WorldWideScience

Sample records for breeder reactor fuel

  1. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  2. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    Fast breeder reactors (FBRs) are destined to play a crucial role inthe Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of ...

  3. Interim Report on Fluid-Fuel Thermal Breeder Reactors

    Energy Technology Data Exchange (ETDEWEB)

    MacPherson, H. G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alexander, L. G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, W. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chapman, R. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kinyon, B. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1960-03-15

    The merits of aqueous-homogeneous {AHBR), graphite-moderated molten salt (MSBR) , and graphite-moderated liquid-bismuth (LBBR) breeder reactors operated at nearly comparable fuel-cycle costs (~1.5 mills/kwhr) were evaluated. The net electrical plant capability was assumed to be 1000 MwE, and the fuel and fertile streams were processed continuously on-site. The specific powers based on fuel were 1.2, 1.2, and 0.5 MwE/kg respectively, and 5.9, 3.7, and 5.3 MwE/tonne based on thorium. Net breeding ratios were 1.10, 1.07, and 1.07, giving doubling times of 5-1/2, 11, and 25 full power years . The fuel-cycle costs at the design points selected were 1.4, 1.3, and 1.6 mills/kwhr . The AHBR has an advantage in breeding ratio and doubling time because D2O is superior to graphite as a moderator in breeder reactors. MSBR has an advantage in fuel-cycle costs and in inventory of uranium in the fertile stream as a result of using a solution blanket.

  4. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  5. Multiple recycling of fuel in prototype fast breeder reactor in a closed ...

    Indian Academy of Sciences (India)

    Abstract. A fast breeder reactor (FBR) closed fuel cycle involves recycling of the discharged fuel, after reprocessing and refabrication, in order to utilize the unburnt fuel and the bred fissile material. Our previous study in this regard for the prototype fast breeder reactor (PFBR) indicated the possibility of multiple recycling with ...

  6. Multiple recycling of fuel in prototype fast breeder reactor in a closed ...

    Indian Academy of Sciences (India)

    A fast breeder reactor (FBR) closed fuel cycle involves recycling of the discharged fuel, after reprocessing and refabrication, in order to utilize the unburnt fuel and the bred fissile material. Our previous study in this regard for the prototype fast breeder reactor (PFBR) indicated the possibility of multiple recycling with ...

  7. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  8. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder ...

  9. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  10. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    Abstract. In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving ...

  11. The manufacture of enriched uranium fuel slugs for the Experimental Breeder Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Shuck, Author B.

    1953-04-20

    This report describes the specifications, materials and the sequence of operations used to found and fabricate 4 the first charge of enriched uranium fuel in the Experimental Breeder Reactor. The work was governed by the following principles: a. That the fuel be of correct composition, dimension and metallurgical condition for use in the reactor. b. That a maximum yield of finished fuel slugs from the quantity of uranium available for the program be achieved. c. That the residues be in a form which can be recovered by chemical or other means. d. That a detailed record be kept in such form that a complete history of each fuel slug be available.

  12. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    Science.gov (United States)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  13. A FAST BREEDER REACTOR SPENT FUEL MEASUREMENTS PROGRAM FOR BN-350 REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    P. STAPLES; J. HALBIG; ET AL

    1999-04-01

    A project to verify the fissile content of fast breeder reactor spent nuclear fuel is underway in the Republic of Kasakhstan. There are a variety of assembly types with different irradiation histories and profiles in the reactor that require a variety of measurement and analysis procedures. These procedures will be discussed and compared as will the general process that has been designed to resolve any potential measurement discrepancies. The underwater counter is part of a system that is designed to assist the International Atomic Energy Agency (IAEA) in maintaining continuity of knowledge from the time of measurement until the measured item is placed in a welded container with a unique identification. In addition to satisfying IAEA requirements for the spent nuclear fuel, this measurement program is able to satisfy some of the measurement requirements for the Kasakhstan Atomic Energy Agency concerning the repackaging of the spent nuclear fuel into a standard canister. The project is currently operational in a mode requiring the IAEA's continuous presence.

  14. Thermal breeder fuel enrichment zoning

    Science.gov (United States)

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  15. Assessment of gel-sphere-pac fuel for fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lackey, W J; Selle, J E [comps.

    1978-10-01

    An assessment of the state of the art for the gel-sphere-pac process was undertaken to provide a sound basis for further development of the technology. Information is provided on sol preparation, sphere forming, drying, sintering, characterization, loading, fuel rod inspection, and irradiation performance. In addition, discussions are included on: evaluation of the potential for scale-up to production capacities, potential problems associated with remote operation, and future work required to further develop the technology. Three techniques are available for microsphere production: (1) internal gelation, (2) external gelation, and (3) gelation by water extraction. Each has its own advantages and disadvantages; for example, internal gelation appears better suited to the preparation of large spheres than the other processes. Numerous advantages and disadvantages are discussed in detail. Scale-up or remote operation of these techniques appears achievable, although some would require less development than others. Techniques have been developed for drying and sintering spheres. Extensive technology has been developed for sphere characterization, handling, and the loading and inspection of fuel pins. Data available to date indicates that sphere-pac oxide fuel will perform similarly to pellet oxide fuels under fast breeder reactor operating conditions. Gel-sphere-pac technology also appears attractive for carbide fuels.

  16. Investigation of molten salt fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Enuma, Yasuhiro; Tanaka, Yoshihiko; Konomura, Mamoru; Ichimiya, Masakazu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-06-01

    Phase I of Feasibility Studies on Commercialized Fast Reactor System is being performed for two years from Japanese Fiscal Year 1999. In this report, results of the study on fluid fuel reactors (especially a molten salt fast breeder reactor concept) are described from the viewpoint of technical and economical concerns of the plant system design. In JFY1999, we have started to investigate the fluid fuel reactors as alternative concepts of sodium cooled FBR systems with MOX fuel, and selected the unique concept of a molten chloride fast breeder reactor, whose U-Pu fuel cycle can be related to both light water reactors and fast breeder reactors on the basis of present technical data and design experiences. We selected a preliminary composition of molten fuel and conceptual plant design through evaluation of technical and economical issues essential for the molten salt reactors and then compared them with reference design concepts of sodium cooled FBR systems under limited information on the molten chloride fast breeder reactors. The following results were obtained. (1) The molten chloride fast breeder reactors have inherent safety features in the core and plant performances, ad the fluid fuel is quite promising for cost reduction of the fuel fabrication and reprocessing. (2) On the other hand, the inventory of the molten chloride fuel becomes high and thermal conductivity of the coolant is inferior compared to those of sodium cooled FBR systems, then, the size of main components such as IHX's becomes larger and the amount of construction materials is seems to be increased. (3) Furthermore economical vessel and piping materials which contact with the molten chloride salts are required to be developed. From the results, it is concluded that further steps to investigate the molten chloride fast breeder reactor concepts are too early to be conducted. (author)

  17. Summary of estimated doses and risks resulting from routine radionuclide releases from fast breeder reactor fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.W.; Meyer, H.R.

    1985-01-01

    A project is underway at Oak Ridge National Laboratory to assess the human health and environment effects associated with operation of Liquid Metal Fast Breeder Reactor fuel cycle. In this first phase of the work, emphasis was focused on routine radionuclide releases from reactor and reprocessing facilities. For this study, sites for fifty 1-GW(e) capacity reactors and three reprocessing plants were selected to develop scenarios representative of US power requirements. For both the reactor and reprocessing facility siting schemes selected, relatively small impacts were calculated for locality-specific populations residing within 100 km. Also, the results of these analyses are being used in the identification of research priorities. 13 refs., 2 figs., 3 tabs.

  18. Analysis of UF6 breeder reactor power plants

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  19. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  20. Computerized operating procedures for shearing and dissolution of segments from LWBR (Light Water Breeder Reactor) fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Osudar, J.; Deeken, P.G.; Graczyk, D.G.; Fagan, J.E.; Martino, F.J.; Parks, J.E.; Levitz, N.M.; Kessie, R.W.; Leddin, J.M.

    1987-05-01

    This report presents two detailed computerized operating procedures developed to assist and control the shearing and dissolution of irradiated fuel rods. The procedures were employed in the destructive analysis of end-of-life fuel rods from the Light Water Breeder Reactor (LWBR) that was designed by the Westinghouse Electric Corporation Bettis Atomic Power Laboratory. Seventeen entire fuel rods from the end-of-life core of the LWBR were sheared into 169 precisely characterized segments, and more than 150 of these segments were dissolved during execution of the LWBR Proof-of-Breeding (LWBR-POB) Analytical Support Project at Argonne National Laboratory. The procedures illustrate our approaches to process monitoring, data reduction, and quality assurance during the LWBR-POB work.

  1. The passive nondestructive assay of the plutonium content of spent-fuel assemblies from the BN-350 fast-breeder reactor in the city of Aqtau, Kazakhstan

    CERN Document Server

    Lestone, J P; Rennie, J A; Sprinkle, J K; Staples, P; Grimm, K N; Hill, R N; Cherradi, I; Islam, N; Koulikov, J; Starovich, Z

    2002-01-01

    The International Atomic Energy Agency is presently interested in developing equipment and techniques to measure the plutonium content of breeder reactor spent-fuel assemblies located in storage ponds before they are relocated to more secure facilities. We present the first quantitative nondestructive assay of the plutonium content of fast-breeder reactor spent-fuel assemblies while still underwater in their facility storage pond. We have calibrated and installed an underwater neutron coincidence counter (Spent Fuel Coincidence Counter (SFCC)) in the BN-350 reactor spent-fuel pond in Aqtau, Kazakhstan. A procedure has been developed to convert singles and doubles (coincidence) neutron rates observed by the SFCC into the total plutonium content of a given BN-350 spent-fuel assembly. The plutonium content has been successfully determined for spent-fuel assemblies with a contact radiation level as high as approx 10 sup 5 Rads/h. Using limited facility information and multiple measurements along the length of spe...

  2. ORNL breeder reactor safety quarterly technical progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M H; Wantland, J L

    1981-01-01

    Six tasks are reported upon: THORS (Thermal-Hydraulic Out-of-Reactor Safety) program, environmental assessment of alternate FBR fuels, model evaluation of breeder reactor radioactivity releases, nuclear safety information center activities, breeder reactor reliability data analysis center activities, and central data base for breeder reactor safety codes. (DLC)

  3. Core loading pattern optimization of thorium fueled heavy water breeder reactor using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Soewono, C. N.; Takaki, N. [Dept. of Applied Science Engineering, Faculty Tokai Univ., Kanagawa-ken, Hiratsuka-shi Kitakaname 4-1-1 (Japan)

    2012-07-01

    In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)

  4. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ciucci, J.A. Jr.

    1983-12-01

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  5. Fission-suppressed hybrid reactor: the fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  6. Water cooled breeder program summary report (LWBR (Light Water Breeder Reactor) development program)

    Energy Technology Data Exchange (ETDEWEB)

    1987-10-01

    The purpose of the Department of Energy Water Cooled Breeder Program was to demonstrate pratical breeding in a uranium-233/thorium fueled core while producing electrical energy in a commercial water reactor generating station. A demonstration Light Water Breeder Reactor (LWBR) was successfully operated for more than 29,000 effective full power hours in the Shippingport Atomic Power Station. The reactor operated with an availability factor of 76% and had a gross electrical output of 2,128,943,470 kilowatt hours. Following operation, the expended core was examined and no evidence of any fuel element defects was found. Nondestructive assay of 524 fuel rods determined that 1.39 percent more fissile fuel was present at the end of core life than at the beginning, proving that breeding had occurred. This demonstrates the existence of a vast source of electrical energy using plentiful domestic thorium potentially capable of supplying the entire national need for many centuries. To build on the successful design and operation of the Shippingport Breeder Core and to provide the technology to implement this concept, several reactor designs of large breeders and prebreeders were developed for commercial-sized plants of 900--1000 Mw(e) net. This report summarizes the Water Cooled Breeder Program from its inception in 1965 to its completion in 1987. Four hundred thirty-six technical reports are referenced which document the work conducted as part of this program. This work demonstrated that the Light Water Breeder Reactor is a viable alternative as a PWR replacement in the next generation of nuclear reactors. This transition would only require a minimum of change in design and fabrication of the reactor and operation of the plant.

  7. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling.

  8. AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V; Vitos, L

    2012-04-23

    Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.

  9. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  10. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-28

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium, and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.

  11. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  12. Towards an intrinsically safe and economic thorium breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jagannathan, V. [Light Water Reactor Physics Section, Reactor Physics Design Division, Bhabha Atomic Research Centre, 5th Floor, Central Complex, Mumbai 400085 (India)]. E-mail: vjagan@magnum.barc.ernet.in; Pal, Usha [Light Water Reactor Physics Section, Reactor Physics Design Division, Bhabha Atomic Research Centre, 5th Floor, Central Complex, Mumbai 400085 (India)

    2006-10-15

    Thorium does not have intrinsic fissile content unlike uranium. {sup 232}Th has nearly three times thermal absorption cross section compared to {sup 238}U and hence requires much larger externally fed fissile content compared to uranium based fuel. These factors give a permanent economic competitive edge to uranium. Thus thorium is not inducted in any significant measure in present day power reactors, despite the fact that thorium is three times more abundant in the earth's crust than uranium. Uranium reserves vary from country to country and there is also difficulty in having equitable distribution of uranium. Thus when {sup 235}U would get exhausted, perhaps much sooner in countries having limited uranium reserve, there will be a need to switch over from the today's open fuel cycle programme based on {sup 235}U feed to closed fuel cycle based on Pu feed. At that stage thorium and (depleted) uranium would become equal candidates to form the fertile base. All economic considerations would have to be readdressed. The size and growth of the nuclear power programme based on closed fuel cycle would be dependent on maximizing the fissile conversion rate in those reactors. In this paper we reemphasize the principles and the details of the thermal reactor concept 'A Thorium Breeder Reactor' (ATBR), in which the use of PuO{sub 2} seeded thoria fuel is found to give excellent core characteristics like two years cycle length with nearly zero control maneuvers, fairly high seed output to input ratio and intrinsically safe reactivity coefficients [Jagannathan V, Ganesan S, Karthikeyan R. Sensitivity studies for a thorium breeder reactor design with the nuclear data libraries of WIMS library update project. In: Proceedings of the international conference on emerging nuclear energy systems ICENES-2000, September 25-28, 2000, Petten, The Netherlands].

  13. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of fuel and claddings during accident are still below limitations which are in secure condition.

  14. A contribution to the analysis of the thermal behaviour of Fast Breeder fuel rods with UO{sub 2}-PuO{sub 2} fuel; Contribucion al analisis del comportamiento termico de las barras combustibles de UO{sub 2}-PuO{sub 2} de los reactores rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.; Elbel, H.

    1977-07-01

    The fuel of Fast Breeder Reactors which consists of Uranium and Plutonium dioxide is mainly characterized by the amount and distribution of void volume and Plutonium and the amount of oxygen. Irradiation experiments carried out with this fuel have shown that initial structure of the fuel pellet is subjected to large changes during operation. These are consequences of the radial and axial temperature gradients within the fuel rods. (Author) 54 refs.

  15. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    2015-08-28

    Aug 28, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Conceptual design of Indian molten salt breeder ... India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian molten salt breeder reactor (IMSBR). Presently, various design options and ...

  16. Immediate relation of ING to fast breeder reactor programs

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1969-07-01

    The future large-scale use of nuclear energy is linked in the United States and other major countries to their fast breeder reactor development. Very serious basic problems have been discovered within the last two years, limiting the life in the high fast neutron flux at appropriate temperatures of materials, in particular of metals suitable for fuel cladding in sodium coolant. There is therefore a most urgent need for materials testing facilities under controlled conditions of temperature and neutron flux at sufficiently high ratings to match or surpass those required in commercially competitive fast breeder reactors. None of the test facilities yet planned for 1976 or sooner in the western world appears to match these conditions. The problem is mainly the difficulty of providing the high neutron flux effectively continuously. The spallation reaction in heavy elements was chosen as the basis of ING - the intense neutron generator, because it is the only known reaction that promises a fast neutron source density that is higher than can be controlled from the fission process. It is suggested that several countries will wish to consider urgently whether they should also explore the spallation reaction for the purpose of a fast neutron irradiation test facility. In view of the discontinuance of the ING project in Canada a favourable opportunity will exist over the next few months 10 obtain from Canada by direct personal contact details of the significant study that has been carried on for ING over the last five years. In the event that satisfactory materials are established within the lifetime of the spallation facilities they may continue to be used for the production of selected isotopes more profitably produced in high neutron fluxes. The facilities may be also used for the desirable preirradiation of thorium reactor fuel. The other research purposes planned for ING could also be served. (author)

  17. Exploding the myths about the fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  18. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  19. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  20. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  1. Decision analysis of the Liquid Metal Fast Breeder Reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Seim, E.H.

    1983-01-01

    The decision-analysis methodology is employed to develop a model to examine the Liquid Metal Fast Breeder Reactor Program to provide guidance for US decision makers. Information relative to the nuclear fuel cycle, the decision analysis technique, and the supporting economic theory is provided for background purposes. The model consists of four courses of action, three decision times, and five critical factors with either two or three paths leading to 198 possible end results. The courses of action cover a range of the possible programs to develop a commercial LMFBR including scale-up, program timing, and plant schedules. Data developed from a number of recent studies along with probability assignments from three sources are run through the model and indicate that course of action one (Compressed Full Program) produces the greatest net benefits discounted to a present value at a real rate of 5%. An analysis is included to consider the foregone costs of coal usage for electrical generation when LMFBR capacity could be available. Ranking of the courses of action does not change compared to the analysis without foregone costs. The foregone costs are approximately five times greater than the LMFBR benefits alone. Recommendations for specific actions by decision makers conclude the study.

  2. Training experience at Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report.

  3. Gas core reactors for actinide transmutation and breeder applications. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Clement, J.D.; Rust, J.H.

    1978-04-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  4. Three core concepts for producing uranium-233 in commercial pressurized light water reactors for possible use in water-cooled breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Conley, G.H.; Cowell, G.K.; Detrick, C.A.; Kusenko, J.; Johnson, E.G.; Dunyak, J.; Flanery, B.K.; Shinko, M.S.; Giffen, R.H.; Rampolla, D.S.

    1979-12-01

    Selected prebreeder core concepts are described which could be backfit into a reference light water reactor similar to current commercial reactors, and produce uranium-233 for use in water-cooled breeder reactors. The prebreeder concepts were selected on the basis of minimizing fuel system development and reactor changes required to permit a backfit. The fuel assemblies for the prebreeder core concepts discussed would occupy the same space envelope as those in the reference core but contain a 19 by 19 array of fuel rods instead of the reference 17 by 17 array. An instrument well and 28 guide tubes for control rods have been allocated to each prebreeder fuel assembly in a pattern similar to that for the reference fuel assemblies. Backfit of these prebreeder concepts into the reference reactor would require changes only to the upper core support structure while providing flexibility for alternatives in the type of fuel used.

  5. Preliminary design of a Binary Breeder Reactor; Diseno preliminar de un reactor esferico de quema/cria

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, E. Y.; Francois, J. L.; Lopez S, R. C., E-mail: eliasgarcerv@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    A binary breeder reactor (BBR) is a reactor that by means of the transmutation and fission process can operates through the depleted uranium burning with a small quantity of fissile material. The advantages of a BBR with relation to other nuclear reactor types are numerous, taking into account their capacity to operate for a long time without requiring fuel reload or re-arrangement. In this work four different simulations are shown carried out with the MCNPX code with libraries Jeff-3.1 to 1200 K. The objective of this study is to compare two different models of BBR: a spherical reactor and a cylindrical one, using two fuel cycles for each one of them (U-Pu and Th-U) and different reflectors for the two different geometries. For all the models a super-criticality state was obtained at least 10.9 years without carrying out some fuel re-arrangement or reload. The plutonium-239 production was achieved in the models where natural uranium was used in the breeding area, while the production of uranium-233 was observed in the cases where thorium was used in the fertile area. Finally, a behavior of stationary wave reactor was observed inside the models of spherical reactor when contemplating the power uniform increment in the breeding area, while inside the cylindrical models was observed the behavior of a traveling wave reactor when registering the displacement of the burnt wave along the cylindrical model. (Author)

  6. Designing a SCADA system simulator for fast breeder reactor

    Science.gov (United States)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  7. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Science.gov (United States)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  8. An Evaluation of liquid metal leak detection methods for the Clinch River Breeder Reactor Plant

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.J.; Doctor, S.R.

    1977-12-01

    This report documents an independent review and evaluation of sodium leak detection methods described in the Clinch River Breeder Reactor Preliminary Safety Analysis Report. Only information in publicly available documents was used in making the assessments.

  9. Power generation costs for alternate reactor fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U/sub 3/O/sub 8/ price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions.

  10. JACKETED REACTOR FUEL ELEMENT

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  11. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  12. Investigation of zero-release cycle using fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The task force was organized for the main purpose of offering quantitative basic data to the study group on nuclear fuel cycle in February, 1997. The effect of so-called frontier technologies such as the isotope separation by laser method, the FP annihilation with electron beam accelerators and so on in the FBR cycle based on MOX fuel and PUREX reprocessing method was expected. It is aimed at to recycle the total amount of minor actinides. The object of recycling is the nuclides which contribute largely to toxicity, namely 11 elements, 12 nuclides. The preconditions and the target to be attained of the investigation are explained. As the results of investigation, the amount of reloading MA and FP into a reactor, squeezing the recycling scenario, the effect of reducing toxicity and the subject of the countermeasures to the nuclides with long half-life which cannot be reloaded are reported. As the technical evaluation required for realizing the concept, the concept of the core which excludes recriticality, the advance of reprocessing technology, isotope separation, the fabrication into the optimal form for recycling and so on are discussed. The economical efficiency of the recycling based on MOX and PUREX and the proposal of the development scenario are described. (K.I.)

  13. Pebble Bed Reactor: core physics and fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Worley, B.A.

    1979-10-01

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes.

  14. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  15. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  16. Status of EC solid breeder blanket designs and R and D for demo fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Dalle Donne, M. [Kernforschungszentrum Karlsruhe GmbH (Germany); Anzidei, L. [ENEA, Frascati (Italy). Centro Ricerche Energia; Kwast, H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Moons, F. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1994-12-31

    Within the European Community Fusion Technology Program two solid breeder blankets for a DEMO reactor are being developed. The two blankets have various features in common: helium as coolant and as tritium purge gas, the martensitic steel MANET as structural material and beryllium as neutron multiplier. The configurations of the two blankets are however different: in the B.I.T. (Breeder Inside Tube) concept the breeder materials are LiAlO{sub 2} or Li{sub 2}ZrO{sub 3} in the form of annular pellets contained in tubes surrounded by beryllium blocks, the coolant helium being outside the tubes, whereas in the B.O.T. (Breeder out of Tube) the breeder and multiplier material are Li{sub 4}SiO{sub 4} and beryllium pebbles forming a mixed bed placed outside the tubes containing the coolant helium. The main critical issues for both blankets are the behavior of the breeder ceramics and of beryllium under irradiation and the tritium control. Other issues are the low temperature irradiation induced embrittlement of MANET, the mechanical effects caused by major plasma disruptions, and safety and reliability. The R and D work concentrate on these issues. The development of martensitic steels including MANET is part of a separate program. Breeder ceramics and beryllium irradiations have been so far performed for conditions which do not cover the peak values injected in the DEMO blankets. Further irradiations in thermal reactors and in fast reactors, especially for beryllium, are required. An effective tritium control requires the development of permeation barriers and/or of methods of oxidation of the tritium in the main helium cooling systems. First promising results have been obtained also in field of mechanical effects from plasma disruptions and safety and reliability, however further work is required in the reliability field and to validate the codes for the calculations of the plasma disruption effects. (authors). 8 figs., 2 tabs., 53 refs.

  17. Atoms in Appalachia. Historical report on the Clinch River Breeder Reactor site

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, D

    1982-01-01

    The background information concerning the acquisition of the land for siting the Clinch River Breeder Reactor is presented. Historical information is also presented concerning the land acquisition for the Oak Ridge facilities known as the Manhattan Project during World War II.

  18. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  19. Economic Assessment of Russian Nuclear Strategies on the Basis of Fast Breeder Reactors

    Directory of Open Access Journals (Sweden)

    O. V. Marchenko

    2013-01-01

    Full Text Available The paper assesses the economic risk caused by the delay in commissioning innovative nuclear power plants with fast breeder reactors in Russia. The risk is quantitatively measured by the excessive costs for energy development and the possibility of implementing the considered variants that differ in power consumption, technical and economic indices of the reactors, and constraints on CO2 emissions. The probability distribution functions of economic losses for different strategies of nuclear energy development are constructed.

  20. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  1. Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R. (comps.)

