate contributions to spectral distortion of electromagnetic processes other than bremsstrahlung are also studied in detail.

  12. Estimation of Electron Dose Delivered by a 0.4 MeV Accelerator from Bremsstrahlung Dose Measurements

    DEFF Research Database (Denmark)

    Karadjov, A. G.; Hansen, Jørgen-Walther

    1980-01-01

    Determination of a 0.4 MeV electron dose from a bremsstrahlung dose measurement using a converter-detector system is considered. The detector used is a Frickle dosimeter, and the converters are aluminum, copper and lead foils. Optimal converter thickness is ascertained experimentally for each mat...

  13. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  15. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  16. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  17. Search for a 17 keV neutrino in the internal bremsstrahlung spectrum of 125I

    Science.gov (United States)

    Hindi, M. M.; Kozub, R. L.; Robinson, S. J.

    1994-06-01

    We have searched for evidence of the emission of a 17 keV neutrino in the internal bremsstrahlung (IB) spectrum accompanying the electron capture decay of 125I. The IB spectrum, recorded in a planar Ge detector, has 1.2×106 counts per keV at 17 keV below the 2p end point. We set an upper limit of 0.4% for the admixture of a 17 keV neutrino, at the 90% confidence level, and exclude a 0.8% admixture at the 99.6% confidence level. The QEC value is found to be 185.77+/-0.06 keV. We also find that the recent calculations of Surić et al., which employ relativistic self-consistent-field atomic wave functions, reproduce the shape and relative intensity of IB partial spectra within a few percent.

  18. Impact of bremsstrahlung on the neutrinosphere for muon and tau neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Hannah; Bartl, Alexander [Institut fuer Kernphysik, TU Darmstadt (Germany); Arcones, Almudena [Institut fuer Kernphysik, TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    Core-collapse supernovae present a challenging and exciting problem that strongly depends on all forces (strong, weak, electromagnetism, and gravity). Neutrinos, although weakly interacting, are key to transporting energy and momentum. Therefore, detailed treatment of neutrino reactions is critical to understand these high energy events. We have studied the impact of different neutrino reactions on the position of the neutrinosphere (i.e., region where neutrinos decouple from matter). Since the density in this region is high the effect of nuclear interactions has to be considered for bremsstrahlung: N+N→N+N+ν+ anti ν. We have employed new, improved approaches to calculate the inverse process and show the effect on the position of the neutrinosphere for muon and tau neutrinos.

  19. New exclusion limits for dark gauge forces from proton Bremsstrahlung in beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Aix-Marseille Univ. CNRS/IN2P3 (France). CPPM

    2013-11-15

    We re-analyze published proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. More recently, limits on dark gauge forces have been derived from this data set, considering a dark photon production from {pi}{sup 0}-decay. Here we determine extended mass and coupling exclusion bounds for dark gauge bosons ranging to masses m{sub {gamma}'} of 624 MeV at admixture parameters {epsilon}{approx_equal}10{sup -6} considering high-energy Bremsstrahlung of the U-boson of the initial proton beam and different detection mechanisms.

  20. NLO QED corrections to hard-bremsstrahlung emission in Bhabha scattering

    Energy Technology Data Exchange (ETDEWEB)

    Actis, Stefano [Institut fuer Theoretische Physik E, RWTH Aachen University, D-52056 Aachen (Germany); Mastrolia, Pierpaolo [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ossola, Giovanni, E-mail: gossola@citytech.cuny.ed [Physics Department, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States)

    2010-01-04

    We present a numerical implementation of the one-loop QED corrections to the hard-bremsstrahlung process e{sup -}e{sup +}->e{sup -}e{sup +}gamma. These corrections can be included in the Monte Carlo event generators employed for simulating Bhabha scattering events at low-energy high-luminosity electron-positron colliders. The calculation is performed by employing the reduction method developed by Ossola, Papadopoulos and Pittau. Our results are implemented in a modular code for the numerical evaluation of the scattering amplitudes for any given phase-space point. In a similar way, we evaluate also the one-loop QED corrections to e{sup -}e{sup +}->mu{sup -}mu{sup +}gamma, and show an interesting application of the method in the presence of two different mass scales in the loops.

  1. NLO QED Corrections to Hard-Bremsstrahlung Emission in Bhabha Scattering

    CERN Document Server

    Actis, Stefano; Ossola, Giovanni

    2010-01-01

    In this paper we present a numerical implementation of the one-loop QED corrections to the hard-bremsstrahlung process e- e+ \\to e- e+ gamma. These corrections can be included in the Monte Carlo event generators employed for simulating Bhabha scattering events at low-energy high-luminosity electron-positron colliders. The calculation is performed by employing the reduction method developed by Ossola, Papadopoulos and Pittau. Our results are implemented in a modular code for the numerical evaluation of the scattering amplitudes for any given phase-space point. In a similar way, we also evaluate the one-loop QED corrections to e- e+ \\to mu- mu+ gamma, which represents an interesting application of the method in the presence of two different mass scales in the loops.

  2. The interference effect of laser-assisted bremsstrahlung emission in Coulumb fields of two nuclei

    CERN Document Server

    Li, Ankang; Ren, Na; Wang, Pingxiao; Zhu, Wenjun; Li, Xiaoya; Hoehn, Ross; Kais, S

    2013-01-01

    In this paper, the spontaneous bremsstrahlung emission from an electron scattered by two fixed nuclei in an intense laser field is investigated in details based upon the Volkov state and the Dirac-Volkov propagator. It has been found that the fundamental harmonic spectrum from the electron radiation exhibits distinctive fringes, which is dependent not only upon the internucleus distance and orientation, but also upon the initial energy of the electron and the laser intensity. By analyzing the differential cross section, we are able to explain these effects in terms of interference among the electron scattering by the nuclei. These results could have promising applications in probing the atomic or molecular dressed potentials in intense laser fields.

  3. Bremsstrahlung photons - an ideal tool in nuclear structure and nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, Mario [Institut fur Kernphysik, Darmstadt (Germany)

    2005-07-01

    Full text of publication follows. Bremsstrahlung photons, produced by decelerating electrons, are a very useful probe to investigate current topics in nuclear structure and nuclear astrophysics. The photon scattering facility of the superconducting electron accelerator S-DALINAC at the Darmstadt University of Technology allows for high resolution Nuclear Resonance Fluorescence (NRF) experiments up to 10 MeV. One current topic of interest in nuclear structure is the investigation of Pygmy Dipole Resonances (PDR), which are located near the particle threshold. Recently, experiments have been carried out on Ca isotopes [1] as well as on several N=82 nuclei [2] in order to understand the structure of the PDR. Moreover, important astrophysical questions can be investigated using real photons (g,n) reaction rates, which play a major role in nucleosynthesis, can be measured at the S-DALINAC by simulating a quasi-stellar photon bath with variable temperature [3,4].

  4. 42 MeV bremsstrahlung spectrum analysis by a photoactivation method

    Energy Technology Data Exchange (ETDEWEB)

    Calzado, A.; Vano, E.; Delgado, V.; Gonzalez, L. (Universidad Complutense de Madrid (Spain). Catedra de Fisica Medica; Junta de Energia Nuclear, Madrid (Spain). Inst. de Estudios Nucleares)

    1984-08-01

    The evaluation of 42 MeV, bremsstrahlung spectra from a clinical betatron by using the photoactivation method is described. Photonuclear reactions, mainly of the (..gamma.., n) type, are used as activation detectors. After measurements of photon-induced activities from residual nuclei are performed, the spectral distribution of photons is evaluated by solving the unfolding problem. The latter is carried out through the use of two independent methods, orthonormal expansion and Monte Carlo. In both cases prior conditions to the solution are imposed. Spectra evaluated by both methods and making use of two different size flattening filters are presented. An empirical method to estimate the 'effective' thickness of the Pt target is described.

  5. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  6. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    RXTE, GINGA, and OSSE observations have revealed an intense low-energy gamma-ray continuum emission from the Galactic plane, which is commonly interpreted as evidence for the possible existence of a strong flux of low-energy cosmic ray electrons. In this Paper I discuss the scenario of a hadronic...... in case of energetic heavy nuclei the limits are violated by about an order of magnitude, for a large population of low-energy protons the implied gamma-ray line flux and pi(0)-decay continuum intensity are larger than the existing limits by at least a factor of 2.......-7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...

  7. Thick-target external-bremsstrahlung spectra of 147Pm and 35S β rays

    Science.gov (United States)

    Dhaliwal, A. S.; Powar, M. S.; Singh, M.

    1993-08-01

    External-bremsstrahlung spectra excited by soft β particles of 147Pm (Emaxβ=225 keV) and 35S (Emaxβ=167 keV) in targets of Al, Cu, Sn, and Pb have been studied. The experimental and theoretical results are compared in terms of the number of photons of energy k per m0c2 per unit photon yield to exclude the uncertainty in the source strength measurement and overcome the inherent inadequacy of the normalization procedure used by earlier workers. The results of present measurements for medium- and high-Z elements show better agreement with the theory of Tseng and Pratt [Phys. Rev. A 3, 1714 (1976)] than with Elwert's corrections [Ann. Phys. (N.Y.) 34, 78 (1939)] to the Bethe-Heitler theory [Proc. R. Soc. London Ser. A 14, 83 (1934)], particularly at the higher-energy ends. However, for low-Z elements, both theories are found to be adequate.

  8. Energy dependence of hard bremsstrahlung production in proton-proton collisions in the Delta(1232) region

    CERN Document Server

    Tsirkov, D; Azaryan, T; Chiladze, D; Dymov, S; Dzyuba, A; Hartmann, M; Kacharava, A; Khoukaz, A; Kulikov, A; Kurbatov, V; Macharashvili, G; Merzliakov, S; Mielke, M; Mikirtychiants, S; Nekipelov, M; Rathmann, F; Serdyuk, V; Stroeher, H; Uzikov, Yu; Valdau, Yu; Wilkin, C

    2010-01-01

    Hard bremsstrahlung production in proton-proton collisions has been studied with the ANKE spectrometer at COSY-Juelich in the energy range of 353-800 MeV by detecting the final proton pair {pp}_s from the pp -> {pp}_s reaction with very low excitation energy. Differential cross sections were measured at small diproton c.m. angles from 0 to 20 degrees and the average over this angular interval reveals a broad peak at a beam energy around 650 MeV with a FWHM of about 220 MeV, suggesting the influence of Delta(1232)N intermediate states. Comparison with deuteron photodisintegration shows that the cross section for diproton production is up to two orders of magnitude smaller, due largely to differences in the selection rules.

  9. The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes

    CERN Document Server

    Aranha, R F; Soares, I Damião; Tonini, E V

    2008-01-01

    We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the characteristic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency $\\Delta$ of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter $q \\simeq 1/2$; the result extends and validates analysis based on the linearized t...

  10. Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation

    CERN Document Server

    Bringmann, Torsten; Ibarra, Alejandro; Vogl, Stefan; Weniger, Christoph

    2012-01-01

    A commonly encountered obstacle in indirect searches for galactic dark matter is how to disentangle possible signals from astrophysical backgrounds. Given that such signals are most likely subdominant, the search for pronounced spectral features plays a key role for indirect detection experiments; monochromatic gamma-ray lines or similar features related to internal bremsstrahlung, in particular, provide smoking gun signatures. We perform a dedicated search for the latter in the data taken by the Fermi gamma-ray space telescope during its first 43 months. To this end, we use a new adaptive procedure to select optimal target regions that takes into account both standard and contracted dark matter profiles. The behaviour of our statistical method is tested by a bootstrap analysis of the full sky data and found to reproduce the theoretical expectations very well. The limits on the dark matter annihilation cross-section that we derive are stronger than what can be obtained from the observation of dwarf galaxies a...

  11. BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marco S. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstraße 15, 12489 Berlin (Germany); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parmaand INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICETCiudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Penati, Silvia [Dipartimento di Fisica, Università di Milano-Bicoccaand INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenzeand INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2014-06-19

    We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the appearance of framing-like phases and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.

  12. Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution.

    Science.gov (United States)

    Weng, Su-Ming; Sheng, Zheng-Ming; Zhang, Jie

    2009-11-01

    Inverse bremsstrahlung (IB) absorption and evolution of the electron distribution function (EDF) in a wide laser intensity range (10;{12}-10;{17} W/cm;{2}) have been studied systematically by a two velocity-dimension Fokker-Planck code. It is found that Langdon's IB operator overestimates the absorption rate at high laser intensity, consequently with an overdistorted non-Maxwellian EDF. According to the small anisotropy of EDF in the oscillation frame, we introduce an IB operator which is similar to Langdon's but without the low laser intensity limit. This operator is appropriate for self-consistently tackling the nonlinear effects of high laser intensity as well as non-Maxwellian EDF. Particularly, our operator is capable of treating IB absorption properly in the indirect and direct-drive inertial confinement fusion schemes with the National Ignition Facility and Laser MegaJoule laser parameters at focused laser intensity beyond 10;{15} W/cm;{2} .

  13. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2016-01-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  14. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    Science.gov (United States)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  15. Bremsstrahlung production at 50 MeV in different target materials and configurations.

    Science.gov (United States)

    Sätherberg, A; Andreo, P; Karlsson, M

    1996-04-01

    A combination of Monte Carlo, convolution, and experimental techniques have been used to investigate bremsstrahlung production at 50 MeV in full-range targets to produce narrow elementary photon beams for scanning. Calculations using the ITS 3.0 Monte Carlo system for various target designs, including particle transport through the treatment head of an MM5O racetrack microtron and a water phantom, have been compared to experimental dose profiles from narrow photon beams at 10-cm depth in water. A reduction in the ITS 3.0 default substep size has been found necessary even for incomplete agreement, in consistency with the findings of Faddegon and Rogers [Nucl. Instrum. Meth. A 327, 556-565 (1993)] for a different experimental setup and energy using the previous version of ITS. Results show that the calculated shape of the tail of dose distributions from narrow photon beams agrees well with measurements, but CYLTRAN/ITS 3.0 fails to reproduce the central part of the distribution. The discrepancy at small angles, reported previously for EGS4 and ITS 2.1 simulations, possess a limitation to Monte Carlo simulations of narrow photon beams used in scanned systems of clinical accelerators. Radial dose profiles have been calculated by convolution of the energy fluence at the exit of the target with one polyenergetic Monte Carlo calculated dose kernel and also a database consisting of ten different dose kernels corresponding to different monoenergetic photon pencil beams for comparison. The agreement with the much slower fully detailed Monte Carlo calculations was better when using the database kernels than the polyenergetic kernel. Results for the mean energy, mean polar angle, and energy fluence at different depths within various targets have been obtained. These are discussed in the context of the design characteristics of bremsstrahlung targets with emphasis on their utilization for scanning photon beam techniques.

  16. Validation of the GEANT4 simulation of bremsstrahlung from thick targets below 3 MeV

    Science.gov (United States)

    Pandola, L.; Andenna, C.; Caccia, B.

    2015-05-01

    The bremsstrahlung spectra produced by electrons impinging on thick targets are simulated using the GEANT4 Monte Carlo toolkit. Simulations are validated against experimental data available in literature for a range of energy between 0.5 and 2.8 MeV for Al and Fe targets and for a value of energy of 70 keV for Al, Ag, W and Pb targets. The energy spectra for the different configurations of emission angles, energies and targets are considered. Simulations are performed by using the three alternative sets of electromagnetic models that are available in GEANT4 to describe bremsstrahlung. At higher energies (0.5-2.8 MeV) of the impinging electrons on Al and Fe targets, GEANT4 is able to reproduce the spectral shapes and the integral photon emission in the forward direction. The agreement is within 10-30%, depending on energy, emission angle and target material. The physics model based on the Penelope Monte Carlo code is in slightly better agreement with the measured data than the other two. However, all models over-estimate the photon emission in the backward hemisphere. For the lower energy study (70 keV), which includes higher-Z targets, all models systematically under-estimate the total photon yield, providing agreement between 10% and 50%. The results of this work are of potential interest for medical physics applications, where knowledge of the energy spectra and angular distributions of photons is needed for accurate dose calculations with Monte Carlo and other fluence-based methods.

  17. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons At Long Standoff Distances

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Jones; J.W. Sterbentz; W.Y. Yoon

    2009-06-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung distribution) or as a set of one or more discrete photon energies (i.e., monoenergetic distribution). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). The latter paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). Specifically, this paper will pursue this higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions for air and an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of any secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening atmosphere. *Supported in part by the Defense Threat Reduction Agency and Department of Energy (DOE) Idaho Operations Office under Contract Number DE-AC07-05ID14517.

  18. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  20. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    Science.gov (United States)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  1. Absorbed dose distributions in a tissue-equivalent absorber for Bremsstrahlung produced at the beamlines of the European Synchrotron Radiation Facility

    CERN Document Server

    Pisharody, M; Berkvens, P; Colomp, P

    2000-01-01

    The absorbed-dose distributions for Bremsstrahlung, incident on a tissue-equivalent phantom, were measured with LiF : Mg,Ti thermoluminescent dosimeters at two insertion device beamlines of the European Synchrotron Radiation Facility (ESRF). The measurements were carried out for two different electron beam energies of 4 and 6 GeV. The corresponding Bremsstrahlung spectra and power were measured using a high-resolution lead glass total absorption calorimeter. The results are compared with similar measurements carried out at other facilities. The normalized Bremsstrahlung absorbed dose in a cross-sectional area of 100 mm sup sup 2 , at a depth of 150 mm of the phantom, was measured as 6.1 and 3.6 kGy h sup sup - sup sup 1 W sup sup - sup sup 1 for the corresponding Bremsstrahlung spectra of 4 and 6 GeV.

  2. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy; Bremsstrahlung thermique comme sonde de la multifragmentation nucleaire dans les collisions noyau-noyau aux energies de Fermi

    Energy Technology Data Exchange (ETDEWEB)

    D' Enterria, D.G

    2000-05-15

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E{sub {gamma}} > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar{sup 36} + Au{sup 197}, Ag{sup 107}, Ni{sup 58}, C{sup 12} at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4{pi}. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pn{gamma}) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  3. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  4. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  5. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  6. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  7. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  8. Spontaneous Bremsstrahlung in Scattering of an Electron by a Nucleus in the Field of Two Light Waves

    CERN Document Server

    Roshchupkin, S P; Roshchupkin, Sergey P.; Lysenko, Oleg B.

    1999-01-01

    We theoretically investigate nonresonant spontaneous bremsstrahlung in the scattering of an electron by a nucleus in the field of two linearly polarized light waves propagating in the same direction in the general relativistic case. It is demonstrated that there are two substantially different kinematic ranges: the noninterference range, where the Bunkin-Fedorov quantum parameters serve as multiphoton parameters,and the interference range, where interference effects become significant, and quantum interference parameters play the role of multiphoton parameters. We determine the cross sections of electron-nucleus spontaneous bremsstrahlung in these kinematic ranges. It is demonstrated that the partial cross section in the interference range with emission (absorption) of photons at combination frequencies may considerably exceed the corresponding cross section for any other geometry.

  9. Bremsstrahlung information for the non-destructive characterization of radioactive waste packages. Final report; Nutzung von Bremsstrahlungsinformationen fuer die zerstoerungsfreie Charakterisierung radioaktiver Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Rohrmoser, B.; Lierse von Gostomski, C.

    2013-04-15

    The report describes a feasibility study on non-destructive characterization of radioactive waste package using bremsstrahlung information within the gamma spectra. A multi-step was developed for the identification of the bremsstrahlung in the measured gamma spectra under defined boundary conditions. The experimental investigations were performed using a stationary HPGe detector system, a mobile HPGe detector system and a mobile gamma scanner. Further studies are necessary with respect to the possible beta emitting radionuclides in a radioactive waste package.

  10. Implementation of the LPM effect in the discrete-bremsstrahlung simulation of GEANT 3 and GEANT 4

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Parti' culas, Coimbra (Portugal); Ballestrero, S. [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Sona, P. [Dipartimento di Fisica, Universita degli Studi di Firenze, Polo Scientifico, Sesto F.no, Via G. Sansone 1, Sesto Fiorentino 50019 , Firenze (Italy)], E-mail: pietro.sona@fi.infn.it; Uggerhoj, U.I. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2008-12-15

    Experimental data, recently measured at CERN, on the LPM effect have been used to benchmark the description of the discrete bremsstrahlung incorporated into the GEANT 3 and GEANT 4 codes. The limited accuracy of the native versions required a major revision in the framework of the original Migdal theory. The results obtained with the new implementation agree quite satisfactorily with measurements. The stability of the calculations when several parameters are varied has been thoroughly investigated.

  11. Spontaneous Bremsstrahlung in Scattering of an Electron by a Nucleus in the Field of Two Light Waves

    OpenAIRE

    Roshchupkin, Sergey P.; Lysenko, Oleg B.

    2001-01-01

    We theoretically investigate nonresonant spontaneous bremsstrahlung in the scattering of an electron by a nucleus in the field of two linearly polarized light waves propagating in the same direction in the general relativistic case. It is demonstrated that there are two substantially different kinematic ranges: the noninterference range, where the Bunkin-Fedorov quantum parameters serve as multiphoton parameters,and the interference range, where interference effects become significant, and qu...

  12. The small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield of cosmic ray shower particles

    Science.gov (United States)

    Al Samarai, Imen; Deligny, Olivier; Rosado, Jaime

    2016-10-01

    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C 3Πu electronic level of nitrogen molecules to the B 3Πg one amounting to Y[ 337 ] =(6.05 ± 1.50) MeV-1 at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be Y[330-400]MBR = 0.10 MeV-1 in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This means that out of ≃175 photons with wavelength between 330 and 400 nm detected by fluorescence detectors, one of them has been produced by molecular Bremsstrahlung radiation. Although small, this contribution is not negligible in regards to the total budget of systematic uncertainties when considering the absolute energy scale of fluorescence detectors.

  13. Bremsstrahlung mechanism application on mini X-ray source%轫致辐射X光源初步研究

    Institute of Scientific and Technical Information of China (English)

    顾小冯; 罗小为; 戴建枰

    2009-01-01

    Recently, increasing research effort have been made on mini X-ray sources, which are of small size with high quality and low cost. Among them, a mini X-ray source based on bremsstrahlung is of better perspective. In this paper, we report our work on two kinds of bremsstrahlung mechanisms for mini X-ray sources. The photon production per electron of the X-ray production mechanisms are deduced and compared, so as to find the ways to improve them. Experiment on X-ray imaging with thin target bremsstrahlung was carried out to study the imaging quality and the influence on electron beam for the mini X-ray sources.%对高能电子打薄靶和低能电子打厚靶两种不同轫致辐射方式的微型轫致辐射光源进行了研究.推导并比较了两种方式的单位电子光子产生率,给出了提高光子产额的方法.以BFEL直线加速器为平台,利用高能电子薄靶的轫致辐射光进行X光成像实验,研究薄靶对电子束流参数的影响,并对轫致辐射微型X光源的特性进行了讨论.

