Sample records for breccia

  1. Hydrovolcanic Breccia Pipe Structures-General Features and Genetic Criteria. I. Phreatomagmatic Breccias

    Directory of Open Access Journals (Sweden)

    Călin G. Tămas


    Full Text Available Two types of hydrovolcanic breccias are generally accepted: phreatomagmatic and phreatic. Due to their specific characteristics generated during the brecciation, characteristics that control the ore deposition, these breccias represent favourable hosts for mineralization. The depth of formation, the general form and dimensions, the breccia - host rock contact, as well as fragments, matrix, and open spaces altogether control the position and the size of the breccia hosted ore bodies and contribute in different degrees to the rise of the ore grades in phreatomagmatic and phreatic structures. Consequently, the recognition of the genetic type of breccia allows an appropriate strategy in mineral exploration. Describing a breccia necessarily implies a check of its general features, such as environment/depth of formation, general form/geometry, dimensions, breccia-host rock contact, fragments, matrix, alteration, mineralization, surface connection, as well as of its additional features, namely fluidization and facies changes (see Table 2. There are several characteristics with high genetic significance among the abundant descriptive features regarding breccia structures. To point out such evidences means to find out the keys for the genetic intrepretation. A complete list of genetic criteria is proposed for phreatomagmatic breccias (see Table 3.

  2. Origin and transportation history of lunar breccia 14311 (United States)

    Merle, Renaud E.; Nemchin, Alexander A.; Whitehouse, Martin J.; Pidgeon, Robert T.; Grange, Marion L.; Snape, Joshua F.; Thiessen, Fiona


    In this paper, we compare the U-Pb zircon age distribution pattern of sample 14311 from the Apollo 14 landing site with those from other breccias collected at the same landing site. Zircons in breccia 14311 show major age peaks at 4340 and 4240 Ma and small peaks at 4110, 4030, and 3960 Ma. The zircon age patterns of breccia 14311 and other Apollo 14 breccias are statistically different suggesting a separate provenance and transportation history for these breccias. This interpretation is supported by different U-Pb Ca-phosphate and exposure ages for breccia 14311 (Ca-phosphate age: 3938 ± 4 Ma, exposure age: 550-660 Ma) from the other Apollo 14 breccias (Ca-phosphate age: 3927 ± 2 Ma, compatible with the Imbrium impact, exposure age: 25-30 Ma). Based on these observations, we consider two hypotheses for the origin and transportation history of sample 14311. (1) Breccia 14311 was formed in the Procellarum KREEP terrane by a 3938 Ma-old impact and deposited near the future site of the Imbrium basin. The breccia was integrated into the Fra Mauro Formation during the deposition of the Imbrium impact ejecta at 3927 Ma. The zircons were annealed by mare basalt flooding at 3400 Ma at Apollo 14 landing site. Eventually, at approximately 660 Ma, a small and local impact event excavated this sample and it has been at the surface of the Moon since this time. (2) Breccia 14311 was formed by a 3938 Ma-old impact. The location of the sample is not known at that time but at 3400 Ma, it was located nearby or buried by hot basaltic flows. It was transported from where it was deposited to the Apollo 14 landing site by an impact at approximately 660 Ma, possibly related to the formation of the Copernicus crater and has remained at the surface of the Moon since this event. This latter hypothesis is the simplest scenario for the formation and transportation history of the 14311 breccia.

  3. Pseudotachylitic breccia in mafic and felsic rocks (United States)

    Kovaleva, Elizaveta; Huber, Matthew S.


    Impact-produced pseudotachylitic breccia (PTB) is abundant in the core of the Vredefort impact structure and was found in many pre-impact lithologies (e.g., Reimold and Colliston, 1994; Gibson et al., 1997). The mechanisms involved in the process of forming this rock remain highly debated, and various authors have discussed many possible models. We investigate PTB from two different rock types: meta-granite and meta-gabbro and test how lithology controls the development of PTB. We also report on clast transport between different lithologies. In the core of the Vredefort impact structure, meta-granite and meta-gabbro are observed in contact with each other, with an extensive set of PTB veins cutting through both lithologies. Microstructural analyses of the PTB veins in thin sections reveals differences between PTBs in meta-granite and meta-gabbro. In granitic samples, PTB often develops along contacts of material with different physical properties, such as a contact with a migmatite or pegmatite vein. Nucleation sites of PTB have features consistent with ductile deformation and shearing, such as sigmoudal-shaped clasts and dragged edges of the veins. Preferential melting of mafic and hydrous minerals takes place (e.g., Reimold and Colliston, 1994; Gibson et al., 2002). Refractory phases remain in the melt as clasts and form reaction rims. In contrast, PTB in meta-gabbro develop in zones with brittle deformation, and do not exploit existing physical contacts. Cataclastic zones develop along the faults and progressively produce ultracataclasites and melt. Thus, PTB veins in meta-gabbro contain fewer clasts. Clasts usually represent multi-phase fragments of host rock and not specific phases. Such fragments often originate from the material trapped between two parallel or horse-tail faults. The lithological control on the development of PTB does not imply that PTB develops independently in different lithologies. We have observed granitic clasts within PTB veins in meta

  4. Unravelling the depositional origins and diagenetic alteration of carbonate breccias (United States)

    Madden, Robert H. C.; Wilson, Moyra E. J.; Mihaljević, Morana; Pandolfi, John M.; Welsh, Kevin


    Carbonate breccias dissociated from their platform top counterparts are little studied despite their potential to reveal the nature of past shallow-water carbonate systems and the sequential alteration of such systems. A petrographic and stable isotopic study allowed evaluation of the sedimentological and diagenetic variability of the Cenozoic Batu Gading Limestone breccia of Borneo. Sixteen lithofacies representing six facies groups have been identified mainly from the breccia clasts on the basis of shared textural and compositional features. Clasts of the breccia are representative of shallow carbonate platform top and associated flank to basinal deposits. Dominant inputs are from rocky (karstic) shorelines or localised seagrass environments, coral patch reef and larger foraminiferal-rich deposits. Early, pre-brecciation alteration (including micritisation, rare dissolution of bioclasts, minor syntaxial overgrowth cementation, pervasive neomorphism and calcitisation of bioclasts and matrix) was mainly associated with marine fluids in a near surface to shallow burial environment. The final stages of pre-brecciation diagenesis include mechanical compaction and cementation of open porosity in a shallow to moderate depth burial environment. Post-brecciation diagenesis took place at increasingly moderate to deep burial depths under the influence of dominantly marine burial fluids. Extensive compaction, circum-clast dissolution seams and stylolites have resulted in a tightly fitted breccia fabric, with some development of fractures and calcite cements. A degree of facies-specific controls are evident for the pre-brecciation diagenesis. Pervasive mineralogical stabilisation and cementation have, however, led to a broad similarity of diagenetic features in the breccia clasts thereby effectively preserving depositional features of near-original platform top and margin environments. There is little intra-clast alteration overprint associated with subsequent clast reworking

  5. Synthesis for Lunar Simulants: Glass, Agglutinate, Plagioclase, Breccia (United States)

    Weinstein, Michael; Wilson, Stephen A.; Rickman, Douglas L.; Stoeser, Douglas


    The video describes a process for making glass for lunar regolith simulants that was developed from a patented glass-producing technology. Glass composition can be matched to simulant design and specification. Production of glass, pseudo agglutinates, plagioclase, and breccias is demonstrated. The system is capable of producing hundreds of kilograms of high quality glass and simulants per day.

  6. Geochemical studies of the White Breccia Boulders at North Ray Crater, Descartes region of the lunar highlands (United States)

    Lindstrom, M. M.; Lindstrom, D. J.; Lum, R. K. L.; Schuhmann, P. J.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Winzer, S. R.


    The samples of the White Breccia Boulders obtained during the Apollo 16 mission and investigated in the reported study include an anorthositic breccia (67415), a dark matrix breccia (67435), a light matrix breccia (67455), and a large clast of dark matrix breccia (67475) taken from the 67455 boulder. The chemical analyses of bulk samples of the samples are listed in a table. A graph shows the lithophile trace element abundances. Another graph indicates the variation of Sm with Al2O3 content for samples from the White Breccia Boulders. The North Ray Crater breccias are found to be in general slightly more aluminous than breccias from the other stations at the Apollo 16 site. Analyses of eight Apollo 16 breccias cited in the literature range from 25% to 35% Al2O3. However, the North Ray Crater breccias are more clearly distinct from the other Apollo 16 breccias in their contents of lithophile trace elements.

  7. The dynamics of the Breccia Museo eruption (Campi Flegrei, Italy) and the significance of spatter clasts associated with lithic breccias (United States)

    Perrotta, Annamaria; Scarpati, Claudio


    The Breccia Museo Member is a pyroclastic deposit produced during an eruptive event that occurred in the southwestern sector of Campi Flegrei about 20,000 years ago. Two depositional units divided by a co-ignimbrite ash-fall deposit have been recognized. Facies variations in the deposits resulted from the interaction between the flow and paleomorphology, from the relative abundance of the lithic and juvenile components supplied by the source, and from the variations of the flow regime. The Lower Depositional Unit is a pyroclastic flow deposit characterized by a thick, coarse valley facies laterally grading into a thin, layered and fine-grained overbank facies. These different facies are due to the interaction between a density-stratified flow and topography. The more basal, high-concentration part of the flow was deposited along the axis of the paleovalleys (valley facies), whereas the upper, low-concentration part was deposited on the slopes (overbank facies). Vertical variations of the structures observed in the deposits of the Lower Depositional Unit resulted from flow unsteadiness during emplacement and, hence, on the variations of the suspended load fallout from the low-concentration upper part of the flow to the high-concentration boundary layer. The Upper Depositional Unit, made up of the Breccia, Spatter and Upper Pumice Flow Units, consists of horizons of lithic breccias and coarse welded spatter which thicken into the valleys. They are closely related to a gas-pipe-rich ash and pumice flow deposit. The strongly fines-poor character of the breccias and spatter beds is due to a very rapid segregation of the dense and coarse clasts and to the high rates of gas ascent through the hindered-settling zone in the basal part of the flow. After deposition of the majority of the dense and coarse material, the subsequent high-density depositional system came to rest immediately, thus yielding a pyroclastic flow deposit that is closely associated with the breccia. The

  8. Foliated breccias in the active Portuguese Bend landslide complex, California: bearing on melange genesis

    Energy Technology Data Exchange (ETDEWEB)

    Larue, D.K.; Hudleston, P.J.


    The active portion of the Portuguese Bend landslide complex is approximately 3 km/sup 2/ in area and 30-50 m thick. Measured displacement rates range from less than one to greater than 30 mm/day on different parts of the landslide, with total displacements over the last 30 yrs ranging from about 10 to greater than 150 m. Six types of breccia, each locally with a foliated matrix, were recognized in the active landslide complex and are absent outside the landslide complex. Slide-body breccias are of two types, the first formed by extensional fracturing during bulk pure shear at the top of the landslide (slide-top breccia) and the second by flow of tuffaceous shales and fracture of embedded siliceous shales during simple shear deep in the landslide to the basal decollement (slide-bottom breccias). Slide-margin breccias, also in simple shear, are produced on the lateral margins of individual slide blocks accompanying wrench-fault motion. Other breccias (fault-ramp breccias) are formed during motion over ramps. Colluvial deposits within tension gashes (crack-fill breccias) and at the toe of the slide (slide-toe breccias) represent a fifth breccia type. Diapirs originating from over-pressured zones at the slide base also contain breccia. Recognition of different breccia types in ancient rocks would be difficult, because fabrics in the different types are similar. Foliations are defined by: scaly cleavage, compositional banding and color banding (in shear zones), stretched mud clasts, and aligned hard grains. Foliated breccias are synonymous with melanges. The authors regard the six breccia types described herein as representing the principal types of melange that occur in ancient accretionary settings.

  9. The fallacy of interpreting SSDS with different types of breccias as seismites amid the multifarious origins of earthquakes: Implications

    Directory of Open Access Journals (Sweden)

    G. Shanmugam


    Breccias are an important group of SSDS. Although there are many types of breccias classified on the basis of their origin, five types are discussed here (fault, volcanic, meteorite impact, sedimentary-depositional, sedimentary-collapse. Although different breccia types may resemble each other, distinguishing one type (e.g., meteorite breccias from the other types (e.g., fault, volcanic, and sedimentary breccias has important implications. 1 Meteorite breccias are characterized by shock features (e.g., planar deformation features in mineral grains, planar fractures, high-pressure polymorphs, shock melts, etc., whereas sedimentary-depositional breccias (e.g., debrites do not. 2 Meteorite breccias imply a confined sediment distribution in the vicinity of craters, whereas sedimentary-depositional breccias imply an unconfined sediment distribution, variable sediment transport, and variable sediment provenance. 3 Meteorite, volcanic, and fault breccias are invariably subjected to diagenesis and hydrothermal mineralization with altered reservoir quality, whereas sedimentary-depositional breccias exhibit primary (unaltered reservoir quality. And finally, 4 sedimentary-collapse breccias are associated with economic mineralization (e.g., uranium ore, whereas sedimentary-depositional breccias are associated with petroleum reservoirs. Based on this important group of SSDS with breccias, the current practice of interpreting all SSDS as “seismites” is inappropriate. Ending this practice is necessary for enhancing conceptual clarity and for advancing this research domain.

  10. Digital outcrop model of stratigraphy and breccias of the southern Franklin Mountains, El Paso, Texas (United States)

    Bellian, Jerome A.; Kerans, Charles; Repetski, John E.; Derby, James R.; Fritz, R.D.; Longacre, S.A.; Morgan, W.A.; Sternbach, C.A.


    This chapter reviews and synthesizes the lithostratigraphy, biostratigraphy, chronostratigraphy, and breccia types of the southwestern part of the great American carbonate bank in the southern Franklin Mountains (SFM), El Paso, Texas. Primary stratigraphic units of focus are the Lower Ordovician El Paso and Upper Ordovician Montoya Groups. These groups preserve breccias formed by collapse of a paleocave system. Precambrian and Silurian units are discussed in the context of breccia clast composition and relative timing of breccia emplacement. Specific attention is paid to the juxtaposition of the top-Sauk second-order supersequence unconformity between the El Paso and Montoya Groups and its relationship to breccias above and below it. The unconformity represents a 10-m.y. exposure event that separates Upper and Lower Ordovician carbonates. The top-Sauk exposure has been previously documented as a significant karst horizon across much of North America.

  11. Origin and history of chondrite regolith, fragmental and impact-melt breccias from Spain (United States)

    Casanova, I.; Keil, K.; Wieler, R.; San Miguel, A.; King, E. A.


    Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the premetamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Canellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). It is confirmed that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Canellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibrium of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.

  12. Sedimentology of the Shangoluwe breccias and timing of the Cu mineralisation (Katanga Supergroup, D. R. of Congo) (United States)

    Mambwe, Pascal; Kipata, Louis; Chabu, Mumba; Muchez, Philippe; Lubala, Toto; Jébrak, Michel; Delvaux, Damien


    The origin of breccias in the Neoproterozoic Katanga Supergroup in D.R of Congo is still a matter of debate. At the Shangoluwe Cu deposit located in the Kambove mining district (central part of the Lufilian arc), the sedimentary breccias bearing Cu mineralisation have been investigated for lithological and sedimentological study, quantitative analysis of the breccias fragments and fault kinematic analysis in order to understand the origin of the breccias, their lithostratigraphic position and the timing of mineralisation. At Shangoluwe, three sedimentary breccias sequentially deposited within the Kundelungu rocks can be identified on the basis of the nature of the matrix and fragments; from bottom to the top, the Ferruginous Breccias, the Dolomitic Breccias and the Siliceous Breccias. These breccias were deposited as lenses. The presence of debris and grain flows, a finely laminated matrix, pseudo-stratification, normal and reverse graded-bedding, and the presence of interbedded siltstone, sandy shale, dolomitic shale, shale and dolomite, are considered as evidence of a sedimentary origin of the breccias. The log normal distribution of the fragments indicates that gravity flow was the main deposition mechanism. The Ferruginous and Dolomitic Breccias are regarded as contemporaneous with the Kundelungu Group. They were deposited as lenses interbedded in the Kanianga and Mongwe formations, both affected by the Lufilian orogeny (D1 - Kolwezian and D2 - Monwezian phases). The Siliceous Breccias are post-orogenic as shown by the presence of an erosional and angular unconformity respectively on the Dolomitic Breccias and the Kundelungu formations. Therefore, the Siliceous Breccias are attributed to the Lower Palaeozoic Biano Subgroup and the lithostratigraphy of the Biano Subgroup is proposed for revision accordingly. Copper mineralisation post-dates the deposition of the breccias, the dissolution of dolomite fragments and in-situ fragmentation. This mineralisation

  13. Alkali norite, troctolites, and VHK mare basalts from breccia 14304 (United States)

    Goodrich, C. A.; Taylor, G. J.; Keil, K.; Kallemeyn, G. W.; Warren, P. H.