    1979-12-01

    The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O/sub 2/ fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required.

  2. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    Science.gov (United States)

    Dautray, Robert

    2011-06-01

    The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation

  3. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  4. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  5. Cellular convection in vertical annuli of fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hemanath, M.G. [Fast Reactor Technology Group, Indira Gandhi Center for Atomic Research, Kalpakkam (India)], E-mail: hemanath@igcar.gov.in; Meikandamurthy, C.; Ramakrishnan, V.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Center for Atomic Research, Kalpakkam (India)

    2007-08-15

    In the pool type fast reactors the roof structure is penetrated by a number of pumps and heat exchangers that are cylindrical in shape. Sandwiched between the free surface of sodium and the roof structure, is stagnant argon gas, which can flow in the annular space between the components and roof structure, as a thermosyphon. These thermosyphons not only transport heat from sodium to roof structure, but also result in cellular convection in vertical annuli resulting in circumferential temperature asymmetry of the penetrating components. There is need to know the temperature asymmetry as it can cause tilting of the components. Experiments were carried out in an annulus model to predict the circumferential temperature difference with and without sodium in the test vessel. Three-dimensional analysis was also carried out using PHOENICS CFD code and compared with the experiment. This paper describes the experimental details, the theoretical analysis and their comparison.

  6. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  7. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues; La production d'electricite d'origine nucleaire en France, dans le futur a long terme: Le cas des surgenerateurs: Les reacteurs nucleaires surgenerateurs: Les parametres physique et physico-chimiques, la thermodynamique associee des materiaux et de l'ingenierie mecanique: Nouveautes et options

    Energy Technology Data Exchange (ETDEWEB)

    Dautray, R. [Academie des sciences, 23, quai de Conti, 75270 Paris cedex 06 (France)

    2011-06-15

    The author gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the fifties. Neutron transport theory, thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, heat exchanges...) have now attained maturity, sufficient to implement sodium cooling circuits. However, the use of metallic sodium still raises certain severe questions in terms of safe handling and security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchangers) are undergoing in-depth research so as to last longer. The fuel cycle, notably the re-fabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the country's interest to pursue these efforts. (author)

  8. FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  9. Calibration of a fuel-to-cladding gap conductance model for fast reactor fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.B.

    1978-05-01

    The report presents refined methods for calculation of fuel temperatures in PuO/sub 2/-UO/sub 2/ fuel in Fast Breeder Reactor (FBR) fuel pins. Of primary concern is the calculation of the temperature changes across the fuel-to-cladding gap of pins with fuel burnups that range from 60 to 10,900 MWd/MTM (0.006 to 1.12 at.%). Described in particular are: (1) a proposed set of heat transfer formulations and corresponding material properties for modeling radial heat transfer through the fuel and cladding; and (2) the calibration of a fuel-to-cladding gap conductance model, as part of a thermal performance computer code (SIEX-M1) which incorporates the proposed heat transfer expressions, using integral thermal performance data from two unique in-reactor experiments. The test data used are from the HEDL P-19 and P-20 experiments which were irradiated in the Experimental Breeder Reactor Number Two (EBR-II), for the Hanford Engineering Development Laboratory (HEDL).

  10. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  11. Large scale breeder reactor plant prototype mechanical pump conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    This final report is a complete conceptual design study of a mechanical pump for a large scale breeder reactor plant. The pumps are located in the cold leg side of the loops. This makes the net positive suction head available - NPSHA - low, and is, in fact, a major influencing factor in the design. Where possible, experience gained from the Clinch River Project and the FFTF is used in this study. Experience gained in the design, manufacturer, and testing of pumps in general and sodium pumps in particular is reflected in this report. The report includes estimated cost and time schedule for design, manufacture, and testing. It also includes a recommendation for development needs.

  12. Steam condenser optimization using Real-parameter Genetic Algorithm for Prototype Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Kumar, L. Satish, E-mail: satish@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Jehadeesan, R., E-mail: jeha@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Rajeswari, S., E-mail: raj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Satya Murty, S.A.V., E-mail: satya@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Balasubramaniyan, V.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

    2011-10-15

    Highlights: > We model design optimization of a vital reactor component using Genetic Algorithm. > Real-parameter Genetic Algorithm is used for steam condenser optimization study. > Comparison analysis done with various Genetic Algorithm related mechanisms. > The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.

  13. Instrumentation and control system for the prototype fast breeder reactor 'MONJU' power station

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Hiroshi (Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)); Mae, Yoshinori; Ishida, Takayuki; Hashiura, Kazuhiko; Kasai, Shozo; Yamamoto, Hajime

    1989-10-01

    The fast breeder reactor 'Monju' power station is constructed as the nuclear power station of next generation in Tsuruga City, Fukui Prefecture. In order to realize high safety and operational reliability as the newest nuclear power station, the measurement and control system of Monju (electric power output 280 MW) has been designed and manufactured by reflecting the experiences of construction and operation of the experimental FBR 'Joyo' and the results of various research and development of sodium instrumentation and others, and by using the latest digital control technology and multiplexing system technology. In this paper, the results of development of the characteristic measurement and control technology as fast breeder reactors and the state of application to the measurement and control system which was designed and manufactured for Monju are described. Central monitoring panel, plant control system, sodium instrumentation, preheating control system and so on are reported. In the case of Monju, the heat capacity and thermal inertia of the primary and secondary cooling systems are large, and the system comprises three loops. (K.I.).

  14. Review of uncertainty estimates associated with models for assessing the impact of breeder reactor radioactivity releases

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.; Little, C.A.

    1982-08-01

    The purpose is to summarize estimates based on currently available data of the uncertainty associated with radiological assessment models. The models being examined herein are those recommended previously for use in breeder reactor assessments. Uncertainty estimates are presented for models of atmospheric and hydrologic transport, terrestrial and aquatic food-chain bioaccumulation, and internal and external dosimetry. Both long-term and short-term release conditions are discussed. The uncertainty estimates presented in this report indicate that, for many sites, generic models and representative parameter values may be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, especially those from breeder reactors located in sites dominated by complex terrain and/or coastal meteorology, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under these circumstances to reduce this uncertainty. However, even using site-specific information, natural variability and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose or concentration in environmental media following shortterm releases.

  15. Optimization of material and production to develop fluoroelastomer inflatable seals for sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India); Raj, Baldev, E-mail: dir@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India)

    2011-03-15

    Research highlights: Production of thin fluoroelastomer profiles by cold feed extrusion and continuous cure involving microwave and hot air heating. Use of peroxide curing in air during production. Use of fluoroelastomers based on advanced polymer architecture (APA) for the production of profiles. Use of the profiles in inflatable seals for critical application of Prototype Fast Breeder Reactor. Tailoring of material formulation by synchronized optimization of material and production technologies to ensure that the produced seal ensures significant gains in terms of performance and safety in reactor under synergistic influences of temperature, radiation, air and sodium aerosol. - Abstract: The feasibility of producing thin-walled fluoroelastomer profiles under continuous, atmospheric-pressure vulcanization conditions in air has been demonstrated by successful manufacture of {approx}2 m diameter test inflatable seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) using a 50/50 blend formulation of Viton GBL-200S/600S based on advanced polymer architecture (APA). A commercial cold feed screw extruder with 90 mm diameter screw was used along with continuous cure by microwave (2.45 GHz) and hot air heating (190 {sup o}C) at a line speed of 1 m/min to produce the seals. The blend formulation promises significant improvement in the performance and safety of the seals. This article depicts the relevant characteristics of the original inflatable seal compound that was used as reference to achieve the objectives through synchronized optimization of material and production technologies. The production trials are outlined and the blend formulation used with minor factory modifications to produce the test seals is reported. Progressive refinements of the original, Viton A-401C based compound to the blend formulation is presented along with an assessment of potential performance gains. Possible uses of the reported formulation and production technique for other large

  16. Fuel handling apparatus for a nuclear reactor

    Science.gov (United States)

    Hawke, Basil C.

    1987-01-01

    Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

  17. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  18. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  19. Compendium of computer codes for the safety analysis of fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available.

  20. Clinch River Breeder Reactor Plant Steam Generator Few Tube Test model post-test examination

    Energy Technology Data Exchange (ETDEWEB)

    Impellezzeri, J.R.; Camaret, T.L.; Friske, W.H.

    1981-03-11

    The Steam Generator Few Tube Test (FTT) was part of an extensive testing program carried out in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. The testing of full-length seven-tube evaporator and three-tube superheater models of the CRBRP design was conducted to provide steady-state thermal/hydraulic performance data to full power per tube and to verify the absence of multi-year endurance problems. This paper describes the problems encountered with the mechanical features of the FTT model design which led to premature test termination, and the results of the post-test examination. Conditions of tube bowing and significant tube and tube support gouging was observed. An interpretation of the visual and metallurgical observations is also presented. The CRBRP steam generator has undergone design evaluations to resolve observed deficiences found in the FFTM.

  1. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  2. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  3. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  4. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  5. Superalloy applications in the fast breeder reactor. [Alloy-A-286; inconel 706; inconel 718; nimonic PE16; alloy-M-813

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor.

  6. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    Energy Technology Data Exchange (ETDEWEB)

    Berkan, R.C.; Upadhyaya, B.R.; Bywater, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Kisner, R.A. (Oak Ridge National Lab., TN (United States))

    1991-08-01

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs.

  7. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L. (Associazione Euratom-CNEN sulla Fusione, Centro di Frascati (Italy))

    1989-04-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods ({gamma}LiAlO/sub 2/) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to {gamma}LiAlO/sub 2/ volume ratio is 4/1. The He inlet and outlet branches are cooling Be and {gamma}LiAlO/sub 2/, respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m/sup 2/), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570/sup 0/C; inlet He temperature=250/sup 0/; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum {gamma}LiAlO/sub 2/ temperature=400/900/sup 0/C; maximum structural temperature=475/sup 0/C; and maximum Be temperature=525/sup 0/C. (orig.).

  8. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  9. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    detrimental especially from welding considerations, and globular oxides are least harmful. For grades 304L(N) and 316L(N) SS, the grain size number is specified as larger than ASTM. No. 2 (i.e., a finer grain size), to achieve optimum high temperature mechanical properties and to permit meaningful ultrasonic examination.

  10. Proliferation Resistant Nuclear Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount

  11. Performance of low smeared density sodium-cooled fast reactor metal fuel

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D.L., E-mail: Douglas.Porter@inl.gov; Chichester, H.J.M.; Medvedev, P.G.; Hayes, S.L.; Teague, M.C.

    2015-10-15

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  12. Simulated nuclear reactor fuel assembly

    Science.gov (United States)

    Berta, Victor T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  13. Estimated recurrence frequencies for initiating accident categories associated with the Clinch River Breeder Reactor Plant design

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E R

    1982-04-01

    Estimated recurrence frequencies for each of twenty-five generic LMFBR initiating accident categories were quantified using the Clinch River Breeder Reactor Plant (CRBRP) design. These estimates were obtained using simplified systems fault trees and functional event tree models from the Accident Delineation Study Phase I Final Report coupled with order-of-magnitude estimates for the initiator-dependent failure probabilities of the individual CRBRP engineered safety systems. Twelve distinct protected accident categories where SCRAM is assumed to be successful are estimated to occur at a combined rate of 10/sup -3/ times per year while thirteen unprotected accident categories in which SCRAM fails are estimated to occur at a combined rate on the order of 10/sup -5/ times per year. These estimates are thought to be representative despite the fact that human performance factors, maintenance and repair, as well as input common cause uncertainties, were not treated explicitly. The overall results indicate that for the CRBRP design no single accident category appears to be dominant, nor can any be totally eliminated from further investigation in the areas of accident phenomenology for in-core events and post-accident phenomenology for containment.

  14. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  15. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  16. MOX fuel assembly and reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Motoo; Shimada, Hidemitsu; Kaneto, Kunikazu; Koyama, Jun-ichi; Uchikawa, Sadao [Hitachi Ltd., Tokyo (Japan); Izutsu, Sadayuki; Fujita, Satoshi

    1998-03-10

    MOX fuel assemblies containing fuel rods of mixed oxide (MOX) of uranium and plutonium are loaded to a reactor core of a BWR type reactor. The fuel assembly comprises lattice like arranged fuel rods, one large diameter water rod disposed at the central portion and a channel box surrounding them. An average enrichment degree A of fission plutonium of fuel rods arranged at the outermost layer region and an average enrichment degree B of fission plutonium of fuel rods arranged at the inner layer region satisfy the relation of B/A {>=} 2.2. It is preferable that the average enrichment degree C of fission plutonium of fuel rods arranged at the outermost corner portions and the enrichment degree A satisfy the relation: C/A {<=} 0.5. With such a constitution, even in a case where the MOX fuel assemblies and uranium fuel assemblies are disposed together, thermal margin can be improved. (I.N.)

  17. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  18. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    Energy Technology Data Exchange (ETDEWEB)

    Morrell, Douglas [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-10-29

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room

  19. Radionuclide inventories in the discharged fuels of PHWR-220, BWR-160, VVER-1000 and the conceptual ATBR-600 reactors - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Usha [Light Water Reactors Physics Section, Reactor Physics Design Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)], E-mail: ushapal@barc.gov.in; Jagannathan, V. [Light Water Reactors Physics Section, Reactor Physics Design Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)], E-mail: vjagan@barc.gov.in

    2008-10-15

    Radionuclides content in the discharged fuel of the conceptual thorium breeder reactor ATBR-600 has been assessed and compared against other thermal power reactors considered in Indian nuclear power programme. The contribution of actinides and the fission products inventories in the discharged fuels are separately estimated and assessed. The ATBR-600 reactor is suggested for closed fuel cycle option. The relatively large presence of the unspent plutonium would in fact be recycled. Nonetheless, the data has been presented in the event of operating ATBR-600 like other present day power reactors in a once through fuel cycle mode.

  20. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    Science.gov (United States)

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  1. Uncertainty evaluation of reliability of shutdown system of a medium size fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zeliang, Chireuding; Singh, Om Pal, E-mail: singhop@iitk.ac.in; Munshi, Prabhat

    2016-11-15

    Highlights: • Uncertainty analysis of reliability of Shutdown System is carried out. • Monte Carlo method of sampling is used. • The effect of various reliability improvement measures of SDS are accounted. - Abstract: In this paper, results are presented on the uncertainty evaluation of the reliability of Shutdown System (SDS) of a Medium Size Fast Breeder Reactor (MSFBR). The reliability analysis results are of Kumar et al. (2005). The failure rate of the components of SDS are taken from International literature and it is assumed that these follow log-normal distribution. Fault tree method is employed to propagate the uncertainty in failure rate from components level to shutdown system level. The beta factor model is used to account different extent of diversity. The Monte Carlo sampling technique is used for the analysis. The results of uncertainty analysis are presented in terms of the probability density function, cumulative distribution function, mean, variance, percentile values, confidence intervals, etc. It is observed that the spread in the probability distribution of SDS failure rate is less than SDS components failure rate and ninety percent values of the failure rate of SDS falls below the target value. As generic values of failure rates are used, sensitivity analysis is performed with respect to failure rate of control and safety rods and beta factor. It is discovered that a large increase in failure rate of SDS rods is not carried to SDS system failure proportionately. The failure rate of SDS is very sensitive to the beta factor of common cause failure between the two systems of SDS. The results of the study provide insight in the propagation of uncertainty in the failure rate of SDS components to failure rate of shutdown system.

  2. US reactor spent-fuel storage capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.J.; Hoffman, C.C.; Caviness, C.K.

    1982-06-01

    The spent-fuel storage situation at reactors in the US is described. The focus of the report is on the reactors that are developing a spent-fuel storage problem and the alternatives the utilities are utilizing and planning to use to minimize the problem. The alternatives the utilities are using and/or considering are described and include: high-density storage racks, double-tiered storage racks, rod consolidation, dry storage systems, fuel transshipments, and at-reactor storage pools. All of these alternatives are not available to every reactor and utility that is faced with a spent-fuel storage problem. Generally, utilities are reracking or are planning to rerack those spent-fuel pools that can be reracked with higher-density racks or double-tiered racks. Where reracking is not feasible, then fuel transshipments are being performed or considered. Since none of the other alternatives have been fully approved and licensed, these alternatives are all being evaluated. More specifically, this report concentrates on the reactors that are projected to lose full-core reserve discharge capability by the end of 1990. Reactor discharge dates, spent-fuel storage capacity, and inventory were integrated to project the loss of full-core reserve. The primary results from the integration of this data revealed that 40 reactors were projected to lose full-core reserve prior to 1990. These 40 reactors represent 23 different utilities. Each utility is aware of their own spent-fuel storage problem, and each utility is progressing to minimize the problem or evaluating all the alternatives.

  3. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  4. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    A fiberoptic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurized reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverized coal particles at the pressurized entrained flow reactor in Jyvaeskylae was developed and several series of measurements were made. In Orleans a fiberoptic pyrometric device was installed to a pressurised thermogravimetric reactor and the two-colour temperatures of fuel samples were measured. Some results of these measurements are presented. The project belongs to EU`s Joule 2 extension research programme. (author)

  5. MOX fuel assembly and reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidemitsu; Aoyama, Motoo

    1997-09-25

    A MOX fuel assembly capable of increasing plutonium charge while securing the effect of reactivity control, and a reactor core comprising the same. The assembly comprises fuel rods including MOX fuel rods containing MOX fuel pellets incorporated there and a water rod arranged in the form of a square lattice. The MOX fuel rods include those containing burnable poisons, and the percentage Nfr(%) of the number of the MOX fuel rods containing burnable poisons based on the total number of the fuel rods and the mean weight percentage Cag(%) of the burnable poisons contained in the MOX fuel rods satisfy at least either of the following requirements: -1.7 Cag + 21.8 {<=} Nfr {<=} -4.4 Cag + 56.1, 0.5 {<=} Cag {<=} 5.0. (author) figs.

  6. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  7. FUEL ASSEMBLY FOR A NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.

    1958-04-29

    A fuel assembly for a nuclear reactor of the type wherein liquid coolant is circulated through the core of the reactor in contact with the external surface of the fuel elements is described. In this design a plurality of parallel plates containing fissionable material are spaced about one-tenth of an inch apart and are supported between a pair of spaced parallel side members generally perpendicular to the plates. The plates all have a small continuous and equal curvature in the same direction between the side members.

  8. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1997-10-01

    A fibre-optic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurised reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverised coal particles at the pressurised entrained flow reactor of VTT Energy in Jyvaeskylae was developed and several series of measurements were made in order to study the effects of oxygen concentration (3-30 vol%) and pressure (0.2-1.0 MPa) on the particle temperature. The fuels used in the experiments were Westerholt, Polish and Goettelborn hvb coals, Gardanne lignite and Niederberg anthracite. The initial nominal fuel particle size varied in the experiments from 70 to 250 ,{mu}m and the gas temperature was typically 1173 K. For the anthracite also the effects of gas temperature (1073-1423K) and CO{sub 2} concentration (6-80 vol%) were studied. In Orleans a fibreoptic pyrometric device was installed to a pressurised thermogravimetric reactor of CNRS and the two-colour temperatures of fuel samples were measured. The fuel in the experiments was pulverised Goettelborn char. The reliability of optical temperature measurement in this particular application was analysed. In Essen a fibre-optic pyrometric technique that is capable to measure bed and fuel particle temperatures was applied to an atmospheric fluidised bed reactor of DMT. The effects of oxygen concentration (3-8 vol%) and bed temperature (1123-1193 K) on the fuel particle temperature were studied. The fuels in these were Westerholt coal and char and EBV-coal. Some results of these measurements are presented. The project belonged to EU`s Joule 2 extension research programme (contract JOU2-CT93-0331). (orig.)

  9. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  10. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  11. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  12. MOX fuel assembly and reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidemitsu; Koyama, Jun-ichi; Aoyama, Motoo

    1998-06-26

    The MOX fuel assembly of the present invention is of a c-lattice type loaded to a BWR type reactor. 74 MOX fuel rods filled with mixed oxides of uranium and plutonium and two water rods disposed to a space equal to that for 7 MOX fuel rods are arranged in 9 x 9 matrix. MOX fuel rods having the lowest enrichment degree are disposed to four corners of the 9 x 9 matrix. The enrichment degree means a ratio of the weight of fission products based on the total weight of fuels. Two MOX fuel rods having the same enrichment degree are arranged in each direction so as to be continuous from the MOX fuel rods at four corners in the direction of the same row and different column and same column and the different row. In addition, among the outermost circumferential portion of the 9 x 9 matrix, MOX fuel rods having a lower enrichment degree next to the MOX fuel rods having the lowest enrichment degree are arranged, each by three to a portion where MOX fuel rods having the lowest enrichment degree are not disposed. (I.N.)

  13. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  14. Safeguards instrument to monitor spent reactor fuel

    Science.gov (United States)

    Nicholson, N.; Dowdy, E. J.; Holt, D. M.; Stump, C.

    1981-10-01

    A hand held instrument for monitoring irradiated nuclear fuel inventories located in water filled storage ponds has been developed. This instrument provides sufficient precise qualitative and quantitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors, and is believed to be of potential use to nuclear fuel managers and to operators of spent fuel storage facilities, both at reactor and away from reactor, and to operators of nuclear fuel reprocessing plants. Because the Cerenkov radiation glow can barely be seen by the unaided eye under darkened conditions, a night vision device is incorporated to aid the operator in locating the fuel assembly to be measured. Beam splitting optics placed in front of the image intensifier and a preset aperture select a predetermined portion of the observed scene for measurement of the light intensity using a photomultiplier (PM) tube and digital readout. The PM tube gain is adjusted by use of an internal optical reference source, providing long term repeatability and instrument to instrument consistency. Interchangeable lenses accommodate various viewing and measuring conditions.

  15. Reference Neutron Radiographs of Nuclear Reactor Fuel

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Reference neutron radiographs of nuclear reactor fuel were produced by the Euraton Neutron Radiography Working Group and published in 1984 by the Reidel Publishing Company. In this collection a classification is given of the various neutron radiographic findings, that can occur in different parts...... of pelletized, annular and vibro-conpacted nuclear fuel pins. Those parts of the pins are shown where changes of appearance differ from those for the parts as fabricated. Also radiographs of those as fabricated parts are included. The collection contains 158 neutron radiographs, reproduced on photographic paper...

  16. Development of nuclear fuel for integrated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO{sub 2}-based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO{sub 2}-based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method.

  17. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  18. Engineering development studies for molten-salt breeder reactor processing No. 22

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R. Jr. (comp.)

    1976-06-01

    Processing methods are being developed for use in a close-coupled facility for removing fission products, corrosion products, and fissile materials from the MSBR fuel. This report discusses the autoresistance heating for the continuous fluorinator, the metal transfer experiment, experiments for the salt-metal contactor, and fuel reconstitution. 10 fig. (DLC)

  19. Heterogeneous sodium fast reactor designed for transmuting minor actinide waste isotopes into plutonium fuel

    Science.gov (United States)

    Bays, Samuel Eugene

    2008-10-01

    In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this

  20. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  1. Microminiature nuclear reactor using liquid thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kazuo.

    1988-11-07

    Purpose: To provide a microminiature nuclear reactor of about 0.2 - 20,000 KW power. Constitution: A reactor core having graphite moderator disposed cylindrically therein has a volume of 200 - 3000 liter and a height/ diameter ratio of about 1.10 - 1.30, in which the inside is divided into two regions, that is, a central region I and a blanket region II. The gap ratio of the moderator in the central region I is set to about 10% and that in the blanket region II is set to about 30%. Nuclear fuel-containing salts flow through the gaps in the moderators of the central region I and the blanket region II. Uranium in the nuclear fuels causes nuclear fission to generate energy and tritium is converted into uranium by neutrons generated upon nuclear fission to continue the reaction. Critical value can be attained even if the neutron density is made uniform and low. The fuel conversion ratio is as high as 50 - 70%, design, manufacture, operation and maintenance are easy and the installation and the running costs can be saved. (Furukawa, K.).

  2. Spent nuclear fuel discharges from U.S. reactors 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  3. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A. (eds.)

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  4. Automated operator procedure prompting for startup of Experimental Breeder Reactor-2

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, A.W.; Ball, S.J.; Ford, C.E.

    1990-11-01

    This report describes the development of an operator procedure prompting aid for startup of a nuclear reactor. This operator aid is a preliminary design for a similar aid that eventually will be used with the Advanced Liquid Metal Reactor (ALMR) presently in the design stage. Two approaches were used to develop this operator procedure prompting aid. One method uses an expert system software shell, and the other method uses database software. The preliminary requirements strongly pointed toward features traditionally associated with both database and expert systems software. Database software usually provides data manipulation flexibility and user interface tools, and expert systems tools offer sophisticated data representation and reasoning capabilities. Both methods, including software and associated hardware, are described in this report. Proposals for future enhancements to improve the expert system approach to procedure prompting and for developing other operator aids are also offered. 25 refs., 14 figs.

