WorldWideScience

Sample records for breeder reactor blankets

  1. Degrading the Plutonium Produced in Fast Breeder Reactor Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jor-Shan; Kuno, Yusuke [Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2009-06-15

    Plutonium quality, defined as the plutonium isotopic composition, is an important measure for proliferation-resistance (PR) of a nuclear energy system. The quality of the plutonium produced in the blanket assemblies of a fast breeder reactor could be as good as or better than the weapons-grade (WG). The presence of such good quality plutonium is a proliferation concern. There are various options to degrade the plutonium produced in the breeder blanket. The obvious one is to blend the blanket plutonium with those produced from the reactor core during reprocessing. Other options try to prevent the generation of good quality plutonium (Pu). The Protected Plutonium Production (P{sup 3}) Project proposed by Tokyo Institute of Technology (TIT)1,2,3 advocates the doping of certain amount of neptunium (Np), or americium (Am) in fresh blanket fuel for irradiation. The increased production of {sup 238}Pu, {sup 240}Pu and {sup 242}Pu by neutron capture in {sup 237}Np and Am would degrade the blanket plutonium. However, as {sup 237}Np is a controlled material according to IAEA, its use as doping material in fresh blanket fuel presents a concern for nuclear proliferation. In addition, the fabrication of fresh blanket fuel with inclusion of americium would be complicated due to the emission of intense low-energy gamma radiation from {sup 241}Am. Am is normally accompanied by Cm since the separation of those 2 elements is very difficult. Fuel containing both Am and Cm may make Safeguards measurement difficult. A variation would be doping the fresh blanket fuel with minor actinide (e.g., a group of neptunium, americium, and curium), or with separated reactor-grade (RG) plutonium. The drawback of such schemes would be the need for glove boxes in fresh blanket fuel fabrication. It is possible to fuel the breeder blankets with recycled (reprocessed) uranium oxide. The recycled uranium, recovered from reprocessing, contains {sup 236}U, which when irradiated in the blanket would

  2. Fast breeder reactor blanket management: comparison of LMFBR and GCFR blankets

    International Nuclear Information System (INIS)

    The economic performance of the fast breeder reactor blanket, considering different fuel management schemes was studied. To perform this, the investigation started with a standard reactor physics calculation. Then, two economic models for evaluation of the economic performance of the radial blanket were developed. These models formed the basis of a computer code, ECOBLAN, which computes the net economic gain and the levelized fuel cost due to the radial blanket. The net gain in terms of dollars and $/kgHM-y and the levelized fuel cost in mills/kWhe were obtained as a function of blanket thickness and a residence time of the fuel in the blanket. A LMFBR and a GCFR were the reactor models considered in this study. The optimum radial blanket of a GCFR consists of two rows, that of a LMFBR consists of three rows. Regarding the different fuel management schemes, the fixed blanket was found to be more favorable than reshuffled blanket. Out-in and in-out reshuffled blanket offer almost the same net gain. In all the cases, the burnup calculated for the fuel was found to be less than the acceptable limit. There is an optimum residence time for the fuel in the blanket which depends on the position of the fuel in the blanket and the fuel management scheme studied. As expected, except for very short residence times (less than 2.5 years), the radial blanket is a net income producer. There is no significant difference between the economic performance of the blanket of a LMFBR and a GCFR

  3. Economic performance of liquid-metal fast breeder reactor and gas-cooled fast reactor radial blankets

    International Nuclear Information System (INIS)

    The economic performance of the radial blanket of a liquid-metal fast breeder reactor (LMFBR) and a gas-cooled fast reactor (GCFR) has been studied based on the calculation of the net financial gain as well as the value of the levelized fuel cost. The necessary reactor physics calculations have been performed using the code CITATION, and the economic analysis has been carried out with the code ECOBLAN, which has been written for that purpose. The residence time of fuel in the blanket is the main variable of the economic analysis. Other parameters that affect the results and that have been considered are the value of plutonium, the price of heat, the effective cost of money, and the holdup time of the spent fuel before reprocessing. The results show that the radial blanket of both reactors is a producer of net positive income for a broad range of values of the parameters mentioned above. The position of the fuel in the blanket and the fuel management scheme applied affect the monetary gain. There is no significant difference between the economic performance of the blanket of an LMFBR and a GCFR

  4. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L. (Associazione Euratom-CNEN sulla Fusione, Centro di Frascati (Italy))

    1989-04-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods ({gamma}LiAlO/sub 2/) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to {gamma}LiAlO/sub 2/ volume ratio is 4/1. The He inlet and outlet branches are cooling Be and {gamma}LiAlO/sub 2/, respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m/sup 2/), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570/sup 0/C; inlet He temperature=250/sup 0/; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum {gamma}LiAlO/sub 2/ temperature=400/900/sup 0/C; maximum structural temperature=475/sup 0/C; and maximum Be temperature=525/sup 0/C. (orig.).

  5. European DEMO BOT solid breeder blanket

    International Nuclear Information System (INIS)

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.)

  6. Progress in studies of Li/sub 17/Pb/sub 83/ as liquid breeder for fusion reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.

    1983-09-01

    A review of the experimental and conceptual design work in progress at JRC-Ispra to investigate the feasibility of the eutectic Li/sub 17/Pb/sub 83/ as a liquid breeder for experimental power reactors is presented. Results of recent measurements to implement the data base of this material are given in the following areas: physical parameters, hydrogen solubility and recovery, chemical reactivity with air and water, compatibility with steel. The studies carried out on blanket concepts for the INTOR (International Tokamak Reactor)/NET (Next European Torus) projects are outlined and discussed.

  7. Fast-Breeder-Blanket Project: FBBF. Final report

    International Nuclear Information System (INIS)

    This report is the final report for DOE contract DE-AC02-76ET37237 with the Purdue Fast Breeder Blanket Project. The Project was initiated to investigate the uncertainties in Fast Breeder Reactor blanket calculations. Absolute measurements of key neutron reaction rates, neutron spectra, and gamma-ray energy depositions were made in simulated FBF blankets in the Fast Breeder Blanket Facility (FBBF), a Cf-252 driven subcritical facility. Calculation of the spectra and integral reaction rates were made using methods, computer codes, and cross section data typical of those currently used in the design of FBR's. Comparisons of calculated to experimental integral neutron reaction rates give good agreement at the inner portions of the blanket by diverge to C/E ratios of about 0.65 at the outer edge of the blanket for reactions sensitive to the neutron density

  8. ITER solid breeder blanket materials database

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  9. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    International Nuclear Information System (INIS)

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m2 and a surface heat flux of 1 MW/m2. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO2 rods. The helium coolant pressure is 5 MPa, entering the module at 2970C and exiting at 5500C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter

  10. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A. (eds.)

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  11. Development of Solid Breeder Blanket at JAERI

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has been performing blanket development based on the long-term research program of fusion blankets in Japan, which was approved by the Fusion Council of Japan in 1999. The blanket development consists of out-pile R and D, In-pile R and D, TBM Neutronics and TPR Tests and Tritium Recovery System R and D. Based on the achievements of element technology development, the R and D program is now stepping to the engineering testing phase, in which scalable mockup tests will be performed for obtaining engineering data unique to the specific structure of the components, with the objective to define the fabrication specification of test blanket modules for ITER. This paper presents the major achievements of the element technology development of solid breeder blanket in JAERI

  12. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  13. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  14. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  15. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  16. Conceptual design of a water cooled breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pu, Yong; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Jia; Peng, ChangHong [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, Lei [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • We proposed a water cooled ceramic breeder blanket with superheated steam. • Superheated steam is generated at the first wall and the front part of breeder zone. • Superheated steam has negligible impact on neutron absorption by coolant in FW and improves TBR. • The superheated steam at higher temperature can improve thermal efficiency. - Abstract: China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by {sup 6}Li(n,α)T reaction. Li{sub 2}TiO{sub 3} pebbles and Be{sub 12}Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li{sub 2}TiO{sub 3} and Be{sub 12}Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be{sub 12}Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option

  17. Conceptual design of a water cooled breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Highlights: • We proposed a water cooled ceramic breeder blanket with superheated steam. • Superheated steam is generated at the first wall and the front part of breeder zone. • Superheated steam has negligible impact on neutron absorption by coolant in FW and improves TBR. • The superheated steam at higher temperature can improve thermal efficiency. - Abstract: China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by 6Li(n,α)T reaction. Li2TiO3 pebbles and Be12Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li2TiO3 and Be12Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be12Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option, in spite of lower TBR, Pb is taken into

  18. Neutronic optimization of solid breeder blankets for STARFIRE design

    International Nuclear Information System (INIS)

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  19. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  20. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  1. Proceedings of the eleventh international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    This report is the Proceedings of 'the Eleventh International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. This workshop was held in Tokyo, Japan on December 15-17, 2003. About thirty experts from China, EU, Japan, Korea, Latvia, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of Li2TiO3 and so on, fabrication technology developments and characterization of the Li2TiO3 and Li4SiO4 pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li2TiO3 and Li4SiO4 pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system. The 26 of the presented papers are indexed individually. (J.P.N.)

  2. Impact of blanket tritium against the tritium plant of fusion reactor

    International Nuclear Information System (INIS)

    The breeder blanket and the blanket tritium recovery system are tested using test blanket modules during ITER campaign. And then, these are integrated with the tritium plant for the first time at a prototype reactor after ITER. In this work, impact to the tritium plant by integration of the solid breeder blanket was discussed. The method of tritium extraction from the blanket and the choice of the process for breeder blanket interface should be discussed not only from the viewpoint of tritium release but also from the viewpoint of the load of processing. (author)

  3. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    International Nuclear Information System (INIS)

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits. (fusion engineering)

  4. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    Science.gov (United States)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  5. Fast breeder reactor research

    International Nuclear Information System (INIS)

    , Italy, in April or May 1977. Recognizing the importance of international co-ope ration within the framework of IWGFR for preparing surveys, proposals and recommendations concerning sodium cooled fast breeder reactors, the Working Group prepared a number of joint documents with the help of experts from the participating countries, discussed them at the Eighth Annual Meeting and made recommendations on the preparation of subsequent joint documents. (author)

  6. The gas-cooled Li2O moderator/breeder canister blanket for fusion-synfuels

    International Nuclear Information System (INIS)

    A new integrated power and breeding blanket is described. The blanket incorporates features that make it suitable for synthetic fuel production. It is matched to the thermal and electrical requirements of the General Atomic water-splitting process for producing hydrogen. The fusion reaction is the Tandem Mirror Reactor (TMR) using Mirror Advanced Reactor Study (MARS) physics. The canister blanket is a high temperature, pressure balanced, crossflow heat exchanger contained within a low activity, independently cooled, moderate temperature, first wall structural envelope. The canister uses Li2O as the moderator/breeder and helium as the coolant. ''In situ'' tritium control, combined with slip stream processing and self-healing permeation barriers, assures a hydrogen product essentially free of tritium. The blanket is particularly adapted to synfuels production but is equally useful for electricity production or co-generation

  7. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Zhongliang; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Chen, Chong; Li, Min; Zhou, Guangming

    2015-06-15

    Highlights: • Neutronics design of a helium cooled solid breeder blanket for CFETR was presented. • The breeding zones parallel to FW and perpendicular to FW were optimized. • A series of neutronics analyses for the proposed blanket were shown. - Abstract: Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor being designed in China to bridge the gap between ITER and future fusion power plant. Tritium self-sufficiency is one of the most important issues for CFETR and the tritium breeding ratio (TBR) is recommended not less than 1.2. As one of the candidates, a helium cooled solid breeder blanket for CFETR superconducting tokamak option was proposed. In the concept, radial arranged U-shaped breeding zones are adopted for higher TBR and simpler structure. In this work, three-dimensional neutronics design and analysis of the blanket were performed using the Monte Carlo N-Particle transport code MCNP with IAEA data library FENDL-2.1. Tritium breeding capability of the proposed blanket was assessed and the breeding zones parallel to first wall (FW) and perpendicular to FW were optimized. Meanwhile, the nuclear heating analysis and shielding performance were also presented for later thermal and structural analysis. The results showed that the blanket could well meet the tritium self-sufficiency target and the neutron shield could satisfy the design requirements.

  8. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs. The effects of processing on blanket performance have been assessed for three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The level of salt processing was found to have little effect on the behavior of the blanket during reactor operation; however, significant effects were observed during the decay period after reactor shutdown

  9. A Feasible DEMO Blanket Concept Based on Water Cooled Solid Breeder

    International Nuclear Information System (INIS)

    Full text: JAEA has conducted the conceptual design study of blanket for a fusion DEMO reactor SlimCS. Considering DEMO specific requirements, we place emphasis on a blanket concept with durability to severe irradiation, ease of fabrication for mass production, operation temperature of blanket materials, and maintainability using remote handling equipment. This paper present a promising concept satisfying these requirements, which is characterized by minimized welding lines near the front, a simplified blanket interior consisting of cooling tubes and a mixed pebble bed of breeder and neutron multiplier, and approximately the same outlet temperature for all blanket modules. Neutronics calculation indicated that the blanket satisfies a self-sufficient production of tritium. An important finding is that little decrease is seen in tritium breeding ratio even when the gap between neighboring blanket modules is as wide as 0.03 m. This means that blanket modules can be arranged with such a significant clearance gap without sacrifice of tritium production, which will facilitate the access of remote handling equipment for replacement of the blanket modules and improve the access of diagnostics. (author)

  10. Thermal and neutronic calculation for fast breeder reactor FBR

    International Nuclear Information System (INIS)

    This research included studying of thermal and neutronic calculation for fast breeder nuclear reactor, to putting the optimum design for this reactor. So a Soviet type (BN-350) was chosen, which has its core composed of two enrichment zones, and with blanket that contains depleted uranium. A group of thermal calculation programs was made by using personal computer, to obtain core and blanket reactor dimensions and volume fractions of reaction input material and number and dimensions of fuel rods which were used for neutron calculations. Several core and blanket enrichments were used to study neutron flux behaviour for two reactors different conditions. First when control rods exist in the core reactor and second when the rods are out of the core. Breeding ratio was also studied for different core and blanket enrichment. 30 tabs.; 24 figs.; 34 refs.; 3 apps

  11. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Results of a conceptual design study of a 233U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  12. Fission-suppressed hybrid reactor: the fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  13. Breeder Reactors, Understanding the Atom Series.

    Science.gov (United States)

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  14. Safeguards in Prototype Fast Breeder Reactor Monju

    International Nuclear Information System (INIS)

    The assemblies loaded in the core and stored in the ex-vessel storage tank (EVST) are in liquid sodium in the Japanese prototype fast breeder reactor (FBR) Monju. Since it is difficult to apply a direct verification procedure for the fuel assemblies in these areas, a dual containment and surveillance system consisting of two monitoring devices such as surveillance camera and radiation monitor that are functionally independent has been applied. In addition, the Monju Remote Monitoring System was developed to strengthen the continuous surveillance and to reduce the load of the inspection activities. Furthermore, the ex-vessel transfer machine radiation monitor (EVRM) and the exit gate monitor (EXGM) were upgraded to strengthen the monitoring of spent blanket fuel assemblies and to improve the reliability of distinguishing between fuel assemblies and non-fuel items. As the result, the integrated safeguards was introduced in November 2009, and the effective safeguards activities have been implemented in Monju. (author)

  15. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  16. R and D activities of the liquid breeder blanket in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Eo Hwak; Kim, Suk Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer MARS and GAMMA were developed for He coolant and liquid breeder analysis. Black-Right-Pointing-Pointer FMS/FMS and Be/FMS joining methods were developed and verified with high heat flux test. Black-Right-Pointing-Pointer High temperature and pressure nitrogen and He loops were constructed for heat transfer experiment for developed codes validation. Black-Right-Pointing-Pointer A PbLi breeder loop was constructed for components, MHD, and corrosion tests. Black-Right-Pointing-Pointer A chamber for tritium extraction with a gas-liquid contact method was constructed. - Abstract: A liquid breeder blanket has been developed in parallel with the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) program in Korea. The Korea Atomic Energy Research Institute (KAERI) has developed the common fields of a solid TBM such as design tools, structural material, fabrication methods, and He cooling technology to support this concept for the ITER. Also, other fields such as a liquid breeder technology and tritium extraction have been developed from the designed liquid TBM. For design tools, system codes for safety analysis such as Multi-dimensional Analysis of Reactor Safety (MARS) and GAs Multi-component Mixture Analysis (GAMMA) were developed for He coolant and liquid breeder. For the fabrication methods, Ferritic Martensitic Steel (FMS) to FMS and Be to FMS joinings with a Hot Isostatic Pressing (HIP) were developed and verified with a high heat flux test of up to 0.5-1.0 MW/m{sup 2}. Moreover, three mockups were successfully fabricated and a 10-channel prototype is being fabricated to make a rectangular channel FW. For the integrity of the joining, two high heat flux test facilities were constructed, and one using an electron beam has been constructed. With the 6 MPa nitrogen loop, a basic heat transfer experiment for code validation was performed. From the verification of the components such as preheater and

  17. Analysis of deficiencies in fast reactor blanket physics predictions

    International Nuclear Information System (INIS)

    This analysis addresses a deviation between experimental measurements and fast reactor blanket physics predictions. A review of worldwide results reveals that reaction rates in the blanket are underpredicted with the discrepancy increasing with penetration into the blanket. The analysis of this discrepancy involves two parts: quantifying possible error reductions using the most advanced methods and investigating deficiencies in current methodology. The source of these discrepancies was investigated by application of ''state-of-the-art'' group constant generation and flux prediction methodology to flux calculations for the Purdue University Fast Breeder Blanket Facility (FBBF). Refined group constant generation methods yielded a significant reduction in the blanket deviations; however, only about half of the discrepancy can be accounted for in this manner. Transport theory calculations were used to predict the blanket neutron transmission problem. The surprising result is that transport theory predictions utilizing diffusion theory group constants did not improve the blanket results. Transport theory predictions exhibited blanket underpredictions similar to the diffusion theory results. The residual blanket discrepancies not explained using advanced methods require a refinement of the theory. For this purpose an analysis of deficiencies in current methodology was performed

  18. Fast breeder reactor protection system

    Science.gov (United States)

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  19. Tauro: a ceramic composite structural material self-cooled Pb-17Li breeder blanket concept

    International Nuclear Information System (INIS)

    The use of a low-activation (LA) ceramic composite (CC) as structural material appears essential to demonstrate the potential of fusion power reactors for being inherently or, at least, passively safe. Tauro is a self-cooled Pb-17Li breeder blanket with a SiC/SiC composite as structure. This study determines the required improvements for existing industrial LA composites (mainly SiC/SiC) in order to render them acceptable for blanket operating conditions. 3D SiC/SiC CC, recently launched on the market, is a promising candidate. A preliminary evaluation of a possible joining technique for SiC/SiC is also described. (orig.)

  20. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  1. Breeder reactor fuel fabrication system development

    International Nuclear Information System (INIS)

    Significant progress has been made in the design and development of remotely operated breeder reactor fuel fabrication and support systems (e.g., analytical chemistry). These activities are focused by the Secure Automated Fabrication (SAF) Program sponsored by the Department of Energy to provide: a reliable supply of fuel pins to support US liquid metal cooled breeder reactors and at the same time demonstrate the fabrication of mixed uranium/plutonium fuel by remotely operated and automated methods

  2. Preliminary Study on Melting and Reaction with Liquid Metal Breeders for Developing the Korean Test Blanket Module in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Yoon, J. S.; Kim, S. K.; Lee, E. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, H. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A liquid breeder blanket has been developed in parallel with the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) program in Korea. The Korea Atomic Energy Research Institute (KAERI) has developed the liquid TBM. In the Korean liquid TBM and breeder blanket, liquid lithium (Li) and lead-lithium (PbLi) are considered as breeders. Related research has been performed: an Experimental Loop for a Liquid breeder (ELLI) constructed to develop an electromagnetic (EM) pump for circulating the liquid breeder, a magnetohydrodynamic (MHD) experiment, and a flow corrosion test. In the ELLI, Pb-15.7Li, where Li is 15.7 at % (called PbLi hereafter), is used as the breeding material. It was purchased from Stachow Metall Company, Germany, and its impurities are shown in Table 1. An EM pump circulates the material in the loop with a maximum flow rate of 60 lpm. The operating pressure and temperature in the loop are 0.4 MPa and 300 .deg. C, respectively, and the maximum operating pressure and temperature are 0.5 MPa and 550 .deg. C Before the loop operation, the melting and solidifying temperatures of the PbLi were measured for ascertaining whether it will show a consistent value for the many cycles of heating and cooling at various conditions of the loop operation. We can also investigate the contamination of PbLi according to the cyclic use. Of the liquid type breeder materials, PbLi is much safer than Li itself, as liquid metal can be ignited when it meets with water or air. There is still a concern regarding the use of PbLi, and it has not been fully proven whether it will react with water or air when it is in a molten state, as it contains lithium. Therefore, reaction tests of Li and PbLi with air and water were performed for safety reasons using the prepared test chamber

  3. New progress on design and R and D for solid breeder test blanket module in China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, K.M., E-mail: fengkm@swip.ac.cn; Zhang, G.S.; Hu, G.; Chen, Y.J.; Feng, Y.J.; Li, Z.X.; Wang, P.H.; Zhao, Z.; Ye, X.F.; Xiang, B.; Zhang, L.; Wang, Q.J.; Cao, Q.X.; Zhao, F.C.; Wang, F.; Liu, Y.; Zhang, M.C.

    2014-10-15

    Highlights: • The new progress on design and R and D of Chinese solid breeder TBM are introduced. • The mock-up fabrication and component tests for Chinese HCCB TBM have being developed. • The neutron multiplier Be pebbles, tritium breeder Li{sub 4}SiO{sub 4} pebbles, and structure material CFL-1 are being prepared. • The fabrication of 1/3 sized mock-up is being carried-out. • The key technology development is proceeding to the large-scale mock-up fabrication. - Abstract: ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R and D activities for each TBM module with the auxiliary system are introduced. The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li{sub 4}SiO{sub 4} pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R and D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.

  4. Fusion reactor blanket/shield design study

    International Nuclear Information System (INIS)

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented

  5. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  6. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 2

    International Nuclear Information System (INIS)

    The BOT (Breeder Outside Tube) Helium Cooled Solid Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test blankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of the test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.)

  7. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    This report is the Proceedings of ''the Sixth International Workshop on Ceramic Breeder Blanket Interactions'' which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: 1) fabrication and characterization of ceramic breeders, 2) properties data for ceramic breeders, 3) tritium release characteristics, 4) modeling of tritium behavior, 5) irradiation effects on performance behavior, 6) blanket design and R and D requirements, 7) hydrogen behavior in materials, and 8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li2TiO3, tritium release behavior of Li2TiO3 and Li2ZrO3 including tritium diffusion, modeling of tritium release from Li2ZrO3 in ITER condition, helium release behavior from Li2O, results of tritium release irradiation tests of Li4SiO4 pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  8. Improved fuel element for fast breeder reactor

    International Nuclear Information System (INIS)

    The invention, in which the United States Department of Energy has participated as co-inventor, relates to breeder reactor fuel elements, and specifically to such elements incorporating 'getters', hereafter designated as fission product traps. The main object of the invention is the construction of a fast breeder reactor fuel pin, free from local stresses induced in the cladding by reactions with cesium. According to the invention, the fast breeder fuel element includes a cladding tube, sealed at both ends by a plug, and containing a fissile stack and a fertile stack, characterized by the interposition of a cesium trap between the fissile and fertile stacks. The trap is effective at reactor operating temperatures in retaining and separating the cesium generated in the fissile material and preventing cesium reaction with the fertile stack. Depending on the construction method adopted, the trap may consists of a low density titanium oxide or niobium oxide pellet

  9. Multivariable optimization of fusion reactor blankets

    International Nuclear Information System (INIS)

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% 6Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO2 breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO2 breeding blanket enriched to 34% 6Li

  10. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  11. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 2. Detailed version

    International Nuclear Information System (INIS)

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary. Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated RandD-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required RandD-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.)

  12. Physics aspects of metal fuelled fast reactors with thorium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, D.K., E-mail: dina@igcar.gov.in; Singh, S.S.; Riyas, A.; Mohanakrishnan, P.

    2013-12-15

    Metal fuelled fast breeder reactors (MFBR) with high breeding ratio will play a major role in meeting the high nuclear power growth envisaged in India. In this regard several conceptual reactor designs with alloys of U–Pu–Zr fuel have been suggested for commercial operations. This study focusses on the physics design aspects of a sodium cooled U–Pu–6%Zr fuelled 1000 MWe fast breeder reactor, which can attain a breeding ratio of nearly 1.5. The calculation results on reactor kinetics and safety parameters of the 1000 MWe MFBR are presented. The changes in the breeding ratio by introduction of thorium in the blankets of the MFBR are also investigated. Burnup analyses are carried out to compare the core burnup effects in MOX and metal fuelled FBRs. Since the MOX fuelled 500 MWe prototype fast breeder is getting constructed at IGCAR, for burnup comparisons a MFBR of similar design is considered. The results of this study indicate that the loss of reactivity in the metal core with burnup is less than half that of a MOX core and its breeding ratio remains nearly constant. It is also found that the isotopic composition of plutonium (Pu-vector composition) remains more steady with burnup in a metal core.

  13. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  14. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  15. Safeguards in the prototype fast breeder reactor MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Usami, S.; Deshimaru, T.; Tomura, K. [Power Reactor and Nuclear Fuels Development Corporation, Ibaraki-ken (Japan)

    1995-12-31

    MONJU is a prototype fast breeder reactor in Japan designed to have a 280-MW(electric) output. The Power Reactor and Nuclear Fuel Development Corporation (PNC) started its construction in the autumn of 1985 in Tsuruga. The loading of the core fuel assemblies was started in October 1993, and the preoperational test is ongoing. MONJU uses 198 mixed-oxide (MOX) fuel assemblies as core fuel and 172 depleted uranium assemblies as blanket fuel. Assemblies loaded in-core and stored in the ex-vessel storage tank (EVST) reside in liquid sodium. These plutonium-containing fuel assemblies, MOX, and irradiated depleted uranium are regarded as in the difficult-to-access area, and the flows of fuel assemblies into and out of the area must be verified. Flow is verified by fuel flow monitors measuring radiation, which can limit inspector attendance during fuel handling.

  16. First wall and blanket concepts for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Biggio, M.; Cardella, A.; Daenner, W.; Farfaletti-Casali, F.; Ponti, C.; Rieger, M.; Vieider, G.

    1985-07-01

    The paper describes the progress of the studies on first wall and liquid breeder blankets for tritium production in the Next European Torus (NET). Two concepts of first wall/blanket segments are described, using 17Li83Pb as breeder and water as coolant. In both concepts the first wall is integrated in a steel box enveloping the breeder units which are cylindrical vessels with an inside heat transfer system. The thermomechanical and neutronics features of the two concepts are evaluated. Finally, the questions related to tritium permeation into coolant and tritium recovery from breeder are discussed on the basis of the analysis in progress in Europe.

  17. Development of the Water Cooled Ceramic Breeder Test Blanket Module in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Suzuki, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Ezato, Koichiro; Seki, Yohji; Yoshikawa, Akira; Tsuru, Daigo; Akiba, Masato [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2012-08-15

    The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.

  18. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  19. A water cooled, lithium lead breeding blanket for a DEMO fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rieger, M.; Biggio, M.; Farfaletti-Casali, F.; Tominetti, S.; Wu, J.; Zucchetti, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Labbe, P.; Baraer, L.; Gervaise, G.; Giancarli, L.; Roze, M.; Severi, Y.; Quintric-Bossy, J. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1991-04-01

    The main features of a tritium breeding blanket for a Demonstration Power Reactor involving the eutectic Pb-17Li as liquid breeder and water as coolant are presented. The configuration of the blanket segments and breeder modules as well as their arrangement inside the reactor vacuum vessel are outlined. The main design aspects and the corresponding design limits are reviewed, namely those related to thermomechanics, neutronics, magneto-hydrodynamics, tritium permeation and recovery. First results of safety analysis, in particular those connected with the rupture of a coolant tube in the breeder module are presented and discussed. As a conclusion, the feasibility of the concept look attractive. A problem which requires further investigation is that of the tritium self-sufficiency. It is shown that a net tritium production near to one can be obtained if berylium tiles are placed in front of the plasma, provided that they are cooled by heavy water. (orig.).

  20. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji [ed.

    1998-03-01

    This report is the Proceedings of `the Sixth International Workshop on Ceramic Breeder Blanket Interactions` which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: (1) fabrication and characterization of ceramic breeders, (2) properties data for ceramic breeders, (3) tritium release characteristics, (4) modeling of tritium behavior, (5) irradiation effects on performance behavior, (6) blanket design and R and D requirements, (7) hydrogen behavior in materials, and (8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li{sub 2}TiO{sub 3}, tritium release behavior of Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} including tritium diffusion, modeling of tritium release from Li{sub 2}ZrO{sub 3} in ITER condition, helium release behavior from Li{sub 2}O, results of tritium release irradiation tests of Li{sub 4}SiO{sub 4} pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  1. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author)

  2. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  3. Fast Breeder Blanket Facility FBBF. Annual report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    This annual report contains a summmary of fission rate, spectra, and gamma-ray heating rate measurements made in the first blanket of the Purdue Fast Breeder Blanket Facility. The first blanket consisted of aluminum clad, natural UO2 fuel rods with a secondary cladding of stainless steel or aluminum. The blanket was arranged in two concentric regions around the neutron source and converter regions. A neutron diffusion code, 2DB, and a Monte Carlo code, VIM, both using homogeneous cross section groups have been used to calculate the reaction rates. Calculated to experimental values for a number of important reactions are presented. A modified method of applying Bondarenko self-shielding factors to correct for the self shielding of resonance energy neutrons in aluminum, stainless steel and UO2 has improved the agreement between the calculations and experiment, but does not account for all of the differences

  4. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Yokoyama, Kenji

    2014-10-15

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li{sub 2}TiO{sub 3} pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA.

  5. RF test blanket sub-module with ceramic breeder and helium cooling for test in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)]. E-mail: koval@nikiet.ru; Kapyshev, V. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Leshukov, A. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Poliksha, V. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Shatalov, G. [Russian Research Center ' Kurchatov Institute' , Kurchatov Square 1, 123182 Moscow (Russian Federation); Strebkov, Yu. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Strizhov, A. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Sviridenko, M. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)

    2006-02-15

    International thermonuclear experimental reactor (ITER) is anticipated as the only one step to DEMO fusion reactor. One of its main objectives is to demonstrate the availability and integration of technologies essential for a fusion reactor by testing of components for a future reactor including the test blanket modules (TBM) with different types of breeding materials. RF proposed to divide the TBM on two parts and to use two independent test blanket sub-modules (TBSM) which fixed on the frame in ITER horizontal experimental port for testing. CHC TBSM design description, its mechanical attachment on the frame, and principle schemes of helium cooling system and tritium cycle system are presented in this paper.

  6. Large scale breeder reactor pump dynamic analyses

    International Nuclear Information System (INIS)

    The lateral natural frequency and vibration response analyses of the Large Scale Breeder Reactor (LSBR) primary pump were performed as part of the total dynamic analysis effort to obtain the fabrication release. The special features of pump modeling are outlined in this paper. The analysis clearly demonstrates the method of increasing the system natural frequency by reducing the generalized mass without significantly changing the generalized stiffness of the structure. Also, a method of computing the maximum relative and absolute steady state responses and associated phase angles at given locations is provided. This type of information is very helpful in generating response versus frequency and phase angle versus frequency plots

  7. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.)

  8. Development and analysis of fusion breeder blanket neutronics. Progress report, November 1, 1983-October 31, 1984

    International Nuclear Information System (INIS)

    The following activities are briefly described: (a) the IBM versions of the computer codes FORSS, PUFF-II, ONETRAN, TWOTRAN-II, and DOT4.3 were obtained from the Radiation Shielding Information Center (RSIC) and have been implemented on the UCLA local computer, the IBM 3033; (b) mathematical and computational models to describe the time-dependent transport and inventory of tritium in individual components of a fusion reactor system have been developed; (c) extensive cross-section sensitivity and uncertainty analysis was carried out to evaluate an estimate for the uncertainty associated with the TBR (both from 6Li and 7Li, individually) in four of the leading blanket concepts (the Li2O/HT-9 helium-cooled blanket, the 17Li-83Pb/PCA self-cooled blanket, the LiAlO2/He/FS/Be blanket, and the flibe/He/FS/Be blanket); (d) as far as the TBR obtain able in various blanket concepts is concerned, a comparative analysis was carried out to estimate the change in TBR in a particular blanket module when placed in a tokamak machine [R (first wall) approx. 2 m] as opposed to adopting the same blanket in a mirror machine [R (first wall) approx. 50 cm] with the same wall loading

  9. Operating experience of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWt / 13.2 MWe sodium cooled, loop type mixed carbide fuelled reactor. Its main aim is to gain experience in the design, construction and operation of fast reactors and to serve as an irradiation facility for development of fuel and structural material for future fast reactors. The reactor achieved first criticality in October 1985 with small indigenously designed and fabricated Mark I core (70% PuC-30% UC). The reactor power was subsequently raised in steps to 17.4 MWt by addition of Mark II fuel subassemblies (55% PuC-45% UC) and with the Mark I fuel operating at the designed linear heat rating of 400 W/cm. The turbo-generator was synchronized with the grid in July 1997. The achieved peak burn-up is 137 000 MWd/t so far without any fuel-clad failure. Presently the reactor is being operated at a nominal power of 15.7 MWt for irradiation of a test fuel subassembly of the Prototype Fast Breeder Reactor, which is coming up at Kalpakkam. It is also planned to irradiate test subassemblies made of metallic fuel for future fast reactor program. Being a small reactor, all feed back coefficients of reactivity including void coefficient are negative and hence the reactor is inherently safe. This was confirmed by carrying out physics tests. The capability to remove decay heat under various incidental conditions including natural convection was demonstrated by carrying out engineering tests. Thermo couples are provided for on-line monitoring of fuel SA outlet temperature by dedicated real time computer and processed to generate trip signals for the reactor in case of power excursion, increase in clad hot spot temperature and subassembly flow blockage. All pipelines and capacities in primary main circuit are provided with segmented outer envelope to minimize and contain radioactive sodium leak while ensuring forced cooling through reactor to remove decay heat in case of failure of primary boundary. In secondary circuit, provision is

  10. Water chemistry of breeder reactor steam generators

    International Nuclear Information System (INIS)

    The water quality requirements will be described for breeder reactor steam generators, as well as specifications for balance of plant protection. Water chemistry details will be discussed for the following power plant conditions: feedwater and recirculation water at above and below 5% plant power, refueling or standby, makeup water, and wet layup. Experimental data will be presented from tests which included a departure from nucleate boiling experiment, the Few Tube Test, with a seven tube evaporator and three tube superheater, and a verification of control and on-line measurement of sodium ion in the ppB range. Sampling and instrumentation requirements to insure adherence to the specified water quality will be described. Evaporator cleaning criteria and data from laboratory testing of chemical cleaning solutions with emphasis on flow, chemical composition, and temperature will be discussed

  11. Considerations on techniques for improving tritium confinement in helium-cooled ceramic breeder blankets

    International Nuclear Information System (INIS)

    Tritium control issues such as the development of permeation barriers and the choice of the coolant and purge-gas chemistry are of crucial importance for solid breeder blankets. In order to quantify these problems for the helium-cooled ceramic BIT blanket concept, the tritium leakage into the coolant was evaluated and the consequent tritium losses into the steam circuit were determined. Our results indicate that under certain specified conditions the total tritium release from the coolant can be limited to approximately 10 Ci/d, but only on the assumption that experimental data for tritium permeation barriers can be attained under realistic operating conditions. An experimental study on the impact of the gas chemistry on tritium losses is proposed. (orig.)

  12. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  13. High temperature blankets for non-electrical/electrical applications of fusion reactors: Annual report, [1983

    International Nuclear Information System (INIS)

    During FY '83 the Li2O solid-breeder, helium-cooled canister blanket emerged as the LLNL-UW choice for driving the low-temperature (2, high-temperature outer zone for driving the GA hydrogen synfuel process. Providing 3-dimensional neutronics analysis of power deposition and tritium breeding in both blankets was an important part of the UW-Rowe and Assoc. work. In both the LLNL-UW and MARS studies, the fusion driver as the Axi-Cell, A-cell version of the tandem mirror reactor (TMR). Physics parameters consistent with the synfuel interface were determined as part of the work. Defining and analyzing the thermal-electric interfaces between the TMR and the synfuel process continues to be of prime importance. The analysis of thermal transport and energy conversion in the interface, as well as thermal hydraulics analysis of the blanket, were part of the UW-Rowe Assoc. work

  14. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li2O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  15. Exploding the myths about the fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  16. The breeder reactor in electricity supply

    International Nuclear Information System (INIS)

    Forecasts are made of Britain's energy prospects in the year 2000. It is concluded that fossil fuels and renewable energy sources will leave an energy gap and that dependence on nuclear power will be substantial. There will, however have been a rapid depletion of readily available uranium ore reserves and a growing availability of plutonium from thermal reactors. Britain's resources of plutonium and depleted uranium which the fast breeder reactor can use - will equal many thousand million tonnes of coal. Our nuclear programme should therefore include one or two FBRs. Resources should be pooled internationally and plants built to prove alternative options and consolidate an already highly developed technology. In Britain our earliest nuclear (Magnox) stations have served as well. In Scotland, where next year an estimated 30% of electricity output will be nuclear, Hunterston 'B' AGR has had a splendid first year of operation, and pumped storage capacity in Scotland has extended the benefits of low-cost generation. The FBR has many very satisfactory engineering features and is eminently controllable and well behaved. It is compact, with relatively low cooling-water requirements and it could be built, one hopes, close to our load centres. There can be confidence that it will be proved safe. An order for an FBR, on the earliest timescale that fits in with evidence of successful operation of the Dounreay PFR and an agreed international programme, would serve the national interest and ensure the survival of our plant manufacturers, so badly hit by the effects of stagnation of the U.K. economy. (author)

  17. The United States of America fast breeder reactor program

    International Nuclear Information System (INIS)

    The reasons for the development of the fast breeder reactor in the United States are outlined, and the LMFBR program is discussed in detail, under the following headings: program objectives, reactor physics, fuel and materials development, fuel recycle, safety, components, plant experience program (Near Commercial Breeder Reactor). The special facilities to be used at each stage of the program are described. It is planned that the Near Commercial Breeder Reactor will be complete in 1986, and commercial plants should follow in rapid succession. An alternate fast reactor concept (Gas Cooled Fast Reactor) is outlined. The Environmental Impact Statement for the proposed program is summarized, and the cost benefit analysis supplied as part of the Environment Statement is also summarized. (U.K.)