    Six pristine rocks, two mare basalts, and four nonpristine highlands rocks were separated from breccia 14304 for consortium study. The pristine highlands rocks include representatives of the Mg troctolite-anorthosite and alkali suites of the Apollo 14 site. Two troctolite clasts have olivine and plagioclase compositions similar to one group of Apollo 14 troctolites and one also contains spinel. Incompatible element abundances in one are similar to those of 14305 troctolites, although the heavy rare earth elements pattern is distinct among Apollo 14 troctolites. Alkali lithologies include an alkali anorthosite and an alkali norite, the latter having a pristine igneous texture and resembling alkali gabbronites from Apollo 14 and 67975 in mineralogy and mineral compositions. It is suggested that Apollo 14 alkali lithologies and PO4-bearing Mg anorthosites formed from Mg-rich magmas that assimilated various amounts of material rich in P and REE. Another pristine clast from 14304 is an Mg-gabbronorite. The two mare basalt clasts are very high potassium basalts, whose parent magmas could have formed from a typical low-Ti, high-Al basaltic magmas by assimilation of K-rich material. Nonpristine 14304 clasts include melt-textured anorthosites and an augite-rich poikilitic melt rock.

  14. Mineralogy and petrology of the Abee enstatite chondrite breccia and its dark inclusions (United States)

    Rubin, A. E.; Keil, K.


    A model is proposed for the petrogenesis of the Abee E4 enstatite chondrite breccia, which consists of clasts, dark inclusions and matrix, and whose dark inclusions are an unusual kind of enstatite chondritic material. When the maximum metamorphic temperature of the breccia parent material was greater than 840 C, euhedral enstatite crystals in metallic Fe, Ni, and sulfide-rich areas grew into pliable metal and sulfide. Breccia parent material was impact-excavated, admixed with dark inclusions, and rapidly cooled. During this cooling, the clast and matrix material acquired thermal remanent magnetization. A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientation of the clasts to be less random. The Abee breccia was later consolidated by shock or by shallow burial and long period, low temperature metamorphism.

  15. Breccia 66055 and related clastic materials from the Descartes region, Apollo 16 (United States)

    Fruchter, J. S.; Kridelbaugh, S. J.; Robyn, M. A.; Goles, G. G.


    Trace and major element contents obtained by instrumental neutron activation are reported for a number of Apollo 16 soil samples and miscellaneous breccia fragments. In addition, data obtained by instrumental neutron activation and electron microprobe techniques along with petrographic descriptions are presented for selected subsamples of breccia 66055. The compositions of our soil samples can be modeled by mixtures of various amounts of anorthosite, anorthositic gabbro and low-K Fra Mauro basalt components. These mixtures are typical of those found in a number of petrographic surveys of the fines. Breccia 66055 is a complex regolith breccia which consists of at least four distinct types of microbreccias. No systematic relation with respect to stratigraphic age among the various microbreccia types was observed. Compositionally and texturally, the clasts which compose breccia 66055 are similar to a number of previously reported rock types from the Apollo 16 area. The entire breccia appears to have undergone a complex history of thermal metamorphism. We conclude from the study of these samples that the Cayley Formation is probably homogeneous in its gross compositional and petrographic aspects.

  16. Experimental Investigations into the Mechanical Behaviour of the Breccias Around the Proposed Gibraltar Strait Tunnel (United States)

    Dong, W.; Pimentel, E.; Anagnostou, G.


    The proposed Gibraltar Strait tunnel will cross two zones with breccia consisting of a chaotic mixture of blocks and stones embedded in a clay matrix. The breccia is saturated, has a high porosity and exhibits poor mechanical properties in the range between hard soils and weak rocks. The overburden and high in situ pore pressures in combination with the low strength of the breccia may lead to heavy squeezing. The crossing of the breccia zones thus represents one of the key challenges in the construction of the tunnel. In order to improve our understanding of the mechanical behaviour of the breccias, a series of triaxial compressions tests were carried out. Standard rock mechanics test equipment was not adequate for this purpose, because it does not provide pore pressure control, which is important in the case of saturated porous materials. Pore pressure control is routine in soil mechanics tests, but standard soil mechanics equipment allows only for relatively low nominal loads and pressures. In addition, the low hydraulic conductivity of the breccias demands extremely low loading rates and a long test duration. For these reasons, we re-designed several components of the test apparatus to investigate the mechanical behaviour of the breccia by means of consolidated drained and undrained tests. The tests provided important results concerning the strength, volumetric behaviour, consolidation state and hydraulic conductivity of the breccias. The present paper describes the test equipment and procedures, provides an overview of the test results and discusses features of the mechanical behaviour of the breccias which make them qualitatively different from other weak rocks such as kakirites—a typical squeezing rock in alpine tunnelling. The paper also demonstrates the practical importance of the experimental findings for tunnelling in general. More specifically, it investigates the short-term ground response to tunnel excavation from the perspective of elasto

  17. The Breccia of Frog Lakes: Record of Mafic Arc Magmatism in the Mesozoic Sierra Nevada, California (United States)

    Douglas, S.; Riggs, N.; Barth, A. P.; Economos, R. C.


    The evolution of the Mesozoic western margin of North America in California is characterized by a change in tectonic regimes. After the emplacement of the Golconda thrust during the Sonoma orogeny in early Triassic time, the passive western margin changed to a convergent margin with subducting oceanic crust. Onset of arc magmatism is recorded by the volcanic section of Saddlebag Lake pendant in the east-central Sierra Nevada and includes welded tuffs, mafic flows, and volcanic breccias. The welded tuffs and mafic breccias provide insight into the diversity of volcanic processes during early evolution of the Sierran arc. The Mesozoic volcanic section of the Saddlebag Lake pendant (SLP) overlies foreland basin sediments derived from the eroding Golconda allochthon. The initial volcanic unit, the tuff of Black Mountain, is overlain by the conglomerate of Cooney Lake, which contains continental-derived sediment similar to the Candelaria Fm, and no volcanic clasts. Stratigraphically above the conglomerate is the 224 Ma tuff of Saddlebag Lake, which underlies the breccia of Frog Lakes. The breccia of Frog Lakes thus represents the earliest stratigraphic record of mafic volcanism in the Mesozoic Sierran arc. Basaltic to andesitic clasts found within the breccia of Frog Lakes are geochemically similar to modern arc-derived andesites, enriched in fluid-mobile LILEs, indicating that water had been introduced into the mantle wedge by the subducting plate and consequently depleted in less-mobile HFSEs, especially niobium. A subaqueous setting is indicated by the presence of a fine-grained, laminated sedimentary succession between the tuff of Saddlebag Lake and the breccia of Frog Lakes, together with jigsaw fragmentation of Frog Lakes breccia clasts, fluidal margins of some of these clasts, and localized fine-grained laminated sedimentary zones within clast-rich horizons. Although the arc setting remained subaqueous throughout deposition of at least the basal SLP Mesozoic

  18. Sedimentary breccia formed atop a Miocene crevasse-splay succession in central Poland (United States)

    Widera, Marek


    This paper focuses on the poorly lithified and strongly deformed debris-flow deposits of mid-Miocene age referred to as sedimentary breccia. They are situated between two benches of the first Mid-Polish lignite seam (MPLS-1), which is currently exploited in the Tomisławice opencast (Konin Lignite Mine) in central Poland. The examined breccia consists of fine-grained sandy or silty-sandy blocks with a coaly-silty sand matrix, and ranges from matrix- to clast-supported. The brecciated deposits are chaotic, folded to thrust-faulted with noticeable shear surfaces. These structures, which correspond to plastic and/or brittle deformation, are interpreted to be typical of laminar and low cohesive debris flows. The studied sedimentary breccia developed during initial stages of overbank flooding after the formation of the crevasse splay. In this case, it is possible that gravity-driven mass transport (debris flow) was triggered by saturation of the natural levee deposits with rapidly increasing in-channel water. The first identification of the breccia at the top of the mid-Miocene crevasse-splay body in central Poland can contribute to a further understanding of sedimentary processes that occurred during this breccia deposition and processes associated with present crevasse splay deposition.

  19. Early Impacts on the Moon: Crystallization Ages of Apollo 16 Melt Breccias (United States)

    Norman, M. D.; Shih, C.-Y.; Nyquist, L. E.; Bogard, D. D.; Taylor, L. A.


    A better understanding of the early impact history of the terrestrial planets has been identified one of the highest priority science goals for solar system exploration. Crystallization ages of impact melt breccias from the Apollo 16 site in the central nearside lunar highlands show a pronounced clustering of ages from 3.75-3.95 Ga, with several impact events being recognized by the association of textural groups and distinct ages. Here we present new geochemical and petrologic data for Apollo 16 crystalline breccia 67955 that document a much older impact event with an age of 4.2 Ga.

  20. Rappresentazioni e (intraducibilità del delirio: Informe sobre ciegos di Alberto Breccia

    Directory of Open Access Journals (Sweden)

    Susanna Nanni


    Full Text Available The essay proposes an analysis of the relationship between text and images in Informe sobre ciegos (1991 by Alberto Breccia. In his obstinate renunciation to unnecessary words, or surplus signs, and by employing graphic devices that convey a "telluric and formless" world, Breccia interprets and illustrates – without making it comprehensible – the self-destructive delirious state of Fernando Vidal, one of the most controversial and fascinating characters in Argentinian literature. In particular, the essay focuses on the conspiracy – at the level of both form and content – and on the graphic (untranslatability of his delirium.

  1. Upper Albian to Lower Turonian deposits and associated breccias along the Dahar cuestas (southeastern Tunisia): Origin and depositional environments (United States)

    Krimi, Mabrouk; Ouaja, Mohamed; Zargouni, Fouad


    The carbonate Zebbag Formation of Upper Albian to Lower Turonian age which outcrops along the Dahar cuestas (south eastern Tunisia) includes several breccia intervals. The stratigraphic hierarchy of these breccia levels led to achieving a detailed sequential analysis within a spectrum of depositional environments extending from subtidal to inner to middle ramp settings. Six major transgressive/regressive sequences make up the stacking of the elementary sequences beginning with transgressive and/or storm wave breccias capped by desiccation and/or collapse breccias. The stratigraphic evolutionary history of the breccia facies are interpreted as the result of the interplay between eustatic and tectonic factors. This model is in accord with the tectonic activities common during Upper Albian-Lower Turonian responsible for the sequences onlapping.

  2. The Vakkejokk Breccia: An Early Cambrian proximal impact ejecta layer in the North-Swedish Caledonides (United States)

    Ormö, J.; Nielsen, A. T.; Alwmark, C.


    The ≤27 m thick Vakkejokk Breccia is intercalated in autochthon Lower Cambrian along the Caledonian front north of Lake Torneträsk, Lapland, Sweden. The spectacular breccia is here interpreted as a proximal ejecta layer associated with an impact crater, probably 2-3 km in size, located below Caledonian overthrusts immediately north of the main breccia section. The impact would have taken place in a shallow-marine environment 520 Ma ago. The breccia comprises i) a strongly disturbed lower polymict subunit with occasional, in themselves brecciated, crystalline mega-clasts locally exceeding 50 m surrounded by contorted sediments; ii) a middle, commonly normally graded, crystalline-rich, polymict subunit, in turn locally overlain by iii) a thin fine-grained quartz sandstone, mobilization of the sediments. The middle subunit and the uppermost quartz sandstone are considered resurge deposits. The top conglomerate may be caused by subsequent wave reworking and slumping of material from the elevated rim. Quartz grains showing planar deformation features are present in the graded polymict subunit and the upper sandstone, that is, the inferred resurge deposits.

  3. Analytical Modeling and Contradictions in Limestone Reservoirs: Breccias, Vugs, and Fractures

    Directory of Open Access Journals (Sweden)

    Nelson Barros-Galvis


    Full Text Available Modeling of limestone reservoirs is traditionally developed applying tectonic fractures concepts or planar discontinuities and has been simulated dynamically without considering nonplanar discontinuities as sedimentary breccias, vugs, fault breccias, and impact breccias, assuming that all these nonplanar discontinuities are tectonic fractures, causing confusion and contradictions in reservoirs characterization. The differences in geometry and connectivity in each discontinuity affect fluid flow, generating the challenge to develop specific analytical models that describe quantitatively hydrodynamic behavior in breccias, vugs, and fractures, focusing on oil flow in limestone reservoirs. This paper demonstrates the differences between types of discontinuities that affect limestone reservoirs and recommends that all discontinuities should be included in simulation and static-dynamic characterization, because they impact fluid flow. To demonstrate these differences, different analytic models are developed. Findings of this work are based on observations of cores, outcrops, and tomography and are validated with field data. The explanations and mathematical modeling developed here could be used as diagnostic tools to predict fluid velocity and fluid flow in limestone reservoirs, improving the complex reservoirs static-dynamic characterization.

  4. Fission track astrology of three Apollo 14 gas-rich breccias (United States)

    Graf, H.; Shirck, J.; Sun, S.; Walker, R.


    The three Apollo 14 breccias 14301, 14313, and 14318 all show fission xenon due to the decay of Pu-244. To investigate possible in situ production of the fission gas, an analysis was made of the U-distribution in these three breccias. The major amount of the U lies in glass clasts and in matrix material and no more than 25% occurs in distinct high-U minerals. The U-distribution of each breccia is discussed in detail. Whitlockite grains in breccias 14301 and 14318 found with the U-mapping were etched and analyzed for fission tracks. The excess track densities are much smaller than indicated by the Xe-excess. Because of a preirradiation history documented by very high track densities in feldspar grains, however, it is impossible to attribute the excess tracks to the decay of Pu-244. A modified track method has been developed for measuring average U-concentrations in samples containing a heterogeneous distribution of U in the form of small high-U minerals. The method is briefly discussed, and results for the rocks 14301, 14313, 14318, 68815, 15595, and the soil 64421 are given.

  5. Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA (United States)

    Morrow, J.R.; Sandberg, C.A.; Malkowski, K.; Joachimski, M.M.


    At Hancock Summit West, Nevada, western USA, uppermost Givetian (upper Middle Devonian) and lower and middle Frasnian (lower Upper Devonian) rocks of the lower Guilmette Formation include, in stratigraphic sequence, carbonate-platform facies of the conodont falsiovalis, transitans, and punctata Zones; the type Alamo Breccia Member of the middle punctata Zone; and slope facies of the punctata and hassi Zones. The catastrophically deposited Alamo Breccia and related phenomena record the ~ 382??Ma Alamo event, produced by a km-scale bolide impact into a marine setting seaward of an extensive carbonate platform fringing western North America. Re-evaluation of conodonts from the lower Guilmette Formation and Alamo Breccia Member, together with regional sedimentologic and conodont biofacies comparisons, now firmly locates the onset of the Johnson et al. (1985) transgressive-regressive (T-R) cycle IIc, which occurred after the start of the punctata Zone, within a parautochthonous megablock low in the Alamo Breccia. Whole-rock carbon isotope analyses through the lower Guilmette Formation and Alamo Breccia Member reveal two positive ??13Ccarb excursions: (1) a small, 3??? excursion, which is possibly correlative with the falsiovalis Event previously identified from sections in Western Europe and Australia, occurs below the breccia in the Upper falsiovalis Zone to early part of the transitans Zone; and (2) a large, multi-part excursion, dominated by a 6??? positive shift, begins above the start of the punctata Zone and onset of T-R cycle IIc and continues above the Alamo Breccia, ending near the punctata- hassi zonal boundary. This large excursion correlates with the punctata Event, a major positive ??13C excursion previously recognized in eastern Laurussia and northern Gondwana. Consistent with previous studies, at Hancock Summit West the punctata Event is apparently not associated with any regional extinctions or ecosystem reorganizations. In the study area, onset of the

  6. The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks (United States)

    Reimold, Wolf Uwe; Hauser, Natalia; Hansen, Bent T.; Thirlwall, Matthew; Hoffmann, Marie


    Besides impact melt rock, several large terrestrial impact structures, notably the Sudbury (Canada) and Vredefort (South Africa) structures, exhibit considerable occurrences of a second type of impact-generated melt rock, so-called pseudotachylitic breccia (previously often termed ;pseudotachylite; - the term today reserved in structural geology for friction melt in shear or fault zones). At the Vredefort Dome, the eroded central uplift of the largest and oldest known terrestrial impact structure, pseudotachylitic breccia is well-exposed, with many massive occurrences of tens of meters width and many hundreds of meters extent. Genesis of these breccias has been discussed variably in terms of melt formation due to friction melting, melting due to decompression after initial shock compression, decompression melting upon formation/collapse of a central uplift, or a combination of these processes. In addition, it was recently suggested that they could have formed by the infiltration of impact melt into the crater floor, coming off a coherent melt sheet and under assimilation of wall rock; even seismic shaking has been invoked. Field evidence for generation of such massive melt bodies by friction on large shear/fault zones is missing. Also, no evidence for the generation of massive pseudotachylitic breccias in rocks of low to moderate shock degree by melting upon pressure release after shock compression has been demonstrated. The efficacy of seismic shaking to achieve sufficient melting as a foundation for massive pseudotachylitic melt generation as typified by the breccias of the Sudbury and Vredefort structures has so far remained entirely speculative. The available petrographic and chemical evidence has, thus, been interpreted to favor either decompression melting (i.e., in situ generation of melt) upon central uplift collapse, or the impact melt infiltration hypothesis. Importantly, all the past clast population and chemical analyses have invariably supported an

  7. The Kaidun Breccia Material Variety: New Clasts and Updated Hypothesis on a Space Trawl Origin


    Ivanova, M. A.; Lorenz, C. A.; Ma, C.; Ivanov, A. V.