  5. Laser fusion driven breeder design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.H.; Massey, J.V.

    1980-12-01

    The results of the Laser Fusion Breeder Design Study are given. This information primarily relates to the conceptual design of an inertial confinement fusion (ICF) breeder reactor (or fusion-fission hybrid) based upon the HYLIFE liquid metal wall protection concept developed at Lawrence Livermore National Laboratory. The blanket design for this breeder is optimized to both reduce fissions and maximize the production of fissile fuel for subsequent use in conventional light water reactors (LWRs). When the suppressed fission blanket is compared with its fast fission counterparts, a minimal fission rate in the blanket results in a unique reactor safety advantage for this concept with respect to reduced radioactive inventory and reduced fission product decay afterheat in the event of a loss-of-coolant-accident.

  6. Techniques for processing remote field eddy current signals from bend regions of steam generator tubes of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thirunavukkarasu, S. [Non Destructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India); Rao, B.P.C., E-mail: bpcrao@igcar.gov.in [Non Destructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India); Jayakumar, T.; Raj, Baldev [Non Destructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India)

    2011-04-15

    Steam generator (SG) is one of the most critical components of sodium cooled fast breeder reactor. Remote field eddy current (RFEC) technique has been chosen for in-service inspection (ISI) of these ferromagnetic SG tubes made of modified 9Cr-1Mo steel (Grade 91). Expansion bends are provided in the SGs to accommodate differential thermal expansion. During ISI using RFEC technique, in expansion bend regions, exciter-receiver coil misalignment, bending stresses, probe wobble and magnetic permeability variations produce disturbing noise hindering detection of defects. Fourier filtering, cross-correlation and wavelet transform techniques have been studied for noise reduction as well as enhancement of RFEC signals of defects in bend regions, having machined grooves and localized defects. Performance of these three techniques has been compared using signal-to-noise ratio (SNR). Fourier filtering technique has shown better performance for noise reduction while cross-correlation technique has resulted in significant enhancement of signals. Wavelet transform technique has shown the combined capability of noise reduction and signal enhancement and resulted in unambiguous detection of 10% of wall loss grooves and localized defects in the bend regions with SNR better than 7 dB.

  7. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  8. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, important to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and

  9. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  10. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  11. An axially multilayered low void worth liquid-metal fast breeder reactor core concept

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, T.; Yamaoka, M. (Toshiba Corp., Nuclear Engineering Lab., 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi 210 (JP))

    1992-03-01

    A new core concept with a negative sodium void reactivity coefficient has evolved. The core is composed of two core layers in the axial direction. The core layers are separated by an internal blanket, the central region of which comprises a neutron-absorbing material such as boron carbide or tantalum. Consequently, the two core layers are completely decoupled as regards neutronics, leading to an effective increase in neutron leakage from the core region when sodium is voided. This design is expected to be free from the disadvantages of a large core radius, as seen in a conventional spoiled core such as a pancake core. In this paper the design is described in detail, and its application to a 300-MW (electronic) metal fuel core and to a 450-MW (electric) minor actinide burned core is given as an example.

  12. Reactor-specific spent fuel discharge projections, 1987-2020

    Energy Technology Data Exchange (ETDEWEB)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  13. Reactor-specific spent fuel discharge projections: 1986 to 2020

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs.

  14. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  15. Calculation of a materials relocation experiment simulating a core disruptive accident condition in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, T. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Ninokata, H. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Shimizu, A. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1995-07-01

    This paper describes an interpretation of the SIMBATH (Simulationsexperimente in Brennelementattrappen mit Thermit) experiments that use the SIMMER-II code. A series of SIMBATH experiments has aimed at simulating fuel pin disintegration and following materials relocation in the test sections of a single pin to 37-pin bundles. In the calculation, three modifications were incorporated into the SIMMER-II code. With these modifications, the calculation showed good agreement with the experimental measurements with respect to the void region propagation in sodium flow and the molten materials relocation leading to flow blockage. A set of parametric calculations has clarified the range of applicability of parameters for materials relocation and flow blockage formation. The particle radius r{sub p} in blockage regions and the mutiplier for particle viscosity (PARVIS) are recommended to be r{sub p}>or{approx}1/2D{sub h} and 0.001Pas

  16. Present status and trend of development of operation and maintenance techniques of fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Kenji; Yamashita, Yoshioki; Sunaoshi, Hiroshi

    1987-10-01

    Recently, accompanying the conspicuous improvement of the reliability and economical efficiency of LWRs, the level of attaining the high order technology required for FBRs has become high. The largest subject of FBRs is to heighten the economical efficiency while ensuring the safety, and many technical developments such as the heightening of the performance of FBR fuel, the shortening of pipings, the omission of secondary system and the rationalization of containment vessels have been carried out. Also the improvement of the capacity factor including the shortening of regular inspection period is important in addition to the safe and stable operation of FBRs, and it is necessary to upgrade the operation and maintenance techniques. The features of the operation and maintenance techniques of FBRs, the concept of the protection with deep strata in the operation techniques, the upgrading of the operation procedure at the time of abnormality, the development of operation-assisting systems, the upgrading of the education and training on operation, the shortening of regular inspection period, the techniques for reducing radiation exposure, the elucidation of the behavior of corrosion products, the international cooperation and others are described. (Kako, I.).

  17. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  18. Development of alternative fuel assembly for WWER-1000 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M.I.; Bibilashvili, Y.K.; Sokolov, N.B. [Vserossijskij Nauchno-Issledovatel`skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation); Panyushkin, A.K.; Tsibulia, V. [Mashinostroitelniy Zavod, Karl Marx st. 12, Electrostal 144001 (Russian Federation); Samoylov, O.B.; Kurilev, V.B.; Kuul, V.S.; Kaidalov, V.B.; Peskov, R.A.; Ershov, V.F. [OKBM, N. Novgorod 603074 (Russian Federation)

    1997-10-01

    An alternative design of fuel assembly has been developed for the WWER-1000 reactor with the aim of assuring a geometrical stability of the core during operation. The fuel assembly provides enhanced safety and substantial improvement in the WWER-1000 fuel cycle economics. (orig.)

  19. An analysis on the breeding capability and safety related parameters of advanced fast reactor fuels using recent cross-section set

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, Neethu Hanna, E-mail: neethu83@igcar.gov.in; Reddy, C.P.

    2013-09-15

    Highlights: • Breeding ratio of fast reactor fuels is computed with latest cross-section set. • Safety related parameters are also evaluated. • It is found that there are better prospects of utilization of thorium resources. • With large fast reactors, Th–{sup 233}U fuel combination gives better B.G. -- Abstract: This study focuses on the evaluation of breeding capability as well as safety related neutronic parameters of advanced fast reactor fuels which comprises of fissile–fertile combination of metal, oxide, carbide and nitride, using the recent neutron cross-section set ENDF/B-VI.7. Sodium cooled fast breeder reactor similar to prototype Fast Breeder Reactor (PFBR) is used to evaluate the performance of various fuel types involving fissile isotopes of {sup 233}U and Pu and fertile isotopes of Th and {sup 238}U. The analysis is restricted to a comparison of neutronic parameters of a fresh core and does not take into account the effects of burnup and fission products. The breeding potential of the fuels are also compared with European cross-section set JEFF-3.1. The breeding ratio of advanced fuels evaluated with ENDF/B-VI.7 and JEFF-3.1 was found to be in good agreement. From this study, it is found that Th–{sup 233}U combination for almost all fuel types with the present geometry and composition gives a lower breeding ratio value. Safety neutronic parameters such as effective delayed neutron fraction, Doppler defect and sodium void reactivity were also computed. In terms of breeding potential and safety neutronic parameters, the performance of Th–Pu system especially the metal fuel type can be a better option for future large fast reactors. The large negative Doppler feedback along with a negative sodium void reactivity for metal and hybrid combinations of Th–{sup 233}U system makes it an attractive fuel cycle option even though there is a penalty over its breeding capability.

  20. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  1. Micro-Reactor Physics of MOX-Fueled Core

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.

    2001-06-17

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design.

  2. Accelerator breeder nuclear fuel production: concept evaluation of a modified design for ORNL's proposed TME-ENFP

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Gabriel, T.A.; Bartine, D.E.

    1985-01-01

    Recent advances in accelerator beam technology have made it possible to improve the target/blanket design of the Ternary Metal Fueled Electronuclear Fuel Producer (TMF-ENFP), an accelerator-breeder design concept proposed by Burnss et al. for subcritical breeding of the fissile isotope /sup 233/U. In the original TMF-ENFP the 300-mA, 1100-MeV proton beam was limited to a small diameter whose power density was so high that a solid metal target could not be used for producing the spallation neutrons needed to drive the breeding process. Instead the target was a central column of circulating liquid sodium, which was surrounded by an inner multiplying region of ternary fuel rods (/sup 239/Pu, /sup 232/Th, and /sup 238/U) and an outer blanket region of /sup 232/Th rods, with the entire system cooled by circulating sodium. In the modified design proposed here, the proton beam is sufficiently spread out to allow the ternary fuel to reside directly in the beam and to be preceded by a thin (nonstructural) V-Ti steel firThe spread beam mandated a change in the design configuration (from a cylindrical shape to an Erlenmeyer flask shape), which, in turn, required that the fuel rods (and blanket rods) be replaced by fuel pebbles. The fuel residence time in both systems was assumed to be 90 full power days. A series of parameter optimization calculations for the modified TMF-ENFP led to a semioptimized system in which the initial /sup 239/Pu inventory of the ternary fuel was 6% and the fuel pebble diameter was 0.5 cm. With this system the /sup 233/Pu production rate of 5.8 kg/day reported for the original TMF-ENFP was increased to 9.3 kg/day, and the thermal power production at beginning of cycle was increased from 3300 MW(t) to 5240 MW(t). 31 refs., 32 figs., 6 tabs.

  3. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Wachs, D.; Carmack, J.; Woolstenhulme, N.

    2017-01-01

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, and salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.

  4. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  5. Fast reactor fuel pin behaviour modelling in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J.R.; Hughes, H.

    1979-05-01

    Two fuel behavior codes have been applied extensively to fast reactor problems; SLEUTH developed at Springfields Nuclear Laboratory and FRUMP at AERE Harwell. Other UKAEA Establishments and those of the CEGB have contributed work which has been important in model development. The codes themselves are available for use by the various organizations concerned with fast reactors.

  6. Improvement on fabrication process of CANDU type reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Chung, Sang Tae; Kim, Hyung Soo; Park, Choon Ho

    1993-05-01

    The study on fabrication of the nuclear fuel for heavy water cooled reactor is performed. Among the fabrication processes of nuclear fuel, welding thickness between fuel rod and end cap can occur a serious error in total fuel length. Therefore, for nuclear fuel design, the thickness of end cap and changed weight of zircaloy-4 tube must be measured accurately. For welding performance, microstructure of welding point is investigated successfully. The result of the study shows the possibility of cost reduction and quality improvement by simplification of fabrication process of nuclear fuel. (Author).

  7. Spent nuclear fuel discharges from US reactors 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  8. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    Science.gov (United States)

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  9. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  10. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  11. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  12. Determination of equilibrium fuel composition for fast reactor in closed fuel cycle

    Directory of Open Access Journals (Sweden)

    Ternovykha Mikhail

    2017-01-01

    Full Text Available Technique of evaluation of multiplying and reactivity characteristics of fast reactor operating in the mode of multiple refueling is presented. We describe the calculation model of the vertical section of the reactor. Calculation validations of the possibility of correct application of methods and models are given. Results on the isotopic composition, mass feed, and changes in the reactivity of the reactor in closed fuel cycle are obtained. Recommendations for choosing perspective fuel compositions for further research are proposed.

  13. Determination of equilibrium fuel composition for fast reactor in closed fuel cycle

    Science.gov (United States)

    Ternovykha, Mikhail; Tikhomirov, Georgy; Khomyakov, Yury; Suslov, Igor

    2017-09-01

    Technique of evaluation of multiplying and reactivity characteristics of fast reactor operating in the mode of multiple refueling is presented. We describe the calculation model of the vertical section of the reactor. Calculation validations of the possibility of correct application of methods and models are given. Results on the isotopic composition, mass feed, and changes in the reactivity of the reactor in closed fuel cycle are obtained. Recommendations for choosing perspective fuel compositions for further research are proposed.

  14. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  15. Light water reactor fuel response during reactivity initiated accident experiments

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P. E.; McCardell, R. K.; Martinson, Z. R.; Seiffert, S. L.

    1979-01-01

    Experimental results from six recent Power Burst Facility (PBF) reactivity initiated accident (RIA) tests are compared with data from previous Special Power Excursion Reactor Test (SPERT), and Japanese Nuclear Safety Research Reactor (NSRR) tests. The RIA fuel behavior experimental program recently started in the PBF is being conducted with coolant conditions typical of hot-startup conditions in a commercial boiling water reactor. The SPERT and NSRR test programs investigated the behavior of single or small clusters of light water reactor (LWR) type fuel rods under approximate room temperature and atmospheric pressure conditions in capsules containing stagnant water. As observed in the SPERT and NSRR tests, energy deposition, and consequent enthalpy increase in the PBF test fuel, appears to be the single most important variable. However, the consequences of failure at boiling water hot-startup system conditions appear to be more severe than previously observed in either the stagnant capsule SPERT or NSRR tests. Metallographic examination of both previously unirradiated and irradiated PBF fuel rod cross sections revealed extensive variation in cladding wall thicknesses (involving considerable plastic flow) and fuel shattering along grain boundaries in both restructured and unrestructured fuel regions. Oxidation of the cladding resulted in fracture at the location of cladding thinning and disintegration of the rods during quench. In addition,swelling of the gaseous and potentially volatile fission products in previously irradiated fuel resulted in volume increases of up to 180% and blockage of the coolant channels within the flow shrouds surrounding the fuel rods.

  16. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  17. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing

  18. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  19. Nuclear reactor fuel element having improved heat transfer

    Science.gov (United States)

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  20. Modeling of Flow in Nuclear Reactor Fuel Cell Outlet

    Directory of Open Access Journals (Sweden)

    František URBAN

    2010-12-01

    Full Text Available Safe and effective load of nuclear reactor fuel cells demands qualitative and quantitative analysis of relations between coolant temperature in fuel cell outlet temperature measured by thermocouple and middle temperature of coolant in thermocouple plane position. In laboratory at Insitute of thermal power engineering of the Slovak University of Technology in Bratislava was installed an experimental physical fuel cell model of VVER 440 nuclear power plant with V 213 nuclear reactors. Objective of measurements on physical model was temperature and velocity profiles analysis in the fuel cell outlet. In this paper the measured temperature and velocity profiles are compared with the results of CFD simulation of fuel cell physical model coolant flow.

  1. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag; Gilles Youinou; Brian Boer

    2012-04-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.

  2. Fuel assembly design study for a reactor with supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, J. [RWE Power AG, Huyssenallee 2, D-45128 Essen (Germany); Waata, C. [ANSYS Germany GmbH, Staudenfeldweg 12, D-83624 Otterfing (Germany); Starflinger, J. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany); Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany)]. E-mail: thomas.schulenberg@iket.fzk.de; Laurien, E. [University of Stuttgart, Institute for Nuclear Technology and Energy Systems (IKE), Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2007-08-15

    The European concept of the High Performance Light Water Reactor (HPLWR) differs from current light water reactors in a higher system pressure beyond the critical point of water, as well as a higher heat-up of the coolant within the core and thus higher core outlet temperatures, leading to a significant increase in turbine power and thermal efficiency of the power plant. The motivation to develop a novel fuel assembly for the HPLWR is caused by the high variation of coolant density in the core by more than a factor of seven. A systematic design study shows that a square fuel assembly with two rows of fuel rods and a central moderator box is best to minimize the structural material, to optimize the moderator to fuel ratio and to reduce differences of fuel rod power. Using neutronic and thermal-hydraulic analyses, a detailed mechanical design of a fuel assembly of the HPLWR has been worked out. Moreover, concepts for the head piece, the foot piece, the steam plenum and the lower mixing plenum, including the lower core plate, have been developed to account for the individual flow paths of this reactor. These allow a leak-tight counter current flow of moderator water and coolant as well as uniform mixing of different mass flows. The assembly design concept can be used as a general key component for any advanced core design of this reactor.

  3. U. S. reactor spent-fuel storage capabilities. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.J.; Hoffman, C.C.; Caviness, C.K.

    1982-06-01

    This report describes the spent-fuel storage situation at reactors in the United States. The focus of the report is on the reactors that are developing a spent-fuel storage problem and the alternatives the utilities are utilizing and planning to use to minimize the problem. The alternatives the utilities are using and/or considering are described in the report and include: High-density storage racks; Double-tiered storage racks; Rod consolidation; Dry storage systems; Fuel transshipments; and At-reactor storage pools. All of these alternatives are not available to every reactor and utility that is faced with a spent-fuel storage problem. Generally, utilities are reracking or are planning to rerack those spent-fuel pools that can be reracked with higher-density racks or double-tiered racks. Where reracking is not feasible, then fuel transshipments are being performed or considered. Since none of these other alternatives have been fully approved and licensed, these alternatives are all being evaluated.

  4. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, Stephen Rhead [Idaho National Lab. (INL), Idaho Falls, ID (United States); Medvedev, Pavel G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  5. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  6. High Density Fuel Development for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  7. Radiative capture on $^{242}$Pu for MOX fuel reactors

    CERN Multimedia

    The use of MOX fuel (mixed-oxide fuel made of UO$_{2}$ and PuO$_{2}$) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. Indeed around 66% of the plutonium from spent fuel is made of $^{239}$Pu and $^{241}$Pu, which are fissile in thermal reactors. A typical reactor of this type uses a fuel with 7% reprocessed Pu and 93% depleted U, thus profiting from both the spent fuel and the remaining $^{238}$U following the $^{235}$U enrichment. With the use of such new fuel compositions rich in Pu the better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. This is clearly stated in the recent OECD NEA’s “High Priority Request List” and in the WPEC-26 “Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations” report. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United ...

  8. Fuel shuffling optimization for the Delft research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)

    1997-07-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)

  9. Strengthening the nuclear-reactor fuel cycle against proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Travelli, A.; Snelgrove, J.; Persiani, P. [Argonne National Lab., IL (United States). Arms Control and Nonproliferation Program

    1992-12-31

    Argonne National Laboratory (ANL) conducts several research programs that serve to reduce the risks of fissile-material diversion from the nuclear-reactor fuel cycle. The objectives are to provide economical and efficient neutron or power generation with the minimum of inherent risks, and to further minimize risks by utilizing sophisticated techniques to detect attempts at material diversion. This paper will discuss the Reduced Enrichment Research and Test Reactor (RERTR) Program, the Isotope Correlation Technique (ICT), and Proliferation-Resistant Closed-Cycle Reactors. The first two are sponsored by the DOE Office of Arms Control and Nonproliferation.

  10. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  11. Reactor-specific spent fuel discharge projections, 1984 to 2020

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.; Libby, R.A.; Holter, G.M.

    1985-04-01

    The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

  12. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  13. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  14. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  15. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  16. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  17. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  18. Synergistic smart fuel for in-pile nuclear reactor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Kotter, D.K. [Idaho National Laboratories, Idaho Falls (United States); Ali, R.A.; Garrett, S.L. [Penn State University, University Park, State College, PA 16801 (United States)

    2013-07-01

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  19. Electrolysis cell for reprocessing plutonium reactor fuel

    Science.gov (United States)

    Miller, W.E.; Steindler, M.J.; Burris, L.

    1985-01-04

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

  20. Electrolysis cell for reprocessing plutonium reactor fuel

    Science.gov (United States)

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  1. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Science.gov (United States)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  2. Thermal barrier and support for nuclear reactor fuel core

    Science.gov (United States)

    Betts, Jr., William S.; Pickering, J. Larry; Black, William E.

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  3. Deep-Burn Modular Helium Reactor Fuel Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  4. Public information circular for shipments of irradiated reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1991 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials.

  5. Public information circular for shipments of irradiated reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1989 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials. 11 figs., 3 tabs.

  6. Sodium fast reactor fuels and materials : research needs.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  7. An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors

    OpenAIRE

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2010-01-01

    Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled fast reactor, respectively. The concepts were explored for both high- and low-conversion core configurations, and metal and oxide fuels. The annular fuel concept is best suited for low-conversion metal-fuelled cores, where it can enable a power uprate of ~20%; the magnitude ...

  8. Control rod calibration methods for fast breeder reactors applied to Phenix; Les methodes d'etalonnage des barres de commande des reacteurs a neutrons rapides application a Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Lecourt, G

    1998-06-18

    The control and the emergency shutdown of a fast breeder reactor depends essentially on control rods. For this reason, it is imperative to know exactly how much anti reactivity is introduced with the rods in the reactor core. Different methods have been compared in order to see if they are compatible with Phenix reactor. Their limits have been studied. The shadow and anti shadow effects that can the rods make one to the other and then their effective weight of the rods screen have been clarified. (N.C.)

  9. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  10. Determining Reactor Fuel Type from Continuous Antineutrino Monitoring

    Science.gov (United States)

    Jaffke, Patrick; Huber, Patrick

    2017-09-01

    We investigate the ability of an antineutrino detector to determine the fuel type of a reactor. A hypothetical 5-ton antineutrino detector is placed 25 m from the core and measures the spectral shape and rate of antineutrinos emitted by fission fragments in the core for a number of 90-d periods. Our results indicate that four major fuel types can be differentiated from the variation of fission fractions over the irradiation time with a true positive probability of detection at approximately 95%. In addition, we demonstrate that antineutrinos can identify the burnup at which weapons-grade mixed-oxide (MOX) fuel would be reduced to reactor-grade MOX, on average, providing assurance that plutonium-disposition goals are met. We also investigate removal scenarios where plutonium is purposefully diverted from a mixture of MOX and low-enriched uranium fuel. Finally, we discuss how our analysis is impacted by a spectral distortion around 6 MeV observed in the antineutrino spectrum measured from commercial power reactors.

  11. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  12. CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

    Directory of Open Access Journals (Sweden)

    JONG-YOUL PARK

    2014-12-01

    Full Text Available In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

  13. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  14. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    Science.gov (United States)

    Muhamad, Shalina Sheik; Hamzah, Mohd Arif Arif B.

    2014-02-01

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP).

  15. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  16. Reactor fuel element heat conduction via numerical Laplace transform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu

    2001-07-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  17. Advanced fuels for plutonium management in pressurized water reactors

    Science.gov (United States)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  18. Upgrading program of the experimental fast reactor Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, A.; Yogo, S. [Japan Nuclear Cycle Development Institute, Iibaraki-Ken (Japan)

    2001-07-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  19. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  20. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1967 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DEVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Albaugh, F. W.; Bush, S. H.; Cadwell, J. J.; de Halas, D. R.; Worlton, D. C.

    1967-06-01

    Work is reported in the areas of: fast fuels oxides and nitrides; nuclear ceramics; nuclear graphite; basic swelling studies; irradiation damage to reactor metals; ATR gas loop operation and maintenance; metallic fuels; nondestructive testing research; and fast reactor dosimetry and damage analysis.

  1. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  2. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  3. 78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel

    Science.gov (United States)

    2013-05-28

    ... COMMISSION 10 CFR Part 73 RIN 3150-AI64 Physical Protection of Shipments of Irradiated Reactor Fuel AGENCY... (NRC) is issuing Revision 2 of NUREG-0561, ``Physical Protection of Shipments of Irradiated Reactor... regulations for the transport of irradiated reactor fuel at Sec. 73.37 of Title 10 of the Code of Federal...

  4. 78 FR 50313 - Physical Protection of Irradiated Reactor Fuel in Transit

    Science.gov (United States)

    2013-08-19

    ... 3150-AI64 Physical Protection of Irradiated Reactor Fuel in Transit AGENCY: Nuclear Regulatory... Transportation Orders to certain NRC power plant licensees, non-power reactor licensees, special nuclear material... Protection of Irradiated Reactor Fuel in Transit'' (RIN 3150-AI64; NRC-2009-0163). The final rule...