  14. Coherent bremsstrahlung and a new possibility to monitor collisions of beams at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L. [Novosibirskij Gosudarstvennyj Univ. (Russian Federation); Serbo, V.G. [Novosibirskij Gosudarstvennyj Univ. (Russian Federation)

    1996-09-21

    We consider the coherent bremsstrahlung (CBS) at colliders with short bunches. CBS is radiation of particles of one bunch in the collective electromagnetic field of the oncoming bunch. It seems that CBS can be a potential tool for fast control over collisions and for measuring beam parameters. The bunch length {sigma}{sub z} can be found from the critical energy of the CBS spectrum E{sub c}{proportional_to}1/{sigma}{sub z}; the transverse bunch size {sigma} {sub perpendicular} {sub to} is related to the photon rate dN{sub {gamma}}{proportional_to}1/{sigma} {sub perpendicular} {sub to} {sup 2}. A specific dependence of dN{sub {gamma}} on the impact parameter between the beams allows for a fast control over the beam displacement. We present the main characteristics of CBS calculated for B and {phi} factories, LHC (in the p-p and Pb-Pb modes), RHIC, VEPP-2M and VEPP-4M. (orig.).

  15. Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions

    CERN Document Server

    Gyulassy, M; Vitev, I; Biro, T

    2014-01-01

    We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, $v_n^M\\{1\\}$, and even number $2\\ell$ gluon, $v_n^M\\{2\\ell\\}$ inclusive distributions in high energy p+A reactions as a function of harmonic $n$, %independent target recoil cluster number, $M$, and gluon number, $2\\ell$, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to characteristic boost non-invariant trapezoidal rapidity distributions in asymmetric $B+A$ nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in $\\eta$ nature of the non-abelian \\br leads to $v_n$ moments that are similar to results from hydrodynamic models, but due entirely to non-abelian...

  16. X-rays from Proton Bremsstrahlung: Evidence from Fusion Reactors and Its Implication in Astrophysics

    CERN Document Server

    Luo, Nie

    2009-01-01

    In a fusion reactor, a proton and a neutron generated in previous reactions may again fuse with each other. Or they can in turn fuse with or be captured by an un-reacted deuteron. The average center-of-mass (COM) energy for such reaction is around 10 keV in a typical fusion reactor, but could be as low as 1 keV. At this low COM energy, the reacting nucleons are in an s-wave state in terms of their relative angular momentum. The single-gamma radiation process is thus strongly suppressed due to conservation laws. Instead the gamma ray released is likely to be accompanied by x-ray photons from a nuclear bremsstrahlung process. The x-ray thus generated has a continuous spectrum and peaks around a few hundred eV to a few keV. The average photon energy and spectrum properties of such a process are calculated with a semiclassical approach. The results give a peak near 1.1 keV for the proton-deuteron fusion and a power-to-the-minus-second law in the spectrum's high-energy limit. An analysis of some prior tokamak disc...

  17. Hidden Photon Compton and Bremsstrahlung in White Dwarf Anomalous Cooling and Luminosity Functions

    CERN Document Server

    Chang, Chia-Feng

    2016-01-01

    We computed the contribution of the Compton and Bremsstrahlung processes with a hidden light $U(1)_D$ neutral boson $\\gamma_D$ to the white dwarf G117-B15A anomalous cooling rate, as well as the white dwarf luminosity functions (WDLF). We demonstrated that for a light mass of hidden photon ($m_{\\gamma_D} \\ll$ a few keV), compatible results are obtained for the recent Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey observation, but the stringent limits would be imposed on the kinetic mixing $\\epsilon$. We performed $\\chi^2$-tests to acquire a quantitative assessment on the WDLF data in the context of our model, computed under the assumption of different kinetic mixing $\\epsilon$, the age of the oldest computed stars $T_D$, and a constant star formation rate $\\psi$. Then taken together, the WDLF analysis of 2$\\sigma$ confidence interval $\\epsilon = \\left( 0.37^{+0.35}_{-0.37}\\right) \\times 10^{-14}$ is barely consistent with the cooling rate analysis at 2$\\sigma$ regime $\\epsilon = \\left( 0.97^{+0.35}_{...

  18. Study of the inner Bremsstrahlung following the electron-capture decay of {sup 193} Pt

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J.Y.Z.; Cruz, M.T.F. da; Martins, M.N.; Santos, R.T. dos [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zamboni, C.B.; Hamada, M.M.; Camargo, S.P. de; Medeiros, J.A.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Hindi, M.M. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    1997-12-31

    We are measuring the inner Bremsstrahlung (I B) photons emitted in some of the electron-capture decays of {sup 193} Pt. The source was prepared with highly pure metal Pt. It was irradiated with neutron for 52 days and let to cool down for eight months. The remaining activities were due to {sup 193} Pt{sup g} (half-life 50 yr) and {sup 192} Ir (half-life 74 d), the latter coming from (n, {gamma}) reactions on a small content of Ir. We have used a radiochemistry method to reduce the Ir content of the source. The resulting Pt compound will be dissolved in a plastic scintillator disk. Most of the {sup 192} Ir decays are {beta}{sup -} and their signal in the plastic will be used as a veto for the I B-photon detector. We have performed simulations of the efficiency and absorption effects in the detection geometry. (author) 6 refs., 1 fig.; juan at if.usp.br; czamboni at net.ipen.br; hindi at hindi.physics.tntech.edu

  19. A search for bremsstrahlung solar axions using the Majorana low-background BEGe detector at Kimballton (MALBEK)

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Caldwell, A S; Chan, Y-D; Christofferson, C D; Combs, D C; Cooper, R J; Creswick, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Elliott, S R; Fast, J E; Finnerty, P; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guiseppe, V E; Gusev, K; Hegai, A; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Keeter, K J; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; MacMullin, J; MacMullin, S; Marino, M G; Martin, R D; Mertens, S; Orrell, J L; O'Shaughnessy, C; Overman, N R; Phillips, D G; Poon, A W P; Pushkin, K; Radford, D C; Robertson, R G H; Ronquest, M C; Schubert, A G; Shanks, B; Shirchenko, M; Snavely, K J; Snyder, N; Steele, D; Suriano, A M; Thompson, J; Timkin, V; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Xu, W; Yakushev, E; Young, A R; Yu, C H; Yumatov, V

    2014-01-01

    A low-background, high-purity germanium detector has been used to search for evidence of low-energy, bremsstrahlung-generated solar axions. An upper bound of $1.36\\times 10^{-11}$ $(95\\% CL)$ is placed on the direct coupling of DFSZ model axions to electrons. The prospects for the sensitivity of the Majorana Demonstrator array of point-contact germanium detectors to solar axions are discussed in the context of the model-independent annual modulation due to the seasonal variation of the earth-sun distance.

  20. PET/CT and Bremsstrahlung Imaging After 90Y DOTANOC Therapy for Rectal Net With Liver Metastases.

    Science.gov (United States)

    Abdülrezzak, Ümmühan; Kula, Mustafa; Tutuş, Ahmet; Buyukkaya, Fikret; Karaca, Halit

    2015-10-01

    Peptide receptor radionuclide therapy with Lu or Y is promising with successful results in somatostatin receptor-positive tumors. In all radiation therapies, knowledge of the radiation dose received by the target, and other organs in the body is essential to evaluate the risks and benefits of any procedure. We report a case of liver metastases from a rectal neuroendocrine tumor, which was treated with Y DOTANOC. Posttreatment whole-body planar images were acquired through Bremsstrahlung radiations of Y on a γ-camera, and thoracolumbar PET/CT images were acquired on PET.

  1. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    CERN Document Server

    Scott, R H H; Perez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H -P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A

    2013-01-01

    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.

  2. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy Bremsstrahlung beam, onboard aircraft radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Jadrnickova, I. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic); Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, Brehova 7, 115 19 Prague 1 (Czech Republic); Spurny, F. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic)

    2006-07-01

    The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/{mu}m. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)

  3. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  4. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Accelerator Systems Division (APS)

    2010-11-01

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon

  5. Bremsstrahlung and K(alpha) fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C D; Patel, P K; Hey, D S; Mackinnon, A J; Key, M H; Akli, K U; Bartal, T; Beg, F N; Chawla, S; Chen, H; Freeman, R R; Higginson, D P; Link, A; Ma, T Y; MacPhee, A G; Stephens, R B; Van Woerkom, L D; Westover, B; Porkolab, M

    2009-07-24

    The Bremsstrahlung and K-shell emission from 1 mm x 1 mm x 1 mm planar targets irradiated by a short-pulse 3 x 10{sup 18}-8 x 10{sup 19} W/cm{sup 2} laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device (CCD). From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3-12%, representing 20-40% total conversion efficiencies were inferred for intensities up to 8 x 10{sup 19} W/cm{sup 2}. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons.

  6. The Small Contribution of Molecular Bremsstrahlung Radiation to the Air-Fluorescence Yield of Cosmic Ray Shower Particles

    CERN Document Server

    Samarai, I Al; Rosado, J

    2016-01-01

    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C $^3\\Pi_{\\mathrm{u}}$ electronic level of nitrogen molecules to the B $^3\\Pi_{\\mathrm{g}}$ one amounting to $Y_{[337]}=(6.05\\pm 1.50)~$ MeV$^{-1}$ at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be $Y_{[330-400]}^{\\mathrm{MBR}}=0.10~$ MeV$^{-1}$ in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This m...

  7. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    Science.gov (United States)

    Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.

    2008-04-01

    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.

  8. An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung

    CERN Document Server

    Ovanesyan, Grigory

    2011-01-01

    Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCET$_{\\rm G}$ recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCET$_{\\rm G}$ we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchun...

  9. Effect of frequency tuning on bremsstrahlung spectra, beam intensity, and shape in the 10 GHz NANOGAN electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Mal, Kedar; Kumar, Narender; Lakshmy, P. S.; Mathur, Y.; Kumar, P.; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    Studies on the effect of the frequency tuning on the bremsstrahlung spectra, beam intensities, and beam shape of various ions have been carried out in the 10 GHz NANOGAN ECR ion source. The warm and cold components of the electrons were found to be directly correlated with beam intensity enhancement in case of Ar{sup 9+} but not so for O{sup 5+}. The warm electron component was, however, much smaller compared to the cold component. The effect of the fine tuning of the frequency on the bremsstrahlung spectrum, beam intensities and beam shape is presented.

  10. An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2009-03-01

    Full Text Available Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs, even for the same electron beam energy. The aims of this study were to simulate the NEPTUN 10PC linac electron beams and to calculate the photon contamination dose due to bremsstrahlung radiation in these beams using a Monte Carlo method. Materials and methods: A NEPTUN 10PC linac was simulated in its electron mode using the BEAMnrc code. This linac can provide three electron beam energies of 6, 8 and 10 MeV. Detailed information required for the simulation, including the geometry and materials of various components of the linac treatment head, was provided by the vender. For all simulations, the cut-off energies for electron and photon transport were set at ECUT=0.521 MeV and PCUT=0.010 MeV, respectively. The KS statistical test was used for validation of the simulated models. Then, relevant bremsstrahlung radiation doses for the three electron beam energies of the linac were calculated for the reference field using the Monte Carlo method.   Results: The KS test showed a good agreement between the calculated values (resulting from the simulations and the measured ones. The results showed that the amount of contaminated photon dose due to bremsstrahlung radiation from various components of the simulated linac at the surface of the phantom was between 0.2%-0.5% of the maximum dose for the three electron beam energies. Conclusion:  Considering the good agreement between the measured and simulated data, it can be concluded that the simulation method as well as the calculated bremsstrahlung doses have been made at a good level of accuracy and precision

  11. Role of medium modifications for neutrino-pair processes from nucleon-nucleon bremsstrahlung - Impact on the protoneutron star deleptonization

    CERN Document Server

    Fischer, Tobias

    2016-01-01

    In this article the neutrino-pair production from nucleon-nucleon (NN) bremsstrahlung is explored via medium-modifications of the strong interactions at the level of the one-pion exchange approximation. It governs the bulk part of the NN interaction at low densities relevant for the neutrino physics in core-collapse supernova studies. The resulting medium modified one-pion exchange rate for the neutrino-pair processes is implemented in simulations of core collapse supernovae in order to study the impact on the neutrino signal emitted from the deleptonization of the nascent proto-neutron star. Consequences for the nucleosynthesis of heavy elements of the material ejected from the PNS surface are discussed.

  12. Higher-order corrections to electron-nucleus bremsstrahlung cross sections above a few MeV

    Science.gov (United States)

    Mangiarotti, A.; Martins, M. N.

    2016-08-01

    Despite the fact that the first calculations of nuclear bremsstrahlung cross sections were performed for relativistic electrons more than 80 years ago by Sauter, Bethe and Heitler, and Racah, a fully satisfactory solution to this problem is still missing up to the present day. Numerical approaches are impractical for electrons with energies above a few MeV because they require a prohibitively large number of partial waves. Analytic formulae need to describe simultaneously and accurately the interaction with the Coulomb field of the nucleus and the screening effect of the atomic electrons. In the present paper, a state-of-the-art analytic calculation will be discussed. In particular, higher-order corrections to the interaction with the Coulomb field of the nucleus, a subject seldom tackled in the past, are included and compared extensively with published data. The emerged difficulties will be highlighted, but unfortunately they can be overcome only with future large coordinated theoretical and experimental efforts.

  13. Laser interaction based on resonance saturation (LIBORS): an alternative to inverse bremsstrahlung for coupling laser energy into a plasma.

    Science.gov (United States)

    Measures, R M; Drewell, N; Cardinal, P

    1979-06-01

    Resonance saturation represents an efficient and rapid method of coupling laser energy into a gaseous medium. In the case of a plasma superelastic collision quenching of the laser maintained resonance state population effectively converts the laser beam energy into translational energy of the free electrons. Subsequently, ionization of the laser pumped species rapidly ensues as a result of both the elevated electron temperature and the effective reduction of the ionization energy for those atoms maintained in the resonance state by the laser radiation. This method of coupling laser energy into a plasma has several advantages over inverse bremsstrahlung and could therefore be applicable to several areas of current interest including plasma channel formation for transportation of electron and ion beams, x-ray laser development, laser fusion, negative ion beam production, and the conversion of laser energy to electricity.

  14. Energy dependence of the cross sections of some copper photospallation reactions induced by photons of coherent and incoherent bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, A.R.; Vartapetyan, G.A.; Grigoryan, E.O.; Deme-dieresiskhina, N.A.

    1986-09-01

    Cross sections have been calculated for the photospallation of copper with production of the residual nuclei /sup 57/Ni, /sup 56/Co, /sup 56/Mn, /sup 54/Mn, /sup 52/Mn, /sup 44//sup m/Sc, /sup 43/K, /sup 42/K, and /sup 24/Na. The calculation was carried out by solution of the Fredholm equation of the first kind by the Tikhonov regularization method. The yields of these reactions were measured in bombardment of a copper target by coherent and incoherent photon beams obtained from bremsstrahlung in a diamond crystal of electrons accelerated to energy 3.75 GeV. The excitation functions obtained as the result of the calculations showed that in the cross sections of all reactions investigated a broad maximum is observed in the region 300--500 MeV made with data on the spallation of copper by high-energy protons.

  15. Production of isotopes and isomers with irradiation of Z = 47–50 targets by 23-MeV bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Carroll, J. J. [US Army Research Laboratory (United States); Aksenov, N. V.; Albin, Yu. A.; Belov, A. G.; Bozhikov, G. A.; Dmitriev, S. N.; Starodub, G. Ya. [Joint Institute for Nuclear Research (Russian Federation)

    2015-09-15

    The irradiations of Ag to Sn targets by bremsstrahlung generated with 23-MeV electron beams are performed at the MT-25 microtron. Gamma spectra of the induced activities have been measured and the yields of all detected radionuclides and isomers are carefully measured and analyzed. A regular dependence of yields versus changed reaction threshold is confirmed. Many isomers are detected and the suppression of the production probability is observed with growing product spin. Special peculiarities for the isomer-to-ground state ratios were deduced for the {sup 106m}Ag, {sup 108m}Ag, {sup 113m}In, {sup 115m}In, and {sup 123m}Sn isomers. The production of such nuclides as {sup 108m}Ag, {sup 115m}In, {sup 117g}In, and {sup 113m}Cd is of interest for applications, especially when economic methods are available.

  16. Channeling and coherent bremsstrahlung effects for relativistic positrons and electrons. [16 to 28 MeV, orientation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R. L.

    1976-03-22

    Channeling of positrons in single crystals of silicon was observed in transmission and scattering measurements for incident energies from 16 to 28 MeV. In addition, the spectral dependence upon crystal orientation of the forward coherent bremsstrahlung produced by beams of 28-MeV positrons and electrons incident upon a 5 ..mu..m thick single crystal of silicon was measured with a NaI photon spectrometer. Effects of channeling and perhaps of the nonvalidity of the first Born approximation were observed for beam directions near the (111) axis of the crystal, and coherent peaks near 0.5 MeV were observed for a compound interference direction, in agreement with first-order theoretical calculations. 32 fig.

  17. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization.

    Directory of Open Access Journals (Sweden)

    Mattijs Elschot

    Full Text Available BACKGROUND: After yttrium-90 ((90Y microsphere radioembolization (RE, evaluation of extrahepatic activity and liver dosimetry is typically performed on (90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, (90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of (90Y and on the accuracy of liver dosimetry. METHODOLOGY/PRINCIPAL FINDINGS: SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere to 11% (37-mm sphere for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. CONCLUSIONS/SIGNIFICANCE: In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the

  18. Studies of total bremsstrahlung in thick targets of Al, Ti, Sn and Pb for 90Sr beta particles in the photon energy region of 1-100 keV

    Science.gov (United States)

    Singh, Amrit; Dhaliwal, A. S.

    2016-02-01

    Total bremsstrahlung (BS) spectra in thick targets of Al, Ti, Sn and Pb produced by beta emitter 90Sr (End point energy=546 keV) are studied in the photon energy range of 1-100 keV. The experimentally measured BS spectra are compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler [Fmod BH] theory for ordinary bremsstrahlung (OB) and the Avdonina and Pratt [Fmod BH+PB] theory, which include the contribution of polarization bremsstrahlung (PB) into OB. The present results are indicating the correctness of Fmod BH+PB theory in the low energy region, where PB dominates into the BS, but at the middle and higher photon energy region of the bremsstrahlung spectrum, the Fmod BH theory is more close to the experimental results. The description of the bremsstrahlung process in stripped atom (SA) approximation, which indicates the suppression of the bremsstrahlung at higher energy ends due to the production of PB in the low energy region, needs further considerations. Hence, the present measurements for BS for different target materials indicates that the considerations of the screening effects along with other secondary effects during the interaction of incident electrons with the target nuclei are important while describing the production of bremsstrahlung, particularly for the higher energy regions.

  19. Anisotropic Electron Tail Generation during Tearing Mode Magnetic Reconnection

    Science.gov (United States)

    DuBois, Ami M.; Almagri, Abdulgader F.; Anderson, Jay K.; Den Hartog, Daniel J.; Lee, John David; Sarff, John S.

    2017-02-01

    The first experimental evidence of anisotropic electron energization during magnetic reconnection that favors a direction perpendicular to the guide magnetic field in a toroidal, magnetically confined plasma is reported in this Letter. Magnetic reconnection plays an important role in particle heating, energization, and transport in space and laboratory plasmas. In toroidal devices like the Madison Symmetric Torus, discrete magnetic reconnection events release large amounts of energy from the equilibrium magnetic field. Fast x-ray measurements imply a non-Maxwellian, anisotropic energetic electron tail is formed at the time of reconnection. The tail is well described by a power-law energy dependence. The expected bremsstrahlung from an electron distribution with an anisotropic energetic tail (v⊥>v∥ ) spatially localized in the core region is consistent with x-ray emission measurements. A turbulent process related to tearing fluctuations is the most likely cause for the energetic electron tail formation.

  20. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    Science.gov (United States)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.; Chuprov, D. V.

    2016-06-01

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  1. Optimization of energy window for {sup 90}Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Rong Xing; Ghaly, Michael; Frey, Eric C. [Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287-0859 (United States)

    2013-06-15

    Purpose: In yttrium-90 ({sup 90}Y) microsphere brachytherapy (radioembolization) of unresectable liver cancer, posttherapy {sup 90}Y bremsstrahlung single photon emission computed tomography (SPECT) has been used to document the distribution of microspheres in the patient and to help predict potential side effects. The energy window used during projection acquisition can have a significant effect on image quality. Thus, using an optimal energy window is desirable. However, there has been great variability in the choice of energy window due to the continuous and broad energy distribution of {sup 90}Y bremsstrahlung photons. The area under the receiver operating characteristic curve (AUC) for the ideal observer (IO) is a widely used figure of merit (FOM) for optimizing the imaging system for detection tasks. The IO implicitly assumes a perfect model of the image formation process. However, for {sup 90}Y bremsstrahlung SPECT there can be substantial model-mismatch (i.e., difference between the actual image formation process and the model of it assumed in reconstruction), and the amount of the model-mismatch depends on the energy window. It is thus important to account for the degradation of the observer performance due to model-mismatch in the optimization of the energy window. The purpose of this paper is to optimize the energy window for {sup 90}Y bremsstrahlung SPECT for a detection task while taking into account the effects of the model-mismatch. Methods: An observer, termed the ideal observer with model-mismatch (IO-MM), has been proposed previously to account for the effects of the model-mismatch on IO performance. In this work, the AUC for the IO-MM was used as the FOM for the optimization. To provide a clinically realistic object model and imaging simulation, the authors used a background-known-statistically and signal-known-statistically task. The background was modeled as multiple compartments in the liver with activity parameters independently following a

  2. A general semi-analytic method to simulate discrete bremsstrahlung at very low radiated photon energies by the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, Coimbra (Portugal); Sona, P., E-mail: pietro.sona@fi.infn.it [Dipartimento di Fisica, Universita degli Studi di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Ballestrero, S. [Department of Physics, University of Johannesburg, Johannesburg (South Africa); PH/ADT, CERN, CH-1211, Geneve (Switzerland); Uggerhoj, U.I. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2011-09-15

    A computer code for Monte-Carlo simulations in the framework of the GEANT 3 toolkit has been implemented for the description of the discrete bremsstrahlung radiation from high energy electrons crossing thick (semi-infinite) targets. The code is based on the Migdal theory which includes the LPM and dielectric suppression. Validation of the code has been performed by a comparison with the data from the SLAC E-146 experiment. The agreement between simulations and experimental data is generally very good.