    The Kaidun meteorite is a breccia containing a wide variety of different material types [1-5]. It contains lithologies of CI, CM1 and CM2, CR chondrites [6], CAIs of Types A and B [7, 8], enstatite chondrite materials (EH and EL) [3, 4], including altered enstatite clasts [9], ordinary chondrites [10], and possible R chondrite material [11] as well as glass fragments and altered shock melt veins [4]. It also contains different achondritic clasts (including alkaline rocks) with unusual oxyg...

  8. Nature of the H chondrite parent body regolith: evidence from the Dimmitt breccia. (United States)

    Rubin, A. E.; Scott, E. R. D.; Taylor, G. J.; Keil, K.; Allen, J. S. B.; Mayeda, T. K.; Clayton, R. N.; Bogard, D. D.

    The authors report a study of the matrix and 21 clasts of various sizes (0.2 - 24 mm) in the Dimmitt H chondrite regolith breccia using petrographic and electron microprobe techniques. In addition, oxygen isotope studies of three clasts (DT1, DT3, and DT4) and instrumental neutron activation analysis and 39Ar/40Ar age dating of one clast (DT4) are reported.

  9. Conodont dating of the Middle Ordovician breccia cap-rock limestone on Osmussaar Island, northwestern Estonia

    Directory of Open Access Journals (Sweden)

    Johanna I. S. Mellgren


    Full Text Available Various mechanisms have hitherto been suggested to explain the formation of the Kundan (Middle Ordovician Osmussaar Breccia in northwestern Estonia. Following the recent discovery of L-chondritic chromite in these peculiar, sand-penetrated strata, it seems plausible that the breccia is impact-related. Herein, the conodont faunas of three thin limestone intervals overlying the breccia at Osmussaar Island have been investigated, with the aim of establishing the age of the event in terms of the Baltoscandian conodont-based biostratigraphical scheme. Based on the presence of Microzarkodina ozarkodella, the limestone directly overlying the breccia is assigned to the M. ozarkodella Subzone of the Lenodus (Eoplacognathus? pseudoplanus Zone. This is reinforced by means of a faunal shift between this sample interval and the subsequent one, which is directly comparable with a faunal shift in the Mäekalda section, mainland Estonia. The middle, orthoceratite-yielding interval is assigned to the uppermost L. (E.? pseudoplanus Zone (or, alternatively, the lowermost Eoplacognathus suecicus Zone, whereas the uppermost interval, an oolitic limestone, is referable to the E. foliaceus Subzone, corresponding to the lower part of the Lasnamägi Stage. These results support a connection between the Osmussaar event and the stratigraphic interval yielding abundant meteorites and/or high levels of L-type chromite in Sweden, as they both can be referred to the lower and/or middle part of the Kunda Stage. The minor difference in age between the first limestones deposited after the brecciation and the meteorite and L-chromite-yielding interval in Baltoscandia can be explained as caused by a period of non-deposition, seen as numerous hiatuses of various extent in the Kunda Stage in northwestern Estonia.

  10. Nickeliferous pyrite tracks pervasive hydrothermal alteration in Martian regolith breccia: A study in NWA 7533 (United States)

    Lorand, Jean-Pierre; Hewins, Roger H.; Remusat, Laurent; Zanda, Brigitte; Pont, Sylvain; Leroux, Hugues; Marinova, Maya; Jacob, Damien; Humayun, Munir; Nemchin, Alexander; Grange, Marion; Kennedy, Allen; Göpel, Christa


    Martian regolith breccia NWA 7533 (and the seven paired samples) is unique among Martian meteorites in showing accessory pyrite (up to 1% by weight). Pyrite is a late mineral, crystallized after the final assembly of the breccia. It is present in all of the lithologies, i.e., the fine-grained matrix (ICM), clast-laden impact melt rocks (CLIMR), melt spherules, microbasalts, lithic clasts, and mineral clasts, all lacking magmatic sulfides due to degassing. Pyrite crystals show combinations of cubes, truncated cubes, and octahedra. Polycrystalline clusters can reach 200 μm in maximum dimensions. Regardless of their shape, pyrite crystals display evidence of very weak shock metamorphism such as planar features, fracture networks, and disruption into subgrains. The late fracture systems acted as preferential pathways for partial replacement of pyrite by iron oxyhydroxides interpreted as resulting from hot desert terrestrial alteration. The distribution and shape of pyrite crystals argue for growth at moderate to low growth rate from just-saturated near neutral (6 FMQ + 2 log units. It is inferred from the maximum Ni contents (4.5 wt%) that pyrite started crystallizing at 400-500 °C, during or shortly after a short-duration, relatively low temperature, thermal event that lithified and sintered the regolith breccias, 1.4 Ga ago as deduced from disturbance in several isotope systematics.

  11. Effects of Varying Proportions of Glass on Reflectance Spectra of HED Polymict Breccias (United States)

    Buchanan, P. C.; Reddy, V; LeCorre, L.; Cloutis, E. A.; Mann, P.; Le, L.


    Some meteorites contain significant amounts of glass, which, in most cases, probably results from impact processes on parent bodies.. Yamato 82202 is an example of one of the unequilibrated eucrites that contains significant proportions of impact glass distributed as veins throughout the meteorite. In other cases, fragments of glass are distributed throughout polymict breccias. For example, the polymict eucrite EET 87509 contains rare angular fragments of devitrified glass. Proportions of glass in most of these meteorites and in lithic clasts within these meteorites may vary locally from small amounts (less than one percent) to much larger amounts (subequal proportions of glass and mineral material). For example, some fragments within the South African polymict eucrite Macibini contain approximately 50% glass. The presence of these variable proportions of meteorite glass confirm the increased recognition that impact processes played an important role in the histories of asteroidal bodies. This study attempts to quantify the effects of a glass component on reflectance spectra by analyzing in the laboratory mixtures of varying proportions of a well-characterized HED polymict breccia and glass derived by melting a bulk sample of that breccia.

  12. Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias (United States)

    Mercer, Cameron M.; Hodges, Kip V.


    Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.

  13. Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India (United States)

    Pati, Jayanta Kumar; Qu, Wen Jun; Koeberl, Christian; Reimold, Wolf Uwe; Chakarvorty, Munmun; Schmitt, Ralf Thomas


    The Paleoproterozoic Dhala structure with an estimated diameter of 11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta-supracrustal rock types. The impactites and target rocks are overlain by 1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium-osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.

  14. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand (United States)

    Downs, Drew


    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  15. Alteration history of Mount Epomeo Green Tuff and a related polymictic breccia, Ischia Island, Italy: evidence for debris avalanche (United States)

    Altaner, S.; Demosthenous, C.; Pozzuoli, A.; Rolandi, G.


    This paper presents mineralogical, chemical, and textural data for the Mount Epomeo Green Tuff and an associated polymictic breccia on Ischia Island, Italy with the purpose of defining the alteration history of the two units and the emplacement origin of the polymictic breccia. Our results indicate that the Green Tuff trachytic ignimbrite experienced three alteration events that produced the following mineral assemblages: (1) phillipsite, randomly interstratified (R0) illite/smectite (I/S), Fe-illite, and smectite (in situ Green Tuff); (2) chabazite, phillipsite, R0 I/S, and Fe-illite (proximal facies Green Tuff at Scarrupata di Barano); and (3) analcime, authigenic K-feldspar, Fe-illite, R0 I/S, and smectite (clasts of Green Tuff in polymictic breccia). Phillipsite, chabazite, and R0 I/S within the in situ and proximal facies Green Tuff indicate low-temperature alteration ( T 70 °C) alteration within a mostly closed chemical system. These data suggest that the polymictic breccia represents a debris avalanche deposit created by a catastrophic volcanic collapse, which was associated with low-temperature hydrothermal alteration and thus structural weakening of the volcano. The debris avalanche that produced the polymictic breccia on Ischia may be related to nearby massive debris avalanche deposits recently discovered offshore of southern Ischia. The young age of the polymictic breccia (5.7-8.6 ka) and the possibility of its catastrophic emplacement indicate an additional volcanic hazard for Ischia Island.

  16. Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance (United States)

    Pierce, W.G.


    Structural features in northwestern Wyoming indicate that the Heart Mountain fault movement was an extremely rapid, cataclysmic event that created a large volume of carbonate fault breccia derived entirely from the lower part of the upper plate. After fault movement had ceased, much of the carbonate fault breccia, here called calcibreccia, lay loose on the resulting surface of tectonic denudation. Before this unconsolidated calcibreccia could be removed by erosion, it was buried beneath a cover of Tertiary volcanic rocks: the Wapiti Formation, composed of volcanic breccia, poorly sorted volcanic breccia mudflows, and lava flows, and clearly shown in many places by inter lensing and intermixing of the calcibreccia with basal volcanic rocks. As the weight of volcanic overburden increased, the unstable water-saturated calcibreccia became mobile and semifluid and was injected upward as dikes into the overlying volcanic rocks and to a lesser extent into rocks of the upper plate. In some places the lowermost part of the volcanic overburden appears to have flowed with the calcibreccia to form dike like bodies of mixed volcanic rock and calcibreccia. One calcibreccia dike even contains carbonized wood, presumably incorporated into unconsolidated calcibreccia on the surface of tectonic denudation and covered by volcanic rocks before moving upward with the dike. Angular xenoliths of Precambrian rocks, enclosed in another calcibreccia dike and in an adjoining dikelike mass of volcanic rock as well, are believed to have been torn from the walls of a vent and incorporated into the basal part of the Wapiti Formation overlying the clastic carbonate rock on the fault surface. Subsequently, some of these xenoliths were incorporated into the calcibreccia during the process of dike intrusion. Throughout the Heart Mountain fault area, the basal part of the upper-plate blocks or masses are brecciated, irrespective of the size of the blocks, more intensely at the base and in places

  17. 10Be Content in Suevite Breccia from the Bosumtwi Impact Crater (United States)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian


    Introduction: According to the current understanding of meteorite impact processes, surface target material is transported from a crater in the form of ejecta or is vaporized/melted (e.g., [1]). The formation model of tektites from the surface of the target rocks has been established using the 10Be content of tektites (e.g., [2]), and chemical comparison with the possible target surface material (e.g., [3]); it was also reproduced by computer modeling (e.g., [4]). On the other hand, some observations ([5, 6]) suggest that part of the surface material may be incorporated into the crater-fill. The aim of this study is to check if surface-derived material is present in suevitic breccias to better understand formation mechanisms of fallback breccias. Also, 10Be can be used to trace contamination of rocks in the top layer of the suevitic layer by meteoric (lake) water. This abstract is an update (based on more data now available) of the previous report presented during the Metsoc75 conference. Samples: The Bosumtwi crater was chosen as study site because of its relatively large size (10.5 km in diameter), young age of 1.07 Ma [7], good state of preservation, and availability of core samples. Clasts from suevitic breccia selected for this study come from the LB-07A and LB-08A cores that are located within the crater and represent fallback breccia (e.g., [7]). Of 41 analyzed samples (22 single clasts and 21 matrix samples - 11 of those being monomictic breccia), 36 came from core LB-07A (in the zone outside the central uplift) and represent depths of 333.7 - 407.9 m and 5 are from core LB-08A (on the flank of the central uplift) from depths 239.5 - 264.9 m. Methods: For each sample, 0.8 g of finely grounded material from clasts containing in situ produced and meteoric 10Be was dissolved in a mixture of HF and HNO3 by microwave digestion. A 9Be carrier (1 mg or 0.6 mg, 10Be/9Be ratio: 2.82±0.31*10-15 [2? uncertainty]) was added to the sample, and then Be was chemically

  18. Identification of magnetite in lunar regolith breccia 60016: Evidence for oxidized conditions at the lunar surface (United States)

    Joy, Katherine H.; Visscher, Channon; Zolensky, Michael E.; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Kring, David A.


    Lunar regolith breccias are temporal archives of magmatic and impact bombardment processes on the Moon. Apollo 16 sample 60016 is an "ancient" feldspathic regolith breccia that was converted from a soil to a rock at ~3.8 Ga. The breccia contains a small (70 × 50 μm) rock fragment composed dominantly of an Fe-oxide phase with disseminated domains of troilite. Fragments of plagioclase (An95-97), pyroxene (En74-75, Fs21-22,Wo3-4), and olivine (Fo66-67) are distributed in and adjacent to the Fe-oxide. The silicate minerals have lunar compositions that are similar to anorthosites. Mineral chemistry, synchrotron X-ray absorption near edge spectroscopy (XANES) and X-ray diffraction (XRD) studies demonstrate that the oxide phase is magnetite with an estimated Fe3+/ΣFe ratio of ~0.45. The presence of magnetite in 60016 indicates that oxygen fugacity during formation was equilibrated at, or above, the Fe-magnetite or wüstite-magnetite oxygen buffer. This discovery provides direct evidence for oxidized conditions on the Moon. Thermodynamic modeling shows that magnetite could have been formed from oxidization-driven mineral replacement of Fe-metal or desulphurisation from Fe-sulfides (troilite) at low temperatures (<570 °C) in equilibrium with H2O steam/liquid or CO2 gas. Oxidizing conditions may have arisen from vapor transport during degassing of a magmatic source region, or from a hybrid endogenic-exogenic process when gases were released during an impacting asteroid or comet impact.

  19. Clast analysis of potential resurge deposits as part of the Vakkejokk Breccia in the Torneträsk area, northern Sweden - a proposed impact ejecta layer


    Minde, Peder


    In the northern part of Swedish Caledonides, north of Lake Torneträsk is a 7 km long exposure of a breccia layer. The layer thins westwards and eastwards from the central part where it is up to 27 m thick. It is called the Vakkejokk Breccia after the type section. The breccia has been described in literature since about a century, but its origin is enigmatic. The breccia layer is since the summer of 2012 investigated by three geologists specialized in impact craters, Paleozoic sediments, and ...

  20. Apollo 16 regolith breccias and soils - Recorders of exotic component addition to the Descartes region of the moon (United States)

    Simon, S. B.; Papike, J. J.; Laul, J. C.; Hughes, S. S.; Schmitt, R. A.


    Using the subdivision of Apollo 16 regolith breccias into ancient (about 4 Gyr) and younger samples (McKay et al., 1986), with the present-day soils as a third sample, a petrologic and chemical determination of regolith evolution and exotic component addition at the A-16 site was performed. The modal petrologies and mineral and chemical compositions of the regolith breccias in the region are presented. It is shown that the early regolith was composed of fragments of plutonic rocks, impact melt rocks, and minerals and impact glasses. It is found that KREEP lithologies and impact melts formed early in lunar history. The mare components, mainly orange high-TiO2 glass and green low-TiO2 glass, were added to the site after formation of the ancient breccias and prior to the formation of young breccias. The major change in the regolith since the formation of the young breccias is an increase in maturity represented by the formation of fused soil particles with prolonged exposure to micrometeorite impacts.

  1. The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption (United States)

    Fedele, Lorenzo; Scarpati, Claudio; Lanphere, Marvin; Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Ricci, Gennaro


    The Breccia Museo is one of the most debated volcanic formations of the Campi Flegrei volcanic district. The deposit, made up of six distinctive stratigraphic units, has been interpreted by some as the proximal facies of the major caldera-forming Campanian Ignimbrite eruption, and by others as the product of several, more recent, independent and localized events. New geochemical and chemostratigraphical data and Ar-Ar age determinations for several units of the Breccia Museo deposits (~39 ka), correlate well with the Campanian Ignimbrite-forming eruption. The chemical zoning of the Breccia Museo deposits is interpreted here to be a consequence of a three-stage event that tapped a vertically zoned trachytic magma chamber.

  2. Significance of major and minor element variations in plagioclase in sodic ferrogabbro and breccia matrix in lunar highlands sample 67915 (United States)

    Weiblen, P. W.; Day, W. C.; Miller, J. D., Jr.


    Attention is given to the significance of the results of a study of Ca, K, Ti, Fe, Mn, and Mg variations in plagioclase in highlands sample 67915,84. This polymict breccia from Outhouse Rock station 11 at the Apollo 16 site has been selected for study because it contains a wide variety of clast types, including a differentiated type-sodic ferrogabbro. It is found that the data on Ca, K, Ti, Fe, Mn, and Mg in plagioclase show no evidence of reaction between sodic ferrogabbro and breccia matrix clasts. Two groups of plagioclase compositions have been recognized in the breccia matrix. The data suggest that the prebreccia characteristics of plagioclase compositions have been preserved in 67915. Data on Mg/(Mg+FE) ratios suggest that the sodic ferrogabbro and the intermediate-Ca plagioclase clasts could be related to the Mg-rich plutonic rock suite and the high-Ca plagioclase clasts to the ferroan anorthosites.

  3. Regolith breccia Allan Hills A81005 - Evidence of lunar origin, and petrography of pristine and nonpristine clasts (United States)

    Warren, P. H.; Taylor, G. J.; Keil, K.