  5. Numerical analysis of thermal stratification phenomena in upper plenum of a fast breeder reactor (1). Evaluation of thermal stratification phenomena near the region of flow holes

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Kazunori; Muramatu, Toshiharu; Yamaguchi, Akira [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2002-12-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of the phenomena in the design on the internal structures in an LMFBR plenum. To evaluate long-term characteristics of thermal stratification phenomena in a typical LMFBR upper plenum, numerical analysis was carried out with a multi-dimensional thermohydraulics code AQUA for a scram event from full power operation condition. Thereafter the numerical results were compared with extrapolated results of measured transient data on the 40% operation condition. From the thermohydraulic analysis by the AQUA code, the following results have been obtained. (Long-term characteristics of thermal stratification phenomena) The cold fluid region near the inside inner barrel was expanded with accumulation of the cold fluid in the lower region of the plenum after 300 seconds from the reactor scram, so that the fluid from core flowed to the lower region of the upper plenum. The characteristics of axial temperature distributions in the upper plenum were similar to them at the 300 seconds. The thermal stratification interface was located initially around intermediate position between upper lower flow holes. And an another thermal stratification interface was formed around the inner barrel support plate after 300 seconds from the scram, so that the cold fluid accumulated in the lower region of the plenum. But the thermal stratification interface around the inner barrel support plate was disappeared by mixture and heat conduction of coolant of circumferential direction. The thermal stratification interface which was located below in the upper flow holes, rose to the upward position of the upper flow holes at the 720 seconds. In annular gap region between the inner barrel and the reactor vessel wall, thermal stratification interface

  6. Very high flux research reactors based on particle fuels

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Takahashi, H.

    1985-01-01

    A new approach to high flux research reactors is described, the VHFR (Very High Flux Reactor). The VHFR fuel region(s) are packed beds of HTGR-type fuel particles through which coolant (e.g., D/sub 2/O) flows directly. The small particle diameter (typically on the order of 500 microns) results in very large surface areas for heat transfer (approx. 100 cm/sup 2//cm/sup 3/ of bed), high power densities (approx. 10 megawatts per liter), and minimal ..delta..T between fuel and coolant (approx. 10 K) VHFR designs are presented which achieve steady-state fluxes of approx. 2x10/sup 16/ n/cm/sup 2/sec. Deuterium/beryllium combinations give the highest flux levels. Critical mass is low, approx. 2 kg /sup 235/U for 20% enriched fuel. Refueling can be carried out continuously on-line, or in a batch process with a short daily shutdown. Fission product inventory is very low, approx. 100 to 300 grams, depending on design.

  7. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  8. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  9. 75 FR 61139 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Science.gov (United States)

    2010-10-04

    ... advantages and disadvantages of adopting new fuel cycle technologies and the associated waste management... Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee AGENCY... announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT) Subcommittee. The RFCT...

  10. Classification of spent reactor fuel for nuclear forensics.

    Science.gov (United States)

    Jones, Andrew E; Turner, Phillip; Zimmerman, Colin; Goulermas, John Y

    2014-06-03

    In this paper we demonstrate the use of pattern recognition and machine learning techniques to determine the reactor type from which spent reactor fuel has originated. This has been done using the isotopic and elemental measurements of the sample and proves to be very useful in the field of nuclear forensics. Nuclear materials contain many variables (impurities and isotopes) that are very difficult to consider individually. A method that considers all material parameters simultaneously is advantageous. Currently the field of nuclear forensics focuses on the analysis of key material properties to determine details about the materials processing history, for example, utilizing known half-lives of isotopes can determine when the material was last processed (Stanley, F. E. J. Anal. At. Spectrom. 2012, 27, 1821; Varga, Z.; Wallenius, M.; Mayer, K.; Keegan, E.; Millet, S. Anal. Chem. 2009, 81, 8327-8334). However, it has been demonstrated that multivariate statistical analysis of isotopic concentrations can complement these method and are able to make use of a greater level of information through dimensionality reduction techniques (Robel, M.; Kristo, M. J. J. Environ. Radioact. 2008, 99, 1789-1797; Robel, M.; Kristo, M. J.; Heller, M. A. Nuclear Forensic Inferences Using Iterative Multidimensional Statistics. In Proceedings of the Institute of Nuclear Materials Management 50th Annual Meeting, Tucson, AZ, July 2009; 12 pages; Nicolaou, G. J. Environ. Radioact. 2006, 86, 313-318; Pajo, L.; Mayer, K.; Koch, L. Fresenius' J. Anal. Chem. 2001, 371, 348-352). There has been some success in using such multidimensional statistical methods to determine details about the history of spent reactor fuel (Robel, M.; Kristo, M. J. J. Environ. Radioact. 2008, 99, 1789-1797). Here, we aim to expand on these findings by pursuing more robust dimensionality reduction techniques based on manifold embedding which are able to better capture the intrinsic data set information. Furthermore, we

  11. Three-component U-Pu-Th fuel for plutonium irradiation in heavy water reactors

    Directory of Open Access Journals (Sweden)

    Peel Ross

    2016-01-01

    Full Text Available This paper discusses concepts for three-component fuel bundles containing plutonium, uranium and thorium for use in pressurised heavy water reactors, and cases for and against implementation of such a nuclear energy system in the United Kingdom. Heavy water reactors are used extensively in Canada, and are deploying within India and China, whilst the UK is considering the use of heavy water reactors to manage its plutonium inventory of 140 tonnes. The UK heavy water reactor proposal uses a mixed oxide (MOX fuel of plutonium in depleted uranium, within the enhanced CANDU-6 (EC-6 reactor. This work proposes an alternative heterogeneous fuel concept based on the same reactor and CANFLEX fuel bundle, with eight large-diameter fuel elements loaded with natural thorium oxide and 35 small-diameter fuel elements loaded with a MOX of plutonium and reprocessed uranium stocks from UK MAGNOX and AGR reactors. Indicative neutronic calculations suggest that such a fuel would be neutronically feasible. A similar MOX may alternatively be fabricated from reprocessed <5% enriched light water reactor fuel, such as the fuel of the AREVA EPR reactor, to consume newly produced plutonium from reprocessing, similar to the DUPIC (direct use of PWR fuel in CANDU process.

  12. Proceedings: 1991 EEI/UWASTE-EPRI workshop on at-reactor spent-fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Supko, E. M. [Energy Resources International, Inc., Washington, DC (United States)

    1992-05-01

    The Electric Power Research Institute (EPRI) and the Edison Electric Institute sponsored their first Workshop on At-Reactor Spent Fuel Storage (Workshop) on October 15--17, 1991. The Workshop provided a forum for the exchange of practical operational experiences as they relate to At-reactor spent fuel storage. The proceedings of the first Workshop on At-Reactor Spent Fuel Storage addressed the following pertinent issues: The DOE Waste Management System; Utility Spent Fuel Storage Project Management; NRC Licensing under 10CFR72; Fuel Handling Issues; Consolidation and NFBC Compaction and Storage; Criticality Issues; Public Relations, and State Involvement in Spent Fuel Storage Expansion. Individual papers have been cataloged separately.

  13. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  14. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  15. Consolidated fuel reprocessing program: Criticality experiments with fast test reactor fuel pins in an organic moderator

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, S.R.

    1986-12-01

    The results obtained in a series of criticality experiments performed as part of a joint program on criticality data development between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan are presented in this report along with a complete description of the experiments. The experiments involved lattices of Fast Test Reactor (FTR) fuel pins in an organic moderator mixture similar to that used in the solvent extraction stage of fuel reprocessing. The experiments are designed to provide data for direct comparison with previously performed experimental measurements with water moderated lattices of FTR fuel pins. The same lattice arrangements and FTR fuel pin types are used in these organic moderated experimental assemblies as were used in the water moderated experiments. The organic moderator is a mixture of 38 wt % tributylphosphate in a normal paraffin hydrocarbon mixture of C{sub 11}H{sub 24} to C{sub 15}H{sub 32} molecules. Critical sizes of 1054.8, 599.2, 301.8, 199.5 and 165.3 fuel pins were obtained respectively for organic moderated lattices having 0.761 cm, 0.968 cm, 1.242 cm, 1.537 cm and 1.935 cm square lattice pitches as compared to 1046.9, 571.9, 293.9, 199.7 and 165.1 fuel pins for the same lattices water moderated.

  16. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    Science.gov (United States)

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  17. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  18. Structural analysis of fuel rod applied to pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Danilo P.; Pinheiro, Andre Ricardo M.; Lotto, André A., E-mail: danilo.pinheiro@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The design of fuel assemblies applied to Pressurized Water Reactors (PWR) has several requirements and acceptance criteria that must be attended for licensing. In the case of PWR fuel rods, an important mechanical structural requirement is to keep the radial stability when submitted to the coolant external pressure. In the framework of the Accident Tolerant Fuel (ATF) program new materials have been studied to replace zirconium based alloys as cladding, including iron-based alloys. In this sense, efforts have been made to evaluate the behavior of these materials under PWR conditions. The present work aims to evaluate the collapse cold pressure of a stainless steel thin-walled tube similar to that used as cladding material of fuel rods by means of the comparison of numeric data, and experimental results. As a result of the simulations, it was observed that the collapse pressure has a value intermediate value between those found by regulatory requirements and analytical calculations. The experiment was carried out for the validation of the computational model using test specimens of thin-walled tubes considering empty tube. The test specimens were sealed at both ends by means of welding. They were subjected to a high pressure device until the collapse of the tubes. Preliminary results obtained from experiments with the empty test specimens indicate that the computational model can be validated for stainless steel cladding, considering the difference between collapse pressure indicated in the regulatory document and the actual limit pressure concerning to radial instability of tubes with the studied characteristics. (author)

  19. Fuel and target programs for the transmutation at Phenix and other reactors; Programmes combustibles et cibles pour la transmutation dans Phenix et autres reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Groleas, G

    2002-07-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  20. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  1. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  2. ON feasibility of using nitride and metallic fuel in the MBIR reactor core

    Directory of Open Access Journals (Sweden)

    V.A. Eliseev

    2016-09-01

    Studies on the MBIR reactor, involving advanced dense fuel types, have shown that nitride fuel does not make it possible to achieve the required neutron flux value, while metallic fuel provides for the required neutron flux (practically the same as MOX fuel and a high dpa rate but requires modified temperature conditions of irradiation. The specific neutronic properties of these fuel types, as compared to the standard MOX fuel, have also been identified.

  3. Gas-cooled reactors: the importance of their development

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1979-06-01

    The nearest term GCR is the steam-cycle HTGR, which can be used for both power and process steam production. Use of SC-HTGRs permits timely introduction of thorium fuel cycles and of high-thermal-efficiency reactors, decreasing the need for mined U/sub 3/O/sub 8/ before arrival of symbiotic fueling of fast-thermal reactor systems. The gas-turbine HTGR offers prospects of lower capital costs than other nuclear reactors, but it appears to require longer and more costly development than the SC-HTGR. Accelerated development of the GT-HTGR is needed to gain the advantages of timely introduction. The Gas-Cooled Fast Breeder Reactor (GCFR) offers the possibility of fast breeder reactors with lower capital costs and with higher breeding ratios from oxide fuels. The VHTR provides high-temperature heat for hydrogen production.

  4. Ammonia removal via microbial fuel cell (MFC) dynamic reactor

    Science.gov (United States)

    Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.

    2017-06-01

    Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.

  5. About a fuel for burnup reactor of periodical pulsed nuclear pumped laser

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, A.I.; Lukin, A.V.; Magda, L.E.; Magda, E.P.; Pogrebov, I.S.; Putnikov, I.S.; Khmelnitsky, D.V.; Scherbakov, A.P. [Russian Federal Nuclear Center, Snezhinsk (Russian Federation)

    1998-07-01

    A physical scheme of burnup reactor for a Periodic Pulsed Nuclear Pumped Laser was supposed. Calculations of its neutron physical parameters were made. The general layout and construction of basic elements of the reactor are discussed. The requirements for the fuel and fuel elements are established. (author)

  6. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  7. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  8. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  9. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control

  10. Closing nuclear fuel cycle with fast reactors: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V. [Bochvar Institute - VNIINM, Moscow (Russian Federation)

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  11. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  12. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Francois L, J. L., E-mail: gbo729@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  13. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  14. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  15. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed...... 470 Ω resistor from acetate. From the polarization test, the maximum power density of 204 mW m−2 was obtained at current density of 595 mA m−2 (external resistance = 180 Ω). The power generation showed a saturation-type relationship as a function of wastewater strength, with a maximum power density...... (Pmax) of 218 mW m−2 and a saturation constant (Ks) of 244 mg L−1. The main limitations for achieving higher electricity production in the SMFC were identified as the high internal resistance at the electrolyte and the inefficient electron transfer at the cathode electrode. As the current increased...

  16. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...

  17. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    OpenAIRE

    Haileyesus Tsige-Tamirat; Luca Ammirabile

    2015-01-01

    Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR) has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron s...

  18. Innovative microbial fuel cell for electricity production from anaerobic reactors

    Science.gov (United States)

    Min, Booki; Angelidaki, Irini

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed 470 Ω resistor from acetate. From the polarization test, the maximum power density of 204 mW m -2 was obtained at current density of 595 mA m -2 (external resistance = 180 Ω). The power generation showed a saturation-type relationship as a function of wastewater strength, with a maximum power density (P max) of 218 mW m -2 and a saturation constant (K s) of 244 mg L -1. The main limitations for achieving higher electricity production in the SMFC were identified as the high internal resistance at the electrolyte and the inefficient electron transfer at the cathode electrode. As the current increased, a large portion of voltage drop was caused by the ohmic (electrolyte) resistance of the medium present between two electrodes, although the two electrodes were closely positioned (about 3 cm distance; internal resistance = 35 ± 2 Ω). The open circuit potential (0.393 V vs. a standard hydrogen electrode) of the cathode was much smaller than the theoretical value (0.804 V). Besides, the short circuit potential of the cathode electrode decreased during the power generation in the SMFC. These results demonstrate that the SMFC could successfully generate electricity from wastewater, and has a great potential for electricity production from existing anaerobic reactors or other anaerobic environments such as sediments. The advantage of the SMFC is that no special anaerobic chamber (anode chamber) is needed, as existing anaerobic reactors can be used, where the cathode chamber and anode electrode are immersed.

  19. Compatibility analysis of DUPIC fuel (Part II) - Reactor physics design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok; Rhee, Bo Wook; Roh, Gyu Hong; Kim, Do Hun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The compatibility analysis of the DUPIC fuel in a CANDU reactor has been assessed. This study includes the fuel composition adjustment, comparison of lattice properties, performance analysis of reactivity devices, determination of regional over-power (ROP) trip setpoint, and uncertainty estimation of core performance parameters. For the DUPIC fuel composition adjustment, three options have been proposed, which can produce uniform neutronic characteristics of the DUPIC fuel. The lattice analysis has shown that the characteristics of the DUPIC fuel is compatible with those of natural uranium fuel. The reactivity devices of the CANDU-6 reactor maintain their functional requirements even for the DUPIC fuel system. The ROP analysis has shown that the trip setpoint is not sacrificed for the DUPIC fuel system owing to the power shape that enhances more thermal margin. The uncertainty analysis of the core performance parameter has shown that the uncertainty associated with the fuel composition variation is reduced appreciably, which is primarily due to the fuel composition adjustment and secondly the on-power refueling feature and spatial control function of the CANDU reactor. The reactor physics calculation has also shown that it is feasible to use spent PWR fuel directly in CANDU reactors without deteriorating the CANDU-6 core physics design requirements. 29 refs., 67 figs., 60 tabs. (Author)

  20. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  1. Design and in-core fuel management of reload fuel elements for reactors made by other manufacturers. Auslegung und Einsatzplanung von Nachlade-Brennelementen fuer Reaktoren anderer Hersteller

    Energy Technology Data Exchange (ETDEWEB)

    Neufert, A.; Urban, P.

    1990-12-01

    By the end of 1990 Siemens had performed fuel element designs and in-core fuel management for 94 operating cycles in 27 pressurized and boiling water reactors of other manufacturers. Together with the client different fuel element designs are developed and proof is furnished of the reactor physics compatibility of different fuel elements from various producers, and of plant safety. (DG).

  2. N-Reactor (U-metal) Fuel Characteristics for Disposal Criticality Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Larry Lorin

    2000-05-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into nine characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments, and total fuel and fissile mass govern the selection of the representative or candidate fuel within that group. Additionally, the criticality analysis will also require data to support design of the canister internals, thermal, and radiation shielding. The purpose of this report is to consolidate and provide in a concise format, material and information/data needed to perform supporting analyses to qualify N-Reactor fuels for acceptance into the designated repository. The N Reactor fuels incorporate zirconium cladding and uranium metal with unique fabrication details in terms of physical size, and method of construction. The fuel construction and post-irradiation handling have created attendant issues relative to cladding failure in the underwater storage environment. These fuels were comprised of low-enriched metal (0.947 to 1.25 wt% 235U) that were originally intended to generate weapons-grade plutonium for national defense. Modifications in subsequent fuel design and changes in the mode of reactor operation in later years were focused more toward power production.

  3. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  4. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  5. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  6. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  7. Uranium resources and their implications for fission breeder and fusion hybrid development

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.

    1984-05-15

    Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity.

  8. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  9. Prospects of VVER-SKD reactor in a closed fuel cycle

    OpenAIRE

    Glebov, A.P.; Klushin, A.V.; Yu.D. Baranaev

    2015-01-01

    At the new centure's begin eight countries with developed nuclear power industry took part under the aegis of the IAEA in research of innovative nuclear reactors and fuel cycles to choose a nuclear power system with fast reactors based on a closed fuel cycle (CFC) and to perform joint R&D in this direction. An agreement was reached on the use of based on proven technologies CNFC-FR (Closed Nuclear Fuel Cycles and Fast Reactors), as a reference system for common assessment. Common principle...

  10. Conversion of hydrocarbon fuel in thermal protection reactors of hypersonic aircraft

    Science.gov (United States)

    Kuranov, A. L.; Mikhaylov, A. M.; Korabelnikov, A. V.

    2016-07-01

    Thermal protection of heat-stressed surfaces of a high-speed vehicle flying in dense layers of atmosphere is one of the topical issues. Not of a less importance is also the problem of hydrocarbon fuel combustion in a supersonic air flow. In the concept under development, it is supposed that in the most high-stressed parts of airframe and engine, catalytic thermochemical reactors will be installed, wherein highly endothermic processes of steam conversion of hydrocarbon fuel take place. Simultaneously with heat absorption, hydrogen generation will occur in the reactors. This paper presents the results of a study of conversion of hydrocarbon fuel in a slit reactor.

  11. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  12. Design and Performance of the UO2 Fuel for the Topaz-II Reactor

    Science.gov (United States)

    Hoth, Carl W.; Degaltsev, Yuri; Gontar, Alexander; Rakitskaya, Elena

    1994-07-01

    The Russian Topaz-II space reactor system is being modified for use for the United States - Nuclear Electric Propulsion Space Test Project (NEPSTP). The nuclear reactor fuel consists of annular UO2 fuel pellets with 17 mm diameter and 9 mm height. The fuel is fabricated to high purity and high density (96% theoretical density). The reactor core contains 37 single-cell thermionic fuel elements (TFEs), each with approximately 40 fuel pellets. The fuel pellets are contained within an emitter tube of single crystal Mo-3%Nb with a tungsten coating on the outer surface to enhance thermionic emission. The fuel has evolved through an ongoing development program to provide low swelling and very high mechanical strength. Extensive irradiation testing, chemical compatibility testing, and vibration testing were conducted in Russia to verify the performance and lifetime capabilities of the fuel and TFE. This paper summarizes the fuel design, fuel development, and performance testing of the UO2 fuel for the TOPAZ-II reactor.

  13. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  14. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  15. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  16. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Hybrid reactor based on laser thermonuclear fusion

    Science.gov (United States)

    Basov, N. G.; Belousov, N. I.; Grishunin, P. A.; Kalmykov, Yu K.; Lebo, I. G.; Rozanov, Vladislav B.; Sklizkov, G. V.; Subbotin, V. I.; Finkel'shteĭn, K. I.; Kharitonov, V. V.; Sherstnev, K. B.

    1987-10-01

    A physicotechnical and parametric analysis is used as the basis for a conceptual design of a thermonuclear inertial-confinement hybrid reactor as a breeder of fuel for fission nuclear power stations. It is proposed to use a laser as a driver in this reactor.

  17. An alternative solution for heavy liquid metal cooled reactors fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Di Maio, Damiano, E-mail: damiano.vitaledimaio@uniroma1.it [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Cretara, Luca; Giannetti, Fabio [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Peluso, Vincenzo [“ENEA”, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Gandini, Augusto [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Manni, Fabio [“SRS Engineering Design S.r.l.”, Vicolo delle Palle 25-25/b, 00186 Rome (Italy); Caruso, Gianfranco [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy)

    2014-10-15

    Highlights: • A new fuel assembly locking system for heavy metal cooled reactor is proposed. • Neutronic, mechanical and thermal-hydraulic evaluations of the system behavior have been performed. • A comparison with other solutions has been presented. - Abstract: In the coming future, the electric energy production from nuclear power plants will be provided by both thermal reactors and fast reactors. In order to have a sustainable energy production through fission reactors, fast reactors should provide an increasing contribution to the total electricity production from nuclear power plants. Fast reactors have to achieve economic and technical targets of Generation IV. Among these reactors, Sodium cooled Fast Reactors (SFRs) and Lead cooled Fast Reactors (LFRs) have the greatest possibility to be developed as industrial power plants within few decades. Both SFRs and LFRs require a great R and D effort to overcome some open issues which affect the present designs (e.g. sodium-water reaction for the SFRs, erosion/corrosion for LFRs, etc.). The present paper is mainly focused on LFR fuel assembly (FA) design: issues linked with the high coolant density of lead or lead–bismuth eutectic cooled reactors have been investigated and an innovative solution for the core mechanical design is here proposed and analyzed. The solution, which foresees cylindrical fuel assemblies and exploits the buoyancy force due to the lead high density, allows to simplify the FAs locking system, to reduce their length and could lead to a more uniform neutron flux distribution.

  18. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  19. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R., E-mail: rrr@cdtn.br, E-mail: amir@cdtn.br, E-mail: edson@cdtn.br, E-mail: maritzargual@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  20. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  1. Modification of Neutron Kinetic Code for Plate Type Fuel Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Salah Ud-Din Khan

    2013-01-01

    Full Text Available The research is conducted on the modification of neutron kinetic code for the plate type fuel nuclear reactor. REMARK is a neutron kinetic code that works only for the cylindrical type fuel nuclear reactor. In this research, our main emphasis is on the modification of this code in order to be applicable for the plate type fuel nuclear reactor. For this purpose, detailed mathematical studies have been performed and are subjected to write the program in Fortran language. Since REMARK code is written in Fortran language, so we have developed the program in Fortran and then inserted it into the source library of the code. The main emphasis is on the modification of subroutine in the source library of the code for hexagonal fuel assemblies with plate type fuel elements in it. The number of steps involved in the modification of the code has been included in the paper. The verification studies were performed by considering the small modular reactor with hexagonal assemblies and plate type fuel in it to find out the power distribution of the reactor core. The purpose of the research is to make the code work for the hexagonal fuel assemblies with plate type fuel element.

  2. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  3. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  4. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    Science.gov (United States)

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  5. Genetic algorithms for nuclear reactor fuel load and reload optimization problems

    Directory of Open Access Journals (Sweden)

    A.V. Sobolev

    2017-09-01

    The efficiency of use of the developed model of the genetic algorithm is demonstrated by the test example of a BN type reactor. The results of the test run demonstrated that the use of the proposed approach allows searching for optimal reactor load mapping for each separate core reshuffling operation. The main objective of the performed study was to demonstrate the applicability and efficiency of the new up-to-date approach to solving the problem of fuel loading into a nuclear reactor.

  6. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    OpenAIRE

    Istadi Istadi; S Suherman; Luqman Buchori

    2011-01-01

    The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operat...

  7. Studying the capture cross sections of constructional elements from measurements of the neutron balance in breeder media

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, V.I.; Dulin, V.A.; Kazanskii, Yu.A.; Darrouzet, M.; Martin-Deidier, L.; Rimpault, G.

    1987-04-01

    Until recently, the indeterminacy in the group capture cross sections of constructional elements at neutron energies above 1 keV were estimated at 15-20%, leading to an error of 0.2 and 1%, respectively, in calculating K/sub ef/ and the conversion factor of breeder reactors with oxide fuel and sodium coolant. In fact, calculations using the BNAB-78 group constants used in the USSR for the design development of fast reactors show that the mean neutron capture cross section of constructional elements (iron, nickel, and chromium) is approx. 1.4 times greater for a typical breeder reactor than in the case of calculation by the version of Carnaval IV used in France for the Superphoenix reactors. To refine the proportion of neutrons absorbed in stainless steel, the neutron balance in media consisting of uranium fuel and stainless steel with nickel in a proportion ensuring a near-unity breeder coefficient of infinite media of this composition (K/sub infinity/ = 1) has been measured at the Power-Physics Institute in Obninsk and at the Center for Nuclear Research in Caradache. The results obtained allow the accuracy of calculating the proportion of neutrons absorbed in constructional elements to be judged

  8. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all

  9. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  10. A fuel management study and cycle nuclear design for PW reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E.; Ahnert, C.; Aragones, J. M.; Corella, M. R.