  18. Water cooled breeder program summary report (LWBR (Light Water Breeder Reactor) development program)

    Energy Technology Data Exchange (ETDEWEB)

    1987-10-01

    The purpose of the Department of Energy Water Cooled Breeder Program was to demonstrate pratical breeding in a uranium-233/thorium fueled core while producing electrical energy in a commercial water reactor generating station. A demonstration Light Water Breeder Reactor (LWBR) was successfully operated for more than 29,000 effective full power hours in the Shippingport Atomic Power Station. The reactor operated with an availability factor of 76% and had a gross electrical output of 2,128,943,470 kilowatt hours. Following operation, the expended core was examined and no evidence of any fuel element defects was found. Nondestructive assay of 524 fuel rods determined that 1.39 percent more fissile fuel was present at the end of core life than at the beginning, proving that breeding had occurred. This demonstrates the existence of a vast source of electrical energy using plentiful domestic thorium potentially capable of supplying the entire national need for many centuries. To build on the successful design and operation of the Shippingport Breeder Core and to provide the technology to implement this concept, several reactor designs of large breeders and prebreeders were developed for commercial-sized plants of 900--1000 Mw(e) net. This report summarizes the Water Cooled Breeder Program from its inception in 1965 to its completion in 1987. Four hundred thirty-six technical reports are referenced which document the work conducted as part of this program. This work demonstrated that the Light Water Breeder Reactor is a viable alternative as a PWR replacement in the next generation of nuclear reactors. This transition would only require a minimum of change in design and fabrication of the reactor and operation of the plant.

  19. Technical evaluation of major candidate blanket systems for fusion power reactor

    International Nuclear Information System (INIS)

    The key functions required for tritium breeding blankets for a fusion power reactor are: (1) self-sufficient tritium breeding, (2) in-situ tritium recovery and low tritium inventory, (3) high temperature cooling giving a high efficiency of electricity generation and (4) thermo-mechanical reliability and simplified remote maintenance to obtain high plant availability. Blanket performance is substantially governed by materials selection. Major options of structure/breeder/coolant/neutron multiplier materials considered for the present design study are PCA/Li2O/H2O/Be, Mo-alloy/Li2O/He/Be, Mo-alloy/LiAlO2/He/Be, V-alloy/Li/Li/none, and Mo-alloy/Li/He/none. In addition, remote maintenance of blankets, tritium recovery system, heat transport and energy conversion have been investigated. In this report, technological problems and critical R and D issues for power reactor blanket development are identified and a comparison of major candidate blanket concepts is discussed in terms of the present materials data base, economic performance, prospects for future improvements, and engineering feasibility and difficulties based on the results obtained from individual design studies. (author)

  20. Blankets for tritium catalyzed deuterium (TCD) fusion reactors

    International Nuclear Information System (INIS)

    The TCD fusion fuel cycle - where the 3He from the D(D,n)3He reaction is transmuted, by neutron capture in the blanket, into tritium which is fed back to the plasma - was recently recognized as being potentially more promising than the Catalyzed Deuterium (Cat-D) fuel cycle for tokamak power reactors. It is the purpose of the present work to assess the feasibility of, and to identify promising directions for designing blankets for TCD fusion reactors

  1. Thermohydraulics design and thermomechanics analysis of two European breeder blanket concepts for DEMO. Pt. 1 and Pt. 2. Pt. 1: BOT helium cooled solid breeding blanket. Pt. 2: Dual coolant self-cooled liquid metal blanket

    International Nuclear Information System (INIS)

    Two different breeding blanket concepts are being elaborated at Forschungszentrum Karlsruhe within the framework of the DEMO breeding blanket development, the concept of a helium cooled solid breeding blanket and the concept of a self-cooled liquid metal blanket. The breeder material used in the first concept is Li4SiO4 as a pebble bed arranged separate from the beryllium pebble bed, which serves as multiplier. The breeder material zone is cooled by several toroidally-radially configurated helium cooling plates which, at the same time, act as reinforcements of the blanket structures. In the liquid metal blanket concept lead-lithium is used both as the breeder material and the coolant. It flows at low velocity in poloidal direction downwards and back in the blanket front zone. In both concepts the First Wall is cooled by helium gas. This report deals with the thermohydraulics design and thermomechanics analysis of the two blanket concepts. The performance data derived from the Monte-Carlo computations serve as a basis for the design calculations. The coolant inlet and outlet temperatures are chosen with the design criteria and the economics aspects taken into account. Uniform temperature distribution in the blanket structures can be achieved by suitable branching and routing of the coolant flows which contributes to reducing decisively the thermal stress. The computations were made using the ABAQUS computer code. The results obtained of the stresses have been evaluated using the ASME code. It can be demonstrated that all maximum values of temperature and stress are below the admissible limit. (orig.)

  2. BREEDER: a microcomputer program for financial analysis of a large-scale prototype breeder reactor

    International Nuclear Information System (INIS)

    This report describes a microcomputer-based, single-project financial analysis program: BREEDER. BREEDER is a user-friendly model designed to facilitate frequent and rapid analyses of the financial implications associated with alternative design and financing strategies for electric generating plants and large-scale prototype breeder (LSPB) reactors in particular. The model has proved to be a useful tool in establishing cost goals for LSPB reactors. The program is available on floppy disks for use on an IBM personal computer (or IBM look-a-like) running under PC-DOS or a Kaypro II transportable computer running under CP/M (and many other CP/M machines). The report documents version 1.5 of BREEDER and contains a user's guide. The report also includes a general overview of BREEDER, a summary of hardware requirements, a definition of all required program inputs, a description of all algorithms used in performing the construction-period and operation-period analyses, and a summary of all available reports. The appendixes contain a complete source-code listing, a cross-reference table, a sample interactive session, several sample runs, and additional documentation of the net-equity program option

  3. BREEDER: a microcomputer program for financial analysis of a large-scale prototype breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.

    1984-04-01

    This report describes a microcomputer-based, single-project financial analysis program: BREEDER. BREEDER is a user-friendly model designed to facilitate frequent and rapid analyses of the financial implications associated with alternative design and financing strategies for electric generating plants and large-scale prototype breeder (LSPB) reactors in particular. The model has proved to be a useful tool in establishing cost goals for LSPB reactors. The program is available on floppy disks for use on an IBM personal computer (or IBM look-a-like) running under PC-DOS or a Kaypro II transportable computer running under CP/M (and many other CP/M machines). The report documents version 1.5 of BREEDER and contains a user's guide. The report also includes a general overview of BREEDER, a summary of hardware requirements, a definition of all required program inputs, a description of all algorithms used in performing the construction-period and operation-period analyses, and a summary of all available reports. The appendixes contain a complete source-code listing, a cross-reference table, a sample interactive session, several sample runs, and additional documentation of the net-equity program option.

  4. Crucial issues on liquid metal blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. (Kernforschungszentrum Karlsruhe (Germany)); Leroy, P. (CEA, CEN Saclay, 91 - Gif-sur-Yvette (France)); Casini, G.P. (CEC, Joint Research Centre (JRC), Ispra (Italy)); Mattas, R.F. (Argonne National Lab., IL (United States)); Strebkov, Yu. (Research and Development Inst. of Power Engineering, Moscow (USSR))

    1991-12-01

    Typical design concepts of liquid metal breeder blankets for power reactors are explained and characterized. The major problems of these concepts are described for both water-cooled blankets and self-cooled blankets. Three crucial issues of liquid metal breeder blankets are investigated. They are in the fields of magnetohydrodynamics, tritium control and safety. The influence of the magnetic field on liquid metal flow is of special interest for self-cooled blankets. The main problems in this field and the status of the related R and D work are described. Tritium permeation losses to the cooling water is a crucial issue for water-cooled blankets. Methods for its reduction are discussed. An inherent problem of all liquid breeder blankets is the potential release of activated products in the case of chemical reactions between the breeder material and water or reactive gases. The most important issues in this field are described. (orig.).

  5. Fusion breeder

    International Nuclear Information System (INIS)

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  6. Symposium on key questions about the fast breeder reactor

    International Nuclear Information System (INIS)

    Except for several introductions on various aspects of the fast breeder reactor development this paper contains the full texts of the discussions held in the sub-groups panels on resp. technical matters, environment and health, society, politics and economics. The main issues of each discussion are summarized

  7. Clinch River Breeder Reactor Plant Project: construction schedule

    International Nuclear Information System (INIS)

    The construction schedule for the Clinch River Breeder Reactor Plant and its evolution are described. The initial schedule basis, changes necessitated by the evaluation of the overall plant design, and constructability improvements that have been effected to assure adherence to the schedule are presented. The schedule structure and hierarchy are discussed, as are tools used to define, develop, and evaluate the schedule

  8. Status of fast breeder reactor development in the United States

    International Nuclear Information System (INIS)

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  9. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  10. The fusion breeder

    International Nuclear Information System (INIS)

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium ($30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-pathitem for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices

  11. The nuclear question at the start of the '80s: the breeder reactor

    International Nuclear Information System (INIS)

    The four newspaper articles and the letter cover the following matters: general introduction about breeder reactors and the situation in Swedish politics; visit to Dounreay to discuss breeder reactors (breeding, safety, plutonium production, radiation protection); PuO2-UO2 mixed fuel; description of breeder reactors; efficiency in use of U-235; DFR and PFR; breeder reactors in Swedish politics (arguments for and against nuclear power in general, breeder reactors in particular); discussion of the future of nuclear power in Sweden. (U.K.)

  12. Feasibility study on the thorium fueled boiling water breeder reactor

    International Nuclear Information System (INIS)

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  13. Instrumentation and control improvements at Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I C systems of the next generation of liquid metal reactor (LMR) plants.

  14. Elements for evaluation of fast breeder reactor's potential in Argentina

    International Nuclear Information System (INIS)

    Fast Breeder Reactors (FBR) main features are presented in a general form, including their physical principles, the history of their evolution, their relevant technological aspects and the basis for their comparison to other energy sources. This is completed with descriptions of typical reactors and a model of FBR penetration in the Argentine electrical network. It is recommended to form a multidisciplinary board to study which position should be taken with respect to this type of reactors. In the author's opinion a Research activity should be started and gradually increased for passing to Development activities after a short while. (Author)

  15. Instrumentation and control improvements at Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, L.J.; Planchon, H.P.

    1993-03-01

    The purpose of this paper is to describe instrumentation and control (I&C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I&C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I&C systems of the next generation of liquid metal reactor (LMR) plants.

  16. Binary breeder reactor: an option for Brazilian energy future

    International Nuclear Information System (INIS)

    To assure a continued supply of electric energy beyond a few decades from now, developmemnt of fast breeder reactors is a necessity. Binary fueled LMFBRs combine an improvement in the inherent safety of fast reactors and an efficient use of the abundant thorium. A nuclear system that starts with PWRs and gradually shifts to a FBR system or to a FBR-PWR symbiotic system appears to be the most reasonable one for Brazil. Natural uranium requirements and possible sequences of reactor introductions are discussed for some postulated Brazilian situations. A permanent system of approx. 100 GWe capacity can be established based on the estimated resource of natural uranium. (Author)

  17. Binary breeder reactor an option for Brazilian energy future

    International Nuclear Information System (INIS)

    To assure a continued supply of electric energy beyond a few decades from now, development of fast breeder reactors is a necessity. Binary fueled LMFBRs combine an improvement in the inherent safety of fast reactors and an efficient use of the abundant thorium. A nuclear system that starts with PWRs and gradually shifts to a FBR system or to a FBR-PWR symbiotic system appears to be the most resonable one for Brazil. Natural uranium requirements and possible sequences of reactor introductions are discussed for some postulated Brazilian situations. A permanent system of approximatelly 100 GWe capacity can be established based on the estimated resource of natural uranium. (Author)

  18. Helium-3 blankets for tritium breeding in fusion reactors

    Science.gov (United States)

    Steiner, Don; Embrechts, Mark; Varsamis, Georgios; Vesey, Roger; Gierszewski, Paul

    1988-01-01

    It is concluded that He-3 blankets offers considerable promise for tritium breeding in fusion reactors: good breeding potential, low operational risk, and attractive safety features. The availability of He-3 resources is the key issue for this concept. There is sufficient He-3 from decay of military stockpiles to meet the International Thermonuclear Experimental Reactor needs. Extraterrestrial sources of He-3 would be required for a fusion power economy.

  19. Fast breeder reactors: Experience and trends. V. 2

    International Nuclear Information System (INIS)

    The IAEA Symposium on ''Fast Breeder Reactors: Experience and Future Trends'' was held, at the invitation of the Government of France, in Lyons, France, on 22-26 July 1985. It was hosted by the French Commissariat a l'energie atomique and Electricite de France. The purpose of the Symposium was to review the experience gained so far in the field of LMFBRs, taking into account the constructional, operational, technological, economic and fuel cycle aspects, and to consider the developmental trends as well as the international co-operation in fast breeder reactor design and utilization. The Symposium was attended by almost 400 participants (340 participants, 35 observers and 20 journalists) from 25 countries and five international organizations. More than 80 papers were presented and discussed during six regular sessions and four poster sessions. A separate abstract was prepared for each of these papers

  20. Fusion Breeder Program interim report

    International Nuclear Information System (INIS)

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83

  1. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1989 as reported at the 23rd meeting of the IWGFR in Vienna, April 1990. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States. A separate abstract was prepared for each of the 11 papers presented by the participants of this meeting. Refs, figs and tabs

  2. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1990 as reported at the 24th meeting of the IWGFR in Tsuruga, Japan, 15-18 April 1991. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States and CEC. Figs and tabs

  3. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  4. Global depletion analysis of Korean helium cooled solid breeder TBM model for demo fusion reactor

    International Nuclear Information System (INIS)

    The Korean HCSB (helium cooled solid breeder) TBM (test blanket module) is proposed with its specific compositions of lithium ceramic, beryllium and graphite in pebble form. In the Korean HCSB TBM, the amount of beryllium is reduced and the reduction is replaced by graphite for a neutron reflector, while tritium breeding ratio (TBR) remains almost unchanged with relatively low Li6 enrichment of ∼40%. However, the previous Korean HCSB was designed based on the LOCAL assumption, in which the surroundings are assumed by the reflective boundary condition. In this research, we establish a simple GLOBAL neutronics model based on demo fusion reactor and perform neutronics analyses including depletion (transmutation) calculation during 100 EFPDs (effective full power days) using the modified MONTEBURNS code.

  5. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2009-05-01

    In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder reactor under construction at Kalpakkam. After about five recycles, the cycle-to-cycle variation in the above parameters is below 1%.

  6. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  7. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  8. Analysis on tritium management in FLiBe blanket for LHD-type helical reactor FFHR2

    International Nuclear Information System (INIS)

    In FFHR2 (LHD-type helical reactor) design, FLiBe has been selected as a self-cooling tritium breeder for low reactivity with oxygen and water and lower conductivity. Considering the fugacity of the tritium, particular care and adequate mitigation measures should be applied for the effectively extracting tritium from breeder and controlling the tritium release to the environment. In this paper, a tritium analysis model of the FLiBe blanket system was developed and the preliminary analysis on tritium permeation and extraction for FLiBe blanket system were done. The results of the analysis showed that it was reasonable to select W alloy as heat exchanger (HX) material, the proportion of FLiBe flow in tritium recover system (TRS) was 0.2, the efficiency of TRS was 0.85 and tritium permeation reduction factor (TPRF) was 20 in blanket etc.. In addition, further R and D efforts were required for FFHR2 tritium system to guarantee the tritium self-sufficient and safety, for example reasonable quality of tritium permeation barriers on blanket, requirement for the TRS and fabrication technology of the heat exchanger etc.. (author)

  9. Sodium technology for fast breeder reactors

    International Nuclear Information System (INIS)

    Sodium, because of its good heat transfer and nuclear properties, is used as a coolant in fast reactors. It is also used largely as a reducing agent in pharmaceutical, perfumery and general chemical industries. Its affinity to react with air and water is a strong disadvantage. However, this is fully understood and the design of engineering systems take care of this aspect. With several experimental and test facilities established over the years in this country as well as abroad, the 'sodium technology' has reached a level of maturity. The design of sodium systems considering all the physical and chemical properties and the developmental work carried out at Indira Gandhi Centre for Atomic Research are broadly covered in this report. (author)

  10. Feasibility and deployment strategy of water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    The author have studied water cooled thorium breeder reactor based on matured pressurized water reactor (PWR) plant technology for several years. Through these studies it is concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array with heavy water coolant in the primary loop by replacing original light water is appropriate for achieving sufficient breeding performance as sustainable fission system and high enough burn-up as an economical power plant. The heavy water cooled thorium reactor is feasible to be introduced by using Pu recovered from spent fuel of LWR, keeping continuity with current LWR infrastructure. This thorium reactor can be operated as sustainable energy supplier and also MA transmuter to realize future society with less long-lived nuclear waste

  11. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  12. Current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phase of the Li-LiH, Li-LiD, and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li3N, Li2O, and Li2C2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g., Li--Al and Li--Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li--M alloys can be estimated from lithium activity data for these alloys

  13. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    Baldev Raj; S L Mannan; P R Vasudeva Rao; M D Mathew

    2002-10-01

    Fast breeder reactors (FBRs) are destined to play a crucial role inthe Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of fissile material than in thermal reactors, with a matching increase in burn-up. The design of the fuel is an important aspect which has to be optimised for efficient, economic and safe production of power. FBR components operate under hostile and demanding environment of high neutron flux, liquid sodium coolant and elevated temperatures. Resistance to void swelling, irradiation creep, and irradiation embrittlement are therefore major considerations in the choice of materials for the core components. Structural and steam generator materials should have good resistance to creep, low cycle fatigue, creep-fatigue interaction and sodium corrosion. The development of carbide fuel and structural materials for the Fast Breeder Test Reactor at Kalpakkam was a great technological challenge. At the Indira Gandhi Centre for Atomic Research (IGCAR), advanced research facilities have been established, and extensive studies have been carried out in the areas of fuel and materials development. This has laid the foundation for the design and development of a 500 MWe Prototype Fast Breeder Reactor. Highlights of some of these studies are discussed in this paper in the context of our mission to develop and deploy FBR technology for the energy security of India in the 21st century.

  14. Experiences with fast breeder reactor education in laboratory and short course settings

    International Nuclear Information System (INIS)

    The breeder reactor industry throughout the world has grown impressively over the last two decades. Despite the uncertainties in some national programs, breeder reactor technology is well established on a global scale. Given the magnitude of this technological undertaking, there has been surprisingly little emphasis on general breeder reactor education - either at the university or laboratory level. Many universities assume the topic too specialized for including appropriate courses in their curriculum - thus leaving students entering the breeder reactor industry to learn almost exclusively from on-the-job experience. The evaluation of four course presentations utilizing visual aids is presented

  15. Computational intelligent systems for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Nearly 15000 process signals are digitized by physically and functionally distributed embedded systems in Prototype Fast Breeder Reactor (PFBR). Digitized signals are processed and relevant information is displayed through Large video display systems at Control Room. It is necessary that correct and reliable information need to be provided to the plant operator. Computational intelligent systems play a major role in enhancing the safe operation of the Nuclear reactor. The paper explains the features of three such systems, one for on-line validation of neutronic power channel through on-line thermal balance calculation and another for detection of anomalous reactivity addition through on-line reactivity balance computation and third for on-line computation of Reactor power from fluctuations of core thermocouple signals. (author)

  16. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  17. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  18. Innovations in Equipment Erection of Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type reactor with generating capacity of 1250 MWt/500 MWe. Reactor assembly consists of large dimensional vessels like Safety vessel (13.54 m diameter, 12.8 m height and weight approximately 155 MT) and Main vessel (12.9 m diameter, 12.94 m height and weight approximately 202 MT including core catcher, core support structure and cooling pipes) and Steam generator (26 m length, 1.5 m diameter, and weight approximately 35 MT). PFBR reactor equipment erection was a challenging task where thin walled vessels had transported and handled with utmost precaution to avoid radial forces on the vessels which could buckle the vessels. There was a real challenge in lifting the vessels without swing, placement of large size and heavy vessel at a distance of 57 m where the crane operator had no line of site to the equipment being erected. To handle such over dimensional reactor components many mock-up tests had been carried out before erection and gained lot of confidence. Lot of care had been taken during lifting, handling and erection of thin walled over dimensional reactor components with innovative methods used for lifting fixtures, guiding arrangements, alignment fixtures and achieved the stringent erection tolerances. This paper discusses the first ever experiences gained during the handling and erection of such thin walled, over dimensional reactor components at PFBR site. (author)

  19. The integrated-blanket-coil concept applied to the poloidal field and blanket systems of a tokamak reactor

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component. This concept, designated the ''integrated-blanket-coil'' (IBC) concept, is applied to the poloidal field and blanket systems of a tokamak reactor. An examination of resistive power losses in the IBC suggests that these losses can be limited to 10% of the fusion thermal power. By assuming a sandwich construction for the IBC walls, magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are shown to be modest and well below design limits. For the stainless steel reference case examined, the MHD-induced pressure drop was estimated to be about 1/3 MPa and the associated primary membrane stress was estimated to be about 47 MPa. The preliminary analyses indicate that the IBC concept offers promise as a means for making fusion reactors more compact by combining blanket and coil functions in a single component

  20. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    P K Vijayan; A Basak; I V Dulera; K K Vaze; S Basu; R K Sinha

    2015-09-01

    The third stage of Indian nuclear power programme envisages the use of thorium as the fertile material with 233U, which would be obtained from the operation of Pu/Th-based fast reactors in the later part of the second stage. Thorium-based reactors have been designed in many configurations, from light water-cooled designs to high-temperature liquid metal-cooled options. Another option, which holds promise, is the molten salt-fuelled reactor, which can be configured to give significant breeding ratios. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian molten salt breeder reactor (IMSBR). Presently, various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel, fundamental studies on natural circulation and corrosion behaviour of various molten salts have also been initiated.

  1. Fast breeder reactors: experience and trends. V. 1

    International Nuclear Information System (INIS)

    The IAEA Symposium on ''Fast Breeder Reactors: Experience and Future Trends'' was held, at the invitation of the Government of France, in Lyons, France, on 22-26 July 1985. It was hosted by the French Commissariat a l'energie atomique and Electricite de France. The purpose of the Symposium was to review the experience gained so far in the field of LMFBRs, taking into account the constructional, operational, technological, economic and fuel cycle aspects, and to consider the developmental trends as well as the international co-operation in fast breeder reactor design and utilization. The Symposium presentations were divided into sessions devoted to the following topics: Experience of LMFBR construction and operation and resultant development strategies (6 papers); LMFBR plant startup and commissioning tests and general behaviour (8 papers); Core performance experience for high burnup and core design trends (8 papers); Experience and trends in the LMFBR fuel cycle (4 papers); Core design and behaviour (3 papers); Fuels and materials (7 papers). A separate abstract was prepared for each of these papers

  2. Breeder reactors: a technique at the service of humanity

    International Nuclear Information System (INIS)

    A genuine energy policy is not conceived purely for a short term. It must on the contrary take into consideration many national and international facts in order to arrive at a balance which takes into account both the interests of the country where it is to be applied and the future interests of humanity. Growth and energy consumption make a pair. Considering the forecasts of future consumption, a rational utilization of the energy sources is a priority. The rational utilization of the energy potentialities of uranium takes a prominent place in this priority. In the fission energy of the atoms, the breeder reactors are the only types which can give their full meanings to the words economy, ecology, rationality etc. In calling for innovation, the breeder reactors are the prime movers for an advanced industry and a guarantee for the future penetration of electricity in many fields. They are thus important elements for the creation of employment. This paper also deals with questions of international cooperation, non-proliferation and the necessity for disarmament

  3. Optimisation of safety parameters in fast breeder test reactor

    International Nuclear Information System (INIS)

    Full text: Optimisation of safety parameters is an important aspect to be considered in the design of nuclear power plant and also becomes extremely important activity to be followed up during the commissioning and operating phases of the plant taking into account the operational feed back and review of incidental situations and available diversity and reliability. Otherwise, the spurious/ superfluous trips on the reactor besides affecting the availability of the plant, initiate plant transients causing stress for the plant equipment resulting in reduction of plant life. This activity has a significant role to play in attaining the maximum availability of the plant, without compromising safety. The study and evolution of optimisation process in fast breeder test reactor (FBTR); at Kalpakkam has been an interesting and rewarding experience

  4. Fast breeder reactor-block antiseismic design and verification

    International Nuclear Information System (INIS)

    The Specialists' Meeting on ''Fast Breeder Reactor-Block Antiseismic Design and Verification'' was organized by the ENEA Fast Reactor Department in co-operation with the International Working Group (IWGFR) of the International Atomic Energy Agency (IAEA), according to the recommendations of the 19th IAEA/IWGFR Meeting. It was held in Bologna, at the Headquarters of the ENEA Fast Reactor Department, on October 12-15, 1987, in the framework of the Celebrations for the Ninth Centenary of the Bologna University. The proceedings of the meeting consists of three parts. Part 1 contains the introduction and general comments, the agenda of the meeting, session summaries, conclusions and recommendations and the list of participants. Part 2 contains 8 status reports of Member States participating in the Working Group. Contributed papers were published in Part 3 and were further subdivided into 5 sessions as follows: whole reactor-block analysis (4 papers); whole reactor-block analysis (sloshing and buckling, seismic isolation effects) (8 papers); detailed core analysis (6 papers); shutdown systems and core structural and functional verifications (6 papers); component and piping analysis (7 papers). A separate abstract was prepared for each of the 8 status reports and 31 contributed papers. Refs, figs and tabs

  5. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  6. Shutdown and Closure of the Experimental Breeder Reactor - II

    International Nuclear Information System (INIS)

    The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor - II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m3 (86,000 gallons) of sodium and the secondary system contained 50 m3 (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated lay-up plan defining the system end state, as well as instructions for achieving the lay-up condition. A goal of system-by-system lay-up is to minimize surveillance and

  7. Shutdown and closure of the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m3 (86,000 gallons) of sodium and the secondary system contained 50 m3 (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated layup plan defining the system end state, as well as instructions for achieving the layup condition. A goal of system-by-system layup is to minimize surveillance and

  8. Compatibility of structural materials with fusion reactor coolant and breeder fluids

    International Nuclear Information System (INIS)

    Fusion reactors are characterized by a lithium-containing blanket, a heat transfer medium that is integral with the blanket and first wall, and a heat engine that couples to the heat transfer medium. A variety of lithium-containing substances have been identified as potential blanket materials, including molten lithium metal, molten LiF--BeF2, Pb--Li alloys, and solid ceramic compounds such as Li2O. Potential heat transfer media include liquid lithium, liquid sodium, molten nitrates, water, and helium. Each of these coolants and blankets requires a particular set of chemical and mechanical properties with respect to the associated reactor and heat engine structural materials. This paper discusses the materials factors that underlie the selection of workable combinations of blankets and coolants. It also addresses the materials compatibility problems generic to those blanket-coolant combinations currently being considered in reactor design studies

  9. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition

  10. Designing a SCADA system simulator for fast breeder reactor

    Science.gov (United States)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  11. Elevator mode convection in liquid metal blankets for fusion reactors

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  12. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    International Nuclear Information System (INIS)

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author)

  13. Conceptual design of a pool type molten salt breeder reactor

    International Nuclear Information System (INIS)

    The renewed interest in molten salt coolant technology is backed by the 50 years history of molten salt nuclear technology development, mainly in Oak Ridge National Laboratory (ORNL). In Indian context MSBR is found to be one of the options for sustainable nuclear energy generation, especially in the third stage of the nuclear programme. The system can be operated at high temperature which makes high efficiency power conversion and efficient hydrogen generation through thermo-chemical reactions possible. At present development is in progress in BARC on two molten salt reactor concepts, one is pool type and the other is loop type. Here the design of pool type concept with 850MWe power is described. The core is designed to operate in the fast spectrum region so the conversion of 233U breeding is possible from thorium. Preliminary thermal hydraulic analysis is carried out with LiF-ThF4-UF4 as the primary fuel and coolant. The blanket material is also a molten salt, LiF-ThF4. Reactor physics calculations are also carried out for the feasibility studies of the core design of the reactor. FLiNaK is used as the secondary coolant for the calculations. Both forced circulation and natural circulation options are evaluated. (author)

  14. An analysis of electron beam welds in a dual coolant liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Numerical simulation of electron beam welding of blanket segments was performed using non-linear finite element code ABAQUS. The thermal and stress fields were assumed uncoupled, while preserving the temperature dependency of all material parameters. The martensite-austenite and austenite-martensite transformations were taken into account through volume shrinking/expansion effects, which is consistent with available data. The distributions of post welding residual stress in a complex geometry of the first wall are obtained. Also, the effects of preheating and post-welding heat treatment were addressed. Time dependent temperature and stress-strain fields obtained provide good insight into the welding process. They may be used directly to support reliability and life-time studies of blanket structures. On the other hand, they provide useful hints about the feasibility of the geometrical configurations as proposed by different design concepts. (orig.)

  15. Anticipated transients without scram for light water reactors: implications for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    In the design of light water reactors (LWRs), protection against anticipated transients (e.g., loss of normal electric power and control rod withdrawal) is provided by a highly reliable scram, or shutdown system. If this system should become inoperable, however, the transient could lead to a core meltdown. The Nuclar Regulatory Commission (NRC) has proposed, in NUREG-0460 [1], new requirements (or acceptance criteria) for anticipated transients without scram (ATWS) events and the manner in which they could be considered in the design and safety evaluation of LWRs. This note assesses the potential impact of the proposed LWR-ATWS criteria on the liquid metal fast breeder reactor (LMFBR) safety program as represented by the Clinch River Breeder Reactor Plant

  16. Safety and core design of large liquid-metal cooled fast breeder reactors

    OpenAIRE

    Qvist, Staffan Alexander

    2013-01-01

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cyc...

  17. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  18. The current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    The available thermodynamic information is reviewed for three categories of materials that meet essential criteria for use as breeding blankets in D-T fuelled fusion reactors: liquid lithium, solid lithium alloys, and lithium-containing ceramics. The leading candidate, liquid lithium, which also has potential for use as a coolant, has been studied more extensively than have the solid alloys or ceramics. Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries, etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phases of the Li-LiH, Li-LiD and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li3N, Li2O, and Li2C2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g. Li-Al and Li-Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li-M alloys can be estimated from lithium activity data for these alloys. There is essentially no refined thermodynamic information on the prospective ceramic blanket materials. The kinetics of tritium release from these materials is briefly discussed. Research areas are pointed out where additional thermodynamic information is needed for all three material categories. (author)

  19. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  20. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    International Nuclear Information System (INIS)

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR

  1. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR.

  2. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L-1 day-1). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  3. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  4. Reactor shutdown system of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Full text: The shutdown system of PFBR is designed to assure a very high reliability by employing well known principles of redundancy, diversity and independence. The failure probability of the shutdown system limited to -6/ ry. Salient features of the shutdown system are: Two independent shutdown systems, each of them able to accommodate an additional single failure and made up of a trip system and an associated absorber rod group. Diversity between trip systems, rods and mechanisms. Initiation of SCRAM by two diverse physical parameters of the two shutdown systems for design events leading potentially to unacceptable conditions is the core. The first group of nine rods called control and safety rods (CSR) is used for both shutdown as well as power regulation. The second group consisting of three rods known as diverse safety rods (DSR) is used only for shutdown. Diversity between the two groups is ensured by varying the operating conditions of the electromagnets and the configurations of the mobile parts. The reactivity worth of the absorber rods have been chosen such that each group of rods would ensure cold shutdown on SCRAM even when the most reactive rod of the group fails to drop. Together the two groups ensure a shutdown margin of 5000 pcm. The speed and individual rod worth of the CSR is chosen from operational and safety considerations during reactor start up and raising of power. Required drop time of rods during SCRAM depends on the incident considered. For a severe reactivity incident of 3 $/s this has to be limited to 1s and is ensured by limiting electromagnet response time and facilitating drop by gravity. Design safety limits for core components have been determined and SCRAM parameters have been identified by plant dynamic analysis to restrict the temperatures of core components within the limits. The SCRAM parameters are distributed between the two systems appropriately. Fault tree analysis of the system has been carried out to determine the

  5. Manufacturing of prototype fast breeder reactor components: challenges and achievements

    International Nuclear Information System (INIS)

    In the presentation, three components of 500 MWe Prototype Fast Breeder Reactor (PFBR), viz. grid plate, roof slab and fuel handling systems, are focused, which have been responsible for the considerable delay of the project schedule. The manufacturing challenges of grid plate mainly originated from large number of sleeves resulting in higher self weight and hard facing of large diameter sleeves. Machining of large diameter plates and shell assembly to the required tight tolerances on dimensions, hard facing with nickel based cobalt free hard facing material on continuous, large diameter (6.7 m) annular tracks, heat treatment of large austenitic stainless steel parts at 1050℃ with controlled rates of cooling and heating together with control on temperature gradient across the parts, complex assembly of a large number of parts (∼14900) meeting the important requirements on verticality of sleeve assemblies (Ø0.1 mm) and delicate handling and transportation are truly challenging activities in the manufacturing technology. In case of roof slab, complex manufacturing process, especially welding between the shell and stiffeners caused lamellar tearing problems and extensive testing time. Inclined fuel transfer machine, multiple repairs, heavy weight and testing strategy resulted in long manufacturing and testing time. Some general lessons learnt are also brought out in this presentation. Technology development prior to start of construction is essential for long delivery components. Judicious choice of tolerances, number and location of welds and inspections has to be made. Robust criteria need to be applied for the acceptance of manufacturing deviations and material compositions. Indigenous materials should be used after qualifications of manufacturing process of direct relevance apart from routine standards. From the rich experience gained through the manufacture and erection of reactor assembly components of PFBR, important guidelines and approaches were derived

  6. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    In the power increase performance test of the experimental fast reactor ''Joyo'', which was in progress since April, the first stage of the rated thermal output of 50 MW has been accomplished on July 5. Thereafter, the continuous opeation test at 50 MW for 100 hours was performed for the verification of its overall operational performance from August 13 to 16. The safety evaluation for power increase up to 75 MW and 100 MW, which was under way since September, last year, was completed, and the power increase was licensed on September 20. Concerning the design of the prototype fast breeder reactor ''Monju'', the studies on the specifications of the Construction Preliminary Design (2) have been finished. In respect of the analysis and preparation of materials for the Safety Licensing by the Committee, the developments of the analytical codes for rupture propagation in the heat transfer tubes of steam generators and for decay heat have been conducted. In the construction site surveys, the third geological structure survey and beach deformation survey have all ended, while the meteorological and seismic observations, the prediction of the diffusion of drained warm water, the survey of river flow, etc. are now under way. A report on the survey conducted on the construction site in Shiraki was received by the Fukui prefectural government in July, and the copies of a report on the assessment of environmental effect were submitted in August to both the national government and the Fukui prefectural government. The situations of progress of the research and development works on reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structural materials, safety and steam generators are reported. (Nakai, Y.)

  7. An Evaluation of liquid metal leak detection methods for the Clinch River Breeder Reactor Plant

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.J.; Doctor, S.R.

    1977-12-01

    This report documents an independent review and evaluation of sodium leak detection methods described in the Clinch River Breeder Reactor Preliminary Safety Analysis Report. Only information in publicly available documents was used in making the assessments.

  8. Electrical behaviour of ceramic breeder blankets in pebble form after γ-radiation

    Directory of Open Access Journals (Sweden)

    E. Carella

    2015-07-01

    Full Text Available Lithium orthosilicate (Li4SiO4 ceramics in from of pebble bed is the European candidate for ITER testing HCPB (Helium Cooled Pebble Bed breeding modules. The breeder function and the shielding role of this material, represent the areas upon which attention is focused. Electrical measurements are proposed for monitoring the modification created by ionizing radiation and at the same time provide information on lithium movement in this ceramic structure. The electrical tests are performed on pebbles fabricated by Spray-dryer method before and after gamma-irradiation through a 60Co source to a fluence of 4.8 Gy/s till a total dose of 5 ∗ 105 Gy. The introduction of thermal annealing treatments during the electrical impedance spectroscopy (EIS measurements points out the recombination effect of the temperature on the γ-induced defects.