    It is shown that the ratios of MnO/FeO in pyroxene, texture (abundant brown and swirly glass, which are typical of lunar regolith breccias) and overall composition (approximately 75 percent plagioclase) indicate a lunar origin for the regolith breccia Allan Hills A81005, presumably from an unsampled region of the moon. The rock is found to differ in detail from other regolith samples; for example, it has exceptionally low contents of Na and KREEP. In addition, a pristine clast is found to contain exceptionally coarse augite in comparison with similar Apollo samples. It is found that ALHA81005 is not perceptibly more shocked than typical Apollo regolith breccias. It is concluded that the discovery of this rock on earth strengthens the suggestion that SNC achondrites were derived by impact ejection from Mars.

  4. NWA 7034 Martian Breccia: Disturbed Rb-Sr Systematics, Preliminary Is Approximately 4.4 Ga Sm-Nd Age (United States)

    Nyquist, L. E.; Shih, C.-Y.; Peng, Zhan Xiong; Agee, C


    Agee et al. [1] reported a Rb-Sr age of 2.089 [plus or minus] 0.081 Ga for the unique Martian meteoritic breccia NWA 7034 making it the oldest Martian basalt, dating to the early Am-azonian epoch [2] of Martian geologic history. We have attempt-ed to confirm this exciting result. Our new Rb-Sr analyses show the Rb-Sr isotopic system to be disturbed, but preliminary Sm-Nd data suggest an even older age of approximately 4.4 Ga for at least some brec-cia components.

  5. Three GIS datasets defining areas permissive for the occurrence of uranium-bearing, solution-collapse breccia pipes in northern Arizona and southeast Utah (United States)

    Van Gosen, Bradley S.; Johnson, Michaela R.; Goldman, Margaret


    Some of the highest grade uranium (U) deposits in the United States are hosted by solution-collapse breccia pipes in the Grand Canyon region of northern Arizona. These structures are named for their vertical, pipe-like shape and the broken rock (breccia) that fills them. Hundreds, perhaps thousands, of these structures exist. Not all of the breccia pipes are mineralized; only a small percentage of the identified breccia pipes are known to contain an economic uranium deposit. An unresolved question is how many undiscovered U-bearing breccia pipes of this type exist in northern Arizona, in the region sometimes referred to as the “Arizona Strip”. Two principal questions remain regarding the breccia pipe U deposits of northern Arizona are: (1) What processes combined to form these unusual structures and their U deposits? and (2) How many undiscovered U deposits hosted by breccia pipes exist in the region? A piece of information required to answer these questions is to define the area where these types of deposits could exist based on available geologic information. In order to determine the regional processes that led to their formation, the regional distribution of U-bearing breccia pipes must be considered. These geospatial datasets were assembled in support of this goal.

  6. Regolith breccia Northwest Africa 7533: Mineralogy and petrology with implications for early Mars (United States)

    Hewins, Roger H.; Zanda, Brigitte; Humayun, Munir; Nemchin, Alexander; Lorand, Jean-Pierre; Pont, Sylvain; Deldicque, Damien; Bellucci, Jeremy J.; Beck, Pierre; Leroux, Hugues; Marinova, Maya; Remusat, Laurent; GöPel, Christa; Lewin, Eric; Grange, Marion; Kennedy, Allen; Whitehouse, Martin J.


    Northwest Africa 7533, a polymict Martian breccia, consists of fine-grained clast-laden melt particles and microcrystalline matrix. While both melt and matrix contain medium-grained noritic-monzonitic material and crystal clasts, the matrix also contains lithic clasts with zoned pigeonite and augite plus two feldspars, microbasaltic clasts, vitrophyric and microcrystalline spherules, and shards. The clast-laden melt rocks contain clump-like aggregates of orthopyroxene surrounded by aureoles of plagioclase. Some shards of vesicular melt rocks resemble the pyroxene-plagioclase clump-aureole structures. Submicron size matrix grains show some triple junctions, but most are irregular with high intergranular porosity. The noritic-monzonitic rocks contain exsolved pyroxenes and perthitic intergrowths, and cooled more slowly than rocks with zoned-pyroxene or fine grain size. Noritic material contains orthopyroxene or inverted pigeonite, augite, calcic to intermediate plagioclase, and chromite to Cr-bearing magnetite; monzonitic clasts contain augite, sodic plagioclase, K feldspar, Ti-bearing magnetite, ilmenite, chlorapatite, and zircon. These feldspathic rocks show similarities to some rocks at Gale Crater like Black Trout, Mara, and Jake M. The most magnesian orthopyroxene clasts are close to ALH 84001 orthopyroxene in composition. All these materials are enriched in siderophile elements, indicating impact melting and incorporation of a projectile component, except for Ni-poor pyroxene clasts which are from pristine rocks. Clast-laden melt rocks, spherules, shards, and siderophile element contents indicate formation of NWA 7533 as a regolith breccia. The zircons, mainly derived from monzonitic (melt) rocks, crystallized at 4.43 ± 0.03 Ga (Humayun et al.) and a 147Sm-143Nd isochron for NWA 7034 yielding 4.42 ± 0.07 Ga (Nyquist et al.) defines the crystallization age of all its igneous portions. The zircon from the monzonitic rocks has a higher Δ17O than other Martian

  7. Magnesian anorthosites and associated troctolites and dunite in Apollo 14 breccias (United States)

    Lindstrom, M. M.; Knapp, S. A.; Shervais, J. W.; Taylor, L. A.


    Magnesian anorthosite, a new type of pristine lunar highlands rock, has been found in Apollo 14 breccias. It has primitive (high Ca and Mg) silicate mineral compositions, and high and variable REE concentrations. Variations in REE contents can be accounted for by variations in modal abundance of REE-rich apatite. Magnesian anorthosites are associated with troctolites and a dunite with very similar mineral compositions and it is suggested that all crystallized from a differentiated troctolitic intrusion. The origin of the REE-rich apatite is enigmatic. It is unlikely to have crystallized from an igneous liquid in equilibrium with the major minerals in the anorthosite. Possible origins are assimilation of urKREEP or metasomatism by REE-rich fluids. REE-rich alkali anorthosites and gabbronorites are also found and are likely to be related to KREEP basalt magmas. Lunar compositional associations are distributed in a regional rather than global manner.

  8. Ar-Ar Thermochronlogy of Apollo 12 Impact-Melt Breccia 12033,638-1 (United States)

    Crow, C. A.; Cassata, W. S.; Jolliff, B. L.; Ziegler, R. A.; Borg, L. E.; Shearer, C. K.


    We have undertaken an Ar-Ar thermochronology investigation as part of a coordinated multichronometer analysis of a single Apollo 12 impact- melt breccia to demonstrate the wide range of information that can be obtained for a single complex rock. This has implications for the age of formation, component makeup, and subsequent impact/shock and exposure history of the sample. This study also serves as a capabilities demonstration for the proposed MoonRise Mission [1]. The goal of this investigation is to elucidate the history of this sample through coordinated 40Ar*/39Ar, Sm-Nd, Rb-Sr and zircon 207Pb-206Pb ages along with geochemical and petrographic context on a relatively small (approximately 450 mg) sample. Here, we report preliminary results of the Ar-Ar thermochronology.

  9. Nature of the Yucatan Block Basement as Derived From Study of Granitic Clasts in the Impact Breccias of Chicxulub Crater (United States)

    Vera-Sanchez, P.; Rebolledo-Vieyra, M.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.


    The tectonic and petrologic nature of the basement of the Yucatan Block is studied from analyses of basement clasts present in the impact suevitic breccias of Chicxulub crater. The impact breccias have been sampled as part of the drilling projects conducted in the Yucatan peninsula by Petroleos Mexicanos, the National University of Mexico and the Chicxulub Scientific Drilling Project. Samples analyzed come mainly from the Yaxcopoil-1, Tekax, and Santa Elena boreholes, and partly from Pemex boreholes. In this study we concentrate on clasts of the granites, granodiorites and quartzmonzonites in the impact breccias. We report major and trace element geochemical and petrological data, which are compared with data from the granitic and volcanic rocks from the Maya Mountains in Belize and from the Swannee terrane in Florida. Basement granitic clasts analyzed present intermediate to acidic sub-alkaline compositions. Plots of major oxides (e.g., Al2O3, Fe2O3, TiO2 and CaO) and trace elements (e.g., Th, Y, Hf, Nb and Zr) versus silica allow separation of samples into two major groups, which can be compared to units in the Maya Mountains and in Florida basement. The impact suevitic breccia samples have been affected by alteration likely related to the hydrothermal processes associated with the crater melt sheet. Cloritization, seritization and fenitization alterations are recognized, due to the long term hydrothermalism. Krogh et al. (1993) reported U-Pb dates on zircons from the suevitic breccias, which gave dates of 545 +/- 5 Ma and 418 +/- 6 Ma, which were interpreted in terms of the deep granitic metamorphic Yucatan basement. The younger date correlates with the age for the Osceola Granite and the St. Lucie metamorphic complex of the Swannee terrane in the Florida peninsula. The intrusive rocks in the Yucatan basement may be related to approx. 418 Ma ago collisional event in the Late Silurian.

  10. Bedout basement rise, offshore northwestern Australia: evidence of an unshocked mafic volcanic hyaloclastite volcanic breccia (United States)

    Glikson, A.


    Core samples from Bedout-1 (3035.8-3044.95 m.), Bedout basement rise, offshore northwestern Australia, were examined by optical microscopy, SEM, EDS and WDS spectrometry. At this stratigraphic depth level Becker et al. (2004) interpret cryptocrystalline alteration zones around and within plagioclase in terms of shock-induced transformation of feldspar into diaplectic maskelynite glass _u postulating a ~200 km-large impact structure and thereby an impact connection of the Permian-Triassic boundary mass extinction. However, the breccia is dominated by fragments of microlitic basalt and ophitic-textured dolerite with well preserved igneous textures, showing no evidence of shock metamorphism. Euhedral pseudomorphs of chlorite and amphibole, probably after pyroxene, protrude into or are enveloped by euhedral albite-twinned calcic plagioclase (andesine to bytownite). Minor phases include euhedral ilmenite needles and subhedral magnetite grains. Plagioclase is altered by cryptocrystalline albite and microcrystalline albite-chlorite matrix along crystal boundaries, along twin lamella and within internal oscillatory crystal zones, consistent with burial metamorphosed hydrovolcanic basalts and spilites (e.g. Amstutz, 1974). The volcanic fragments are set within, and injected by, microcrystalline intergranular mesostasis of mixed mineral fragments and volcanic meta-glass. Becker et al. (2004) refer to the breccia in part as product of Mg-rich sediments (e.g. dolomites). However, apart from the pristine igneous textures of the breccia, the transition element levels (chlorite in dolerite fragment "C Ni 97-160 ppm; Co 75-152 ppm; Cu 69-204 ppm; mesostasis "C Ni 29-45 ppm; Co 18-52 ppm; Cu 26-110 ppm) are consistent with Fe-rich basalts but exceed common abundances in carbonates and marls (BVTP, 1981; Wedepohl, 1978). No shock metamorphic features, such as planar deformation features (PDF), are observed in the feldspar or in any other phases. No criteria for discriminating

  11. Informe sobre ciegos:de la narración de Ernesto Sabato a la alucinación gráfica de Alberto Breccia

    Directory of Open Access Journals (Sweden)

    Giulia De Sarlo


    Full Text Available Alberto Breccia has been one of the fathers of twentieth century graphic narrative. Author of key works as El Eternauta (1969, his forays into the world of literature have been frequent since his début. At the end of his life, Breccia turned into comic the Informe sobre ciegos, central and autonomous chapter of Sobre héroes y tumbas (1961 by Ernesto Sabato. This work will analyse the dialogue that the graphic genius of Breccia establishes with the tormented Sabato’s voice, enriching the meaning of one of the most controversial passages of recent Latin American literature.

  12. Petrographic observations on the Exmore breccia, ICDP-USGS drilling at Eyreville, Chesapeake Bay impact structure, USA (United States)

    Reimold, W.U.; Bartosova, K.; Schmitt, R.T.; Hansen, B.; Crasselt, C.; Koeberl, C.; Wittmann, A.; Powars, D.S.


    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B drill cores sampled crater fill in the region of the crater moat, ??9 km to the NE of the center of the Chesapeake Bay impact structure, Virginia, USA. They provide a 953 m section (444-1397 m depth) of sedimentary clast breccia and intercalated sedimentary and crystalline megablocks knownas Exmore beds, deposited on top of the impactite sequence between 1397 and 1551 m depth. We petrographically investigated the sandy-clayey groundmass-dominated breccia, which resembles a diamictite ("Exmore breccia"), and which, in its lower parts, carries sedimentary and crystalline blocks. The entire breccia interval is characterizedby the presence of glauconite and bioclastic carbonate, which distinguishes the Exmore breccia from other sandy facies above and below in the stratigraphy. The sediment-clast breccia exhibits strong heterogeneity from sample to sample with respect to groundmass nature, e.g., clay versus sand content, as well as clast content, in general, and shocked clast content, in particular. There is a consistently signifi cantly larger macroscopic sedimentary to crystalline clast content. On the microscopic scale, the intersample sediment to crystalline clast ratios are quite variable. A very small component of shocked material, in the form of shock-deformed quartz, and to an even lesser degree feldspar, and somewhat more abundant but still relatively scarce shardshaped,altered melt particles, is present throughout the section. However, between ??458 and 469 m, and between 514 and 527 m depths, the abundance of such melt particlesis notably enhanced. These sections are also chemically distinct and relatively more mafic than the other parts of the Exmore breccia. It appears that from the time of deposition of the 527 m material, calming of the ocean occurred over the crater area as a result of abatement of resurge activity, so that ejecta from the

  13. Evolved-Lithology Clasts in Lunar Breccias: Relating Petrogenetic Diversity to Measured Water Content (United States)

    Christoffersen, R.; Simon, J. J.; Ross, D. K.


    Studies of the inventory and distribution of water in lunar rocks have recently begun to focus on alkali suite samples as possible water repositories, particularly the most highly evolved granitoid lithologies. Although H analyses of feldspars in these rocks have so far pointed to 'low' (less than 20 ppm) H2O contents, there is sufficient variability in the dataset (e.g., 2-20 ppm) to warrant consideration of the petrogenetic factors that may have caused some granitoid-to-intermediate rocks to be dryer or wetter than others. Given that all examples of these rocks occur as clasts in complex impact breccias, the role of impact and other factors in altering water contents established by primary igneous processes becomes a major factor. We are supporting our ongoing SIMS studies of water in evolved lunar lithologies with systematic SEM and EPMA observations. Here we report a synthesis of the observations as part of developing discriminating factors for reconstructing the thermal, crystallization and shock history of these samples as compared with their water contents.

  14. U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region (United States)

    Ludwig, K. R.; Simmons, K.R.


    Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors

  15. Smyer H-Chondrite Impact-Melt Breccia and Evidence for Sulfur Vaporization (United States)

    Rubin, Alan E.


    Smyer is an H-chondrite impact-melt breccia containing approx.20 vol% 0.5- to 13-mm-thick silicate-rich melt veins surrounding unmelted subrounded chondritic clasts up to 7 cm in maximum dimension. At the interface between some of the melt veins and chondritic clasts, there are troilite-rich regions consisting of unmelted. crushed 0.2- to 140-micron-size angular silicate grains and chondrule fragments surrounded by troilite and transected by thin troilite veins. Troilite fills every available fracture in the silicates. including some as thin as 0.1 microns. Little metallic Fe-Ni is present in these regions: the FeS/Fe modal ratio ranges from -25: 1 to approx.500: 1, far higher than the eutectic weight ratio of 7.5: 1. The texture of these regions indicates that the sulfide formed from a fluid of very low viscosity. The moderately high viscosity (0.2 poise) and large surface tension of liquid FeS, its inability to wet silicate grain surfaces at low oxygen fugacities. and the supereutectic FeS/Fe ratios in the troilite-rich regions indicate that the fluid was a vapor. It seems likely that during the shock event that melted Smyer, many silicates adjacent to the melt veins were crushed. Upon release of shock pressure. some of the troilite evaporated and dissociated. Molecules of S2 were transported and condensed into fractures and around tiny silicate grains: there, they combined with Fe from small adjacent metallic Fe-Ni grains to form troilite. The Ni content at the edges of some of these metal grains increased significantly; Co from these Ni-rich grains diffused into nearby kamacite. Impact-induced S volatilization may have played a major role in depleting the surface of 433 Eros (and other chondritic asteroids) in S.