  3. Photoactivation of the p-nucleus {sup 92}Mo at the bremsstrahlung measurement place of ELBE; Photoaktivierung des p-Kerns {sup 92}Mo am Bremsstrahlungsmessplatz von ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Erhard, Martin Andreas

    2010-02-26

    By the high intensity of the bremsstrahlung of up to 20 MeV to 10{sup 9} MeV{sup -1}cm{sup -2}s{sup -1} in the energy range up to 20 MeV in the framework of this thesis for the first time not only the ({gamma},n), but also the ({gamma},p) reactions could be studied on {sup 92}Mo at astrophysically relevant energies.

  4. Double Compton and Cyclo-Synchrotron in Super-Eddington Discs, Magnetized Coronae, and Jets

    Science.gov (United States)

    McKinney, Jonathan C.; Chluba, Jens; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander

    2017-01-01

    Black hole accretion discs accreting near the Eddington rate are dominated by bremsstrahlung cooling, but above the Eddington rate the double Compton process can dominate in radiation-dominated regions while the cyclo-synchrotron can dominate in strongly-magnetized regions like in a corona or jet. We present an extension to the general relativistic radiation magnetohydrodynamic code HARMRAD to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature OPAL opacities as well as Thomson and Compton scattering. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically-arrested discs accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disc within a radius of r ˜ 15rg (gravitational radii) at a hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of T ˜ 109K is ˜100 times higher than the disc's black body temperature. Our results show the importance of double Compton and synchrotron in super-Eddington discs, magnetized coronae, and jets.

  5. Magnetic ripple and the modeling of lower-hybrid current drive in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Arslanbekov, R.; Basiuk, V.; Carrasco, J.; Litaudon, X.; Moreau, D. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Bizarro, J.P. [Instituto Superior Tecnico, Lisbon (Portugal). Lab. de Quimica Organica

    1996-01-01

    Using ray-tracing, a detailed investigation of the lower hybrid (LH) wave propagation in presence of toroidal magnetic field ripple is presented. By coupling ray tracing with a one-dimensional relativistic Fokker-Planck code, simulations of LH experiments have been performed for the Tore Supra tokamak. Taking into account magnetic ripple in LH simulations, a better agreement is found between numerical predictions and experimental observations, such as non-thermal Bremsstrahlung emission, current profile, ripple-induced power losses in local magnetic mirrors, when plasma conditions correspond to the ` `few passes` regime. (author). 47 refs.

  6. Optical time of flight studies of lithium plasma in double pulse laser ablation: Evidence of inverse Bremsstrahlung absorption

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumaran, V.; Joshi, H. C.; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-06-15

    The early stage of formation of lithium plasma in a collinear—double pulse laser ablation mode has been studied using optical time of flight (OTOF) spectroscopy as a function of inter-pulse delay time, the distance from the target surface and the fluence of the ablation lasers. The experimental TOF measurements were carried out for lithium neutral (670.8 nm and 610.3 nm), and ionic (548.4 nm and 478.8 nm) lines. These experimental observations have been compared with that for single pulse laser ablation mode. It is found that depending on the fluence and laser pulse shape of the first pre-ablation laser and the second main ablation laser, the plasma plume formation and its characteristic features can be described in terms of plume-plume or laser-plume interaction processes. Moreover, the enhancement in the intensity of Li neutral and ionic lines is observed when the laser-plume interaction is the dominant process. Here, we see the evidence of the role of inverse Bremsstrahlung absorption process in the initial stage of formation of lithium plasma in this case.

  7. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  8. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    CERN Document Server

    Döpp, A; Thaury, C; Lifschitz, A; Sylla, F; Goddet, J-P; Tafzi, A; Iaquanello, G; Lefrou, T; Rousseau, P; Conejero, E; Ruiz, C; Phuoc, K Ta; Malka, V

    2016-01-01

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately linear with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance wit...

  9. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Sylla, F.; Goddet, J.-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P.; Conejero, E.; Ruiz, C.; Ta Phuoc, K.; Malka, V.

    2016-09-01

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  10. The scattering of a bremsstrahlung radiation of electrons with energy 13 and 22 MeV from plane targets

    CERN Document Server

    Asatov, U T

    2002-01-01

    In the present work the characteristics of backward (90 sup d egbremsstrahlung radiation of electrons with energy 13 and 22 MeV with plane targets of different thickness from glass textolite, aluminium, iron, lead and their combination are investigated. The dependence of thickness of saturation of 'forward' scattered gamma radiation, a on angles of detection (theta sub s) and orientation (phi) of plane targets depending on a direction of probing beam was observed for the first time. For the first time, the numerical performances of beams of forward scattered gamma radiation from different targets were investigated and determined depending on their orientation and thickness. The new and corrected data on numerical performances of beams of the inverse scattered gamma radiation is obtained. The distinction in characteristics of beams of the scattered gamma radiation is s...

  11. Electron elastic scattering and low-frequency bremsstrahlung on A@$C_{60}$: A model static approximation

    CERN Document Server

    Dolmatov, V K; Cooper, M B; Hunter, M E

    2015-01-01

    Electron elastic-scattering phase shifts and cross sections along with the differential and total cross sections and polarization of low-frequency bremsstrahlung upon low-energy electron collision with endohedral fullerenes $A$@C$_{60}$ are theoretically scrutinized versus the nature, size and spin of the encapsulated atom $A$. The case-study-atoms $A$ are N, Ar, Cr, Mn, Mo, Tc, Xe, Ba, and Eu. They are thoughtfully picked out of different rows of the periodic table. The study is performed in the framework of a model static approximation. There, both the encapsulated atom $A$ and C$_{60}$ cage are regarded as non-polarizable targets. The C$_{60}$ cage is modeled by an attractive spherical annular potential well. The study provides the most complete initial understanding of how the processes of interest might evolve upon electron collision with various $A$@C$_{60}$. Calculated results identify the most interesting and/or useful future measurements or more rigorous calculations of an electron+$A$@C$_{60}$ colli...

  12. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  13. Dynamical structure of magnetized dissipative accretion flow around black holes

    CERN Document Server

    Sarkar, Biplob

    2016-01-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accret...

  14. The significance of Bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzadehfar, Hojjat; Muckle, Marianne; Sabet, Amir; Biermann, Kim; Haslerud, Torjan; Biersack, Hans-Juergen; Ezziddin, Samer [University Hospital Bonn, Department of Nuclear Medicine, Bonn (Germany); Wilhelm, Kai [University Hospital Bonn, Department of Radiology, Bonn (Germany); Kuhl, Christiane [University Hospital Aachen, Department of Radiology, Aachen (Germany)

    2012-02-15

    Unwanted deposition of {sup 90}Y microspheres in organs other than the liver during radioembolization of liver tumours may cause severe side effects such as duodenal ulcer. The aim of this study was to evaluate the significance of posttherapy bremsstrahlung (BS) SPECT/CT images of the liver in comparison to planar and SPECT images in the prediction of radioembolization-induced extrahepatic side effects. A total of 188 radioembolization procedures were performed in 123 patients (50 women, 73 men) over a 2-year period. Planar, whole-body and BS SPECT/CT imaging were performed 24 h after treatment as a part of therapy work-up. Any focally increased extrahepatic accumulation was evaluated as suspicious. Clinical follow-up and gastroduodenoscopy served as reference standards. The studies were reviewed to evaluate whether BS SPECT/CT imaging was of benefit. In the light of anatomic data obtained from SPECT/CT, apparent extrahepatic BS in 43% of planar and in 52% of SPECT images proved to be in the liver and hence false-positive. The results of planar scintigraphy could not be analysed further since 12 images were not assessable due to high scatter artefacts. On the basis of the gastrointestinal (GI) complications and the results of gastroduodenoscopy, true-positive, true-negative, false-positive and false-negative results of BS SPECT and SPECT/CT imaging in the prediction of GI ulcers were determined. The sensitivity, specificity, positive and negative predictive values and the accuracy of SPECT and SPECT/CT in the prediction of GI ulcers were 13%, 88%, 8%, 92% and 82%, and 87%, 100%, 100%, 99% and 99%, respectively. Despite the low quality of BS images, BS SPECT/CT can be used as a reliable method to confirm the safe distribution of {sup 90}Y microspheres and in the prediction of GI side effects. (orig.)

  15. Double Compton and Cyclo-Synchrotron in Super-Eddington Disks, Magnetized Coronae, and Jets

    CERN Document Server

    McKinney, Jonathan C; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander

    2016-01-01

    We present an extension to the general relativistic radiation magnetohydrodynamic code HARMRAD to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature OPAL opacities as well as Thomson and Compton scattering. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically-arrested disks accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disk within a radius of $r\\sim 15r_g$ (gravitational radii) at a hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accre...

  16. A general semi-analytic method to simulate discrete bremsstrahlung at very low radiated photon energies by the Monte Carlo method

    CERN Document Server

    Sona, P; Mangiarotti, A; Uggerhoj, U I

    2011-01-01

    A computer code for Monte-Carlo simulations in the framework of the GEANT 3 toolkit has been implemented for the description of the discrete bremsstrahlung radiation from high energy electrons crossing thick (semi-infinite) targets. The code is based on the Migdal theory which includes the LPM and dielectric suppression. Validation of the code has been performed by a comparison with the data from the SLAC E-146 experiment. The agreement between simulations and experimental data is generally very good. (C) 2011 Elsevier B.V. All rights reserved.

  17. The effect of the dc bias voltage on the x-ray bremsstrahlung and beam intensities of medium and highly charged ions of argon.

    Science.gov (United States)

    Rodrigues, G; Lakshmy, P S; Baskaran, R; Kanjilal, D; Roy, A

    2010-02-01

    X-ray bremsstrahlung measurements from the 18 GHz High Temperature Superconducting Electron Cyclotron Resonance Ion Source, Pantechnik-Delhi Ion Source were measured as a function of negative dc bias voltage, keeping all other source operating parameters fixed and the extraction voltage in the off condition. The optimization of medium and highly charged ions of argon with similar source operating parameters is described. It is observed that the high temperature component of the electron is altered significantly with the help of bias voltage, and the electron population has to be maximized for obtaining higher current.

  18. Feasibility of bremsstrahlung dosimetry for direct dose estimation in patients undergoing treatment with {sup 90}Y-ibritumomab tiuxetan

    Energy Technology Data Exchange (ETDEWEB)

    Arrichiello, C.; Aloj, L.; Mormile, M.; D' Ambrosio, L.; Caraco, C.; De Martinis, F. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Frigeri, F.; Arcamone, M.; Pinto, A. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Hematology-Oncology, Napoli (Italy); Stem Cells Transplantation Unit, Department of Hematology, Napoli (Italy); Lastoria, S. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , IRCCS, Napoli (Italy)

    2012-06-15

    on patient-specific dosimetry, the administered activity may be increased by an average factor of 2.4, indicating that most patients could be undertreated. The relative dosimetry approach based on planar imaging largely underestimates doses relative to reference values. Dosimetry based on planar bremsstrahlung imaging is not a dependable alternative to {sup 111}In dosimetry. (orig.)

  19. Optimization of the image contrast in SPECT-CT bremsstrahlung imaging for Selective Internal Radiation Therapy of liver malignancies with Y-90 microspheres

    CERN Document Server

    Bonutti, Faustino; Magro, Giuseppe; Cecotti, Andrea; Della Schiava, Emanuele; Del Dò, Elena; Longo, Francesco; Herassi, Yassine; Bentayeb, Farida; Rossi, Marina; Ferretti, Guido; Geatti, Onelio; Padovani, Renato

    2015-01-01

    The quality of SPECT Bremsstrahlung images of patients treated with Y-90 is poor, mainly because of scattered radiation and collimator septa penetration. To minimize the latter effect, High Energy (HE) or Medium Energy (ME) collimators can be used. Scatter correction is not possible through the methods commonly used for the diagnostic radionuclides (Tc-99m, etc.) because the Bremsstrahlung radiation does not have distinct photopeaks, but a broad spectrum of energies ranging from zero to the maximum one detectable by the gamma-camera crystal is registered. Scatter radiation and collimator septa penetration affect the Contrast and the Contrast Recovery Coefficient (CRC) : our research focused on finding the best energy position for the acquisition window in order to maximize these parameters. To be guided in this finding, we first made a Monte Carlo (MC) simulation of a SPECT acquisition of a Y-90 cylindrical phantom and then we measured at different energies the Line Spread Function (LSF) of a linear Y-90 sour...

  20. ASCA View of the Supernova Remnant Gamma Cygni (G78.2+2.1) Bremsstrahlung X-ray Spectrum from Loss-flattened Electron Distribution

    CERN Document Server

    Uchiyama, Y; Aharonian, F A; Mattox, J R; Uchiyama, Yasunobu; Takahashi, Tadayuki; Aharonian, Felix; Mattox, John

    2002-01-01

    We perform X-ray studies of the shell-type supernova remnant (SNR) gamma-Cygni associated with the brightest EGRET unidentified source 3EG J2020+4017. In addition to the thermal emissions with characteristic temperature of kT = 0.5-0.9 keV, we found an extremely hard X-ray component from several clumps localized in the northern part of the remnant. This component is described by a power-law with a photon index of 0.8-1.5. Both the absolute flux and the spectral shape of the nonthermal X-rays cannot be explained by the synchrotron or inverse-Compton mechanisms. We argue that the unusually hard X-ray spectrum can be naturally interpreted in terms of nonthermal bremsstrahlung from Coulomb-loss-flattened electron distribution in dense environs with the gas density about 10 to 100 cm^-3 . For given spectrum of the electron population, the ratio of the bremsstrahlung X- and gamma-ray fluxes depends on the position of the ``Coulomb break'' in the electron spectrum. The bulk of gamma-rays detected by EGRET would come...

  1. Parametric interference effect in nonresonant spontaneous bremsstrahlung of an electron in the field of a nucleus and two pulsed laser waves

    Science.gov (United States)

    Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.; Dubov, V. V.

    2016-07-01

    Nonresonant spontaneous bremsstrahlung of an electron scattered by a nucleus in the field of two moderately strong pulsed waves is studied theoretically. The process is studied in detail within the interference kinematic region. This region is determined by scattering of particles in the same plane at predetermined angles, at which stimulated absorption and emission of photons of external pulsed waves by an electron occur in a correlated manner. It is shown that the probability of the partial process with correlated emission (absorption) by an electron of the equal number of photons of the both waves is of an order of the magnitude greater than the corresponding probability in any other scattering kinematics. The cross section of spontaneous bremsstrahlung in two pulsed waves may be two times greater than the cross section of a free-field process after summation over all stimulated processes of correlated emission and absorption. Obtained results may be experimentally verified, for example, by scientific facilities at sources of pulsed laser radiation (SLAC, FAIR, ELI, XCELS).

  2. Fission product yield distribution in the 12, 14, and 16 MeV bremsstrahlung-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Kim, G.N.; Kim, K. [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Schwengner, R.; John, R.; Massarczyk, R.; Junghans, A.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India)

    2015-11-15

    The absolute cumulative yields of various fission products in the 12, 14, and 16 MeV bremsstrahlung-induced fission of {sup 232}Th were determined using a recoil catcher and an off-line γ -ray spectrometric technique using the ELBE electron linac of Helmholtz-Zentrum Dresden-Rossendorf in Dresden, Germany. The mass chain yields were obtained from the absolute cumulative yields by correcting the charge distribution. The peak-to-valley ratio, average light mass (left angle A{sub L} right angle) and heavy mass (left angle A{sub H} right angle) values, and average number of neutrons (left angle n right angle {sub exp}) in the bremsstrahlung-induced fission of {sup 232}Th at different excitation energies were obtained from the mass chain yield data. The present study and existing literature data for the {sup 232}Th(γ, f) reaction are compared with similar data for the {sup 238}U(γ, f) reaction at various excitation energies, and surprisingly different behavior was found in the two fissioning systems. (orig.)

  3. Measurement of the bremsstrahlung spectra generated from thick targets with =2–78 under the impact of 10 keV electrons

    Indian Academy of Sciences (India)

    Namita Yadav; Pragya Bhatt; Raj Singh; V S Subrahmanyam; R Shanker

    2010-04-01

    We present new experimental data on thick target bremsstrahlung spectra generated from the interaction of energetic electrons with bulk matter. The ‘photon yields’ in terms of double differential cross-sections (DDCS) are measured for pure elements of thick targets: Ti ( = 22), Ag ( = 47), W ( = 74) and Pt ( = 78) under the impact of 10 keV electrons. Comparison of DDCS obtained from the experimental data is made with those predicted by Monte-Carlo (MC) calculations using PENELOPE code. A close agreement between the experimental data and the MC calculations is found for all the four targets within the experimental error of 16%. Furthermore, the ratios of DDCS of bremsstrahlung photons emitted from Ag, W and Pt with those from Ti as a function of photon energy are examined with a relatively lower uncertainty of about 10% and they are compared with MC calculations. A satisfactory agreement is found between the experiment and the calculations within some normalizing factors. The variations of DDCS as a function of Z and of photon energy are also studied which show that the DDCS vary closely with Z; however, some deviations are observed for ‘tip’ photons emitted from high Z targets.

  4. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High Energy Emission from the Inner 2deg by 1deg of the Galactic Center

    CERN Document Server

    Yusef-Zadeh, F; Wardle, M; Tatischeff, V; Roberts, D; Cotton, W; Uchiyama, H; Nobukawa, M; Tsuru, T G; Heinke, C; Royster, M

    2012-01-01

    The high energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray and gamma-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of FeI 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra and the H.E.S.S. observatories. The inferred physical quantities from modeling multi-wavelength emission in the context of bremsstrahlung emission...

  5. Magnetic fields greater than 10 to the 20th power gauss. [in astrophysical systems

    Science.gov (United States)

    Lerche, I.; Schramm, D. N.

    1977-01-01

    Zaumen (1976) found that spontaneous pair production in a uniform magnetic field should be a feasible process for field strengths at least of the order of 10 to the 20th power gauss. This note points out that a magnetic field of this order of magnitude is most unlikely to occur in realistic astrophysical situations because of the large dynamical and quantum-mechanical effects such a field would produce. It is suggested that Zaumen's calculation would probably have little bearing on the suspected evolution of astrophysical systems since other processes (either dynamical or quantum-mechanical) apparently limit the field strength before such high magnetic fields would be reached. An upper limit of about 10 to the 16th power gauss is obtained by considering the isotropy of the 3-K blackbody radiation, the formation of collapsed objects in very high magnetic fields, and magnetic bremsstrahlung processes in quantum electrodynamics.

  6. Dense magnetized plasma numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bilbao, L [INFIP-CONICET, and Physics Department (FCEN-UBA), Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina); Bernal, L, E-mail: bilbao@df.uba.a [Physics Department (FCEYN-UNMDP), Complejo Universitario, Funes y Pena, 7600 Mar del Plata (Argentina)

    2010-06-15

    The scope for developing the present numerical method was to perform parametric studies for optimization of several configurations in magnetized plasmas. Nowadays there exist several efficient numerical codes in the subject. However, the construction of one's own computational codes brings the following important advantages: (a) to get a deeper knowledge of the physical processes involved and the numerical methods used to simulate them and (b) more flexibility to adapt the code to particular situations in a more efficient way than would be possible for a closed general code. The code includes ion viscosity, thermal conduction (electrons and ions), magnetic diffusion, thermonuclear or chemical reaction, Bremsstrahlung radiation, and equation of state (from the ideal gas to the degenerate electron gas). After each calculation cycle, mesh vertices are moved arbitrarily over the fluid. The adaptive method consists of shifting mesh vertices over the fluid in order to keep a reasonable mesh structure and increase the spatial resolution where the physical solution demands. The code was a valuable tool for parametric study of different physical problems, mainly optimization of plasma focus machine, detonation and propagation of thermonuclear reactions and Kelvin-Helmholtz instabilities in the boundary layer of the terrestrial magnetopause.

  7. Analyses of the factors for the demagnetization of permanent magnets caused by high-energy electron irradiation.

    Science.gov (United States)

    Asano, Yoshihiro; Bizen, Teruhiko; Maréchal, Xavier

    2009-05-01

    Demagnetization owing to high-energy electron irradiation has been analyzed for permanent magnets used in insertion devices of synchrotron radiation sources, using the Monte Carlo code FLUKA. The experimental data of a thermally treated Nd(2)Fe(14)B permanent magnet with a copper or a tantalum block at electron energies ranging from 2 to 8 GeV were compared with the calculation data of the absorbed doses, photoneutron production distributions and star densities. The results indicate that low-energy photoneutrons and bremsstrahlung photons are not involved in the demagnetization process, and suggest that the star density owing to the photoneutrons is strongly correlated with the demagnetization process.

  8. Influence of the transverse dimensions of colliding beams on processes of bremsstrahlung and production of e/sup +/e/sup -/ pairs

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Polityko, S.I.; Serbo, V.G.

    1985-09-01

    For high energies of colliding e/sup +/e/sup -/, ep, and ..gamma..e beams in processes of bremsstrahlung and production of e/sup +/e/sup -/ pairs, an important role is played by impact parameters much greater than the transverse dimensions of the beams. This leads to a decrease of the number of observed events in comparison with the standard calculations. Exact formulas and a number of convenient approximate formulas are obtained for the number of events in an arbitrary reaction with allowance for the finite dimensions of the beams. Concrete calculations are given for production of e/sup +/e/sup -/ pairs.The deviations from the standard calculations for e/sup +/e/sup -/ collisions under the conditions of LEP, SLC, and VLEPP are 1, 4, and 15%, respectively, and for ..gamma..e collisions under the conditions of SLC and VLEPP they are 20 and 35%, respectively.