  9. Nitriding treatment of reduced activation ferritic steel as functional layer for liquid breeder blanket

    International Nuclear Information System (INIS)

    The development of functional layers such as a tritium permeation barrier and an anti-corrosion layer is the essential technology for the development of a molten salt type self cooled fusion blanket. In the present study, the characteristics of a nitriding treatment on a reduced activation ferritic steel, JLF-1 (Fe-9Cr-2W-0.1C) as the functional layer were investigated. The steel surface was nitrided by an ion nitriding treatment or a radical nitriding treatment. The nitridation characteristic of the steel surface was made clear based on the thermodynamic stability. The thermal diffusivity, the hydrogen permeability and the chemical stability in the molten salt Flinak were investigated. The results indicated that the nitriding treatment can improve the compatibility in the Flinak without the decrease of the thermal diffusivity, though there was little improvement as the hydrogen permeation barrier. (author)

  10. Achievements of the water cooled solid breeder test blanket module of Japan to the milestones for installation in ITER

    International Nuclear Information System (INIS)

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, Water Cooled Solid Breeder (WCSB) TBM is being developed. Six TBMs will be tested in ITER simultaneously, under the leadership of different countries. To ensure the installation of reliable TBMs, it is necessary to show feasibility on the TBM milestones for installation in ITER. This paper shows the recent achievements toward the milestones of ITER TBMs prior to the installation, that consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, it is necessary to show the consistency with ITER design on time with ITER design progress, targeting the detailed design final report in 2012. Structure design of the interfacing components between the WCSB TBM structure and the interfacing components (Common Frame and Backside Shielding) that are placed in a test port of ITER has been developed. The design work also consists of procedures of fabrication and replacement of TBM, the consistency with ITER port structure and TBM interface structure, and the layouts of the auxiliary systems of TBMs including the tritium extraction system and water cooling system. As for the module qualification, it is necessary to show fabrication capability and the integrity of prototypical size mockup in corresponding operation condition before the delivery of the TBM to ITER. A real scale first wall mock-up was successfully fabricated by using Hot Isostatic Pressing (HIP) method by structural material of reduced activation martensitic ferritic steel, F82H. High heat flux test with real cooling water condition is planned using this mock-up. Other essential R and Ds for the WCSB TBM also showed steady progress on investigation of mechanical behavior of breeder pebble beds, development of advanced breeder/multiplier pebble, neutron measurement technology for TBM and purge gas tritium recovery technology. As for safety milestones

  11. Fabrication and quality control of MOX fuel for Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Full text: Uranium-Plutonium mixed oxide (MOX) fuel for both thermal and fast reactors have been fabricated by Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, India. MOX fuel bundles fabricated by AFFF have been loaded in Boiling Water Reactors (BWRs) and Pressurised Heavy Water Reactors (PHWRs) and have been discharged after successful irradiation. An experimental fuel subassembly containing 37 MOX pins is being irradiated in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai and has seen a burn up of more than 80000 MWD/T. MOX fuel pins containing 44% Pu02 have been recently loaded as a part of the hybrid core of FBTR. AFFF has now taken up the manufacture of MOX fuel pins for the Prototype Fast Breeder Reactor (BHAVINI) coming up at Kalpakkam. The core consists of 181 sub assemblies containing 217 MOX fuel pins each. It is required to fabricate nearly 40,000 MOX fuel pins (3 meter long) for the first core. The Prototype Fast Breeder Reactor is designed with two different fissile enrichment zones to be loaded with MOX subassemblies with a nominal composition of 21% and 28% of PuO2. The fuel pellets of required composition are made using conventional powder metallurgy processes. The pellets are annular with an inner hole of 1.8mm diameter and outside diameter of 5.5mm. AFFF has developed the technology of making annular MOX fuel pellets for PFBR and optimized conditions of fabrication. Multistation rotary presses have been used for compaction of the pellets. The fuel pin consists of a MOX stack of 1000mm and axial blanket of deeply depleted uranium dioxide of length 300mm on either side. New techniques have been used at different stages of fabrication of the fuel pins namely pelletisation, welding and wire wrapping. Studies have been made to use laser welding technique for welding of endplugs. Automation has been introduced in a number of process steps in the fabrication line. A detailed quality control plan is prepared

  12. Fabrication and quality control of MOX fuel for Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Uranium-Plutonium mixed oxide (MOX) fuel for both thermal and fast reactors have been fabricated by Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, India. MOX fuel bundles fabricated by AFFF have been loaded in Boiling Water Reactors (BWRs) and Pressurised Heavy Water Reactors (PHWRs) and have been discharged after successful irradiation. An experimental fuel subassemby containing 37 MOX pins is being irradiated in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai and has seen a burn up of more than 92000 MWd/t. MOX fuel pins containing 44% PuO2 have been recently loaded as a part of the hybrid core of FBTR. AFFF has now taken up the manufacture of MOX fuel pins for the Prototype Fast Breeder Reactor (PFBR) coming up at Kalpakkam . The core consists of 181 sub assemblies containing 217 MOX fuel pins each. Prototype Fast Breeder Reactor is designed with two different fissile enrichment zones to be loaded with MOX subassemblies with a nominal composition of 21% and 28% of PuO2.The fuel pellets of required composition are made using conventional powder metallurgy processes. The pellets are annular with an inner hole of 1.8 mm diameter and outside diameter of 5.5 mm. AFFF has developed the technology of making annular MOX fuel pellets for PFBR and optimized conditions of fabrication. Multistaion rotary presses have been used for compaction of the pellets. The fuel pin consists of a MOX stack of 1000 mm and axial blanket of deeply depleted uranium dioxide of length 300 mm on either side. New techniques have been used at different stages of fabrication of the fuel pins namely pelletisation, welding and wire wrapping. Studies have been made to use laser welding technique for welding of endplugs. Automation has been introduced in a number of process steps in the fabrication line. A detailed quality control plan is prepared based on the specifications and advanced process and quality control procedures have been incorporated to

  13. Integrated-blanket-coil (IBC) concept applied to the poloidal field and blanket systems of a tokamak reactor

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component. This concept, designated the integrated-blanket-coil (IBC) concept, is applied to the poloidal field and blanket systems of a Tokamak reactor. An examination of resistive power losses in the IBC suggests that these losses can be limited to less than or equal to 10% of the fusion thermal power. By assuming a sandwich construction for the IBC walls, MHD-induced pressure drops and associated pressure stresses are shown to be modest and well below design limits. For the stainless steel reference case examined in this paper, the MHD-induced pressure drop was estimated to be approx. 1/3 MPa and the associated primary membrane stress was estimated to be approx. 47 MPa. The preliminary analyses presented in this paper indicate that the IBC concept offers promise as a means for making fusion reactors more compact by combining blanket and coils functions in a single component

  14. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  15. Defect assessment procedure: A french approach for fast breeder reactors

    International Nuclear Information System (INIS)

    As a result of a collaborative effort between Commissariat a l'Energie Atomique, Electricite de France, and NOVATOME to produce and improve rules for fast breeder reactors, RCC-MR, an interim defect assessment procedure is now available in the first draft version (appendix A16). This procedure addresses defects detected during in-service inspection for reactor components operating at moderate or high temperature conditions. Three stages have been considered: initiation, propagation under cyclic loading with or without holdtime and crack instability by ductile and creep rupture. For each of these topics, procedures and rules based on fracture mechanics are proposed. Prediction of initiation is obtained by a simplified method named σd method which relies on the evaluation of the real stress-strain history on a small distance d (d = 0.05 mm for 316L(N) austenitic steel) close to the crack front and material characteristics (limiting stresses) that are available in nuclear codes. This method has been developed for fatigue, creep and creep-fatigue conditions. Defect growth assessment is performed for fatigue and creep-fatigue conditions. For creep-fatigue conditions, fatigue and creep crack growth per cycle are calculated separately and the total crack extension is taken as the sum of the two contributions. Extensive use of simplified method for estimating J (Js method) is made and developed when mechanical and thermal loadings are specified. On the final defect size, assessment may be made in order to avoid crack instability by ductile and creep rupture and collapse load on the remaining. The organization and contents of the present version of this appendix A16 is described. An overview of each specific rule is given

  16. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  17. Improving proliferation resistance of high breeding gain generation 4 reactors using blankets composed of light water reactor waste

    Energy Technology Data Exchange (ETDEWEB)

    Hellesen, C.; Grape, S.; Haakanson, A.; Jacobson Svaerd, S.; Jansson, P. [Division of Applied Nuclear Physics, Uppsala University, Aangstroemlaboratoriet Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden)

    2013-07-01

    Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)

  18. Fusion breeder neutronics. Final report

    International Nuclear Information System (INIS)

    Research efforts in fusion breeder neutronics have been focused on two tasks that are strongly related. Efforts in Task 1 concentrate on examining the required conditions to sustain fuel self-sufficiency in fusion reactors operated on a D-T fuel cycle. In this respect, in-depth and detailed engineering analyses have been performed on various blanket and reactor concepts to verify the potential of each blanket concept to exhibit a tritium breeding ratio (TBR) in excess of unity by a margin that compensates for losses, radioactive decay and other inventory requirements. Efforts in Task 2 concentrate on evaluating the overall uncertainties (both experimental and analytical) associated with the TBR

  19. Attachment system for helium-cooled blanket of RF DEMO fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Leshukov, A. E-mail: leshu@entek.ru; Blinov, Y.; Kovalenko, V.; Shatalov, G.; Strebkov, Y.; Strizhov, A

    2002-11-01

    The development of DEMO thermonuclear reactor is a part of Russian national program on the fusion process mastering. The DEMO-S (stationary thermonuclear reactor) should be the logic continuation of the ITER-type projects (pulse thermonuclear reactors) and the prototype for commercial power plants. DEMO reactor layout suggests to use the segmented blanket with mounting/dismounting procedure through the vacuum vessel vertical ports. Taking into account this layout the blanket attachment system has been developed and the present paper is devoted to this subject. The considered attachment system includes the lower and upper toroidal support assemblies which connect all the blanket segments in the enclosed ring. In it's turn the lower support assemblies attached to the vacuum vessel through the system of hinged support pillars. The heights of support pillars for inboard and outboard blankets are selected so that to indemnify the blanket massif thermal expansions in vertical and radial directions. The support pillars have been calculated on strength taking into account the electromagnetic loads from the plasma disruptions and blanket mass. The selection of high-strength chromium steel as a structural material for the support pillars could be considered as the results of strength analysis. The conclusions on the possibility to apply this attachment system for fusion reactor blanket and the critical issues are contained in this paper too.

  20. The present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the beginning to power of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resource that uranium is. (author)

  1. Present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the startup of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resources that uranium

  2. Multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle with pressurized heavy-water reactor external feed

    Indian Academy of Sciences (India)

    G Pandikumar; A John Arul; P Puthiyavinayagam; P Chellapandi

    2015-10-01

    A fast breeder reactor (FBR) closed fuel cycle involves recycling of the discharged fuel, after reprocessing and refabrication, in order to utilize the unburnt fuel and the bred fissile material. Our previous study in this regard for the prototype fast breeder reactor (PFBR) indicated the possibility of multiple recycling with self-sufficiency. It was found that the change in Pu composition becomes negligible (less than 1%) after a few cycles. The core-1 Pu increases by 3% from the beginning of cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th by only 0.3%. In this work, the possibility of multiple recycling of PFBR fuel with external plutonium feed from pressurized heavy-water reactor (PHWR) is examined. Modified in-core cooling and reprocessing periods are considered. The impact of multiple recycling on PFBR core physics parameters due to the changes in the fuel composition has been brought out. Instead of separate recovery considered for the core and axial blankets in the earlier studies, combined fuel recovery is considered in this study. With these modifications and also with PHWR Pu as external feed, the study on PFBR fuel recycling is repeated. It is observed that the core-1 initial Pu inventory increases by 3.5% from cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th is only 0.35%. A comparison of the studies done with different external plutonium options viz., PHWR and PFBR radial blanket has also been made.

  3. Network Representation of Design Knowledge of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    A method of design knowledge representation was studied for the Japanese fast breeder reactor Monju, aiming at enhanced understanding of engineering considerations with mutual relations. Taking over design knowledge of Monju to next generation designers/engineers to be in charge of design of future FRs is by no means easy, in contrast with operation and maintenance knowledge which can be acquired in the real plant operation and maintenance. Specifications of the as-is Monju contains only a small part of the entire design knowledge, mainly by two reasons. Firstly, reasons for selecting the as-is specifications can not be understood until reaching proper knowledge source. Secondly, there are many rejected options on the design specifications. Design specifications are selected along with technical dependencies among a huge number and diversified specification items. Decisions design are made basically along with these dependencies which can hardly be traced in the currently available database or document libraries. Reasons for the rejections of options need to be profoundly understood, because those are not certainly due to technical inferiority. Some of rejected options can be worth reconsidering in the future, possibly by technical advances in materials, high-precision prediction software tools, rationalized standards/code, etc. The authors propose a new design knowledge representation approach based on networking of knowledge nodes along with the mutual dependencies. A prototype software has been developed and a basic performance test was made to visualize the dependency network. An additional function to enable design case studies on hypothetical adoptions of rejected options is now under consideration. (author)

  4. Resonance self-shielding in the blanket of a hybrid reactor

    International Nuclear Information System (INIS)

    Three sets of energy group cross sections were obtained using various approximations for resonance self shielding. The three models used in obtaining the cross sections were: (a) infinitely dilute model, (b) homogeneous-medium resonance self shielding, and (c) heterogeneous-medium resonance self shielding. The effects on the blanket performance of fusion--fission hybrid reactors, and in particular, on the performance of the current reference Westinghouse Demonstration Tokamak Hybrid Reactor blanket, were compared and analyzed for a variety of fuel-coolant combinations. It has been concluded that (1) the infinitely dilute cross sections can be used to produce preliminary crude estimates for beginning-of-life (BOL) only, (2) the resonance absorber finite dilution should be considered for BOL, poorly moderated blankets and well moderated blankets with low fissile material content situations, and (3) the spacial details should be considered in high fissile content, well moderated blanket situations

  5. Development of high nitrogen electrodes for fast breeder reactor applications

    International Nuclear Information System (INIS)

    Austenitic stainless steels of AISI type 316 (316 SS) and its variants are used extensively as structural material for the components of fast reactors operating at temperature up to 823 K. SS 316LN has been chosen as the major structural material for the construction of Prototype Fast Breeder Reactor (PFBR) with a targeted service life of 40 years. To reduce the risk of sensitization in SS 316LN, the carbon content has been reduced to less than 0.03 wt%, and the nitrogen content has been specified as 0.08 wt% to compensate the loss in strength due to the reduced carbon content. An improved version of this alloy with nitrogen content of 0.14 wt% in a frilly austenite matrix has been developed for the future FBRs, to enhance the service life of the structural components up to 60 years. Indigenously developed modified E3 16-1 5 electrodes were used for the fabrication of PFBR components to enhance the structural reliability of the components. The modifications from AWS/ASME SFA 5.4 include stringent composition limits, narrow range of ferrite content, and impact toughness after aging at 1023K for 100h, tensile properties at elevated (service) temperatures and intergranular corrosion (IGC) test as per ASTM A262 Practice E. Since the improved version alloy is rich in nitrogen content than the existing alloy, it has become necessary to develop a welding consumable with reasonably good weldability that is suitable for the fabrication of future FBR components. At present there are no commercially available welding consumables to weld these steels and the development is under way. In this work, a matching consumable methodology was adopted to develop the welding consumable. However, as per specification targeting the chemistry, solidification mode and delta ferrite was challenging, since the solidification mode of the weld metal shifts to fully austenitic region due to dilution of nitrogen from the base metal, which may increase the risk of hot cracking susceptibility

  6. Breeding zone models of DEMO ceramic helium cooled blanket test module for testing in IVV-2M reactor

    International Nuclear Information System (INIS)

    The goal of DEMO ceramic helium cooled blanket test module (CHC BTM) is to demonstrate a breeding capability that would lead to tritium self-sufficiency in ITER reactor and to extract a high-grade heat suitable for electricity generation. Experimental validation of all the adopted design solutions is main important problem at design and calculation works carrying out in order to develop the CHC BTM. One important task for breeding zones feasibility validation is in-pile tests. Two models were developed and fabricated for testing in the fission IVV-2M reactor. Breeding zone is based on poloidal BIT-conception. The models structural material is ferrito-martensitic steel. Breeder material is lithium orthosilicate in pebble beds and pellet forms. Multiplier material is beryllium in pebble beds and porosity forms. The cooling is provided by helium at 10 MPa. The tritium produced in the breeder material is purged by the helium flow at 0.1-0.2 MPa. Designs of model description and experimental channel, results of neutronic and thermo-hydraulic calculations are presented in the paper. (orig.)

  7. Development of metallic fuels for Indian Fast Breeder Reactors

    International Nuclear Information System (INIS)

    The neutronic performance of metal fuel based on binary U-Pu alloy or ternary U-Pu-Zr alloys are better than conventional uranium plutonium mixed oxide or high density carbide ceramic fuel. The growing energy demand in India needs faster growth of nuclear power and warrants introduction of fast reactors based on metallic fuels in future. Physics calculation showed that fast reactor based on metallic fuels results in higher breeding ratio and lower doubling time compare to mixed oxide or carbide fuels. Moreover inclusion of pyro-processing of the fuel in the fuel cycle is expected to make metal fuel option more economical. As part of metal fuel development programme for future FBR's in India, capsule irradiation of metal fuel based on sodium bonded U-Pu-Zr alloy and metal (Zircaloy) bonded binary U-Pu (Pu ∼ 15 %) alloy are being actively pursued. For this purpose two design concepts have been proposed : one based on sodium bonded ternary alloy fuel of U-Pu-Zr (2-10 wt%) in modified T91 cladding material and the other is U-Pu binary alloy mechanically bonded to modified T91 cladding material with 'Zircaloy' as a liner between the fuel alloy and the clad. The Zircaloy liner act as a barrier in reducing the fuel clad chemical interaction. It also helps in transfer of heat from the fuel to the clad. The smear density of metal bonded pin will be between 70% - 85% and that for sodium bonded pin will be ∼ 70%. In metal bonded fuel pin design two/four semi-circular grooves of diameter ∼1.0 mm, will be provided in diametrically opposite directions in the fuel cross section to accommodate fuel swelling. A comparison has been made on the relative merits and demerits of these two fuel pin designs. The material for the axial blanket will be 'U' or U-Zr (Zr upto 10wt %) alloy based on the results of the out-of-pile thermal cycling behavior and irradiation performance. In the present investigation out-of-pile experiments have been carried out to address some of the issues of

  8. Fast breeder reactors insertion in a D2O - natural U nuclear power plants park

    International Nuclear Information System (INIS)

    A model for the evolution of Argentine's installed nuclear power for the next 40 years is presented. The consequences of fast breeder reactors' introduction are studied in both autarchic Pu cycle and a limited reprocessing system. The passage of a reactor park like the national, of natural U - heavy water to one of fast breeder reactors, can only be obtained in a very long term due, fundamentally, to the need of Pu produced for those to feed the last ones. (M.E.L.)

  9. On the development of fast breeder reactors and the use of thorium in Brazil

    International Nuclear Information System (INIS)

    This work presents a discussion on the possibility of construction of fast breeder reactors in Brazil. It is specially concerned with the use of thorium which is abundant in our country. The main advantages of this projects are: develop fuel and reactor technology in Brazil, increase thorium research, demonstrate the safety of LMFBR and promote its public acceptance. (A.C.A.S.)

  10. Water-cooled blanket concepts for the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    The primary goal of the Blanket Comparison and Selection Study (BCSS) was to select a limited number of blanket concepts for fusion power reactors, to serve as the focus for the U.S. Department of Energy blanket research and development program. The concepts considered most seriously by the BCSS can be grouped for discussion purposes by coolant: liquid metals and alloys, pressurized water, helium, and nitrate salts. Concepts using pressurized water as the coolant are discussed. Water-cooled concepts using liquid breeders-lithium and 17Li-83Pb (LiPb)-have severe fundamental safety problems. The use of lithium and water in the blanket was considered unacceptable. Initial results of tests at Hanford Engineering Development Laboratory using steam injected into molten LiPb indicate that use of LiPb and water together in a blanket is a very serious concern from the safety standpoint. Key issues for water-cooled blankets with solid tritium breeders (Li2O, or a ternary oxide such as LiAlO2) were identified and examined: reliability against leaks, control of tritium permeation into the coolant, retention of breeder physical integrity, breeder temperature predictability, determination of allowable temperature limits for breeders, and 6Li burnup effects (for LiAlO2). The BCSS's final rankings and associated rationale for all water-cooled concepts are examined. Key issues and factors for tokamak and tandem mirror reactor versions of water-cooled solid breeder concepts are discussed. The reference design for the top-ranked concept-LiAlO2 breeder, ferritic steel structure, and beryllium neutron multiplier-is presented. Finally, some general conclusions for water-cooled blanket concepts are drawn based on the study's results

  11. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  12. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  13. An option for the Brazilian nuclear project: necessity of fast breeder reactors and core design for an experimental fast reactor

    International Nuclear Information System (INIS)

    Aiming to assure the continued utilization of fission energy, the development of fast breeder reactors (FBRs) is a necessity. Binary fueled LMFBRs are proposed, as the best type for the Brazilian nuclear system in the future. The inherent safety characteristics are superior to current fast breeder reactors and an efficient utilization of thorium can be realized. The construction and operation of an experimental fast reactor is the first step and a basic tool for the development of FBRs technologies. A serie of core design for an 90 MW FBR is studied and the possible options and sizes of the main parameters are identified. (E.G.)

  14. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    International Nuclear Information System (INIS)

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified

  15. IAEA note on multi-national fuel cycle centres as related to fast breeder reactors

    International Nuclear Information System (INIS)

    The significant aspects of associating fast breeder reactor fuel cycles with the concept of regional fuel cycle centres, as studied earlier by the IAEA, are identified. The results of the RFCC Study Project are presented, and how in particular non-proliferation and safeguards, radioactive waste management and economic considerations would be effected by inclusion of fast breeder reactor fuel cycle facilities and possibly fast breeder reactors as well in such centres, are discussed. The current effort of the IAEA to develop a computer programme which models the material flows in the nuclear fuel cycle which could be applied to the analysis of alternative siting strategies for FBR and its fuel cycle facilities is discussed

  16. Operation and maintenance experience with control rod and their drive mechanisms of fast breeder test reactor

    International Nuclear Information System (INIS)

    This paper explains the functional and construction features of Control Rod Drive Mechanism (CRDM) and control rod used in Fast Breeder Test Reactor (FBTR) which is a 40 MWt loop type sodium cooled fast reactor. It discusses all safety related incidents and failures encountered during its service in reactor, the solutions evolved and modifications carried out to prevent recurrence. It also details the maintenance activities and periodical surveillance carried out. The results of a reliability analysis done are also discussed. (author)

  17. Plutonium breeding in liquid-metal fast breeder reactors and light water reactors

    International Nuclear Information System (INIS)

    The possibilities of breeding in liquid-metal fast breeder reactors (LMFBRs) and light water reactors (LWRs) are compared in two ways. The feasibility of breeding has been demonstrated in the Phenix reactor with a measured gain of 0.14. The gain in Superphenix will amount to about0.20. The studies show that while maintaining the performance of commercial reactors their breeding gain can be further increased either by the concept of heterogeneous cores or by using carbide or nitride fuel (breeding gain about0.35). Recently, the old idea of breeding in advanced pressurized water reactors (PWRs) has been taken up again with the objective of attaining a gain of 0.05. Unfortunately, these objectives had to be limited to a conversion ratio of 0.9 for safety reasons, and it is not certain whether operation will be rewarding economically. The strategy of substituting PWRs is examined using the French example. By gradually introducing LMFBRs, the cumulated uranium supplies in France can be kept within reasonable limits, which means that they attain three to four times the home resources. This is not possible with advanced LWRs, which can be considered only as a possible backup solution for plutonium recycling into PWRs

  18. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Jaboulay, Jean-Charles, E-mail: Jean-Charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martin, Brunella, E-mail: brunella.martin@gmail.com [Incka, 19-21 Rue du 8 mai 1945, F-94110 Arcueil (France)

    2014-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented.

  19. Status of fast breeder reactor development in the United States of America - April 1984

    International Nuclear Information System (INIS)

    The Breeder Technology program continues to produce viable information on fuel performance, nuclear systems technology, and power conversion technology. The unique testing capabilities design into the FFTF have resulted in well-validated materials and fuels irradiation information that has confirmed and extended previous data bases. Current directions for the research and development program are to improve the technology for power conversion systems, components, instrumentation, and materials technology to the point where cost reduction and reliability potentials are realized. Operation of the breeder test facility complex at the Hanford Engineering Development Laboratory (HEDL), the Energy Technology Engineering Center (ETEC), and the Argonne National Laboratory (ANL) continues to provide the experience base and test capability for the breeder R and D effort. International cooperation will be even more important in the future than in the past for several reasons. Significant new investments still have to be made in breeder R and D to improve designs, achieve economic competitiveness and to develop practical breeder fuel cycle capabilities. Progress can be accelerated, redundancies avoided, and economics achieved if nations coordinate their programs, and where possible, divide up the work. In addition, there is clear mutual benefit in encouraging the countries involved in breeder development to harmonize standards and regulations related to safety. It is also important that the advanced nations work together closely in assuring that adequate international safeguards, export controls, and national physical security measures keep pace with breeder reactor and fuel cycle developments

  20. Laser fusion driven breeder design study. Final report

    International Nuclear Information System (INIS)

    The results of the Laser Fusion Breeder Design Study are given. This information primarily relates to the conceptual design of an inertial confinement fusion (ICF) breeder reactor (or fusion-fission hybrid) based upon the HYLIFE liquid metal wall protection concept developed at Lawrence Livermore National Laboratory. The blanket design for this breeder is optimized to both reduce fissions and maximize the production of fissile fuel for subsequent use in conventional light water reactors (LWRs). When the suppressed fission blanket is compared with its fast fission counterparts, a minimal fission rate in the blanket results in a unique reactor safety advantage for this concept with respect to reduced radioactive inventory and reduced fission product decay afterheat in the event of a loss-of-coolant-accident

  1. Quality assurance in technology development for The Clinch River Breeder Reactor Plant Project

    International Nuclear Information System (INIS)

    The Clinch River Breeder Reactor Plant Project is the nation's first large-scale demonstration of the Liquid Metal Fast Breeder Reactor (LMFBR) concept. The Project has established an overall program of plans and actions to assure that the plant will perform as required. The program has been established and is being implemented in accordance with Department of Energy Standard RDT F 2-2. It is being applied to all parts of the plant, including the development of technology supporting its design and licensing activity. A discussion of the program as it is applied to development is presented

  2. Status of national programmes on fast breeder reactors. Eighteenth annual meeting, Vienna, Austria, 16-19 April 1985

    International Nuclear Information System (INIS)

    The Eighteenth Annual Meeting on the Status of National Programmes in Member States of the IAEA on Fast Breeder Reactors had been held in April 1985. The representatives of the Member States and international organizations reported status and activities in the field of fast breeder reactors development and operation. A separate abstract was prepared for each of the 12 presentations of the meeting

  3. Economic evaluation of the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  4. Network representation of design knowledge of prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    A method of design knowledge representation was studied for the Japanese fast breeder reactor Monju, aiming at enhanced understanding of engineering considerations with mutual relations. Taking over design knowledge of Monju to next generation designers/engineers to be in charge of design of future FRs is by no means easy, in contrast with operation and maintenance knowledge which can be acquired in the real plant operation and maintenance. Specifications of the as-is Monju contains only a small part of the entire design knowledge, mainly by two reasons. Firstly, reasons for selecting the as-is specifications can not be understood until reaching proper knowledge source. Secondly, there are many passed-over options on the design specifications. Reasons for passing-over these options are not always technical inferiority. A large part of the current specifications are selected because the worst possible technical value can be foreseeable or guaranteed to be acceptable within limited R and D period and resource, not because the expected value is estimated to be the lower. In other words, in the future where new materials with improved properties, faster and more accurate analysis/prediction methods, rationalized technical standards or regulatory requirements, and/or some other environment for thorough comparison among specification options are available, these passed-over options are likely to be worth reconsidering. There are a huge number of technical documents on diversified engineering studies, such as calculation of maximum possible temperature gradient of important structures, necessary sodium flow rate in particular sub-assemblies, etc. for validation of each decision making in design. A large part of these documents are scanned and stored in a data base with each catalogue data for electronic browse. The authors propose a network representation of these items of design decision making, where the items are mutually connected by directed arcs, where nodes stand

  5. Method of locating a leaking fuel element in a fast breeder power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Honekamp, John R. (Downers Grove, IL); Fryer, Richard M. (Idaho Falls, ID)

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  6. Method of locating a leaking fuel element in a fast breeder power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Honekamp, J.R.; Fryer, R.M.

    1978-03-21

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of /sup 134/Xe to /sup 133/Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  7. Research and development status of ceramic breeder materials

    International Nuclear Information System (INIS)

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was also recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option breeder material. Blanket design studies have indicated areas in the properties data base that need further investigation. Current studies are focusing on issues such as tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests are underway, some as part of an international collaboration for development of ceramic breeder materials. 36 refs

  8. Fabrication, properties, and tritium recovery from solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.E. (Argonne National Lab., IL (USA)); Kondo, T. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Roux, N. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Tanaka, S. (Tokyo Univ. (Japan)); Vollath, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  9. Plutonium bearing oxide fuels for recycling in thermal reactors and fast breeder reactors

    International Nuclear Information System (INIS)

    Programs carried out in the past two decades have established the technical feasibility of using plutonium as a fuel material in both water-cooled power reactors and sodium-cooled fast breeder reactors. The problem facing the technical community is basically one of demonstrating plutonium fuel recycle under strict conditions of public safety, accountability, personnel exposure, waste management, transportation and diversion or theft which are still evolving. In this paper only technical and economic aspects of high volume production and the demonstration program required are discussed. This paper discusses the role of mixed oxide fuels in light water reactors and the objectives of the LMFBR required for continual growth of nuclear power during the next century. The results of studies showing the impact of using plutonium on uranium requirements, power costs, and the market share of nuclear power are presented. The influence of doubling time and the introduction date of LMFBRs on the benefits to be derived by its commercial use are discussed. Advanced fuel development programs scoped to meet future commerical LMFBR fuel requirements are described. Programs designed to provide the basic technology required for using plutonium fuels in a manner which will satisfy all requirements for public acceptance are described. Included are the high exposure plutonium fabrication development program centered around the High Performance Fuels Laboratory being built at the Hanford Engineering Development Laboratory and the program to confirm the technology required for the production of mixed oxide fuels for light water reactors which is being coordinated by Savannah River Laboratories

  10. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    . Concentrated waste (usually sewage sludge) can be added continuously or periodically (semi-batch operation), where it is mixed with the contents of the reactor. Theoretically, the conventional digester is operated as a once-through, completely mixed, reactor. In this particular mode of operation the hydraulic retention time (HRT) is equal to the solids retention time (SRT). Basically, the required process efficiency is related to the sludge retention time (SRT), and hence longer SRT provided, results in satisfactory population (by reproduction) for further waste stabilization. By reducing the hydraulic retention time (HRT) in the conventional mode reactor, the quantity of biological solids within the reactor is also decreased as the solids escape with the effluent. The limiting HRT is reached when the bacteria are removed from the reactor faster than they can grow. Methanogenic bacteria are slow growers and are considered the rate-limiting component in the anaerobic digestion process. The first anaerobic process developed, which separated the SRT from the HRT was the anaerobic contact process. In 1963, Young and McCarty (1968) began work, which eventually led to the development of the anaerobic upflow filter (AF) process. The anaerobic filter represented a significant advance in anaerobic waste treatment, since the filter can trap and maintain a high concentration of biological solids. By trapping these solids, long SRT's could be obtained at large waste flows, necessary to anaerobically treat low strength wastes at nominal temperatures economically. Another anaerobic process which relies on the development of biomass on the surfaces of a media is an expanded bed upflow reactor. The primary concept of the process consists of passing wastewater up through a bed of inert sand sized particles at sufficient velocities to fluidize and partially expand the sand bed. One of the more interesting new processes is the upflow anaerobic sludge blanket process (UASB), which was developed

  11. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  12. Assessment of the activation, decay heat, and waste disposal of the US helium-cooled ceramic breeder test blanket module in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Mahmoud Z. [University of California-Los Angeles, Los Angeles, CA 90025 (United States); University of Wisconsin-Madison (United States)], E-mail: youssef@fusion.ucla.edu; Ying, Alice [University of California-Los Angeles, Los Angeles, CA 90025 (United States)

    2008-12-15

    The radioactivity inventory and decay heat in the US helium-cooled ceramic breeder (HCCB) test blanket module (TBM) have been assessed at shutdown and for several times thereafter. The sub-module will have its own FW and structural container box that houses the breeder and beryllium pebble bed units, arranged in an edge-on-configuration. Low activation ferritic steel (F82H) is used as the structure and helium is used as a coolant. The breeder beds are made of Li{sub 2}TiO{sub 3} pebbles in which lithium has been enriched up to 75% in Li-6. Pulsed operation mode is assumed. During operation in the D-T phase, the total heating rate in the TBM is {approx}263 kW. The total amount of tritium generated in the breeder and the beryllium multiplier is {approx}9 g and 0.07 g, respectively, after reaching the 0.3 MWa/m{sup 2} fluence limit. At shutdown, the total radioactivity and decay heat levels are {approx}0.89 MCi and {approx}0.002 MW, respectively. These values drop sharply after 1 min to {approx}0.098 MCi and {approx}0.0006 MW. The contribution from the F82H structure is the dominant one up to {approx}10 years following shutdown. After {approx}10 years, the contribution to the total activation and decay heat from the breeder material is the dominant one due to the generated tritium. The WDR of various components are far below unity and thus are well within ITER regulatory guidelines.

  13. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  14. Recommendations concerning models and parameters best suited to breeder reactor environmental radiological assessments

    International Nuclear Information System (INIS)

    Recommendations are presented concerning the models and parameters best suited for assessing the impact of radionuclide releases to the environment by breeder reactor facilities. These recommendations are based on the model and parameter evaluations performed during this project to date. Seven different areas are covered in separate sections

  15. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  16. Recommendations concerning models and parameters best suited to breeder reactor environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.W.; Baes, C.F. III; Dunning, D.E. Jr.

    1980-05-01

    Recommendations are presented concerning the models and parameters best suited for assessing the impact of radionuclide releases to the environment by breeder reactor facilities. These recommendations are based on the model and parameter evaluations performed during this project to date. Seven different areas are covered in separate sections.

  17. ORIGEN2 model and results for the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A G; Bjerke, M A

    1982-06-01

    Reactor physics calculations and literature information acquisition have led to the development of a Clinch River Breeder Reactor (CRBR) model for the ORIGEN2 computer code. The model is based on cross sections taken directly from physics codes. Details are presented concerning the physical description of the fuel assemblies, the fuel management scheme, irradiation parameters, and initial material compositions. The ORIGEN2 model for the CRBR has been implemented, resulting in the production of graphical and tabular characteristics (radioactivity, thermal power, and toxicity) of CRBR spent fuel, high-level waste, and fuel-assembly structural material waste as a function of decay time. Characteristics for pressurized water reactors (PWRs), commercial liquid-metal fast breeder reactors (LMFBRs), and the Fast Flux Test Facility (FFTF) have also been included in this report for comparison with the CRBR data.

  18. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    International Nuclear Information System (INIS)

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  19. Safety analysis of a loss-of-coolant accident in a breeding blanket for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, P.; Casini, G.; Djerassi, H.; Papa, L.; Pautasso, G.; Renda, V.; Rouyer, J.L.

    1985-07-01

    A LOCA in a blanket design proposed for NET (Next European Torus) is investigated. The structural analysis of a damaged breeder unit shows that this first containment barrier has a high probability of survival to this accident. The radioactive sources involved are evaluated and an assessment is made of all containment barriers and associated protection systems.

  20. Overview of pool hydraulic design of Indian prototype fast breeder reactor

    Indian Academy of Sciences (India)

    K Velusamy; P Chellapandi; S C Chetal; Baldev Raj

    2010-04-01

    Thermal hydraulics plays an important role in the design of liquid metal cooled fast breeder reactor components, where thermal loads are dominant. Detailed thermal hydraulic investigations of reactor components considering multi-physics heat transfer are essential for choosing optimum designs among the various possibilities. Pool hydraulics is multi-dimensional in nature and simple one-dimensional treatment for the same is often inadequate. Computational Fluid Dynamics (CFD) plays a critical role in the design of pool type reactors and becomes an increasingly popular tool, thanks to the advancements in computing technology. In this paper, thermal hydraulic characteristics of a fast breeder reactor, design limits and challenging thermal hydraulic investigations carried out towards successful design of Indian Prototype Fast Breeder Reactor (PFBR) that is under construction, are highlighted. Special attention is paid to phenomena like thermal stratification, thermal stripping, gas entrainment, inter-wrapper flow in decay heat removal and multiphysics cellular convection. The issues in these phenomena and the design solutions to address them satisfactorily are elaborated. Experiments performed for special phenomena, which are not amenable for CFD treatment and experiments carried out for validation of the computer codes have also been described.

  1. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  2. World energy resources, demand and supply of energy, and the prospects for the fast breeder reactor

    International Nuclear Information System (INIS)

    In the past it was taken for granted that the prime role of fast breeder reactors was to complement light water reactors, mainly because of their similar and compatible fuel cycles. In particular, the plutonium converted in LWRs is most intelligently disposed of and used in FBRs. Evaluation of the time horizon of such reactor strategies generally extended only to the year 2000. It is important to realize, however, that the salient task in the breeder field after 2000 - besides electricity generation - will be to substitute for conventional ''cheap'' oil. Electricity today makes up only 10% to 12% of the total secondary energy, while liquids essentially command up to about 50%. Thus the future application of the FBR technology will have to be geared more to the production of a liquid secondary energy carrier than to electricity. A new yardstick for all these considerations is the strongly rising energy prices. They may double, for example, leading to an oil price of US 24/bbl. Under these circumstances it is prudent to generalize the scope for future fast breeders. The key element of such a new fast breeder strategy would be the production of hydrogen by electrolysis or thermolysis or a combination of both. For example, methanol synthesized from hydrogen and residual fossil fuels would thus become economically attractive. The FBR breeding gain, on the other hand, would be used for the continued supply of LWRs generating electricity. The paper identifies order-of-magnitude considerations most important for such a fast breeder application against a global energy demand scenario for the year 2030. (author)

  3. Methodical study of cost-benefit analyses of the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Six American cost-benefit analyses (CBA) of nuclear energy and, in particular, of the Liquid Metal Fast Breeder Reactor (LMFBR) were analysed under the aspect of their methodical difficulties. Two different methodical approaches can be discerned which are related to two completely different applications, according to which the advantages and disadvantages of the breeder reactor are estimated in line with the basic concept of cost-benefit analysis. The analytical methods used to justify the continuation of the breeder-related research programme reveal that the specific energy-related technological and economic conditions of the geographic region considered have to be taken into account. The results of a CBA performed for the USA can therefore not be transferred to the Federal Republic of Germany. Due to the in part strongly differing quantitative results the analyses reviewed do not suggest a clear and final decision in favour of the continuation of the American LMFBR research programme to the extent envisaged. In addition, neither by a positive nor by a negative overall result of the analysis can it be concluded that no other advanced electricity generating technology would have a more favourable cost-benefit ratio, or that the breeder-related research activities, which have been pursued for several years already, should be discontinued. (orig.)