    1975-07-01

    A reference reactor was chosen to do a general study involving Fuel Management Evaluations of several cycles, and Design Calculations of cycles already performed, according to a calculation scheme set up in the Reactor Technology Division of the J.E.N., using some computer codes acquired to foreign sources and other ones developed in the J.E.N. (Author) 5 refs.

  11. Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2009-11-01

    An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

  12. Characteristics of moderation - Enhanced reactor core loaded 100% with MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongbae; Cho, Namzin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-04-15

    The purpose of this preliminary investigation is to compare the neutronic characteristics of a pressurized water reactor (PWR) core independently loaded 100% with three different types of fuel; namely, the slightly-enriched conventional UO{sub 2} fuel, the standard mixed-oxide fuel (stMOX fuel), and the so-called moderation-enhanced mixed-oxide fuel (meMOX fuel), and thereby to gain an insight into the possible future use of meMOX fuel in PWRs. For the comparison of the neutronic performance of these different fuel types, an efficient method of determining the equivalent plutonium content in MOX fuel resulting in about the same discharge burnup with a given enriched UO{sub 2} fuel is also investigated.

  13. Thermal–hydraulic characteristics for CANFLEX fuel channel using burnable poison in CANDU reactor

    Directory of Open Access Journals (Sweden)

    Jun Ho Bae

    2015-08-01

    Full Text Available The thermal–hydraulic characteristics for the CANadian Deuterium Uranium Flexible (CANFLEX-burnable poison (BP fuel channel, which is loaded with a BP at the center ring based on the CANFLEX-RU (recycled uranium fuel channel, are evaluated and compared with that of standard 37-element and CANFLEX-NU (natural uranium fuel channels. The distributions of fuel temperature and critical channel power for the CANFLEX-BP fuel channel are calculated using the NUclear Heat Transport CIRcuit Thermohydraulics Analysis Code (NUCIRC code for various creep rate and burnup. CANFLEX-BP fuel channel has been revealed to have a lower fuel temperature compared with that of a standard 37-element fuel channel, especially for high power channels. The critical channel power of CANFLEX-BP fuel channel has increased by about 10%, relative to that of a standard 37-element fuel channel for 380 channels in a core, and has higher value relative to that of the CANFLEX-NU fuel channel except the channels in the outer core. This study has shown that the use of a BP is feasible to enhance the thermal performance by the axial heat flux distribution, as well as the improvement of the reactor physical safety characteristics, and thus the reactor safety can be improved by the use of BP in a CANDU reactor.

  14. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C. [Dept. of Engineering Physics, McMaster Univ., 1280 Main St. W, Hamilton, ON (Canada)

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  15. Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-01-01

    Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.

  16. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  17. Assessment of precision gamma scanning for inspecting LWR fuel rods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.R.; Barnes, B.K.; Barnes, M.L.; Hamlin, D.K.; Medina-Ortega, E.G.

    1981-07-01

    Reconstruction of the radial two-dimensional distributions of fission products using projections obtained by nondestructive gamma scanning was evaluated. The filtered backprojection algorithm provided the best reconstruction for simulated gamma-ray sources, as well as for actual irradiated fuel material. Both a low-burnup (11.5 GWd/tU) light-water reactor fuel rod and a high-burnup (179.1 GWd/tU) fast breeder reactor fuel rod were examined using this technique.

  18. The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Hans Gougar; Gary Bell

    2005-05-01

    The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

  19. Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Shin, Chang Hwan; Lee, Chan; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Chi Young [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-12-15

    The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermalhydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermalhydraulic technology and the commercialization.

  20. LMFBR fuel assembly design for HCDA fuel dispersal

    Science.gov (United States)

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  1. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  2. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Science.gov (United States)

    2010-01-01

    ... fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of transportation of nuclear waste was published in the Federal Register on June 30...

  3. On the Optimization of the Fuel Distribution in a Nuclear Reactor

    DEFF Research Database (Denmark)

    Thevenot, Laurent

    2004-01-01

    In this paper we give an optimality condition for the optimization problem of the distribution of fuel assemblies in a nuclear reactor by using the homogenization method. This study deals with purely fissile fuels and is based on the neutron transport equation modeling for continuous models...

  4. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...

  5. Structural analysis of the SNAP-8 developmental reactor fuel element cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dalcher, A.W.

    1969-04-15

    Primary, secondary, and thermal stresses were calculated and evaluated for the SNAP-8 developmental reactor fuel element cladding. The effects of fabrication and assembly stresses, as well as test and operational stresses were included in the analysis. With the assumption that fuel-swelling-induced stresses are nil, the analytical results indicate that the cladding assembly is structurally adequate for the proposed operation.

  6. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  7. Study of Some Innovant Reactors without on- Site Refueling with Triso and Cermet Fuel

    OpenAIRE

    A.Chetaine; A. Benchrif; H. Amsil; V. Kuznetsov; Y. Shimazu

    2012-01-01

    The evaluation of unit cell neutronic parameters and lifetime for some innovant reactors without on sit-refuling will be held in this work. the behavior of some small and medium reactors without on site refueling with triso and cermet fuel. For the FBNR long life except we propose to change the enrichment of the Cermet MFE to 9%. For the AFPR reactor we can see that the use of the Cermet MFE can extend the life of this reactor but to maintain the same life period for AFPR...

  8. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  9. Significance of developing advanced fuel CANDU reactor technology in China and the general requirements for AFCR

    Energy Technology Data Exchange (ETDEWEB)

    Zhenhua, Z.; Gang, Q.; Li, Z.; Zhiliang, M.; Xuebin, L.; Fanshen [Third Qinshan Nuclear Power Co., Zhejiang (China)

    2014-07-01

    Upon the demands of energy source structural adjustment and environmental optimization, China's nuclear power industry is anticipated to be continuously developing quickly in future. The sufficient supply of nuclear fuel will be the mostly concerned part at the progress of China's nuclear power development. Advanced Fuel CANDU Reactor technology could play an active and important role in mitigating the condition of strained nuclear fuel supply, in promoting the reprocess industry of nuclear fuel, and in supplementing China's closed nuclear fuel cycle system. This paper presents the current status of Chinese nuclear closed fuel cycle and the incentive and significance for development Advanced Fuel PHWR Technology in China. This paper also describes the practice and roadmap of developing Advanced Fuel PHWR Technology. Finally this paper also raises the general requirements on the design of Advanced Fuel PHWR after Fukushima accident from point view of the owner. (author)

  10. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  11. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andrew [Oregon State Univ., Corvallis, OR (United States). Nuclear Engineering and Radiation Health Physics; Matthews, Topher [Oregon State Univ., Corvallis, OR (United States); Lenhof, Renae [Oregon State Univ., Corvallis, OR (United States); Deason, Wesley [Oregon State Univ., Corvallis, OR (United States); Harter, Jackson [Oregon State Univ., Corvallis, OR (United States)

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  12. The effects of actinide based fuels on incremental cross sections in a Candu reactor

    Energy Technology Data Exchange (ETDEWEB)

    Morreale, A.C.; Ball, M.R.; Novog, D.R.; Luxat, J.C., E-mail: morreaac@mcmaster.ca, E-mail: ballmr@mcmaster.ca, E-mail: novog@mcmaster.ca, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, Ontario (Canada)

    2011-07-01

    The reprocessing of spent fuel such as the extraction of actinide materials for use in mixed oxide fuels is a key component of reducing the end waste from nuclear power plant operations. Using recycled spent fuels in current reactors is becoming a popular option to help close the fuel cycle. In order to ensure safe and consistent operations in existing facilities, the properties of these fuels must be compatible with current reactor designs. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU reactor. Specifically, the effect of this fuel design on the incremental cross sections related to the use of adjuster rods is investigated. The actinide concentrations studied in this work were based on extraction from thirty year cooled spent fuel and mixed with natural uranium to yield a MOX fuel of 4.75% actinide by weight. The incremental cross sections were calculated using the DRAGON neutron transport code. The results for the actinide fuel were compared to those for standard natural uranium fuel and for a slightly enriched (1% U-235) fuel designed to reduce void reactivity. Adjuster reactivity effect calculations and void reactivity simulations were also performed. The impact of the adjuster on reactivity decreased by as much as 56% with TRUMOX fuel while the CVR was reduced by 71% due to the addition of central burnable poison. The incremental cross sections were largely affected by the use of the TRUMOX fuel primarily due to its increased level of fissile material (five times that of NU). The largest effects are in the thermal neutron group where the Σ{sub T} value is increased by 46.7%, the Σ{sub ny)} values increased by 13.0% and 9.9%. The value associated with thermal fission, υΣ{sub f}, increased by 496.6% over regular natural uranium which is expected due to the much higher reactivity of the fuel. (author)

  13. U-Mo Monolithic Fuel for Nuclear Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad

    2017-11-02

    The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, high uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.

  14. Feasibility study of a moderation-enhanced reactor core loaded 100% with MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Bae

    1996-02-15

    The mixed-oxide (MOX) fuel assemblies have been partially loaded and operated successfully in some commercial pressurized water reactors (PWRs) and boiling water reactors (BWRs). Lately, for the more efficient utilization of nuclear fuel resources and, in particular, for the disposition of weapons-grade plutonium, there has been a growing interest in full loading of MOX fuels in existing reactors (if required) with only minor modification. In this study, a PWR core loaded 100% with moderation-enhanced mixed-oxide fuel (hereafter called 'meMOX' fuel in contrast to the standard mixed-oxide fuel designated here as 'stMOX' or simply 'MOX' fuel) is studied. To alleviate the spectrum hardening due to the larger capture-to-fission ratio of plutonium, the meMOX fuel assembly is obtained from the stMOX fuel assembly by removing several fuel rods (e.g., 36 fuel rods in the 17 x 17 fuel assembly are replaced by water holes). This increases the moderator-to-fuel volume ratio from 2.02 to 2.51, thus enhancing moderation of the neutrons. This study also includes the determination of equivalent plutonium content in meMOX or stMOX fuel, that is equivalent in cycle or discharge burnup with a prescribed conventional UO{sub 2} fuel. The isotopic composition of the plutonium in twelve different cases used to obtain the equivalent plutonium content ranges from reactor-grade plutonium with about 55- 85 w/o of fissile plutonium to weapons-grade plutonium with about 94 w/o of fissile plutonium. Both the meMOX assembly characteristics and the core (meMOX loaded Ulchin Unit 1) characteristics are provided. The assembly wise burnup-dependent neutronic characteristics consist of assembly reactivity, inventories of major isotopes, control rod worth, moderator temperature coefficient (MTC), Doppler temperature coefficient (DTC), differential boron worth, void coefficient of reactivity, and peak rod power within an assembly, etc. These were obtained by the assembly

  15. A Development of Technical Specification of a Research Reactor with Plate Fuels Cooled by Upward Flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sujin; Kim, Jeongeun; Kim, Hyeonil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The contents of the TS(Technical Specifications) are definitions, safety limits, limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. TS for Nuclear Power Plants (NPPs) have been developed since many years until now. On the other hands, there are no applicable modernized references of TS for research reactors with many differences from NPPs in purpose and characteristics. Fuel temperature and Departure from Nuclear Boiling Ratio (DNBR) are being used as references from the thermal-hydraulic analysis point of view for determining whether the design of research reactors satisfies acceptance criteria for the nuclear safety or not. Especially for research reactors using plate-type fuels, fuel temperature and critical heat flux, however, are very difficult to measure during the reactor operation. This paper described the outline of main contents of a TS for open-pool research reactor with plate-type fuels using core cooling through passive systems, where acceptance criteria for nuclear safety such as CHF and fuel temperature cannot be directly measured, different from circumstances in NPPs. Thus, three independent variables instead of non-measurable acceptance criteria: fuel temperature and CHF are considered as safety limits, i.e., power, flow, and flow temperature.

  16. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  17. Neutronic analysis stochastic distribution of fuel particles in Very High Temperature Gas-Cooled Reactors

    Science.gov (United States)

    Ji, Wei

    The Very High Temperature Gas-Cooled Reactor (VHTR) is a promising candidate for Generation IV designs due to its inherent safety, efficiency, and its proliferation-resistant and waste minimizing fuel cycle. A number of these advantages stem from its unique fuel design, consisting of a stochastic mixture of tiny (0.78mm diameter) microspheres with multiple coatings. However, the microsphere fuel regions represent point absorbers for resonance energy neutrons, resulting in the "double heterogeneity" for particle fuel. Special care must be taken to analyze this fuel in order to predict the spatial and spectral dependence of the neutron population in a steady-state reactor configuration. The challenges are considerable and resist brute force computation: there are over 1010 microspheres in a typical reactor configuration, with no hope of identifying individual microspheres in this stochastic mixture. Moreover, when individual microspheres "deplete" (e.g., burn the fissile isotope U-235 or transmute the fertile isotope U-238 (eventually) to Pu-239), the stochastic time-dependent nature of the depletion compounds the difficulty posed by the stochastic spatial mixture of the fuel, resulting in a prohibitive computational challenge. The goal of this research is to develop a methodology to analyze particle fuel randomly distributed in the reactor, accounting for the kernel absorptions as well as the stochastic depletion of the fuel mixture. This Ph.D. dissertation will address these challenges by developing a methodology for analyzing particle fuel that will be accurate enough to properly model stochastic particle fuel in both static and time-dependent configurations and yet be efficient enough to be used for routine analyses. This effort includes creation of a new physical model, development of a simulation algorithm, and application to real reactor configurations.

  18. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  19. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  20. In Comparative Analysis for Fuel Burnup of Fuel Assembly Designs for the 300 kW Small Medical Reactor

    Science.gov (United States)

    Sambuu, Odmaa; Nanzad, Norov

    2009-03-01

    A 300 kW small medical reactor was designed to be used for boron neutron capture therapy (BNCT) at KAIST in 1996 [1]. In this paper, analysis for the core life cycle of the original design of the BNCT facility and modifications of the fuel assembly configuration and enrichment to get a proper life cycle were performed and a criticality, neutron flux distribution and fuel burnup calculations were carried out.

  1. Studies on capacity management for factories of nuclear fuel for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel Luiz Miotto; Durazzo, Michelangelo; Mesquita, Marco Aurélio de; Carvalho, Elita Fontenele Urano de; Andrade, Delvonei Alves de, E-mail: mlnegro@ipen.br, E-mail: mdurazzo@ipen.br, E-mail: elitaucf@ipen.br, E-mail: delvonei@ipen.br, E-mail: mamesqui@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Escola Politécnica. Departamento de Engenharia de Produção

    2017-11-01

    The use and the power of nuclear reactors for research and materials testing is increasing worldwide. That implies the demand for nuclear fuel for this kind of reactors is rising. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently, safely and keeping good quality. Focus is given to factories that produce plate type fuel elements loaded with LEU U{sub 3}Si{sub 2}-Al fuel, which are typically used in nuclear research reactors. Of the various production routes for this kind of fuel, we chose the route which uses hydrolysis of uranium hexafluoride. Raising the capacity of this kind of plants faces several problems, especially regarding safety against nuclear criticality. Some of these problems are briefly addressed. The new issue of the paper is the application of knowledge from the area of production administration to the fabrication of nuclear fuel for research reactors. A specific method for the increase in production capacity is proposed. That method was tested by means of discrete event simulation. The data were collected from the nuclear fuel factory at IPEN. The results indicated the proposed method achieved its goal as well as ways of raising production capacity in up to 50%. (author). (author)

  2. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a

  3. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel; Estudio de sistema de un proceso de tratamiento-reciclaje piroquimico del combustible de un reactor de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Boussier, H.; Heuer, D.

    2010-07-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Fast Reactor (MSFR).

  4. Low-power lead-cooled fast reactor loaded with MOX-fuel

    Science.gov (United States)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  5. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  6. Investigation of stainless steel clad fuel rod failures and fuel performance in the Connecticut Yankee Reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, V.; Klingensmith, R. W.

    1981-11-01

    Significant levels of fuel rod failures were observed in the batch 8 fuel assemblies of the Connecticut Yankee reactor. Failure of 304 stainless steel cladding in a PWR environment was not expected. Therefore a detailed poolside and hot cell examination program was conducted to determine the cause of failure and identify differences between batch 8 fuel and previous batches which had operated without failures. Hot cell work conducted consisted of detailed nondestructive and destructive examination of fuel rods from batches 7 and 8. The results indicate that the batch 8 failure mechanism was stress corrosion cracking initiating on the clad outer surface. The sources of cladding stresses are believed to be (a) fuel pellet chips wedged in the cladding gap, (b) swelling of highly nondensifying batch 8 fuel and (c) potentially harmful effects of a power change event that occurred near the end of the second cycle of irradiation for batch 8.

  7. An analysis system for in-reactor behavior, FANTASI

    Energy Technology Data Exchange (ETDEWEB)

    Uto, Nariaki; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sugaya, Toshio; Sakai, Kimiaki [Japan Nucler Cycle Developmnet Inst., Tokai, Ibaraki (Japan)

    2001-06-01

    The Japan Nuclear Fuel Cycle Development Institute developed FANTASI (A Computational System For Analyzing Coupled Neutronic, Thermal-Hydraulic And Structural Behaviors In A Fast Breeder Reactor Core) to simulate a conditions where nuclear reaction, thermal-hydraulic behavior of coolant and deformation of core construction progress under mutual relation in reactor of a fast breeder reactor by cooperation of engineers in the fields of physics, thermal-hydraulics, structure, and information system on reactor. Here was described on system construction of FANTASI after describing progress of this development. And then, after introducing a case study using this system, applicability to transient phenomena in nuclear reactor was described. At last, with summarizing results of this development, its future development was also mentioned. (G.K.)

  8. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    Science.gov (United States)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light

  9. Surface and subsurface deposits on irradiated N Reactor fuel stored in the Hanford K Basins

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-01-16

    Irradiated N Reactor uranium metal fuel is being stored in two water filled basins in the 1OO K Area. The Integrated Process Strategy for this fuel involves transfer to containers called Multi-Canister Overpacks (MCO`s) and vacuum drying the MCO`s to remove free water prior to extended dry storage. A major concern for MCO loading of this fuel is potential bound water in subsurface particulate material near damaged areas on the fuel elements, and in surface coating deposits. To investigate these characteristics, selected fuel elements were transferred to a hot cell for examination and sampling per the K Basins Spent Nuclear Fuel characterization plan. Fuel elements were taken from both K East Basin where the fuel is stored in open canisters, and from K West Basin where the canisters are sealed and contain a corrosion inhibitor.

  10. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  11. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  12. The development of fast reactors - Effects on the Swedish system of management of spent fuel; Utveckling av snabba reaktorer - Paaverkan paa det svenska systemet foer hantering av anvaent braensle

    Energy Technology Data Exchange (ETDEWEB)

    Hans Forsstroem, Hans [SKB International AB, Stockholm (Sweden)

    2013-09-15

    . In this context it should be considered that fast reactors will generate their own plutonium, as breeder reactors. Plutonium from other reactors will thus only be needed for the first years of operation. To provide a basis for the answer to the question if the Swedish spent fuel is a resource or a waste this report provides an overview of the present development status for fast reactors and their potential for large scale commercial use. It further describes the impact on the Swedish system for management of spent nuclear fuel if the fuel were to be reprocessed and the uranium and plutonium reused as fuel for fast reactors or for the present reactors.

  13. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  14. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, B.P.; Edwards, G.W.R., E-mail: blair.bromley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Sambavalingam, P. [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2016-06-15

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  15. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    Science.gov (United States)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-08-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  16. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    Science.gov (United States)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  17. Fabrication, properties, and tritium recovery from solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.E. (Argonne National Lab., IL (USA)); Kondo, T. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Roux, N. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Tanaka, S. (Tokyo Univ. (Japan)); Vollath, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  18. Fuel processing in integrated micro-structured heat-exchanger reactors

    Science.gov (United States)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  19. The reactor core TRIGA Mark-III with fuels type 30/20; El nucleo del reactor TRIGA Mark-III con combustible tipo 30/20

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F., E-mail: fortunato.aguilar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    This work describes the calculation series carried out with the program MCNP5 in order to define the configuration of the reactor core with fuels 30/20 (fuels with 30% of uranium content in the Or-Zr-H mixture and a nominal enrichment of 20%). To select the configuration of the reactor core more appropriate to the necessities and future uses of the reactor, the following criterions were taken into account: a) the excess in the reactor reactivity, b) the switch out margin and c) to have new irradiation facilities inside the reactor core. Taking into account these criterions is proceeded to know the characteristics of the components that form the reactor core (dimensions, geometry, materials, densities and positions), was elaborated a base model of the reactor core, for the MCNP5 code, with a configuration composed by 85 fuel elements, 4 control bars and the corresponding structural elements. The high reactivity excess obtained with this model, gave the rule to realize other models of the reactor core in which the reactivity excess and the switch out margin were approximate to the values established in the technical specifications of the reactor operation. Several models were realized until finding the satisfactory model; this is composite for 74 fuels, 4 control bars and 6 additional experimental positions inside the reactor core. (Author)

  20. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  1. Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1983-02-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

  2. Gas-cooled thorium reactor with fuel block of the unified design

    Directory of Open Access Journals (Sweden)

    I.V. Shamanin

    2015-11-01

    Analysis of information materials pertaining to the use of thorium as fuel element in rector facilities of the new generation and of its future potential was performed in the present study. Results of the first phase of neutronics studies of 3D model of high-temperatures gas-cooled reactor facility on the basis of unified design of the fuel block are presented. Calculation 3D model was developed using the software code of the MCU-5 series. Several optimal configurations of the reactor core were selected according to the results of comparison of neutronics characteristics of the examined options for the purpose of development of small-size modular nuclear power installations with power up to 60MW. Results of calculations of reactivity margin of the reactor, neutron flux distribution and power density profiles are presented for the selected options of reactor core configuration.

  3. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  4. Corrosion of spent fuels from research and prototype reactors under conditions relevant to geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, Hilde; Bosbach, Dirk; Deissmann, Guido [Forschungszentrum Juelich GmbH (Germany). Inst. for Nuclear Waste Management and Reactor Safety (IEK-6)

    2015-07-01

    The reference inventory of high-level nuclear wastes designated for geological disposal in Germany as used within the preliminary safety assessment for a geological repository in the Gorleben salt dome (''vorlaeufige Sicherheitsanalyse Gorleben'', vSG) includes various types of spent nuclear fuels from research and prototype reactors, besides LWR spent fuels and vitrified high-level wastes. This paper will discuss the results of and conclusions from corrosion experiments on spent fuels from prototype high-temperature reactors (HTR) and research reactors that were performed under conditions relevant for a deep geological repository and provided the basis for the derivation of respective source terms in the vSG.

  5. Public information circular for shipments of irradiated reactor fuel. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96--295. The report provides a brief description of NRC authority for certain aspects of transporting spent fuel. It provides descriptive statistics on spent fuel shipments regulated by the NRC from 1979 to 1992. It also lists detailed highway and railway segments used within each state from October 1, 1987 through December 31, 1992.

  6. Comparative sodium void effects for different advanced liquid metal reactor fuel and core designs

    Energy Technology Data Exchange (ETDEWEB)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Gedeon, S.R.; Omberg, R.P.

    1991-07-01

    An analysis of metal-, oxide, and nitride-fueled advanced liquid metal reactor cores was performed to investigate the calculated differences in sodium void reactivity, and to determine the relationship between sodium void reactivity and burnup reactivity swing using the three fuel types. The results of this analysis indicate that nitride fuel has the least positive sodium void reactivity for any given burnup reactivity swing. Thus, it appears that a good design compromise between transient overpower and loss of flow response is obtained using nitride fuel. Additional studies were made to understand these and other nitride advantages. 8 refs., 5 figs., 3 tabs.

  7. Fuel particles for high temperature reactors; Combustibles a particules pour reacteurs a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pheip, M. [CEA Cadarache (DEN/CAD/DEC/SESC/LIPA), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Combustibles; Masson, M. [CEA Valrho, Dept. Radiochimie et Procedes, 30 (France); Perrais, Ch. [CEA Cadarache (DEN/DEC/SPUA), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Combustibles; Pelletier, M. [CEA Cadarache (DEN/DEC/SESC), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Combustibles

    2007-07-15

    The concept of fuel particles with a millimeter size was born at the end of the 1950's and is the reference concept of high or very high temperature gas-cooled reactors (HTR/VHTR). The specificity of this fuel concerns its fine divided structure, its all-ceramic composition and its micro-confining properties with respect to fission products. These 3 properties when combined together allow the access to high temperatures and to a high level of safety. This article presents: 1 - the general properties of particle fuels; 2 - the fabrication and control of fuel elements: nuclei elaboration processes, vapor deposition coating of nuclei, shaping of fuel elements, quality control of fabrication; 3 - the fuel particles behaviour under irradiation: mechanical and thermal behaviour, behaviour and diffusion of fission products, ruining mode; 4 - the reprocessing of particle fuels: stakes and options, direct storage, separation of constituents, processing of carbonous wastes; 5 - conclusion. (J.S.)