  9. Measurement of isomeric-yield ratios of 109m,gPd and 115m,gCd with 50-, 60-, and 70-MeV bremsstrahlung

    Science.gov (United States)

    Rahman, Md. Shakilur; Lee, Manwoo; Kim, Kyung-Sook; Kim, Guinyun; Kim, Eunae; Cho, Moo-Hyun; Shvetshov, Valery; Khue, Pham Duc; Van Do, Nguyen

    2012-04-01

    The isomeric-yield ratios of 109m,gPd and 115m,gCd were measured by the activation method with uncollimated bremsstrahlung beams of 50-, 60-, and 70-MeV generated from an electron linear accelerator at Pohang Accelerator Laboratory. The induced activities in the irradiated foils were measured by the high-resolution γ-ray spectrometric system consisting of a high-purity germanium detector and a multichannel analyzer. The obtained isomeric-yield ratios in the formation of 109m,gPd and 115m,gCd are compared with the corresponding values found in the other experiments and the calculated values based on the statistical model code TALYS. The present results for 109m,gPd and 115m,gCd in this energy region are the first measurement.

  10. Measurement of yields for the {sup 197}Au(γ,xn){sup 197-x}Au reactions induced by 2.5 GeV Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shahid, Muhammad; Zaman, Muhammah; Nadeem, Muhammad [Kyungpook National University, Daegu (Korea, Republic of); Khue, Pham Duc; Thanh, Kim Tien; Do, Nguyen Van [Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2015-05-15

    Studies of high-energy nuclear reactions are of great important. It may help in deeper understanding of the reaction mechanisms and in extending of various fields of applications such as astrophysics, radiation physics, intense neutron source production and nuclear waste transmutation. The aim of the present work is to investigate the multineutron photonuclear on {sup 197}Au bombarded by 2.5 GeV Bremsstrahlung. Most of the photodisintegration products of gold with half-lives sufficient for the activity measurement. In this work, the necessary corrections were made in order to improve the accuracy of the experimental results The obtained experimental results are in good agreement with the calculated values. The yields for the {sup 197}Au(γ,xn){sup 197}-xAu reactions depend not only on the excitation energies but also on the number of neutrons ejected.

  11. A Comparison of Laser-induced Bremsstrahlung and Laser Compton Scattering for (γ, n) Photo-transmutation of Hazardous Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Haseeb ur; Lee, Jiyoung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This paper also presents sensitivity analysis to yield the maximum possible photo-transmutation rates. In general the possibility of radionuclide transmutation using photo-neutron reaction is evaluated in this work. In this paper a detailed methodology to calculate transmutation reaction rates using Laser Induced Bremsstrahlung (LIB) and Laser Compton Scattering (LCS) has been discussed. The methodology was validated by comparing the calculated reaction rates against published data in publically accessed literatures. In the second half of the paper, the authors present a novel concept to narrow down the LCS photon spectrum to an energy range that matches with the resonance region of a particular radionuclide. This is particularly useful considering hazardous waste is usually a mix of different isotopes. As such, being able to tune the LCS photon into any narrow energy range so as to selectively transmute any particular isotope of interest in the hazardous waste mixture would be very desirable. LCS spectrum is highly sensitive to the electron beam energy, laser power, laser luminosity and Compton backscattering angle. From the results it is quite evident that LCS is much better option for the radionuclide transmutation as reaction rates for the LCS is much higher than LIB method even for very small laser power. It can be seen even for the optimistic reaction rate calculations with Bremsstrahlung method reaction rate is much lower than LCS case for 10 Hz repetition rate. If repetition rate of laser 100 Hz then LIB reaction rate has the same order of the magnitude as the reaction rate via LCS. Higher Laser Powers can yield very high transmutation rates.

  12. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    Science.gov (United States)

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  13. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Science.gov (United States)

    Zhang, Xiaodong; Ayaz-Maierhafer, Birsen; Laubach, Mitchell A.; Hayward, Jason P.

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse ( 50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1-2.5 nC yields the best resolving capability between the DU and lead targets.

  14. Physical processes in the strong magnetic fields of accreting neutron stars

    Science.gov (United States)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  15. Plasma properties and magnetic field structure of the solar corona, based on coordinated Max 1991 observations from SERTS, the VLA, and magnetographs

    Science.gov (United States)

    Brosius, Jeffrey W.

    1995-01-01

    The purposes of this investigation are to determine the plasma properties and magnetic field structure of the solar corona using coordinated observations obtained with NASA/GSFC's Solar EUV rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and magnetographs. The observations were obtained under the auspices of NASA's Max '91 program. The methods of achieving the stated purposes of this investigation are: (1) to use SERTS spectra and spectroheliograms to determine coronal plasma properties such as temperature, density, and emission measure; (2) to use the coronal plasma properties to calculate the intensity of the thermal bremsstrahlung microwave emission from the coronal plasma (the minimum microwave intensity expected from the emitting plasma); (3) to establish which emission mechanism(s) contribute to the observed microwave emission by comparing the calculated thermal bremsstrahlung intensity with the observed microwave intensity; (4) to derive the coronal magnetic field for regions in which gyroemission contributes to the microwave emission by determining the appropriate harmonic of the local electron gyrofrequency; (5) to derive the coronal magnetic field for regions in which thermal bremsstrahlung emission alone is responsible for the observed microwave emission by calculating the magnetic field which yields the observed microwave polarization; (6) to derive three-dimensional models of the coronal plasma and magnetic field which are consistent with all of the EUV spectra and spectroheliograms, as well as with the intensity and polarization maps at all of the microwave observing frequencies; and (7) to compare the coronal magnetic field derived from the coordinated multiwaveband observations with extrapolations from photospheric magnetograms.

  16. Gorgon simulations of Magnetized Liner Inertial Fusion

    Science.gov (United States)

    Roeltgen, Jonathan; Jennings, Christopher; Sefkow, Adam; Slutz, Stephen

    2012-10-01

    Substantial fusion yields are predicted with pulsed power machines driving cylindrical liner implosions with preheated and magnetized deuterium-tritium [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)]. The Rayleigh-Taylor instability is the most likely mechanism that could degrade the fusion yield of this concept which we call Magnetized Liner Inertial Fusion (MagLIF). Gorgon is a 3D magnetohydrodynamics code that is well suited to simulating the effects of 3D Magneto-Rayleigh-Taylor instabilities. It has successfully simulated wire array z-pinches in 3D. We plan to use Gorgon to simulate the MagLIF concept in 3D, but first we are performing 1D simulations to test the essential physics necessary to simulate the MagLIF concept, for example bremsstrahlung losses from the fuel and the inhibition of transport by the magnetic field. We will present 1D Gorgon results of optimized MagLIF yields as a function of drive current.

  17. Mass yield distributions of fission products from photo-fission of {sup 238}U induced by 11.5-17.3 MeV bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Carrel, Frederick; Laine, Frederic; Sari, Adrien [SAPHIR Facility, Gif-sur-Yvette (France); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Normand, S. [Laboratory of Sensors and Elctronics Architectures CEA, Gif-sur-Yvette (France)

    2013-07-15

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of {sup 238}U have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley (P/V) ratio, average light mass (left angle A{sub L} right angle) and heavy mass (left angle A{sub H} right angle) and average number of neutrons (left angle v right angle) in the bremsstrahlung-induced fission of {sup 238}U at different excitation energies were obtained from the mass yield data. From the present and literature data in the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the {sup 238}U ({gamma}, f) reaction at various energies of the present work are double-humped, similar to those of the {sup 238}U (n, f) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the {sup 238}U ({gamma}, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the {sup 238}U ({gamma}, f) than in the {sup 238}U (n, f), whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley (P/V ratio in the {sup 238}U ({gamma}, f) reaction is similar to the {sup 238}U (n, f) reaction. v) The increase of left angle v right angle with excitation energy is also similar between the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions. However, it is surprising to see that the left angle A{sub L} right angle and

  18. Mass yield distributions of fission products from photo-fission of 238U induced by 11.5-17.3 MeV bremsstrahlung

    Science.gov (United States)

    Naik, H.; Carrel, Frédérick; Kim, G. N.; Laine, Frédéric; Sari, Adrien; Normand, S.; Goswami, A.

    2013-07-01

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of 238U have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley ( P/ V ratio, average light mass () and heavy mass () and average number of neutrons () in the bremsstrahlung-induced fission of 238U at different excitation energies were obtained from the mass yield data. From the present and literature data in the 238U ( γ, f ) and 238U ( n, f ) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the 238U ( γ, f ) reaction at various energies of the present work are double-humped, similar to those of the 238U ( n, f ) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the 238U ( γ, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the 238U ( γ, f ) than in the 238U ( n, f ) , whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley ( P/ V ratio in the 238U ( γ, f) reaction is similar to the 238U ( n, f) reaction. v) The increase of with excitation energy is also similar between the 238U ( γ, f ) and 238U ( n, f) reactions. However, it is surprising to see that the and values with excitation energy behave entirely differently from the 238U ( γ, f ) and 238U ( n, f ) reactions.

  19. Measurement of flux-weight average cross-sections of natZn(γ,xn) reactions in the bremsstrahlung end-point energies of 50, 55, 60, and 65 MeV

    Science.gov (United States)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Cho, Young-Sik; Lee, Young-Ok; Shin, Sung-Gyun; Cho, Moo-Hyun; Kang, Yeong-Rok; Lee, Man-Woo

    2017-04-01

    The flux-weighted average cross-sections of (γ , xn) reactions on natZn induced by the bremsstrahlung end-point energies of 50, 55, 60, and 65 MeV have been determined by activation and off-line γ-ray spectrometric technique, using the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The theoretical photon-induced reaction cross-sections of natZn as a function of photon energy were taken from TENDL-2014 nuclear data library based on TALYS 1.6 program. The flux-weighted average cross-sections were obtained from the literature data and the theoretical values of TENDL-2014 based on mono-energetic photon. The flux-weighted reaction cross-sections from the present work and literature data at different bremsstrahlung end-point energies are in good agreement with the theoretical values. It was found that the individual natZn(γ , xn) reaction cross-sections increase sharply from reaction threshold to certain values where the next reaction channel opens. There after it remains constant for a while, where the next reaction channel increases. Then it decreases slowly with increase of bremsstrahlung end-point energy due to opening of different reaction channels.

  20. A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities

    CERN Document Server

    Kunz, M W; Cowley, S C; Binney, J J; Sanders, J S

    2010-01-01

    We consider the problem of self-regulated heating and cooling in galaxy clusters and the implications for cluster magnetic fields and turbulence. Viscous heating of a weakly collisional magnetised plasma is regulated by the pressure anisotropy with respect to the local direction of the magnetic field. The intracluster medium is a high-beta plasma, where pressure anisotropies caused by the turbulent stresses and the consequent local changes in the magnetic field will trigger very fast microscale instabilities. We argue that the net effect of these instabilities will be to pin the pressure anisotropies at a marginal level, controlled by the plasma beta parameter. This gives rise to local heating rates that turn out to be comparable to the radiative cooling rates. Furthermore, we show that a balance between this heating and Bremsstrahlung cooling is thermally stable, unlike the often conjectured balance between cooling and thermal conduction. Given a sufficient (and probably self-regulating) supply of turbulent ...

  1. Particle transport in magnetized media around black holes and associated radiation

    CERN Document Server

    Vieyro, Florencia L

    2012-01-01

    Galactic black hole coronae are composed of a hot, magnetized plasma. The spectral energy distribution produced in this component of X-ray binaries can be strongly affected by different interactions between locally injected relativistic particles and the matter, radiation and magnetic fields in the source. We study the non-thermal processes driven by the injection of relativistic particles into a strongly magnetized corona around an accreting black hole. We compute in a self-consistent way the effects of relativistic bremsstrahlung, inverse Compton scattering, synchrotron radiation, and the pair-production/annihilation of leptons, as well as hadronic interactions. Our goal is to determine the non-thermal broadband radiative output of the corona. The set of coupled kinetic equations for electrons, positrons, protons, and photons are solved and the resulting particle distributions are computed self-consistently. The spectral energy distributions of transient events in X-ray binaries are calculated, as well as t...

  2. Coherent Bremsstrahlung, Coherent Pair Production, Birefringence and Polarimetry in the 20-170 GeV energy range using aligned crystals

    CERN Document Server

    Apyan, A; Badelek, B; Ballestrero, S; Biino, C; Birol, I; Cenci, P; Connell, S H; Eichblatt, S; Fonseca, T; Freund, A; Gorini, B; Groess, R; Ispirian, K; Ketel, T; Kononets, Y V; López, A; Mangiarotti, A; Sellschop, J P Friedel; Shieh, M; Sona, P; Strakhovenko, V M; Uggerhøj, U; Uggerhøj, Erik; Van Rens, B; Velasco, M; Vilakazi, Z Z; Wessely, O; Ünel, G; Kononets, Yu V

    2008-01-01

    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed these phenomena as well as their polarization dependence to be evaluated under conditions where single-photon cross-sections could be measured. This proved very important as the theoretical description of CB and CPP is an area of active theoretical debate and development. The theoretical approach used in this paper predicts both the cross sections and polarization observables very well for the experimental conditions investigated, indicating that the understanding of CB and CPP is reliable up to energies of 170 GeV. A birefringence effect in CPP was studied and it was demonstrated this enabled new technologies for high energy photon beam optics, such as polarimeters (for both linear and circular polarization) and phase plates. We also present new results regarding the features of coherent high energy photon emis...

  3. Initial-state bremsstrahlung versus final-state hydrodynamic sources of azimuthal harmonics in p+A at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M. [MTA WIGNER Research Centre for Physics, RMI, Budapest (Hungary); Department of Physics, Columbia University, New York, NY 10027 (United States); Levai, P. [MTA WIGNER Research Centre for Physics, RMI, Budapest (Hungary); Vitev, I. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Biró, T.S. [MTA WIGNER Research Centre for Physics, RMI, Budapest (Hungary)

    2014-11-15

    Recent p{sub T}<2 GeV azimuthal correlation data from the Beam Energy Scan (BES) and d+Au runs at RHIC/BNL and, especially, the surprising similarity of 2ℓ=2,4,⋯-particle cummulant azimuthal n=2,3,4,5 harmonics, v{sub n}{2ℓ}(p{sub T}), in p+Pb and Pb+Pb at LHC have challenged the uniqueness of local equilibrium “perfect fluid” interpretations of those data. We report results derived in [1] on azimuthal harmonics arising from non-equilibrium initial-state non-abelian “wave interference” effects predicted by perturbative QCD gluon bremsstrahlung and sourced by Color Scintillation Arrays (CSA) of color antennas. CSA are naturally identified with multiple projectile and target beam jets produced in inelastic p+A reactions. We find a remarkable similarity between azimuthal harmonics sourced by initial state CSA and those predicted with final state perfect fluid models of high energy p+A reactions. The question of which mechanism dominates in p+A and A+A remains open at this time.

  4. The optical/UV excess of X-ray dim isolated neutron star:bremsstrahlung emission from a strange star plasma atmosphere

    CERN Document Server

    Wang, Weiyang; Tong, Hao; Ge, Mingyu; Li, Zhaosheng; Men, Yunpeng; Xu, Renxin

    2016-01-01

    X-ray dim isolated neutron stars (XDINSs) are characterized by Planckian spectra in X-ray bands, but show optical/ultraviolet(UV) excesses which are the measured photometry exceeding that extrapolated from X-ray spectra. To solve this problem, a radiative model of bremsstrahlung emission from a plasma atmosphere is constructed in the regime of strange (quark-cluster) star. The plasma atmosphere is supposed to be of two-temperature, formed and maintained by the ISM-accreted matter which is bound on a star's surface because of the so-called strangeness barrier. All the seven XDINS spectra could be well fitted by the radiative model, from optical/UV to X-ray bands. The fitted radiation radii of XDINSs are from 7 to 13 km, while the modelled electron temperatures are between 50 and 250 eV, except RX J0806.4$-$4123 with a radiation radius $\\sim 3$ km, indicating that this source could be a low-mass strange star candidate.

  5. Assay methods for U-238, Th-232, and Pb-210 in lead and calibration of Bi-210 bremsstrahlung emission from lead

    CERN Document Server

    Orrell, John L; Arnquist, Isaac J; Eggemeyer, Tere A; Glasgow, Brian D; Hoppe, Eric W; Keillor, Martin E; Morley, Shannon M; Myers, Allan W; Overman, Cory T; Shaff, Sarah M; Thommasson, Kimbrelle S

    2015-01-01

    Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are determined using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) after anion exchange column separation of dissolved lead samples. The 210Pb concentration is inferred through {\\alpha}-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po {\\alpha}-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from \\b{eta}-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sources of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6-15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1-75 Bq/kg, as inferred by the 210Po ...

  6. Electronic temperature measurement on the deca II plasma using the Bremsstrahlung; Mesure de la temperature electronique du plasma de deca II par etude du rayonnement de freinage

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-06-01

    The electronic temperature of the DECA II machine's plasma is determined by studying the Bremsstrahlung. Two types of detectors are used for this measurement, a set scintillator-photo-multiplicator and a photoelectric effect detector with a massive silver target. The method used is the classical 'absorbent method', The absorbents used are thin formvar foils whose thickness is between 600 and 12 500 angstrom. The measurements done in two different working conditions of the DECA II machine have given: Te {approx_equal} 200 eV in the first case and Te {approx_equal} 70 eV in the second case. (author) [French] Nous avons determine la temperature electronique du plasma de la machine DECA II par l'etude du rayonnement de freinage. Pour cette mesure nous avons utilise deux types de detecteurs: des ensembles scintillateur-photomultiplicateur et un detecteur a effet photoelectrique a cible massive en argent. La methode utilisee pour cette mesure est la classique methode des absorbants. Nous avons utilise des feuilles de format tres mince (de 600 a 12 500 angstrom) comme absorbant. Les mesures faites dans deux regimes de travail differents de la machine DECA II nous ont conduit a: Te {approx_equal} 200 eV dans un cas et Te {approx_equal} eV dans l'autre cas. (auteur)

  7. Initial-State Bremsstrahlung versus Final-State Hydrodynamic Sources of Azimuthal Harmonics in p+A at RHIC and LHC

    CERN Document Server

    Gyulassy, Miklos; Vitev, Ivan; Biro, Tamas S

    2014-01-01

    Recent pT<2~GeV azimuthal correlation data from the Beam Energy Scan (BES) and D+Au runs at RHIC/BNL and, especially, the surprising similarity of azimuthal $v_n\\{2m\\}(p_T)$ ``transeverse flow'' harmonics in $p+Pb$ and $Pb+Pb$ at LHC have challenged the uniqueness of local equilibrium ``perfect fluid'' interpretations of those data. We report results at QM14 on azimuthal harmonics associated with initial-state non-abelian ``wave interference'' effects predicted by perturbative QCD gluon bremsstrahlung and sourced by Color Scintillation Arrays (CSA) of color antennas. CSA are naturally identified with multiple projectile and target beam jets produced in inelastic p+A reactions. We find a remarkable similarity between azimuthal harmonics sourced by initial state CSA and those predicted with final state perfect fluid models of high energy p+A reactions. The question of which mechanism dominates in $p+A$ and $A+A$ remains open at this time.

  8. Magnetism and magnetic materials

    CERN Document Server

    Coey, J M D

    2010-01-01

    Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data. Accessible, authoritative, and assuming undergraduate familiarity with vectors, electromagnetism and quantum mechanics, this textbook is well suited to graduate courses. Emphasis is placed on practical calculations and numerical magnitudes - from nanoscale to astronomical scale - focussing on modern applications, including permanent magnet structures and spin electronic devices. Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and clearly explain ideas. Easily digestible tables and data sheets provide a wealth of useful information on magnetic properties. The 38 principal magnetic materials, and many more related compounds, are treated in detail

  9. The influence of outflow and global magnetic field on the structure and spectrum of resistive CDAFs

    Science.gov (United States)

    Ghasemnezhad, Maryam; Abbassi, Shahram

    2016-12-01

    We examine the effects of a global magnetic field and outflow on radiatively inefficient accretion flow (RIAF) in the presence of magnetic resistivity. We find self-similar solutions for the height integrated equations that govern the behavior of the flow. We use the mixing length mechanism for studying the convection parameter. We adopt the radius dependent mass accretion rate dot{M}=dot{M}_{out}{(r/r_{out})s}, with s> 0, to investigate the influence of outflow on the structure of inflow where s is a constant and is an indication of the effect of the wind. Also, we have studied the radiation spectrum and temperature of convection dominated accretion flows (CDAFs). The thermal bremsstrahlung emission as a radiation mechanism is taken into account for calculating the spectra emitted by the CDAFs. The energy that powers bremsstrahlung emission at large radii is provided by convective transport from small radii and viscous and resistivity dissipation. Our results indicate that the disc rotates slower and accretes faster, it becomes hotter and thicker for a stronger wind. By increasing all components of the magnetic field, the disc rotates faster and accretes more slowly, while it becomes hotter and thicker. We show that the outflow parameter and all components of the magnetic field have the same effects on the luminosity of the disc. We compare the dynamical structure of the disc in two different solutions (with and without resistivity parameter). We show that only the radial infall velocity and the surface density could be changed by the resistivity parameter obviously. Increasing the effect of the wind increases the disc's temperature and the luminosity of the disc. The effect of the magnetic field is similar to the effect of the wind on the disc's temperature and the luminosity of the disc, but the influence of the resistivity on the observational properties is not evident.

  10. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  11. Magnetic Nanocapsules

    Institute of Scientific and Technical Information of China (English)

    Zhidong ZHANG

    2007-01-01

    A brief review on recent advances in the area of the magnetic nanocapsules is given. The most applicable nanoencapsulation procedures are introduced, which include: (1) physical techniques such as arc-discharge,evaporating, etc.; (2) chemical techniques such as chemical vapor deposition, solid-state reactions, etc. The structure and magnetic properties of various nanocapsules with different core/shell structures are studied in details, for possibly applications in magnetic recording, magnetic refrigerator, magnetic fluids, superconductors and medicine.

  12. Dynamical structure of magnetized dissipative accretion flow around black holes

    Science.gov (United States)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  13. Quasi-periodic oscillations in accreting magnetic white dwarfs II. The asset of numerical modelling for interpreting observations

    CERN Document Server

    Busschaert, C; Michaut, C; Bonnet-Bidaud, J -M; Mouchet, M

    2015-01-01

    Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. High-energy radiation coming from those objects is emitted from the accretion column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. The oscillation frequencies and amplitudes in the X-ray and optic...