  4. The Last Twenty Years of Experience with Fast Breeder Reactors: Lessons Learnt and Perspectives

    International Nuclear Information System (INIS)

    India has made significant achievements in the design and development of sodium cooled fast breeder reactors over the last twenty years. Attaining a maximum burnup of 165 GW.d/t for the plutonium-rich carbide fuel without any cladding failure, coupled with excellent performance of sodium components, including primary pumps, heat exchangers and steam generators over the last 24 years, reprocessing of carbide fuel with a burnup of 150 GW.d/t and engineering tests performed for validating the plant dynamics computer codes, are the achievements from the successful operation of the 40 MW(th) capacity loop type fast breeder test reactor. Indigenous design of the 500 MW(e) Prototype Fast Breeder Reactor (PFBR), executing high quality multidisciplinary R and D and successful manufacturing and erection of large dimensioned thin walled shell structures are the achievements in PFBR development. These achievements, apart from providing confidence in the PFBR project, are instrumental for the design of innovative future reactors. National and international collaboration established with R and D establishments and academic institutions would go a long way towards helping India to attain world leadership by 2020. (author)

  5. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  6. Fast breeder reactor reference system classification for the ENEA data bank

    International Nuclear Information System (INIS)

    This report contains the Reference System Classification (RSC) of fast breeder reactors: it provides a functional system breakdown of the reactor. For each system the following important characteristics are reported: the main function, the mode of operation, its location in the reactor, the main interface system, its main components and the component working environment (fluid and/or atmosphere type). The RSC represent a basic step in organizing the ENEA data bank for the registration and processing of reliability data on typical fast reactor components; it provides a functional component breakdown and represent a plant-unique identification in the process of omogenization of event-data coming from different reactors. In this report it was tried to take into account different generations of nuclear power plants, different plant layouts and solutions: in particular loop and pool reactors are separately treated

  7. In-reactor experiments in fast breeder test reactor for assessment of core structural materials

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India is a sodium cooled reactor with neutron flux level of the order of 1015 n/cm2/s and temperature of coolant in the range of 650-790K (380-520oC). This reactor is being used as a test bed for the development of fuel and structural materials required for Indian Fast Reactor Programme. FBTR is also used as a test facility to carry out accelerated irradiation tests on thermal reactor structural materials. In-reactor experiments on core structural materials are being carried out by subjecting prefabricated specimens to desired conditions of temperature and neutron fluence levels in FBTR. Non-instrumented irradiation capsules that can be loaded at any location of FBTR core are used for the experiments. Pressurised capsules of zirconium alloys have been developed and subjected to irradiation in FBTR to determine the irradiation creep rate of indigenously developed zirconium alloys (Zircaloy-2 and Zr-2.5%Nb alloy) for life assessment of pressure tubes of Indian Pressurised Heavy Water Reactors (PHWRs). Technology development of pressurised capsules was carried out at IGCAR. These pressurised capsules were filled with argon and a small fraction of helium at a high pressure (5.0-6.5 MPa at room temperature) in such a way that the target stresses were attained in the walls of the pressurised capsules at the desired temperature of irradiation in the reactor. FBTR was operated at a low power of 8 MWt during this irradiation campaign to have an inlet temperature of about 579 K (306oC) which was close to the temperature of pressure tubes at full power in PHWR. Irradiation of thirty pressurised capsules was carried out in FBTR using six irradiation capsules for different durations (upto 79 days). The fluence levels attained by the pressurised capsules were up to 1.1 x 1021 n/cm2 (E> 1 MeV) at temperatures of 579 to 592 K. Post-irradiation increase in diameter of the pressurised

  8. Activation Analysis for a He/LiPb dual Coolant Blanket for DEMO Reactor

    OpenAIRE

    Catalán, J.P.; Ogando Serrano, Francisco; Sanz Gonzalo, Javier

    2010-01-01

    The objective of the Spanish national project TECNO_FUS is to generate a conceptual design of a DCLL (Dual-Coolant Lithium-Lead) blanket for the DEMO fusion reactor. The dually-cooled breeding zone is composed of He/Pb-15.7 6Li and SiC as liquid metal flow channel inserts. Structural materials are ferritic-martensitic steel (Eurofer-97) for the blanket and austenitic steel (316LN) for the Vacuum Vessel (VV). The goal of this work is to analyze the radioactive waste production by the neutron-i...

  9. Blanket concept of water-cooled lithium lead with beryllium for the SlimCS fusion DEMO reactor

    International Nuclear Information System (INIS)

    As an advanced option for SlimCS blanket, conceptual design study of water-cooled lithium lead (WCLL) blanket was performed. In SlimCS, the net tritium breeding ratio (TBR) supplied from WCLL blanket was not enough because the thickness of blanket in SlimCS was limited to about 0.5 m so as to allocate the conducting shell position near the plasma for high beta access and vertical stability of plasma. Therefore, the beryllium (Be) pebble bed was adopted as additional multiplier to reach a required TBR (≥ 1.05). Considering the operating temperature of blanket materials, a double pipe structure was adopted. The nuclear and thermal analysis were carried out by a nuclear-thermal-coupled code, ANIHEAT and DOHEAT so that blanket materials were appropriately arranged to satisfy the acceptable operation temperatures. The temperatures of materials were kept in appropriate range for the neutron wall load Pn = 5 MW/m2. It was found that the local TBR of WCLL with Be blanket was comparable with that of solid breeder blanket. (author)

  10. Status of the fast breeder reactor technology in China

    International Nuclear Information System (INIS)

    According to the Chinese long-term energy strategy the FBR development is strongly supported. In the near term nuclear programme it is intended to build the experimental First Fast Reactor (FFR) in the year 2000. Design work is in progress. (author). 1 ref., 6 figs, 8 tabs

  11. Applicability of three dimensional diffusion theory programmes based on coarse mesh methods to calculating nuclear characteristics of fast breeder reactors

    International Nuclear Information System (INIS)

    Hexagonal coarse mesh methods in three dimensional diffusion theory programme have been examined for calculating in detail nuclear characteristics of fast breeder reactors composed of hexagonal fuel assemblies, comparing with more accurate triangular fine mesh method. The fast breeder reactors considered here are LMFBRs with different core configurations including heterogeneous core and GCFRs in different burnup states. The nuclear characteristics investigated in the comparative study are effective multiplication factor, power and neutron flux distributions, breeding ratio, reactivity effects and control rod reactivity worth. The comparative study indicates that the conventional coarse mesh method is not adeguate to detailed evaluation on nuclear characteristics of fast breeder reactors, and that the improved coarse mesh method developed by T. Takeda et al. is very useful for this purpose, though some problems exists in evaluation of power distribution and breeding ratio of the extremely composite fast breeder reactors, such as the radially heterogeneous core LMFBR. (author)

  12. Liquid-metal pumps for large-scale breeder-reactor plant (prototype pump)

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, M. (comp.)

    1976-07-01

    This report presents the recommended pump design for use in Large Scale Liquid Metal Fast Breeder Reactor plants. The base design for the pump will circulate 127,000 GPM of liquid sodium at temperatures up to 850/sup 0/F and with a total discharge head at the design point of 500 feet Na with an impeller that is 40 feet below the sodium seal. The pump design is predicated on developing an impeller design which will have a suction specific speed (S/sub n/) of about 20,000 with 20 feet NPSH available, which will result in a pump speed of 530 RPM at design conditions. The design is based on the technology developed in the design and fabrication of FFTF pumps, the design efforts for the Clinch River Breeder Reactor Pump design study and other technology.

  13. Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps

    International Nuclear Information System (INIS)

    The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results

  14. Tube sheet structural analysis of intermediate heat exchanger for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    The Prototype Fast Breeder Reactor 'Monju' is the first power generating fast breeder reactor in Japan. We have been designing the components of the plant for manufacturing. Among these is the intermediate heat exchanger (IHX) which exchanges heat between primary and secondary sodium loop. The tube sheet of IHX (shell to ligament junction) is a difficult area from the view point of structural strength design under elevated temperature. To validate the structural integrity of tube sheet we performed the series of inelastic analysis and tube sheet thermal shock test using test pieces and half scale model of actual design. The results of inelastic analyses showed there is little progressive deformation around shell to ligament structural discontinuous junction. Furthermore, thermal shock tests showed no increase of an accumulative deformation. By these analyses and experiments, structural reliability of tube sheet could be shown. (author)

  15. Blanket comparison and selection study. Volume II

    International Nuclear Information System (INIS)

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  16. Blanket comparison and selection study. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  17. Seismic parametric studies in a large scale prototype breeder reactor plant

    International Nuclear Information System (INIS)

    Seismic parametric studies were conducted for a large scale prototype breeder reactor plant (135C MW). The effects of plant configuration, soil stiffness and deep embedment were evaluated. Nuclear island interconnected structures on a common foundation mat with a symmetrical arrangement resulted in lower seismic responses. All other conditions being equal, soft sites are preferable to stiff sites. Deep embedment of the nuclear island could, in certain sites, result in a reduction of seismic responses. (orig.)

  18. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    International Nuclear Information System (INIS)

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented

  19. Application of mass-predictions to isotope-abundances in breeder-reactor cores

    CERN Document Server

    Kirchner, G

    1981-01-01

    The decay-heat and isotope composition of breeder reactor-cores is calculated at normal shut-down, and a core disintegration event. Using the ORIGEN-code, the influence of the most neutron-rich fission-yield nuclei is studied. Their abundances depend on the assumption about the nuclear data (mass and half-lives). The total decay-heat is not changed from any technical viewpoint. (15 refs).

  20. Research and developments on nondestructive testing in fabrications of fast breeder reactor structural components in Japan

    International Nuclear Information System (INIS)

    Research and developments (R and D) have been conducted on the nondestructive testing techniques necessary for the construction of fast breeder reactor (FBR). Radiographic tests have been made on tube-tube plate welds and small-diameter tube welds, etc. Ultrasonic tests have been conducted on austenitic stainless steel welds. In the penetrant tests and magnetic particle tests, the investigations have been performed on the effects of various test factors on the test results

  1. Application of mass-predictions to isotope-abundances in breeder-reactor cores

    International Nuclear Information System (INIS)

    The decay-heat and isotope composition of breeder reactor-cores is calculated at normal shut-down, and a core disintegration event. Using the ORIGRN-code, the influence of the most neutron-rich fission-yield nuclei is studied. Their abundances depend on the assumption about the nuclear data (mass and half-lives). The total decay-heat is not changed from any technically view-point. (orig.)

  2. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-21

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser.

  3. Present day design challenges exemplified by the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    The present day design challenges faced by the Clinch River Breeder Reactor Plant engineer result from two causes. The first cause is aspiration to achieve a design that will operate at conditions which are desirable for future LMFBRs in order for them to achieve low power costs and good breeding. The second cause is the licensing impact. Although licensing the CRBRP won't eliminate future licensing effort, many licensing questions will have been resolved and precedents set for the future LMFBR industry

  4. Status of national programmes on fast breeder reactors. Nineteenth annual meeting, Kalpakkam, India, 11-14 March 1986

    International Nuclear Information System (INIS)

    The Nineteenth Annual Meeting on the Status of National Programmes in Member States of the IAEA on Fast Breeder Reactors had been held in March 1986. The representatives of the Member States and international organizations reported status and activities in the field of fast breeder reactors development and operation. A report on uranium supply and demand was also presented by the NEA/OECD. A separate abstract was prepared for each of the 11 presentations of the meeting

  5. Physics calculations for the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah; Kier, P.H.; Hummel, H.H.

    1977-06-01

    Calculations of distributions of power and sodium void reactivity, unvoided and voided Doppler coefficients and steel and fuel worths have been performed using diffusion theory and first-order perturbation theory for the LWR discharge Pu-fueled CRBR at BOL, the FFTF-grade Pu-fueled CRBR at BOL and for the beginning and end of equilibrium cycle of the LWR-Pu-fueled CRBR. The results of the burnup and breeding ratio calculations performed for obtaining the reactor compositions during the equilibrium cycle are also reported. Effects of sodium and steel contents on the distributions of sodium void reactivity and steel worth have also been studied. Errors and uncertainties in the reactivity coefficients due to cross-sections and the two-dimensional geometric representations of the reactor used in the calculations have also been estimated. Comparisons of the results with those in the CRBR PSAR are also discussed.

  6. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 25800F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs

  7. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, K.D.

    1987-10-01

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580/sup 0/F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs.

  8. Conceptual design of loop-in-tank type Indian molten salt breeder reactor concept

    International Nuclear Information System (INIS)

    The third stage of Indian nuclear power programme envisages use of thorium as fertile material with 233U, which is proposed to be obtained from reprocessing of spent fuel of Pu/Th based fast reactors in the later part of the second stage of the programme. In India, thorium based reactors have been designed in many configurations, from light water cooled designs to high temperature liquid metal and molten salt cooled options. Another option, which holds promise, is the molten salt-fuelled reactor, which can be configured to give significant breeding ratios. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian Molten Salt Breeder Reactor (IMSBR). (author)

  9. Status of fast breeder reactor development in India

    International Nuclear Information System (INIS)

    The energy scenario and economic conditions in India are presented. India needs considerable energy for its rapid industrialisation with the liberal economic policy. Nuclear energy with FBR is the only large scale energy resource other than coal, available in the country. The present economic constraints have delayed the construction of new NPPs. The performance of operating reactors has improved considerably during the year. Operating experience of FBTR has been detailed particularly the reactivity incident and its investigations. Updated design of 500 MWe PFBR is presented. Various R and D works in support of FBR in the engineering, metallurgy, chemistry, reprocessing, safety etc. are detailed. (author)

  10. Seismic analysis of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    This report is a general survey of the recent methods to predict the seismic structural behaviour of LMFBRs. It shall put into evidence the impact of seismic analysis on the design of the different structures of the reactor. This report is addressed to specialists and institutions of governmental organizations in industrialized and developing countries responsible for the design and operation of LMFBRs. The information presented should enable specialists in the R and D institutions and industries likely to be involved, to establish the correct course of the design and operation of LMFBRs. Also, the safety aspect of seismic risk are emphasized in the report. Refs and figs

  11. Studies of the restructuring of fast breeder test reactor fuel by out-of-pile simulation

    International Nuclear Information System (INIS)

    The fast breeder test reactor (FBTR) at Kalpakkam, India, currently employs a mixed carbide of uranium and plutonium with a Pu/(Pu + U) ratio of 0.70 as fuel. The behavior of this fuel in a thermal gradient is investigated. An out-of-pile simulation facility is designed, set up, and commissioned. Experiments are conducted on FBTR fuel pellets to study the restructuring of the fuel at various levels of linear power and its cracking behavior in a thermal gradient. The results are discussed in terms of their significance for reactor operation

  12. Neutronic and thermomechanical analysis of the water-cooled lithium-lead blanket design for a DEMONET reactor

    International Nuclear Information System (INIS)

    Within the framework of the European DEMO blanket study programme, CEA and the JRC of Ispra are jointly developing a water-cooled lithium-lead blanket concept. The new DEMONET reactor configuration released in Spring 1990 and currently specified in the EC programme is the basis of neutronic and thermomechanical studies for the proposed box-shaped blanket concept. Considering the high blanket coverage, it is now possible to reach tritium self-sufficiency without making use of beryllium (neutronic calculations indicate a global tritium breeding ratio of the order of 1.16). (orig.)

  13. Report to the Congress: liquid metal fast breeder reactor program--past, present, and future, Energy Research and Development Administration

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-28

    The past, present, and future of the liquid metal fast breeder reactor (LMFBR) program, the Nation's highest priority energy program, are studied. ERDA anticipates that the operation of the first large commercial breeder will start in 1987, and that 186 commercial-size breeders will be in operation by the year 2000. The breeder program is made up of six major areas, each dealing with an important element of technology: reactor physics; fuels and materials; fuel recycle; safety; component development; plant experience; and facilities used in the LMFBR program. ERDA is implementing a new system for administering, managing, and controlling the breeder program that will provide increased program visibility and control. Federal funding for breeder development was $168 million in FY 1971, accounting for 40% of the total Federal R and D energy budget; in FY 1976 Federal funding for this program will be $474 million, only 26% of total Federal funding for energy research. Besides Federal funds, over half a billion dollars have been or will be invested by industry over the next 5 to 10 years to develop the breeder and to build a demonstration plant. Five other nations--the United Kingdom, France, Japan, West Germany, and the Soviet Union--have a high priority national energy program for developing the LMFBR. These foreign breeder programs could contribute important data and information to the U.S. program. (BYB)

  14. Liquid Metal Fast Breeder Reactor Program: Argonne facilities

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S. V. [comp.

    1976-09-01

    The objective of the document is to present in one volume an overview of the Argonne National Laboratory test facilities involved in the conduct of the national LMFBR research and development program. Existing facilities and those under construction or authorized as of September 1976 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. The volume is divided into two sections: Argonne-East and Argonne-West. Introductory material for each section includes site and facility maps. The profiles are arranged alphabetically by title according to their respective locations at Argonne-East or Argonne-West. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc., involved in the LMFBR program is appended.

  15. Status of R&D on Tritium Permeation Barrier Coatings for Tritium Breeding Blanket of Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper overviewed the recent progress in the application of several typical tritium permeation barrier (TPB) coatings and their corresponding fabrication technologies for tritium breeding blanket of fusion reactor. According to the design requirements of

  16. Lessons learned from the licensing process for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    This paper presents the experience of licensing a specific liquid-metal fast breeder reactor (LMFBR), the Clinch River Breader Reactor Plant (CRBRP). It was a success story in that the licensing process was accomplished in a very short time span. The actions of the applicant and the actions of the US Nuclear Regulatory Commission (NRC) in response are presented and discussed to provide guidance to future efforts to license unconventional reactors. The history is told from the perspective of the authors. As such, some of the reasons given for success or lack of success are subjective interpretations. Nevertheless, the authors' positions provided them an excellent viewpoint to make these judgements. During the second phase of the licensing process, they were the CRBRP Technical Director and the Licensing Manager, respectively, for the Westinghouse Electric Corporation, the prime contractor for the reactor plant

  17. Integrated-blanket-coil (IBC) applications to the TITAN reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The Integrated-Blanket-Coil (IBC) concept has been adopted for use in the toroidal field and divertor coil systems of the TITAN-I lithium/vanadium design. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils into a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch (RFP) reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (-- 0.36 T) leads to relatively low coil currents. Examination of nuclear, magnetic, thermal-hydraulic, electrical and design integration issues indicates that the IBC coils are a viable and attractive option for the TITAN reactor

  18. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  19. Analysis for mechanical consequences of a core disruptive accident in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    The mechanical consequences of a core disruptive accident (CDA) in a fast breeder reactor are described. The consequences are development of deformations and strains in the vessels, intermediate heat exchangers (IHX) and decay heat exchangers (DHX), impact of sodium slug on the bottom surface of the top shield, sodium release to reactor containment building through top shield penetrations, sodium fire and consequent temperature and pressure rise in reactor containment building (RCB). These are quantified for 500 MWe Prototype Fast Breeder Reactor (PFBR) for a CDA with 100 MJ work potential. The results are validated by conducting a series of experiments on 1/30 and 1/13 scaled down models with increasing complexities. Mechanical energy release due to nuclear excursion is simulated by chemical explosion of specially developed low density explosive charge. Based on these studies, structural integrity of primary containment, IHX and DHX is demonstrated. The sodium release to RCB is 350 kg which causes pressure rise of 12 kPa in RCB. (author)

  20. Integral neutronics experiments in analytical mockups for blanket of a hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong, E-mail: liurongzy@163.com; Zhu, Tonghua; Lu, Xinxin; Wang, Xinhua; Yan, Xiaosong; Feng, Song; Yang, Yiwei; Wang, Mei; Jiang, Li

    2014-12-15

    Highlights: • For checking property of the hybrid blanket by integral experiments, three mockups are established. • In spherical mockup with depleted uranium and cubic mockup with natural uranium, the plutonium production rates and uranium fission rates are measured. • In spherical mockup with depleted uranium and LiPb, tritium production rates are measured. • The measured results are compared to the calculated ones with MCNP-4B code and ENDF/B-VI library data. - Abstract: The paper describes recent progress in integral neutronics experiments in the analytical mockups for the blanket in a fusion-fission hybrid energy reactor. A conceptual blanket of the hybrid reactor is mainly loaded with natural uranium and lithium material. In the fission fuel region, uranium material and light water are arranged alternately. The mockups of the conceptual blanket are designed and used for checking neutron property of the blanket by integral experiments. Based on materials available, the spherical fission mockup for fission research and plutonium production consists of three layers of depleted uranium shells and several layers of polyethylene and graphite shells. The spherical lithium mockup for tritium production consists of depleted uranium and LiPb alloy shells. The cubic mockup consists of natural uranium and polyethylene and its structure is basically consistent with one of the fuel region. In the mockups with the D-T neutron source, the plutonium production rates, uranium fission rates and tritium production rates are measured, separately. The measured results are compared to the calculated ones with MCNP-4B code and ENDF/B-VI library data.

  1. Neutronic design analyses for a dual-coolant blanket concept: Optimization for a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Highlights: ► Dual-Coolant He/Pb15.7Li breeding blanket for a DEMO fusion reactor is studied. ► An iterative process optimizes neutronic responses minimizing reactor dimension. ► A 3D toroidally symmetric geometry has been generated from the CAD model. ► Overall TBR values support the feasibility of the conceptual model considered. ► Power density in TF coils is below load limit for quenching. - Abstract: The generation of design specifications for a DEMO reactor, including breeding blanket (BB), vacuum vessel (VV) and magnetic field coils (MFC), requires a consistent neutronic optimization of structures between plasma and MFC. This work targets iteratively to generate these neutronic specifications for a Dual-Coolant He/Pb15.7Li breeding blanket design. The iteration process focuses on the optimization of allowable space between plasma scrapped-off-layer and VV in order to generate a MFC/VV/BB/plasma sustainable configuration with minimum global system volumes. Two VV designs have been considered: (1) a double-walled option with light-weight stiffeners and (2) a thick massive one. The optimization process also involves VV materials, looking to warrant radiation impact operational limits on the MFC. The resulting nuclear responses: peak nuclear heating in toroidal field (TF) coil, tritium breeding ratio (TBR), power amplification factor and helium production in the structural material are provided.

  2. Integrated-blanket-coil applications in the TITAN-I reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The TITAN-I Reversed-Field Pinch reactor incorporates the Integrated-Blanket-Coil (IBC) concept for the toroidal field and divertor field coil systems. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils in a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (∼0.36 T) leads to relatively low coil currents. Design of IBC components addresses four areas: (1) Neutronics, including tritium breeding and blanket energy multiplication; (2) thermal hydraulics, including magnetohydrodynamic (MHD) pressure drops; (3) magnetics, including field magnitude and topology; and (4) electrical engineering of the circuit determining the power supply requirements. The TF-IBC approach, in comparison to copper coils, offers several advantages for a compact RFP reactor: Increased access for coolant and auxiliary services, improved viability for single-piece maintenance, and reduced magnetic ripple in the toroidal magnetic field. In the divertor system, improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC relative to copper coils. (orig.)

  3. Sodium and steam generator leak detection for prototype fast breeder reactor (PFBR)

    International Nuclear Information System (INIS)

    The construction of the Prototype Fast Breeder Reactor (PFBR) a 500 MWe pool type sodium cooled breeder reactor with MOX fuel has started at Kalpakkam. The Instrumentation and Control of PFBR is designed for safe, reliable and economic operation of the plant. Special feature of breeder reactors is sodium instrumentation. Leaks in sodium systems have the possibility of being exceptionally hazardous due to the reaction of liquid sodium with oxygen and water vapour in the air. In addition, leakage from primary systems can cause radioactive contamination. Potential regions of leakage are near welds and high stress areas. Sodium also reacts with concrete releasing hydrogen and leading to damage and loss of strength of concrete structures. Leaking sodium catches fire depending on its temperature. Sodium temperature in the plant ranges from 423 K at filling condition to 820 K at reactor nominal power operating condition. Leak detectors are provided on pipelines, tanks and other capacities. Sodium leak detection systems are designed to meet requirements of ASME section XI- division 3 which specifies that sodium leak at the rate of 100 g/h are to be detected in 20 h for air filled vaults and 250 h for inert vaults. Diverse leak detection methods are employed for active and non-active sodium equipment and pipes. For detection of water leaks into Sodium in steam generators, Hydrogen in Sodium Detectors (HSD) are used. Hydrogen in Argon Detectors (HAD) are used for sodium temperatures below 623 K as HSD is not effective below this temperature due to non-dissolution of hydrogen formed. Choice and challenges posed in implementation of above leak detection requirements are discussed in this paper. (authors)

  4. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  5. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa–232U–233U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production

  6. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  7. Assessment of the activation, decay heat, and waste disposal of the US helium-cooled ceramic breeder test blanket module in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, M.; Ying, A. [California Univ., Los Angeles, CA (United States)

    2007-07-01

    The radioactivity inventory and after heat in the U.S. helium-cooled ceramic breeder (HCCB) test blanket module (TBM) have been accessed at shut down and for several times thereafter. Also assessed is the waste disposal rating (WDR) of its various components. The objectives are: (1) to provide the information needed for further safety assessment of the generated radionuclides and their volatility, as well as after heat on the safety operation of ITER, and (2) to aid in determining the waiting cooling period prior to removing and transporting the TBM for further treatment outside ITER site. The TBM is proposed to be placed in one of the three dedicated test ports of ITER. The current proposal is that it will occupy 1/3 of the horizontal upper half of a port next to Japan and Korea sub-modules. The sub-module will have its own FW and structural container box that houses the breeder and beryllium pebble bed units, arranged in an edge-on-configuration. Helium is used to cool the FW, sides of the box, and the internal plates. Conventional ferritic steel (F82H) is used as the structure. The sub-module has 71 cm height, 38.9 cm wide and 60 cm depth in the radial direction. The breeder beds are made of Li{sub 2}TiO{sub 3} pebbles with 94% theoretical density and 62% packing factor (as the beryllium pebbles). Lithium-6 is enriched to 75%. A 2 mm thick beryllium layer is used as a plasma facing material on the FW area subjected to 0.78 MW/m{sup 2} neutron wall load. Pulsed operation mode is assumed. Each pulse is assumed to be 400 s full flat top followed by 1800 s dwell time, during which the decay of the generated radionuclides are accounted for. The 500 MW pulses are assumed to be generated one after another until a fluence limit of 0.3 MWa/m{sup 2} is reached without replacing the TBM. This gives upper conservative estimates for the radioactive inventory and decay heat. During operation in the D-T phase, the total heating rate in the TBM is {proportional_to}263 KW. The

  8. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  9. Conjugate heat transfer analysis of multiple enclosures in prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K.; Balaubramanian, V.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium cooled reactor under design. The main vessel of the reactor serves as the primary boundary. It is surrounded by a safety vessel which in turn is surrounded by biological shield. The gaps between them are filled with nitrogen. Knowledge of temperature distribution prevailing under various operating conditions is essential for the assessment of structural integrity. Due to the presence of cover gas over sodium free level within the main vessel, there are sharp gradients in temperatures. Also cover gas height reduces during station blackout conditions due to sodium level rise in main vessel caused by temperature rise. This paper describes the model used to analyse the natural convection in nitrogen, conduction in structures and radiation interaction among them. Results obtained from parametric studies for PFBR are also presented.

  10. Implementation of multivariable control techniques with application to Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    After several successful applications to aerospace industry, the modern control theory methods have recently attracted many control engineers from other engineering disciplines. For advanced nuclear reactors, the modern control theory may provide major advantages in safety, availability, and economic aspects. This report is intended to illustrate the feasibility of applying the linear quadratic Gaussian (LQG) compensator in nuclear reactor applications. The LQG design is compared with the existing classical control schemes. Both approaches are tested using the Experimental Breeder Reactor 2 (EBR-2) as the system. The experiments are performed using a mathematical model of the EBR-2 plant. Despite the fact that the controller and plant models do not include all known physical constraints, the results are encouraging. This preliminary study provides an informative, introductory picture for future considerations of using modern control theory methods in nuclear industry. 10 refs., 25 figs

  11. The fast breeder reactor Rapsodie (1962); Le reacteur rapide surregenerateur rapsodie (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L.; Zaleski, C.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1962-07-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [French] Dans ce rapport, les auteurs font le point du projet RAPSODIE (reacteur francais surregenerateur a neutrons rapides), au moment du debut effectif de sa construction. On y trouvera decrits: les principales caracteristiques neutroniques et thermiques, le bloc pile et les circuits de refroidissement, les principaux moyens de manutention des ensembles actifs ou contamines, les principes et les moyens qui regissent la conduite du reacteur, les fonctions et l'implantation des divers batiments. La divergence de RAPSODIE est prevue pour 1964. (auteurs)

  12. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  13. Beryllium and lithium resource requirements for solid blanket designs for fusion reactors

    International Nuclear Information System (INIS)

    The lithium and beryllium requirements are analyzed for an economy of 106 MW(e) CTR3 capacity using solid blanket fusion reactors. The total lithium inventory in fusion reactors is only approximately 0.2 percent of projected U. S. resources. The lithium inventory in the fusion reactors is almost entirely 6Li, which must be extracted from natural lithium. Approximately 5 percent of natural lithium can be extracted as 6Li. Thus the total feed of natural lithium required is approximately 20 times that actually used in fusion reactors, or approximately 4 percent of U. S. resources. Almost all of this feed is returned to the U. S. resource base after 6Li is extracted, however. The beryllium requirements are on the order of 10 percent of projected U. S. resources. Further, the present cost of lithium and the cost of beryllium extraction could both be increased tenfold with only minor effects on CTR capital cost. Such an increase should substantially multiply the economically recoverable resources of lithium and beryllium. It is concluded that there are no lithium or beryllium resource limitations preventing large-scale implementation of solid blanket fusion reactors. (U.S.)

  14. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    OpenAIRE

    Saeidi, Sheida

    2014-01-01

    Two important components of a liquid breeder blanket of a fusion power reactor are the liquid breeder/coolant and the steel structure that the liquid is enclosed in. One candidate combination for such components is Lead-Lithium (PbLi) eutectic alloy and advanced Reduced Activation Ferritic/Martensitic (RAFM) steel. Implementation of RAFM steel and PbLi in blanket applications still requires material compatibility studies as many questions related to physical/chemical interactions in the RAFM...

  15. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    OpenAIRE

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for CODtotal; 51-73% for CODcolloidal and 20-55% for CODsoluble was found at a total HRT of 5-10 h, respectively. By prolonging the HRT...

  16. Burnup calculations of light water-cooled pressure tube blanket for a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2014-06-15

    Highlights: • Detailed burnup calculations are performed on pressurized water cooled blankets with pressure tube assemblies. • The blanket is fueled with simple fuel, namely spent nuclear fuel discharged from light water reactors or natural uranium oxide. • The refueling strategies are proposed, and the uranium resource utilization rate can reach 5–6%. - Abstract: A fusion-fission hybrid reactor (FFHR) with pressure tube blanket has recently been proposed based on an ITER-type tokamak fusion neutron source and the well-developed pressurized water cooling technologies. In this paper, detailed burnup calculations are carried out on an updated blanket. Two different blankets respectively fueled with the spent nuclear fuel (SNF) discharged from light water reactors (LWRs) or natural uranium oxide is investigated. In the first case, a three-batch out-to-in refueling strategy is designed. In the second case, some SNF assemblies are loaded into the blanket to help achieve tritium self-sufficiency. And a three-batch in-to-out refueling strategies is adopted to realize direct use of natural uranium oxide fuel in the blanket. The results show that only about 80 tonnes of SNF or natural uranium are needed every 1500 EFPD (Equivalent Full Power Day) with a 3000 MWth output and tritium self-sufficiency (TBR > 1.15), while the required maximum fusion powers are lower than 500 MW for both the two cases. Based on the proposed refueling strategies, the uranium utilization rate can reach about 4.0%.

  17. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Batstone, D J; Hernandez, J L A; Schmidt, J E

    2005-08-01

    Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors are often used as test platforms to evaluate full-scale applications. However, for a given volume specific hydraulic loading rate and geometry, the gas and liquid flows increase proportionally with the cube root of volume. In this communication, we demonstrate that a laboratory-scale reactor had plug-flow hydraulics, while a full-scale reactor had mixed flow hydraulics. The laboratory-scale reactor could be modeled using an existing biochemical model, and parameters identified, but because of computational speed with plug-flow hydraulics, mixed systems are instead recommended for parameter identification studies. Because of the scaling issues identified, operational data should not be directly projected from laboratory-scale results to the full-scale design. PMID:15977253

  18. Analysis on tritium management in FLiBe blanket for force-free helical reactor FFHR2

    International Nuclear Information System (INIS)

    In FFHR2 design, FLiBe has been selected as a self-cooling tritium breeder for low reactivity with oxygen and water and lower conductivity. Considering the fugacity of the tritium, particular care and adequate mitigation measures should be applied for the effectively extract tritium from breeder and control the tritium release to the environment. In this paper, a tritium analysis model of the FLiBe blanket system was developed and the preliminary analysis on tritium permeation and extraction for FLiBe blanket system were done. The factors which affected tritium extraction and permeation were calculated and evaluated, such as the heat exchanger material, tritium permeation reduction factor (TPRF) in blanket, proportion of FLiBe flow in tritium recover system (TRS) and efficiency of TRS etc. The results of the analysis showed that further R and D efforts were required for FFHR2 tritium system to guarantee the tritium self-sufficient and safety, for example reasonable quality of tritium permeation barriers on blanket, requirement for the TRS and fabrication technology of the heat exchanger etc.. (author)

  19. Clinch River Breeder Reactor Plant steam generator: FEW tube test model post test examination

    International Nuclear Information System (INIS)

    The Steam Generator Few Tube Test (FTT) is part of an extensive testing program being carried out in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. The testing of full-length seven-tube evaporator and three-tube superheater models of the CRBRP design was conducted to provide steady-state thermal/hydraulic performance data to full power per tube and to verify the absence of multi-year endurance problems. The problems encountered with the mechanical features of the FTT model design which led to premature test termination and the results of the post-test examination are described

  20. Description of a materials/coolant laboratory for support of the Breeder Reactor Technology Shipping Program

    International Nuclear Information System (INIS)

    A description of a facility devoted to evaluating the environmental compatibility and mechanical response of materials suitable for a breeder reactor spent-fuel shipping cask is given. The facility presently consists of a closed-loop servo-controlled hydraulic, horizontal test system coupled to an environmental chamber, generalized mechanical test equipment and high-rate mechanical behavior apparatus. Future plans include the procurement of real-time computer control equipment which will be used to assess the effects of complex load-time histories on spent-fuel shipping cask materials

  1. Large scale breeder reactor plant prototype mechanical pump conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    This final report is a complete conceptual design study of a mechanical pump for a large scale breeder reactor plant. The pumps are located in the cold leg side of the loops. This makes the net positive suction head available - NPSHA - low, and is, in fact, a major influencing factor in the design. Where possible, experience gained from the Clinch River Project and the FFTF is used in this study. Experience gained in the design, manufacturer, and testing of pumps in general and sodium pumps in particular is reflected in this report. The report includes estimated cost and time schedule for design, manufacture, and testing. It also includes a recommendation for development needs.

  2. It is now time to proceed with a gas-cooled breeder reactor (GBR) demonstration plant

    International Nuclear Information System (INIS)

    Since 1969, the GBRA has been making studies to provide evidence on questions which were not clear regarding the Gas-cooled Breeder Reactor: design feasibility and performance, safety, strategy and economics, and R and D necessary for a demonstration plant. Studies were carried out on a 1200-MW(e) commercial reference design with pin fuel, which was also used as a basis for a definition of the GBR demonstration plant. During the six years, a great deal of information has been generated at GBRA and it confirms the forecasts of the promoters of the Gas-cooled Breeder Reactor that the GBR is an excellent reactor from all points of view: design - the reactor can be engineered without major difficulty, using present techniques. As far as fuel is concerned, LMFBR fuel technology is applicable plus limited specific development effort. Performance - the GBR is the best breeder with oxide fuel and using conventional techniques. The strategy studies carried out at GBRA have clearly shown that a high performance breeder such as the GBR is absolutely required in large quantities by the turn of the century in order to avoid dependence on natural uranium resources. Regarding safety, a major step forward has been made when an ad hoc group on GBR safety, sponsored by the EEC, concluded that no major difficulties were anticipated which would prevent the GBR reaching adequate safety standards. Detailed economic assessments performed on an item-to-item basis have shown that the cost of a GBR with its high safety standard is about the same as that of an HTR. One can therefore conclude that, with the present cost of natural uranium, the GBR is competitive with the LWRs. Owing to the very limited R and D effort necessary and the obvious safety, economic and strategic advantages of the concept, it is concluded that the development and construction of a GBR demonstration plant must be started now if one wants to secure an adequate energy supply past the turn of the century. (author)

  3. Compendium of computer codes for the safety analysis of fast breeder reactors

    International Nuclear Information System (INIS)

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available

  4. Steady-state thermal-hydraulic of pebble bed blanket on hybrid reactor

    International Nuclear Information System (INIS)

    This paper gives thermal-hydraulic studies of pebble bed blanket on Hybrid Reactor. The concept of whole pebble bed blanket and the cooling methods are presented. The thermal-hydraulic characteristics of pebble bed are summarized. The theoretical model and code for solving heat transfer and flowing are presented. By using this code the calculation and analysis of thermal hydraulic of pebble bed Blanket of Hybrid Reactor are also given. In order to improve the flexibility, safety and economy, the authors select pebble beds not only to breed Tritium, but also to breed fission material and to multiply neutron. 5 MPa Helium is used as coolant and 0.05 MPa-0.1 MPa Helium is used as Purge gas. The heat transfer mechanisms of pebble bed are very complicated which include conduction, convection and radiation. In order to study the thermal-hydraulic of the bed, the authors just simply consider it as homogeneous and continuous binary phase medium as that used in the porous medium at the condition that the size of the bed is much greater than that of the balls. The coolant or the purge gas flowing through the bed is just considered existing a cooling source in the bed. It also significantly influences the effective conductivity's of the bed. Porous fraction, the main factor of the bed depends on the geometry position and parameters. From this model, one can obtain the thermal-hydraulic governing equations of the bed

  5. DEMO blanket testing in ITER. Influence on reaching DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Shatalov, G. E-mail: geshat@nfi.kiae.ru

    2001-10-01

    ITER goal was specified as one step between now and the DEMO fusion reactor. One of the major issues is the tritium breeding blankets test relevant to future reactors. The major objectives of blanket modules (TBM) experiments in ITER are reduced in comparison with proposed test objectives in ITER-FDR. Thus, results of DEMO blanket designs testing in ITER will provide limited (but still useful) information that will need strong support from non-fusion facilities testing. The role of non-fusion tests is increased now to provide additional data required for DEMO blanket construction and qualification. A strategy of testing steps to DEMO blanket qualifications has to include parallel testing in ITER and in non-fusion devices. Experiments in fission reactors are able to provide essential data on materials radiation properties; tritium release, inventory and permeation; and thermomechanical behavior of the blanket breeder/multiplier. However, the volume in fission reactors is rather small and neutron spectra differ from the fusion reactor one. Nonetheless in the near future one depends primarily on fission reactor irradiation. The powerful accelerator based neutron source IFMIF could also provide useful information on radiation material properties. Plasma based neutron sources of different fusion devices could be the best choice for testing DEMO materials and blanket mock-ups. Timetable and costs of these devices are not clear now.

  6. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  7. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan

    2012-03-01

    The treatment performance of an upflow microaerobic sludge blanket reactor (UMSB) for synthetic domestic wastewater was investigated at two dissolved oxygen (DO) levels, 0.3-0.5 and 0.7-0.9 mg l(-1), focusing on nitrification performance. The higher DO level induced complete nitrification of ammonia nitrogen (NH(3)-N), achieving chemical oxygen demand and NH(3)-N removals of 97 and 92%, respectively. There were consistently significantly higher nitrate nitrogen (NO(3)-N) and nitrite nitrogen (NO(2)-N) levels in the effluent, with ~66% of newly-produced oxidised nitrogen as NO(2)-N. Despite the high nitrification efficiency, only about 23% of the removed NH(3)-N amount from the influent was ultimately transformed into oxidised nitrogen due to the simultaneous nitrification-denitrification. Sludge blanket development and granulation occurred simultaneously in the UMSB. PMID:22105554

  8. Applications of the Integrated-Blanket-Coil concept to the compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    A design of a compact fusion reactor is proposed based on the reversed field pinch and utilizing the ''Integrated-Blanket-Coil'' (IBC) concept. The IBC is applied to the toroidal field and divertor systems, with liquid metal used for cooling both the first wall and blanket. This simplifies the overall design by requiring only a single coolant cycle. In addition, safety is increased by eliminating any possible lithium-water interaction in the fusion power core. Finally, replacing conventional copper divertor coils with IBC components enhances tritium breeding and energy recovery. A generic problem with liquid metal coolants is their reduced heat transfer capabilities in magnetic fields. In this context, the use of liquid metal coolants may limit the allowable neutron wall loading to a value of 10 MW/m/sup 2/. Above this value it may be necessary to use water cooling for the first wall and divertor surfaces

  9. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    Science.gov (United States)

    Davidson, J. W.; Battat, M. E.; Dudziak, D. J.