  8. Study of Reduced-Enrichment Uranium Fuel Possibility for Research Reactors

    Directory of Open Access Journals (Sweden)

    Ruppel V.A.

    2015-01-01

    Full Text Available Having analyzed the results obtained in the work, it is possible to conclude that the flux density of fast and thermal neutrons in the shell of fuel elements in EFA in REU-zone decreased on average by 5% for UO2 fuel and by 7% for U9%Mo fuel. Change of neutrons flux density during the cycle does not exceed 4% for both fuel types. On average the fuel burnup in reactor core during the cycle for UO2 and U9%Mo increased by 2.8%. It is 1% less that in HEU-zone, which is conditioned by higher initial loading of 235U in fuel assembly with REU fuel.

  9. Hazards summary memorandum: Savannah River reactors the production of tritium using tubular fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.

    1956-09-01

    The Savannah River reactors were operated initially for the production of plutonium, and used slug-type natural uranium fuel elements. Recently one reactor was converted to the production of tritium, and other reactors will be converted soon. slug-type elements (of enriched uranium-aluminum) were charged into this reactor in order to reduce to a minimum the development effort required before the shift to tritium was made. It was recognized, however, that the slug elements would be deficient in that they would give a low yield of tritium per atom of uranium-235 destroyed because of the large parasitic capture of neutrons by aluminum. Also the production rate of tritium would be low because of the small amount of surface available for the transfer of the fission heat. Both of these shortcomings will be reduced materially by the substitution of tubular elements for the slugs now employed. The development of this type of element has progressed so that a full reactor loading of tubular fuel elements is contemplated for early 1957. The special hazards related to the production of tritium using tubular fuel elements are described in this memorandum which has been written as a supplement to a report entitled ``Reactor Safety Determination -- Savannah River Plant`` (DPW-56-106), one section of which described the hazards associated with the production of tritium from slug elements.

  10. Uncertainty Analysis of Light Water Reactor Fuel Lattices

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2013-01-01

    Full Text Available The study explored the calculation of uncertainty based on available cross-section covariance data and computational tool on fuel lattice levels, which included pin cell and the fuel assembly models. Uncertainty variations due to temperatures changes and different fuel compositions are the main focus of this analysis. Selected assemblies and unit pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analysis were performed using TSUNAMI-2D sequence in SCALE 6.1. It was found that uncertainties increase with increasing temperature, while kinf decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributing reaction of uncertainty, namely, the neutron capture reaction 238U(n, γ due to the Doppler broadening. In addition, three types (UOX, MOX, and UOX-Gd2O3 of fuel material compositions were analyzed. A remarkable increase in uncertainty in kinf was observed for the case of MOX fuel. The increase in uncertainty of kinf in MOX fuel was nearly twice the corresponding value in UOX fuel. The neutron-nuclide reaction of 238U, mainly inelastic scattering (n, n′, contributed the most to the uncertainties in the MOX fuel, shifting the neutron spectrum to higher energy compared to the UOX fuel.

  11. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  12. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-01-01

    Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797

  13. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  14. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgas composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.

  15. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  16. Consistent neutron-physical and thermal-physical calculations of fuel rods of VVER type reactors

    Directory of Open Access Journals (Sweden)

    Tikhomirov Georgy

    2017-01-01

    Full Text Available For modeling the isotopic composition of fuel, and maximum temperatures at different moments of time, one can use different algorithms and codes. In connection with the development of new types of fuel assemblies and progress in computer technology, the task makes important to increase accuracy in modeling of the above characteristics of fuel assemblies during the operation. Calculations of neutronphysical characteristics of fuel rods are mainly based on models using averaged temperature, thermal conductivity factors, and heat power density. In this paper, complex approach is presented, based on modern algorithms, methods and codes to solve separate tasks of thermal conductivity, neutron transport, and nuclide transformation kinetics. It allows to perform neutron-physical and thermal-physical calculation of the reactor with detailed temperature distribution, with account of temperature-depending thermal conductivity and other characteristics. It was applied to studies of fuel cell of the VVER-1000 reactor. When developing new algorithms and programs, which should improve the accuracy of modeling the isotopic composition and maximum temperature in the fuel rod, it is necessary to have a set of test tasks for verification. The proposed approach can be used for development of such verification base for testing calculation of fuel rods of VVER type reactors

  17. Design and Fluid Dynamic Investigations for a High Performance Light Water Reactor Fuel Assembly

    Science.gov (United States)

    Hofmeister, Jan; Laurin, Eckart; Class, Andreas G.

    2005-11-01

    Within the 5th Framework Program of the European Commission a nuclear light water reactor with supercritical steam conditions has been investigated called High Performance Light Water Reactor (HPLWR). This reactor concept is distinct from conventional light water reactor concepts by the fact, that supercritical water is used to achieve higher core outlet temperatures. The reactor operates with a high system pressure, high heat-up of the coolant within the core, and high outlet temperatures of the coolant resulting in a thermal efficiency of up to 44%. We present the design concept proposed by IKET, and a fluid dynamic problem in the foot piece of the fuel assembly, where unacceptable temperature variations must be omitted.

  18. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  19. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  20. Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    El-Sahlamy, Neama M. [Nuclear and Radiological Regulatory Authority, Cairo (Egypt)

    2017-11-15

    In the current work, comparisons between the core performances when using different LEU fuels are done. The fuels tested are UA1{sub X}-A1, U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al fuels with 19.7 % enrichment. Calculations are done using RELAP5 code to evaluate the thermal-hydraulic performance of the IAEA benchmark 10 MW reactor. First, a reassessment of the slow reactivity insertion transient with UA1{sub X}-A1 LEU fuel to compare the results with those reported in the IAEA TECDOC [1]. Then, comparisons between the thermal-hydraulic core performances when using the three LEU fuels are done. The assessment is performed at initial power of 1.0 W. The reactor power is calculated using the RELAP5 point kinetic model. The reactivity feedback, from changes in water density and fuel temperature, is considered for all cases. From the results it is noticed that U{sub 3}Si{sub 2}-Al fuel gives the best fuel performance since it has the minimum value of peak fuel temperature and the minimum peak clad surface temperature, as operating parameters. Also, it gives the maximum value of the Critical Heat Flux Ratio and the lowest tendency to flow instability occurrence.

  1. Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor

    Science.gov (United States)

    Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.

    2018-02-01

    Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.

  2. Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor

    Science.gov (United States)

    Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.

    2017-09-01

    Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.

  3. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  4. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  5. A review on the development of the advanced fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author).

  6. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  7. Fuel failures in the Connecticut Yankee reactor (Haddam Neck). Addendum to NP-2119

    Energy Technology Data Exchange (ETDEWEB)

    Raven, L.F.A.; Howl, D.; Naylor, J.; Pitek, M.T.; Clink, L.J.

    1984-05-01

    Significant levels of fuel rod failures were observed in the batch 8 fuel assemblies of the Connecticut Yankee reactor. Results of detailed poolside and hot cell examinations, reported earlier in NP-2119, indicated the failure mechanism was stress corrosion cracking initiating on the clad outer surface. The sources of cladding stresses were believed to be (a) fuel pellet chips wedged in the cladding gap, (b) swelling of highly nondensifying batch 8 fuel, and (c) potentially harmful effects of a power change event that occurred near the end of the second cycle of irradiation for batch 8. This report reviews the 1977-78 experience and conclusions of the earlier investigations against the background of the total operational experience of the reactor from initial startup to the present time. It provides more details on operating conditions and uses the results of SLEUTH-SEER analyses to interpret the effects of operational maneuvers. The investigation adds more evidence for the importance of the ramp effects.

  8. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.; Dan, H-J.; Chae, H-T.; Park, C.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibration characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.

  9. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-10-01

    The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  10. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    Science.gov (United States)

    Crawford, D.C.; Porter, D.L.; Hayes, S.L.; Hill, R.N.

    1999-03-23

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both. 7 figs.

  11. Worker exposure for at-reactor management of spent nuclear fuel.

    Science.gov (United States)

    Weck, Philippe F

    2013-09-01

    The radiological impact on workers associated with spent nuclear fuel dry storage operations at reactor sites is discussed. The resulting doses to workers exposed to external radiation include the dose during dry storage system loading, unloading and handling activities, the dose associated with independent spent fuel storage installation (ISFSI) operations, maintenance and surveillance activities, and the dose associated with additional ISFSI construction. Comprehensive dose estimates are reported based on previous radiation surveys.

  12. Flowsheet for shear/leach processing of N Reactor fuel at PUREX

    Energy Technology Data Exchange (ETDEWEB)

    Enghusen, M.B.

    1995-04-13

    This document was originally prepared to support the restart of the PUREX plant using a new Shear/Leach head end process. However, the PUREX facility was shutdown and processing of the remaining N Reactor fuel is no longer considered an alternative for fuel disposition. This document is being issued for reference only to document the activities which were investigated to incorporate the shear/leach process in the PUREX plant.

  13. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.; Hill, Robert N.

    1997-12-01

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr-Hf alloy or an alloy of Pu-Zr-Hf or a combination of both.

  14. A physical description of fission product behavior fuels for advanced power reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  15. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible.

  16. Evaluation of strategies for end storage of high-level reactor fuel; Vurdering av strategier for sluttlagring av hoeyaktivt reaktorbrensel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report evaluates a national strategy for end-storage of used high-level reactor fuel from the research reactors at Kjeller and in Halden. This strategy presupposes that all the important phases in handling the high-level material, including temporary storage and deposition, are covered. The quantity of spent fuel from Norwegian reactors is quite small. In addition to the technological issues, ethical, environmental, safety and economical requirements are emphasized.

  17. Technology of the light water reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Wymer, R. G.

    1979-01-01

    This essay presents elements of the processes used in the fuel cycle steps and gives an indication of the types of equipment used. The amounts of radioactivity released in normal operation of the processes are indicated and related to radiation doses. Types and costs of equipment or processes required to lower these radioactivity releases are in some cases suggested. Mining and milling, conversion of uranium concentrate to UF/sub 6/, uranium isotope separation, LWR fuel fabrication, fuel reprocessing, transportation, and waste management are covered in this essay. 40 figures, 34 tables. (DLC)

  18. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhong; Robert C. O' Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  19. Hot Fuel Examination Facility/South

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  20. Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N.

    1977-01-01

    As part of the ERDA-funded Gas Turbine Highway Vehicle Systems project, tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 3 x 10/sup 5/ Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5% purity propane was used. The combustion efficiency for 99.8% purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppM of bound nitrogen and consequently produced the highest NO/sub x/ emissions of the three fuels. As much as 85% of the bound nitrogen was converted to NO/sub x/. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8% purity propane. With that fuel, a minimum temperature of 1480 K was required.

  1. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  2. Experimental assessment of accident scenarios for the high temperature reactor fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O.; Avincola, V.; Bottomley, P.D.W.; Rondinella, V.V. [European Commission Joint Research Centre - Institute for Transuranium Elements (JRC-ITU) (Germany)

    2012-11-01

    The High Temperature Reactor (HTR) is an advanced reactor concept with particular safety features. Fuel elements are constituted by a graphite matrix containing sub-mm-sized fuel particles with TRISO (tri-isotropic) coating designed to provide high fission product retention. Passive safety features of the HTR include a low power density in the core compared to other reactor designs; this ensures sufficient heat transport in a loss of coolant accident scenario. The temperature during such events would not exceed 1600 C, remaining well below the melting point of the fuel. An experimental assessment of the fuel behaviour under severe accident conditions is necessary to confirm the fission product retention of TRISO coated particles and to validate relevant computer codes. Though helium is used as coolant for the HTR system, additional corrosion effects come into play in case of an in-leakage affecting the primary circuit. The experimental scope of the present work focuses on two key aspects associated with the HTR fuel safety. Fission product retention at high temperatures (up to {proportional_to}1800 C) is analyzed with the so-called cold finger apparatus (KueFA: Kuehlfinger-Apparatur), while the performance of HTR fuel elements in case of air/steam ingress accidents is assessed with a high temperature corrosion apparatus (KORA: Korrosions-Apparatur). (orig.)

  3. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  4. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  5. Transition from HEU to LEU fuel in Romania`s 14-MW TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L.

    1991-12-31

    The 14-MW TRIGA steady state reactor (SSR) located in Pitesti, Romania, first went critical in the fall of 1979. Initially, the core configuration for full power operation used 29 fuel clusters each containing a 5 {times} 5 square array of HEU (10 wt%) -- ZrH -- Er (2.8 wt%) fuel-moderator rods (1.295 cm o.d.) clad in Incology. With a total inventory of 35 HEU fuel clusters, burnup considerations required a gradual expansion of the core from 29 to 32 and finally to 35 clusters before the reactor was shut down because of insufficient excess reactivity. At this time each of the original 29 fuel clusters had an overage {sup 235}U burnup in the range from 50 to 62%. Because of the US policy regarding the export of highly enriched uranium, fresh HEU TRIGA replacement fuel is not available. After a number of safety-related measurements, the SSR is expected to resume full power operation in the near future using a mixed core containing five LEU TRIGA clusters of the same geometry as the original fuel but with fuel-moderator rods containing 45 wt% U (19.7% {sup 235}U enrichment) and 1.1 wt% Er. Rods for 14 additional LEU fuel clusters will be fabricated by General Atomics. In support of the SSR mixed core operation numerous neutronic calculations have been performed. This paper presents some of the results of those calculations.

  6. Overview of pool hydraulic design of Indian prototype fast breeder ...

    Indian Academy of Sciences (India)

    Computational Fluid Dynamics (CFD) plays a critical role in the design of pool type reactors and becomes an increasingly popular tool, thanks to the advancements in computing technology. In this paper, thermal hydraulic characteristics of a fast breeder reactor, design limits and challenging thermal hydraulic investigations ...

  7. Laser pulse heating of nuclear fuels for simulation of reactor power ...

    Indian Academy of Sciences (India)

    It is important to study the behaviour of nuclear fuels under transient heating conditions from the point of view of nuclear safety. To simulate the transient heating conditions occurring in the known reactor accidents like loss of coolant accident (LOCA) and reactivity initiated accident (RIA), a laser pulse heating system is under ...

  8. Laser pulse heating of nuclear fuels for simulation of reactor power ...

    Indian Academy of Sciences (India)

    Abstract. It is important to study the behaviour of nuclear fuels under transient heating conditions from the point of view of nuclear safety. To simulate the transient heating conditions occurring in the known reactor accidents like loss of coolant accident (LOCA) and reactivity initiated accident (RIA), a laser pulse heating ...

  9. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  10. A review of oxy-fuel combustion in fluidized bed reactors

    CSIR Research Space (South Africa)

    Mathekga, HI

    2016-06-01

    Full Text Available JOURNAL OF ENERGY RESEARCH Int. J. Energy Res. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/er.3486 A review of oxy-fuel combustion in fluidized bed reactors H. I. Mathekga, B. O. Oboirien*,† and B. C...

  11. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    Science.gov (United States)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  12. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  13. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  14. The burnup dependence of light water reactor spent fuel oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies

  15. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  16. A thermodynamic approach for advanced fuels of gas-cooled reactors

    Science.gov (United States)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  17. A thermodynamic approach for advanced fuels of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gueneau, C. [DEN/DPC/SCP - CEA Saclay, 91191 Gif-sur-Yvette cedex (France)]. E-mail: cgueneau@cea.fr; Chatain, S. [DEN/DPC/SCP - CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Gosse, S. [DEN/DPC/SCP - CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Rado, C. [DEN/DTEC/STCF - CEA Valrho, 26702 Pierrelatte cedex (France); Rapaud, O. [DEN/DTEC/STCF - CEA Valrho, 26702 Pierrelatte cedex (France); Lechelle, J. [DEN/DEC/SPUA - CEA Cadarache, 13108 Saint-Paul Lez Durance cedex (France); Dumas, J.C. [DEN/DEC/SESC - CEA Cadarache, 13108 Saint-Paul Lez Durance cedex (France); Chatillon, C. [LTPCM - UMR5614, ENSEEG BP75 Grenoble, 38402 Saint-Martin d' Heres cedex (France)

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO{sub 2} gas formation during the chemical interaction of [UO{sub 2{+-}}{sub x}/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  18. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  19. Macroscopic behavior of fast reactor fuel subjected to simulated thermal transients

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.

    1983-06-01

    High-speed cinematography has been used to characterize the macroscopic behavior of irradiated and unirradiated fuel subjected to thermal transients prototypical of fast reactor transients. The results demonstrate that as the cladding melts, the fuel can disperse via spallation if the fuel contains in excess of approx. 16 ..mu..moles/gm of fission gas. Once the cladding has melted, the macroscopic behavior (time to failure and dispersive nature) was strongly influenced by the presence of volatile fission products and the heating rate.

  20. Modeling of constituent redistribution in U Pu Zr metallic fuel

    Science.gov (United States)

    Kim, Yeon Soo; Hayes, S. L.; Hofman, G. L.; Yacout, A. M.

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  1. Electrometallurgical treatment of sodium-bonded spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, R.W.; McFarlane, H.F.; Goff, K.M. [Argonne National Lab., Idaho Falls, ID (United States)

    2001-07-01

    For 20 years Argonne National Laboratory has been developing electrometallurgical technology for application to spent nuclear fuel. Progress has been rapid during the past 5 years as 1,6 tonnes spent fuel from the Experimental Breeder Reactor-II was treated and preparations were made for processing the remaining 25 tonnes of sodium-bonded fuel from the shutdown reactor. Two high level waste forms are being qualified for geologic disposal. Extension of the technology to oxide fuels or to actinide recycling has been on hold because of US policy on reprocessing. (author)

  2. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2017-06-26

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

  3. Identification and Quantification of Carbon Phases in Conversion Fuel for the Transient Reactor Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Robert; Mata, Angelica; Dunzik-Gougar, Mary Lou; van Rooyen, Isabella

    2016-06-01

    As part of an overall effort to convert US research reactors to low-enriched uranium (LEU) fuel use, a LEU conversion fuel is being designed for the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory. TREAT fuel compacts are comprised of UO2 fuel particles in a graphitic matrix material. In order to refine heat transfer modeling, as well as determine other physical and nuclear characteristics of the fuel, the amount and type of graphite and non-graphite phases within the fuel matrix must be known. In this study, we performed a series of complementary analyses, designed to allow detailed characterization of the graphite and phenolic resin based fuel matrix. Methods included Scanning Electron and Transmission Electron Microscopies, Raman spectroscopy, X-ray Diffraction, and Dual-Beam Focused Ion Beam Tomography. Our results indicate that no single characterization technique will yield all of the desired information; however, through the use of statistical and empirical data analysis, such as curve fitting, partial least squares regression, volume extrapolation and spectra peak ratios, a degree of certainty for the quantity of each phase can be obtained.

  4. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  5. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morrell, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jamison, R. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nef, E. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nigg, D. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  6. Uranium nitride fuel fabrication for SP-100 reactors

    Science.gov (United States)

    Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.

    Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.

  7. FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Shaner, B.E.

    1961-08-15

    The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)

  8. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors; Analyse d'images tridimensionnelles ultrasonores pour l'inspection en service des reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Dancre, M

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  9. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  10. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  11. Integrated scheme of long-term for spent fuel management of power nuclear reactors; Esquema integrado de largo plazo para la administracion de combustible gastado de reactores nucleares de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Martinez C, E., E-mail: ramon-ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    After of irradiation of the nuclear fuel in the reactor core, is necessary to store it for their cooling in the fuel pools of the reactor. This is the first step in a processes series before the fuel can reach its final destination. Until now there are two options that are most commonly accepted for the end of the nuclear fuel cycle, one is the open nuclear fuel cycle, requiring a deep geological repository for the fuel final disposal. The other option is the fuel reprocessing to extract the plutonium and uranium as valuable materials that remaining in the spent fuel. In this study the alternatives for the final part of the fuel cycle, which involves the recycling of plutonium and the minor actinides in the same reactor that generated them are shown. The results shown that this is possible in a thermal reactor and that there are significant reductions in actinides if they are recycled into reactor fuel. (Author)

  12. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    Energy Technology Data Exchange (ETDEWEB)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO

  13. Dynamics of Fluid Fuel Reactors in the Presence of Periodic Perturbations

    Directory of Open Access Journals (Sweden)

    S. Dulla

    2008-01-01

    Full Text Available The appearance of perturbations characterized by a periodic time behavior in fluid fuel reactors is connected to the possible precipitation of fissile compounds which are moved within the primary circuit by the fuel motion. In this paper the time-dependent response of a critical fluid fuel system to periodic perturbations is analyzed, solving the full neutronic model and comparing the results with approximate methods, such as point kinetics. A fundamental eigenvalue of the problem is defined, characterizing the trend of divergence of the power. Parametric studies on the reactivity insertion, the fuel velocity and the recirculation time are performed, evidencing the sensitivity of the eigenvalue on typical design parameters. Non-linear calculations in the presence of a negative feedback term are then performed, in order to assess the possibility to control a fluid fuel system when periodic reactivity perturbations are involved.

  14. Modelling of pellet-cladding interaction in thermal reactor fuel pins using the Sleuth computer code

    Energy Technology Data Exchange (ETDEWEB)

    Beatham, N.; Hughes, H.; Ellis, W.E.; Shaw, T.L. (AEA Technology, Windscale (UK))

    1990-04-01

    This Paper describes the modelling of pellet-cladding mechanical interaction (PCI) in thermal reactor fuel pins using the Sleuth Computer code. The code is based on the fundamental physical mechanisms causing PCI (differential thermal expansion, fuel swelling, cladding creep-down, etc.) coupled with an estimate of strain concentrations over fuel cracks. It uses the classical 1 1/2 dimensional method which subdivides the fuel both axially and radially. While Sleuth was originally developed to predict PCI failure/survival, it has evolved into a general fuel performance code. The latest version, Sleuth 86, which is a modular form with mnemonic variable names, has proved to be an ideal vehicle for testing new sub-models which have been required as the experimental data base has been expanded. (author).

  15. Gamma spectroscopy for analysis of high temperature reactor fuel element KueFA tests

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O.; Laurie, M.; Bottomley, P.D.W.; Rondinella, V.V. [European Commission - Joint Research Centre, Eggenstein-Leopoldshafen (Germany). Institute for Transuranium Elements (JRC-ITU); Allelein, H.J. [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik

    2013-07-01

    The High Temperature Reactor (HTR) is characterized by an advanced design with passive safety features. Fuel elements are constituted by a graphite matrix containing sub-mm-sized fuel particles with TRISO (TRi-ISOtropic) coating designed to provide high fission product retention. During a loss of coolant accident scenario in a HTR the maximum temperature is foreseen to be in the range of 1600-1650 C, remaining well below the melting point of the fuel. An experimental assessment of the fuel behaviour under accident conditions is necessary to investigate the quality of fission product retention of TRISO coated particles in a given fuel element and to validate relevant computer codes. The device used to perform these studies is the cold finger apparatus KueFA (KuehlFinger-Apparatur). (orig.)