  14. Measurement of flux-weighted average cross-sections and isomeric yield ratios for 103Rh(γ,xn) reactions in the bremsstrahlung end-point energies of 55 and 60 MeV

    Science.gov (United States)

    Shakilur Rahman, Md.; Kim, Kwangsoo; Kim, Guinyun; Naik, Haladhara; Nadeem, Muhammad; Thi Hien, Nguyen; Shahid, Muhammad; Yang, Sung-Chul; Cho, Young-Sik; Lee, Young-Ouk; Shin, Sung-Gyun; Cho, Moo-Hyun; Woo Lee, Man; Kang, Yeong-Rok; Yang, Gwang-Mo; Ro, Tae-Ik

    2016-07-01

    We measured the flux-weighted average cross-sections and the isomeric yield ratios of 99m, g, 100m, g, 101m, g, 102m, gRh in the 103Rh( γ, xn) reactions with the bremsstrahlung end-point energies of 55 and 60MeV by the activation and the off-line γ-ray spectrometric technique, using the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The flux-weighted average cross-sections were calculated by using the computer code TALYS 1.6 based on mono-energetic photons, and compared with the present experimental data. The flux-weighted average cross-sections of 103Rh( γ, xn) reactions in intermediate bremsstrahlung energies are the first time measurement and are found to increase from their threshold value to a particular value, where the other reaction channels open up. Thereafter, it decreases with bremsstrahlung energy due to its partition in different reaction channels. The isomeric yield ratios (IR) of 99m, g, 100m, g, 101m, g, 102m, gRh in the 103Rh( γ, xn) reactions from the present work were compared with the literature data in the 103Rh(d, x), 102-99Ru(p, x) , 103Rh( α, αn) , 103Rh( α, 2p3n) , 102Ru(3He, x), and 103Rh( γ, xn) reactions. It was found that the IR values of 102, 101, 100, 99Rh in all these reactions increase with the projectile energy, which indicates the role of excitation energy. At the same excitation energy, the IR values of 102, 101, 100, 99Rh are higher in the charged particle-induced reactions than in the photon-induced reaction, which indicates the role of input angular momentum.

  15. Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    Science.gov (United States)

    Naik, H.; Kim, G. N.; Kapote Noy, R.; Schwengner, R.; Kim, K.; Zaman, M.; Shin, S. G.; Gey, Y.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A.; Cho, M.-H.

    2016-07-01

    The natMo( γ, xn)90, 91, 99Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line γ -ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The natMo( γ, xn)88, 89, 90, 91, 99Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the natMo( γ, xn)88, 89, 90, 91, 99Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual natMo( γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The 100Mo( γ, n) reaction cross-section is important for the production of 99Mo , which is a probable alternative to the 98Mo(n, γ) and 235U(n, f ) reactions.

  16. Photo-neutron reaction cross-sections for {sup nat}Mo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kim, G.N.; Kim, K.; Zaman, M. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Kapote Noy, R. [Vienna International Centre, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and applications, IAEA, Vienna (Austria); Schwengner, R.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany); Shin, S.G.; Gey, Y.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang (Korea, Republic of)

    2016-07-15

    The {sup nat}Mo(γ, xn){sup 90,91,99}Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70 MeV by activation and off-line γ-ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The {sup nat}Mo(γ, xn){sup 88,89,90,91,99}Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the {sup nat}Mo(γ, xn){sup 88,89,90,91,99}Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual {sup nat}Mo(γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The {sup 100}Mo(γ, n) reaction cross-section is important for the production of {sup 99}Mo, which is a probable alternative to the {sup 98}Mo(n, γ) and {sup 235}U(n, f) reactions. (orig.)

  17. Magnetic Reconnection

    NARCIS (Netherlands)

    Schep, T. J.

    1994-01-01

    This lecture deals with the concept of magnetic field lines and with the conservation of magnetic flux. In high temperature fusion devices like tokamaks flux conservation can be violated and reconnection can occur at closed magnetic field lines. Reconnection processes lead to changes in the global t

  18. Exact Bremsstrahlung and Effective Couplings

    CERN Document Server

    Mitev, Vladimir

    2015-01-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of $\\mathcal{N}=2$ SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the $\\mathcal{N}=4$ SYM ones, we obtain interpolating functions $f(g^2)$ such that a given $\\mathcal{N}=2$ SCFT observable is obtained by replacing in the corresponding $\\mathcal{N}=4$ SYM result the coupling constant by $f(g^2)$. These ``exact effective couplings'' encode the finite, relative renormalization between the $\\mathcal{N}=2$ and the $\\mathcal{N}=4$ gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  19. Exact Bremsstrahlung and effective couplings

    Science.gov (United States)

    Mitev, Vladimir; Pomoni, Elli

    2016-06-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of mathcal{N} = 2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the mathcal{N} = 4 SYM ones, we obtain interpolating functions f ( g 2) such that a given mathcal{N} = 2 SCFT observable is obtained by replacing in the corresponding mathcal{N} = 4 SYM result the coupling constant by f ( g 2). These "exact effective couplings" encode the finite, relative renormalization between the mathcal{N} = 2 and the mathcal{N} = 4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  20. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Mainz Univ. (Germany). Inst. fuer Physik, WA THEP; Humboldt-Univ. Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [DESY Hamburg (Germany). Theory Group; National Technical Univ., Athens (Greece). Physics Div.

    2015-11-15

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These ''exact effective couplings'' encode the finite, relative renormalization between the N = 2 and the N = 4 gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  1. Subcutaneous Extravasation of Sr-89: Usefulness of Bremsstrahlung Imaging in Confirming Sr-89 Extravasation and in the Decision Making for the Choice of Treatment Strategies for Local Radiation Injuries Caused by Sr-89 Extravasation

    Directory of Open Access Journals (Sweden)

    Joji Kawabe

    2013-10-01

    Full Text Available A male patient in his 20s presented at our clinic with pain caused by bone metastases of the primitive neuroectodermal tumor, and Sr-89 was administrated to palliate the pain. After receiving the injection, the patient complained of a slight burning pain at the catheterized area. Slight reddening and small circular swelling (diameter, 0.5 cm were observed at the catheterized area. Sr-89 extravasation was suspected. To estimate the amount of subcutaneous Sr-89 leakage, bremsstrahlung imaging was immediately performed. We speculated that the skin-absorbed dose from the subcutaneous Sr-89 leakage was 1.78 Gy. The mildest clinical sign of local radiation injury was erythema. The received dose was higher than 3 Gy, and the time of onset was from 2 to 3 weeks. In our patient, local radiation injuries (LRIs did not occur. Though requiring further verification, subsequent bremsstrahlung imaging and estimation of the skin-absorbed dose from the subcutaneous Sr-89 leakage are useful in confirming Sr-89 extravasation and in the decision making for the choice of treatment strategies for LRIs caused by Sr-89 extravasation.

  2. Magnetizing of permanent magnets using HTS bulk magnets

    Science.gov (United States)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  3. Electron Acceleration in Contracting Magnetic Islands during Solar Flares

    Science.gov (United States)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I.; Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Antiochos, S. K.

    2017-01-01

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  4. Magnetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  5. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  6. Quantum Magnetism

    CERN Document Server

    Barbara, Bernard; Sawatzky, G; Stamp, P. C. E

    2008-01-01

    This book is based on some of the lectures during the Pacific Institute of Theoretical Physics (PITP) summer school on "Quantum Magnetism", held during June 2006 in Les Houches, in the French Alps. The school was funded jointly by NATO, the CNRS, and PITP, and entirely organized by PITP. Magnetism is a somewhat peculiar research field. It clearly has a quantum-mechanical basis – the microsopic exchange interactions arise entirely from the exclusion principle, in conjunction with respulsive interactions between electrons. And yet until recently the vast majority of magnetism researchers and users of magnetic phenomena around the world paid no attention to these quantum-mechanical roots. Thus, eg., the huge ($400 billion per annum) industry which manufactures hard discs, and other components in the information technology sector, depends entirely on room-temperature properties of magnets - yet at the macroscopic or mesoscopic scales of interest to this industry, room-temperature magnets behave entirely classic...

  7. Measurement of flux-weighted average cross-sections and isomeric yield ratios for {sup 103}Rh(γ, xn) reactions in the bremsstrahlung end-point energies of 55 and 60 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shakilur Rahman, Md.; Kim, Kwangsoo; Kim, Guinyun; Nadeem, Muhammad; Thi Hien, Nguyen; Shahid, Muhammad [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Naik, Haladhara [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Yang, Sung-Chul; Cho, Young-Sik; Lee, Young-Ouk [Korea Atomic Energy Research Institute, Nuclear Data Center, Daejeon (Korea, Republic of); Shin, Sung-Gyun; Cho, Moo-Hyun [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang (Korea, Republic of); Woo Lee, Man; Kang, Yeong-Rok; Yang, Gwang-Mo [Dongnam Institute of Radiological and Medical Science, Research Center, Busan (Korea, Republic of); Ro, Tae-Ik [Dong-A University, Department of Materials Physics, Busan (Korea, Republic of)

    2016-07-15

    We measured the flux-weighted average cross-sections and the isomeric yield ratios of {sup 99m,g,100m,g,101m,g,102m,g}Rh in the {sup 103}Rh(γ, xn) reactions with the bremsstrahlung end-point energies of 55 and 60 MeV by the activation and the off-line γ-ray spectrometric technique, using the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The flux-weighted average cross-sections were calculated by using the computer code TALYS 1.6 based on mono-energetic photons, and compared with the present experimental data. The flux-weighted average cross-sections of {sup 103}Rh(γ, xn) reactions in intermediate bremsstrahlung energies are the first time measurement and are found to increase from their threshold value to a particular value, where the other reaction channels open up. Thereafter, it decreases with bremsstrahlung energy due to its partition in different reaction channels. The isomeric yield ratios (IR) of {sup 99m,g,100m,g,101m,g,102m,g}Rh in the {sup 103}Rh(γ, xn) reactions from the present work were compared with the literature data in the {sup 103}Rh(d, x), {sup 102-99}Ru(p, x), {sup 103}Rh(α, αn), {sup 103}Rh(α, 2p3n), {sup 102}Ru({sup 3}He, x), and {sup 103}Rh(γ, xn) reactions. It was found that the IR values of {sup 102,101,100,99}Rh in all these reactions increase with the projectile energy, which indicates the role of excitation energy. At the same excitation energy, the IR values of {sup 102,101,100,99}Rh are higher in the charged particle-induced reactions than in the photon-induced reaction, which indicates the role of input angular momentum. (orig.)

  8. Photo-neutron reaction cross-sections for {sup nat}Zr in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kim, G.N.; Kim, K.; Zaman, M.; Yang, S.C.; Lee, M.W. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Schwengner, R.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany); Shin, S.G.; Gey, Y.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang (Korea, Republic of)

    2014-05-15

    The {sup nat}Zr(γ, xn) {sup 89-86}Zr reaction cross-sections were experimentally determined at the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line γ -ray spectrometric technique using the 20 MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The {sup nat}Zr(γ, xn) {sup 89-86}Zr reaction cross-sections as a function of photon energy were also calculated using the TALYS 1.4 computer code. The flux-weighted average cross-sections at the end-point energies of 12-16 and 45-70 MeV were obtained using the literature and the TALYS calculation data based on mono-energetic photons and are found to be in good agreement with the present data. It was also found that the present data and the flux-weighted literature and theoretical values for the {sup nat}Zr(γ, xn) {sup 89-86}Zr reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels open. This indicates the role of excitation energy. However, the increasing trend of the {sup nat}Zr(γ, xn) {sup 89,88}Zr reaction cross-sections are sharper from the threshold value up to end-point bremsstrahlung energies of 17-22 MeV compared to the same for the {sup nat}Zr(γ, xn) {sup 87,} {sup 86}Zr reactions. This is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain value, the individual {sup nat}Zr(γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates partitioning of energy in different channels. (orig.)

  9. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  10. Magnetics Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Processing Lab equipped to perform testing of magnetometers, integrate them into aircraft systems, and perform data analysis, including noise reduction...

  11. Giant dipole resonance decay and bremsstrahlung emission as a source of high-energy gamma-rays in sup 1 sup 2 C+ sup 2 sup 4 sup , sup 2 sup 6 Mg and sup 1 sup 2 C+ sup 5 sup 8 sup , sup 6 sup 4 Ni reactions at 6-11 MeV/u

    CERN Document Server

    Kicinska-Habior, M; Maj, A; Kelly, M P; Schagen, J P S; Snover, K A

    1999-01-01

    It is shown that in the mass-asymmetric reactions, sup 1 sup 2 C+ sup 2 sup 4 sup , sup 2 sup 6 Mg and sup 1 sup 2 C+ sup 5 sup 8 sup , sup 6 sup 4 Ni, at E sub p /A = 6-11 MeV/u, the two types of gamma-ray emission, statistical GDR decay and bremsstrahlung radiation, may be disentangled using angular distribution measurements. The analyzed data give information on the GDR built on excited states as well as on the bremsstrahlung process. The extracted GDR parameters and bremsstrahlung parameters for sup 1 sup 2 C+ sup 2 sup 4 sup , sup 2 sup 6 Mg are in general in agreement with the systematics. However, the inverse slope parameter, E sub 0 , depends on gamma-ray energy and as a result the bremsstrahlung cross-section at low and high E subgamma energies is lower than expected for constant E sub 0 value.

  12. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. I. MAGNETIC GRADIENT AND CURVATURE DRIFT EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Büchner, J.; Bárta, M. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China)

    2015-12-10

    We investigate the electron acceleration by magnetic gradient and curvature drift effects in cascading magnetic reconnection of a coronal current sheet via a test particle method in the framework of the guiding center approximation. After several Alfvén transit times, most of the electrons injected at the current sheet are still trapped in the magnetic islands. A small fraction of the injected electrons precipitate into the chromosphere. The acceleration of trapped electrons is dominated by the magnetic curvature drifts, which change the parallel momentum of the electron, and appears to be more efficient than the acceleration of precipitating electrons, which is dominated by the perpendicular momentum change caused by the magnetic gradient drifts. With the resulting trapped energetic electron distribution, the corresponding hard X-ray (HXR) radiation spectra are calculated using an optically thin Bremsstrahlung model. Trapped electrons may explain flare loop top HXR emission as well as the observed bright spots along current sheets trailing coronal mass ejections. The asymmetry of precipitating electrons with respect to the polarity inversion line may contribute to the observed asymmetry of footpoint emission.

  13. Magnetic nanotubes

    Science.gov (United States)

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  14. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  15. General Relativistic Magnetohydrodynamic Simulations of the Hard State as a Magnetically-Dominated Accretion Flow

    CERN Document Server

    Fragile, P Chris

    2008-01-01

    (Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...

  16. First Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Evidence for Excess Emission at 3--8 microns

    CERN Document Server

    Howell, S B; Hoard, D W; Wachter, S; Harrison, T; Thomas, H C B; Stefaniak, L; Ciardi, D R; Szkody, P; Van Belle, G T; Howell, Steve B.; Brinkworth, Carolyn; Wachter, Stefanie; Harrison, Thomas; Thomas, Howard Chun Beth; Stefaniak, Linda; Ciardi, David R.; Szkody, Paula; Belle, Gerard van

    2006-01-01

    We present the first observations of magnetic cataclysmic variables with the Spitzer Space Telescope. We used the Infrared Array Camera to obtain photometry of the polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 $\\mu$m. In all of our targets, we detect excess mid-infrared emission over that expected from the component stars alone. We explore the origin of this IR excess by examining bremsstrahlung, cyclotron emission, circumbinary dust, and L/T brown dwarf secondary stars. Bremsstrahlung and cyclotron emission appear unlikely to be significant contributors to the observed fluxes. At present, the most likely candidate for the excess emission is dust that is probably located in a circumbinary disk with an inner temperature near 800 K. However, a simple dust disk plus any reasonable low mass or brown dwarf-like secondary star is unable to fully explain the observed flux densities in the 3--8 $\\mu$m region.

  17. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  18. CRYOGENIC MAGNETS

    Science.gov (United States)

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  19. Quantum magnetism

    CERN Document Server

    Richter, Johannes; Farnell, Damian; Bishop, Raymod

    2004-01-01

    The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.

  20. Magnetization reversal in ultrashort magnetic field pulses

    CERN Document Server

    Bauer, M; Fassbender, J; Hillebrands, B

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...

  1. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel

    2005-01-01

    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  2. Magnetic monopoles and dipoles

    CERN Multimedia

    Dominguez, Daniel

    2016-01-01

    Conventional bar magnets are also called ‘magnetic dipoles’ because they have two magnetic poles (a “North” and a “South” magnetic pole, like the Earth). In theory, “magnetic monopoles” could exist that act like an isolated “magnetic charge”, i.e. either a “North” or a “South” magnetic pole.

  3. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R.

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  4. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...

  5. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  6. Photo-neutron reaction cross-section for {sup 93}Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kim, G.N., E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Schwengner, R. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); John, R.; Massarczyk, R.; Junghans, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Shin, S.G.; Key, Y. [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Lee, M.W. [Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of); Goswami, A. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Cho, M.-H. [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2013-10-23

    The photo-neutron cross-sections of {sup 93}Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The {sup 93}Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the {sup 93}Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of {sup 93}Nb(γ, n) and {sup 93}Nb(γ, 2n) reaction cross-sections are sharper compared to {sup 93}Nb(γ, 3n) and {sup 93}Nb(γ, 4n) reaction cross-sections. The sharp increase of {sup 93}Nb(γ, n) and {sup 93}Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual {sup 93}Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels.

  7. Magnetic Design of Superconducting Magnets

    CERN Document Server

    Todesco, E

    2014-01-01

    In this paper we discuss the main principles of magnetic design for superconducting magnets (dipoles and quadrupoles) for particle accelerators. We give approximated equations that govern the relation between the field/gradient, the current density, the type of superconductor (Nb−Ti or Nb3Sn), the thickness of the coil, and the fraction of stabilizer. We also state the main principle controlling the field quality optimization, and discuss the role of iron. A few examples are given to show the application of the equations and their validity limits.

  8. Magnetic Fluids: Biomedical Applications and Magnetic Fractionation

    OpenAIRE

    Rheinländer, Thomas; Kötitz, Róman; Weitschies, Werner; Semmler, Wolfhard

    2000-01-01

    In addition to engineering applications, magnetic fluids containing magnetic nanoparticles are being increasingly applied to biomedical purposes. Besides the well established use of magnetic particles for biological separation or as contrast agents for magnetic resonance imaging, magnetic particles are also being tested for the inductive heat treatment of tumors or as markers for the quantification of biologically active substances. The properties of magnetic nanoparticles usually exhibit a b...

  9. LHC prototype magnet

    CERN Multimedia

    1991-01-01

    1.5 metre superconducting magnet. This prototype magnet for the LHC was cooled to a few degrees above absolute zero, which allowed it to obtain the world record for the highest magnetic field for an accelerator magnet in 1991.

  10. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  11. Damage diagnosis for bremsstrahlung converter target of Dragon-I linear induction accelerator%神龙一号直线感应加速器X光转换靶破坏诊断

    Institute of Scientific and Technical Information of China (English)

    禹海军; 朱隽; 江孝国; 王远; 陈楠; 张振涛; 戴文华; 刘承俊

    2011-01-01

    The electron beam generated by the Dragon- I linear induction accelerator strikes the bremsstrahlung converter target to generate X-ray and causes tantalum target damage and hydrodynamic expansion, which results in target density decreasing for successive pulses.The time varying target density was measured by applying a low energy X-ray with energy about 450 kev and spot diameter of 1 to 4 mm along with an intensified charge coupled derice(ICCD) camera.The experiment results show that the target density is basically unchanged for 1 μs after beam-target interaction, and no particle ejected from the front side of the target is found at the same time.%利用能量约450 keV、焦斑直径1~4 mm的低能X光对神龙一号直线感应加速器束靶作用后钽靶的破坏进行诊断,利用增强型电荷耦合器件(ICCD)对诊断过程记录,得到束靶作用后数μs时间内钽靶材料密度的变化.结果表明:在束靶作用后约1μs内靶材料密度基本没有变化,且该时间段内ICCD相机没有观察到有靶前钽靶材料的微粒喷射.

  12. Electric and Magnetic Field Measurements in High Energy Electron Beam Diode Plasmas using Optical Spectroscopy

    Science.gov (United States)

    Johnston, Mark; Patel, Sonal; Kiefer, Mark; Biswas, S.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Yitzhak

    2016-10-01

    The RITS accelerator (5-11MV, 100-200kA) at Sandia National Laboratories is being used to evaluate the Self-Magnetic Pinch (SMP) diode as a potential flash x-ray radiography source. This diode consists of a small, hollowed metal cathode and a planar, high atomic mass anode, with a small vacuum gap of approximately one centimeter. The electron beam is focused, due to its self-field, to a few millimeters at the target, generating bremsstrahlung x-rays. During this process, plasmas form on the electrode surfaces and propagate into the vacuum gap, with a velocity of a 1-10 cm's/microseconds. These plasmas are measured spectroscopically using a Czerny-Turner spectrometer with a gated, ICCD detector, and input optical fiber array. Local magnetic and electric fields of several Tesla and several MV/cm were measured through Zeeman splitting and Stark shifting of spectral lines. Specific transitions susceptible to quantum magnetic and electric field effects were utilized through the application of dopants. Data was analyzed using detailed, time-dependent, collisional-radiative (CR) and radiation transport modeling. Recent results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  14. MAGNET / INFRASTRUCTURE

    CERN Multimedia

    D. Campi

    The final fast discharge of the Magnet took place on 3rd of November. The Coil reached a temperature of 70K by internal energy dissipation. By injecting a current of 200 A room temperature was reached on the 23rd November. During the heating of the coil un-connecting of the first magnet connectors on YBO was started to give the earliest possible access to the assembly groups and to continue the installation of the muon chambers. The removal of the pumping lines and the disconnection of the vacuum system was instead done as soon as the room temperature was reached: more precisely from the 4 to the 18 December. The disconnection of the transfer line from the cold box and the completion of the removal of the control cables of the vacuum system and cryogenics was done at last. In January 2007 the disconnection of MCS-MSS, CDS, vacuum racks and their cable trays was also achieved. After coil disconnection the effort of the magnet team has been mainly devoted in optimizing the lowering and reassembly of the a...

  15. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  16. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  17. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder...

  18. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  19. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic energy product. In order to control the particle size......Enhancing the magnetic properties of magnetic nanoparticles J. V. Ahlburg, M. S. Músquiz, C. Zeuthen, S. Kjeldgaard, M. Stingaciu, M. Christensen Center for Materials Crystallography, Departement of Chemistry & iNano, Aarhus University, Denmark Strong magnets with a high energy product are vital...... when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets with a similar magnetic performance. There are several different...