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinning copper first wall, a (6)Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis.

  10. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    International Nuclear Information System (INIS)

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinner copper first wall, a 6Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis

  11. Application of the integrated blanket-coil concept (IBC) to fusion reactors

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component and several unique applications to fusion reactor embodiments are identified. The proposed concept takes advantage of the fact that lithium is a good electrical conductor in addition to being a unique tritium-breeding material capable of energy recovery and transport at high temperatures. This concept, designated the ''integrated-blanket-coil (IBC) concept'' has the potential for: allowing fusion reactor embodiments which are easier to maintain; making fusion reactors more compact with an intrinsic ultra-high mass power density (net kW/sub E//metric tonne); and enhancing the tritium breeding potential for special coil applications such as ohmic heating and bean identation. By assuming a sandwich construction for the IBC walls (i.e., a layered combination of a thin wall of structural material, insulator and structural materials) the magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are modest and well below design limits. Possible unique applications of the IBC concept have been investigated and include the IBC concept applied to the poloidal field (PF) coils, toroidal field (TF) coils, divertor coils, ohmic heating (OH) coils, and identation coils for bean shaping

  12. Requirements for a helium-cooled blanket heat removal system development facility for fusion reactor research

    International Nuclear Information System (INIS)

    Existing and potential design problems associated with the helium-cooled blanket assemblies of experimental, demonstration and hybrid reactor designs considered in the Magnetic Fusion Energy (MFE) Program were assessed. It was observed that a balanced program of design, analysis and experimentation would be required to develop, verify and qualify these designs and those of related hardware and equipment. To respond to the potential experimental requirements of the first-generation reactors (the EPRs and possibly the hybrid concept), the need for a helium test facility was identified. It was determined that this facility should have the capacity for recirculating 100,000 kg/hr of helium at 70 atm and 6000C and should have 3 MW of electrical power available for simulating neutron heating. No radioactive material or processes should be used to facilitate ''hands-on'' experimentation and development. The general types of testing anticipated in this facility would include: (1) thermal and coolant flow performance of the blanket and other components in the primary cooling circuit; (2) structural adequacy of the blanket and first wall including vibration considerations; (3) capability for accommodating safety/off-normal conditions. Existing facilities worldwide were surveyed. It was determined that a number of facilities exist in foreign nations for performing the anticipated experiments. However, no large helium gas flow loop exists within the USA. Consequently, it is recommended that a helium thermal-hydraulic blanket test facility be planned and build on a schedule that will meet the unique design development and verification needs of the fusion program. This report provides the rationale and preliminary scoping of the operational characteristics and requirements for such a facility

  13. Preliminary design of a Binary Breeder Reactor; Diseno preliminar de un reactor esferico de quema/cria

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, E. Y.; Francois, J. L.; Lopez S, R. C., E-mail: eliasgarcerv@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    A binary breeder reactor (BBR) is a reactor that by means of the transmutation and fission process can operates through the depleted uranium burning with a small quantity of fissile material. The advantages of a BBR with relation to other nuclear reactor types are numerous, taking into account their capacity to operate for a long time without requiring fuel reload or re-arrangement. In this work four different simulations are shown carried out with the MCNPX code with libraries Jeff-3.1 to 1200 K. The objective of this study is to compare two different models of BBR: a spherical reactor and a cylindrical one, using two fuel cycles for each one of them (U-Pu and Th-U) and different reflectors for the two different geometries. For all the models a super-criticality state was obtained at least 10.9 years without carrying out some fuel re-arrangement or reload. The plutonium-239 production was achieved in the models where natural uranium was used in the breeding area, while the production of uranium-233 was observed in the cases where thorium was used in the fertile area. Finally, a behavior of stationary wave reactor was observed inside the models of spherical reactor when contemplating the power uniform increment in the breeding area, while inside the cylindrical models was observed the behavior of a traveling wave reactor when registering the displacement of the burnt wave along the cylindrical model. (Author)

  14. STARTUP OF UPELOW ANAEROBIC SLUDGE BLANKET REACTOR FOR INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A.R. Mesdaghinia

    1994-06-01

    Full Text Available Up flow anaerobic sludge blanket (UASB reactors have been increasingly used for industrial wastewater treatment. Because of existing problems in startup step of these reactors, in this research the startup of a UASB in pilot scale and room temperature condition was studied. The total height of UASB reactor was 270 cm and effective height was 240 cm. Diameter of the reactor in lower part was 20 cm (reaction zone and 40 cm in upper part (solid-gas-liquid separator five sampling ports with interval of 32 cm were provided and the effective volume of the reactor was 100 liters. Septic tank digested sludge and cow manure were used for the seeding of UASB reactor. In the startup step of the reactor, volumetric loading was increased step by step. After 155 days granule formation was observed and after 215 days of the study the removal rate increased to 4.62 kg COD/m/ day. More than 98% of soluble COD removal was achieved in lower 160 cm of reactor.

  15. Review of uncertainty estimates associated with models for assessing the impact of breeder reactor radioactivity releases

    International Nuclear Information System (INIS)

    The purpose is to summarize estimates based on currently available data of the uncertainty associated with radiological assessment models. The models being examined herein are those recommended previously for use in breeder reactor assessments. Uncertainty estimates are presented for models of atmospheric and hydrologic transport, terrestrial and aquatic food-chain bioaccumulation, and internal and external dosimetry. Both long-term and short-term release conditions are discussed. The uncertainty estimates presented in this report indicate that, for many sites, generic models and representative parameter values may be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, especially those from breeder reactors located in sites dominated by complex terrain and/or coastal meteorology, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under these circumstances to reduce this uncertainty. However, even using site-specific information, natural variability and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose or concentration in environmental media following shortterm releases

  16. Experience of secondary cooling system modification at prototype fast breeder reactor MONJU (Translated document)

    International Nuclear Information System (INIS)

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident that occurred in December 1995. After the accident, an investigation into the cause and a comprehensive safety review of the plant were conducted, and various countermeasures for sodium leak were examined. Modification work commenced in September 2005. Since sodium, a chemically active material, is used as coolant in MONJU, the modification work required work methods suitable for the handling of sodium. From this perspective, the use of a plastic bag when opening the sodium boundary, oxygen concentration control in a plastic bag, slightly-positive pressure control of cover gas in the systems, pressing and cutting with a roller cutter to prevent the incorporation of metal fillings, etc. were adopted, with careful consideration given to experience and findings from previous modification work at the experimental fast reactor JOYO and plants abroad. Owing to these work methods, the modification work proceeded close to schedule without incident. (author)

  17. Shippingport operations with the Light Water Breeder Reactor core. (LWBR Development Program)

    International Nuclear Information System (INIS)

    This report describes the operation of the Shippingport Atomic Power Station during the LWBR (Light Water Breeder Reactor) Core lifetime. It also summarizes the plant-oriented operations during the period preceding LWBR startup, which include the defueling of The Pressurized Water Reactor Core 2 (PWR-2) and the installation of the LWBR Core, and the operations associated with the defueling of LWBR. The intent of this report is to examine LWBR experience in retrospect and present pertinent and significant aspects of LWBR operations that relate primarily to the nuclear portion of the Station. The nonnuclear portion of the Station is discussed only as it relates to overall plant operation or to unusual problems which result from the use of conventional equipment in radioactive environments. 30 refs., 69 figs., 27 tabs

  18. Liquid metal seal (LMS) - challenges for fast breeder test reactor (FBTR)

    International Nuclear Information System (INIS)

    In Fast Breeder Test reactor (FBTR), Liquid Metal Seal (LMS) is being used to maintain leak tightness between reactor vessel and rotating plugs. It is a eutectic mixture of 42% tin and 58% bismuth. This paper describes measurements of melting point of LMS using Differential Scanning Calorimeter (DSC), Make: Setaram; Model- 131 evo. The instrument was calibrated using Indium as standard with different heating rates, 5 °C/min, 10 °C/min, 15°C/min and 20 °C/min. The observed value of melting point was found to be in agreement with the literature value. The melting point of as received and used LMS (LMSH8, LMSH10 and LMSH12) from three locations of FBTR were studied using DSC with different heating rates as above. The results are presented and it can be clearly seen that LMS has undergone some modifications during the continuous usage in FBTR

  19. Shippingport operations with the Light Water Breeder Reactor core. (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Budd, W.A. (ed.)

    1986-03-01

    This report describes the operation of the Shippingport Atomic Power Station during the LWBR (Light Water Breeder Reactor) Core lifetime. It also summarizes the plant-oriented operations during the period preceding LWBR startup, which include the defueling of The Pressurized Water Reactor Core 2 (PWR-2) and the installation of the LWBR Core, and the operations associated with the defueling of LWBR. The intent of this report is to examine LWBR experience in retrospect and present pertinent and significant aspects of LWBR operations that relate primarily to the nuclear portion of the Station. The nonnuclear portion of the Station is discussed only as it relates to overall plant operation or to unusual problems which result from the use of conventional equipment in radioactive environments. 30 refs., 69 figs., 27 tabs.

  20. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  1. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    International Nuclear Information System (INIS)

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences

  2. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  3. Design optimization of backup seal for sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: ► Design arrived from fourteen geometric options by finite element analysis. ► Seal geometry, size, compression, contact pressure, stress and compression load optimized. ► Effects of reduced fluoroelastomer strength at 110 °C, strain rate and stress-softening incorporated. ► Ageing, friction, tolerances, batch-to-batch/production variations in fluoroelastomer considered. ► Procedure applicable to other elastomeric seals of Fast Breeder Reactors. -- Abstract: Design optimization of static, fluoroelastomer backup seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. 14 geometric variations of a solid trapezoidal cross-section were studied by finite element analysis (FEA) to arrive at a design with hollowness and double o-ring contours on the sealing face. The seal design with squeeze of 5 mm assures failsafe operation for at least 10 years under a differential pressure of 25 kPa and ageing influences of fluid (air), temperature (110 °C) and γ radiation (23 mGy/h) in reactor. Hybrid elements of 1 mm length, regular integration, Mooney–Rivlin material model and Poisson’s ratio of 0.493 were used in axisymmetric analysis scheme. Possible effects of reduced fluoroelastomer strength at 110 °C, ageing, friction, tolerances in reactor scale, testing conditions during FEA data generation and batch-to-batch/production variations in seal material were considered to ensure adequate safety margin at the end of design life. The safety margin and numerical prediction accuracy could be improved further by using properties of specimens extracted from seal. The approach is applicable to other low pressure, moderate temperature elastomeric sealing applications of PFBR, mostly operating under maximum strain of 50%.

  4. Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment.

    Science.gov (United States)

    Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N

    2013-10-01

    The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading. PMID:24494501

  5. Application of the Integrated-Blanket-Coil concept to a compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The Integrated-Blanket-Coil (IBC) concept has been examined in the context of a compact reversed-field pinch (RFP) fusion reactor. The IBC approach is novel in that the functions of the blanket (tritium breeding and energy recovery) and the coil (magnetic field production) are fulfilled in a single component. This combination of functions is accomplished by using lithium metal as the coolant, breeding medium, and electrical conductor. Economics and physics modeling indicates that the toroidal field and divertor coil systems are appropriate applications for IBC components. Conceptual designs for the TF-IBC and IBC divertor systems are developed, based on parameters generated by the TITAN RFP Reactor Design Study. Design of the IBC divertor is similar to the TF-IBC, but with the added concern for proper mapping of the field lines. Improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC divertor relative to copper coils. Both the TF and divertor IBC systems are capable of operating compatibly with the Oscillating Field Current Drive (OFCD). The conceptual design process indicates that the TF-IBC and IBC divertor are technically feasible. As such, they represent viable alternatives for a compact RFP reactor

  6. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  7. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C. PMID:22097038

  8. INDRA: a program system for calculating the neutronics and photonics characteristics of a fusion reactor blanket

    International Nuclear Information System (INIS)

    INDRA is a program system for calculating the neutronics and photonics characteristics of fusion reactor blankets. It incorporates a total of 19 different codes and 5 large data libraries. 10 of the codes are available from the code distribution organizations. Some of them, however, have been slightly modified in order to permit a convenient transfer of information from one program module to the next. The remaining 9 programs have been prepared by the authors to complete the system with respect to flexibility and to facilitate the handling of the results. (orig./WBU)

  9. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Full text: One of the main requirements of advanced nuclear-power engineering is inherent safety of power installations. It initiates R and D of heavy liquid metals (lead, lead- bismuth eutectic) application in fission reactors as substitute of sodium. The same requirement makes advisable R and D of the lead and lead-bismuth eutectic application in blanket of fusion reactors as substitute of lithium. High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease MHD-resistance authors propose to form electro-insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the electro-insulating coatings characteristics rd (r - specific resistance of coatings, d - thickness) is ∼ 10-5Ω·m2 for steels and 5, 0x10-6 - 5, 0x10-5Ω·m2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there electro-insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steam generators and another equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem

  10. Design of fuel fabrication plant of Fast Reactor Fuel Cycle Facility for reload requirement of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    India's economic growth is on a fast growth track. The energy demand is expected to grow rapidly in the coming decades. The growth in population and economy is creating huge demand for energy which has to be met with environmentally benign technologies. Nuclear energy is best suited to meet this demand in a sustainable manner without causing undue environmental impact. Fast reactors are expected to be major contributors in sufficing this demand to a great extent. As an effort to achieve the objective, a Prototype Fast Breeder Reactor is being constructed at Kalpakkam. This paper also highlights the design features of FFP, unit operations, scheme of automation, branched layout of glove box train, shielding arrangement on glove boxes, accident consequence analysis etc.

  11. Design requirements for SiC/SiC composites structural material in fusion power reactor blankets

    International Nuclear Information System (INIS)

    This paper recalls the main features of the TAURO blanket, a self-cooled Pb-17Li concept using SiC/SiC composites as structural material, developed for FPR. The objective of this design activity is to compare the characteristics of present-day industrial SiC-SiC composites with those required for a fusion power reactor blanket (FPR) and to evaluate the main needs of further R and D. The performed analyses indicated that the TAURO blanket would need the availability of SiC/SiC composites approximately 10 mm thick with a thermal conductivity through the thickness of approximately 15 Wm-1K-1 at 1000 C and a low electrical conductivity. A preliminary MHD analysis has indicated that the electrical conductivity should not be greater than 500 Ω-1m-1. Irradiation effects should be included in these figures. Under these conditions, the calculated pressure drop due to the high Pb-17Li velocity (approximately 1 m s-1) is much lower then 0.1 MPa. The characteristics and data base of the recently developed 3D-SiC/SiC composite, Cerasep trademark N3-1, are reported and discussed in relation to the identified blanket design requirements. The progress on joining techniques is briefly reported. For the time being, the best results have been obtained using Si-based brazing systems initially developed for SiC ceramics and whose major issue is the higher porosity of the SiC/SiC composites. (orig.)

  12. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.

  13. Applications of the integrated-blanket-coil concept to the compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Compact reactors, by their nature, are high-power-density devices. They place a premium on space usage within the system volume, and access to the fusion power core components is limited. The integrated-blanket-coil (IBC) concept relaxes some of these requirements by combining the functions of the breeding blanket with those of the magnet systems. In this paper, the IBC potential is analyzed for the compact reversed-field pinch reactor (CRFPR) coil sets: (a) the toroidal field (TF) system; (b) the polidal field (PF) system; (c) the ohmic heating (OH) subsystem of the PF system; and (d) the divertor coils in the impurity control system. Use is made of the Los Alamos National Laboratory (LANL) RFP systems code with suitable modifications, to estimate ohmic losses, coil masses, and economic (cost of electricity) impact of the different configurations. Preliminary evaluations indicate that a symmetric toroidal divertor would be suitable for the CRFPR. This presents a special attraction for use of IBC divertor coils. Since the minority field (TF) is < 1 T at the plasma edge, the required nulling current is modest. In addition, IBC coils can be placed closer to the plasma, allowing a trade-off between the higher resistive losses and reduced current requirements. Perhaps most importantly, use of IBC divertor coils would improve the tritium breeding ratio, which is somewhat marginal with copper divertor coils

  14. Study on electromagnetic-structural behavior of first wall/blanket structure for tokamak fusion reactor

    International Nuclear Information System (INIS)

    The electromagnetic problems related to the structural design of the first wall/blanket structure, which is a major component of Fusion Reactor, have been studied. The electromagnetic load, which is characteristic and very important of Tokamak type, is necessary for the evaluation of the structural integrity at the last item of the design process. A transient electromagnetic phenomena, which include the measurement of the eddy current obtained by the simulated plasma disruption experiment, the vibration behavior of the beam-plate by the dynamic electromagnetic load and the verification of the numerical codes, have been clarified. A static electromagnetic phenomena have been studied to evaluate the applicability of the ferromagnetic material to the first wall/blanket structure of Tokamak Power Reactor. The numerical code, which can calculate the magnetic field of the finite ferromagnetic body, has been developed and the magnetic field distortions inside and outside the materials has been studied. The deformation by the magnetic torque, which generates inside the ferromagnetic material placed in the magnetic field, has been studied. The effects of the magnetic stiffness and the saturated magnetic field to the deformation has been also clarified. (author)

  15. Neutronic evaluation of fissile fuel breeding blankets for the fission-suppressed Tandem-Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    A computational study was performed on the blanket design of the Lawrence Livermore National Laboratory (LLNL) fission-suppressed Tandem Mirror Hybrid Reactor (TMHR) to qualify the methods and data bases available at Oak Ridge National Laboratory (ORNL) for use in analyzing the neutronic performance of fissile fuel breeding blankets. The eventual goal of the study was to establish the capability for analysis and optimization of advanced fissile fuel production blanket designs. Discrete ordinates radiation transport calculations were performed in one-dimensional cylindrical geometry to obtain the blanket spatial distribution and energy spectra of the neutron and gamma-ray fluxes resulting from the monoenergetic (14.1 MeV) fusion first wall source. Key macroscopic cross sections of the blanket materials were then folded with the flux spectra to obtain reaction rates critical to evaluating blanket feasibility. Finally, a time-dependent depletion analysis was performed to evaluate the blanket performance during equilibrium cycle conditions. The results of the study are presented both as graphs and tables

  16. A granulation model using diosgenin wastewater in an upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    Jianguo BAO; Hui LIU; Yanxin WANG; Lijun ZHANG

    2009-01-01

    An enhanced start-up of an upfiow anaerobic sludge blanket (UASB) reactor for diosgenin wastewater treatment was designed and experimentally tested. Gran-ular sludge was formed on day 35 in the reactor with high concentrations of chloride (4000-7000 mg/L) and COD (5000-13000mg/L) as substrate. A new model for the granulation was proposed which divides the formation of anaerobic granules into six consecutive stages; they include semi-embryonic granule formation, embryonic granule formation, single-nucleus granule formation, multi-nuclei granule formation, granule growth and granule maturation. A model of the granule structure was also proposed based on scanning electron microscope observation. The microspores occurring on the surface and further leading into the interior of the granules were considered as the channels and the passage of the materials and the products of the microorganisms' metabolism inside the granules.

  17. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  18. Clinch River Breeder Reactor Plant Steam Generator Few Tube Test model post-test examination

    International Nuclear Information System (INIS)

    The Steam Generator Few Tube Test (FTT) was part of an extensive testing program carried out in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. The testing of full-length seven-tube evaporator and three-tube superheater models of the CRBRP design was conducted to provide steady-state thermal/hydraulic performance data to full power per tube and to verify the absence of multi-year endurance problems. This paper describes the problems encountered with the mechanical features of the FTT model design which led to premature test termination, and the results of the post-test examination. Conditions of tube bowing and significant tube and tube support gouging was observed. An interpretation of the visual and metallurgical observations is also presented. The CRBRP steam generator has undergone design evaluations to resolve observed deficiences found in the FFTM

  19. C-scope under-sodium viewer for sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    A C-scope under-sodium viewer has been developed for monitoring the interior of sodium-cooled fast breeder reactors. Consisting of a transducer that emits and receives ultrasonic waves under liquid sodium, a mechanism that drives the transducer under liquid sodium and an image displaying section, it inspects the fuel assembly through its image in optically opaque high-temperature (3000C) liquid sodium. The results of its evaluation test are: (1) The transducer could continue satisfactory operation under 3500C (at the highest) sodium for more than a month. (2) The driving mechanism, though it was the first of the kind appearing in Japan, has been proved that it could continue operation for a week under 3000C sodium. (3) The image displaying section, in spite of the low speed of the transducer (below 20 rpm), could display stable and clear images. (4) The image in 3000C was as clear as that in room-temperature water. (auth.)

  20. Development of an ISI Robot for the Fast Breeder Reactor MONJU Primary Heat Transfer System Piping

    International Nuclear Information System (INIS)

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire type ultrasonic sensor for volumetric tests at high temperature (atmosphere 55 degree C, Piping Surface 80 degree C) and radiation exposure condition (dose rate 10 mGy/h, piping surface dose rate 15 mGy/h). It was developed an inspection robot using a new tire type for the ultrasonic testing sensor and a new control method. A signal to noise ratio S/N over 2 was obtained during the functional test for a calibration defect with depth 50%t (from the tube wall thickness). (author)

  1. Ultrasonic inspection of liquid-metal fast breeder reactor steam generator duplex tubing

    International Nuclear Information System (INIS)

    Two ultrasonic inspections of the Experimental Breeder Reactor II steam generator duplex tubing have been completed. Inspections performed on one evaporator in 1976 provided baseline data, and a subsequent inspection in 1978 revealed no change in tube condition. With the completion of the 1978 inspection, all available tubes in one evaporator have been inspected. The steam generator contains duplex tubes fabricated from 2 1/4 Cr-1 Mo ferritic steel. Access to the bore (water) side of the tubes was gained through the steam outlet piping. The inspection included a complete volumertic (100% of the tube material) examination, measurement of wall thickness, and evaluation of the condition of the braze bonding the two walls of the tube together. The test equipment was routinely calibrated against a standard containing artificial flaws. Artificial flaws as small as 1.6 mm long x 0.25 mm deep were readily detected

  2. Clinch River Breeder Reactor: an assessment of need for power and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    Hamblin, D M; Tepel, R C; Bjornstad, D J; Hill, L J; Cantor, R A; Carroll, P J; Cohn, S M; Hadder, G R; Holcomb, B D; Johnson, K E

    1983-09-01

    The purpose of this report is to present the results of a research effort designed to assist the US Department of Energy in: (1) reviewing the need for power from the Clinch River Breeder Reactor (CRBR) in the Southeastern Electric Reliability Council (SERC) region, not including Florida, and (2) isolating specific regulatory and institutional issues and physical transmission capacities that may constrain the market for CRBR power. A review of existing electric power wheeling arrangements in the Southeast and specific federal and state regulatory obstacles that may affect power sales from the CRBR was undertaken. This review was a contributing factor to a decision to target the service territory to SERC-less Florida.

  3. Compendium of computer codes for the safety analysis of fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available.

  4. Numerical simulation of sodium pool fires in liquid metal-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    In Liquid Metal-Cooled Fast Breeder Reactor (LMFBR), the leakage of sodium can result in sodium fires. Due to sodium's high chemical reactivity in contact with air and water, sodium fires will lead to an immediate increase of the air temperature and pressure in the containment. This will harm the integrity of the containment. In order to estimate and foresee the sequence of this accident, or to prevent the accident and alleviate the influence of the accident, it is necessary to develop programs to analyze such sodium fire accidents. Based on the work of predecessors, flame sheet model is produced and used to analyze sodium pool fire accidents. Combustion model and heat transfer model are included and expatiated. And the comparison between the analytical and experimental results shows the program is creditable and reasonable. This program is more realistic to simulate the sodium pool fire accidents and can be used for nuclear safety judgement. (authors)

  5. Determination and correlation of mass transfer coefficients in a stirred cell. [Molten Salt Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, J.; Bloxom, S.R.; Keeler, J.B.; Roth, S.R.

    1975-12-17

    In the proposed Molten Salt Breeder Reactor flowsheet, a fraction of the rare earth fission products is removed from the fuel salt in mass transfer cells. To obtain design parameters for this extraction, the effect of cell size, blade diameter, phase volume, and agitation rate on the mass transfer for a high density ratio system (mercury/water) in nondispersing square cross section contactors was determined. Aqueous side mass transfer coefficients were measured by polarography over a wide range of operating conditions. Correlations for the experimental mass transfer coefficients as functions of the operating parameters are presented. Several techniques for measuring mercury-side mass transfer coefficients were evaluated and a new one is recommended. (auth)

  6. ATP as an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work investigated the biomass activity in a thermophilic upflow anaerobic sludge blanket (UASB) reactor of wastewater treatment. Synthetic textile wastewater with pH 10-11, COD level of 2000-3000 mg/L was tested. Cellular adenosine triphosphate (ATP) in volatile solids (VS; mg ATP/gVS) was measured and expressed as specific ATP content to compare the biomass activity in up zone and lower zone in UASB reactor. The result shows that the specific ATP content based on total volatile solids (VS)in lower zone (0. 046 mgATP/gVS average) is much lower than that in up zone (0.62 mgATP/gVS average) due to high content of inactive biomass and high pH in lower zone. The SATP in up zone increases as HRT increases and approaches to a maximum value of 0.85 mgATP/gVS at HRT of 7h, then decreases. It shows most of the total VS in up zone represent active bacterial biomass at HRT of 7h. Rate of subtract utilization is directly related to the activity of microorganisms in the reactor. The effect of HRT on SATP in lower zone is not as significant as on SATP in up zone. The buffer capacity of the thermophilic UASB reactor is very good. It is the activity of sludge granules in lower zone that give the UASB reactor such a good buffer capacity to the inlet high pH.

  7. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Zeff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s-1. Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  8. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  9. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  10. Design and fabrication of steam generators (superheaters) for the prototype fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    In liquid metal-cooled fast breeder reactors, steam generators are one of the important equipments, and emphasis has been placed on their development in various countries in the world. Also in Japan, centering around the Power Reactor and Nuclear Fuel Development Corp., the research and development in the wide range from the fundamentals on heat transfer and flow, materials and strength for steam generators to the manufacture, operation and various tests of large mock-ups including a 50 MW steam generator have been carried out. Further, as for the manufacture and inspection, the improvement of the method of welding tubes and tube plates, the adoption of a fine focus X-ray inspection apparatus and others were carried out. Moreover, as the maintenance technique, the ultrasonic flaw detection probes for the heating tubes were developed. The steam generators (superheaters) for the FBR 'Monju' power station are the heat exchangers of helical coil tube-shell type using SUS 321 steel as the heating tube material. Based on the results of these research and development, the design and manufacture of these superheaters and their installation in the reactor auxiliary building of the FBR 'Monju' power station were completed. The outline of the design, the research and development and the manufacture of the steam generators (superheaters) are reported. (K.I.)

  11. Development of fluorocarbon rubber for backup seals of sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: → Negligible chemical degradation of seal compound during ageing (in unstrained state) in air at 140/170/200 oC for 32 weeks. → Cross-link exchange, Joule-Gough effect and ionic interaction during ageing in unstrained state. → Enhanced physical/chemical degradation of compound during ageing under strain. → Capability of compound to withstand heat, radiation, air and mechanical load in reactor for 10 years. → Negligible chemical dose rate effect and gas evolution from compound during seal operation. -- Abstract: The development of a fluorohydrocarbon rubber compound for static backup seals of 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. Variations of a previously developed Viton A-401C based formulation were subjected to processability tests, accelerated heat ageing in air, mechanical characterization and production trials. Finite element analysis and literature data extrapolation were combined with long term ageing to ascertain the life (minimum 10 years) of chosen formulation in reactor under synergistic influences of 110 oC, 23 mGy/h (γ dose rate) and air considering postulated accidental conditions. Validation of test seals and quality assessment indicate that composition and properties of the validated laboratory compound has been translated effectively to the reactor seals, installed recently in PFBR. The tensile and hardness specimens indicated negligible degradation and exceptional thermo-oxidative stability of the seal compound during ageing (32 weeks at 140/170/200 oC) even though interesting manifestations of cross-link exchange and ionic interactions were observed. Compression set results, showing definite trends of change under ageing and stain, were used in Arrhenius and Williams Landel Ferry equations for realistic life prediction. The development provides a foundation to simplify and standardize the design, development and operation of major elastomeric sealing applications of Indian nuclear reactors based on a

  12. Investigation of the growth rate for joint fast breeder reactor and light water reactor operation

    International Nuclear Information System (INIS)

    An investigation of fuel consumption and breeding characteristics of FBR-LWR joint operation is presented. The FBR operates in a closed cycle with joint-reprocessing of core and blanket material. The LWR-portion that runs on FBR plutonium operates in an open cycle. The growth rate of the system is defined based upon the fact that the discharge from the system will make up a fraction of an identical system; the system growth rate is found to have an almost linear dependence on the fraction of the LWR fed by plutonium from the FBR. The LWR growth rate, which is negative, is a constant and represents the fraction of the fuel burnt in the LWR-fraction that runs on FBR plutonium per year

  13. The use of lithium oxide as the breeder in fusion reactors

    International Nuclear Information System (INIS)

    Lithium oxide as a fusion blanket material has neutronic advantages but various design limitations. The study was undertaken to investigate the design implications, to demonstrate how the limitations can be overcome and to provide guidance for future development. The study included lithium oxide properties, tritium control, coolant chemistry, blanket engineering and blanket neutronics. (author)

  14. Landfill Leachate Treatment Using Hybrid Up-Flow Anaerobic Sludge Blanket (HUASB Reactor

    Directory of Open Access Journals (Sweden)

    Mohd Bharudin Ridzuan

    2013-11-01

    Full Text Available Abstract: The Effect of the development process in the country would lead the increment of the solid wastes production. Malaysia as a developing country is also could not escape from the problem in its solid waste management. An important problem that associated to landfill is the production of leachate. Leachate contains dangerous substances such as organic matters, heavy metals, Nitrogen Ammonia and other materials that could pollute underground water source. The aim of the paper was to study landfill leachate treatment efficiency using Hybrid Upflow Anaerobic Sludge Blanket (HUASB reactor in lab-scale. This research was investigate the pollutant content in landfill leachate and determines the percentage of nutrient removal. Parameters used for this research, were Biochemical Oxygen Demand (BOD, Chemical Oxygen Demand (COD, Suspended Solid (SS, Total Nitrogen (TN, and Total Phosphorus (TP. The experiments were carried out in lab scaled constructed reactor,  30 days duration which samples for test had been taken each 3 days intervals. The results showed that HUASB reactor were capable in removal several parameters. It has great ability in removal of Total Phosphorus and Suspended Solid with 90.60% and 80.70% each. The result of COD removal showed an encouraging removal graph, with average percentage removal 73.70%. Average percentage removal for BOD is 64%. Total Nitrogen was less remove nutrient with average percentage removal 50.32%. From the results, it showed that HUASB reactor capable to remove organic pollutants from landfill leachate.

  15. Analysis of the thorium axial blanket experiments in the proteus reactor

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.; Ingersoll, D.T.

    1980-12-01

    Detailed analysis has been completed for the ThO/sub 2/ and Th-metal axial blanket experiments performed at the Swiss PROTEUS critical facility in order to compare reaction rates and neutron spectra measured in prototypic GCFR configurations with calculated results. The PROTEUS configurations allowed the analysis of infinitely dilute thorium data in a PuO/sub 2//UO/sub 2/ fast lattice spectrum at core center as well as the analysis of resonance self-shielding effects in the thorium-bearing axial blankets. These comparisons indicate that significant deficiencies still exist in the latest evaluated infinitely dilute thorium data file. Specifically, the analysis showed that the /sup 232/Th capture is underpredicted by ENDF/B-IV data, and the discrepancies are further exaggerated by ENDF/B-V data. On the other hand, ENDF/B-V /sup 232/Th fission data appear to be significantly improved relative to ENDF/B-IV data, while discrepancies are extremely large for the (n,2n) process in both data files. Finally, the (n,n') cross sections for thorium also appear improved in ENDF/B-V, except for a small energy range just above the 50 keV threshold. Therefore, these combined data deficiencies suggest that relatively large uncertainties should be associated with many of the results obtained from recent fast reactor alternate fuel cycle analyses. 38 figures, 12 tables.

  16. Design analyses of self-cooled liquid metal blankets

    International Nuclear Information System (INIS)

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  17. Fabrication of MOX Fuel elements for irradiation in Fast Breeder Test Reactor (FBTR)

    International Nuclear Information System (INIS)

    Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur is fabricating Uranium - Plutonium Mixed Oxide Fuel (MOX) for different types of reactors. Recently MOX fuel pins for an experimental fuel subassembly of 37 pins has been fabricated for irradiation in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai. MOX fuel pins containing 44% PuO2 have also been also made for the hybrid core of FBTR. The experimental sub-assembly for irradiation testing in FBTR consisted of 37 short length Prototype Fast Breeder Reactor (PFBR) MOX fuel elements. The composition of the fuel was (0.71 U - 0.29 Pu) O2 with U233 O2 content of 53.5% of total UO2. Uranium enriched with U233 was used to simulate the heat flux of PFBR in FBTR neutron spectrum. MOX fuel pellets were made by powder metallurgy process consisting of pre-compaction, granulation, final compaction and sintering at high temperature. Initially U3233 O8 / U233 O3 powder was subjected to heat treatment. The pellets were sintered at reducing atmosphere at 1650oC for 4 hours to obtain acceptable quality pellets. Over sized pellets were centrelessly ground.without using a liquid coolant. During the fabrication of pins for experimental subassembly, technology was developed and conditions were optimized for making annular pellets, TIG welding of D9 tubes with SS 316 end plugs and wire wrapping. Quality control procedures and process control procedures at different stages of fabrication were developed. The hybrid core of FBTR consists of Mixed Carbide (MC) sub-assemblies containing (0.70 Pu - 0.30 U) C pellets and MOX fuel sub-assemblies containing (0.44 Pu - 0.56 U) O2. Studies were made to fabricate fuel containing higher percentage of Plutonium and the conditions were established. This paper describes the development of flowsheet for making annular MOX fuel pellets containing plutonium and U233, the technology for welding of D-9 clad tubes, wire wrapping and inspection. The paper also

  18. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    International Nuclear Information System (INIS)

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs

  19. 03 - Sodium cooled fast breeder fourth-generation reactors - The technological demonstrator ASTRID

    International Nuclear Information System (INIS)

    After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  20. Real Time Computer for Plugging Indicator Control of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Liquid sodium is used as coolant to transfer the heat produced in the reactor core to steam water circuit. Impurities present in the sodium are removed using purification circuit. Plugging indicator is a device used to measure the purity of the sodium. Versa Module Europa bus based Real Time Computer (RTC) system is used for plugging indicator control. Hot standby architecture consisting of dual redundant RTC system with switch over logic system is the configuration adopted to achieve fault tolerance. Plugging indicator can be controlled in two modes namely continuous and discontinuous mode. Software based Proportional-Integral-Derivative (PID) algorithms are developed for plugging indicator control wherein the set point changes dynamically for every scan interval of the RTC system. Set points and PID constants are kept as configurable in runtime in order to control the process in very efficient manner, which calls for reliable communication between RTC system and control station, hence TCP/IP protocol is adopted. Performance of the RTC system for plugging indicator control was thoroughly studied in the laboratory by simulating the inputs and monitored the control outputs. The control outputs were also monitored for different PID constants. Continuous and discontinuous mode plots were generated. (authors)

  1. Design and fabrication of sodium test facility for fast breeder reactor

    International Nuclear Information System (INIS)

    The purpose of the promotion policy for energy research and development base construction plan (priority facility) of the Japanese government in FY2009 is 'to construct in Tsuruga City the research and development base for plant operation technology for the practical use of fast breeder reactor where researchers in and out of Japan gather, and to contribute to the development and revitalization of the region as the base with international characteristics.' In conformity to this purpose, the Japan Atomic Energy Agency built 'sodium engineering research facilities' in Tsuruga. This paper describes the design, fabrication, and installation of interior equipment that were carried out by Kawasaki Heavy Industries. 'Sodium engineering research facilities' are the test and research facilities to conduct research and development related to sodium, while reflecting the experiences of operation and maintenance of 'Monju,' which aims at the commercialization of fast reactor. The facilities specialize in the handling technology of sodium to meet the needs in and out of Japan, and were completed in June 2015. The facilities consist of six units including tank-loop test equipment, mini-loop test equipment, sodium purification and supply equipment, etc. For the tank-loop test equipment, a sodium transfer test of about 5.5 tons, and a subsequent comprehensive function test using sodium are scheduled. (A.O.)

  2. Effect of channel wall conductance on the performance characteristics of self-cooled liquid metal fusion reactor blankets

    International Nuclear Information System (INIS)

    One of the critical issues in self-cooled liquid metal tritium breeding blankets in magnetically confined fusion reactors is strong MHD effects particularly when the channel walls are not electrically insulated from the flowing liquid metals. Another critical issue is the cooling of the first wall which is subjected to intense heat load from the fusion plasma. In this work we investigate the effect of channel wall conductance on the friction factor and Nusselt number. It is shown by solving the indication and linear momentum equations that even for relatively small channel wall conductance ratios, the friction factor increases by an order of magnitude for the typical Hartmann numbers encountered in fusion reactor blankets. Furthermore, by solving the temperature equation, it is shown that channel wall conductance has negligible effect on Nusselt number in spite of high velocity jets developing near the side walls. Taking into account these limitations, it is shown however, that the self-cooled liquid metal blankets remain a feasible proposition for both first wall heat extraction and bulk heat removal from the blanket. The most important thermal-hydraulic performance parameter -the heat removal rate to pumping power ratio- can still be kept quite high by suitably choosing the design variables of the liquid metal cooling system. The results are presented and compared for the three prime candidates for self-cooled liquid metal breeding blankets, i.e., lithium, lead-lithium, and tin-lithium alloys. (author)

  3. Maintaining granulation in a denitrifying upflow sludge-blanket reactor treating groundwater with low hardness.

    Science.gov (United States)

    Rouse, Joseph D; Nakashima, Takahiro; Furukawa, Kenji

    2003-01-01

    Maintenance of denitrifying granular sludge for treating soft groundwater (total hardness = 75 mg calcium carbonate/L) in an upflow sludge-blanket reactor was demonstrated with complete removal of applied nitrate (20 mg N/L) over extended operation and a hydraulic residence time of 34 minutes. A high pH of approximately 9.0 was shown to be important for generation of mineral precipitation needed for production of heavy granular sludge with good retention characteristics. As a method of increasing precipitation potential, pH adjustment was determined to be more economically favorable than calcium or alkalinity supplementation. In addition, temporary increases in substrate loading were shown to be effective for enhancing biomass levels in a manageable granular sludge. The significance of biomass in promoting mineral precipitation was discussed.