  16. Fall, Recovery, and Characterization of the Novato L6 Chondrite Breccia (United States)

    Jenniskens, Peter; Rubin, Alan E.; Yin, Qing Zhu; Sears, Derek W. G.; Sandford, Scott A.; Zolensky, Michael E.; Krot, Alexander N.; Blair, Leigh; Kane, Daci; Utas, Jason; hide


    The Novato L6 chondrite fragmental breccia fell in California on 17 October 2012, and was recovered after the Cameras for Allsky Meteor Surveillance (CAMS) project determined the meteor's trajectory between 95 and 46 km altitude. The final fragmentation from 42 to 22 km altitude was exceptionally well documented by digital photographs. The first sample was recovered before rain hit the area. First results from a consortium study of the meteorite's characterization, cosmogenic and radiogenic nuclides, origin, and conditions of the fall are presented. Some meteorites did not retain fusion crust and show evidence of spallation. Before entry, the meteoroid was 35+/-5 cm in diameter (mass 80+/-35 kg) with a cosmic-ray exposure age of 9+/-1 Ma, if it had a one-stage exposure history. A two-stage exposure history is more likely, with lower shielding in the last few Ma. Thermoluminescence data suggest a collision event within the last approx.0.1 Ma. Novato probably belonged to the class of shocked L chondrites that have a common shock age of 470 Ma, based on the U, Th-He age of 420+/-220 Ma. The measured orbits of Novato, Jesenice, and Innisfree are consistent with a proposed origin of these shocked L chondrites in the Gefion asteroid family, perhaps directly via the 5:2 mean-motion resonance with Jupiter. Novato experienced a stronger compaction than did other L6 chondrites of shockstage S4. Despite this, a freshly broken surface shows a wide range of organic compounds.

  17. Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust (United States)

    McCubbin, Francis M.; Boyce, Jeremy W.; Novak-Szabo, Timea; Santos, Alison; Tartese, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge A.; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.


    The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past hydrothermal activity. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500–800°C, evident by groundmass texture and concordance of ~1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.

  18. Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust (United States)

    McCubbin, Francis M.; Boyce, Jeremy W.; Novák-Szabó, Tímea; Santos, Alison R.; Tartèse, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.


    The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past hydrothermal activity. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500-800°C, evident by groundmass texture and concordance of 1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.

  19. Hydrothermal karst and associated breccias in Neoproterozoic limestone from the Barker-Villa Cacique area (Tandilia belt), Argentina (United States)

    Dristas, Jorge A.; Martínez, Juan C.; van den Kerkhof, Alfons M.; Massonne, Hans-Joachim; Theye, Thomas; Frisicale, María C.; Gregori, Daniel A.


    In the Barker-Villa Cacique area (Tandilia belt), remarkable megabreccias, limestone breccias and phosphate-bearing breccias hosted in black limestone and along the contact with the upper section of the sedimentary succession are exposed. These rocks are the result of extensive hydrothermal alteration of the original micritic limestone and other fine-grained clastic sediments. Typical alteration minerals are sericite, chlorite, interstratified chlorite/K-white mica, kaolinite, dickite, pyrite, chalcopyrite, goethite, quartz, calcite, Fe-calcite, dolomite, ankerite, fluor-apatite, barite and aluminium-phosphate-sulfate (APS) minerals. Quartz and calcite cements from hydraulic breccias in the limestone contain low-salinity aqueous fluid inclusions. Corresponding homogenization temperatures display 200-220 °C and 110-140 °C in hydrothermal quartz, and 130-150 °C in late calcite cement. Carbon and oxygen stable isotope analyses of carbonates from the Loma Negra quarry (LNQ) support the major role of hydrothermal activity. A significant difference was found between δ18Ocar values from unaltered micritic limestone (ca. 23.8‰ SMOW) and secondary calcite (ca. 18.5‰ SMOW). The lower δ18Ocar values are interpreted as a result of calcite precipitation from hot hydrothermal fluids. At a late stage, the hydrothermal fluid containing H2S mixed with descending and oxidizing meteoric waters. Circulation of the ensuing acid fluids resulted in the partly dissolution and collapse brecciation of the Loma Negra Formation. The hydrothermal stage can be tentatively dated ca. 590-620 Ma corresponding to the Brasiliano orogeny.

  20. Formation Ages of the Apollo 16 Regolith Breccias: Implications for Accessing the Bombardment History of the Moon (United States)

    Joy, K. H.; Kring, D. A.; Bogard, D. D.; Zolensky, M. E.; McKay, D. S.


    Regolith breccias are lithified samples of the regolith that have been fused together by impact shock and thermal metamorphism. In lunar regolith samples, the ratio of trapped 40Ar/36Ar is a useful indicator of antiquity and can be used to model the closure age/lifithication event of the regolith (i.e. the apparent time when Ar became trapped [1]), thus providing an important insight into specific times when that regolith was interacting with the the dynamic inner solar system space environment [2-4].

  1. Preservation of biological markers in clasts within impact melt breccias from the Haughton impact structure, Devon Island. (United States)

    Lindgren, Paula; Parnell, John; Bowden, Stephen; Taylor, Colin; Osinski, Gordon R; Lee, Pascal


    The 39 +/- 2 Ma Haughton impact structure on Devon Island comprises a thick target succession of sedimentary rocks, mainly carbonates. The carbonates contain pre-impact organic matter, including fossil biological markers. Haughton is located in an area where no major thermal event has affected the sedimentary succession after heating caused by impact. This makes Haughton uniquely suitable for studies concerning the preservation of fossil biological markers following an impact event. Melt breccia is the most common impactite at Haughton. It is composed of clasts of the target, mainly carbonates, embedded in a fine groundmass. The groundmass is composed of material that was melted during impact. In this study, fossil biological marker maturity parameters (tricyclic terpane-hopane ratio and pregnane-sterane ratio) and an aromatic maturity parameter [methylphenanthrene ratio (MPR)] were used to compare the degree of thermal alteration in different size fractions of carbonate clasts (fossil biological markers can be preserved and detected in isolated large and small fractions of carbonate clasts that are embedded in an impact melt. The results also indicate that there is a thermal gradient from the center of a clast to the edge of a clast, which suggests that biological markers are more likely to be found preserved in the center of a clast. The thermal maturity values point to a higher degree of thermal alteration in the melt breccia carbonate clasts than in the coherent carbonate bedrock.

  2. The impact history of the Moon: implications of new high-resolution U-Pb analyses of Apollo impact breccias (United States)

    Snape, Joshua F.; Nemchin, Alexander A.; Thiessen, Fiona; Bellucci, Jeremy J.; Whitehouse, Martin J.


    Constraining the impact history of the Moon is a key priority, both for lunar science [1] and also for our understanding of how this fundamental geologic processes [2] has affected the evolution of planets in the inner solar system. The Apollo impact breccia samples provide the most direct way of dating impact events on the Moon. Numerous studies have dated samples from the Apollo landing sites by multiple different methods with varying degrees of precision [3]. This has led to an ongoing debates regarding the presence of a period of intense meteoritic bombardment (e.g. [4-8]). In this study we present high precision U-Pb analyses of Ca-phosphates in a variety of Apollo impact breccias. These data allow us to resolve the signatures of multiple different impact events in samples collected by the Apollo 12, 14 and 17 missions. In particular, the potential identification of three significant impact events between the period of ~3915-3940 Ma, is indicative of a high rate of meteorite impacts at this point in lunar history. A more fundamental problem with interpretations of Apollo breccia ages is that the samples originate from the lunar regolith and do not represent samples of actual bedrock exposures. As such, although improvements in analytical precision may allow us to continue identifying new impact signatures, the proposed links between these signatures and particular impact features remain highly speculative. This is a problem that will only be truly addressed with a more focused campaign of lunar exploration. Most importantly, this would include the acquisition of samples from below the lunar regolith, which could be confidently attributed to particular bedrock formations and provide a degree of geologic context that has been largely absent from studies of lunar geology to date. References: [1] National Research Council (2007) The scientific context for exploration of the Moon, National Academies Press. [2] Melosh H. J. (1989) Impact Cratering: A Geologic

  3. Magnetostratigraphy of the impact breccias and post-impact carbonates from borehole Yaxcopoil-1, Chicxulub impact crater, Yucatán, Mexico (United States)

    Rebolledo-Vieyra, Mario; Urrutia-Fucugauchi, Jaime


    We report the magnetostratigraphy of the sedimentary sequence between the impact breccias and the post-impact carbonate sequence conducted on samples recovered by Yaxcopoil-1 (Yax-1). Samples of impact breccias show reverse polarities that span up to ~56 cm into the postimpact carbonate lithologies. We correlate these breccias to those of PEMEX boreholes Yucatán-6 and Chicxulub-1, from which we tied our magnetostratigraphy to the radiometric age from a melt sample from the Yucatán-6 borehole. Thin section analyses of the carbonate samples showed a significant amount of dark minerals and glass shards that we identified as the magnetic carriers; therefore, we propose that the mechanism of magnetic acquisition within the carbonate rocks for the interval studied is detrital remanent magnetism (DRM). With these samples, we constructed the scale of geomagnetic polarities where we find two polarities within the sequence, a reverse polarity event within the impact breccias and the base of the post-impact carbonate sequence (up to 794.07 m), and a normal polarity event in the last ~20 cm of the interval studied. The polarities recorded in the sequence analyzed are interpreted to span from chron 29r to 29n, and we propose that the reverse polarity event lies within the 29r chron. The magnetostratigraphy of the sequence studied shows that the horizon at 794.11 m deep, interpreted as the K/T boundary, lies within the geomagnetic chron 29r, which contains the K/T boundary.

  4. The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field (United States)

    Bischoff, Addi; Barrat, Jean-Alix; Bauer, Kerstin; Burkhardt, Christoph; Busemann, Henner; Ebert, Samuel; Gonsior, Michael; Hakenmüller, Janina; Haloda, Jakub; Harries, Dennis; Heinlein, Dieter; Hiesinger, Harald; Hochleitner, Rupert; Hoffmann, Viktor; Kaliwoda, Melanie; Laubenstein, Matthias; Maden, Colin; Meier, Matthias M. M.; Morlok, Andreas; Pack, Andreas; Ruf, Alexander; Schmitt-Kopplin, Philippe; SchöNbäChler, Maria; Steele, Robert C. J.; Spurný, Pavel; Wimmer, Karl


    On March 6, 2016 at 21:36:51 UT, extended areas of Upper Austria, Bavaria (Germany) and the southwestern part of the Czech Republic were illuminated by a very bright bolide. This bolide was recorded by instruments in the Czech part of the European Fireball Network and it enabled complex and precise description of this event including prediction of the impact area. So far six meteorites totaling 1473 g have been found in the predicted area. The first pieces were recovered on March 12, 2016 on a field close to the village of Stubenberg (Bavaria). Stubenberg is a weakly shocked (S3) fragmental breccia consisting of abundant highly recrystallized rock fragments embedded in a clastic matrix. The texture, the large grain size of plagioclase, and the homogeneous compositions of olivine (Fa31.4) and pyroxene (Fs25.4) clearly indicate that Stubenberg is an LL6 chondrite breccia. This is consistent with the data on O, Ti, and Cr isotopes. Stubenberg does not contain solar wind-implanted noble gases. Data on the bulk chemistry, IR spectroscopy, cosmogenic nuclides, and organic components also indicate similarities to other metamorphosed LL chondrites. Noble gas studies reveal that the meteorite has a cosmic ray exposure (CRE) age of 36 ± 3 Ma and that most of the cosmogenic gases were produced in a meteoroid with a radius of at least 35 cm. This is larger than the size of the meteoroid which entered the Earth's atmosphere, which is constrained to <20 cm from short-lived radionuclide data. In combination, this might suggest a complex exposure history for Stubenberg.

  5. The Galim LL/EH Polymict Breccia: Evidence for Impact-Induced Exchange Between Reduced and Oxidized Meteoritic Material (United States)

    Rubin, Alan E.


    Galim is a polymict breccia consisting of a heavily shocked (shock stage S6) LL6 chondrite, Galim (a), and an impact-melted EH chondrite, Galim (b). Relict chondrules in Galim (b) served as nucleation sites for euhedral enstatite grains crystallizing from the impact melt. Many of the reduced phases typical of EH chondrites (e.g., Si-bearing metallic Fe-Ni; Ti-bearing troilite) are absent. Galim (b) was probably shock-melted while in contact with a more oxidized source, namely, Galim (a); during this event, Si was oxidized from the metal and Ti was oxidized from troilite. Galim (a) contains shock veins and recrystallized, unzoned olivine. The absence of evidence for reduction in Galim (a) may indicate that the amount of LL material greatly exceeded that of EH material; shock metamorphism may have taken place on the LL parent body. Shock-induced redox reactions such as those inferred for the Galim breccia appear to be restricted mainly to asteroids because the low-end tail of their relative-velocity distribution permits mixing of intact disparate materials (including accretion of projectiles of different oxidation states), whereas the peak of the distribution leads to high equilibration shock pressures (allowing impact-induced exchange between previously accreted, disequilibrated materials). Galim probably formed by a two-stage process: (I) accretion to the LL parent body of an intact EH projectile at low relative velocities, and (2) shock metamorphism of the assemblage by the subsequent impact of another projectile at significantly higher relative velocities.

  6. The historical importance and architectonic relevance of the applications of the "extinct" Arrabida Breccia - proposals for its preservation and future uses (United States)

    Kullberg, José; Prego, António


    The upper Oxfordian Arrábida Breccia is a unique lithological type in Portugal and probably in the world because it was formed through several particular geological conditions acting simultaneously. The rock is a conglomerate composed of carbonate pebbles of different colors, cemented by a red, ferruginous, clayey carbonate. It is the expression of a fossilized karst that marks one of the major unconformities of the Lusitanian Basin, associated with the early stages of the opening of the North Atlantic. The use of Arrábida Breccia dates back to Roman times, as a structural element. But it was from the fifteenth century onwards that its use gained importance, mainly as an architectural element during the Manueline period (the end of the Gothic) and, later, during the Baroque, as a decorative element. The exploration of this ornamental stone ended in 1973 with the creation of the Arrábida Natural Park. The Arrábida Breccia assumes a structural and ornamental preponderance in the building up of Jesus Monastery, in the city of Setúbal. This monument has great importance in the portuguese artistic panorama, since that is the forerunner of Manueline arquitecture. One of the key episodes of national history was held in this monastery in 1494: the ratification of the Treaty of Tordesillas, the agreement between Spain and Portugal aimed at settling conflicts over lands newly discovered throughout the world. There are several examples Arrábida Breccia applications in other monuments, that form part of the national heritage. Most of them were built at the reign of king Manuel I (1469 - 1521), that had a personal preference for this rock. There are also vestiges of the use of Arrábida Breccia in a few emblematic buildings of this reign that have been destroyed by the great earthquake of Lisbon, in 1755. Some uses of the Arrábida Breccia are known beyond Portuguese borders, namely in Spain and Brazil. And there is a possible more extensive use in France, within the

  7. Compositional Variation in Apollo 16 Impact-Melt Breccias and Inferences for the Geology and Bombardment History of the Central Highlands of the Moon (United States)

    Korotev, Randy L.


    High-precision data for the concentrations of a number of lithophile and siderophile elements were obtained on multiple subsamples from 109 impact-melt rocks and breccias (mostly crystalline) from the Apollo 16 site. Compositions of nearly all Apollo 16 melt rocks fall on one of two trends of increasing Sm concentration with increasing Sc concentration. The Eastern trend (lower Sm/Sc, Mg/Fe, and Sm/Yb ratios) consists of compositional groups 3 and 4 of previous classification schemes. These melt rocks are feldspathic, poor in incompatible and siderophile elements, and appear to have provenance in the Descartes formation to the east of the site. The Western trend (higher Sm/Sc. Mg/Fe, and Sm/ Yb ratios) consists of compositional groups 1 and 2. These relatively mafic, KREEP-bearing breccias are a major component (approx.35%) of the Cayley plains west of the site and are unusual, compared to otherwise similar melt breccias from other sites, in having high concentrations of Fe-Ni metal ( 1-2 %). The metal is the carrier of the low-Ir/Au (approx. 0.3 x chondritic) siderophile-element signature that is characteristic of the Apollo 16 site. Four compositionally distinct groups (1M, 1F, 2DB, and 2NR) of Western-trend melt breccias occur that are each represented by at least six samples. Compositional group 1 or previous classification schemes (the 'poikilitic' or 'LKFM' melt breccias) can be subdivided into two groups. Group 1M (represented by six samples, including 60315) is characterized by lower Al2O3 concentrations, higher MgO and alkali concentrations, and higher Mg/Fe and Cr/Sc ratios than group 1F (represented by fifteen samples, including 65015). Group 1M also has siderophile-element concentrations averaging about twice those of group lF and Ir/Au and Ir/Ni ratios that are even lower than those of other Western-trend melt rocks (Ir/Au = 0.24 +/- 0.03. CI-normalized). At the mafic extreme of group 2 ('VHA' melt breccias), the melt lithology occurring as clasts in

  8. Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis (United States)

    Zeigler, Ryan A.; Carpenter, Paul K.; Jolliff, Bradley L.


    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 k

  9. A comprehensive survey of faults, breccias, and fractures in and flanking the eastern Española Basin, Rio Grande rift, New Mexico (United States)

    Caine, Jonathan S.; Minor, Scott A.; Grauch, V.J.S.; Budahn, James R.; Keren, Tucker T.