  20. An optimized magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders;

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction...... of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close...... to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration....

  1. Physics of magnetism and magnetic materials

    CERN Document Server

    Buschow, K H J

    2003-01-01

    In this book, the fundamentals of magnetism are treated, starting at an introductory level. The origin of magnetic moments, the response to an applied magnetic field, and the various interactions giving rise to different types of magnetic ordering in solids are presented and many examples are given. Crystalline-electric-field effects are treated at a level that is sufficient to provide the basic knowledge necessary in understanding the properties of materials in which these effects play a role. Itinerant-electron magnetism is presented on a similar basis. Particular attention has been given to magnetocrystalline magnetic anisotropy and the magnetocaloric effect. Also, the usual techniques for magnetic measurements are presented. About half of the book is devoted to magnetic materials and the properties that make them suitable for numerous applications. The state of the art is presented of permanent magnets, high-density recording materials, soft-magnetic materials, Invar alloys and magnetostrictive materials....

  2. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.

    Science.gov (United States)

    Kanazawa, Naoya; Seki, Shinichiro; Tokura, Yoshinori

    2017-03-17

    The concept of a skyrmion, which was first introduced by Tony Skyrme in the field of particle physics, has become widespread in condensed matter physics to describe various topological orders. Skyrmions in magnetic materials have recently received particular attention; they represent vortex-like spin structures with the character of nanometric particles and produce fascinating physical properties rooted in their topological nature. Here, a series of noncentrosymmetric ferromagnets hosting skyrmions is reviewed: B20 metals, Cu2 OSeO3 , Co-Zn-Mn alloys, and GaV4 S8 , where Dzyaloshinskii-Moriya interaction plays a key role in the stabilization of skyrmion spin texture. Their topological spin arrangements and consequent emergent electromagnetic fields give rise to striking features in transport and magnetoelectric properties in metals and insulators, such as the topological Hall effect, efficient electric-drive of skyrmions, and multiferroic behavior. Such electric controllability and nanometric particle natures highlight magnetic skyrmions as a potential information carrier for high-density magnetic storage devices with excellent energy efficiency.

  3. Magnetic fluids - suspensions of magnetic dipoles and their magnetic control

    CERN Document Server

    Odenbach, S

    2003-01-01

    Suspensions of magnetic nanoparticles exhibit normal liquid behaviour coupled with superparamagnetic properties. This leads to the possibility to control the properties and the flow of these liquids with moderate magnetic fields. The magnetic control enables various experiments in fluid mechanics and gives rise to the development of numerous technical and medical applications. Ferrofluids and their general properties will be introduced and, as examples for the magnetic control of their flow and properties, thermomagnetic convection and magnetoviscous effects will be discussed in some detail.

  4. Electrically Tunable Magnetism in Magnetic Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-14

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  5. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic......Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  6. Thin Magnetically Soft Wires for Magnetic Microsensors

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov

    2009-11-01

    Full Text Available Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1–30 μm in diameter have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

  7. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  8. Development of Magnetic Refrigerator

    Science.gov (United States)

    Ogiwara, Hiroyasu; Nakagome, Hideki; Kuriyama, Tohru

    A series of R & D of magnetic refrigerators has been done in order to realize an advanced type cryocooler for superconducting magnets of maglev trains and MRI medical system. As a result of efforts on both the magnetic refrigerator and superconducting magnets, a parasitic type magnetic refrigeration system was proposed.

  9. The magnetization process: Hysteresis

    Science.gov (United States)

    Balsamel, Richard

    1990-01-01

    The magnetization process, hysteresis (the difference in the path of magnetization for an increasing and decreasing magnetic field), hysteresis loops, and hard magnetic materials are discussed. The fabrication of classroom projects for demonstrating hysteresis and the hysteresis of common magnetic materials is described in detail.

  10. Magnetic Nano-structures

    Institute of Scientific and Technical Information of China (English)

    姚永德

    2004-01-01

    Fabrication of magnetic nano-structures with dots array and wires has been paid attention recently due to the application of high-density magnetic recording. In this study, we fabricated the magnetic dots array and wires through several ways that ensure the arrangement of magnetic dots and wires to be the structures we designed. Their magnetic properties are studied experimentally.

  11. 利用轫致辐射X射线进行正电子分析的研究%A New Method of Positron Analysis with Bremsstrahlung - induced X - ray

    Institute of Scientific and Technical Information of China (English)

    张翼; 杨祎罡; 李元景; 赵新强

    2011-01-01

    Current positron analysis technologies can not measure the defect inside samples because of the small range of positron produced from source outside. A new method of positron analysis, Photon Induced Positron Analysis (PIPA) is showed to solve the problem. When irradiating samples with Bremsstrahlung- induced Xray based on LINAC, pair production takes place inside the material. Analyzing the annihilation photons helps reveal the information of micro - structure in the samples Several issues of this method is studied quantitively by simulation with MCNP, like sensitivity and shielding parameters. As well, an experimental system is set up to measure the spectra shape of 511 kev γprecisely. With the analysis result of 511 kev full peak, the relationship between defect concentration and PIPA result is appreciable.%针对现有的正电子分析方法无法分析材料内部缺陷的缺点,提出了一种新的正电子分析方法--光致正电子分析.利用加速器打靶产生的轫致辐射X射线照射样品,通过光子在材料内部发生的电子对效应来产生正电子,然后测量511 keV湮没光子进行正电子分析.通过模拟计算定量研究了该方法用于正电子分析的灵敏度、屏蔽条件等问题;建立了一套实验系统,在该系统上成功实现了对511keV湮没光子能谱的精确测量,并在低碳钢样品的缺陷含量与测量结果之间得到了对应关系.

  12. Magnetic Resonance Imaging

    Science.gov (United States)

    ... metallic objects from being attracted by the powerful magnet of the MR system, you will typically receive ... teeth with magnetic keepers Other implants that involve magnets Medication patch (i.e., transdermal patch) that contains ...

  13. Magnetism of Carbonados

    Science.gov (United States)

    Kletetschka, G.; Taylor, P. T.; Wasilewski, P. J.

    2000-01-01

    Origin of Carbonado is not clear. Magnetism of Carbonado comes from the surface, indicating contemporary formation of both the surface and magnetic carriers. The interior of carbonado is relatively free of magnetic phases.

  14. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  15. Magnetized accretion

    Science.gov (United States)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  16. Smashing magnets

    Science.gov (United States)

    Ferrier-Barbut, Igor

    2016-11-01

    Understanding or designing phases of matter relies in the first place on the knowledge at the microscopic level of the interactions taking place between the constituents. In quantum gases, a renewed interest is rising about the interaction between two dipoles, owing to its anisotropic and long-range character. In a new paper, Burdick et al (2016 New J. Phys. 18 113004) demonstrate experimentally the angular-dependence of collisions between two dysprosium atoms, an atomic species that carries a magnetic dipole moment among the largest in the periodic table. This is realized by colliding two 164Dy Bose-Einstein condensates, and the experiments are backed by a theoretical analysis to connect these results with the two-body scattering cross-section. This represents a further step on the way to the full control of dipole-interacting many-body systems.

  17. Next-To-Leading-Order Matching for the Magnetic Photon-Penguin Operator in the $B \\to X_{s} \\gamma$ Decay

    CERN Document Server

    Buras, Andrzej J; Pott, N

    1998-01-01

    The initial condition at the matching scale $\\mu_W = O(M_W)$ for the Wilson coefficient of the magnetic photon-penguin operator in the decay $B\\to X_s details of the necessary two-loop calculation in the full theory are described and the matching with the corresponding result in the effective theory is discussed in detail. Our outcome for the initial condition confirms the final results of Adel and Yao and Greub and Hurth. We show that --- contrary to the claims in the second of these papers --- the matching procedure can be properly performed for infrared divergent amplitudes, i.e. independently of contributions from gluon bremsstrahlung.

  18. Electromechanical integrated magnetic gear

    OpenAIRE

    Xiu-hong Hao; Hong-fei Zhang; Ji-de Men

    2016-01-01

    This study proposes a new type of magnetic gear, namely, the electromechanical integrated magnetic gear, that integrates the traditional field-modulated magnetic gear, drive, and control. The topology and operating principle of the electromechanical integrated magnetic gear are described in detail in this article, and the constraints of parameter design and speed ratio of electromechanical integrated magnetic gear are presented. Moreover, magnetic field distribution is analyzed with the finit...

  19. The Role of Magnetic Field Dissipation in the Black Hole Candidate Sgr $A^{*}$

    CERN Document Server

    Coker, R F; Coker, Robert F.; Melia, Fulvio

    1999-01-01

    The compact, nonthermal radio source Sgr A* at the Galactic Center appears to be coincident with a 2.6 million solar mass point-like object. Its energy source may be the release of gravitational energy as gas from the interstellar medium descends into its potential well. Simple attempts at calculating the spectrum and flux based on this picture have come close to the observations, yet have had difficulty in accounting for the low efficiency in this source. There now appear to be two reasons for this low conversion rate: (1) the plasma separates into two temperatures, with the protons attaining a significantly higher temperature than that of the radiating electrons, and (2) the magnetic field, B, is sub-equipartition, which reduces the magnetic bremsstrahlung emissivity, and therefore the overall power of Sgr A*. We investigate the latter with improvement over what has been attempted before: rather than calculating B based on a presumed model, we instead infer its distribution with radius empirically with the ...

  20. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  1. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  2. Magnetic domains the analysis of magnetic microstructures

    CERN Document Server

    Hubert, Alex

    1998-01-01

    The book gives a systematic and comprehensive survey of the complete area of magnetic microstructures. It reaches from micromagnetism of nanoparticles to complex structures of extended magnetic materials. The book starts with a comprehensive evaluation of traditional and modern experimental methods for the observation of magnetic domains and continues with the treatment of important methods for the theoretical analysis of magnetic microcstructures. A survey of the necessary techniques in materials characterization is given. The book offers an observation and analysis of magnetic domains in all

  3. Magnetic hyperthermia in solid magnetic colloids

    Science.gov (United States)

    Zubarev, A. Yu.; Iskakova, L. Yu.; Abu-Bakr, A. F.

    2017-02-01

    We present results of theoretical study of magnetic hyperthermia in systems of single-domain ferromagnetic particles homogeneously distributed in a solid matrix. The heat effect is induced by linearly polarized alternating magnetic field. The effect of magnetic interaction between the particles as well as influence of orientation of the particles magnetic axes are in a focus of our consideration. Analysis shows that the interparticle interaction increases intensity of the heat production. The thermal effect in the systems with parallel orientation of the particles axes of easy magnetization is significantly higher than that in the case of random orientation of these axes.

  4. Environmental magnetism

    CERN Document Server

    Thompson, Roy

    1986-01-01

    The scientist will be forced, in the unenthusiastic words of one of my scientific colleagues, 'to slosh about in the primordial ooze known as inter-disciplinary studies'. John Passmore Man's responsibility for nature The present text has arisen from some thirteen years advances in our perception, appraisal and creative use of collaboration between the two authors. During that of order in natural systems. Out of this can come period, upwards of a dozen postgraduates in enhanced insight into processes, structures and Edinburgh, the New University of Ulster and Liver­ systems interactions on all temporal and spatial scales pool have been closely involved in exploring many of and at all integrative levels from subatomic to cosmic. the applications of magnetic measurements described In the environment, elements of order are often in the second half of the book. Much of the text is difficult to appraise and analyse, not only because of based on their work, both published and unpublished. intrinsic complexity, but ...

  5. Hoosier Magnetics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-09-30

    Hoosier Magnetics proposes to replace the indirect clinker water cooling system with a cooling system that recycles heat from the hot ferrite to preheat the combustion air. This innovative process would significantly reduce the amount of natural gas required to heat the combustion air while eliminating Hoosier’s largest source of downtime. According to the Department of Energy’s Industrial Technologies Program for Energy Efficiency and Renewable Energy, process temperature is customarily used as a rough indication of where preheating air will be cost effective. Previous studies have concluded that processes operating above 1,600° F are ideal candidates for the utilization of pre-heated combustion air. Hoosier Magnetics’ operating temperatures run between 1800-2200° F making Hoosier the perfect candidate. Using preheated air at 1200° F will result in 35% fuel savings, or $298,935 annually. Additionally, the new system would have improved process reliability and result in both production efficiency increases and cost savings. This technology is NOT practiced or utilized on a wide-spread basis but could have a significant energy reduction impact in many different high heat utilizing industries in the country. While the energy savings is apparent with this theory the application and design of such a process has not been studied.

  6. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  7. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  8. Ferroelectricity in spiral magnets

    NARCIS (Netherlands)

    Mostovoy, M

    2006-01-01

    It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric suscepti

  9. Magnetic multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Herget, Philipp; O' Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2017-03-21

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  10. Magnetic effects in electrochemistry

    Directory of Open Access Journals (Sweden)

    NEBOJSA D. NIKOLIC

    2005-05-01

    Full Text Available The effect of imposed magnetic fields onto the electrodeposition of magnetic (nickel and non – magnetic (copper metals was analysed. Also, magnetic properties of electrochemically obtained nanocontacts were examined. An effort to establish a possible correlation between the morphologies of the nanocontacts and the effect of the very large ballistic magnetoresistance (BMR effect was made.

  11. A Magnetic Paradox

    Science.gov (United States)

    Arndt, Ebe

    2006-01-01

    Two recent articles in this journal described how an air core solenoid connected to an ac power source may restore the magnetization of a bar magnet with an alternating magnetic field (see Figs. 1 and 2). Although we are quite accustomed to using a constant magnetic field in an air core solenoid to remagnetize a ferromagnet, it is puzzling that we…

  12. Fundamentals of magnetism

    CERN Document Server

    Reis, Mario

    2013-01-01

    The Fundamentals of Magnetism is a truly unique reference text, that explores the study of magnetism and magnetic behavior with a depth that no other book can provide. It covers the most detailed descriptions of the fundamentals of magnetism providing an emphasis on statistical mechanics which is absolutely critical for understanding magnetic behavior. The books covers the classical areas of basic magnetism, including Landau Theory and magnetic interactions, but features a more concise and easy-to-read style. Perfect for upper-level graduate students and industry researchers, The Fu

  13. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  14. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, S.

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  15. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  16. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  17. Magnetic novae

    Science.gov (United States)

    Zemko, Polina; Orio, Marina

    2016-07-01

    We present the results of optical and X-ray observations of two quiescent novae, V2491 Cyg and V4743 Sgr. Our observations suggest the intriguing possibility of localization of hydrogen burning in magnetic novae, in which accretion is streamed to the polar caps. V2491 Cyg was observed with Suzaku more than 2 years after the outburst and V4743 Sgr was observed with XMM Newton 2 and 3.5 years after maximum. In the framework of a monitoring program of novae previously observed as super soft X-ray sources we also obtained optical spectra of V4743 Sgr with the SALT telescope 11.5 years after the eruption and of V2491 Cyg with the 6m Big Azimutal Telescope 4 and 7 years post-outburst. In order to confirm the possible white dwarf spin period of V2491 Cyg measured in the Suzaku observations we obtained photometric data using the 90cm WIYN telescope at Kitt Peak and the 1.2 m telescope in Crimea. We found that V4743 Sgr is an intermediate polar (IP) and V2491 Cyg is a strong IP candidate. Both novae show modulation of their X-ray light curves and have X-ray spectra typical of IPs. The Suzaku and XMM Newton exposures revealed that the spectra of both novae have a very soft blackbody-like component with a temperature close to that of the hydrogen burning white dwarfs in their SSS phases, but with flux by at least two orders of magnitude lower, implying a possible shrinking of emitting regions in the thin atmosphere that is heated by nuclear burning underneath it. In quiescent IPs, independently of the burning, an ultrasoft X-ray flux component originates at times in the polar regions irradiated by the accretion column, but the soft component of V4743 Sgr disappeared in 2006, indicating that the origin may be different from accretion. We suggest it may have been due to an atmospheric temperature gradient on the white dwarf surface, or to continuing localized thermonuclear burning at the bottom of the envelope, before complete turn-off. The optical spectra of V2491 Cyg and V

  18. Magnetically Damped Furnace Bitter Magnet Coil 1

    Science.gov (United States)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  19. Cosmological Magnetic Fields

    CERN Document Server

    Kunze, Kerstin E

    2013-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  20. Multifunctionality in molecular magnetism.

    Science.gov (United States)

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  1. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  2. Tamper resistant magnetic stripes

    Science.gov (United States)

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  3. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  4. The magnetic stress tensor in magnetized matter

    CERN Document Server

    Espinosa, Olivier R; Espinosa, Olivier; Reisenegger, Andreas

    2003-01-01

    We derive the form of the magnetic stress tensor in a completely general, stationary magnetic medium, with an arbitrary magnetization field $vec M(vec r)$ and free current density $vec j(vec r)$. We start with the magnetic force density $vec f$ acting on a matter element, modelled as a collection of microscopic magnetic dipoles in addition to the free currents. We show that there is a unique tensor ${bf T}$ quadratic in the magnetic flux density $vec B(vec r)$ and the magnetic field $vec H(vec r)=vec B-4pivec M$ whose divergence is $nablacdot{bf T}=vec f$. In the limit $vec M=0$, the well-known vacuum magnetic stress tensor is recovered. However, the general form of the tensor is asymmetric, leading to a divergent angular acceleration for matter elements of vanishing size. We argue that this is not inconsistent, because it occurs only if $vec M$ and $vec B$ are not parallel, in which case the macroscopic field does indeed exert a torque on each of the microscopic dipoles, so this state is only possible if the...

  5. Enhanced Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  6. Boulder Magnetic Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  7. Active magnetic regenerator

    Science.gov (United States)

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  8. ISR magnet power supplies

    CERN Multimedia

    1970-01-01

    At the left, for the main magnets, the 18 kV switchgear is in the foreground and at the rear are cubicles with rectifiers and filters. At the right, rear, are rectifiers for pole face windings and auxiliary magnets.

  9. Project Magnet 1996

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Project Magnet data include low altitude, high density individual track line surveys, high altitude vector data and regional magnetic anomaly grids.

  10. Electromechanical integrated magnetic gear

    Directory of Open Access Journals (Sweden)

    Xiu-hong Hao

    2016-06-01

    Full Text Available This study proposes a new type of magnetic gear, namely, the electromechanical integrated magnetic gear, that integrates the traditional field-modulated magnetic gear, drive, and control. The topology and operating principle of the electromechanical integrated magnetic gear are described in detail in this article, and the constraints of parameter design and speed ratio of electromechanical integrated magnetic gear are presented. Moreover, magnetic field distribution is analyzed with the finite element method. Subsequently, the harmonics of the magnetic field and the electromagnetic torque are calculated. The static torques on all the components are exhibited by finite element method and torque test. The effects of the design parameters on the torques and the torque densities are discussed, and the results show that electromechanical integrated magnetic gear has a high speed ratio and can generate a high torque at low speed. The maximum torques are affected by air-gap thickness and other parameters.

  11. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  12. Magnetic induction hyperthermia

    Science.gov (United States)

    Nikiforov, V. N.

    2007-09-01

    A review of physical principles and experimental data on magnetic hyperthermia are presented. The main principles of magnetic hyperthermia are considered. Results of its application in the therapy of oncology diseases are presented.

  13. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  14. Enhanced Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  15. Magnetic Graphene Nanohole Superlattices

    CERN Document Server

    Yu, Decai; Liu, Miao; Liu, Wei; Liu, Feng

    2008-01-01

    We investigate the magnetic properties of nano-holes (NHs) patterned in graphene using first principles calculations. We show that superlattices consisting of a periodic array of NHs form a new family of 2D crystalline "bulk" magnets whose collective magnetic behavior is governed by inter-NH spin-spin interaction. They exhibit long-range magnetic order well above room temperature. Furthermore, magnetic semiconductors can be made by doping magnetic NHs into semiconducting NH superlattices. Our findings offer a new material system for fundamental studies of spin-spin interaction and magnetic ordering in low dimensions, and open up the exciting opportunities of making engineered magnetic materials for storage media and spintronics applications.

  16. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  17. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  18. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  19. Magnetic cluster excitations

    Science.gov (United States)

    Furrer, Albert; Waldmann, Oliver

    2013-01-01

    Magnetic clusters, i.e., assemblies of a finite number (between two or three and several hundred) of interacting spin centers which are magnetically decoupled from their environment, can be found in many materials ranging from inorganic compounds and magnetic molecules to artificial metal structures formed on surfaces and metalloproteins. Their magnetic excitation spectra are determined by the nature of the spin centers and of the magnetic interactions, and the particular arrangement of the mutual interaction paths between the spin centers. Small clusters of up to four magnetic ions are ideal model systems in which to examine the fundamental magnetic interactions, which are usually dominated by Heisenberg exchange, but often complemented by anisotropic and/or higher-order interactions. In large magnetic clusters, which may potentially deal with a dozen or more spin centers, there is the possibility of novel many-body quantum states and quantum phenomena. In this review the necessary theoretical concepts and experimental techniques to study the magnetic cluster excitations and the resulting characteristic magnetic properties are introduced, followed by examples of small clusters, demonstrating the enormous amount of detailed physical information that can be retrieved. The current understanding of the excitations and their physical interpretation in the molecular nanomagnets which represent large magnetic clusters is then presented, with a section devoted to the subclass of single-molecule magnets, distinguished by displaying quantum tunneling of the magnetization. Finally, there is a summary of some quantum many-body states which evolve in magnetic insulators characterized by built-in or field-induced magnetic clusters. The review concludes by addressing future perspectives in the field of magnetic cluster excitations.

  20. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  1. Nanochemistry and magnetism

    Science.gov (United States)

    Buchachenko, A. L.

    2009-10-01

    An analysis of magnetism of nanochemical systems opens up new ways to creating ferromagnets from diamagnetic substances and new principles for constructing molecular ferromagnets, hybrid magnetic materials, and monomolecular magnets on the basis of high-spin molecules and complexes. Their use in spin computing is considered.

  2. Magnetism in meteorites

    Science.gov (United States)

    Herndon, J. M.; Rowe, M. W.

    1974-01-01

    An overview is presented of magnetism in meteorites. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in meteorites are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered.

  3. Common Magnets, Unexpected Polarities

    Science.gov (United States)

    Olson, Mark

    2013-01-01

    In this paper, I discuss a "misconception" in magnetism so simple and pervasive as to be typically unnoticed. That magnets have poles might be considered one of the more straightforward notions in introductory physics. However, the magnets common to students' experiences are likely different from those presented in educational…

  4. A new model for the X-ray continuum of the magnetized accreting pulsars

    CERN Document Server

    Farinelli, R; Bozzo, E; Becker, P A

    2016-01-01

    Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high statistical quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models, rather than models linked to the physics of accretion. In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku+NuStar data, together with an advanced version of the compmag model. The latter provides a physical description of the high energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been impr...