  4. Reaction rates in blanket assemblies of a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor, experiments for measuring reaction rates inside two simulating assemblies are performed. Two benchmark assemblies were developed for the neutronics experiments. A D-T fusion neutron source is placed at the center of the setup. One of them consists of three layers of depleted uranium shells and two layers of polyethylene shells, and these shells are arranged alternatively. The 238U capture reaction rates are measured using depleted uranium foils and an HPGe gamma spectrometer. The fission reaction rates are measured using a fission chamber coated with depleted uranium. The other assembly consists of depleted uranium and LiH shells. The tritium production rates are measured using the lithium glass scintillation detector which is placed in the LiH region of the assembly. The measured reaction rates are compared with the calculated ones predicted using MCNP code, and C/E values are obtained. (authors)

  5. Design, implementation and cost-benefit analysis of a dynamic testing program in the Experimental Breeder Reactor-II

    International Nuclear Information System (INIS)

    Dynamic tests have been performed for many years in commercial pressurized and boiling water reactors. The purpose of this study was to evaluate the technological and economical feasibility of extending the current light water reactor testing procedures to both present and future liquid metal fast breeder reactors. A 38 node linearized, lumped parameter, EBR-II system model was developed. This model was analyzed to obtain the predicted system time and frequency response for reactivity perturbations, intermediate heat exchanger secondary inlet sodium temperature perturbation frequency response, and various system nodal frequency response sensitivities

  6. Summary of several hydraulic tests in support of the light water breeder reactor design (LWBR development program)

    International Nuclear Information System (INIS)

    As part of the Light Water Breeder Reactor development program, hydraulic tests of reactor components were performed. This report presents the results of several of those tests performed for components which are somewhat unique in their application to a pressurized water reactor design. The components tested include: triplate orifices used for flow distribution purposes, multiventuri type flowmeters, tight lattice triangular pitch rod support grids, fuel rod end support plates, and the balance piston which is a major component of the movable fuel balancing system. Test results include component pressure loss coefficients, flowmeter coefficients and fuel rod region pressure drop characteristics

  7. Reliability analysis of safety grade decay heat removal system of Indian prototype fast breeder reactor

    International Nuclear Information System (INIS)

    The 500 MW Indian pool type Prototype Fast Breeder Reactor (PFBR), is provided with two independent and diverse Decay Heat Removal (DHR) systems viz., Operating Grade Decay Heat Removal System (OGDHRS) and Safety Grade Decay Heat Removal System (SGDHRS). OGDHRS utilizes the secondary sodium loops and Steam-Water System with special decay heat removal condensers for DHR function. The unreliability of this system is of the order of 0.1-0.01. The safety requirements of the present generation of fast reactors are very high, and specifically for DHR function the failure frequency should be less than ∼1E-7/ry. Therefore, a passive SGDHR system using four completely independent thermo-siphon loops in natural convection mode is provided to ensure adequate core cooling for all Design Basis Events. The very high reliability requirement for DHR function is achieved mainly with the help of SGDHRS. This paper presents the reliability analysis of SGDHR system. Analysis is performed by Fault Tree method using 'CRAFT' software developed at Indira Gandhi Centre for Atomic Research. This software has special features for compact representation and CCF analysis of high redundancy safety systems encountered in nuclear reactors. Common Cause Failures (CCF) are evaluated by β factor method. The reliability target for SGDHRS arrived from DHR reliability requirement and the ultimate number of demands per year (7/y) on SGDHRS is that the failure frequency should be ≤1.4E-8/de. Since it is found from the analysis that the unreliability of SGDHRS with identical loops is 5.2E-6/de and dominated by leak rates of components like AHX, DHX and sodium dump and isolation valves, options with diversity measures in important components were studied. The failure probability of SGDHRS for a design consisting of 2 types of diverse loops (Diverse AHX, DHX and sodium dump and isolation valves) is 2.1E-8/de, which practically meets the reliability requirement

  8. Evaluation of the breed/burn fast reactor concept

    International Nuclear Information System (INIS)

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH16) as the moderator

  9. Data management for the Clinch River Breeder Reactor Plant Project by use of document status and hold systems

    International Nuclear Information System (INIS)

    This paper describes the development, framework, and scope of the Document Status System and the Document Hold System for the Clinch River Breeder Reactor Plant Project. It shows how data are generated at five locations and transmitted to a central computer for processing and storage. The resulting computerized data bank provides reports needed to perform day-to-day management and engineering planning. Those reports also partially satisfy the requirements of the Project's Quality Assurance Program

  10. First wall and blanket module safety enhancement by material selection and design decision

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems.

  11. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  12. Stress Analysis of Steam Generator Shell Nozzle Junction for Sodium cooled Fast Breeder Reactor

    Directory of Open Access Journals (Sweden)

    Mani N,

    2010-07-01

    Full Text Available The Steam Generators (SG decides the capacity factor in Sodium cooled Fast breeder Reactor (SFR plants and hence they are designed with high reliability. One of the critical locations in SG is the shell nozzle junction. This junction is subjected to an end bending moment and internal pressure. Since the shell nozzle junction is the critical location of SG a double-ended guillotine rupture will result in leakage of large quantity of sodium, which is not desirable. The material of construction is modified 9Cr-1Mo. Hence safety equirements demand that Leak Before Break criteria with assumed initial flaw have to be demonstrated. To demonstrate LBB, the basic requirement is to predict the state of stress precisely in the shell nozzle junction under various loading conditions. An efficient finiteelement modeling for shell nozzle junction has been presented in which shell elements are employed to idealize the whole region. These results are used for the analysis of leak before break concept.

  13. A study of parameters on marking of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor Fuel (PFBR) elements are identified with a permanent unique marking. Identification of the fuel elements is very much necessary for traceability during initial fabrication as well as for post irradiation examination. Marking on fuel element has to be permanent and capable of being identified after irradiation. Laser marking is a relatively new method as compared to other marking technologies such as ink marking, mechanical engraving and electro chemical methods. It is used for the product identification and traceability during its service life. Laser marking has many advantages compared to other conventional marking. In laser marking process, mark quality is a very important factor, which depends on so many variables like input current, pulse frequency, marking speed and number of passes. The influence of the pulse frequency and the speed of travel of the laser beam on the mark depth and width have been studied in this paper. An optical microscope, scanning electron microscope were used to measure the effects of pulse frequency on the mark depth and width. It has been found that the mark depth and width depend on the interaction process of the laser beam and the material, which was influenced by the pulse frequency. Micro hardness testing is carried out to report Heat Affected Zone (HAZ) variation with parameters. Marking speed and input current selected for suitable depth and width were mentioned in the present study. (author)

  14. Blowdown transient for sodium-steam water SG for prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lele, H.G.; Srivastava, A.; Majumdar, P.; Mukhopadhyay, D.; Gupta, S.K. [Reactor Safety Div., Bhabha Atomic Research Centre, Tromblay (India); Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Associate Director, Reactor Group, Chennai (India)

    2001-07-01

    Prototype Fast Breeder Test Reactor (PFBR) Steam Generator is once through steam generator in which water flows from bottom to top in 547 tubes, changing its state from highly subcooled to superheated state as it receives heat from sodium flowing from top to bottom in the shell side. Depressurization of steam generator from the dump valve provided at bottom is protective action. It prevents further possibility of water steam leak into sodium and subsequent sodium - water reaction. To perform depressurization transient analysis of PFBR appropriate thermal hydraulic modeling of SG is essential. Correct thermal hydraulic modelling needs simulation of sodium system, steam water system with different states from highly subcooled to superheated, coupling between sodium and steam-water system, SG tube and shell and different valve action. The computer code DPPFBR is developed with capability to simulate all these systems and phenomena encountered during transient. Different models of the code have been validated and code has been used for analysing depressurization transient. This paper describes various models used in the code and results of analysis for typical scenario. (author)

  15. Engineering development studies for molten-salt breeder reactor processing No. 18

    International Nuclear Information System (INIS)

    A water--mercury system was used to study the effect of geometric variations on mass transfer rates in rectangular contractors similar to those proposed for the molten-salt breeder reactor (MSBR) fuel reprocessing scheme. Since mass transfer rates were not accurately predicted by the Lewis correlation, other correlations were investigated. A correlation which was found to fit the experimental results is given. Mass transfer rates are being measured in a fluoride salt--bismuth contactor. Experimental results indicate that the mass transfer rates in the salt--bismuth system fall between the Lewis correlation and the modified correlation given above. Autoresistance heating tests were continued in the fluorinator mock-up using LiF--BeF2--ThF4 (72-16-12 mole percent) salt. The equipment was returned to operating condition, and five experiments were run. Although correct steady-state operation was not achieved, the results were encouraging. A two-dimensional electrical analog was constructed to study current flow through the electrode sidearm and other critical areas of the test vessel. These studies indicate that no regions of abnormally high current density existed in the first nine runs with the present autoresistance heating equipment. Localized heating had previously been the suspected cause for the failure to achieve proper operation of this equipment. (U.S.)

  16. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire-type ultrasonic sensor for volumetric tests at high temperature (atmosphere, 55degC; piping surface, 80degC) and radiation exposure condition (dose rate, 10 mGy/h; piping surface dose rate, 15 mGy/h). An inspection robot using a new tire type for the ultrasonic testing sensor and a new control method was developed. A signal-to-noise ratio S/N over 2 was obtained during the functional test for a calibration defect with a depth of 50%t (from the tube wall thickness). In the automatic inspection test, an EDM slit with a depth of 9% from the pipe thickness was detectable and with an S/N ratio = 4.0 (12.0 dB). (author)

  17. Fabrication and loading of fuel rods for the Light Water Breeder Reactor (LWBR Development Program)

    International Nuclear Information System (INIS)

    The fabrication and inspection operations used for the manufacture of approximately 24,000 fuel rods for the Light Water Breeder Reactor are described in detail. This report also describes the development work to establish the fabrication procedures and investigations undertaken to solve problems encountered during manufacturing. The approximately 10 foot long LWBR fuel rods were made in four outside diameters ranging from 0.306 inch (seed) to 0.832 inch (reflector). Each rod was fabricated by sealing cylindrical oxide fuel pellets (ThO2-U233O2), into Zircaloy seamless tubes by welding Zircaloy enclosures at the ends. The special inspections performed to assure a high quality product meeting all design requirements are described. These inspections included weld radiography and ultrasonic inspection, in-motion radiography to evaluate internal dimensions and pellet integrity, helium leak testing, corrosion testing, and detection of surface contamination. The facilities designed and built for this fabrication effort are described and the resultant manufacturing yields are presented. 13 refs., 42 figs., 20 tabs

  18. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors

    International Nuclear Information System (INIS)

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  19. Calculations of sodium aerosol concentrations at breeder reactor air intake ports

    International Nuclear Information System (INIS)

    This report describes the methodology used and results obtained in efforts to estimate the sodium aerosol concentrations at air intake ports of a liquid-metal cooled, fast-breeder nuclear reactor. A range of wind speeds from 2 to 10 m/s is assumed, and an effort is made to include building wake effects which in many cases dominate the dispersal of aerosols near buildings. For relatively small release rates on the order of 1 to 10 kg/s, it is suggested that the plume rise will be small and that estimates of aerosol concentrations may be derived using the methodology of Wilson and Britter (1982), which describes releases from surface vents. For more acute releases with release rates on the order of 100 kg/s, much higher release velocities are expected, and plume rise must be considered. Both momentum-driven and density-driven plume rise are considered. An effective increase in release height is computed using the Split-H methodology with a parameterization suggested by Ramsdell (1983), and the release source strength was transformed to rooftop level. Evaluation of the acute release aerosol concentration was then based on the methodology for releases from a surface release of this transformed source strength

  20. Clinch River Breeder Reactor environmental effects: general water-side corrosion

    International Nuclear Information System (INIS)

    Studies are described of the general corrosion of 21/4 Cr--1 Mo steel in pure superheated steam, in impure superheated and saturated steam, and under nucleate boiling conditions. The test parameters were selected to provide information relevant to the use of this steel for the Clinch River Breeder Reactor superheaters and evaporators. The oxidation rate of 21/4 Cr--1 Mo steel in superheated steam was measured under heat transfer conditions at 510 to 5400C (950 to 10050F), and was approximately 11/2 times that measured under isothermal conditions. Extensive general attack of stressed 21/4 Cr--1 Mo steel specimens occurred in cyclic tests in superheated and saturated steam with chloride and oxygen additions, although no cracking or localized attack was observed. Considerably less attack occurred under superheat conditions or in the absence of oxygen. Tests under nucleate boiling conditions were operated to evaluate crevice effects associated with porous films on heat transfer surfaces. Significant crevice corrosion was produced in water containing 10 ppm chloride; a heavier but more general attack occurred in treated cooling tower water

  1. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  2. Blowdown transient for sodium-steam water SG for prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Test Reactor (PFBR) Steam Generator is once through steam generator in which water flows from bottom to top in 547 tubes, changing its state from highly subcooled to superheated state as it receives heat from sodium flowing from top to bottom in the shell side. Depressurization of steam generator from the dump valve provided at bottom is protective action. It prevents further possibility of water steam leak into sodium and subsequent sodium - water reaction. To perform depressurization transient analysis of PFBR appropriate thermal hydraulic modeling of SG is essential. Correct thermal hydraulic modelling needs simulation of sodium system, steam water system with different states from highly subcooled to superheated, coupling between sodium and steam-water system, SG tube and shell and different valve action. The computer code DPPFBR is developed with capability to simulate all these systems and phenomena encountered during transient. Different models of the code have been validated and code has been used for analysing depressurization transient. This paper describes various models used in the code and results of analysis for typical scenario. (author)

  3. Water-cooled lithium-lead blanket

    International Nuclear Information System (INIS)

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The present study examines whether the water-cooled lithium-lead blanket designed for NET can be directly extrapolated to a demonstration (DEMO) reactor. A fundamental requirement of the exercise is that the DEMO design should have a tritium breeding ratio which is higher than that in NET. The water-cooled lithium-lead blanket is discussed with respect to: neutronics design, design parameter survey and thermohydraulics, and engineering design. Results are reported of three-dimensional calculations using the Monte Carlo code MORSE-H to investigate possible neutron leakage between the poloidally disposed breeder tubes, and to determine the global tritium breeding ratio for the final double null machine design. (U.K.)

  4. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  5. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  6. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    International Nuclear Information System (INIS)

    The technology of breeding 233U from 232Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program

  7. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  8. Potential of duplex fuel in prebreeder, breeder, and power reactor designs: tests and analyses (AWBA Development Program)

    International Nuclear Information System (INIS)

    Dual region fuel pellets, called duplex pellets, are comprised of an outer annular region of relatively high uranium fuel enrichment and a center pellet of fertile material with no enrichment. UO2 and ThO2 are the fissile and fertile materials of interest. Both prebreeders and breeders are discussed as are the performance advantages of duplex pellets over solid pellets in these two pressurized water reactor types. Advantages of duplex pellets for commercial reactor fuel rods are also discussed. Both irradiation test data and analytical results are used in comparisons. Manufacturing of duplex fuel is discussed

  9. Safety-Evaluation Report related to the construction of the Clinch River Breeder Reactor Plant. Docket No. 50-537

    International Nuclear Information System (INIS)

    The Safety-Evaluation Report for the application by the United States Department of Energy, Tennessee Valley Authority, and the Project Management Corporation, as applicants and owners, for a license to construct the Clinch River Breeder Reactor Plant (docket No. 50-537) has been prepared by the Office of Nuclear Reactor Regulation of the United States Nuclear Regulatory Commission. The facility will be located on the Clinch River approximately 12 miles southwest of downtown Oak Ridge and 25 miles west of Knoxville, Tennessee. Subject to resolution of the items discussed in this report, the staff concludes that the construction permit requested by the applicants should be issued

  10. Breeder Reprocessing Engineering Test

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.A.; Meacham, S.A.

    1984-01-01

    The Breeder Reprocessing Engineering Test (BRET) is a developmental activity of the US Department of Energy to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the Fast Flux Test Facility (FFTF). It will be installed in the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site near Richland, Washington, The major objectives of BRET are: (1) close the US breeder fuel cycle; (2) develop and demonstrate reprocessing technology and systems for breeder fuel; (3) provide an integrated test of breeder reactor fuel cycle technology - rprocessing, safeguards, and waste management. BRET is a joint effort between the Westinghouse Hanford Company and Oak Ridge National Laboratory. 3 references, 2 figures.

  11. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    International Nuclear Information System (INIS)

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  12. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  13. Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge.

    Science.gov (United States)

    Barros, Valciney Gomes de; Duda, Rose Maria; Oliveira, Roberto Alves de

    2016-01-01

    The main objective of this study was to evaluate the anaerobic conversion of vinasse into biomethane with gradual increase in organic loading rate (OLR) in two upflow anaerobic sludge blanket (UASB) reactors, R1 and R2, with volumes of 40.5 and 21.5L in the mesophilic temperature range. The UASB reactors were operated for 230 days with a hydraulic detection time (HDT) of 2.8d (R1) and 2.8-1.8d (R2). The OLR values applied in the reactors were 0.2-7.5gtotalCOD (Ld)(-1) in R1 and 0.2-11.5gtotalCOD (Ld)(-1) in R2. The average total chemical oxygen demand (totalCOD) removal efficiencies ranged from 49% to 82% and the average conversion efficiencies of the removed totalCOD into methane were 48-58% in R1 and 39-65% in R2. The effluent recirculation was used for an OLR above 6gtotalCOD (Ld)(-1) in R1 and 8gtotalCOD (Ld)(-1) in R2 and was able to maintain the pH of the influent in R1 and R2 in the range from 6.5 to 6.8. However, this caused a decrease for 53-39% in the conversion efficiency of the removed totalCOD into methane in R2 because of the increase in the recalcitrant COD in the influent. The largest methane yield values were 0.181 and 0.185 (L) CH4 (gtotalCOD removed)(-1) in R1 and R2, respectively. These values were attained after 140 days of operation with an OLR of 5.0-7.5gtotalCOD (Ld)(-1) and totalCOD removal efficiencies around 70 and 80%. PMID:27289246

  14. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  15. Evaluation of symbiotic energy system between gas-cooled fast breeder reactor (GCFR) and multi-purpose very high temperature reactor (VHTR), (4)

    International Nuclear Information System (INIS)

    The conceptual design study of 1000 MWe gas-cooled fast breeder reactor (GCFR), which is used in the GCFR-VHTR symbiotic energy system, has been performed. In this report, the transient response of the GCFR core to accident events has been analyzed and safety performance of the 1000 MWe GCFR has been evaluated considering the analyses. A depressurization accident caused by failure of a primary coolant system and a reactivity insertion accident due to withdrawal of a control rod have been analyzed using nuclear and thermo-hydraulic coupled program MR-X developed for kinetics analysis of gas-cooled fast breeder reactors. The maximum fuel and cladding temperatures are most important problem to be analysed during a trangient of a gas-cooled fast breeder reactors. The analyses show that reliable reactor shutdown and emergency cooling systems are most important to achieve successful cold shutdown well before leading to core damage and also that no severe failures of fuel pin and cladding occures by working above mentioned safety systems well during the accidents. (author)

  16. A method for improvement of safety features of large fast breeder reactors. Numerical simulation of unprotected loss-of-flow accident in an LMFBR equipped with gas-expansion modules

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Masayoshi [Hitachi Engineering Co. Ltd., Ibaraki (Japan); Murakami, Tomoko; Kawashima, Katsuyuki; Watari, Yoshio; Nakao, Noboru; Miura, Masanori

    1995-04-01

    Numerical simulation of an unprotected loss-of-flow (ULOF) accident has been performed for a large liquid-metal-cooled fast breeder reactor (LMFBR) equipped with gas expansion modules (GEMs) in the radial periphery of the reactor core. The effectiveness of the GEMs in small fast reactors was demonstrated already in the passive safety testing in the Fast Flux Test Facility. According to neutronic calculations based on the transport theory, even in large reactors of electrical power 600 to 1,300 MW, the reactivity worth of GEMs, which replace one layer of radial blanket fuel subassemblies, ranges from -1.9$ to -1.4$, depending on the size of the core. A simulation of ULOF transient was performed with a 5.5s flow-halving time in a 600 MWe LMFBR equipped with GEMs of -1.9$ reactivity worth. The result showed that, if 10% of the rated core coolant flow by pony motors was available following the main pump coastdown, the GEM reactivity alone could bring the reactor subcritical and the predicted maximum coolant temperature was substantially lower than the sodium boiling point. The reactivity worth calculations, a modeling of gas expansion behavior, and ULOF simulation together with needs of further development for the GEM application are described. (author).

  17. Status of the fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands

    International Nuclear Information System (INIS)

    In 1967 and 1968 the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop, in a joint program, breeder reactors to the point of commercial maturity. The following research organizations take part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolfgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three German institutions mentioned above have been interrelated since 1977 by the Entwicklungsgemeinschaft (EG) Schneller Brueter. Between KfK, INTERATOM, and the French Commissariat a l'Energie Atomique contracts were concluded in 1977 about close cooperation in the Fast Breeder field, with association of the Belgian and Dutch partners. The results of research and development activities carried out by the DeBeNe partners in 1981 have been compiled in this report. The report begins with a short survey of the fast reactor plants, followed by an R and D summary. The bulk of the report gives more detailed information about those plants and about results reported by the Working Groups of the R and D Program Working Committee of the Fast Breeder Project. In an additional chapter a survey is given of international cooperation. (author)

  18. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Enoeda, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  19. Trade-off study of liquid-metal self-cooled blankets

    International Nuclear Information System (INIS)

    A trade-off study of liquid-metal self-cooled blankets was carried out to define the performance of these blankets with respect to the main functions in a fusion reactor, and to determine the potential to operate at the maximum possible values of the performance parameters. The main purpose is to improve the reactor economics by maximizing the blanket energy multiplication factor, reduce the capital cost of the reactor, and satisfy the design requirements. The main parameters during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the 6Li enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, the impact of different reactor design choices on the performance parameters was analyzed. The effect of the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, the coolant choice for the nonbreeding inboard blanket, and the neutron source distribution were part of the trade-off study. In addition, tritium breeding benchmark calculations were performed to study the impact of the use of different transport codes and nuclear data libraries. The importance and the negative effect of high TBR on the energy multiplication motivated the benchmark calculations

  20. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Haneefa, K., E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-08-15

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO{sub 3}, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone.

  1. Development of electromagnetic pumps for natrium coolant of liquid metal fast breeder reactor (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Su, Soo Won; Kin, Hee Lyeong; Lee, Sang Doo; Seo, Joom Ho [Electrical Engineering and Science Research Institute, Seoul (Korea, Republic of)

    1994-07-15

    Present work on the development of annular linear induction pumps of externally-supported-duct type are to create domestic electromagnetic pumps by our own design and manufacturing technique and to secure the technological experience and data for the production of large scale electromagnetic pumps for natrium coolant loop system of liquid metal fast breeder reactor in the future. Two annular induction pumps, a small-sized one of 400 deg C and 60 l/min and a medium-sized one of 600 deg C and 800 l/min for their maximum operating temperatures and flowrates, respectively, are designed and fabricated. Conceptual and detailed designs for annular linear induction pumps with 60 l/min and 800 l/min flowrates, respectively, have been done by finding the optimum geometrical and operational parameters based on an equivalent-circuit analysis method. The measurements of the flowrates and pressures of the assembled pumps are done for confirming their characteristics and performance and comparing electrical input powers with those obtained from calculations. The cooling method developed in this study can be used in parallel with natural convection cooling without compressed air injection, and improves cooling efficiency and simplification of the pump structure. Experimental results measured by a free-fall indirect method and a EM flowmeter are and the design value of flowrate of each pump is confirmed by comparing measured one from indirect measurements. A center-return type pump for visualizing natrium pumping are also built with one pole pitch, eight outer core versions and six slots. Its natrium loop for pumping exhibition is assembled with instruments, heating equipment, leak sensing and pneumatic valve, and operated by a remote control. Magnetic flux distribution analysis is performed analytically and numerically for axial and radial directions in each case with or without end effects and consequently finds electromagnetic body force and pump efficiency.

  2. Tritium isolation from lithium inorganic compounds applicable to thermonuclear reactor breeding blanket

    International Nuclear Information System (INIS)

    Tritium separation from inorganic lithium compounds: Li2O, LiAlO2, Li2SiO3, Li4SiO4, LiF, LiBeF3, Li2BeF4 irradiated with a beam of a gamma facility and a nuclear reactor, has been studied. In the first case the gas phase is absent. In the latter one- the tritium amount in the gas does not exceed 1-2% of its total amount in the salt. Based on the EPR spectra of irradiated salts the concentrations of paramagnetic centres are calculated. It is shown that during thermal annealing the main portion of tritium in the gas phase is in the form of oxide (HTO, T2O). Tritium is separated from lithium fluoroberyllates in the form of hydrogen (HT, T2). The kinetics of tritium oxide isolation from irradiated lithium oxide aluminate, metha- and orthosilicates, lithium sulphate has been studied. The activation energies of tritium oxide separation process are presented. A supposition is made that chemical reaction of the HTO (T2O) or HT(T2) or HF(TF) formation is a limiting stage. Clarification of the process stage limiting the rate of tritium recovery will permit to evaluate conditions for the optimum work of lithium material in the blanket, lithium zone to select the lithium element structure and temperature regime of irradiation

  3. Simultaneous degradation of cyanide and phenol in upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Kumar, M Suresh; Mishra, Ram Sushil; Jadhav, Shilpa V; Vaidya, A N; Chakrabarti, T

    2011-07-01

    Coal coking, precious metals mining and nitrile polymer industries generate over several billion liters of cyanide-containing waste annually. Economic and environmental considerations make biological technologies attractive for treatment of wastes containing high organic content, in which the microbial cultures can remove concentrations of organics and cyanide simultaneously. For cyanide and phenol bearing waste treatment, an upflow anaerobic sludge blanket reactor has been developed, which successfully removed free cyanide 98% (with feed concentration of 20 mg 1(-1)) in presence of phenol. The effect of cyanide on phenol degradation was studied with varying concentrations of phenol as well as cyanide under anaerobic conditions. This study revealed that the methanogenic degradation of phenol can occur in the presence of cyanide concentration 30-38 mg 1(-1). Higher cyanide concentration inhibited the phenol degradation rate. The inhibition constant Ki was found to be 38 mg 1(-1) with phenol removal rate of 9.09 mg 1(-1.) x h.

  4. Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry.

    Science.gov (United States)

    Vieira, A M; Bergamasco, R; Gimenes, M L; Nakamura, C V; Dias Filho, B P

    2001-12-01

    The microbial populations of an upflow anaerobic sludge blanket reactor, used for treating wastewater from the gelatin industry, were studied by microbiological methods and phase-contrast and electron microscopy. Microscopy examination of the sludge showed a complex mixture of various rod-shaped and coccoid bacterial pluslong filaments and verymobile curved rods. In addition free-living anaerobic ciliates and flagellates were also observed. The trophic group population observed in decreasing order of dominance were hydrolytic and acetogenic at 10(6) and sulfate reducing and methanogenic at 10(5). The rate of methane production in anaerobic granular sludge cultivated in growth medium supplement with formate pressurized with H2:CO2 showed a significant increase in methane yield compared with theseed culture containingthe same substrate and atmosphere of N2:CO2. Similar rates of methane production were observed when the growth medium was supplemented with acetate pressurized either with H2:CO2 or N2:CO2. The number of total anaerobic bacteria at 10(7), fecal coliforms and total coliforms at 10(6), and fecal streptococci at 10(3) is based on colony counts on solid media. The four prevalent species of facultative anaerobic gram-negative bacteria that belong to the family of Enterobacteriaceae were identified as Escherichia coli, Esherichia fergusonii, Klebsiella oxytoca, and Citrobacter freundii. The species Aeromonas hydrophila, Aeromonas veronii, Acinetobacter iwoffi and Stenotrophomonas maltophila were the most frequently isolated glucose fermenting and nonfermenting gram-negative bacilli.

  5. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  6. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten

  7. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    Science.gov (United States)

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation. PMID:25725884

  8. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Science.gov (United States)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  9. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.; Murali, N. [Real Time Systems Division, Electronics, Instrumentation and Radiological Safety Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-02-15

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.

  10. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    Science.gov (United States)

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  11. Social and ethical aspects of the liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    Development of liquid fast breeder reactors not only indirectly entails (through commitments of time and resources that foreclose other options), but also directly entails large-scale centralized electrification. The massive economic commitments of such a policy, wether or not it is a nuclear policy, demand and cause major social changes, bypass traditional market mechanisms, concentrate political and economic power, persistently distort political structures and social priorities, compromise professional ethics, are probably inimical to greater distributional equity within and among nations, enhance vulnerability and the paramilitarization of civilian life, introduce major economic and social risks, and reinforce current trends toward centrifugal politics. Deployment of fission technology produces further social and ethical problems, since attempts to reduce potential hazards from operating accidents, from escape of nuclear wastes, or from nuclear violence and coercion will have socio-political side-effects even if they succeed, not to mention the side-effects if they fail. These side-effects, many of which would be worse with fast than with thermal reactors, include repressiveness, abrogation of civil liberties, social rigidity and homogeneity, elitist technocracy, dirigiste autarchy, and suppression of ethical objections. The inability of modern political institutions to cope with the persistent hazards of toxic and explosive nuclear materials strains the competence and perceived legitimacy of those institutions as they try to compromise between individual liberties and public safety and to subject to democratic decision technically tinged policy questions that turn largely on unknown or unknowable information. There is no scientific basis for calculating the likelihood on the maximum long-term of nuclear mishaps, nor for guaranteeing that the effects will not exceed a particular level; it is only known that all precautions are, for fundamental reasons

  12. Three core concepts for producing uranium-233 in commercial pressurized light water reactors for possible use in water-cooled breeder reactors

    International Nuclear Information System (INIS)

    Selected prebreeder core concepts are described which could be backfit into a reference light water reactor similar to current commercial reactors, and produce uranium-233 for use in water-cooled breeder reactors. The prebreeder concepts were selected on the basis of minimizing fuel system development and reactor changes required to permit a backfit. The fuel assemblies for the prebreeder core concepts discussed would occupy the same space envelope as those in the reference core but contain a 19 by 19 array of fuel rods instead of the reference 17 by 17 array. An instrument well and 28 guide tubes for control rods have been allocated to each prebreeder fuel assembly in a pattern similar to that for the reference fuel assemblies. Backfit of these prebreeder concepts into the reference reactor would require changes only to the upper core support structure while providing flexibility for alternatives in the type of fuel used

  13. Level-2 PSA for the prototype fast breeder reactor MONJU applied to the accident management review

    International Nuclear Information System (INIS)

    An accident management guideline (AMG) of the prototype fast breeder reactor MONJU has been presented to Nuclear and Industry Safety Agency (NISA) of METI by Japan Atomic Energy Agency (JAEA) with an evaluation result of an effectiveness of the AMG by employing Level-1 and Level-2 PSAs. Japan Nuclear Energy Safety Organization (JNES) evaluated the three events - PLOHS, LORL and ATWS events - and scrutinized the results of the Level-2 PSA carried out by JAEA from the view point of an accident management (AM) review. Regarding ATWS events, we have carried out a qualitative evaluation of the results of JAEA's evaluation and carried out a quantitative evaluation of the containment failure frequency (CFF) in relation to Protected-Loss-of-Heat-Sink (PLOHS) and Loss-of-Reactor-Level (LORL) events. Evaluation of the containment failure probability CFF has been conducted based on the results of the Level-1 PSA by employing the code system developed by JNES. We conducted a close examination of the procedure that JAEA followed to evaluate CFFs in PLOHS and LORL events. It was confirmed that JAEA's Level-2 PSA quantified the phenomenal event trees was expanded in the three processes - the plant response process, the core damage process and the containment vessel response process - based on various analytical and experimental evidence and otherwise followed much the same basic evaluation procedures employed by JNES. As for PLOHS and LORL, quantitative evaluation of CFF was conducted according to the following procedures: Development of an event flow diagram, Development of a phenomenal event tree, Quantification of the phenomenal event tree, Evaluation of containment failure frequencies, and Evaluation of the effectiveness of the AM measures. In the evaluation of the PLOHS and LORL events, the following analytical codes were used; Plant dynamic characteristic analytical code (NALAP-II), Nuclear characteristics analytical system (ARCADIAN-FBR/MVP), Nuclear dynamics analysis code

  14. Development of standards and investigation of safety examination items for advancement of safety regulation of fast breeder reactor

    International Nuclear Information System (INIS)

    The purposes of this study are to prepare the fuel technical standard and the structure and materials standard of fast breeder reactors (FBRs), and to develop the requirements in a reactor establishment permission. The objects of this study are mainly the Monju high performance core and a demonstration FBR. In JFY 2012, the following results were obtained. As for the fuel technical standard, the fuel technical standard adapting the examination of integrity of the FBR fuels was prepared based on the information and data obtained in this study. As for the structure and material standard, the investigation of the revised parts of the standard was carried out. And as for the examination of the safety requirements, safety evaluation items for the future FBR plant and the fission products to be considered in a reactor establishment permission were investigated and examined. (author)

  15. Neutronics design for a spheric tokamak fusion-transmutation reactor

    International Nuclear Information System (INIS)

    Based on studies of spherical tokamak fusion reactors, a concept of fusion-transmutation reactor is put forward. A set of plasma parameters suitable for the transmutation blanket is selected. Using the transport and burn-up calculation code BISON3.0 and its associated database, transmutation rate of MA nuclear waste, energy multiplication, and tritium breeder rate in the transmutation blanket are calculated

  16. Thermo-fluid dynamics and corrosion analysis of a self cooled lead lithium blanket for the HiPER reactor

    Science.gov (United States)

    Juárez, R.; Zanzi, C.; Hernández, J.; Sanz, J.

    2015-09-01

    The HiPER reactor is the HiPER project phase devoted to power production. To reach a preliminary reactor design, tritium breeding schemes need to be adapted to the HiPER project technologies selection: direct drive ignition, 150 \\text{MJ}/\\text{shot}× 10 Hz of power released through fusion reactions, and the dry first wall scheme. In this paper we address the main challenge of the HiPER EUROFER-based self cooled lead lithium blanket, which is related to the corrosive behavior of Pb-15.7Li in contact with EUROFER. We evaluate the cooling and corrosion behavior of the so-called separated first wall blanket (SFWB) configuration by performing thermo-fluid dynamics simulations using a large eddy simulation approach. Despite the expected improvement over the integrated first wall blanket, we still find an unsatisfactory cooling performance, expressed as a low outlet Pb-15.7Li temperature plus too high corrosion rates derived from local Pb-15.7Li high temperature and velocity, which can mainly be attributed to the geometry of the channels. Nevertheless, the analysis allowed us to devise future modifications of the SFWB to overcome the limitations found with the present design.

  17. Assessment of titanium for use in the 1st wall/blanket structure of fusion power reactors

    International Nuclear Information System (INIS)

    This report describes a portion of the work that was performed as part of a First Wall/Blanket Systems Analysis Study. The objective of this part of the study was to assess the suitability of using titanium alloys in the first wall/blanket structure of commercial controlled thermonuclear reactors (CTR). While the purpose of this study was not to recommend a specific titanium alloy, but to examine titanium alloys, in general, two near-alpha titanium alloys were selected for an indepth examination. These alloys were Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo. Using properties important to the CTR first wall/blanket structures application, these titanium alloys were compared with five other candidate structural materials (2219 aluminum, 316 stainless steel, V-20 Ti, Nb-1Zr, and Mo-0.5 Ti-0.08 Zr (TZM)). The results of this study revealed that titanium offers potential for use in a CTR from strength, minimum radioactivity, and resources standpoints and should be considered in future fusion reactor studies

  18. A passively-safe fusion reactor blanket with helium coolant and steel structure

    International Nuclear Information System (INIS)

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m2. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ''beryllium-joint'' concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket

  19. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  20. Internal welding of tube-to-tubesheet joints of steam generator for sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    In the steam generator for a sodium-cooled fast breeder reactor, there are many joints of tubes and tube sheets. For the internal welding of small diameter, thick walled tubes and tubesheets, welding method has been developed, which gives high quality welding with good reproducibility. In this method, the pressure of shield gas is controlled suitably, and consideration is given to the composition of the shield gas. As a means to ensure the quality of welds, the technique of internal radiographic test has also been established. Both the welding method and the test were able to be applied successfully to the steam generator of practical size. (Mori, K.)