    A comprehensive survey of geologic structures formed in the Earth’s brittle regime in the eastern Española Basin and flank of the Rio Grande rift, New Mexico, reveals a complex and protracted record of multiple tectonic events. Data and analyses from this representative rift flank-basin pair include measurements from 53 individual fault zones and 22 other brittle structures, such as breccia zones, joints, and veins, investigated at a total of just over 100 sites. Structures were examined and compared in poorly lithified Tertiary sediments, as well as in Paleozoic sedimentary and Proterozoic crystalline rocks. Data and analyses include geologic maps; field observations and measurements; orientation, kinematic, and paleostress analyses; statistical examination of fault trace lengths derived from aeromagnetic data; mineralogy and chemistry of host and fault rocks; and investigation of fault versus bolide-impact hypotheses for the origin of enigmatic breccias found in the Proterozoic basement rocks. Fault kinematic and paleostress analyses suggest a record of transitional, and perhaps partitioned, strains from the Laramide orogeny through Rio Grande rifting. Normal faults within Tertiary basin-fill sediments are consistent with more typical WNW-ESE Rio Grande rift extension, perhaps decoupled from bedrock structures due to strength contrasts favoring the formation of new faults in the relatively weak sediments. Analyses of the fault-length data indicate power-law length distributions similar to those reported from many geologic settings globally. Mineralogy and chemistry in Proterozoic fault-related rocks reveal geochemical changes tied to hydrothermal alteration and nearly isochemical transformation of feldspars to clay minerals. In sediments, faulted minerals are characterized by mechanical entrainment with minor secondary chemical changes. Enigmatic breccias in rift-flanking Proterozoic rocks are autoclastic and isochemical with respect to their protoliths and

  10. Early Solar System Alkali Fractionation Events Recorded by K-Ca Isotopes in the Yamato-74442 LL-Chondritic Breccia (United States)

    Tatsunori, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.


    Radiogenic ingrowth of Ca-40 due to decay of K-40 occurred early in the solar system history causing the Ca-40 abundance to vary within different early-former reservoirs. Marshall and DePaolo ] demonstrated that the K-40/Ca-40 decay system could be a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [3,4] determined 40K/40Ca ages of lunar granitic rock fragments and discussed the chemical characteristics of their source materials. Recently, Yokoyama et al. [5] showed the application of the K-40/Ca-40 chronometer for high K/Ca materials in ordinary chondrites (OCs). High-precision calcium isotopic data are needed to constrain mixing processes among early solar system materials and the time of planetesimal formation. To better constrain the solar system calcium isotopic compositions among astromaterials, we have determined the calcium isotopic compositions of OCs and an angrite. We further estimated a source K/Ca ratio for alkali-rich fragments in a chondritic breccia using the estimated solar system initial Ca-40/Ca-44.

  11. Quartz-Amethyst Hosted Hydrocarbon-Bearing Fluid Inclusions from the Green Ridge Breccia in the Snoqualmie Granite, North Cascades, WA, USA

    Directory of Open Access Journals (Sweden)

    Martin Feely


    Full Text Available The Green Ridge Breccia cuts the composite Miocene Snoqualmie Batholith in King County, WA, USA. The granite was emplaced at ~5 km depth between ~17 and 20 Ma and the crosscutting NW trending breccia contains large angular blocks of the host granite (<1 m in longest dimension. The brecciated granite blocks are cemented by quartz-amethyst euhedra (<10 cm in longest dimension bearing vugs. A notable feature is the presence of centimetric scale amber coloured oil inclusions within the quartz-amethyst crystals. Fluid inclusion studies using Transmitted Light Petrography, UV Microscopy, Microthermometry, Laser Raman Microspectroscopy and Gas Chromatography-Mass Spectrometry record the presence and the fluid composition of three fluid inclusion types hosted by the euhedra: primary Type 1 (liquid rich two-phase (L + V aqueous inclusions and secondary Type 2 bituminous two-phase (S + L inclusions and Type 3 amber coloured oil bearing two-phase immiscible liquid inclusions. The Green Ridge Breccia was the locus for convective hydrothermal fluid flow that formed the quartz-amethyst vugs formed at T~390 °C assuming a trapping pressure of ~1.65 kb. Later, hydrocarbon fluids migrated downwards from the roof source rock (e.g., the Guye Sedimentary Member and were trapped in the euhedra. This was followed by unroofing of the batholith and exposure of the Green Ridge Breccia. This study highlights the potential for other oil migrations into the Snoqualmie Batholith in areas where it forms the basement capped by the Guye Sedimentary Member.

  12. The eruption of the Breccia Museo (Campi Flegrei, Italy): Fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics (United States)

    Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Adabbo, Mariarosaria


    The Breccia Museo Member (BMM) was formed by an explosive eruption that occurred in the SW sector of Campi Flegrei about 20 ka ago. The eruptive sequence consists of the Lower Pumice Flow Unit and the overlying Upper Pumice Flow Unit with its associated lithic Breccia Unit. Interlayered with the Breccia Unit is a welded deposit that mainly consists of spatter clasts (Spatter Unit). The products of this eruption range in composition from trachytic to trachyphonolitic with K 2O decreasing from 9.5 to 7 wt.%; Na 2O correspondingly increases from 2.6 to 7.2 wt.% with increasing differentiation (Nb from 23 to 122 ppm). The phenocrysts are mostly sanidine (Or 88-63) with subordinate plagioclase (An 33-27), clinopyroxene (Ca 47Mg 44Fe 9 to Ca 46Mg 35Fe 19), biotite, titanomagnetite, and apatite. The observed major- and trace-element variations are fully consistent with about 80% fractional crystallization of a sanidine-dominated assemblage starting from the least differentiated trachytes. The compositions of the erupted products are compatible with the progressive tapping of a shallow magma chamber that was thermally and chemically zoned. The incompatible trace elements indicate a slightly different magma composition with respect to trachytes of the Campi Flegrei mainland. The geochemical stratigraphy suggests that after an early eruptive phase during which the upper, most differentiated level of the magma chamber was tapped, the sudden collapse of the roof of the reservoir triggered drainage of the remaining magma, which ranged in composition from trachyte to trachyphonolite, and formed the Breccia Unit and the Upper Pumice Flow Unit. The strongly differentiated trachyphonolite composition of the spatter clasts also suggests that they likely originated from the uppermost part of the reservoir soon after the eruption of Lower Pumice Flow Unit and the collapse of the chamber roof. This is in agreement with the eruptive model proposed by Perrotta and Scarpati (1994).

  13. Bombs, welded spatter, rockfall and cross-cutting breccia enclosed in avalanche deposits 300 m deep in a debris-filled vent (diatreme), Hopi Buttes, Arizona (United States)

    White, James; Lefebvre, Nathalie; Kjarsgaard, Bruce


    Diatremes are debris-filled vents that are surprisingly large relative to the small maar volcanoes that are their surface expression. Field characteristics of well-exposed diatreme deposits in the Hopi Buttes volcanic field, in Arizona, USA, challenge existing diatreme models, but may provide insight into the broader behavior of magma plumbing systems feeding small basaltic volcanoes. Standing Rocks East is a volcanic "neck" rising 35 m above the adjacent land surface. It was previously identified as the deposit of a "root zone", i.e. the fragmental zone at the base of a diatreme structure, based on the depth of exposure, textural diversity of its deposits, irregular dikes that terminate within it, and its small footprint relative to a nearby diatreme remnant. Painstaking mapping in a new study reveals: (1) most of the diatreme structure at the level of the "neck" is filled by a coarse country-rock breccia, which contains blocks sourced both from as far as 200 m below exposure, and as much as 300 m above it at the paleosurface; (2) a zone of juvenile-rich heterolithic lapilli tuff, with domainal map-view variations in deposit granulometry and componentry were emplaced after the country-rock breccia but before the rocks of the neck; (3) the neck comprises an architecturally complex range of deposits in which metres-wide subvertical sheets dominated by coherent basaltic rock cut, locally with surface wrinkes and clast imprints, and locally grade outward into, subhorizontally layered domains, up to several metres in extent, of breccia and welded spatter including large isolated boulders of mixed pyroclastic and host mud/mudrock that deformed adjacent spattery deposits. From these relationships we draw these conclusions. (A) The neck is not a root zone, because it is entirely enclosed within earlier deposits in the diatreme structure - it is not at the bottom of this diatreme structure, and hence represents an intra-diatreme fragmentation zone. (B) This fragmentation

  14. The Vakkejokk Breccia

    DEFF Research Database (Denmark)

    Ormö, J.; Nielsen, Arne Thorshøj; Alwmark, C.


    parts of the ejecta layer, the lower subunit is better described as only slightly disturbed strata. The lower subunit is suggested to have formed by ejecta bombardment of the strata surrounding the impact crater, even causing some net outwards mobilization of the sediments. The middle subunit...

  15. Geologic columns for the ICDP-USGS Eyreville A and B cores, Chesapeake Bay impact structure: Sediment-clast breccias, 1096 to 444 m depth (United States)

    Edwards, L.E.; Powars, D.S.; Gohn, G.S.; Dypvik, H.


    The Eyreville A and B cores, recovered from the "moat" of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ??867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ??867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ??855-618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940-??760 m) allows recognition of local similarities and differences in the breccias. ?? 2009 The Geological Society of America.

  16. Tracing early breccia pipe studies, Waste Isolation Pilot Plant, southeastern New Mexico: A study of the documentation available and decision-making during the early years of WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Power, D.W. [HC 12, Anthony, TX (United States)


    Breccia pipes in southeastern New Mexico are local dissolution-collapse features that formed over the Capitan reef more than 500,000 years ago. During early site studies for the Waste Isolation Pilot Plant (WIPP), the threat to isolation by these features was undetermined. Geophysical techniques, drilling, and field mapping were used beginning in 1976 to study breccia pipes. None were found at the WIPP site, and they are considered unlikely to be a significant threat even if undetected. WIPP documents related to breccia pipe studies were assembled, inspected, and analyzed, partly to present a history of these studies. The main objective is to assess how well the record reflects the purposes, results, and conclusions of the studies from concept to decision-making. The main record source was the Sandia WIPP Central File (SWCF). Early records (about 1975 to 1977) are very limited, however, about details of objectives and plans predating any investigation. Drilling programs from about 1977 were covered by a broadly standardized statement of work, field operations plan, drilling history, and basic data report. Generally standardized procedures for peer, management, and quality assurance review were developed during this time. Agencies such as the USGS conducted projects according to internal standards. Records of detailed actions for individual programs may not be available, though a variety of such records were found in the SWCF. A complete written record cannot be reconstructed. With persistence, a professional geologist can follow individual programs, relate data to objectives (even if implied), and determine how conclusions were used in decision-making. 83 refs.

  17. Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite (United States)

    Gebauer, Samantha K.; Schmitt, Axel K.; Pappalardo, Lucia; Stockli, Daniel F.; Lovera, Oscar M.


    The Campi Flegrei volcanic district (Naples region, Italy) is a 12-km-wide, restless caldera system that has erupted at least six voluminous ignimbrites during the late Pleistocene, including the >300 km3 Campanian ignimbrite (CI) which originated from the largest known volcanic event of the Mediterranean region. The Breccia Museo (BM), a petrologically heterogeneous and stratigraphically complex volcanic deposit extending over 200 km2 in close proximity to Campi Flegrei, has long remained contentious regarding its age and stratigraphic relation to the CI. Here, we present crystallization and eruption ages for BM plutonic ejecta clasts that were determined via uranium decay series and (U-Th)/He dating of zircon, respectively. Despite mineralogical and textural heterogeneity of these syenitic clasts, their U-Th zircon rim crystallization ages are indistinguishable with an average age of 49.7 ± 2.5 ka (2σ errors; mean square of weighted deviates MSWD = 1.2; n = 34). A subset of these crystals was used to obtain disequilibrium-corrected (U-Th)/He zircon ages which average 41.7 ± 1.8 ka (probability of fit P = 0.54; n = 15). This age closely overlaps with published CI 40Ar/39Ar eruption ages (40.6 ± 0.1 ka) after recalibration to recently revised flux monitor ages. Concordant eruption ages for BM and CI agree with previous chemostratigraphic and paleomagnetic correlations, suggesting their origin from the same eruption. However, they are at variance with recalibrated 40Ar/39Ar ages which have BM postdate CI by 3 ± 1 ka. BM syenites show similar geochemical and Sr-Nd isotopical features of pre-caldera rocks erupted between 58 and 46 ka, but are distinctive from subsequent caldera-forming magmas. Energy-constrained assimilation and fractional crystallization modeling of Nd-Sr isotopic data suggests that pre-caldera magmas formed a carapace of BM-type intrusions in a mid-crust magma chamber (≥8 km depth) shielding the younger CI magma from contamination by

  18. McCauley Sinks: A compound breccia pipe in evaporite karst, Holbrook Basin, Arizona, U.S.A (United States)

    Neal, J.T.; Johnson, K.S.


    The McCauley Sinks, in the Holbrook basin of northeastern Arizona, are comprised of some 50 individual sinkholes within a 3-km-wide depression. The sinks are grouped in a semi-concentric pattern of three nested rings. The outer ring is an apparent tension zone containing ring fractures. The two inner rings are semi-circular chains of large sinkholes, ranging up to 100 m across and 50 m deep. Several sub-basins within the larger depression show local downwarping and possible incipient sinkholes. Permian Kaibab Formation limestone is the principal surface lithology; the limestone here is less than 15 m thick and is near its easternmost limit. Although surface rillenkarren are present, and the sinks are seen in the Kaibab limestone outcrops, the Kaibab is mainly a passive rock unit that has collapsed into solution cavities developed in underlying salt beds. Beneath the Kaibab is Coconino Sandstone, which overlies the Permian Schnebly Hill Formation, the unit containing the evaporite rocks-principally halite in the Corduroy Member. Evaporite karst in this part of the Holbrook basin is quite different from the eastern part, probably because of the westward disappearance of the Holbrook anticline, a structure that has major joint systems that help channel water down to the salt beds farther to the east. Also, the McCauley Sinks are near the western limits of the evaporites. The structure at McCauley Sinks suggests a compound breccia pipe, with multiple sinks contributing to the inward-dipping major depression. The Richards Lake depression, 5 km southeast of McCauley Sinks, is similar in form and size but contains only a single, central sinkhole. An apparent difference in hydrogeology at McCauley Sinks is their proximity to the adjacent, deeply incised, Chevelon Canyon drainage, but the hydrologic connections are unknown. The 3-km-wide McCauley Sinks karst depression, along with five other nearby depressions, provide substantial hydrologic catchment. Because of widespread

  19. How We Used NASA Lunar Set in Planetary Material Science Analog Studies on Lunar Basalts and Breccias with Industrial Materials of Steels and Ceramics (United States)

    Berczi, S.; Cech, V.; Jozsa, S.; Szakmany, G.; Fabriczy, A.; Foldi, T.; Varga, T.


    Analog studies play important role in space materials education. Various aspects of analogies are used in our courses. In this year two main rock types of NASA Lunar Set were used in analog studies in respect of processes and textures with selected industrial material samples. For breccias and basalts on the lunar side, ceramics and steels were found as analogs on the industrial side. Their processing steps were identified on the basis of their textures both in lunar and in industrial groups of materials.

  20. The petrology and chronology of NWA 8009 impact melt breccia: Implication for early thermal and impact histories of Vesta (United States)

    Liao, Shiyong; Hsu, Weibiao


    Studies of petrology, mineralogy and geochronology of eucrites are keys to reconstruct the thermal and impact history of 4 Vesta, the proposed parent body for HED meteorites. Here we report the petrography, mineralogy and geochemistry of NWA 8009, a newly found eucritic impact-melt breccia, and present SIMS U-Pb ages of zircon and phosphates. NWA 8009 consists of coarse- and fine-grained lithic and mineral clasts set in fine-grained recrystallized matrix. It was derived from a protolith of monomict non-cumulate eucrite. Evidence for intense shock metamorphism observed in NWA 8009 includes mosaicism, deformed exsolution lamellae and partial melting of pyroxene, melting and incipient flow of plagioclase, planar fractures and granular textures of zircon. These shock effects indicate NWA 8009 was subjected to an impact metamorphism with peak pressure of ∼50-60 GPa and post-shock temperature of ∼1160-1200 °C. NWA 8009 is among the most intensely shocked HEDs reported yet. After the impact, the sample was buried near the surface in target rocks and experienced rapid cooling (∼23 °C/h) and annealing, resulting in recrystallization of the matrix and devitrification of plagioclase and silica glasses. U-Pb isotopic system of apatite within plagioclase groundmass of lithic clasts is completely reset and constrains the timing of impact at 4143 ± 61 Ma, providing a new robust impact age on Vesta. Combined with the presence of synchronous impact resetting events, especially those recorded by Lu-Hf, Sm-Nd, and Pb-Pb isotopic systems, we identified a period of high impacts flux at ca. 4.1-4.2 Ga on Vesta. This impact flux occurred coincident with the uptick at ca. 4.1-4.2 Ga in impact age spectra of the moon, probably reflects widespread intense bombardment throughout the inner solar system at ca. 4.1-4.2 Ga. Based on evidence from zircon chemical zoning, petrographic occurrences, as well as the distinctive Zr/Hf ratios, we suggested that zircons in NWA 8009 have had a

  1. The K/T-boundary carbonate breccia succession at the Cantarell Field, Campeche Bay area: a representative example of the influence of the Chicxulub meteorite-impact event on the formation of extraordinary petroleum reservoirs (United States)

    Murillo-Muñeton, G.; Grajales-Nishimura, J. M.; Velasquillo-Martínez, L. G.; García-Hernández, J.