  16. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  17. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  18. Optimization of parameters for large power fast sodium cooled reactor core with MOX-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, V.A.; Malysheva, I.V.; Matveev, V.I.; Khomyakov, Yu.S.; Tsiboulia, A.M. [SSC RF IPPE, Obninsk (Russian Federation)

    2009-06-15

    At present the commercial fast sodium cooled reactor (BNK) is under development in Russia. Initially electric power output of this reactor was chosen 1800 MW(e). However, further power output was decreased down to 1200 MW(e) to provide transportation of the main equipment by rail. The main concept of the core for this reactor was taken from BN-1800 reactor: low core specific power, internal self-protection (close to zero sodium void reactivity effect (SVRE) value, decreased reactivity margin for fuel burn-up). This paper presents the results of theoretical and calculation studies on choosing and optimizing physics parameters of BNK-1800 type reactor core and BNK-1200 type reactor core more detail. There is a set of possibilities for improving the core for BNK-1200 type reactor, staying within limits of new design. These possibilities are to improve flattening of the core power field, to provide close to zero value of reactivity margin for fuel burn-up and other. Unique enrichment of fuel and flattening of the power field by steel absorbers was optimal solution for BNK-1800 core with diameter of above 6 m, but for BNK-1200 core of smaller dimensions flattening of power field by two enrichments allows an essential decrease (down to 10%) of maximum specific power and maximum fuel burn-up (at the same average fuel burn-up). In 2008 in Russia Nuclear Safety Rules (PBya RU AS) had been changed. The requirement of negative reactivity coefficient on coolant density was removed. Concerning SVRE, new Rules state the following: the interval of allowable positive SVRE values should be defined in the design of Reactor Installation. It allows to extend the area of optimal values of the core parameters and, in particular, to increase the core height up to 100 cm. It is possible to realize it at the expense of decreasing sodium plenum dimension. Increase of the core height (with corresponding decrease of its radial dimension) leads to essential increase in efficiency of CSS rods

  19. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    Science.gov (United States)

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  20. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    Science.gov (United States)

    2013-06-01

    Be was modeled in SERPENT ; the depletion of Be at 60 MWd/kg in 5.5% 235 U enriched fuel was negligible as the difference between the SERPENT predicted...SIMULATE in the evaluation of core physics performance. 77 Comparison of ENDF-VI based CASMO results with ENDF-VII based SERPENT results for PuO2

  1. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  2. Simulation of the Fuel Reactor of a Coal-Fired Chemical Looping Combustor

    Science.gov (United States)

    Mahalatkar, Kartikeya; O'Brien, Thomas; Huckaby, E. David; Kuhlman, John

    2009-06-01

    Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO2 separation is the more costly component of CM, not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO2-rich gas stream. However, recently a process termed Chemical Looping Combustion (CLC) has been proposed, in which an oxygen-carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H2O and CO2 but requires two reaction vessels, an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal, the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot, vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel, yielding an exhaust gas stream of mainly H2O and CO2. This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration, hence the term "looping." The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However, CO2 separation is easily achieved, the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas-solid or granular flow. To utilize coal in the fuel reactor, in either a moving bed or bubbling fluidized bed, the granular flow is especially critical. The solid coal fuel must be heated by the recycled metal oxide, driving off moisture and volatile material. The remaining char must be gasified by H2O (or CO2), which is recycled from the product stream. The gaseous product of these reactions must then contact the MO before leaving the bed to obtain complete conversion to H2O and CO2. Further, the reduced M particles must be

  3. Gas-cooled reactor programs. Fuel-management positioning and accounting module: FUELMANG Version V1. 11, September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Medlin, T.W.; Hill, K.L.; Johnson, G.L.; Jones, J.E.; Vondy, D.R.

    1982-01-01

    This report documents the code module FUELMANG for fuel management of a reactor. This code may be used to position fuel during the calculation of a reactor history, maintain a mass balance history of the fuel movement, and calculate the unit fuel cycle component of the electrical generation cost. In addition to handling fixed feed fuel without recycle, provision has been made for fuel recycle with various options applied to the recycled fuel. A continuous fueling option is also available with the code. A major edit produced by the code is a detailed summary of the mass balance history of the reactor and a fuel cost analysis of that mass balance history. This code is incorporated in the system containing the VENTURE diffusion theory neutronics code for routine use. Fuel movement according to prescribed instructions is performed without the access of additional user input data during the calculation of a reactor operating history. Local application has been primarily for analysis of the performance of gas-cooled thermal reactor core concepts.

  4. Interim assessment of the denatured /sup 233/U fuel cycle: feasibility and nonproliferation characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Bartine, D.E.; Burns, T.J. (eds.)

    1979-12-01

    A fuel cycle that employs /sup 233/U denatured with /sup 238/U and mixed with thorium fertile material is examined with respect to its proliferation-resistance characteristics and its technical and economic feasibility. The rationale for considering the denatured /sup 233/U fuel cycle is presented, and the impact of the denatured fuel on the performance of Light-Water Reactors, Spectral-Shift-Controlled Reactors, Gas-Cooled Reactors, Heavy-Water Reactors, and Fast Breeder Reactors is discussed. The scope of the R, D and D programs to commercialize these reactors and their associated fuel cycles is also summarized and the resource requirements and economics of denatured /sup 233/U cycles are compared to those of the conventional Pu/U cycle. In addition, several nuclear power systems that employ denatured /sup 233/U fuel and are based on the energy center concept are evaluated.

  5. A nuclear reactor core fuel reload optimization using artificial ant colony connective networks

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alan M.M. de [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: alanmmlima@yahoo.com.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br; Carvalho da Silva, Fernando [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: fernando@con.ufrj.br; Medeiros, Jose Antonio Carlos Canedo [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br

    2008-09-15

    The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem.

  6. Spanish collaboration in the OECD Halden Reactor Project research on Gadolinia Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M.; Munoz-Reja, C.; Tverberg, T.; Jenssen, H. K.

    2010-07-01

    Safe and reliable operation of nuclear power plants benefit from research and development advances and related technical solutions. One research platform is the OECD Halden Reactor Project (HRP). HRP is a joint undertaking of national organisations in 18 countries sponsoring a jointly financed programme under the auspices of the OECD - Nuclear Energy Agency (NEA). As a member state, Spain is participating HRP research programs with ENUSA as a partner in the fuel research programs. Improving the NPP operations, fuel cycles were designed to increase fuel burnup. Higher fuel burnup reduces the number of spent fuel assemblies and thus the costs of new fuel as well as the costs of back-end management. Higher burnup is reached either by prolonging the reactor cycles or by increasing the number of reactor cycles for the fuel in the core. Both ways entail additional requirements concerning fuel enrichment and burnable absorbers as additives and adjustments on the cladding material properties, such as mechanical treatment and chemical composition of the alloys. For these demands and needs ENUSA promotes the research on high burnup effects, gadolinium doped fuels and cladding material behaviour under irradiation. Various experiments, called IFA, are developed and performed also by providing materials. ENUSA collaborates with HRP on various experiments investigating the fuel densification and swelling, fission gas release, pressure limits on UO{sub 2} and (U,Gd)O{sub 2} fuels (IFA-504, -515, -636, -681); the cladding creep, lift-off, corrosion and hydrides on different tubing materials (IFA-567, -610, -638); instrumentation of the experiments, especially on pre-irradiated materials (IFA-533). These experiments are combined with model calculations to improve predictions for higher burnups and to maintain safety margins (IFA-515, -636, -681). Besides these unique in-pile experiments PIEs are performed as well on fuel and structural materials to complete the scope of these

  7. Reactor-based management of used nuclear fuel: assessment of major options.

    Science.gov (United States)

    Finck, Phillip J; Wigeland, Roald A; Hill, Robert N

    2011-01-01

    This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society

  8. Structural response of 1/20-scale models of the Clinch River Breeder Reactor to a simulated hypothetical core-disruptive accident

    Energy Technology Data Exchange (ETDEWEB)

    Romander, C M; Cagliostro, D J

    1978-10-01

    Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-s hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response. Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, and an upper internals structure (UIS).

  9. Development of metallic fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Lee, Chong Yak; Lee, Myung Ho and others

    1999-03-01

    With the vacuum melting and casting of the U-10wt%Zr alloy which is metallic fuel for liquid metal fast breeder reactor, we studied the microstructure of the alloy and the parameters of the melting and casting for the fuel rods. Internal defects of the U-10wt%Zr fuel by gravity casting, were inspected by non-destructive test. U-10wt%Zr alloy has been prepared for the thermal stability test in order to estimate the decomposition of the lamellar structure with relation to swelling under irradiation condition. (author)

  10. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  11. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  12. Irradiation performance of AGR-1 high temperature reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization

  13. Irradiation performance of AGR-1 high temperature reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Hunn, John D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Ploger, Scott A. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Morris, Robert N.; Baldwin, Charles A. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Harp, Jason M.; Winston, Philip L. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Gerczak, Tyler J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Rooyen, Isabella J. van [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Montgomery, Fred C.; Silva, Chinthaka M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2016-09-15

    Highlights: • Post-irradiation examination was performed on AGR-1 coated particle fuel. • Cesium release from the particles was very low in the absence of failed SiC layers. • Silver release was often substantial, and varied considerably with temperature. • Buffer and IPyC layers were found to play a key role in TRISO coating behavior. • Fission products palladium and silver were found in the SiC layer of particles. - Abstract: The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of {sup 110m}Ag from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10{sup −4} to 5 × 10{sup −4} for {sup 154}Eu and 8 × 10{sup −7} to 3 × 10{sup −5} for {sup 90}Sr. The average {sup 134}Cs fractional release from compacts was <3 × 10{sup −6} when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10{sup 5} in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving {sup 134}Cs fractional release in two capsules to approximately 10{sup −5}. Identification and characterization of these particles has provided unprecedented insight into

  14. Optimization of the self-sufficient thorium fuel cycle for CANDU power reactors

    Directory of Open Access Journals (Sweden)

    Bergelson Boris R.

    2008-01-01

    Full Text Available The results of optimization calculations for CANDU reactors operating in the thorium cycle are presented in this paper. Calculations were performed to validate the feasibility of operating a heavy-water thermal neutron power reactor in a self-sufficient thorium cycle. Two modes of operation were considered in the paper: the mode of preliminary accumulation of 233U in the reactor itself and the mode of operation in a self-sufficient cycle. For the mode of accumulation of 233U, it was assumed that enriched uranium or plutonium was used as additional fissile material to provide neutrons for 233U production. In the self-sufficient mode of operation, the mass and isotopic composition of heavy nuclei unloaded from the reactor should provide (after the removal of fission products the value of the multiplication factor of the cell in the following cycle K>1. Additionally, the task was to determine the geometry and composition of the cell for an acceptable burn up of 233U. The results obtained demonstrate that the realization of a self-sufficient thorium mode for a CANDU reactor is possible without using new technologies. The main features of the reactor ensuring a self-sufficient mode of operation are a good neutron balance and moving of fuel through the active core.

  15. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  16. Study of fuel assemblies for the nuclear reactor GFR; Estudio de ensambles de combustible para el reactor nuclear GFR

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: ricarera@yahoo.com.mx

    2008-07-01

    In the present work the criticality calculations for two models of fuel assembly were realized to study the nuclear reactor cooled by gas (Gas Fast Reactor) of IV Generation. Model 1 is an assembly with hexagonal adjustment of fuel rods with reflector in the axial ends higher and lower, the coolant flows between the rods. Model 2 is an hexagonal assembly type block with spheres dispersion and cylindrical channels for where the coolant with reflector in the axial ends also flows. The materials selected for each component of the assemblies, should be resistant to the radiation of fast neutrons and high operation temperatures, for what in both models the following materials were chosen: a mixture of uranium carbide more plutonium for the fuel; a mixture of silicon carbide in different theoretical density percentages for structures and shieldings; helium gas like coolant and a zirconium carbide mixture like reflector, which fulfill the restrictions of being resistant to the high operation temperatures and means of irradiation. General considerations were taken, which are common parameters to both types of assemblies, like size and materials used in the different parts of each model of assembly. The criticality calculations were obtained with the help of the MCNPx code, based on the Monte Carlo method. It was realized a validation of the atomic density data of each component of the assemblies, to have the certainty of the proportionate values that they were introduced of correct way in the code. The results show that model 1 makes better use of the fissile material in a assembly that has the same dimensions externally. That is to say, that from the only considered viewpoint, the neutron one, model 1 is better than model 2. (Author)

  17. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    Science.gov (United States)

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  18. Fuel management optimization for the WWR-M research reactor in Kiev

    Energy Technology Data Exchange (ETDEWEB)

    Mahlers, Y.P. [Institute for Nuclear Research Prospect Nauki 47, Kiev 252022 (Ukraine)

    2002-07-01

    Core loading patterns, number and types of fuel assemblies in the core as well as discharged fuel burnup are determined for the WWR-M research reactor in Kiev by the optimization procedure providing high neutron flux under the safety and fuel constraints. For neutronics calculation, the iterational hybrid method combining diffusion model with higher approximations of neutron transport equation is applied. The results of calculation are shown to be consistent with the results of measurement. To determine the best placement of fuel assemblies in the core, successive mixed-integer linear programming and backward diffusion calculation is used. An example of maximization of thermal neutron flux in large channels in the core is demonstrated. (author)

  19. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results.

  20. INVENTORY AND DESCRIPTION OF COMMERCIAL REACTOR FUELS WITHIN THE UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2011-03-31

    There are currently 104 nuclear reactors in 31 states, operated by 51 different utilities. Operation of these reactors generates used fuel assemblies that require storage prior to final disposition. The regulatory framework within the United States (U.S.) allows for the licensing of used nuclear fuel storage facilities for an initial licensing period of up to 40 years with potential for license extensions in 40 years increments. Extended storage, for periods of up to 300 years, is being considered within the U.S. Therefore, there is an emerging need to develop the technical bases to support the licensing for long-term storage. In support of the Research and Development (R&D) activities required to support the technical bases, a comprehensive assessment of the current inventory of used nuclear fuel based upon publicly available resources has been completed that includes the most current projections of used fuel discharges from operating reactors. Negotiations with the nuclear power industry are ongoing concerning the willingness of individual utilities to provide information and material needed to complete the R&D activities required to develop the technical bases for used fuel storage for up to 300 years. This report includes a status of negotiations between DOE and industry in these regards. These negotiations are expected to result in a framework for cooperation between the Department and industry in which industry will provide and specific information on used fuel inventory and the Department will compensate industry for the material required for Research and Development and Testing and Evaluation Facility activities.

  1. Structural response of 1/20-scale models of the Clinch River Breeder Reactor to a simulated hypothetical core disruptive accident. Technical report 4

    Energy Technology Data Exchange (ETDEWEB)

    Romander, C. M.; Cagliostro, D. J.

    1978-10-01

    Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-sec hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response. Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, an upper internals structure (UIS), and, in the more complex models SM 4 and SM 5, a Ni 200 thermal liner and core support structure. Water simulated the liquid sodium coolant and a low-density explosive simulated the HCDA loads.

  2. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se; Gudowski, Waclaw [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)

    2005-11-15

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: {sup 235}U, which represents the 20% of the fresh uranium, {sup 233}U, which is produced by the transmutation of fertile {sup 232}Th, and {sup 239}Pu, which is produced by the transmutation of fertile {sup 238}U. In order to compensate the depletion of {sup 235}U with the breeding of {sup 233}U and {sup 239}Pu, the quantity of fertile nuclides must be much larger than that one of {sup 235}U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of {sup 235}U. At the same time, the amount of {sup 235}U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k {sub eff} and mass

  3. Analysis of the optimal fuel composition for the Indonesian experimental power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.), Ibaraki (Japan); Sembiring, Tagor Malem [National Nuclear Energy Agency of Indonesia, Banten (Indonesia). Center for Nuclear Reactor Technology and Safety; Arbie, Bakri; Subki, Iyos [PT MOTAB Technology, Jakarta Barat (Indonesia)

    2017-03-15

    The optimal fuel composition of the 10 MWth Experimental Power Reactor (RDE), to be built by the Indonesian National Nuclear Energy Agency (BATAN), is a very important design parameter since it will directly affect the fuel cost, new and spent fuel storage capacity, and other back-end environmental burden. The RDE is a very small sized pebble-bed high temperature gas-cooled reactor (HTGR) with low enriched uranium (LEU) UO{sub 2} TRISO fuel under multipass or once-through-then-out fueling scheme. A scoping study on fuel composition parameters, namely heavy metal (HM) loading per pebble and uranium enrichment is conducted. All burnup, criticality calculations and core equilibrium search are carried out by using BATAN-MPASS, a general in-core fuel management code for pebble bed HTGRs, featured with many automatic equilibrium searching options as well as thermal-hydraulic calculation capability. The RDE User Requirement Document issued by BATAN is used to derive the main core design parameters and constraints. The scoping study is conducted over uranium enrichment in the range of 10 to 20 w/o and HM loading in the range of 4 g to 10 g/pebble. Fissile loading per unit energy generated (kg/GWd) is taken as the objective function for the present scoping study. The analysis results show that the optimal HM loading is around 8 g/pebble. Under the constraint of 80 GWd/t fuel discharge burnup imposed by the technical specification, the uranium enrichment for the optimal HM loading is approximately 13 w/o.

  4. Desludging of N Reactor fuel canisters: Analysis, Test, and data requirements

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.

    1996-01-01

    The N Reactor fuel is currently stored in canisters in the K East (KE) and K West (KW) Basins. In KE, the canisters have open tops; in KW, the cans have sealed lids, but are vented to release gases. Corrosion products have formed on exposed uranium metal fuel, on carbon steel basin component surfaces, and on aluminum alloy canister surfaces. Much of the corrosion product is retained on the corroding surfaces; however, large inventories of particulates have been released. Some of the corrosion product particulates form sludge on the basin floors; some particulates are retained within the canisters. The floor sludge inventories are much greater in the KE Basin than in the KW Basin because KE Basin operated longer and its water chemistry was less controlled. Another important factor is the absence of lids on the KE canisters, allowing uranium corrosion products to escape and water-borne species, principally iron oxides, to settle in the canisters. The inventories of corrosion products, including those released as particulates inside the canisters, are only beginning to be characterized for the closed canisters in KW Basin. The dominant species in the KE floor sludge are oxides of aluminum, iron, and uranium. A large fraction of the aluminum and uranium floor sludge particulates may have been released during a major fuel segregation campaign in the 1980s, when fuel was emptied from 4990 canisters. Handling and jarring of the fuel and aluminum canisters seems likely to have released particulates from the heavily corroded surfaces. Four candidate methods are discussed for dealing with canister sludge emerged in the N Reactor fuel path forward: place fuel in multi-canister overpacks (MCOs) without desludging; drill holes in canisters and drain; drill holes in canisters and flush with water; and remove sludge and repackage the fuel.

  5. Feasibility study of boiling water reactor core based on thorium-uranium fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col Narvarte, 03020 Mexico D.F. (Mexico); Francois Lacouture, Juan Luis; Martin del Campo, Cecilia [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico)], E-mail: gepe@xanum.uam.mx

    2008-01-15

    The design of a boiling water reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to {sup 233}U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main core operating parameters were obtained. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The economic analysis shows that the fuel cycle cost of the proposed core design can be competitive with a standard uranium core design. Finally, a comparison of the toxicity of the spent fuel showed that the toxicity is lower in the thorium cycle than in other fuel cycles (UO{sub 2} and MOX uranium and plutonium) in the case of the once through cycle for light water reactors (LWR)

  6. Neutronic study on seed-blanket type reduced-moderation water reactor fuel assembly

    OpenAIRE

    Shelley, A.; 久語 輝彦; 嶋田 昭一郎; 大久保 努; 岩村 公道

    2004-01-01

    Neutronic study has been done for a PWR-type reduced-moderation water reactor with seed-blanket fuel assemblies to achieve a high conversion ratio, a negative void coefficient and a high burnup by using a MOX fuel. The results of the precise assembly burnup calculations show that the recommended numbers of seed and blanket layers are 15(S15) and 5(B5), respectively. By the optimization of axial configuration, the S15B5 assembly with the seed of 1000times2 mm high, internal blanket of 150 mm h...

  7. Relative radiological impact from a reactor accident in the case of emerging nuclear fuels.

    Science.gov (United States)

    Nicolaou, G

    2009-08-01

    An assessment has been carried out on the radiological impact on an area contaminated from an accident of a nuclear reactor loaded with different actinide fuels considered in transmutation and recycling schemes. The impact of these schemes is compared to reference cases of commercial UO2 and MOX fuels. The effective dose equivalent delivered to permanent residents has been calculated using the RESRAD code and used as an index for the assessment purposes. The highest and lowest doses would be delivered from the self-generating recycling of actinides in fast and thermal reactors, respectively. External irradiation is the main contributor to the dose delivered to the target population in comparison to ingestion and inhalation. The external dose delivered would be attributed for the first few years to 134Cs and for the following several tens of years to 137Cs.

  8. Nuclear reactor fuel assembly duct-tube-to-inlet-nozzle attachment system

    Science.gov (United States)

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the lower end 21 of a nuclear reactor fuel assembly duct tube to an upper end 11 of a nuclear reactor fuel assembly inlet nozzle. The duct tube's lower end 21 has sides terminating in locking tabs 22 which end in inwardly-extending flanges 23. The flanges 23 engage recesses 13 in the top section 12 of the inlet nozzle's upper end 11. A retaining collar 30 slides over the inlet nozzle's upper end 11 to restrain the flanges 23 in the recesses 13. A locking nut 40 has an inside threaded portion 41 which engages an outside threaded portion 15 of the inlet nozzle's upper end 11 to secure the retaining collar 30 against protrusions 24 on the duct tube's sides.

  9. Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) for dual mode applications

    Science.gov (United States)

    Malloy, John; Jacox, Michael; Zubrin, Robert

    1992-07-01

    The Small Externally Fueled Heat-Pipe Thermionic Reactor (SEHPTR) is described in the context of applications as a dual-mode nuclear power source for satellites. The SEHPTR is a thermionic power system based on a reactor with modular fuel elements around cylindrical thermionic heat-pipe modules with diodes for heat rejection. The SEHPTR concept is theorized to be suitable for directly heating hydrogen gas in the core to increase propulsion and reduce orbit-transfer times. The advantages of dual-mode operation of the SEHPTR are listed including enhanced mission safety and performance at relatively low costs. The SEHPTR could provide direct thermal thrust and an integrated stage that symbiotically utilizes electric power, direct thrust, and hydrogen arcjets. The system is argued to be more effective than a nuclear power system designed solely for electrical power production.

  10. Proliferation resistance for fast reactors and related fuel cycles: issues and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, Joseph F [Los Alamos National Laboratory

    2010-01-01

    The prospects for a dramatic growth in nuclear power may depend to a significant degree on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance and nuclear materials accountability. The challenges for fast reactors and related fuel cycles are especially critical. They are being explored in the Generation IV Tnternational Forum (GIF) and the Tnternational Atomic Energy Agency's (IAEA's) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, as well as by many states that are looking to these systems for the efficient lise of uranium resources and long-term energy security. How do any proliferation risks they may pose compare to other reactors, both existing and under development, and their fuel cycles? Can they be designed with intrinsic (technological) features to make these systems more proliferation resistant? What roles can extrinsic (institutional) features play in proliferation resistance? What are the anticipated safeguards requirements, and will new technologies and approaches need to be developed? How can safeguards be facilitated by the design process? These and other questions require a rethinking of proliferation resistance and the prospects for new technologies and other intrinsic and extrinsic features being developed that are responsive to specific issues for fast reactors and related fuel cycles and to the broader threat environment in which these systems will have to operate. There are no technologies that can wholly eliminate the risk of proliferation by a determined state, but technology and design can playa role in reducing state threats and perhaps in eliminating non-state threats. There will be a significant role for extrinsic factors, especially the various measures - from safeguards and physical protection to export controls - embodied in the international nuclear nonproliferation regime. This paper

  11. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    Science.gov (United States)

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  13. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E., E-mail: emerzari@anl.gov [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Fischer, P. [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Yuan, H. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL (United States); Van Tichelen, K.; Keijers, S. [SCK-CEN, Boeretang 200, Mol (Belgium); De Ridder, J.; Degroote, J.; Vierendeels, J. [Ghent University, Ghent (Belgium); Doolaard, H.; Gopala, V.R.; Roelofs, F. [NRG, Petten (Netherlands)

    2016-03-15

    Highlights: • A EUROTAM-US INERI consortium has performed a benchmark exercise related to fast reactor assembly simulations. • LES calculations for a wire-wrapped rod bundle are compared with RANS calculations. • Results show good agreement for velocity and cross flows. - Abstract: As part of a U.S. Department of Energy International Nuclear Energy Research Initiative (I-NERI), Argonne National Laboratory (Argonne) is collaborating with the Dutch Nuclear Research and consultancy Group (NRG), the Belgian Nuclear Research Centre (SCK·CEN), and Ghent University (UGent) in Belgium to perform and compare a series of fuel-pin-bundle calculations representative of a fast reactor core. A wire-wrapped fuel bundle is a complex configuration for which little data is available for verification and validation of new simulation tools. UGent and NRG performed their simulations with commercially available computational fluid dynamics (CFD) codes. The high-fidelity Argonne large-eddy simulations were performed with Nek5000, used for CFD in the Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) suite. SHARP is a versatile tool that is being developed to model the core of a wide variety of reactor types under various scenarios. It is intended both to serve as a surrogate for physical experiments and to provide insight into experimental results. Comparison of the results obtained by the different participants with the reference Nek5000 results shows good agreement, especially for the cross-flow data. The comparison also helps highlight issues with current modeling approaches. The results of the study will be valuable in the design and licensing process of MYRRHA, a flexible fast research reactor under design at SCK·CEN that features wire-wrapped fuel bundles cooled by lead-bismuth eutectic.

  14. Releasable activity and maximum permissible leakage rate within a transport cask of Tehran Research Reactor fuel samples

    National Research Council Canada - National Science Library

    Rezaeian Mahdi; Kamali Jamshid; Roshanzamir Manoochehr; Moosakhani Alireza; Noori Elghar

    2015-01-01

    ... operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated...

  15. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  16. Clad thickness variation N-Reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.A.