  1. High-definition radiography of tube-to-tubesheet welds of steam generator of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    In the steam generator of the Prototype Fast Breeder Reactor (PFBR), steam is generated by the transfer of heat from secondary sodium to water. Due to the inherent dangers of sodium-water reaction, the integrity of weld joints separating sodium and water/steam is of paramount importance. This is particularly true and very important for the tube-to-tubesheet joints. This paper discusses the use of projective magnification technique by microfocal radiography for the quality evaluation and optimisation of the welding parameters of such small tube-to-tubesheet welds of the steam generator of PFBR. (author)

  2. Dynamic simulation of the air-cooled decay heat removal system of the German KNK-II experimental breeder reactor

    International Nuclear Information System (INIS)

    A Dump Heat Exchanger and associated feedback control system models for decay heat removal in the German KNK-II experimental fast breeder reactor are presented. The purpose of the controller is to minimize temperature variations in the circuits and, hence, to prevent thermal shocks in the structures. The basic models for the DHX include the sodium-air thermodynamics and hydraulics, as well as a control system. Valve control models for the primary and intermediate sodium flow regulation during post shutdown conditions are also presented. These models have been interfaced with the SSC-L code. Typical results of sample transients are discussed

  3. EPRI Asilomar papers: on the possibility of advanced fuel fusion reactors, fusion-fission hybrid breeders, small fusion power reactors, Asilomar, California, December 15--17, 1976

    International Nuclear Information System (INIS)

    An EPRI Ad Hoc Panel met in Asilomar, California for a three day general discussion of topics of particular interest to utility representatives. The three main topics considered were: (1) the possibility of advanced fuel fusion reactors, (2) fusion-fission hybrid breeders, and (3) small fusion power reactors. The report describes the ideas that evolved on these three topics. An example of a ''neutron less'' fusion reactor using the p-11B fuel cycle is described along with the critical questions that need to be addressed. The importance to the utility industry of using fusion neutrons to breed fission fuel for LWRs is outlined and directions for future EPRI research on fusion-fission systems are recommended. The desirability of small fusion power reactors to enable the early commercialization of fusion and for satisfying users' needs is discussed. Areas for possible EPRI research to help achieve this goal are presented

  4. Helium-cooled molten-salt fusion breeder

    International Nuclear Information System (INIS)

    We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF2 + ThF4) is circulated through the blanket and to the on-line processing system where 233U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of 233U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the 233U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned

  5. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors, Twentieth Annual Meeting, Vienna, 24-27 March 1987

    International Nuclear Information System (INIS)

    The Agenda of the meeting was as follows: 1. Approval of the Agenda. 2. Approval of the minutes of the 19th meeting of the IWGFR. 3. Report of the Scientific Secretary regarding the WD activities of the Working Group. 4. Presentations and discussions on national programmes on fast breeder reactors. 5. Consideration of conferences on fast breeder reactors. a. ANS-ENS International Conference on Fast Breeder Systems Experience Gained and Path to Economical Power Generation, Richland, Washington, USA, 13-17 September 1987. b. International Conference on Liquid Metal Engineering and Technology, Avignon, France, 17-20 October 1988. c. Other meetings of interest to IWGFR members. 6. Consideration of major recommendations of some of the WD IWGFR Specialists' Meetings. 7. Consideration of arrangements for Specialists' Meetings in 1987. a. Specialists' Meeting on Fission and Corrosion Products Behaviour in Primary Circuits of LMFBRs, Karlsruhe, Fed. Rep. of Germany, May 1987. b. Specialists' Meeting on LMFBR Reactor Block Antiseismic Design and Verification, Bologna, Italy, October 1987. 8. Selection of topics for Specialists' Meetings to be held in 1988 and suggestions of the IWGFR on other Specialists' Meetings and their justifications. 9. Consideration of joint research activities: a. Coordinated Research Programme on a Comparative Assessment of Processing Techniques for Analysis of Sodium Boiling Noise Detection Data. b. Coordinated Research Programme on Intercomparison of LMFBR Core Mechanics Codes. c. New Topics of CRP. d. Other Activities. 10. Updating of ''LMFBR Plant Parameters''. 11. Informal discussion on ''Safety Criteria for Fast Reactors in IWGFR Countries''. 12. The date and place of the 21th Annual Meeting of the IWGFR

  6. Detection of Breeding Blankets Using Antineutrinos

    Science.gov (United States)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  7. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands - February 1985

    International Nuclear Information System (INIS)

    In 1967 and 1968, the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop breeder reactors in a joint program. The following research organizations have taken part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolfgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three Germany institutions mentioned above have been associated since 1977 in the Entwicklungsgemeinschaft (EG) Schneller Brueter. KfK, INTERATOM, and the French Commissariat a l'Energie Atomique entered into contracts in 1977 about close cooperation in the fast breeder field, to which the Belgian and Dutch partners acceded. The results of activities carried out by the DeBeNe partners in 1984 have been compiled in this report. The report begins with a survey of the fast reactor plants followed by a R and D summary. In an additional chapter, a survey is given of international cooperation in 1984

  8. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and The Netherlands - February 1984

    International Nuclear Information System (INIS)

    In 1967 and 1968 the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop breeder reactors in a joint program. The following research organizations have taken part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three German institutions mentioned above have been connected since 1977 in the Entwicklungsgemeinschaft (EG) Schneller Brueter. KfK, INTERATOM, and the French Commissariat a l'Energie Atomique entered into contracts in 1977 about close cooperation in the fast breeder field, to which the Belgian and Dutch partners acceded. The results of activities carried out by the DeBeBe partners in 1983 have been compiled in this report. The report begins with a survey of the fast reactor plants followed by an R and D summary. In an additional chapter, a survey is given of international cooperation in 1983

  9. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (K-s and mu(max)) of immobilized M. concilii GP-6 or ill, mazeii S-6 compared with suspended cultures, indicating...... that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were......Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After...

  10. Immobilization patterns and dynamics of acetate-utilizing methanogens in sterile granular sludge from upflow anaerobic sludge blanket (UASB) reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (K-s and mu(max)) of immobilized M. concilii GP-6 or ill, mazeii S-6 compared with suspended cultures, indicating...... that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were......Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After...

  11. Investigation of stability of multi free surfaces at transient operation for fast breeder demonstration reactors in Japan

    International Nuclear Information System (INIS)

    The Japanese demonstration fast breeder reactor (JDFBR) is composed of a reactor vessel, intermediate heat exchangers and pump vessels. Every component has a free surface of sodium. Transient operation of the pumps may cause variations of the sodium levels. For the stability of the multiple surfaces, a 1/15 scale model of the JDFBR with 4 loops with a 1000 MWe output power was made to experimentally investigate the stability of 9 free surfaces. In addition, we have developed a computer code to calculate it. The results of the experiments and the calculations agree well with each other. The computer code was successfully verified. The cover gas has an important role to suppress the vibrations of the free surfaces in transient conditions. The sodium level of the JDFBR is stable in all operating conditions, even beyond the design base conditions. (author)

  12. Markovian reliability analysis under uncertainty with an application on the shutdown system of the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Papazoglou, I A; Gyftopoulos, E P

    1978-09-01

    A methodology for the assessment of the uncertainties about the reliability of nuclear reactor systems described by Markov models is developed, and the uncertainties about the probability of loss of coolable core geometry (LCG) of the Clinch River Breeder Reactor (CRBR) due to shutdown system failures, are assessed. Uncertainties are expressed by assuming the failure rates, the repair rates and all other input variables of reliability analysis as random variables, distributed according to known probability density functions (pdf). The pdf of the reliability is then calculated by the moment matching technique. Two methods have been employed for the determination of the moments of the reliability: the Monte Carlo simulation; and the Taylor-series expansion. These methods are adopted to Markovian problems and compared for accuracy and efficiency.

  13. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Science.gov (United States)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are Rod Drive Mechanism during reactor operation.

  14. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    Science.gov (United States)

    Dautray, Robert

    2011-06-01

    The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation

  15. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  16. Status of national programmes on fast breeder reactors. Twenty-fifth annual meeting of the International Working Group on Fast Reactors. Summary report. Working material

    International Nuclear Information System (INIS)

    At present nuclear power accounts for approximately 17% of total electricity generation worldwide. Given continuing population growth and the needs of the third world and developing countries to improve their economic performance and standard of living, energy demand is expected to continue to grow through the 21st century. The proportion of energy supplied as electricity is also expected to continue to increase. Although fossil fuelled electricity generation is the option preferred by several countries for the short term, there are rising concerns over climatic consequences caused by extended burning of fossil fuels as a result of the demands of a fast expanding world population. In this situation nuclear electricity will become more and more important and the known reserves of uranium would be consumed quite quickly by thermal reactors. It would be possible to sustain a large nuclear programme only by introducing fast reactors. One can conclude that there are strategic reasons for pursuing the development of fast breeder reactors. It will become desirable essential, to have this technology available for introduction. The experience of the various prototypes presently in operation has confirmed the operability and benign characteristics of the LMFR and has given ground for confidence in the future. Current fast reactor designs offer very large margins of safety and by virtue of redundant and diverse safety systems the potential for an energetic core disruptive accident or for fast reactor core meltdown has been essentially eliminated. Several international forums reviewed the current trends in the fast reactor development. The view was reaffirmed that fast breeder reactors still remain the most practical tool for effective utilization of uranium resources for the future energy needs. Achievement of competitiveness with LMRs is still the first priority condition for the future deployment of this type of reactor. The recycling of plutonium into LMFBRs would allow

  17. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  18. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  19. Optimization of U–Th fuel in heavy water moderated thermal breeder reactors using multivariate regression analysis and genetic algorithms

    International Nuclear Information System (INIS)

    Highlights: • A new method useful for the parametric analysis and optimization of reactor core designs. • This uses the strengths of genetic algorithms (GA), and regression splines. • The method is applied to the core fuel pin cell of a PHWR design. • Tools like java, R, and codes like Serpent, Matlab are used in this research. - Abstract: An analysis and optimization of a set of neutronics parameters of a thorium-fueled pressurized heavy water reactor core fuel has been performed. The analysis covers a detailed pin-cell analysis of a seed-blanket configuration, where the seed is composed of natural uranium, and the blanket is composed of thorium. Genetic algorithms (GA) is used to optimize the input parameters to meet a specific set of objectives related to: infinite multiplication factor, initial breeding ratio, and specific nuclide’s effective microscopic cross-section. The core input parameters are the pitch-to-diameter ratio, and blanket material composition. Recursive partitioning of decision trees (rpart) multivariate regression model is used to perform a predictive analysis of the samples generated from the GA module. Reactor designs are usually complex and a simulation needs a significantly large amount time to execute, hence implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using rpart in conjunction with GA. Due to using rpart, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The rpart model is implemented as a library using R programming language. The results suggest that the initial breeding ratio tends to increase due to a harder neutron spectrum, however a softer neutron spectrum is desired to limit the

  20. Two-dimensional cross-section sensitivity and uncertainty analysis for fusion reactor blankets

    International Nuclear Information System (INIS)

    A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium

  1. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  2. Collection of summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1995

    International Nuclear Information System (INIS)

    This report meeting was held on May 22, 1995 at University of Tokyo by about 40 participants. As the topics on the fusion reactor engineering research in Japan, lectures were given on the present state and future of nuclear fusion networks and on the strong magnetic field tokamak using electromagnetic force-balanced coils being planned. Thereafter, the reports of the results of the researches which were carried out by using this experimental facility were made, centering around the subject related to the future conception 'The interface properties of fusion reactor materials and particle transport control'. The publication was made on the future conception of the basic experiment setup for fusion reactor blanket design, the application of high temperature superconductors to the advancement of nuclear fusion reactors, the modeling of the dynamic irradiation behavior of fusion reactor materials, the interface particle behavior in plasma-wall interaction, the behavior of tritium on the surface of breeding materials, and breeding materials and the behavior of tritium in plasma-wall interaction. (K.I.)

  3. Modeling and analysis of the unprotected loss-of-flow accident in the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.E.; Dunn, F.E.; Simms, R.; Gruber, E.E.

    1985-01-01

    The influence of fission-gas-driven fuel compaction on the energetics resulting from a loss-of-flow accident was estimated with the aid of the SAS3D accident analysis code. The analysis was carried out as part of the Clinch River Breeder Reactor licensing process. The TREAT tests L6, L7, and R8 were analyzed to assist in the modeling of fuel motion and the effects of plenum fission-gas release on coolant and clad dynamics. Special, conservative modeling was introduced to evaluate the effect of fission-gas pressure on the motion of the upper fuel pin segment following disruption. For the nominal sodium-void worth, fission-gas-driven fuel compaction did not adversely affect the outcome of the transient. When uncertainties in the sodium-void worth were considered, however, it was found that if fuel compaction occurs, loss-of-flow driven transient overpower phenomenology could not be precluded.

  4. Carbon transport in a bimetallic sodium loop simulating the intermediate heat transport system of a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carbon transport data from a bimetallic sodium loop simulating the intermediate heat transport system of a Liquid Metal Fast Breeder Reactor are discussed. The results of bulk carbon analyses after 15,000 hours' exposure indicate a pattern of carburization of Type 304 stainless steel foils which is independent of loop sodium temperature. A model based on carbon activity gradients accounting for this behavior is proposed. Data also indicate that carburization of Type 304 stainless steel is a diffusion-controlled process; however, decarburization of the ferritic 2 1/4 Cr-1Mo steel is not. It is proposed that the decarburization of the ferritic steel is controlled by the dissolution of carbides in the steel matrix. The differences in the sodium decarburization behavior of electroslag remelted and vacuum-arc remelted 2 1/4 Cr-1Mo steel are also highlighted

  5. Blanket concept with liquid Li/sub 17/Pb/sub 83/ for tritium breeding in INTOR-NET

    Energy Technology Data Exchange (ETDEWEB)

    Airola, J.; Biggio, M.; Casini, G.; Farfaletti-Casali, F.; Li Bassi, P.; Ponti, C.; Rieger, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Piana, C. (Milan Univ. (Italy))

    1984-04-01

    A blanket concept with eutectic Li/sub 17/Pb/sub 83/ as liquid breeder, suited for tritium production in an experimental Tokamak power reactor is outlined and discussed. This design has been developed to satisfy the INTOR-Phase-I specifications, in particular: (I) modular arrangement of the blanket units inside the vacuum vessel; (II) no use of the heat deposited for electricity production, (III) a net tritium breeding of a least 60%. In this article the main results of the neutronics and thermohydraulics analysis are reviewed and the problems identified. Methods to keep liquid in the breeder during operation are proposed and discussed. The consequences of a coolant tube rupture in a breeder unit appears to be the most serious problem.

  6. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  7. Requirements for helium cooled pebble bed blanket and R and D activities

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, D., E-mail: dario.carloni@kit.edu; Boccaccini, L.V.; Franza, F.; Kecskes, S.

    2014-10-15

    This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R and D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM. The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R and D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R and D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine.

  8. Requirements for helium cooled pebble bed blanket and R and D activities

    International Nuclear Information System (INIS)

    This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R and D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM. The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R and D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R and D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine

  9. Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed; Tawfik, Ahmed

    2011-07-01

    In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11h (UASB reactor: 6h and DHS reactor: 5h) and phase (2) at overall HRT of 9.4h (UASB reactor: 5.2h and DHS reactor: 4.2h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH(4)-N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.

  10. Production behavior of irradiation defects in solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)

    1998-03-01

    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  11. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Mexico, D.F. (Mexico); Francois, Juan Luis [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico)]. E-mail: jlfl@fi-b.unam.mx; Martin-del-Campo, Cecilia [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana, Avenida San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2005-04-15

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the {sup 233}U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly.

  12. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-09

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels.

  13. The passive nondestructive assay of the plutonium content of spent-fuel assemblies from the BN-350 fast-breeder reactor in the city of Aqtau, Kazakhstan

    CERN Document Server

    Lestone, J P; Rennie, J A; Sprinkle, J K; Staples, P; Grimm, K N; Hill, R N; Cherradi, I; Islam, N; Koulikov, J; Starovich, Z

    2002-01-01

    The International Atomic Energy Agency is presently interested in developing equipment and techniques to measure the plutonium content of breeder reactor spent-fuel assemblies located in storage ponds before they are relocated to more secure facilities. We present the first quantitative nondestructive assay of the plutonium content of fast-breeder reactor spent-fuel assemblies while still underwater in their facility storage pond. We have calibrated and installed an underwater neutron coincidence counter (Spent Fuel Coincidence Counter (SFCC)) in the BN-350 reactor spent-fuel pond in Aqtau, Kazakhstan. A procedure has been developed to convert singles and doubles (coincidence) neutron rates observed by the SFCC into the total plutonium content of a given BN-350 spent-fuel assembly. The plutonium content has been successfully determined for spent-fuel assemblies with a contact radiation level as high as approx 10 sup 5 Rads/h. Using limited facility information and multiple measurements along the length of spe...

  14. Supplement to Final Environmental Statement related to construction and operation of Clinch River Breeder Reactor Plant, Docket No. 50-537

    International Nuclear Information System (INIS)

    In February 1977, the Office of Nuclear Reactor Regulation issued a Final Environmental Statement (FES) (NUREG-0139) related to the construction and operation of the proposed Clinch River Breeder Reactor Plant (CRBRP). Since the FES was issued, additional data relative to the site and its environs have been collected, several modifications have been made to the CRBRP design, and its fuel cycle, and the timing of the plant construction and operation has been affected in accordance with deferments under the DOE Liquid Metal Fast Breeder Reactor (LMFBR) program. These changes are summarized and their environmental significance is assessed in this document. The reader should note that this document generally does not repeat the substantial amount of information in the FES which is still current; hence, the FES should be consulted for a comprehensive understanding of the staff's environmental review of the CRBRP project

  15. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    International Nuclear Information System (INIS)

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators

  16. Theoretical and experimental studies of non-linear structural dynamics of fast breeder reactor fuel elements

    International Nuclear Information System (INIS)

    Descriptions are presented of theoretical and experimental studies of the deformation behaviour of fast-breeder fuel elements as a consequence of extreme impulsive stresses produced by an incident. The starting point for the studies is the assumption that local disturbances in a fuel element have resulted in a thermal interaction between fuel and sodium and in a corresponding increase in pressure. On the basis of the current state of knowledge, the possibility cannot be ruled out that this pressure build-up may lead to the bursting of the fuel-element wrapper, to the propagation of pressure in the core, and to coherent structural movements and deformations. A physical model is established for the calculation of the dynamic response of elastic-plastic beam systems, and the differential equations of p motion for the discrete equivalent system are derived with the aid of D'Alembert's principle. On this basis and with the aid of a semi-empirical pin-bundle model, an appropriate computer program allows a static and dynamic analysis to be obtained for a complete fuel element. In the experimental part of the study, a description is given of static and impulsive loading tests on 1:1 SNR-like fuel-element models. Making use of measured impact forces and of known material characteristics, it was possible to a large extent for the experiments to be reproduced by calculations. In agreement with existing experience from explosion experiments on 1:1 core models, the results (of relevance for fast-breeder safety and in particular the SNR-300) show that only local limited deformations occur and that the compact fuel-element and core structure constitutes an effective inherent barrier in the presence of extreme incident stresses. (author)

  17. Use of Nuclear Data Sensitivity and Uncertainty Analysis for the Design Preparation of the HCLL Breeder Blanket Mockup Experiment for ITER

    Directory of Open Access Journals (Sweden)

    I. Kodeli

    2008-01-01

    Full Text Available An experiment on a mockup of the test blanket module based on helium-cooled lithium lead (HCLL concept will be performed in 2008 in the Frascati Neutron Generator (FNG in order to study neutronics characteristics of the module and the accuracy of the computational tools. With the objective to prepare and optimise the design of the mockup in the sense to provide maximum information on the state-of-the-art of the cross-section data the mockup was pre-analysed using the deterministic codes for the sensitivity/uncertainty analysis. The neutron fluxes and tritium production rate (TPR, their sensitivity to the underlying basic cross-sections, as well as the corresponding uncertainties were calculated using the deterministic transport codes (DOORS package, the sensitivity/uncertainty code package SUSD3D, and the VITAMINJ/ COVA covariance matrix libraries. The cross-section reactions with largest contribution to the uncertainty of the calculated TPR were identified to be (n,2n and (n,3n reactions on lead. The conclusions of this work support the main benchmark design and suggest some modifications and improvements. In particular this study recommends the use, as far as possible, of both natural and enriched lithium pellets for the TRP measurements. The combined use is expected to provide additional and complementary information on the sensitive cross-sections.

  18. A downflow hanging sponge (DHS) reactor for faecal coliform removal from an upflow anaerobic sludge blanket (UASB) effluent.

    Science.gov (United States)

    Yaya Beas, Rosa Elena; Kujawa-Roeleveld, Katarzyna; van Lier, Jules B; Zeeman, Grietje

    2015-01-01

    This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m(-3) d(-1), 0.53 kgCOD m(-3) d(-1) and 0.24 kgCOD m(-3) d(-1) correspondingly at hydraulic loading rates of 1.92 m3 m(-2) d(-1), 2.97 m3 m(-2) d(-1) and 1.32 m3 m(-2) d(-1), respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops. PMID:26606098

  19. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  20. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. PMID:25600011

  1. Options and methods for instrumentation of Test Blanket Systems for experiment control and scientific mission

    International Nuclear Information System (INIS)

    Highlights: • This work defined options and methods to instrument ITER TBSs based on functional categories: safety, interlock and control and scientific exploitation based on the ITER research program. • Presented the general architecture of the HCLL and HCPB Test Blanket System Instrumentation and Control. • Defined safety and interlock sensors count and technology selection based on preliminary safety analysis. • Discussed the development status of scientific instrumentation, with focus on integration with design and fulfillment of TBM research program. - Abstract: Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept which uses the eutectic Pb-16Li as both breeder and neutron multiplier; the Helium-Cooled Pebble-Bed (HCPB) concept which features lithiated ceramic pebbles as breeder and beryllium pebbles as neutron multiplier. Each TBM is associated with several sub-systems required for their operation; together they form the Test Blanket System (TBS). This paper presents the state of HCLL and HCPB TBS instrumentation design. The discussion is based on the systems functional analysis, from which three main categories of instrumentation are defined: those relevant to safety functions; those relevant to interlock functions; those designed for the control and scientific exploitation of the devices based on the TBM program objectives

  2. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    methanogens, in syntrophic association with acetate oxidising bacteria, are more resistant to ammonia toxicity effect. The use of syntrophic acetate oxidising methanogenic consortia could provide a new approach to tackle ammonia toxicity effect in AD. The SAO culture (i.e. Clostridium ultunense spp. nov......Ammonia is the major inhibitor of anaerobic digestion (AD) process leading to suboptimal utilisation of the biogas potential of the feedstocks and causing economical losses to the biogas plants. However, ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic....... in association with Methanoculleus spp. strain MAB1), is an acetate oxidising methanogenic consortium that can produce methane (CH4) at high ammonia levels. In the current study the bioaugmentation of the SAO culture in a mesophilic up-flow anaerobic sludge blanket (UASB) reactor subjected to high ammonia loads...

  3. Numerical analysis of grid plate melting after a severe accident in a Fast-Breeder Reactor (FBR)

    Indian Academy of Sciences (India)

    A Jasmin Sudha; K Velusamy

    2013-12-01

    Fast breeder reactors (FBRs) are provided with redundant and diverse plant protection systems with a very low failure probability (<10-6/reactor year), making core disruptive accident (CDA), a beyond design basis event (BDBE). Nevertheless, safety analysis is carried out even for such events with a view to mitigate their consequences by providing engineered safeguards like the in-vessel core catcher. During a CDA, a significant fraction of the hot molten fuel moves downwards and gets relocated to the lower plate of grid plate. The ability of this plate to resist or delay relocation of core melt further has been investigated by developing appropriate mathematical models and translating them into a computer code HEATRAN-1. The core melt is a time dependent volumetric heat source because of the radioactive decay of the fission products which it contains. The code solves the nonlinear heat conduction equation including phase change. The analysis reveals that if the bottom of grid plate is considered to be adiabatic, melt-through of grid plate (i.e., melting of the entire thickness of the plate) occurs between 800 s and 1000 s depending upon the initial conditions. Knowledge of this time estimate is essential for defining the initial thermal load on the core catcher plate. If heat transfer from the bottom of grid plate to the underlying sodium is taken into account, then melt-through does not take place, but the temperature of grid plate is high enough to cause creep failure.

  4. Conceptual Design Studies of a Passively Safe Thorium Breeder Pebble Bed Reactor

    OpenAIRE

    Wols, F.J.

    2015-01-01

    Nuclear power plants are expected to play an important role in the worldwide electricity production in the coming decades, since they provide an economically attractive, reliable and low-carbon source of electricity with plenty of resources available for at least the coming hundreds of years. However, the design of nuclear reactors can be improved significantly in terms of safety, by designing reactors with fully passive safety systems, and sustainability, by making more efficient use of natu...

  5. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  6. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  7. The Role of Energetic Mixed-Oxide-Fuel-Sodium Thermal Interactions in Liquid Metal Fast Breeder Reactor Safety

    International Nuclear Information System (INIS)

    Recent efforts dealing with the consequence assessment of low-probability core-disruptive accidents (CDAs) in liquid-metal fast breeder reactors (LMFBRs) suggest that unrealistic physical processes must be postulated in order to achieve energetic prompt burst conditions leading to a true hydrodynamic disassembly of the reactor core. Such calculations are, however, being used in the licensing process in order to provide an estimate of safety margins provided by a given design. Figure 1 illustrates calculations for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), where the prompt critical excursion and associated ramp rates are induced by postulating various amounts and rates of collapsing fuel in a largely molten core (recriticality accident), and the mode of energy release considered is the expansion of fuel vapor resulting in sodium-slug impact on the reactor vessel head. The VENUS-II code is used to calculate the disassembly motion and power histories during disassembly Elementary thermodynamic calculations provide the source term based upon expansion of the fuel from an initial temperature distribution specified by VENUS calculations, and the REXCO series of codes provide a hydrodynamic calculation of the pressure propagation coupled with an analysis of the structural response of the important system components. The work potential resulting from fuel collapse and hydrodynamic disassembly is very sensitive to small variations in the ramp rate. Since material motions associated with postulated conditions leading to energetic prompt critical excursions cannot be described with sufficient accuracy to provide reasonable bounds on ramp rates, an adequate margin of safety with current design is difficult to claim if these conditions cannot be ruled out. This implies that in addition to coherent gravity collapse, the possibility of pressure-driven (fuel-coolant interaction) collapse must be considered. Furthermore, the work potential

  8. A knowledge based on-line diagnostic system for the fast breeder reactor KNKII

    International Nuclear Information System (INIS)

    In the nuclear research center at Karlsruhe, a diagnostic expert system is developed to supervise a fast breeder process (KNKII). The problem is to detect critical phases in the beginning state before fault propagation. The expert system itself is integrated in a computer network (realized by a local area network), where different computers are involved as special detection systems (for example acoustic noise, temperature noise, covergas monitoring and so on), which produce partial diagnoses, based on intelligent signal processing techniques like pattern recognition. Additional to the detection systems a process computer is integrated as well as a test computer, which simulates hypothetical and real fault data. On the logical top level the expert system manages the partial diagnoses of the detection systems with the operating data of the process computer and to produce a final diagnosis including the explanation part for operator support. The knowledge base is developed by typical Artificial Intelligence tools. Both fact based and rule based knowledge representations are stored in form of flavors and predications. The inference engine operates on a rule based approach. Specific detail knowledge, based on experience about any years, is available to influence the decision process by increasing or decreasing of the generated hypotheses. In a meta knowledge base, a rule master triggers the special domain experts and contributes the tasks to the specific rule complexes. Such a system management guarantees a problem solving strategy, which operates event triggered and situation specific in a local inference domain. (author). 3 refs, 6 figs, 2 tabs

  9. Investigations on the mechanical interaction between fuel and cladding (FCMI) in fast breeder reactor fuel pins

    International Nuclear Information System (INIS)

    The relation between FCMI and plastic cladding distensions of Fast-Breeder pins with oxide as well as carbide fuel was analyzed theoretically and experimentally. This resulted in the possibility of plastic cladding straining caused by differential swelling of fuel and cladding material under stationary power conditions or differential thermal expansion at power changes. At stationary operating conditions the FCMI in oxide pins is limited by an irradiation-induced creep deformation into inner void volume and thus the fuel swelling pressure will never cause clad distensions worth mentioning. However, the cladding of carbide pins can be strained under stationary conditions because of the comparatively low fuel plastification under irradiation. Plastic straining of oxide pins may follow from differential thermal expansion at power changes. The amount of strain is primarily dependent upon magnitude and rate of the power increase, the starting conditions, and the clad material strength. The parameter dependence of the strains and the limiting conditions for their avoidance are reported. The model calculations are carried out by means of a special computer code which was developed following closely the results of irradiation experiments. It was proved experimentally that a considerably high geometrical swelling occurs after a power reduction until the fuel has come into contact with the cladding again. (orig.)

  10. Extracellular Polymeric Substances (EPS) in Upflow Anaerobic Sludge Blanket (UASB) Reactors Operated under High Salinity Conditions

    NARCIS (Netherlands)

    Ismail, S.; Parra, de la C.J.; Temmink, B.G.; Lier, van J.B.

    2010-01-01

    Considering the importance of stable and well–functioning granular sludge in anaerobic high rate reactors, a series of experiments were conducted to determine the production and composition of EPS in high sodium concentrations wastewaters pertaining to anaerobic granule properties. The UASB reactors

  11. Level-2 PSA for the Prototype Fast Breeder Reactor MONJU Applied to the Accident Management Review

    International Nuclear Information System (INIS)

    JNES independently evaluated the three events it selected - PLOHS, LORL and ATWS events - and reviewed the results of the Level 2 PSA carried out by JAEA. Regarding ATWS events, the organization carried out a qualitative evaluation of the results of JAEA's evaluation and carried out a quantitative evaluation of the containment failure frequency (CFF) in relation to PLOHS and LORL events. In JNES's independent evaluation of PLOHS and LORL events, accident scenarios in the three phases - the plant response phase, the core damage phase and the containment vessel response phase - were analyzed. The phenomenal event trees were quantified by applying the information about phenomena specific to fast reactors, including plant thermal-hydraulic analysis at the time of core damage, boundary structure analysis, analysis of the characteristics of the disrupted core, the results of sodium-concrete reaction tests, and the results of hydrogen diffusion induced combustion tests, to the PRDs. As the result, the total CFF before the preparation of the AM measures was rated at 9.2E-9/reactor year (CDF at 2.7E-7/reactor year), and it has been confirmed that these numerical values are well below the power reactor performance goal indicator values (CDF: 10-4/year or so; CFF: 10-5/year or so) even before the preparation of the AM measures. (author)

  12. Uncertainty evaluation of reliability of safety grade decay heat removal system of Indian prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Uncertainty analysis of failure frequency of SGDHRS of a medium sized fast reactor is studied. • Lognormal distribution of failure rate of components is taken with error factor of 3. • The error factor in the distribution of failure frequency in most cases is 3. • The relative importance of the safety components is brought out. - Abstract: Deterministic and probabilistic safety assessment of nuclear power reactor technology is very important in assuring that the design is robust and safety systems perform as per requirement. The parameters required as input data for such analysis have uncertainties associated with them. Their impact is to be assessed on the results obtained for such analyses and it affects the overall decision making process. Safety Grade Decay Heat Removal System (SGDHRS) is one of the safety systems in fast breeder reactors and itremoves decay heat after reactor shutdown. It is a critical safety system; hence failure frequency for SGDHR is targeted to be less than 1.0 × 10−7 per reactor year. By bringing diversity in some of the components of SGDHRS, such as sodium-to-sodium decay heat exchanger (DHX), sodium to air heat exchanger (AHX) and valves, one can achieve the targeted low failure frequency of SGDHRS. We perform uncertainty analysis of the reliability of such SGDHRS here. Uncertainty in failure rate (of components of SGDHRS) is assumed to follow the log-normal distribution with error factor of three. Monte Carlo method of sampling is used in MATLAB environment. Results are obtained in terms of mean, median and standard deviation values of failure frequency. Percentile and confidence interval analysis of mean values are also obtained. These provide 95 and 98 percentile and confidence interval values of 98%, 99% and 99.8%. It is found that error factor of failure frequency of SGDHRS is found to be less than 3 in all the cases except the one in which DHX, AHX and Valves are designed with diversity in design. It is to

  13. Degradation of phenol in an upflow anaerobic sludge blanket(UASB) reactor at ambient temperatureKE

    Institute of Scientific and Technical Information of China (English)

    KE Shui-zhou1; SHI Zhou; ZHANG Tong; Herbert H. P. FANG

    2004-01-01

    A synthetic wastewater containing phenol as sole substrate was treated in a 2.8 L upflow anaerobic sludge blanket(UASB) reactor at ambient temperature. The operation conditions and phenol removal efficiency were discussed, microbial population in the UASB sludge was identified based on DNA cloning, and pathway of anaerobic phenol degradation was proposed. Phenol in wastewater was degraded in an UASB reactor at loading rate up to 18 gCOD/(L·d), With a 1:1 recycle ratio, at 26(1℃, pH 7.0-7.5. An UASB reactor was able to remove 99% of phenol up to 1226 mg/L in wastewater with 24 h of hydraulic retention time(HRT). For HRT below 24 h, phenol degradation efficiency decreased with HRT, from 95.4% at 16 h to 93.8% at 12 h. It further deteriorated to 88.5% when HRT reached 8 h. When the concentration of influent phenol of the reactor was 1260 mg/L(corresponding COD 3000 mg/L), with the HRT decreasing(from 40 h to 4 h, corresponding COD loading increasing), the biomass yields tended to increase from 0.265 to 3.08 g/(L·d). While at 12 h of HRT, the biomass yield was lower. When HRT was 12 h, the methane yield was 0.308 L/(gCOD removed), which was the highest. Throughout the study, phenol was the sole organic substrate. The effluent contained only residual phenol without any detectable intermediates, such as benzoate, 4-hydrobenzoate or volatile fatty acids(VFAs). Based on DNA cloning analysis, the sludge was composed of five groups of microorganisms. Desulfotomaculum and Clostridium were likely responsible for the conversion of phenol to benzoate, which was further degraded by Syntrophus to acetate and H2/CO2. Methanogens lastly converted acetate and H2/CO2 to methane. The role of epsilon-Proteobacteria was, however, unsure.

  14. Linearized model for the hydrodynamic stability investigation of molten fuel jets into the coolant of a Liquid Metal Fast Breeder Reactor (LMFBR)

    Science.gov (United States)

    Hartel, K.

    1986-02-01

    The hydrodynamic stability of liquid jets in a liquid continuum, both characterized by low viscosity was analyzed. A linearized mathematical model was developed. This model enables the length necessary for fragmentation of a vertical, symmetric jet of molten fuel by hydraulic forces in the coolant of a liquid metal fast breeder reactor to be evaluated. On the basis of this model the FRAG code for numerical calculation of the hydrodynamic fragmentation mechanism was developed.

  15. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    International Nuclear Information System (INIS)

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases

  16. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  17. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  18. Seventeen years of LMFBR experience: Experimental Breeder Reactor II (EBR-II)

    International Nuclear Information System (INIS)

    Operating experience at EBR-II over the past 17 years has shown that a sodium-cooled pool-type reactor can be safely and efficiently operated and maintained. The reactor has performed predictably and benignly during normal operation and during both unplanned and planned plant upsets. The duplex-tube evaporators and superheaters have never experienced a sodium/water leak, and the rest of the steam-generating system has operated without incident. There has been no noticeable degradation of the heat transfer efficiency of the evaporators and superheaters, except for the one superheater replaced in 1981. There has been no need to perform any chemical cleaning of steam-system components

  19. Overview of requirements and design integration for the ITER EU Test Blanket Systems instrumentation

    International Nuclear Information System (INIS)

    The ITER project aims at building a fusion device with the general goal of demonstrating the scientific and technical feasibility of fusion power. The testing of Tritium Breeder Blanket concepts is one of the ITER missions and has been recognized as an essential milestone in the development of a future fusion reactor ensuring tritium self-sufficiency, extraction of high grade heat and electricity production. Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept and the Helium-Cooled Pebble-Bed (HCPB) concept. The strategy for the development of the instrumentation of the HCLL and HCPB Test Blanket Systems, which include the TBMs and their Ancillary Systems, is briefly recalled in this paper, along with the overview of the requirements coming from the harsh operational environment and the main challenges related to the integration with the complex design of the TBS components. (authors)

  20. Crystal chemistry of immobilization of fast breeder reactor (FBR) simulated waste in sodium zirconium phosphate (NZP) ceramic matrix

    Energy Technology Data Exchange (ETDEWEB)

    Chourasia, Rashmi [Department of Chemistry, Dr. H.S. Gour University, Sagar 470 003 (India); Shrivastava, O.P., E-mail: dr_ops11@rediffmail.co [Department of Chemistry, Dr. H.S. Gour University, Sagar 470 003 (India); Ambashta, R.D.; Wattal, P.K. [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-02-15

    Fuel from the fast breeder reactor waste is reprocessed and subjected to cooling for a period of about one year. Fission and activation products of the fuel are the major constituents of this waste. Sodium zirconium phosphate (hereafter NZP) has been identified as a potential material for immobilization of long lived heat generating radio nuclides. It was found that most of the elements present in the radioactive waste could be immobilized in this ceramic matrix without significant changes of the three-dimensional framework of the host material. Simulated NZP waste forms synthesized by ceramic route at 1200 deg. C crystallize in the rhombohedral system (space group R-3c). The crystal chemistry of 0-35 wt.% waste loaded NZP waste forms have been investigated using General Structure Analysis System (GSAS) programming of the step analysis powder diffraction data. Rietveld refinement of crystal data on the waste oxide (WO{sub x}) loaded waste forms gives a satisfactory convergence of R-factors. The particle size along prominent reflecting planes ranges between 68 and 141 nm. The polyhedral distortions and effective valence calculations from bond strength data are also reported. Morphological examination by scanning electron microscopy (SEM) reveals that the size of almost rectangular parallelepiped shaped grains varies between 0.2 and 5 mum. The EDX analysis provides analytical evidence of immobilization of effluent cations in the matrix.

  1. Effect of geometric factors on performance of a sodium to air heat exchanger in a fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • A heat exchanger analysis (HE) before scale up reduces excess heat transfer area. • Representative Elementary Volume analysis of a HE speeds up the solution. • The error in air temperature rise prediction by numerical across HE is within 5%. • When both pitches are reduced, the maximum increase in heat flux is experienced. • The experience has resulted in better design of next level heat exchangers. - Abstract: Prototype fast breeder reactor (PFBR) has a safety grade decay heat removal system whose performance depends on the effective functioning of natural convection heat exchangers called sodium to air heat exchangers. The development of Representative Elementary Volume (REV) model for the sodium to air heat exchanger is necessary to envisage its design and to study the effect of various factors for continuous improvement in design. With a Representative Elementary Volume, the hydrodynamic and heat transfer characteristics of the heat exchanger was studied and the results agree well with experimental data. The effect of longitudinal pitch and transverse pitch on the heat exchanger performance has been studied and an improvement of 22% in heat transfer is predicted

  2. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    International Nuclear Information System (INIS)

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future

  3. Model to simulate the fission-product transport process in the Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    So, B.Y.C.

    1979-01-01

    When fission products are released from a cladding breach in EBR-II, they mix turbulently with the sodium in the core, in the upper plenum and in the intermediate heat exchanger. Eventually the fission products are discharged 12 to 13 s later into the primary tank. Fission gases migrate upward through a 9-ft layer of sodium and enter the cover gas. Loss of fission gas is due to decay, leakage of cover gas, cold trapping of iodine and bromine parents. Depending on the reactor operation requirement, it may purge with fresh argon. The assumptions made and differential equations used to develop a model for such transport are presented.

  4. Enhanced passive safety features against ATWS of fast breeder reactors with capabilities of MA incineration

    Energy Technology Data Exchange (ETDEWEB)

    Ninokata, Hisashi; Sawada, Tetsuo; Sato, Manabu [Tokyo Institute of Technology (Japan)] [and others

    1997-12-01

    The paper gives an outline of the general and simple reactivity correlation method to identify the region of the major design parameters that assures power stabilization and passive shutdown of sodium-cooled large fast reactors under ATWS conditions. Based on the model developed, general design guidelines are shown that enhance passive capabilities being aimed at preventing sodium boiling and fuel failures in the events of ULOF and UTOP. Discussions extend to the influences of minor actinides loading in the core onto the passive safety features. 6 refs., 1 fig., 1 tab.