    Over the last decade, intense petroleum exploration and exploitation activities have been conducted in the Campeche Bay area. Detailed stratigraphic studies in this region based on seismic, well logs, and core data have allowed the documentation of numerous deep-water carbonate breccia deposits throughout the Cretaceous stratigraphic column. However, the uppermost carbonate breccia succession is very distinctive in terms of its sedimentological properties compared to the underlying and older calcareous breccia layers. The unique characteristics of this deposit include: its unusual thickness, stratigraphic position, distribution, and content of impact-metamorphic constituents. At the Cantarell field, this carbonate breccia sedimentary package is a representative example of how the Chuxulub meteorite-impact event influenced the formation of a remarkable carbonate reservoir. This deposit was the most important oil-producing stratigraphic horizon for long time in that field. Nevertheless, this reservoir is still important not only in that field but also in other fields in offshore Campeche. The K/T boundary carbonate breccia succession is a typical fining-upward deposit made up, from base to top, of three units. The 50 to 300-m thick, basal Unit 1 consists of a coarse-grained carbonate breccia. Unit 2 is a 10 to 20 m-thick, fine-grained carbonate breccia. The 25 to 30 m-thick, uppermost Unit 3 is a greenish interval of friable sand, silt and clay-sized constituents with abundant ejecta material. In some wells, a 10 to 20 m-thick, non-oil producing fine-grained calcareous breccia occurs interbedded within Unit 3. The K/T boundary carbonate sedimentary package is underlain and overlain by deep-water shaly calcareous facies of Upper Maastrichtian and Lower Paleocene age, respectively. Studies of cronostratigraphic-equivalent outcrop analogs of this K/T boundary carbonate reservoir carried out by the authors in the Sierra de Chiapas (El Guayal, Tabasco and Bochil, Chiapas

  2. Fluid origin and evolution of Cu-Pb-Zn mineralization in rhyolite breccias in the Lón area, southeastern Iceland (United States)

    Kremer, Christopher H.; Bird, Dennis K.


    Iceland, the landward extension of the Mid-Atlantic Ridge, hosts dilute, predominantly meteoric hydrothermal systems that rarely form base metal (Cu-Pb-Zn) mineralization. One occurrence of Cu-Pb-Zn mineralization in intrusive rhyolitic breccias is in the Lón area of southeastern Iceland. Petrographic, electron-probe, fluid inclusion, stable isotope, and U-Pb zircon dating analyses on samples from Lón constrain the conditions and timing of sulfide mineral formation. Observations of outcrops and hand samples suggest that hydrothermal fluids precipitated chalcopyrite, sphalerite, galena, quartz, epidote, chlorite and calcite in rhyolitic breccia pipes and adjacent basalt flows. The mean salinity of liquid-dominated, multi-phase fluid inclusions in quartz coeval with chalcopyrite inclusions in quartz is 4.2 wt% NaCl, and the mean trapping temperature is 332 °C, which is consistent with the results of δ34S geothermometry of coexisting galena and chalcopyrite. Calculated δ18O and δD values of fluids in equilibrium with epidote coeval with chalcopyrite range from - 5.2 to - 2.7 ± 0.1‰ and from - 35.9 to - 27.7 ± 0.1‰, respectively. The δ18O values of fluids in equilibrium with quartz coeval with chalcopyrite are up to 5‰ larger than those of fluids in equilibrium with late stage quartz precipitated after chalcopyrite. The U-Pb crystallization age of magmatic zircons in the rhyolite breccia is 2.6 ± 0.1 Ma, significantly younger than the proximal 3.7 to 7.3 Ma silicic intrusions of southeastern Iceland. Our results indicate that early-stage, mineralizing fluids derived from a mixture of meteoric water, seawater, and a minor magmatic water component exsolved from an evolved anatexis-produced melt. Late-stage fluids were derived exclusively from meteoric waters. Although anatectic dehydration melting of altered basalt produced millions of years of felsic magmatism in southeastern Iceland, only hydrothermal fluids that derived from a mixture of meteoric water

  3. The West Elk Breccia: Evidence of a Massive Volcanic Debris Avalanche in the Eastern Gunnison River Valley, West-Central Colorado, USA (United States)

    Whalen, P. J.; Ettensohn, F. R.


    The West Elk Breccia of the Gunnison River Valley in west-central Colorado is an Oligocene diamictite ascribed to a lahar origin by previous workers. In contrast, our work suggests that one or more volcanic debris avalanches that transformed to debris flows are a more likely depositional mechanism in the eastern Gunnison River valley and tributaries. We examined deposits over an area of 250 km2 for sedimentological and stratigraphic evidence of depositional mechanisms and flow rheology. Large blocks, or megaclasts, of stratified volcaniclastic deposits, which retain original stratigraphy, can be found over 30 km from the likely source volcano in a tuffaceous stream-gravel conglomerate. The most proximal conglomerate probably represents the transition from debris avalanche to debris flow as the initial avalanche bulked up and dilated during entry into the local drainage basins of the ancient Gunnison River and its tributaries. Mono-lithologic breccia beds of proximal deposits, almost entirely surrounded by the tuffaceous conglomerate, may represent megaclasts that dip at angles greater than normal stream gradient (up to 50 degrees or more with no thickening or thinning of beds). Some beds in distal deposits (>20 km from the source) show graded bedding and inverse grading, indicative of deposition by lahars; others contain breadcrust bombs, typically the product of dome collapse and block-and-ash flows. Jigsaw fracturing of individual clasts and megaclasts are further evidence of debris avalanche emplacement. Conversely, beds in proximal locations, which represent the steepest slopes of the ancient volcano, show sub-horizontal bedding of andesite and basaltic andesite. The presence of megaclasts is difficult to determine greater than 30 km from the source, and exposures are sparse in the most distal deposits, about 40 km from the source. Field observations and comparisons with Quaternary events suggest that the West Elk Breccia probably represents a series of sector

  4. On the origins of trapped helium, neon and argon isotopic variations in meteorites. I - Gas-rich meteorites, lunar soil and breccia. II - Carbonaceous meteorites. (United States)

    Black, D. C.


    Data are presented from stepwise heating experiments and total extractions on five meteorites: Kapoeta, Fayetteville, Holman Island, Cee Vee, and Pultusk. These data reveal the presence of four isotopically distinct trapped neon components. A comparison of trapped neon with trapped helium and argon in bulk analyses indicates the existence of correlated helium, neon and argon isotopic structures. Component B is attributed primarily to direct implantation of rare gas ions by the present day solar wind. Component C is identified with directly implanted low energy (1-10 Mev/n) solar flare rare gases. Component D is associated with rare gas ions implanted in meteoritic material by the primitive, pre-main sequence, solar wind. A fourth component, observed only in Kapoeta and the lunar fines and breccia, is tentatively attributed to parent body 'atmospheric' ions implanted in surface material by a solar wind induced electric field.

  5. Transient processes in Stromboli's shallow basaltic system inferred from dolerite and magmatic breccia blocks erupted during the 5 April 2003 paroxysm (United States)

    Renzulli, Alberto; Del Moro, Stefano; Menna, Michele; Landi, Patrizia; Piermattei, Marco


    We describe the mineralogy, geochemistry, and mesomicrostructure of fresh subvolcanic blocks erupted during the 5 April 2003 paroxysm of Stromboli (Aeolian Islands, Italy). These blocks represent ˜50 vol.% of the total erupted ejecta and consist of fine- to medium-grained basaltic lithotypes ranging from relatively homogeneous dolerites to strongly or poorly welded magmatic breccias. The breccia components are represented by angular fragments of dolerites entrapped in a matrix of vesiculated (lava-like to scoriae) crystal-rich (CR) basalt. All of the studied blocks are cognates with the CR basalt of the normal Strombolian activity or lavas and they are often coated by a few-centimeter thick layer of crystal-poor (CP) basaltic pumice erupted during the paroxysm. We suggest that they result from the rapid increase of pressure and related subvolcanic rock failure that occurred shortly before the 5 April 2003 explosion, when the uppermost portion of the edifice inflated and suffered brecciation as the result of the sudden rise of the gas-rich CP basalt that triggered the eruption. Dolerites and magmatic matrix of the breccias show major and trace element compositions that match those of the CR basalts erupted during normal Strombolian activity and effusive events at Stromboli volcano. Dolerites consist of (a) phenocrysts normally found in the CR basalts and (b) late-stage magmatic minerals such as sanidine, An60-28 plagioclase, Fe-Mn-rich olivines (Fo68-48), phlogopite, apatite, and opaque mineral pairs (magnetite and ilmenite), most of which are never found both in lava flows and scoriae erupted during the persistent explosive activity that characterizes typical Strombolian behavior. Subvolcanic crystallization of the Stromboli CR magma, leading to slowly cooled equivalents of basalts, could result from transient drainage of the magma from the summit craters to lower levels. Fingering and engulfing of the material that collapsed from the summit crater floor into the

  6. Breccia-cored columnar rosettes in a rubbly pahoehoe lava flow, Elephanta Island, Deccan Traps, and a model for their origin

    Directory of Open Access Journals (Sweden)

    Hetu Sheth


    Full Text Available Rubbly pahoehoe lava flows are abundant in many continental flood basalts including the Deccan Traps. However, structures with radial joint columns surrounding cores of flow-top breccia (FTB, reported from some Deccan rubbly pahoehoe flows, are yet unknown from other basaltic provinces. A previous study of these Deccan “breccia-cored columnar rosettes” ruled out explanations such as volcanic vents and lava tubes, and showed that the radial joint columns had grown outwards from cold FTB inclusions incorporated into the hot molten interiors. How the highly vesicular (thus low-density FTB blocks might have sunk into the flow interiors has remained a puzzle. Here we describe a new example of a Deccan rubbly pahoehoe flow with FTB-cored rosettes, from Elephanta Island in the Mumbai harbor. Noting that (1 thick rubbly pahoehoe flows probably form by rapid inflation (involving many lava injections into a largely molten advancing flow, and (2 such flows are transitional to ‘a’ā flows (which continuously shed their top clinker in front of them as they advance, we propose a model for the FTB-cored rosettes. We suggest that the Deccan flows under study were shedding some of their FTB in front of them as they advanced and, with high-eruption rate lava injection and inflation, frontal breakouts would incorporate this FTB rubble, with thickening of the flow carrying the rubble into the flow interior. This implies that, far from sinking into the molten interior, the FTB blocks may have been rising, until lava supply and inflation stopped, the flow began solidifying, and joint columns developed outward from each cold FTB inclusion as already inferred, forming the FTB-cored rosettes. Those rubbly pahoehoe flows which began recycling most of their FTB became the ‘a’ā flows of the Deccan.

  7. Bismoclite (BiOCl in the San Francisco de los Andes Bi–Cu–Au Deposit, Argentina. First Occurrence of a Bismuth Oxychloride in a Magmatic–Hydrothermal Breccia Pipe and Its Usefulness as an Indicator Phase in Mineral Exploration

    Directory of Open Access Journals (Sweden)

    Francisco J. Testa


    Full Text Available The rare bismuth oxychloride, bismoclite (BiOCl, has been identified in the weathered tourmaline–cemented, magmatic–hydrothermal breccia complex at the San Francisco de los Andes Bi–Cu–Au deposit, Argentina. A wide variety of supergene minerals were detected in the oxidized zone, but only preisingerite (Bi3(AsO42O(OH is intimately associated with bismoclite. Bismuth arsenate is present either as minor accessory phases or as traces in bismoclite-rich samples. This is the first documented occurrence of bismoclite in a porphyry-related, and magmatic–hydrothermal breccia pipe deposit. Bismoclite is interpreted to have formed by weathering of hypogene bismuthinite (Bi2S3, which originally occurred with arsenopyrite to cement the breccias. These appear to have reacted with O2- and HCl-bearing meteoric waters to produce pockets of supergene bismoclite–preisingerite assemblages. Bismoclite samples have been characterized by means of X-ray diffractometry (XRD, geochemistry, petrography, scanning electron microscopy (SEM, differential thermal analysis–thermogravimetry analysis (DTA–TGA and infrared analysis (IR providing useful insights and updated information regarding this rare bismuth oxychloride and associated arsenate mineral. The San Francisco de los Andes breccia complex shows similar geometry, morphology and internal organization as those found in traditional magmatic–hydrothermal breccias associated with Cu–Mo porphyry deposits. Bismoclite and preisingerite form due to the presence of hypogene Bi-bearing minerals followed by appropriate supergene conditions. These hypogene minerals commonly occur only as trace phases, or are entirely absent, in porphyry and related magmatic–hydrothermal breccia deposits. The scarcity of hypogene Bi–mineral phases in porphyry and related magmatic–hydrothermal breccia deposits is the main reason why bismoclite has not previously been reported in these types of deposits. The detection of

  8. Petrogenesis of Miller Range 07273, a new type of anomalous melt breccia: Implications for impact effects on the H chondrite asteroid (United States)

    Ruzicka, Alex M.; Hutson, Melinda; Friedrich, Jon M.; Rivers, Mark L.; Weisberg, Michael K.; Ebel, Denton S.; Ziegler, Karen; Rumble, Douglas; Dolan, Alyssa A.


    Miller Range 07273 is a chondritic melt breccia that contains clasts of equilibrated ordinary chondrite set in a fine-grained (shapes for coarse metal grains, unusual internal textures and compositions for coarse metal, a matrix composed chiefly of clinoenstatite and omphacitic pigeonite, and troilite veining most common in coarse olivine and orthopyroxene. These features can be explained by a model involving impact into a porous target that produced brief but intense heating at high pressure, a sudden pressure drop, and a slower drop in temperature. Olivine and orthopyroxene in chondrule clasts were the least melted and the most deformed, whereas matrix and troilite melted completely and crystallized to nearly strain-free minerals. Coarse metal was largely but incompletely liquefied, and matrix silicates formed by the breakdown during melting of albitic feldspar and some olivine to form pyroxene at high pressure (>3 GPa, possibly to 15-19 GPa) and temperature (>1350 °C, possibly to ≥2000 °C). The higher pressures and temperatures would have involved back-reaction of high-pressure polymorphs to pyroxene and olivine upon cooling. Silicates outside of melt matrix have compositions that were relatively unchanged owing to brief heating duration.

  9. The Halite-Bearing Zag and Monahans (1998) Meteorite Breccias: Shock Metamorphism, Thermal Metamorphism and Aqueous Alteration on the H-Chondrite Parent Body (United States)

    Rubin, Alan E.; Zolensky, Michael E.; Bodnar, Robert J.


    Zag and Monahans (1998) are H-chondrite regolith breccias comprised mainly of lightcolored metamorphosed clasts, dark clasts that exhibit extensive silicate darkening, and a halite-bearing clastic matrix. These meteorites reflect a complex set of modification processes that occurred on the H-chondrite parent body. The light-colored clasts are thermally metamorphosed H5 and H6 rocks that were fragmented and deposited in the regolith. The dark clasts formed from light-colored clasts during shock events that melted and mobilized a significant fraction of their metallic Fe-Ni and troilite grains. The clastic matrices of these meteorites are rich in solar-wind gases. Parent-body water was required to cause leaching of chondri tic minerals and chondrule glass; the fluids became enriched in Na, K, CI, Br, AI, Ca, Mg and Fe. Evaporation of the fluids caused them to become brines as halides and alkalies became supersaturated; grains of halite (and, in the case of Monahans (1998), halite with sylvite inclusions) precipitated at low temperatures (less than or equal to 100 C) in the porous regolith. In both meteorites fluid inclusions were trapped inside the halite crystals. Primary fluid inclusions were trapped in the growing crystals; secondary inclusions formed subsequently from fluid trapped within healed fractures.

  10. Mineralized breccia clasts: a window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru) (United States)

    Rottier, Bertrand; Kouzmanov, Kalin; Casanova, Vincent; Bouvier, Anne-Sophie; Baumgartner, Lukas P.; Wälle, Markus; Fontboté, Lluís


    Cerro de Pasco (Peru) is known for its large epithermal polymetallic (Zn-Pb-Ag-Cu-Bi) mineralization emplaced at shallow level, a few hundred meters below the paleo-surface, at the border of a large diatreme-dome complex. Porphyry-style veins crosscutting hornfels and magmatic rock clasts are found in the diatreme breccia and in quartz-monzonite porphyry dikes. Such mineralized veins in clasts allow investigation of high-temperature porphyry-style mineralization developed in the deep portions of magmatic-hydrothermal systems. Quartz in porphyry-style veins contains silicate melt inclusions as well as fluid and solid mineral inclusions. Two types of high-temperature (> 600 °C) quartz-molybdenite-(chalcopyrite)-(pyrite) veins are found in the clasts. Early, thin (1-2 mm), and sinuous HT1 veins are crosscut by slightly thicker (up to 2 cm) and more regular HT2 veins. The HT1 vein quartz hosts CO2- and sulfur-rich high-density vapor inclusions. Two subtypes of the HT1 veins have been defined, based on the nature of mineral inclusions hosted in quartz: (i) HT1bt veins with inclusions of K-feldspar, biotite, rutile, and minor titanite and (ii) HT1px veins with inclusions of actinolite, augite, titanite, apatite, and minor rutile. Using an emplacement depth of the veins of between 2 and 3 km (500 to 800 bar), derived from the diatreme breccia architecture and the supposed erosion preceding the diatreme formation, multiple mineral thermobarometers are applied. The data indicate that HT1 veins were formed at temperatures > 700 °C. HT2 veins host assemblages of polyphase brine inclusions, generally coexisting with low-density vapor-rich inclusions, trapped at temperatures around 600 °C. Rhyolitic silicate melt inclusions found in both HT1 and HT2 veins represent melt droplets transported by the ascending hydrothermal fluids. LA-ICP-MS analyses reveal a chemical evolution coherent with the crystallization of an evolved rhyolitic melt. Quartz from both HT1 and HT2 veins

  11. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy) (United States)

    Fulignati, P.; Marianelli, P.; Proto, M.; Sbrana, A.