  5. Magnetic hyperthermia with hard-magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kashevsky, Bronislav E., E-mail: bekas@itmo.by [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Kashevsky, Sergey B.; Korenkov, Victor S. [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Istomin, Yuri P. [N. N. Alexandrov National Cancer Center of Belarus, Lesnoy-2, Minsk 223040 (Belarus); Terpinskaya, Tatyana I.; Ulashchik, Vladimir S. [Institute of Physiology, Belarus Academy of Sciences, Akademicheskaya str. 28, Minsk 220072 (Belarus)

    2015-04-15

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner–Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner–Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body. - Highlights: • Hard-magnetic nanoparticles are shown superior for hyperthetmia to superparamagnetic. • Optimal system parameters are found from magnetic reversal model in movable particle. • Penetrating suspension of HM particles with aggregation-independent SAR is developed. • For the first time, mice with tumors are healed in AC field acceptable for human body.

  6. Permanent-Magnet Meissner Bearing

    Science.gov (United States)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  7. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  8. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  9. Switchable molecular magnets.

    Science.gov (United States)

    Sato, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes.

  10. Magnetic volumetric hologram memory with magnetic garnet.

    Science.gov (United States)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-06-30

    Holographic memory is a promising next-generation optical memory that has a higher recording density and a higher transfer rate than other types of memory. In holographic memory, magnetic garnet films can serve as rewritable holographic memory media by use of magneto-optical effect. We have now demonstrated that a magnetic hologram can be recorded volumetrically in a ferromagnetic garnet film and that the signal image can be reconstructed from it for the first time. In addition, multiplicity of the magnetic hologram was also confirmed; the image could be reconstructed from a spot overlapped by other spots.

  11. Magnetism and metallurgy of soft magnetic materials

    CERN Document Server

    Chen, Chih-Wen

    2011-01-01

    Soft magnetic materials are economically and technologically the most important of all magnetic materials. In particular, the development of new materials and novel applications for the computer and telecommunications industries during the past few decades has immensely broadened the scope and altered the nature of soft magnetic materials. In addition to metallic substances, nonmetallic compounds and amorphous thin films are coming increasingly important. This thorough, well-organized volume - on of the most comprehensive treatments available - offers a coherent, logical presentation of the p

  12. Tunneling magnetic force microscopy

    Science.gov (United States)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  13. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  14. Molecule-based magnets

    Indian Academy of Sciences (India)

    J V Yakhmi

    2009-06-01

    The conventional magnetic materials used in current technology, such as, Fe, Fe2O3, Cr2O3, SmCo5, Nd2Fe14B etc are all atom-based, and their preparation/processing require high temperature routes. Employing self-assembly methods, it is possible to engineer a bulk molecular material with long-range magnetic order, mainly because one can play with the weak intermolecular interactions. Since the first successful synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be categorized on the basis of the chemical nature of the magnetic units involved: organic-, metal-based systems, heterobimetallic assemblies, or mixed organic–inorganic systems. The design of molecule-based magnets has also been extended to the design of poly-functional molecular magnets, such as those exhibiting second-order optical nonlinearity, liquid crystallinity, or chirality simultaneously with long-range magnetic order. Solubility, low density and biocompatibility are attractive features of molecular magnets. Being weakly coloured, unlike their opaque classical magnet ‘cousins’ listed above, possibilities of photomagnetic switching exist. Persistent efforts also continue to design the ever-elusive polymer magnets towards applications in industry. While providing a brief overview of the field of molecular magnetism, this article highlights some recent developments in it, with emphasis on a few studies from the author’s own lab.

  15. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  16. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  17. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  18. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  19. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of journal bearings and seals. The main contribution...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  20. Magnetization arrangement of hard magnetic phases and mechanism of magnetization and reversal magnetization of nano-composite magnets

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-cai; XIE Ren; PAN Jing

    2009-01-01

    During the process of directional solidification, laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets, or die-upsetting of nano-composites, the arrangements of the easy-magnetization-axes of the hard magnetic phases (Nd_2Fe_(14)B, SmCo_5 or Sm_2Co_(17) type) in their designed directions have been studied. In Fe-Pt nano-composite magnets, attempts have been taken to promote phase transformation from disordered, soft magnetic A1 to ordered, hard magnetic L_(10) FePt phase at reduced temperatures. The dependence of the magnetization and reversal magnetization processes on the microstructures, involving the morphology and three critical sizes of particles of the FePt nano-composite magnets, are summarized. With the decrease of the nominal thickness of the anisotropic FePt film epitaxially grown on the single crystal MgO (001) substrate, the reversal magnetization process firstly changes from full domain wall displacement to partial magnetic wall pinning related to the morphology change, where the coercive force increases abruptly. The reversal magnetization process secondly changes from magnetic wall pinning to incoherent magnetization rotation associated with the particles being below the first critical size at which multi-domain particles turn into single domain ones, where the coercive force is still increased. And the reversal magnetization mode thirdly changes from incoherent to coherent rotation referred to the second critical size, where the increase of the coercive force keeps on. However, when the particle size decreases to approach the third critical size where the particles turn into the supperparamagnetic state, the coercive force begins to decrease due to the interplay of the size effect and the incomplete ordering induced by the size effect. Meanwhile, due to the size effect, Curie temperature of the ultra-small FePt particles reduces.

  1. Magnetic Excitations and Magnetic Ordering in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Chapellier, M.; Mackintosh, A. R.;

    1975-01-01

    The dispersion relations for magnetic excitons propagating on the hexagonal sites of double-hcp Pr provide clear evidence for a pronounced anisotropy in the exchange. The energy of the excitations decreases rapidly as the temperature is lowered, but becomes almost constant below about 7 K......, in agreement with a random-phase-approximation calculation. No evidence of magnetic ordering has been observed above 0.4 K, although the exchange is close to the critical value necessary for an antiferromagnetic state....

  2. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  3. Magnetism in Medicine

    Science.gov (United States)

    Schenck, John

    2000-03-01

    For centuries physicians, scientists and others have postulated an important role, either as a cause of disease or as a mode of therapy, for magnetism in medicine. Although there is a straightforward role in the removal of magnetic foreign bodies, the majority of the proposed magnetic applications have been controversial and have often been attributed by mainstream practitioners to fraud, quackery or self-deception. Calculations indicate that many of the proposed methods of action, e.g., the field-induced alignment of water molecules or alterations in blood flow, are of negligible magnitude. Nonetheless, even at the present time, the use of small surface magnets (magnetotherapy) to treat arthritis and similar diseases is a widespread form of folk medicine and is said to involve sales of approximately one billion dollars per year. Another medical application of magnetism associated with Mesmer and others (eventually known as animal magnetism) has been discredited, but has had a culturally significant role in the development of hypnotism and as one of the sources of modern psychotherapy. Over the last two decades, in marked contrast to previous applications of magnetism to medicine, magnetic resonance imaging or MRI, has become firmly established as a clinical diagnostic tool. MRI permits the non-invasive study of subtle biological processes in intact, living organisms and approximately 150,000,000 diagnostic studies have been performed since its clinical introduction in the early 1980s. The dramatically swift and widespread acceptance of MRI was made possible by scientific and engineering advances - including nuclear magnetic resonance, computer technology and whole-body-sized, high field superconducting magnets - in the decades following World War Two. Although presently used much less than MRI, additional applications, including nerve and muscle stimulation by pulsed magnetic fields, the use of magnetic forces to guide surgical instruments, and imaging utilizing

  4. Efficiency calibration for a NaI scintillation detector based on Monte-Carlo pro cess and preliminary measurements of bremsstrahlung%基于蒙特卡罗方法的NaI探测器效率刻度及其测量轫致辐射实验

    Institute of Scientific and Technical Information of China (English)

    黄建微; 王乃彦

    2014-01-01

    In order to better apply the NaI scintillation spectrometer to bremsstrahlung measurements, the energy response function of a NaI detector spectrometer system is studied by using 137Cs and 60Co sources based on Monte Carlo N particle transport code (MCNP) process. Simulated and measured almighty peak efficiency are in good agreement. An energy response matrix (ERM) is obtained by simulating photons with a certain energy incident on the NaI crystal in MCNP process, through deconvoluting the detected spectrum of NaI using the ERM, and the results of the deconvolution accord well with those from the original spectrum. Furthermore, the NaI detector is used to preliminarily detect its response to bremsstrahlung generated by high intensity electrons bombarding a target of 1.5 mm thickness.%为了将NaI探测器更好地应用到轫致辐射谱测量工作中,对一套NaI探测器做了研究:利用137 Cs,60 Co等同位素γ源,结合蒙特卡罗方法,得到全能峰效率的模拟值与实验测量值符合得较好;利用蒙特卡罗N粒子编码模拟NaI对不同能量光子的响应,得到了该探测器对光子的能量响应,并将获得的能量响应用于轫致辐射的解谱工作,解谱结果与原始谱符合得很好;将该探测器应用到强流电子束打靶轫致辐射测量实验中,对轫致辐射在NaI探测器中的响应做了初步测量。

  5. Molecules in Magnetic Fields

    Science.gov (United States)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  6. Magnetic Coordinate Systems

    CERN Document Server

    Laundal, K M

    2016-01-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the...

  7. Magnetic heat pumping

    Science.gov (United States)

    Brown, G. V. (Inventor)

    1983-01-01

    The method employs ferromagnetic or ferromagnetic elements, preferably of rare-earth based material, for example gadolinium, and preferably employs a regenerator. The steps comprise controlling the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram repeatedly to traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four sided, with, for example, two isotherms and two adiabats (constant entropy portions.

  8. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  9. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  10. Optimally segmented magnetic structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus;

    ], or are applicable only to analytically solvable geometries[4]. In addition, some questions remained fundamentally unanswered, such as how to segment a given design into N uniformly magnetized pieces.Our method calculates the globally optimal shape and magnetization direction of each segment inside a certain......We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... designarea with an optional constraint on the total amount of magnetic material. The method can be applied to any objective functional which is linear respect to the field, and with any combination of linear materials. Being based on an analytical-optimization approach, the algorithm is not computationally...

  11. Magnetic nanocap arrays with tilted magnetization

    Science.gov (United States)

    Albrecht, Manfred

    2009-03-01

    In modern magnetic recording materials the ``superparamagnetic effect'' has become increasingly important as new magnetic hard disk drive products are designed for higher storage densities. In this regard, patterned media [1], where two-dimensional arrays of nanostructures are used, is one of the concepts that might provide the required areal density in future magnetic recording devices. However, also nanostructure arrays will ultimately need high anisotropy material such as L10-FePt to provid enough thermal stability and thus much higher writing fields than currently obtainable from perpendicular magnetic recording heads. One proposed solution to this problem is the use of tilted magnetic recording media [2]. The basic idea is to tilt the easy axis of the magnetic medium from the perpendicular direction to 45 degree. In this case, the switching field will be reduced by a foctor of two in the Stoner-Wohlfarth limit. Recently, this approach was realized by oblique film deposition onto arrays of self-assembled spherical particles [3-5]. In this presentation, recent results on different film systems including Co/Pt multilayers, FePt and CoPtCr-SiO2 alloys which have been deposited onto SiO2 particle monolayers will be presented. It turned out that by tuning the growth conditions single domain nanocaps with enhanced magnetic coercivity and tilted anisostropy axis can be achieved even for particle sizes below 50 nm. [4pt] [1] B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38 (2005) R199 [0pt] [2] J.-P. Wang, Nat. Mater. 4, 191 (2005). [0pt] [3] M. Albrecht et al., Nat. Mater. 4, 203 (2005). [0pt] [4] T. Ulbrich et al., Phys. Rev. Lett. 96 (2006) 077202. [0pt] [5] D. Makarov et al., Appl. Phys. Lett. 93, 153112 (2008).

  12. Magnetic Electrochemical Finishing Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    How to improve the finishing efficiency and surface roughness have been all along the objective of research in electrochemical polishing. However, the research activity, i.e. during electrochemical polishing, directly introduce the magnetic field to study how the magnetic field influences on the finishing efficiency, quality and the electrochemical process in the field of finishing machining technology, is insufficient. When introducing additional magnetic field in the traditional electrochemical pol...

  13. Magnetic Spring Device

    OpenAIRE

    Hassam, A. B.; Rodgers, J. C.

    2009-01-01

    A cylindrical system is proposed that will store magnetic energy in a localized azimuthal field that can then be quickly released on Alfvenic timescales, accompanied by the formation of a flowing Z-pinch plasma. The magnetized plasma is MHD in character and will have unilateral axial momentum with Alfvenic speeds. Conventional plasma gun injectors (Marshall type) have a limited parameter space of operation. The "magnetic spring" momentum injector differs from Marshall guns in that it has an a...

  14. Theoretical magnetic flux emergence

    OpenAIRE

    MacTaggart, David

    2011-01-01

    Magnetic flux emergence is the subject of how magnetic fields from the solar interior can rise and expand into the atmosphere to produce active regions. It is the link that joins dynamics in the convection zone with dynamics in the atmosphere. In this thesis, we study many aspects of magnetic flux emergence through mathematical modelling and computer simulations. Our primary aim is to understand the key physical processes that lie behind emergence. The first chapter intro...

  15. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  16. SPS : the magnet system

    CERN Multimedia

    CERN Neyrac Films

    1974-01-01

    English version. Part of a series of films about the SPS. This one ois from May 1974 to December 1974. Roy Billinge, Vince Hatton explain about magnet system. Technical requirements, accuracy checks, installation, magnetic measurements, mechanical measurements. Discussion of a particular problem which can come from variation in the thickness of the vacuum chambers. Dipoles, quadrapoles and other speciality magnets. Necessity for close international cooperation to coordinate the work. Nice meeting sequence at end. (calculator on the table.)

  17. GHz magnetic film inductors

    CERN Document Server

    Korenivski, V

    2000-01-01

    Use of magnetic films for miniaturization of planar inductors operating at ultra-high frequencies is reviewed. Materials and design aspects determining the efficiency of the devices are analyzed. Mechanisms involved in magnetic dissipation and their role in limiting the device operation frequency range and quality factor are discussed. Typical inductor geometries are considered. A magnetically sandwiched strip inductor is argued to hold a promise for GHz applications.

  18. Magnetic record support

    Science.gov (United States)

    Nakayama, M.; Morita, H.; Tokuoka, Y.; Izumi, T.; Fukuda, K.; Kubota, Y.

    1984-01-01

    The magnetic layer of a magnetic record support is coated with a thin film of a polymer with a siloxane bond. The magnetic layer consists of a thin film obtained by vacuum metallization, cathode sputtering or dispersion of a ferromagnetic metal powder in a binder. The polymer with a siloxane bond is produced by the polymerization of an organic silicon compound which inherently contains or is able to form this bond. Polymerization is preferably performed by plasma polymerization.

  19. Magnetic latching solenoid

    Science.gov (United States)

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  20. Magnetic latching solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Marts, Donna J. (Idaho Falls, ID); Richardson, John G. (Idaho Falls, ID); Albano, Richard K. (Idaho Falls, ID); Morrison, Jr., John L. (Idaho Falls, ID)

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  1. Magnets in prosthetic dentistry.

    Science.gov (United States)

    Riley, M A; Walmsley, A D; Harris, I R

    2001-08-01

    Magnetic retention is a popular method of attaching removable prostheses to either retained roots or osseointegrated implants. This review chronicles the development of magnets in dentistry and summarizes future research in their use. The literature was researched by using the Science Citation Index and Compendex Web from 1981 to 2000. Articles published before 1981 were hand researched from citations in other publications. Articles that discussed the use of magnets in relation to prosthetic dentistry were selected.

  2. LHCb experiment magnets

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The leading members of the LHCb magnet project, from left to right: Pierre-Ange Giudici, who organized and supervised the industrial production of the coils; Marcello Losasso, who performed the 3D calculations to optimise the magnetic field; Olivier Jamet, responsible for the 3D design; Jean Renaud, in charge of the magnet assembly, and Wilfried Flegel, project leader. The LHCb detector will investigate matter-antimatter differences in B mesons at the LHC. The coils of the detector's huge dipole magnet are seen here in April 2004.

  3. Magnetic Nernst effect

    Science.gov (United States)

    Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2015-09-01

    The thermodynamics of irreversible processes in continuous media predicts the existence of a magnetic Nernst effect that results from a magnetic analog to the Seebeck effect in a ferromagnet and magnetophoresis occurring in a paramagnetic electrode in contact with the ferromagnet. Thus, a voltage that has DC and AC components is expected across a Pt electrode as a response to the inhomogeneous magnetic induction field generated by magnetostatic waves of an adjacent YIG slab subject to a temperature gradient. The voltage frequency and dependence on the orientation of the applied magnetic induction field are quite distinct from that of spin pumping.

  4. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  5. Covariant Magnetic Connection Hypersurfaces

    CERN Document Server

    Pegoraro, F

    2016-01-01

    In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.

  6. Magnetic Spring Device

    CERN Document Server

    Hassam, A B

    2009-01-01

    A cylindrical system is proposed that will store magnetic energy in a localized azimuthal field that can then be quickly released on Alfvenic timescales, accompanied by the formation of a flowing Z-pinch plasma. The magnetized plasma is MHD in character and will have unilateral axial momentum with Alfvenic speeds. Conventional plasma gun injectors (Marshall type) have a limited parameter space of operation. The "magnetic spring" momentum injector differs from Marshall guns in that it has an already stored strong magnetic field before release. The resulting parameter space is much broader. There are possible applications to momentum injectors for fusion and to plasma and rail guns.

  7. Magnetic flocculation and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Yiacoumi, Sotira; Chin, Ching-Ju; Yin, Tung-Yu [Georgia Inst. of Tech., Atlanta, GA (United States). School of Civil and Environmental Engineering; Tsouris, C., DePaoli, D.W.; Chattin, M.R.; Spurrier, M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A model is available in predicting flocculation frequencies between particles of various properties under the influence of a magnetic field. This model provides a basic understanding of fundamental phenomena, such as particle-particle and particle-collector interactions, occurring in HGMF (high gradient magnetic field), and will be extended to describe experimental data of particle flocculation and filtration and predict the performance of high- gradient magnetic filters. It is also expected that this model will eventually lead to a tool for design and optimization of magnetic filters for environmental, metallurgical, biochemical, and other applications.

  8. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    D Bahadur; Jyotsnendu Giri

    2003-06-01

    Magnetism plays an important role in different applications of health care. Magnetite (Fe34) is biocompatible and therefore is one of the most extensively used biomaterials for different applications ranging from cell separation and drug delivery to hyperthermia. Other than this, a large number of magnetic materials in bulk as well as in the form of nano particles have been exploited for a variety of medical applications. In this review, we summarize the salient features of clinical applications, where magnetic biomaterials are used. Magnetic intracellular hyperthermia for cancer therapy is discussed in detail.

  9. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...

  10. Engineering magnetism in semiconductors

    Directory of Open Access Journals (Sweden)

    Tomasz Dietl

    2006-11-01

    Full Text Available Transition metal doped III-V, II-VI, and group IV compounds offer an unprecedented opportunity to explore ferromagnetism in semiconductors. Because ferromagnetic spin-spin interactions are mediated by holes in the valence band, changing the Fermi level using co-doping, electric fields, or light can directly manipulate the magnetic ordering. Moreover, engineering the Fermi level position by co-doping makes it possible to modify solubility and self-compensation limits, affecting magnetic characteristics in a number of surprising ways. The Fermi energy can even control the aggregation of magnetic ions, providing a new route to self-organization of magnetic nanostructures in a semiconductor host.

  11. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  12. Magnetic chemically peculiar stars

    CERN Document Server

    Schöller, Markus

    2015-01-01

    Chemically peculiar (CP) stars are main-sequence A and B stars with abnormally strong or weak lines for certain elements. They generally have magnetic fields and all observables tend to vary with the same period. Chemically peculiar stars provide a wealth of information; they are natural atomic and magnetic laboratories. After a brief historical overview, we discuss the general properties of the magnetic fields in CP stars, describe the oblique rotator model, explain the dependence of the magnetic field strength on the rotation, and concentrate at the end on HgMn stars.

  13. Magnetism v.5

    CERN Document Server

    Suhl, Harry

    1973-01-01

    Magnetism, Volume V: Magnetic Properties of Metallic Alloys deals with the magnetic properties of metallic alloys and covers topics ranging from conditions favoring the localization of effective moments to the s-d model and the Kondo effect, along with perturbative, scattering, and Green's function theories of the s-d model. Asymptotically exact methods used in addressing the Kondo problem are also described.Comprised of 12 chapters, this volume begins with a review of experimental results and phenomenology concerning the formation of local magnetic moments in metals, followed by a Har

  14. Radial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  15. Ultrafast magnetization dynamics in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, O [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Hervieux, P-A; Manfredi, G [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: morandi@dipmat.univpm.it

    2009-07-15

    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second-order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes that restore the initial ferromagnetic order in a nanosecond timescale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within the timescale of a few hundred picoseconds.

  16. Magnetic Properties and Intergranular Action in Bonded Hybrid Magnets

    Institute of Scientific and Technical Information of China (English)

    Hua Zhenghe; Li Shandong; Han Zhida; Wang Dunhui; Zhong Wei; Gu Benxi; Lu Mu; Zhang Jianrong; Du Youwei

    2007-01-01

    Magnetic properties and intergranular action in bonded hybrid magnets, based on NdFeB and strontium ferrite powders were investigated. The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets, and neither of them could be neglected. Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.

  17. Magnetic Structure of Erbium

    DEFF Research Database (Denmark)

    Gibbs, D.; Bohr, Jakob; Axe, J. D.

    1986-01-01

    , and at positions split symmetrically about the fundamental. As the temperature is lowered below 52 K the charge and magnetic scattering display a sequence of lock-in transitions to rational wave vectors. A spin-slip description of the magnetic structure is presented which explains the wave vectors...

  18. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  19. Magnetic Implants Aid Hearing

    Institute of Scientific and Technical Information of China (English)

    陈宏

    1995-01-01

    The next generation of hearing aids may use tiny magnets that fit inside the ear. Researchersat a California company and an engineer at the University of Virginia are both developing systems that rely on magnets to convey sounds. Conventional hearing aids have three components:a microphone, an amplifier, and a speaker. The microphone picks up sounds and sends them to the am-

  20. Magnetism in massive stars

    NARCIS (Netherlands)

    Henrichs, H.F.