  5. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor

    International Nuclear Information System (INIS)

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2012, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination conducted for the reactor establishment permission, development of the analysis codes, such as core damage analysis code, were carried out following the planned schedule. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  6. Feasibility study of a fission-suppressed tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Results of a conceptual design study of a U-233 producing fusion breeder consisting of a tandem mirror fusion device and two types of fission-suppressed blankets are presented. The majority of the study was devoted to the conceptual design and evaluation of the two blankets. However, studies in the areas of fusion engineering, reactor safety, fuel reprocessing, other fuel cycle issues, economics, and deployment were also performed

  7. Development of a transfer model for design of sodium purification systems for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Operating a Sodium Fast Reactor (SFR) in reliable and safe conditions requires to master the quality of the sodium fluid coolant, regarding oxygen and hydrogen impurities contents. A cold trap is a purification unit in SFR, designed for maintaining oxygen and hydrogen contents within acceptable limits. The purification of these impurities is based on crystallization of sodium hydride on cold walls and sodium oxide or hydride on wire mesh packing. Indeed, as oxygen and hydrogen solubilities are nearly nil at temperatures close to the sodium fusion point, i.e. 97.8 C, on line sodium purification can be performed by crystallization of sodium oxide and hydride from liquid sodium flows. However, the management of cold trap performances is necessary to prevent from unforeseen maintenance operations, which could induce shut-down of the reactor. It is thus essential to understand how a cold trap fills up with impurities crystallization in order to optimize the design of this system and to overcome any problems during nominal operation. The objective is to develop a design and simulation tool for cold traps able to predict the location and the amount of the impurities deposited. Crystallization model involve phenomena coupling in a porous medium with hydrodynamics, heat and mass transfer, distinguishing nucleation and growth phases for each impurity. It enables to understand how thermo hydraulic conditions and growing impurities interact on each other. This analysis will adapt operating and management conditions in order to optimize purification requirements. (author)

  8. Significance of coast down time on safety and availability of a pool type fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Plant dynamics studies for quantifying the benefits of flow coast down time. • Establishment of minimum flow coast down time required for safety. • Assessment of influence of flow coast down on enhancing plant availability. • Synthesis of thermo mechanical benefits of flow coast down time on component design. - Abstract: Plant dynamic investigation towards establishing the influence of flow coast down time of primary and secondary sodium systems on safety and availability of plant has been carried out based on one dimensional analysis. From safety considerations, a minimum flow coast down time for primary sodium circuit is essential to be provided to limit the consequences of loss of flow event within allowable limits. Apart from safety benefits, large primary coast down time also improves plant availability by the elimination of reactor SCRAM during short term power failure events. Threshold values of SCRAM parameters also need optimization. By suitably selecting the threshold values for SCRAM parameters, significant reduction in the inertia of pumping systems can be derived to obtain desirable results on plant availability. With the optimization of threshold values and primary flow coast down behaviour equivalent to a halving time of 8 s, there is a possibility to eliminate reactor SCRAM during short term power failure events extending up to 0.75 s duration. Benefits of secondary flow halving on reducing transient thermal loading on components have also been investigated and mixed effects have been observed

  9. In-vessel remote handling machine for blanket replacement in the demo fusion reactor

    International Nuclear Information System (INIS)

    The paper presents the current state of investigations concerning the adaptation of the ITER in-vessel remote handling system of 1998 to DEMO conditions. The outline of the concept is the following: a rail is built up in the middle of the vessel along the major radius forming a full circle. It is supported from the four equatorial ports by long radial arms connected perpendicularly to the rail. On the rail four manipulators with telescopic arms are operating each being responsible for a 90 deg section of the rail. Within their section the manipulators are capable of reaching and removing every element, and can manipulate 10 t elements at 3,5 m distance with great precision. Element exchange will take place through the lower section of the ports. Great advantage of the system is that it is only supported from the ports, thus the maintenance of the divertor and blanket can be planned independently. For this reason the system is preferred for DEMO, but there are challenges to face, and they come from the large and heavy elements having to be inserted through the ports of limited size, the complicated installation process and the need for precision. The results of this work indicate that this adaptation can be done, although more investigation is necessary regarding the manipulator design (author)

  10. Evaluation of the breed/burn fast reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Atefi, B.; Driscoll, M.J.; Lanning, D.D.

    1979-12-01

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH/sub 16/) as the moderator (because of the compact assembly and core designs it permitted).

  11. Conceptual design of a uranyl nitrate fueled reactor for the destructive testing of liquid metal fast breeder reactor fuel subassemblies

    International Nuclear Information System (INIS)

    A preliminary design of a uranyl nitrate test reactor is developed, with emphasis placed on the core neutronics and cross section development. ENDF/B-IV cross section data and the AMPX system were used to develop a 25 group neutron cross section library. A series of one-dimensional transport calculations were made in order to arrive at a reference design. Power densities of 16.5 Kw/1 appear to be attainable in the 217 pin FFTF test subassembly, with a peak neutron flux in the test zone of 2.4 x 1014 n/cm2-sec. Other engineering features pertinent to the overall system design are discussed, including: (1) corrosion, (2) treatment of radiolytic gas, (3) heat removal, and (4) reactor control

  12. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    International Nuclear Information System (INIS)

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the ITER Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket

  13. Lifetime predictions for the first wall and blanket structure of fusion reactors

    International Nuclear Information System (INIS)

    Lifetime analysis of the first wall including the divertor and limiter is an important subject for the design of fusion reactors. These components are exposed to severe mechanical, thermal, and irradiation effects that limit their useful structural life, and their design lifetime has a large influence on the selection of major reactor design parameters. Particular attention (at the meeting whose papers are included in this report) was given to different approaches and models for the prediction of component lifetimes. Topics covered include life-limiting mechanisms, stress analysis and lifetime evaluation, and erosion and deposition effects

  14. Power excursion models applied to the study of secundary excursion in sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    An evaluation of the energy that a secondary power excursion could release has been sought throughout the present work. A parametric study was therefore made by means of a power excursion code in fast reactors. The work submitted is therefore made up of the three following parts: Part 1. - (a), the secondary excursion is situated in the generally envisaged programmes and (b) the role of the principal parameters is studied in the calculation effected by the nuclear excursion code that was available at the start of the study. Part 2. - the results obtained for the power excursion calculations made are presented, Part 3. - the insufficient modelling of the reactivity present during the secondary power excursion is deduced from the parametric study just made. A definition is made of the characteristics of a model adapted to the calculation of this hypothetical accident and a new model as worked out within the scope of this work is submitted

  15. Utilization of OR method toward realization of better fast breeder reactor cycle

    International Nuclear Information System (INIS)

    Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)

  16. Studies on gas entrainment due to vortex activation at free surface of fast breeder reactor

    International Nuclear Information System (INIS)

    Fast Reactor systems consist of many cylindrical components which are partially submerged in liquid sodium and partially exposed to argon gas, maintained above the sodium pool. Horizontal sodium flows past these components leads to the formation of von Kármán vortices. These vortices form dimples of argon gas that leads to entrainment. The present work is focused on to identify the criteria for onset of gas entrainment. In order to understand this, interactions between free surface waves and underlying viscous wakes are investigated for flow past a surface piercing cylinder incorporating volume of fluid (VOF) method. The results show that the free surface inhibits the vortex generation near the interface for all range of Froude numbers (FrD). For various inflow velocities, the re-submergence angles are measured. It is found that, for FrD ≤ 0.5, and re-submergence angle < 12°, there is no risk of entrainment due to vortex activation. (author)

  17. Thorium utilization in fast breeder reactors and in cross-progeny fuel cycles

    International Nuclear Information System (INIS)

    Thorium fuel cycles have to be closed since the benefit is obtained only when the 233U is used. India is the only country in the world, which has extensive facilities for reprocessing of irradiated Uranium and Thorium-based fuels, thermal reactors moderated by light and heavy water and 500 MWe LMFBRs. The cross-progeny fuel cycles would be a natural vision to pursue for India. This paper was written in 1982 and presented at the U.S. Japan Seminar on Thorium fuel cycle held in October 1982. The calculations performed and the results quoted in this paper are of that vintage. However, the cross section data for Th and other materials has not changed significantly since that time. The same holds for the methodologies in computer codes, diffusion theory and the other methodologies employed in this paper, versus those in computer codes currently in use. This paper is being submitted to remind the community that with the introduction of GEN IV LMFBRs, other possibilities for thorium utilization could spring forth and should be studied further and in more depth

  18. Microaerobic DO-induced microbial mechanisms responsible for enormous energy saving in upflow microaerobic sludge blanket reactor.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan; Quan, Ying; Sun, Jian

    2013-07-01

    This study experimentally examined the microaerobic dissolved oxygen (DO)-induced microbial mechanisms that are responsible for enormous energy savings in the upflow microaerobic sludge blanket reactor (UMSB) for domestic wastewater treatment. Phylogenetic and kinetic analyses (as determined by clone library analyses and sludge oxygen affinity analyses) showed that the microaerobic conditions in the UMSB led to the proliferation and dominance of microaerophilic bacteria that have higher oxygen affinities (i.e., lower sludge oxygen half-saturation constant values), which assured efficient COD and NH3-N removals and sludge granulation in the UMSB similar as those achieved in the aerobic control. However, the microaerobic DO level in the UMSB achieved significant short-cut nitrification, a 50-90% reduction in air supply, and an 18-28% reduction in alkali consumption. Furthermore, the disappearance of sludge bulking in the UMSB when it was dominated by "bulking-induced" filamentous bacteria should be attributed to its upflow column-type configuration. PMID:23693146

  19. Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Dayem, H.A.; Ostenak, C.A.; Gutmacher, R.G.; Kern, E.A.; Markin, J.T.; Martinez, D.P.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank.

  20. Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties

    International Nuclear Information System (INIS)

    This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank

  1. Development of magnetic flux leakage technique for examination of steam generator tubes of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • For non-destructive detection of small localized defects in SG tubes of PFBR, tandem GMR array sensors based MFL technique developed. • 3D-finite element modeling performed for optimization of magnetizing current and spacing between the magnetizing coils. • The optimized magnetizing structure with ferrite core and guides detected 0.54 mm deep OD circumferential notch, 0.56 mm deep flat bottom hole, and 1.08 mm diameter hole in the tube with a SNR better than 6 dB. • Images of notches have been obtained using the tandem GMR array sensor. • The use of MFL and remote field eddy current techniques is expected to ensure comprehensive inspection of SG tubes of PFBR. - Abstract: For non-destructive examination of small diameter (outer diameter, OD 17.2 mm) and thick walled (wall thickness, 2.3 mm) ferromagnetic Modified 9Cr–1Mo steel steam generator (SG) tubes of Prototype Fast Breeder Reactor (PFBR), this paper proposes magnetic flux leakage (MFL) technique. Three dimensional finite element (3D-FE) modeling has been performed to optimize the magnetizing unit and inter-coil spacing of bobbin coils used for axial magnetization of the tube. The performance of the technique has been evaluated experimentally by measuring the axial (Ba) component of the leakage fields from localized machined defects in SG tubes. The MFL technique has shown capability to detect and image tube outside defects with a signal-to-noise ratio (SNR) better than 6 dB. Study reveals that Inconel support plates surrounding the SG tubes do not influence the MFL signals. As the MFL technique can detect localized defects in the presence of support plates as well as sodium and the remote field eddy current technique is sensitive to distributed wall thinning, their combined use will ensure comprehensive inspection of the SG tubes

  2. Secondary charged particle activation method for measuring the tritium production rate in the breeding blankets of a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rovni, Istvan, E-mail: rovni@reak.bme.hu [Budapest University of Technology and Economics (BME), Institute of Nuclear Techniques, 1111 Muegyetem rkp. 3-9 (Hungary); Szieberth, Mate; Feher, Sandor [Budapest University of Technology and Economics (BME), Institute of Nuclear Techniques, 1111 Muegyetem rkp. 3-9 (Hungary)

    2012-10-21

    In this work, a new passive technique has been developed for measuring the tritium production rate in ITER (International Thermonuclear Experimental Reactor) test blanket modules. This method is based on the secondary charged particle activation, in which the irradiated sample contains two main components: a tritium producing target ({sup 6}Li or {sup 7}Li) and an indicator nuclide, which has a relatively high cross-section for an incoming tritium particle (triton). During the neutron irradiation, the target produces a triton, which has sufficiently high energy to cause the so-called secondary charged particle activation on an indicator nuclide. If the product of this reaction is a radioactive nuclide, its activity must be proportional to the amount of generated tritium. A comprehensive set of irradiations were performed at the Training Reactor of the Budapest University of Technology and Economics. The following charged particle reactions were observed and investigated: {sup 27}Al(t,p){sup 29}Al; {sup 26}Mg(t,p){sup 28}Mg; {sup 26}Mg(t,n){sup 28}Al; {sup 32}S(t,n){sup 34m}Cl; {sup 16}O(t,n){sup 18}F; and {sup 18}O(t,{alpha}){sup 17}N. The optimal atomic ratio of the indicator elements and {sup 6}Li was also investigated. The reaction rates were estimated using calculations with the MCNPX Monte Carlo particle transport code. The trend of the measured and the simulated data are in good agreement, although accurate data for triton induced reaction cross-sections cannot be found in the literature. Once the technique is calibrated with a reference LSC (Liquid Scintillation Counting) measurement, a new passive method becomes available for tritium production rate measurements.

  3. A report on (interim) evaluation of research and development subjects in fiscal year 2000. Evaluation subject on the 'Safety research in fast breeder reactor'

    International Nuclear Information System (INIS)

    Safety research as a basis R and D supporting development of the fast breeder reactor (FBR) has been practiced at aims of development, admittance and operation/maintenance of a fast experimental reactor, 'Joyo' and a fast breeder prototype reactor, 'Monju' and of reflection to a proof reactor plan promoted by the electric utility. However, at present, in order to reflect FBR cycle actual use strategy survey research, decision of importance in research is promoted to effectively reflect their research results to judgment and investigation on consistency of various candidate concepts. Here was carried out on some evaluations on research program and practicing method of coming five years on conventional research results, reflection to the second period of the actual use strategy survey research, and practice of national safety research yearly plan at a center of past five years on contribution to FBR development and safety regulation in Japan. Here were described on aim and meaning of the R and D, establishment of target, planning, practicing system, and results. (G.K.)

  4. ORNL fusion power demonstration study: fluid flow, heat transfer, and stress analysis considerations in the design of blankets for full-scale fusion reactors

    International Nuclear Information System (INIS)

    The complex and subtle interplay of conditions imposed on fusion reactor blanket designs by heat transfer, coolant flow, thermal stress, fabrication, and maintenance considerations has been examined for a series of representative cases taken from the literature. In view of the difficulties with thermal stress cracking, wall melting, and vaporization that have been experienced in tokamak experiments, particular attention has been given to possible hot spot effects that might stem from aberrant behavior of the plasma. The results of the study indicate that a lithium-cooled niobium blanket structure will withstand ten to twenty times more severe first wall heating conditions than a helium-cooled stainless steel structure. This raises a number of serious problems relative to magnetohydrodynamic effects, and methods for coping with these are outlined. The blanket design employing a recirculating lithium-cooled niobium structure that appeared most promising from the heat transfer, stress analysis, and coolant flow standpoints is then reviewed from the standpoints of fabricability, cost, and maintenance and found to be competitive with or superior to the several helium-cooled blanket designs considered in the study. A number of major questions are pointed out and experiments are recommended that should help to resolve the basic uncertainties and provide a sound basis for key design decisions

  5. Radiation, welding, temperature and strain rate influence of material properties in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Montagnani, M. (J.R.C., ISPRA Establishment, ISPRA); Cenerini, R.; Curioni, S. (Bologna Univ. (Italy))

    1980-01-01

    Dynamic monoaxial tensile tests were performed to determine stress-strain diagrams for strain rates between 10/sup -2/ and 10/sup 3/ s/sup -1/. Temperatures were ambinet, 400deg and 550degC. The techniques used at high strains rate were that of the Hopkinson bar with pre-stressed bar loading device, and a hydropneumatic machine. Low strain rates were obtained with conventional testing machines. Test pieces for the investigation of the effects of welding were manufactured in order to observe the mechanical properties of weld material and of the heat-affected zone. The irradiation was performed in the Rapsodie reactor, up to a damage of 2.2 dpa, in a sodium environment at a temperature of 400degC. The irradiation was continued in the HFR, up to a damage of 10 and 30 dpa. The results of these later irradiations are not yet available. As far as welding is concerned, it should be noted that: at both room and high temperatures, the high deformation rate induces remarkable instabilities in the flow curves of weld and H.A.Z. materials as compared with the virgin material and with the ''static'' flow curve of the same material; at high temperature both the weld and H.A.Z. materials show strain rate sensitivities of opposite signs with respect to the virgin material. It is possible to observe that the strength of the two welded materials decreases and that of the virgin material increases or remains constant as the strain rate increases. Furthermore, the fracture strain of the weld and H.A.Z. materials decreases while that of the virgin material remains constant as strain rate increases. The main effects of irradiation are the substantial increase in the flow stress in tests performed at ambinet temperature and the drastic reduction in ductility with respect to the virgin and thermally aged material. At high temperature the flow stress of the irradiated material tends to decrease slightly with increasing strain rate.

  6. Development of the water cooled lithium lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aiello, G.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The WCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • Preliminary CAD design of the equatorial outboard module of the WCLL blanket has been developed for DEMO. • Finite elements analyses have been carried out in order to assess the module thermal behavior in the straight part of the module. - Abstract: The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant. In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications. Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant. A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood. The priorities for further development of the WCLL blanket concept are identified in the paper.

  7. Preliminary thermal-hydraulic design and simulation for hybrid breeder blanket%聚变-快裂变增殖堆包层初步热工水力学设计分析

    Institute of Scientific and Technical Information of China (English)

    王小勇; 栗再新; 赵奉超; 赵周; 武兴华; 王琦杰

    2014-01-01

    Thermal-hydraulic design and analysis for the new conceptual design of fusion-fission breeding reactor using casing pipes for fuel assembly was done. Based on typical thermal-hydraulic design parameters, preliminary thermal-hydraulic design for the blanket was proposed. The corresponding temperature distribution and pressure distribution were obtained using thermal-hydraulic codes, CFX. The simulation results showed that maximum temperature of the materials were all below their corresponding temperature limits, coolant temperature at the outlet was higher than 773℃, and pressure drop of the coolant could satisfy engineering requirement. The reasonability of this thermal-hydraulic design was preliminarily verified.%对新提出的套管结构聚变-快裂变增殖堆包层概念设计方案进行了热工水力学分析和设计,给出了典型的热工设计参数,并结合大型热工水力学软件CFX对其进行了温度场和压力分布的模拟分析。分析结果表明,材料温度均已低于许用温度,冷却剂出口温度高于773K,冷却剂压降也符合工程上的要求,初步验证了增殖堆包层设计的合理性。

  8. Preliminary thermal-hydraulic design and simulation for hybrid breeder blanket%聚变-快裂变增殖堆包层初步热工水力学设计分析

    Institute of Scientific and Technical Information of China (English)

    王小勇; 栗再新; 赵奉超; 赵周; 武兴华; 王琦杰

    2014-01-01

    对新提出的套管结构聚变-快裂变增殖堆包层概念设计方案进行了热工水力学分析和设计,给出了典型的热工设计参数,并结合大型热工水力学软件CFX对其进行了温度场和压力分布的模拟分析。分析结果表明,材料温度均已低于许用温度,冷却剂出口温度高于773K,冷却剂压降也符合工程上的要求,初步验证了增殖堆包层设计的合理性。%Thermal-hydraulic design and analysis for the new conceptual design of fusion-fission breeding reactor using casing pipes for fuel assembly was done. Based on typical thermal-hydraulic design parameters, preliminary thermal-hydraulic design for the blanket was proposed. The corresponding temperature distribution and pressure distribution were obtained using thermal-hydraulic codes, CFX. The simulation results showed that maximum temperature of the materials were all below their corresponding temperature limits, coolant temperature at the outlet was higher than 773℃, and pressure drop of the coolant could satisfy engineering requirement. The reasonability of this thermal-hydraulic design was preliminarily verified.

  9. Breeding blanket development; Tritium release from breeder

    OpenAIRE

    土谷 邦彦; 河村 弘; 長尾 美春

    2006-01-01

    核融合炉ブランケットを設計するためには、微小球を用いたブランケット構造体の中性子照射に関する工学的データが必要不可欠である。工学的データのうち、トリチウム生成放出特性は、最も重要なデータの1つである。このため、トリチウム増殖材料の候補材であるチタン酸リチウム(Li2TiO3)微小球からのトリチウム生成放出試験を行い、トリチウム放出特性に対するスイープガス流量,照射温度,スイープガス中の水素添加量,熱中性子束の変化等の効果について調べた。本試験の結果、(1)Li2TiO3微小球充填体の外壁温度が100circC以上になった時、トリチウム放出が観測された。また、充填体の外壁温度が300sim400circCのとき、トリチウム生成・放出率(R/G)は1に到達した。(2)スイープガス流量を100sim900cm3/min(Li2TiO3微小球充填体の空塔速度:0.53sim4.8cm/s)の範囲で変化させても、定常時におけるLi2TiO3微小球充填体からのトリチウム放出に影響はなかった。(3)スイープガス中の水素添加量はトリチウム放出に影響することがわかった。...

  10. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  11. Blanket comparison and selection study. Final report. Volume 2

    International Nuclear Information System (INIS)

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li2O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N2) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li2O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  12. Blanket comparison and selection study. Final report. Volume 1

    International Nuclear Information System (INIS)

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li2O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N2) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li2O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  13. Blanket comparison and selection study. Final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  14. Blanket comparison and selection study. Final report. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  15. Blanket comparison and selection study. Final report. Volume 3

    International Nuclear Information System (INIS)

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li2O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N2) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li2O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  16. Blanket comparison and selection study. Final report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  17. Anaerobic degradation of aircraft deicing fluid (ADF) in upflow anaerobic sludge blanket (UASB) reactors and the fate of ADF additives

    Science.gov (United States)

    Pham, Thi Tham

    2002-11-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant

  18. Can the breeder go commercial

    International Nuclear Information System (INIS)

    Contrary to some beliefs in the electric utility industry that ERDA is committed to developing a commercial breeder economy, it is pointed out that ERDA isn't even willing to pay the total cost of the R and D program--and unless there is a major commitment from the private sector (the electric utility industry, in particular) the breeder program will die. The schedule as of Fall 1976 called for: (1) Fast Flux Test Facility (scheduled to go critical in 1979, operate in 1980); (2) Clinch River Breeder Reactor Project (CRBRP) (1/3 commercial size plant hopefully operating by 1983); (3) Prototype Large Breeder Reactor (planned construction starting in 1981, operating in 1988); and (4) Commercial Breeder Reactor (CBR-1 design work to start in 1983, construction in 1986, and operation in 1993). The $257 million the utility industry has pledged to the CRBRP was just for openers. The $2 billion follow-on breeder project being designed calls for massive capital input from a utility (or utility consortium)--and if that is not forthcoming, then in the words of an ERDA official, ''we'll have to reassess the whole breeder program.''

  19. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  20. Blanket comparison and selection study. Volume I

    International Nuclear Information System (INIS)

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  1. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    Science.gov (United States)

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).

  2. Design and manufacture of tube to tubesheet joints of steam generator for 500 MWe Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is 500 MWe pool type sodium cooled fast reactor. Presently this reactor is at advanced stage of construction at Kalpakkam. The main function of the steam generator is to extract the reactor heat through secondary sodium system and convert the feed water into superheated steam in the tubes of steam generators. The steam generator is a vertical shell and tube type heat exchanger with liquid sodium in the shell side and water/steam in the tube side. Operating experience of FBRs have shown that steam generator (SG) holds the key to commercial success of such reactors. Tube leakage is a serious problem and the prevention of sodium water reaction incident in the SG is essential to maintain the plant availability. In case of crack/failure in tube, high pressure water/steam reacts with shell side sodium and results in exothermic reaction with evolution of hydrogen, corrosive reaction products and intense local heat depending on leak size. This high reactive nature of sodium with water/steam requires that sodium to water/steam boundaries of steam generators must possess a high degree of reliability against failure. This is achieved in design and manufacturing by maximising the tube integrity and more importantly by proper selection of tube to tubesheet joint configuration. The principal material of construction of SG is Modified 9Cr-1Mo steel. The tubes are seamless and produced by electric arc melting followed by Electro Slag Refining (ESR) with tight control on inclusion content. Ultrasonic and eddy current testing is done on entire tube length in accordance with ASME SEC III Class I. Long seamless tubes (each 23m) are used in order to reduce the number of tube to tubesheet welds.Each SG has 547 tubes and there are 9 SG in the reactor including one spare module. There is no tube to tube joint as the aim is to minimise the number of welds to increase reliability.Tube to tubesheet joint selected for PFBR steam generator is of internal

  3. Critical review of the literature on high energy release during hypothetical core disruptive accidents in sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Upon the request of the ''Enquete-Kommission'' on Future Nuclear Energy Policy set up by the German Federal Parliament, a literature survey has been compiled on all scientific studies of Bethe-Tait accidents with high potentials of mechanical energy releases (''Literaturuebersicht zu allen wissenschaftlichen Arbeiten ueber Bethe-Tait-Stoerfaelle mit hohem mechanischem Energiefreisetzungspotential''). The study is a critical review of all relevant scientific publications and studies by the international scientific community in this field, which are devoted to high mechanical energy releases from major accidents in sodium cooled fast breeder reactors, or at least indicate the potential for high energy releases. These publications are evaluated with respect to their relevance to the design base levels of the SNR 300. In accordance with the wishes expressed by the ''Enquete-Kommission'', the study not only deals with the arguments and findings by scientists from national research centers and from the fast breeder development association, but also takes into account the arguments and findings by working groups in Germany and abroad, which represent different attitudes vis-a-vis the utilization of nuclear power and the fast breeder reactor. The study was handed over to the ''Enquete-Kommission'' in 1982. The present version differs in some minor points from the original version. The conclusion to be drawn from the examination of the bulk of the above mentioned information is this: - For the SNR 300 the occurence of major accidents with mechanical energy releases exceeding the design limit of 370 MWs can be excluded with a probability verging on certainty, i.e., to all practical intents and purposes. (orig.)

  4. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H

    2006-07-15

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology.

  5. Analysis of thorium/U-233 lattices and cores in a breeder/burner heavy water reactor

    International Nuclear Information System (INIS)

    Due to the inevitable dwindling of uranium resources, advanced fuel cycles in the current generation of reactors stand to be of great benefit in the future. Heavy water moderated reactors have much potential to make use of thorium, a currently unexploited resource. Core fuelling configurations of a Heavy Water Reactor based on the self-sufficient thorium fuel cycle were simulated using the DRAGON and DONJON reactor physics codes. Three heterogeneously fuelled reactors and one homogeneously fuelled reactor were studied. (author)

  6. Progress on DCLL Blanket Concept

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Abdou, M.; Katoh, Yutai; Kurtz, Richard J.; Lumsdaine, A.; Marriott, Edward P.; Merrill, Brad; Morley, Neil; Pint, Bruce A.; Sawan, M.; Smolentsev, S.; Williams, Brian; Willms, Scott; Youssef, M.

    2013-09-01

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) from the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.

  7. Analysis of unprotected transients with control and safety rod drive mechanism expansion feedback in a medium sized oxide fuelled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyasheela, T., E-mail: sheela@igcar.gov.in; Natesan, K.; Srinivasan, G.S.; Devan, K.; Puthiyavinayagam, P.

    2015-09-15

    Highlights: • Possibilities of enhancing safety under ULOF and UTOP accidents. • CSRDM expansion feedbacks under unprotected transients. • CSRDM expansion feedback enhances the safety of fast reactors. • CSRDM expansion feedbacks ensuring enough time for initiating safety actions. - Abstract: Possibilities of enhancing core safety under unprotected loss of flow (ULOF) and unprotected transient over power (UTOP) accidents with control and safety rod drive mechanism (CSRDM) expansion feedbacks are explored in a medium sized oxide fuelled fast breeder reactor. This feedback is expected to take the reactor to a safe shutdown under ULOF and to an another steady state under UTOP where there is no significant fuel melting. Under ULOF, with CSRDM feedback net reactivity was maintained negative throughout the transient (up to 2000 s) and the power dropped to a level of heat removal capacity of decay heat removal system based on natural circulation. Similarly, under UTOP with the above feedback reactor power goes to a lower peak value. The fuel temperature is just touching the melting temperature and the melt fraction does not cross 5%. With CSRDM expansion feedbacks both ULOF and UTOP transients prolong beyond 2000 s. It ensures, availability of time for initiating any safety actions against the transients, and thus it helps to preclude core disruptive accidents (CDA) in a medium sized oxide fuelled reactors.Classification: L. safety and risk analysis.

  8. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    Science.gov (United States)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  9. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  10. Analysis on tritium controlling of the dual-cooled lithium lead blanket for fusion power reactor FDS-II

    International Nuclear Information System (INIS)

    A tritium flow model of the entire FDS-II blanket system was developed and the preliminary analysis on tritium permeation and extraction for FDS-II blanket system were done by using Tritium Analysis Software (TAS). The factors which affected tritium extraction and permeation were calculated and evaluated, such as tritium permeation reduction factor in blanket, proportion of LiPb flow in tritium extraction system and helium leakage rate, etc. The results of the presented analysis shows that further R and D efforts are still required to guarantee the tritium self-sufficient and safety, for example high quality tritium permeation barriers, efficiency of tritium extraction from LiPb and fabrication technology of the LiPb heat exchanger, etc.

  11. Analysis on tritium controlling of the dual-cooled lithium lead blanket for fusion power reactor FDS-II

    Energy Technology Data Exchange (ETDEWEB)

    Song Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)], E-mail: ysong@ipp.ac.cn; Huang Qunying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wang Yongliang [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Ni Muyi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2009-06-15

    A tritium flow model of the entire FDS-II blanket system was developed and the preliminary analysis on tritium permeation and extraction for FDS-II blanket system were done by using Tritium Analysis Software (TAS). The factors which affected tritium extraction and permeation were calculated and evaluated, such as tritium permeation reduction factor in blanket, proportion of LiPb flow in tritium extraction system and helium leakage rate, etc. The results of the presented analysis shows that further R and D efforts are still required to guarantee the tritium self-sufficient and safety, for example high quality tritium permeation barriers, efficiency of tritium extraction from LiPb and fabrication technology of the LiPb heat exchanger, etc.

  12. Fusion blanket materials development and recent R and D activities

    International Nuclear Information System (INIS)

    Development of structural materials plays an important role in the feasibility of fusion power plant. The candidate structural materials for future fusion reactors are Reduced Activation Ferritic Martensitic (RAFM) steel, nano structured ODS Steel, vanadium alloys and SiC/SiCf composite etc. RAFM steel is presently considered as the structural material for Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) because of its high void swelling resistance and improved thermal properties compared to austenitic steel. Development of RAFM steel in India is being carried out in full swing in collaboration with various research laboratories and steel industries. This paper presents an overview of the Indian activities on fusion blanket materials and describes in brief the efforts made to develop IN-RAFM steel as structural material for the LLCB TBM. In future, due to enhanced properties of vanadium base alloy and nano structured materials like ODS RAFMS, RAFM steel may be replaced by these materials for its application in DEMO relevant fusion reactor. Future R and D activities will be specifically towards the development of these structural materials for fusion reactor

  13. Neutronic studies of fissile and fusile breeding blankets

    International Nuclear Information System (INIS)

    In light of the need of convincing motivation substantiating expensive and inherently applied research (nuclear energy), first a simple comparative study of fissile breeding economics of fusion fission hybrids, spallators and also fast breeder reactors has been carried out. As a result, the necessity of maximization of fissile production (in the first two ones, in fast breeders rather the reprocessing costs should be reduced) has been shown, thus indicating the design strategy (high support ratio) for these systems. In spite of the uncertainty of present projections onto further future and discrepancies in available data even quite conservative assumptions indicate that hybrids and perhaps even earlier - spallators can become economic at realistic uranium price increase and successfully compete against fast breeders. Then on the basis of the concept of the neutron flux shaping aimed at the correlation of the selected cross-sections with the neutron flux, the indications for the maximization of respective reaction rates has been formulated. In turn, these considerations serve as the starting point for the guidelines of breeding blanket nuclear design, which are as follows: 1) The source neutrons must face the multiplying layer (of proper thickness) of possibly low concentration of nuclides attenuating the neutron multiplication (i.e. structure materials, nongaseous coolants). 2) For the most effective trapping of neutrons within the breeding zone (leakage and void streaming reduction) it must contain an efficient moderator (not valid for fissile breeding blankets). 3) All regions of significant slow flux should contain 6Li in order to reduce parasite neutron captures in there. (orig./HP)

  14. Nuclear reactors. To breed or not to breed. A Pugwash debate on fast breeder reactors held at the Royal Society, London, on 28 September 1976 under the chairmanship of Sir Alec Merrison

    International Nuclear Information System (INIS)

    The debate which is reported was timed to coincide with the publication of the Report of the (UK) Royal Commission on Environmental Pollution: 'Nuclear Power and Environment'. The volume comprises an introductory section, a report of an address by the Chairman of the Royal Commission and invited papers on fast breeder reactors in relation to energy requirements, on the safety of a commercial fast reactor, on processing and reprocessing of fuel, on radioactive waste management, and on diversion of plutonium and proliferation of nuclear weapons. An edited version of the discussion is presented under the following heads: comments on the report of the Royal Commission; projections of future energy requirement; thermal pollution; safety and insurance of reactors; reprocessing of fuel; storage and disposal of wastes; energy from fusion; utilization of coal; and proliferation of weapons and diversion of plutonium. The six invited papers are considered to be within INIS scope and separate abstracts have been prepared. (U.K.)

  15. Status and prospects of thermal breeders

    International Nuclear Information System (INIS)

    The main objective of this cooperative study and of this report is to evaluate the extent to which thermal breeders might complement or serve as an alternative to fast breeders in solving the long-term nuclear fuel supply problem. A secondary objective is to consider in a general way issues such as proliferation, safety, environmental impacts, economics, power plant availability, and fuel cycle versatility to determine whether thermal breeder reactors offer advantages or disadvantages with respect to such issues

  16. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors

    Science.gov (United States)

    Harinath, Y. V.; Gopal, K. A.; Murugan, S.; Albert, S. K.

    2013-04-01

    A procedure for Pulsed Laser Beam Welding (PLBW) has been developed for fabrication of fuel pins made of modified 9Cr-1Mo steel for metallic fuel proposed to be used in future in India's Fast Breeder Reactor (FBR) programme. Initial welding trials of the samples were carried out with different average power using Nd-YAG based PLBW process. After analyzing the welds, average power for the weld was optimized for the required depth of penetration and weld quality. Subsequently, keeping the average power constant, the effect of various other welding parameters like laser peak power, pulse frequency, pulse duration and energy per pulse on weld joint integrity were studied and a procedure that would ensure welds of acceptable quality with required depth of penetration, minimum size of fusion zone and Heat Affected Zone (HAZ) were finalized. This procedure is also found to reduce the volume fraction delta-ferrite in the fusion zone.

  17. Report on the shearing, dissolution and analysis of GRIP-II rod 79-453 (validation rod); Light Water Breeder Reactor proof-of-breeding analytical support project

    International Nuclear Information System (INIS)

    This report covers the processing and analysis of the fuel-bearing section (M-5138) of an irradiated experimental Light Water Breeder Reactor fuel rod, GRIP-II rod No. 79-453; this section has been designated the Validation Rod. Process steps included precision shearing of the rod into eight comminuted segments, dissolution of the segments, and chemical and radiometric analyses of the resulting solutions. The shearing and dissolution were carried out fully remotely in an existing pilot-scale facility installed in a shielded cell. Data are provided on physical parameters of the rod section and segments, uranium assays and isotopic abundances, and selected fission products. An error analysis of the individual measurements and analyses is included

  18. Hydraulic Experiment for Simulative Assemblies of Blanket Assembly and Np Transmutation Assembly of China Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The out-of reactor hydraulic experiment of fast reactor assembly is one of the important experiments in the process of the development of the fast reactor assembly.In this experiment,the size of the throttling element in the foot of the assembly is decided which is fit for the flow division in the reactor and the

  19. Preparation of LWBR [Light Water Breeder Reactor] spent fuel for shipment to ICPP [Idaho Chemical Processing Plant] for long term storage (LWBR Development Program)

    International Nuclear Information System (INIS)

    After successfully operating for 29,047 effective full power hours, the Light Water Breeder Reactor (LWBR) core was defueled prior to total decommissioning of the Shippingport facility. All nuclear fuel and much of the reactor internal hardware was removed from the reactor vessel. Non-fuel components were prepared for shipment to disposal sites, and the fuel assemblies were partially disassembled and shipped to the Expended Core Facility (ECF) in Idaho. At ECF, the fuel modules underwent further disassembly to provide fuel rods for nondestructive testing to establish the core's breeding efficiency and to provide core components for examinations to assess their performance characteristics. This report presents a basic description of the processes and equipment used to prepare and to ship all LWBR nuclear fuel to the Idaho Chemical Processing Plant (ICPP) for long-term storage. Preparation processes included the underwater loading of LWBR fuel into storage liners, the sealing, dewatering and drying of the storage liners, and the final pressurization of the storage liners with inert neon gas. Shipping operations included the underwater installation of the fuel loaded storage liner into the Peach Bottom shipping cask, cask removal from the waterpit, cask preparations for shipping, and cask shipment by tractor trailer to the ICPP facility for long-term storage. The ICPP facility preparations for LWBR fuel storage and the ICPP process for discharge of the fuel into underground silos are presented. 10 refs., 42 figs

  20. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment--a state-of-the-art review.

    Science.gov (United States)

    Chong, Siewhui; Sen, Tushar Kanti; Kayaalp, Ahmet; Ang, Ha Ming

    2012-07-01

    Nowadays, carbon emission and therefore carbon footprint of water utilities is an important issue. In this respect, we should consider the opportunities to reduce carbon footprint for small and large wastewater treatment plants. The use of anaerobic rather than aerobic treatment processes would achieve this aim because no aeration is required and the generation of methane can be used within the plant. High-rate anaerobic digesters receive great interests due to their high loading capacity and low sludge production. Among them, the upflow anaerobic sludge blanket (UASB) reactors have been most widely used. However, there are still unresolved issues inhibiting the widespread of this technology in developing countries or countries with climate temperature fluctuations (such as subtropical regions). A large number of studies have been carried out in order to enhance the performance of UASB reactors but there is a lack of updated documentation. In face of the existing limitations and the increasing importance of this technology, the authors present an up-to-date review on the performance enhancements of UASB reactors over the last decade. The important aspects of this article are: (i) enhancing the start-up and granulation in UASB reactors, (ii) coupling with post-treatment unit to overcome the temperature constraint, and (iii) improving the removal efficiencies of the organic matter, nutrients and pathogens in the final effluent. Finally the authors have highlighted future research direction based on their critical analysis.