    1966-05-12

    The current specifications for the cladding on {open_quotes}N{close_quotes} fuels were established early in the course of process development and were predicted on several basic considerations. Among these were: (a) a desire to provide an adequate safety factor in cladding thickness to insure against corrosion penetration and rupture from uranium swelling stresses; (b) an apprehension that the striations in the zircaloy cladding of the U/zircaloy interface and on the exterior surface might serve as stress-raisers, leading to untimely failures of the jacket; and (c) then existing process capability - the need to maintain a specified ratio between zircaloy and uranium in the billet assembly to effect satisfactory coextrusion. It now appears appropriate to review these specifications in an effort to determine whether some of them may be revised, with attendant gains in economy and/or operating smoothness.

  17. Studies on supercritical water reactor fuel assemblies using the sub-channel code COBRA-EN

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, Luca, E-mail: luca.ammirabile@ec.europa.e [European Commission, JRC, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2010-10-15

    In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).

  18. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  19. IAEA coordinated research program on `harmonization and validation of fast reactor thermomechanical and thermohydraulic codes using experimental data`. 1. Thermohydraulic benchmark analysis on high-cycle thermal fatigue events occurred at French fast breeder reactor Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-06-01

    A benchmark exercise on `Tee junction of Liquid Metal Fast Reactor (LMFR) secondary circuit` was proposed by France in the scope of the said Coordinated Research Program (CRP) via International Atomic Energy Agency (IAEA). The physical phenomenon chosen here deals with the mixture of two flows of different temperature. In a LMFR, several areas of the reactor are submitted to this problem. They are often difficult to design, because of the complexity of the phenomena involved. This is one of the major problems of the LMFRs. This problem has been encountered in the Phenix reactor on the secondary loop, where defects in a tee junction zone were detected during a campaign of inspections after an operation of 90,000 hours of the reactor. The present benchmark is based on an industrial problem and deal with thermal striping phenomena. Problems on pipes induced by thermal striping phenomena have been observed in some reactors and experimental facilities coolant circuits. This report presents numerical results on thermohydraulic characteristics of the benchmark problem, carried out using a direct numerical simulation code DINUS-3 and a boundary element code BEMSET. From the analysis with both the codes, it was confirmed that the hot sodium from the small pipe rise into the cold sodium of the main pipe with thermally instabilities. Furthermore, it was indicated that the coolant mixing region including the instabilities agrees approximately with the result by eye inspections. (author)

  20. Aircraft and Bases Powered by Compact Nuclear Reactors: Solutions to Projecting Power in Highly Contested Environments and Fossil Fuel Dependence

    Science.gov (United States)

    2015-05-01

    deuterium, and lithium are plentiful on the earth and in the solar system. As far as fuel for existing and future fission reactors, uranium and...number of operating centrifuges and its stockpile of low- enriched uranium. In return, the United States promised fewer economic sanctions. President...vessels, and bases. Like fission, fusion reactors have options for fuel. These options include hydrogen, deuterium, lithium , and helium-3. The first

  1. A CFD M&S PROCESS FOR FAST REACTOR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kurt D. Hamman; Ray A. Berry

    2008-09-01

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly “benchmark” geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k-e and SST (Menter) k-? were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  2. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  3. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  4. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    Science.gov (United States)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non

  5. ANALYSIS OF GAMMA HEATING AT TRIGA MARK REACTOR CORE BANDUNG USING PLATE TYPE FUEL

    Directory of Open Access Journals (Sweden)

    Setiyanto Setiyanto

    2016-10-01

    Full Text Available ABSTRACT In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities and central irradiation position (CIP, especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0,87 W/g, but very low value for Lazy Susan position (lest then 0,11 W/g. Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. Keywords: gamma heating, nuclear reactor, research reactor, reactor safety.   ABSTRAK Dengan dihentikannya produksi elemen bakar reaktor jenis Triga oleh produsen, maka semua reaktor TRIGA di dunia terganggu operasinya, termasuk juga reaktor TRIGA 2000 di Bandung. Untuk mendukung pengoperasian reaktor TRIGA Bandung

  6. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  7. Reactor physics modelling of accident tolerant fuel for LWRs using ANSWERS codes

    Directory of Open Access Journals (Sweden)

    Lindley Benjamin A.

    2016-01-01

    Full Text Available The majority of nuclear reactors operating in the world today and similarly the majority of near-term new build reactors will be LWRs. These currently accommodate traditional Zr clad UO2/PuO2 fuel designs which have an excellent performance record for normal operation. However, the events at Fukushima culminated in significant hydrogen production and hydrogen explosions, resulting from high temperature Zr/steam interaction following core uncovering for an extended period. These events have resulted in increased emphasis towards developing more accident tolerant fuels (ATFs-clad systems, particularly for current and near-term build LWRs. R&D programmes are underway in the US and elsewhere to develop ATFs and the UK is engaging in these international programmes. Candidate advanced fuel materials include uranium nitride (UN and uranium silicide (U3Si2. Candidate cladding materials include advanced stainless steel (FeCrAl and silicon carbide. The UK has a long history in industrial fuel manufacture and fabrication for a wide range of reactor systems including LWRs. This is supported by a national infrastructure to perform experimental and theoretical R&D in fuel performance, fuel transient behaviour and reactor physics. In this paper, an analysis of the Integral Inherently Safe LWR design (I2S-LWR, a reactor concept developed by an international collaboration led by the Georgia Institute of Technology, within a US DOE Nuclear Energy University Program (NEUP Integrated Research Project (IRP is considered. The analysis is performed using the ANSWERS reactor physics code WIMS and the EDF Energy core simulator PANTHER by researchers at the University of Cambridge. The I2S-LWR is an advanced 2850 MWt integral PWR with inherent safety features. In order to enhance the safety features, the baseline fuel and cladding materials that were chosen for the I2S-LWR design are U3Si2 and advanced stainless steel respectively. In addition, the I2S-LWR design

  8. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Gauld, Ian C [ORNL

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  9. Sodium void reactivity comparison for advanced liquid-metal reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dobbin, K.D.; Kessler, S.F.; Gedeon, S.R.; Omberg, R.P. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-01-01

    The advanced liquid-metal reactor (ALMR) program in the US is based on metal as the reference fuel because of its favorable neutronic feedback characteristics for passive safety. Favorable relationships exist between core performance and safety that provide a passively safe metal fuel system with a large margin to sodium boiling. Because of this, the reduction of the positive sodium void coefficient of reactivity is not an overriding design objective. A positive sodium void effect with metal fuel is due to neutron spectral hardening that dominates capture and leakage changes during sodium voiding. This can produce as much as 5-$ positive sodium void reactivity for mixed plutonium-uranium fuel in a smaller core designed for a near-zero burnup reactivity swing. It is possible to reduce the positive void feedback and its effect on hypothetical loss-of-flow (LOF) scenarios with a commensurate increase in burnup swing. However, metal fuel's small Doppler coefficient, excellent fuel conductivity, and resultant small temperature gradients provide less reactivity feedback to handle postulated transient overpower (TOP) events for cores with significant burnup reactivity swings. The purpose of this work was to study the relationship between reduction of the sodium void and the resultant increase in the burnup reactivity swing for an ALMR modeled with metal, nitride, and oxide fuel.

  10. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  11. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  12. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  13. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddock, Thomas L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ning [Idaho National Lab. (INL), Idaho Falls, ID (United States); Phillips, Ann Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schreck, Kenneth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolin, John M. [General Atomics, San Diego, CA (United States); Veca, Anthony [General Atomics, San Diego, CA (United States); McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Lell, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  14. Advanced In-Core Fuel Cycles for the Gas Turbine-Modular Helium Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto

    2006-04-15

    Amid generation IV of nuclear power plants, the Gas Turbine - Modular Helium Reactor, designed by General Atomics, is the only core with an energy conversion efficiency of 50%; the safety aspects, coupled to construction and operation costs lower than ordinary Light Water Reactors, renders the Gas Turbine - Modular Helium reactor rather unequaled. In the present studies we investigated the possibility to operate the GT-MHR with two types of fuels: LWRs waste and thorium; since thorium is made of only fertile {sup 232}Th, we tried to mix it with pure {sup 233}U, {sup 235}U or {sup 239}Pu; ex post facto, only uranium isotopes allow the reactor operation, that induced us to examine the possibility to use a mixture of uranium, enriched 20% in {sup 235}U, and thorium. We performed all calculations by the MCNP and MCB codes, which allowed to model the reactor in a very detailed three-dimensional geometry and to describe the nuclides transmutation in a continuous energy approach; finally, we completed our studies by verifying the influence of the major nuclear data libraries, JEFF, JENDL and ENDF/B, on the obtained results.

  15. Analysis of the Jamaican Slowpoke-2 Research Reactor for the Conversion from HEU to LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Puig, F.; Dennis, Haile T.

    2014-01-01

    The Jamaican SLOWPOKE-2 (JM-1) is a 20 kW research reactor manufactured by Atomic Energy of Canada Limited that has been operating for 30 years at the University of the West Indies, Mona Campus in Kingston, Jamaica. The University, with IAEA assistance under the GTRI/RERTR program, is currently in the process of converting from HEU to LEU. Full-reactor neutronic and thermal hydraulic analyses were performed, using MCNP5 and PLTEMP/ANL v4.1 respectively, on both the existing HEU and proposed LEU core configurations. Although conversion will result in the full nominal reactor power increasing from 20 kW to approximately 22 kW, in order to maintain the 1012 n·cm-2 s-1 flux in the inner irradiation channels, and maximum fuel temperature to increase from ~82°C to ~113°C, the analysis illustrates that increased safety margins will be obtained. No significant reactor behavior changes are expected and the characteristic SLOWPOKE-2 reactor inherent safety features will be preserved.

  16. Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes

    Science.gov (United States)

    Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.

    2017-02-01

    International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.

  17. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, M.R.; Schneider, E.A.; Recktenwald, G.; Cady, K.B. [The Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, C2200, Austin, 78712 (United States)

    2009-06-15

    Reducing the disposal burden of the long lived radioisotopes that are contained within spent uranium oxide fuel is essential for ensuring the sustainability of nuclear power. Because of their non-fertile matrices, inert matrix fuels (IMFs) could allow light-water reactors to achieve a significant burn down of plutonium and minor actinides that are that are currently produced as a byproduct of operating light-water reactors. However, the extent to which this is possible is not yet fully understood. We consider a ZrO{sub 2} based IMF with a high transuranic loading and show that the neutron fluence (and the subsequent fuel residence time required to achieve it) present a practical limit for the achievable actinide burnup. The accumulation of transuranics in spent uranium oxide fuel is a major obstacle for the sustainability of nuclear power. While commercial light-water reactors (LWR's) produce these isotopes, they can be used to transmute them. At present, the only viable option for doing this is to partly fuel reactors with mixed oxide fuel (MOX) made using recycled plutonium. However, because of parasitic neutron capture in the uranium matrix of MOX, considerable plutonium and minor actinides are also bred as the fuel is burned. A better option is to entrain the recycled isotopes in a non-fertile matrix such as ZrO{sub 2}. Inert matrices such as these were originally envisioned for burning plutonium from dismantled nuclear weapons [1]. However, because they achieve a conversion ratio of zero, they have also been considered as a better alternative to MOX [2-6]. Plutonium and minor actinides dominate the long term heat and radiological outputs from spent nuclear fuel. Recent work has shown that that IMFs can be used to reduce these outputs by at least a factor of four, on a per unit of energy generated basis [6]. The degree of reduction is strongly dependent on IMF burnup. In principle, complete transmutation of the transuranics could be achieved though this

  18. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  19. Interim storage of power reactor spent nuclear fuel (SNF) and its potential application to SNF separations and closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Salomon, E-mail: slevy112@aol.com

    2009-10-15

    Interim, centralized, engineered (dry cask) storage facilities for USA light water power reactor spent nuclear fuel (SNF) should be implemented to complement and to offer much needed flexibility while the Nuclear Regulatory Commission is funded to complete its evaluation of the Yucca Mountain License and to subject it to public hearings. The interim sites should use the credo reproduced in Table 1 [Bunn, M., 2001. Interim Storage of Spent Nuclear Fuel. Harvard University and University of Tokyo] and involve both the industry and government. The sites will help settle the 50 pending lawsuits against the government and the $11 billion of potential additional liabilities for SNF delay damages if Yucca Mountain does not being operation in 2020 [DOE, 2008a. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Stations (December)]. Under the developing consensus to proceed with closed fuel cycles, it will be necessary to develop SNF separation facilities with stringent requirements upon separation processes and upon generation of only highly resistant waste forms. The location of such facilities at the interim storage sites would offer great benefits to those sites and assure their long term viability by returning them to their original status. The switch from once-through to closed fuel cycle will require extensive time and development work as illustrated in 'The Path to Sustainable Nuclear Energy' [DOE, 2005. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles. DOE (September)]. A carefully crafted long term program, funded for at least 5 years, managed by a strong joint government-industry team, and subjected to regular independent reviews should be considered to assure the program stability and success. The new uncertainty about Yucca Mountain role raises two key issues: (a) what to do with the weapons and other high level government

  20. Fabrication of U-10 wt.%Zr Metallic Fuel Rodlets for Irradiation Test in BOR-60 Fast Reactor

    Directory of Open Access Journals (Sweden)

    Ki-Hwan Kim

    2016-01-01

    Full Text Available The fabrication technology for metallic fuel has been developed to produce the driver fuel in a PGSFR in Korea since 2007. In order to evaluate the irradiation integrity and validate the in-reactor of the starting metallic fuel with FMS cladding for the loading of the metallic fuel, U-10 wt.%Zr fuel rodlets were fabricated and evaluated for a verification of the starting driver fuel through an irradiation test in the BOR-60 fast reactor. The injection casting method was applied to U-10 wt.%Zr fuel slugs with a diameter of 5.5 mm. Consequently, fuel slugs per melting batch without casting defects were fabricated through the development of advanced casting technology and evaluation tests. The optimal GTAW welding conditions were also established through a number of experiments. In addition, a qualification test was carried out to prove the weld quality of the end plug welding of the metallic fuel rodlets. The wire wrapping of metallic fuel rodlets was successfully accomplished for the irradiation test. Thus, PGSFR fuel rodlets have been soundly fabricated for the irradiation test in a BOR-60 fast reactor.

  1. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Shayer, Z., E-mail: zshayer@mines.edu [Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2017-03-15

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO{sub 2}, Pu{sub 3}Si{sub 2}, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO{sub 2}) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO{sub 2}), Pu{sub 0.31}ZrH{sub 1.6}Th{sub 1.08}, and PuZrO{sub 2}MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B{sub 4}C, CdO, Dy{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, HfO{sub 2}, In{sub 2}O{sub 3}, Lu{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO{sub 2}MgO (8 wt% Pu) target

  2. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail: elena.koresheva@gmail.com; Krokhin, O. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Osipov, I. E. [Power Efficiency Centre, Inter RAO UES (Russian Federation)

    2016-12-15

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain size should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.

  3. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Chichester, H.M., E-mail: heather.chichester@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Porter, D.L., E-mail: douglas.porter@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Wootan, D.W., E-mail: david.wootan@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99354 (United States)

    2016-05-15

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data. - Highlights: • Irradiation and post irradiation examination of full-length metallic fast reactor fuel. • Fuel cladding chemical interaction formation in full-length metallic fast reactor fuel. • Correlation of FCCI with temperature and burnup. • Comparison of full-length reactor fuel performance with test reactor fuel performance.

  4. Reactor physics analysis for the design of nuclear fuel lattices with burnable poisons

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G. [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico); Guzman, Juan R., E-mail: maestro_juan_rafael@hotmail.com [Departamento de Fisica y Matematicas, Instituto Politecnico Nacional, Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Mexico, D.F. (Mexico)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A fuel rod optimization for the coupled bundle-core design in a BWR is developed. Black-Right-Pointing-Pointer An algorithm to minimize the rod power peaking factor is used. Black-Right-Pointing-Pointer The fissile content is divided in two factors. Black-Right-Pointing-Pointer A reactor physics analysis of these factors is performed. Black-Right-Pointing-Pointer The algorithm is applied to a typical BWR fuel lattice. - Abstract: The main goals in nuclear fuel lattice design are: (1) minimizing the rod power peaking factor (PPF) in order that the power level distribution is the most uniform; (2) obtaining a prescribed target value for the multiplication factor (k) at the end of the irradiation in order that the fuel lattice reaches the desired reactivity; and (3) obtaining a prescribed target value for the k at the beginning of the irradiation in order that the reactivity excess is neither a high value (to ease the maneuvering of the control systems) nor a low value (to avoid the penalization of the high cost of the burnable poison content). In this work a simple algorithm to design the burnable poison bearing nuclear fuel lattice is presented. This algorithm is based on a reactor physics analysis. The algorithm is focused on finding the radial distribution of the fuel rods having different fissile and burnable poison contents in order to obtain: (1) an adequate minimum PPF; (2) a prescribed target value of the k at the end of the irradiation; and (3) a prescribed target value of the k at the beginning of the irradiation. This algorithm is based on the factorization of the fissile and burnable poison contents of each fuel rod and on the application of the first-order perturbation theory. The performance of the algorithm is demonstrated with the design of a fuel lattice composed of uranium dioxide (UO{sub 2}) and gadolinium dioxide (Gd{sub 2}O{sub 3}) for boiling water reactors (BWR). This algorithm has been accomplished

  5. U.S. Department of Energy & Nuclear Regulatory Commission Advanced Fuel Cycle Research & Development Seminar Series FY 2007 & 2008

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2008-08-01

    In fiscal year 2007, the Advanced Burner Reactor project initiated an educational seminar series for the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) personnel on various aspects of fast reactor fuel cycle closure technologies. This important work was initiated to inform DOE and NRC personnel on initial details of sodium-cooled fast reactor, separations, waste form, and safeguard technologies being considered for the Advanced Fuel Cycle Research and Development program, and to learn the important lesson from the licensing process for the Clinch River Breeder Reactor Plant that educating the NRC staff early in the regulatory process is very important and critical to a project success.

  6. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  7. EVALUATION METRICS APPLIED TO ACCIDENT TOLERANT FUEL CLADDING CONCEPTS FOR VVER REACTORS

    Directory of Open Access Journals (Sweden)

    Martin Sevecek

    2016-12-01

    Full Text Available Enhancing the accident tolerance of LWRs became a topic of high interest in many countries after the accidents at Fukushima-Daiichi. Fuel systems that can tolerate a severe accident for a longer time period are referred as Accident Tolerant Fuels (ATF. Development of a new ATF fuel system requires evaluation, characterization and prioritization since many concepts have been investigated during the first development phase. For that reason, evaluation metrics have to be defined, constraints and attributes of each ATF concept have to be studied and finally rating of concepts presented. This paper summarizes evaluation metrics for ATF cladding with a focus on VVER reactor types. Fundamental attributes and evaluation baseline was defined together with illustrative scenarios of severe accidents for modeling purposes and differences between PWR design and VVER design.

  8. Preparation of U–Zr–Mn, a Surrogate Alloy for Recycling Fast Reactor Fuel

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2015-01-01

    Full Text Available Metallic fuel slugs of U–10Zr–5Mn (wt%, a surrogate alloy for the U–TRU–Zr (TRU: a transuranic element alloys proposed for sodium-cooled fast reactors, were prepared by injection casting in a laboratory-scale furnace, and their characteristics were evaluated. As-cast U–Zr–Mn fuel rods were generally sound, without cracks or thin sections. Approximately 68% of the original Mn content was lost under dynamic vacuum and the resulting slug was denser than those prepared under Ar pressure. The concentration of volatile Mn was as per the target composition along the entire length of the rods prepared under 400 and 600 Torr. Impurities, namely, oxygen, carbon, silicon, and nitrogen, totaled less than 2,000 ppm, satisfying fuel criteria.

  9. Experimental assessment of accident scenarios for the high temperature reactor fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O.; Laurie, M.; Bottomley, P.D.W.; Rondinella, V.V. [European Commission, Joint Research Center, Karlsruhe (Germany). Inst. for Transuranium Elements; Avincola, V. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Angewandte Materialien (IAM-AWP); Allelein, H.J. [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik

    2013-11-15

    The High Temperature Reactor (HTR) is characterized by an advanced design with passive safety features. Fuel elements are constituted by a graphite matrix containing sub-mm-sized fuel particles with TRi-ISOtropic (TRISO) coating, designed to provide high fission product retention. During a loss of coolant accident scenario in a HTR the maximum temperature is foreseen to be in the range of 1,600 to 1,650 C, remaining well below the melting point of the fuel. Two key aspects associated with the safety of HTR fuel are assessed in this paper: fission product retention at temperatures up to 1,800 C is analyzed with the Cold Finger Apparatus (KueFA) while the behaviour of HTR-relevant fuel materials in an oxidizing environment is studied with the Corrosion Apparatus KORA. The KueFA is used to observe the combined effects of Depressurization and LOss of Forced Circulation (DLOFC) accident scenarios on HTR fuel. Originally designed at the Forschungszentrum Juelich (FZJ), an adapted KueFA operates on irradiated fuel in hot cell at JRC-ITU. A fuel pebble is heated in helium atmosphere for several hundred hours, mimicking accident temperatures up to 1,800 C and realistic temperature transients. Nongaseous volatile fission products released from the fuel condense on a water cooled stainless steel plate dubbed 'Cold Finger'. Exchanging plates frequently during the experiment and analyzing plate deposits by means of High Purity Germanium (HPGe) gamma spectroscopy allows a reconstruction of the fission product release as a function of time and temperature. To achieve a good quantification of the release, a careful calibration of the setup is necessary and a collimator needs to be used in some cases. The analysis of condensation plates from recent KueFA tests shows that fission product release quantification is possible at high and low activity levels. Another relevant HTR accident scenario is air ingress into the reactor vessel as a consequence of a DLOFC incident. In

  10. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  11. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  12. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-09-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  13. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  14. Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU. Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.

  15. The integral fast reactor and its role in a new generation of nuclear power plants, Tokai, Japan, November 19-21, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.R.

    1986-01-01

    This report presents information on the Integral Fast Reactor and its role in the future. Information is presented in the areas of: inherent safety; other virtues of sodium-cooled breeder; and solving LWR fuel cycle problems with IFR technologies. (JDB)

  16. Analysis of LOCA Scenarios in the NIST Research Reactor Before and After Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Diamond, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-30

    An analysis has been done of hypothetical loss-of-coolant-accidents (LOCAs) in the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The purpose of the analysis is to determine if the peak clad temperature remains below the Safety Limit, which is the blister temperature for the fuel. The configuration of the NBSR considered in the analysis is that projected for the future when changes will be made so that shutdown pumps do not operate when a LOCA signal is detected. The analysis was done for the present core with high-enriched uranium (HEU) fuel and with the proposed low-enriched uranium (LEU) fuel that would be used when the NBSR is converted from one to the other. The analysis consists of two parts. The first examines how the water would drain from the primary system following a break and the possibility for the loss of coolant from within the fuel element flow channels. This work is performed using the TRACE system thermal-hydraulic code. The second looks at the fuel clad temperature as a function of time given that the water may have drained from many of the flow channels and the water in the vessel is in a quasi-equilibrium state. The temperature behavior is investigated using the three-dimensional heat conduction code HEATING7.3. The results in all scenarios considered for both HEU and LEU fuel show that the peak clad temperature remains below the blister temperature.

  17. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  18. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  19. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  20. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie

    2016-06-23

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  1. Reactors as a Source of Antineutrinos: Effects of Fuel Loading and Burnup for Mixed-Oxide Fuels

    Science.gov (United States)

    Bernstein, Adam; Bowden, Nathaniel S.; Erickson, Anna S.

    2018-01-01

    In a conventional light-water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under an assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for low-enriched uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields in the emitted antineutrino spectra and the detector response function, we show that the difference in corewide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors.

  2. Application of nondestructive methods for qualification of high density fuels in the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose E.R.; Silva, Antonio T.; Domingos, Douglas B.; Terremoto, Luis A.A., E-mail: jersilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN/CNEN-SP manufactures fuels to be used in its research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil still does not have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds (U{sub 3}O{sub 8} and U{sub 3}Si{sub 2} dispersed in Al matrix) internationally tested and qualified to be used in research reactors, and has attained experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans at IPEN/CNEN-SP to increase the uranium density of the fuels. Ten fuel miniplates (five containing U{sub 3}O{sub 8}-Al and five containing U{sub 3}Si{sub 2}-Al), with densities of 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3} respectively, are being irradiated inside an irradiation device placed in a peripheral position of the IEA-R1 core. Non-destructive methods will be used to evaluate irradiation performance of the fuel miniplates after successive cycles of irradiation, by means: monitoring the reactor parameters during operation; periodic underwater visual inspection of fuel miniplates, eventual sipping test for fuel miniplates suspected of leakage and underwater measuring of the miniplate thickness for assessment of the fuel miniplate swelling. (author)