    2012-01-01

    Stars with mass more than 8 solar masses end their lives as neutron stars, which we mostly observe as highly magnetized objects. Where does this magnetic field come from? Such a field could be formed during the collapse, or is a (modified) remnant of a fossil field since the birth of the star, or ot

  1. Streched Magnetic Moments

    CERN Document Server

    Zamick, Larry

    2012-01-01

    We note that for a system of 2 nucleons in a stretched case (J=J1+J2) the magnetic moment of the combined system is the sum of the magnetic moments of the 2 constituents. In general there is no additive rule for g factors.

  2. Magnetic shape memory fatigue

    Science.gov (United States)

    Heczko, Oleg; Straka, Ladislav; Soderberg, Outi; Hannula, Simo-Pekka

    2005-05-01

    Single crystal specimens of having compositions close to Ni2MnGa and exhibiting magnetic shape memory effect (MSME) were tested in a rotating magnetic field at a frequency of 5.7 Hz. The applied magnetic field, about 0.7 T was strong enough to induce the MSME. Test of one specimen was discontinued because of the structural failure of the specimens after 0.5 million cycles. Second specimen was tested up to 37 millions cycles. The evolution of the martensitic morphology and crack propagation were observed by optical microscopy. To characterize the magnetic shape memory behavior the simultaneous measurements of the field-induced strain and magnetization as a function of the magnetic field and external load was used. The full MSM effect, about 6% obtained prior the test, decreased to about 3% during the first million cycles. This value stayed then approximately constant up to 37 millions cycles of rotating magnetic field. The magnetic field needed to initiate the MSME increased. The observed behavior is discussed within the framework of observed martensitic band structure in the specimens and the existence of initial cracks and other obstacles for martensitic twin boundary motion.

  3. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  4. PS auxiliary magnet

    CERN Multimedia

    1974-01-01

    Units of the PS auxiliary magnet system. The picture shows how the new dipoles, used for vertical and horizontal high-energy beam manipulation, are split for installation and removal so that it is not necessary to break the accelerator vacuum. On the right, adjacent to the sector valve and the windings of the main magnet, is an octupole of the set.

  5. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  6. Magnetic bipolar transistor

    OpenAIRE

    Fabian, Jaroslav; Zutic, Igor; Sarma, S. Das

    2003-01-01

    A magnetic bipolar transistor is a bipolar junction transistor with one or more magnetic regions, and/or with an externally injected nonequilibrium (source) spin. It is shown that electrical spin injection through the transistor is possible in the forward active regime. It is predicted that the current amplification of the transistor can be tuned by spin.

  7. Teaching Tips: Mind Magnets

    Science.gov (United States)

    Fortenberry, Callie L.; Fowler, Teri W.

    2006-01-01

    Mind magnets are maps to guide instruction and facilitate the comprehension processes. They extend individual comprehension strategy instruction, which does not typically show students how to link application of appropriate strategies to whole texts. The mind magnet framework allows teachers to plan powerful interactions between the reader and the…

  8. Strong Little Magnets

    Science.gov (United States)

    Moloney, Michael J.

    2007-01-01

    Did you know that some strong little cylindrical magnets available in local hardware stores can have an effective circumferential current of 2500 A? This intriguing information can be obtained by hanging a pair of magnets at the center of a coil, as shown in Fig. 1, and measuring the oscillation frequency as a function of coil current.

  9. Selected topics in magnetism

    CERN Document Server

    Gupta, L C

    1993-01-01

    Part of the ""Frontiers in Solid State Sciences"" series, this volume presents essays on such topics as spin fluctuations in Heisenberg magnets, quenching of spin fluctuations by high magnetic fields, and kondo effect and heavy fermions in rare earths amongst others.

  10. Wobbly Corner: Magnetism

    Science.gov (United States)

    Corbett, Lisa; Maklad, Rania; Dunne, Mick; Grace, Pierre

    2014-01-01

    During a final seminar with BA year 4 science specialist trainee teachers, the authors posed a question about the difficulties associated with understanding magnetism. The ensuing discussion focused on a number of concerns commonly identified by students, which may also be of interest to classroom teachers teaching magnetism. Issues raised…

  11. The LHCb magnet

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The LHCb magnet consists of two huge 27 tonne coils mounted inside a 1450 tonne iron yoke. As charged particles pass through the magnet's field their trajectories will be bent according to their momentum, allowing their momentum to be measured as they pass through the detector walls. LHCb will study bottom quarks, which will be produced close to the two colliding proton beams.

  12. Magnetization of ancient ceramics

    NARCIS (Netherlands)

    Van Klinken, J

    2001-01-01

    The saturation magnetization sigma of soft baked pottery appears to be determined during the firing process by transitions between the iron oxides magnetite, maghemite, hematite and perhaps goethite. The finding of large variations in a motivated the design and construction of a 'magnetization-gravi

  13. Magnetic support system

    NARCIS (Netherlands)

    Nijsse, G.J.P.; Spronck, J.W.

    1999-01-01

    There is described a support system enabling supporting an object such as a platform (1) free from vibration, in that bearing elements (50) have a stiffness (k) which at a working point (z0) equals zero. A bearing element (50) comprises two magnetic couplings (51, 52) provided by permanent magnets (

  14. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S. [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering] [and others

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  15. Stellar magnetic cycles

    Science.gov (United States)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  16. Neutrino Magnetic Moment

    OpenAIRE

    Balantekin, A. B.

    2006-01-01

    Current experimental and observational limits on the neutrino magnetic moment are reviewed. Implications of the recent results from the solar and reactor neutrino experiments for the value of the neutrino magnetic moment are discussed. It is shown that spin-flavor precession in the Sun is suppressed.

  17. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  18. Magnetic Particle Technology

    Science.gov (United States)

    Oliveira, Luiz C.A.; A. Rios, Rachel V.R.; Fabris, Jose D.; Lago, Rachel M.; Sapag, Karim

    2004-01-01

    An exciting laboratory environment is activated by the preparation and novel use of magnetic materials to decontaminate water through adsorption and magnetic removal of metals and organics. This uncomplicated technique is also adaptable to the possible application of adsorbents to numerous other environmental substances.

  19. EXOTIC MAGNETS FOR ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  20. One thousand magnets delivered!

    CERN Multimedia

    2005-01-01

    The little matchstick-like objects, neatly lined up like colouring pencils in their box, are in fact LHC magnets seen from the air. These particular ones are being stored at Point 19 just alongside SM18, the magnet assembly and testing hall, which can be seen on the right of the picture. On the right in the background, is the Meyrin site.

  1. Analogue Magnetism: An Ansatz

    CERN Document Server

    Osano, Bob

    2016-01-01

    We present an ansatz for the relationship between magnetic flux density and fluid vorticity evolution equations. We also suggest that the magnetic flux density evolution equations be compared to the evolution equation for an effective vorticity ($\\omega_{eff}$), which bears a power law relation to the ordinary vorticity.

  2. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, I; Toyoda, K [Department of Agricultural Engineering and Socio Economics, Kobe University, Nada, Kobe 657-8501 (Japan); Beneragama, N; Umetsu, K [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)], E-mail: ihara@port.kobe-u.ac.jp

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  3. Magnetic forces produced by rectangular permanent magnets in static microsystems.

    Science.gov (United States)

    Gassner, Anne-Laure; Abonnenc, Mélanie; Chen, Hong-Xu; Morandini, Jacques; Josserand, Jacques; Rossier, Joel S; Busnel, Jean-Marc; Girault, Hubert H

    2009-08-21

    Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially captured in a microchannel. These simulations were qualitatively corroborated, in one geometrical case, by microscopic visualizations of magnetic bead plug formation in a capillary. The results show that the number of plugs is configuration dependent with: in attraction, one plug in the middle of the magnets; in repulsion, two plugs near the edges of the magnets; and with a single magnet, a plug close to the center of the magnet. The geometry of the magnets (h and l are the height and length of the magnets respectively) and their relative spacing s has a significant impact on the magnetic flux density. Its value inside a magnet increases with the h/l ratio. Consequently, bar magnets produce larger and more uniform values than flat magnets. The l/s ratio also influences the magnetic force value in the microchannel, both increasing concomitantly for all the configurations. In addition, a zero force zone in the middle appears in the attraction configuration as the l/s ratio increases, while with a single magnet, the number of maxima and minima goes from one to two, producing two focusing zones instead of only one.

  4. The magnetic properties of the hollow cylindrical ideal remanence magnet

    CERN Document Server

    Bjørk, R

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.

  5. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  6. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  7. Study on healthcare magnetic concrete

    Institute of Scientific and Technical Information of China (English)

    YANG Yushan; DONG Faqin; FENG Jianjun

    2006-01-01

    Magnetic concrete was prepared by adding SrFe12O9 magnetic functional elementary material into concrete, and its magnetism was charged by magnetizing machine. The effect of SrFe12O9 content on magnetic field intensity and the attenuation of magnetic field intensity were investigated in different medium. The blood viscosity of rats kept in magnetic concrete was carried out. The results show that magnetic concrete can be prepared by adding SrFe12O9, and magnetic fields intensity increases with the augment of ferrite content. The attenuation of magnetic fields is mainly related with the density of medium, but it is secondary to the properties of medium. The blood viscosity of rats decreases under magnetic condition, but the blood cells remain the same as before. Experimental results support that magnetic concrete has great healthcare function.

  8. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  9. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  10. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  11. Physics of magnetic nanostructures

    CERN Document Server

    Owens, Frank J

    2015-01-01

    This book discusses how the important properties of materials such as the cohesive energy, and the electronic and vibrational structures are affected when materials have at least one length in the nanometer range. The author uses relatively simple models of the solid state to explain why these changes in the size and dimension in the nanometer regime occur. The text also reviews the physics of magnetism and experimental methods of measuring magnetic properties necessary to understanding how nanosizing affects magnetism. Various kinds of magnetic structures are presented by the author in order to explain how nanosizing influences their magnetic properties. The book also presents potential and actual applications of nanomaterials in the fields of medicine and computer data storage.

  12. Electricity and magnetism

    CERN Document Server

    Purcell, Edward M

    2013-01-01

    For 50 years, Edward M. Purcell's classic textbook has introduced students to the wonders of electricity and magnetism. The third edition has been brought up to date and is now in SI units. It features hundreds of new examples, problems and figures and contains discussions of real-life applications. The textbook covers all the standard introductory topics, such as electrostatics, magnetism, circuits, electromagnetic waves and electric and magnetic fields in matter. Taking a non-traditional approach, magnetism is derived as a relativistic effect. Mathematical concepts are introduced in parallel with the physics topics at hand, making the motivations clear. Macroscopic phenomena are derived rigorously from microscopic phenomena. With worked examples, hundreds of illustrations and nearly 600 end-of-chapter problems and exercises, this textbook is ideal for electricity and magnetism courses. Solutions to the exercises are available for instructors at www.cambridge.org/9781107014022.

  13. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  14. GHz nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  15. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  16. Quasi-continuous magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sims, J.R. [Los Alamos National Lab., NM (United States); Naumovich, G.J.; Hoang, T.A.; Dent, P.C. [Everson Electric Co., Bethlehem, PA (United States)

    1996-05-01

    The National High Magnetic Field Laboratory is completing a quasi-continuous magnet which will sustain a constant field of 60 T for 100 ms in a 32-mm 77 K bore. This magnet consists of 9 mechanically independent, nested, liquid nitrogen-cooled coils which are individually reinforced by high-strength stainless steel outer shells. The coils were wound from rectangular large cross-section, high-strength, high-conductivity copper conductor insulated wtih polyimide and fiberglass tapes. After winding, the coils were inserted into closely fitted, stainless steel reinforcing shells and impregnated with epoxy resin. Design, analysis, material, fabrication and operational issues for this class of magnets are reviewed. Fabrication and quality assurance testing of the 60 T coil set are covered in detail. Future growth of and possible links from this technology to other magnet systems are discussed. Needed improvements in design, analysis, materials, and fabrication are outlined.

  17. Magnetically responsive dry fluids

    Science.gov (United States)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  18. Rare Earths and Magnetic Refrigeration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.

  19. Studies of AN Extractor Geometry Magnetically Insulated Ion Diode with AN Exploding Metal Film Anode Plasma Source.

    Science.gov (United States)

    Rondeau, Gary D.

    Magnetically insulated diodes (MIDs) are of interest as ion sources for inertial confinement fusion. We examine several issues that are of concern with MIDs, including ion turn-on delay and anode plasma production, and diode impedance history and particle current scaling with the applied magnetic field and gap spacing. The LION pulsed power generator (1.5 MV, 4 Omega, 40 ns pulse length) was used to power an extractor geometry magnetically insulated (radial magnetic field) ion beam diode. The diode was studied with three anode configurations. In the first, with epoxy-filled-groove (epoxy) anodes, scaling of the ion and electron currents with the gap and the magnetic field was examined. We found that the observed ion current is consistent with a diode model that has been successful with barrel geometry MIDs. The electron leakage current scaled proportionally to 1/Bd^2, where d is the anode-cathode gap spacing and B is the magnetic field strength. Studies of ion beam propagation in vacuum showed that space charge non -neutrality near the magnetic field coils caused the beam to expand initially. Later in the ion pulse (20 to 30 ns), the beam expansion became much less severe. The second anode configuration utilized an "electron collector" protruding above an epoxy anode surface. With the collector, we observed less bremsstrahlung across the active anode region. From the damage to thin wires inserted into the anode and from the level of the ion current, we inferred that the electron layer was 1-2 mm further from the anode on collector shots. The last anode configuration studied was the exploding metal film active anode plasma source (EMFAAPS). Current from the accelerator was directed by an electron collector or a plasma opening switch through a thin aluminum film, which exploded to form the anode plasma. The primary ion species from EMFAAPS were protons, Al^{3+ } and Al^{2+}, although oxygen discharge cleaning reduced the proton fraction in favor of O^{3+}, O ^{2+}, C

  20. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  1. Magnetic measurements inside the Omicron magnet.

    CERN Multimedia

    1977-01-01

    The multipurpose detection system (Omicron) built at the SC in the late seventies in the Proton Hall made use of the large aperture magnet (on loan from Rutherford Lab, 85 cm gap height, 1 m width, 1.8 m length, 1 Tesla peak field). See CERN Courier 17 (1977) p. 61.

  2. Review and comparison of magnet designs for magnetic refrigeration

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving the magnet design. A detailed analysis of the efficiency of different published permanent magnet designs used in magnetic refrigeration applications is presented in this paper. Each design is analyzed based on the generated magnetic flux density, the volume of the region where this flux is generated and the amount of magnet material used. This is done by characterizing each design by a figure of merit magnet design efficiency parameter, $\\Lambda_\\mathrm{cool}$. The designs are then compared and the best design found. Finally recommendations for designing the ideal magnet design are presented based on the analysis of the reviewed designs.

  3. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  4. Model of THz Magnetization Dynamics

    Science.gov (United States)

    Bocklage, Lars

    2016-01-01

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997

  5. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  6. Active Magnetic Regenerative Liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, John A. [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Oseen-Send, Kathryn [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ferguson, Luke [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Pouresfandiary, Jamshid [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Cousins, Anand [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ralph, Heather [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Hampto, Tom [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States)

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  7. MAGNETIC CIRCUIT EQUIVALENT OF THE SYNCHRONOUS MOTOR WITH INCORPORATED MAGNETS

    Directory of Open Access Journals (Sweden)

    Fyong Le Ngo

    2015-01-01

    Full Text Available Magnetic circuitry computation is one of the central stages of designing a synchronous motor with incorporated magnets, which can be performed by means of a simplified method of the magnetic-circuits equivalent modeling. The article studies the magnetic circuit of the motor with the rotor-incorporated magnets, which includes four sectors: constant magnets with the field pole extension made of magnetically soft steel, magniflux dispersion sections containing air barriers and steel bridges; the air gap; the stator grooves, cogs and the frame yoke. The authors introduce an equivalent model of the magnetic circuit. High-energy magnets with a linear demagnetization curve are employed in the capacity of constant magnets. Two magnets create the magnetic flux for one pole. The decline of magnetic potential in the steel of the pole is negligible consequent on the admission that the poles magnetic inductivity µ = ∞. The rotor design provides for the air barriers and the steel bridges that close leakage flux. The induction-permeability curve linearization serves for the bridges magnetic saturation accountability and presents a polygonal line consisting of two linear sections. The estimation of the magnet circuit section including the cogs and the frame yoke is executed with account of the steel saturation, their magnetic conductivities thereat being dependent on the saturation rate. Relying on the equivalent model of the magnetic circuit, the authors deduce a system of two equations written from the first and the second Kirchhoff laws of the magnetic circuits. These equations allow solving two problems: specifying dimensions of the magnets by the preset value of the magnetic flow in the clearance and determining the clearance magnetic flow at the preset motor rotor-and-stator design.

  8. TPC magnet cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  9. Magnetically mediated thermoacoustic imaging

    Science.gov (United States)

    Feng, Xiaohua; Gao, Fei; Zheng, Yuanjin

    2014-03-01

    In this paper, alternating magnetic field is explored for inducing thermoacoustic effect on dielectric objects. Termed as magnetically mediated thermo-acoustic (MMTA) effect that provides a contrast in conductivity, this approach employs magnetic resonance for delivering energy to a desired location by applying a large transient current at radio frequency below 50MHz to a compact magnetically resonant coil. The alternating magnetic field induces large electric field inside conductive objects, which then undergoes joule heating and emanates acoustic signal thermo-elastically. The magnetic mediation approach with low radio frequency can potentially provide deeper penetration than microwave radiation due to the non-magnetic nature of human body and therefore extend thermoacoustic imaging to deep laid organs. Both incoherent time domain method that applies a pulsed radio frequency current and coherent frequency domain approach that employs a linear chirp signal to modulate the envelop of the current are discussed. Owing to the coherent processing nature, the latter approach is capable of achieving much better signal to noise ratio and therefore potential for portable imaging system. Phantom experiments are carried out to demonstrate the signal generation together with some preliminary imaging results. Ex-vivo tissue studies are also investigated.

  10. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

    Science.gov (United States)

    Gardner, Jason S.

    2011-04-01

    Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

  11. Magnetic refrigeration materials

    Institute of Scientific and Technical Information of China (English)

    戴闻; 沈保根; 高政祥

    2001-01-01

    Magnetic refrigeration has drawn much attention because of its greater efficiency and higher reliability than the traditional gas-cycle refrigeration technology. Recently, a kind of new materials with a giant magnetocaloric effect in the subroom temperature range, Gd5 (Six Ge1- x)4, was discovered, which boosts the search for high-performance magnetic refrigerants. However, the intermetallic compounds Gd5 (SixGe1 - x )4 belong to the first order transition materials; their performance in practical magnetic refrigeration cycles remains controversial. In this paper the developing tendency of the refrigerants are discussed on the basis of our work.

  12. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Depaoli, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  13. Magnetic Actuators and Sensors

    Science.gov (United States)

    Brauer, John R.

    2005-12-01

    Magnetic actuators and sensors are needed to enable computer and manual control of motion. Magnetic actuators allow a small electrical signal to move small or large objects. To sense the amount of motion, magnetic sensors are frequently used. This book provides the most up-to-date coverage of topics important to modern engineers, both electrical and mechanical. The author includes the latest findings and design techniques from computer models. The latest software tools are used.

  14. Frontiers in Magnetic Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Magnetic Materials focuses on the current achievements and state-of-the-art advancements in magnetic materials. Several lines of development- High-Tc Superconductivity, Nanotechnology and refined experimental techniques among them – raised knowledge and interest in magnetic materials remarkably. The book comprises 24 chapters on the most relevant topics written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students.

  15. Magnetic Exitations in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Rainford, B. D.; Jensen, J.;

    1979-01-01

    The magnetic excitations in a single crystal of dhcp Pr have been studied by inelastic neutron scattering. The excitations on the hexagonal sites, and their dependence on magnetic fields up to 43 kOe applied in the basal plane, have been analyzed in terms of a Hamiltonian in which exchange, crystal......-field, and magnetoelastic interactions are included. The exchange is found to be strongly anisotropic, and this anisotropy is manifested directly in a splitting of most branches of the dispersion relations. By considering a variety of magnetic properties, we have been able to determine the crystal-field level scheme...

  16. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  17. Advanced Magnetic Metrology Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The extraordinary progress in magnetic peripheral storage systems has been fueled by the ad vancements in heads (MR, GMR, spin valves) and in very high coercivity, Iow remanence thickness product (Mrt) media. These advancements are imposing new performance require ments on the magnetometers (VSMs) used to characterize these materials. At the same time, they have introduced a new paradigm for in-process (nondestructive, robotic) magnetic metrol ogy tools to assure the stringent product uniformity requirements. In this paper, we discuss the recent advancements in magnetometry for characterizing state-of-the-art media and heads, as well as other magnetic materials.

  18. Biomimetic magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael T. Klem

    2005-09-01

    Full Text Available Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches to materials chemistry have provided a new avenue for the synthesis and assembly of magnetic nanomaterials that has great potential for overcoming these obstacles.

  19. Numerical analysis of thermally actuated magnets for magnetization of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li Quan; Yan Yu; Rawlings, Colin; Coombs, Tim, E-mail: ql229@cam.ac.u [EPEC Superconductivity Group, Engineering Department, University of Cambridge, Trumpington Street. Cambridge, CB2 1PZ (United Kingdom)

    2010-06-01

    Superconductors, such as YBCO bulks, have extremely high potential magnetic flux densities, comparing to rare earth magnets. Therefore, the magnetization of superconductors has attracted broad attention and contribution from both academic research and industry. In this paper, a novel technique is proposed to magnetize superconductors. Unusually, instead of using high magnetic fields and pulses, repeatedly magnetic waves with strength of as low as rare earth magnets are applied. These magnetic waves, generated by thermally controlling a Gadolinium (Gd) bulk with a rare earth magnet underneath, travel over the flat surface of a YBCO bulk and get trapped little by little. Thus, a very small magnetic field can be used to build up a very large magnetic field. In this paper, the modelling results of thermally actuated magnetic waves are presented showing how to transfer sequentially applied thermal pulses into magnetic waves. The experiment results of the magnetization of YBCO bulk are also presented to demonstrate how superconductors are progressively magnetized by small magnetic field

  20. Review and comparison of magnet designs for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving the m...... of the reviewed designs....