    This work is focused on juvenile components and some cognate xenoliths of the Breccia Museo (BM) unit. The BM is a coarse-grained proximal unit of the caldera-forming phase of the Ignimbrite Campana (IC) eruption, southern Italy. The BM products show some peculiar characteristics that distinguish them from the other IC deposits. In particular, different types of pumice fragments constitute the juvenile fraction and their crystal contents are remarkably higher than the other IC units. Slightly porphyritic and highly porphyritic trachytic to phonolitic pumices were distinguished in each sample and investigated separately for mineralogy, matrix glass composition, melt and fluid inclusion studies. Most feldspar crystals may have formed at the margins of the magma chamber and the crystal content of both types of pumice fragments can be ascribed to variable entrainment of these crystals (from the solidification front) by the melt. Variably porphyritic (<5 to 30 vol% phenocrysts) pumice and completely crystallized nodules may represent samples of progressively crystallized magma at the chamber walls. Crystallization temperatures of magmas and xenoliths were estimated using two independent methods: a two-feldspar geothermometer and the homogenization temperatures of melt and fluid inclusions in clinopyroxene and K-feldspar. The decrease in the estimated crystallization temperatures from the melt (980-850°C) to the nodules (840-820°C) is consistent with a model of decreasing temperature at a magma chamber solidification front. The study of xenoliths revealed that exsolution of a hypersaline aqueous fluid phase occurred at the peripheral parts of the magma chamber.

  12. Reclassification of Villalbeto de la Peña—Occurrence of a winonaite-related fragment in a hydrothermally metamorphosed polymict L-chondritic breccia (United States)

    Bischoff, Addi; Dyl, Kathryn A.; Horstmann, Marian; Ziegler, Karen; Wimmer, Karl; Young, Edward D.


    The Villalbeto de la Peña meteorite that fell in 2004 in Spain was originally classified as a moderately shocked L6 ordinary chondrite. The recognition of fragments within the Villalbeto de la Peña meteorite clearly bears consequences for the previous classification of the rock. The oxygen isotope data clearly show that an exotic eye-catching, black, and plagioclase-(maskelynite)-rich clast is not of L chondrite heritage. Villalbeto de la Peña is, consequently, reclassified as a polymict chondritic breccia. The oxygen isotope data of the clast are more closely related to data for the winonaite Tierra Blanca and the anomalous silicate-bearing iron meteorite LEW 86211 than to the ordinary chondrite groups. The REE-pattern of the bulk inclusion indicates genetic similarities to those of differentiated rocks and their minerals (e.g., lunar anorthosites, eucritic, and winonaitic plagioclases) and points to an igneous origin. The An-content of the plagioclase within the inclusion is increasing from the fragment/host meteorite boundary (approximately An10) toward the interior of the clast (approximately An52). This is accompanied by a successive compositionally controlled transformation of plagioclase into maskelynite by shock. As found for plagioclase, compositions of individual spinels enclosed in plagioclase (maskelynite) also vary from the border toward the interior of the inclusion. In addition, huge variations in oxygen isotope composition were found correlating with distance into the object. The chemical and isotopical profiles observed in the fragment indicate postaccretionary metamorphism under the presence of a volatile phase.

  13. Geology and geochemistry of Zn-Pb-Ag vein-breccias at Whoopee Creek, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998 (United States)

    Schmidt, Jeanine M.


    Zn-Pb-Ag mineralization at the Whoopee Creek occurrence extends over an area of at least 150 × 300 m with a very subtle surface expression. Sphalerite- and galena-bearing vein-breccias cut fine-grained sandstones, siltstones, and lesser shales of the Upper Devonian to Lower Mississippian Endicott Group, and possibly the Isikut Member of the Kayak Shale. Most samples of sulfide-bearing rock contain 2–38 percent combined Pb+Zn, with high Ag concentrations (as much as 380 ppm) and a few enriched Au values (as much as 1 ppm). Soils with 100– >2000 ppm Zn, 100–10,000 ppm Pb, and elevated Ag and Cd concentrations define a broad belt overlying much, but not all, of the mineralized float.The Whoopee Creek occurrence is a high-grade example of a series of vein-breccia prospects occurring in Endicott Group rocks across the central and western Brooks Range. Although they have few analogs worldwide, they appear to be the products of large-scale fluid transport, possibly related to dewatering of one or a series of sedimentary basins during a period of Mississippian extension and related high heat flow.

  14. Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust (United States)

    Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin


    Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the

  15. Origin and significance of postore dissolution collapse breccias cemented with calcite and barite at the Meikle gold deposit, Northern Carlin trend, Nevada (United States)

    Emsbo, P.; Hofstra, A.H.


    The final event in a complicated hydrothermal history at the Meikle gold deposit was gold deficient but caused extensive postore dissolution of carbonate, collapse brecciation, and precipitation of calcite and barite crystals in the resulting cavities. Although previously interpreted to be part of the Carlin-type hydrothermal system, crosscutting relationships and U-Th-Pb geochronology constrain this hydrothermal event to late Pliocene time (ca. 2 Ma), nearly 36 Ma after ore formation. Mineralogic, fluid inclusion, and stable isotope data indicate that postore hydrothermal fluids were reduced, H2S-rich, unevolved meteoric waters ((??18O = -17???) of low temperature (ca. 65??C). The ??18O values of barite and calcite indicate that these minerals were in isotopic equilibrium, requiring that barite SO4 was derived from the oxidation of reduced sulfur; however, preexisting sulfides in breccia cavities were not oxidized. The ??34S (15???) values of barite are higher than those of local bulk sulfide and supergene alunite indicating that SO4 was not derived from supergene oxidation of local sulfide minerals. The 15 per mil ??34S value suggests that the H2S in the fluids may have been leached from sulfur-rich organic matter in the local carbonaceous sedimentary rocks. A reduced H2S-rich fluid is also supported by the bright cathodoluminescence of calcite which indicates that it is Mn rich and Fe poor. Calcite has a narrow range of ??13C values (0.3-1.8???) that are indistinguishable from those of the host Bootstrap limestone, indicating that CO2 in the fluid was from dissolution of the local limestone. These data suggest that dissolution and brecciation of the Bootstrap limestone occurred where H2S-rich fluids encountered more oxidizing fluids and formed sulfuric acid (H2SO4). Intense fracturing in the mine area by previous structural and hydrothermal events probably provided conduits for the descent of oxidized surface water which mixed with the underlying H2S-rich waters

  16. Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy: Chapter 7 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites (United States)

    Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob


    The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in


    Directory of Open Access Journals (Sweden)

    Diego Salvador Fernández-Sánchez


    Full Text Available El Chaparral es un yacimiento ubicado en Villaluenga del Rosario (Cádiz, España, caracterizado por presentar un contexto sedimentológico propio de sistemas exokársticos. Su registro arqueológico está dominado por restos de macrofauna y microfauna cuyo análisis ha arrojado cronologías de entre 1-1,2 Ma, por tanto con adscripción al Pleistoceno Inferior. Desde su descubrimiento en 2009, se vio la dificultad de su excavación por la gran presencia de bloques cementados en brechas de arcilla compacta. Esta problemática obligó a diseñar una metodología propia que permitiese la recuperación controlada de los bloques de brecha para su posterior tratamiento en laboratorio. En este trabajo presentamos la metodología desarrollada durante estos trabajos, así como los resultados obtenidos gracias a su aplicación. ENGLISH: El Chaparral is a paleontological site (Villaluenga del Rosario, Cádiz, Spain characterized by a sedimentological context typical of exokarstic systems. Macro- and microfaunal analysis indicates a chronology between 1–1.2 Ma, placing this site on the Early Pleistocene. From its discovery, El Chaparral has presented an excavation challenge, as it contains cemented blocks of compact clay breccia. This forced us to design a methodology allowing controlled recovery of breccia blocks for subsequent treatment in the laboratory. In this paper, we describe the methodology and present the results of our analysis.

  18. Amphibian acoustic data from the Arizona 1, Pinenut, and Canyon breccia pipe uranium mines in Arizona (United States)

    Hinck, Jo E.; Hossack, Blake R.; Honeycutt, Richard


    The data consists of a summary of amphibian acoustic recordings at Canyon, Arizona 1, and Pinenut mines near the Grand Canyon. USGS is currently conducting biological surveys associated with uranium mines on federal lands in Arizona. These surveys include determining the composition of the local amphibian community. Original raw acoustic recordings used to create this summary data table are archived at Columbia Environmental Research Center.

  19. Preserved Flora and Organics in Impact Melt Breccias: Implications for Capturing Past Life on Mars (United States)

    Schultz, P. H.; Harris, R. S.; Clemett, S.; Thomas-Keprta, K.


    At least seven impact glass-bearing deposits have been documented in the Argentine stratigraphy, each recording separate events between the Holocene and late Miocene [1,2]. Detailed evidence for their origin by impact includes: planar deformation features (PDFs in quartz, feldspars, pyroxene, olivine, etc.), asymmetric isotropization (i.e., alternate-twin deformation) in plagioclase, diaplectic phases, ultra-high temperature melting (e.g., lechatelierite, molten rutile) and decomposition (e.g., baddeleyite), and quench textures around minerals, e.g., beta-crystobalite, etc. [1-3]. Incorporation of materials from depth indicates that this was not an airburst but a series of crater-forming impacts. Many hand samples also contain relicts of extant biota. Scanning electron microprobe (SEM) images reveal preservation of delicate forms including: striated layers between vesicular impact glass and parallel vein-like features at higher magnification. The striated patterns resemble vascular bundles of the mesophyll (ground tissue) of a plant. Identifiable parts of the plant anatomy, e.g. papillae and cell walls, contain skeletal magnetite crystals and high-temperature, i.e., phases indicating that vitreous fossilization occurred at extremely high temperatures and rapid quench rates. The morphology is generally similar to contemporary regional grasses (pampas grass) including small spherules (papilla). The intricate forms (20nm to 20mm) indicate features rapidly preserved rather than simple impressions. Reaction zones (vesiculation and quenched minerals) along the interface between the melt and entrained plants indicate rapid quenching. Compositional mapping reveals the presence of insignificant levels of carbon, but chemical analyses confirm the high silica content (> 60%). Various analytical techniques (micro-Raman, TEM/SEM, and μltra-L2MS) further reveal the preserved organic materials, including tetracyclic pyrrolines, essential members of the group of porphyrin species that are produced through the thermal degradation of chlorophyll with heterogeneous survival of abundant C and N. The survival and preservations of organics within hydrous pockets in rapidly quenched impact glasses may provide a new strategy for identifying biomarkers of possible early life on ancient Mars. Impact melt could encapsulate and preserve this record. It is likely that the porous nature of the target (loess), which characterizes much of the Martian surface, would ensure flash-heat preservation under highly reducing conditions [4]. [1] Schultz, P. H. et al. (2004), EPSL, v. 219, 221-238; [2] Schultz et al. (2006), Schultz, P. H. et al. (2006), MAPS, v. 41, 749-771; [3] Harris, R. S. and Schultz, P. H. (2007), GSA abstracts 39, 371 [4] Harris, R. S., and Schultz, P. H. (2007), LPSC 38, no. 2306.

  20. Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. (United States)

    Agee, Carl B; Wilson, Nicole V; McCubbin, Francis M; Ziegler, Karen; Polyak, Victor J; Sharp, Zachary D; Asmerom, Yemane; Nunn, Morgan H; Shaheen, Robina; Thiemens, Mark H; Steele, Andrew; Fogel, Marilyn L; Bowden, Roxane; Glamoclija, Mihaela; Zhang, Zhisheng; Elardo, Stephen M


    We report data on the martian meteorite Northwest Africa (NWA) 7034, which shares some petrologic and geochemical characteristics with known martian meteorites of the SNC (i.e., shergottite, nakhlite, and chassignite) group, but also has some unique characteristics that would exclude it from that group. NWA 7034 is a geochemically enriched crustal rock compositionally similar to basalts and average martian crust measured by recent Rover and Orbiter missions. It formed 2.089 ± 0.081 billion years ago, during the early Amazonian epoch in Mars' geologic history. NWA 7034 has an order of magnitude more indigenous water than most SNC meteorites, with up to 6000 parts per million extraterrestrial H(2)O released during stepped heating. It also has bulk oxygen isotope values of Δ(17)O = 0.58 ± 0.05 per mil and a heat-released water oxygen isotope average value of Δ(17)O = 0.330 ± 0.011 per mil, suggesting the existence of multiple oxygen reservoirs on Mars.

  1. Impact Amber, Popcorn, and Pathology: The Biology of Impact Melt Breccias and Implications for Astrobiology (United States)

    Harris, R. S.; Schultz, P. H.


    We present evidence that superheated impact melts can trap and preserve both floral and faunal remains forming "impact amber." We discuss terrestrial occurrences of impact amber and the strategy it suggests in searching for evidence of past life on other

  2. Northwest Africa 428: Impact-induced Annealing of an L6 Chondrite Breccia (United States)

    Rubin, Alan E.


    Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type-6, shocked to stage S4-S5, brecciated, and annealed to approximately petrologic type-4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type-6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 +/- 150 micron), troilite (100 +/- 170 micron), and plagioclase (20-60 micron) grains, and relatively homogeneous olivine (Fa(sub 24.4 +/- 0.6)), low-Ca pyroxene (FS(sub 2.5+/- 0,4) , and plagioclase (Ab(sub 84.2 +/- 0.4) compositions. The petrographic criteria that indicate shock stage S4-S5 include the presence of chromite veinlets, chromite-plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe-Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low-Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low-Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post-shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post-shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type-4 (approximately 600-700 C) during annealing, the low-Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post-metamorphic, post-shock annealing because any A1-26 that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.

  3. Looking for a Source of Water in Martian Basltic Breccia NWA 7034 (United States)

    Muttik, N.; Agee, C. B.; McCubbin, F. M.; McCuttcheon, W. A.; Provencio, P. P.; Keller, L. P.; Santos, A. R..; Shearer, C. K.


    The recently described martian meteorite NWA 7034 has high water content compared to other SNC meteorites. Deuterium to hydrogen isotope ratio measurements indicates that there are two distinct delta-D components in NWA 7034, a low temperature (150-500degC) light component around -100per mille and a high temperature (300-1000degC) heavy component around +300per mille. NWA 7034 contains iron-rich phases that are likely secondary aqueous alteration products. They are commonly found as spheroidal objects of various sizes that are often rich in Fe-Ti oxides and possibly iron hydroxides. Iron oxides and oxyhydroxides are very common in weathered rocks and soils on Earth and Mars and they are important components of terrestrial and Martian dust. In NWA 7034 iron-rich phases are found throughout the fine-grained basaltic groundmass of the meteorite. The total amount of martian H2O in NWA 7034 is reported to be 6000 ppm, and in this study we attempt to determine the phase distribution of this H2O by texturally describing and characterizing hydrous phases in NWA 7034, using Fourier transform infrared spectrometry (FTIR) and transmission electron microscopy (TEM).

  4. Analysis of slope stabillity and controlling factor on residual soil of folded breccia formation (United States)

    Rachman, S.; Muslim, D.; Sulaksana, N.; Burhannuddinnur, M.; Pramudito, H.


    This research aims to obtain a potential landslide zonation. Theresearch area is located in Depok Village and surroundings, Jatigede District, Sumedang regency, West Java province. Geographically located at the point of coordinates 06°50‧33-06°51‧00″ South Latitude and 108°05‧37 ″- 108°06‧17″ East Longitude. This research is intended to mapping the identification of landslide and soil properties data. The mapping and soil sampling were conducted only in the research area. The methodology used was mapping and finding the safety factor with Bishop Analysis. The morphological condition of the study area indicates moderate conditions undulating hilly area with slopes between 15° - 40°, with a tick soil layer was covering the slope. This condition is greatly affected by rainfall. This research is to know the type of ground movement along with the value of the safety factor of the slope so that can provide suggestions for overcoming instability in the study area.

  5. Geochemical studies of impact breccias and country rocks from the El'gygytgyn impact structure, Russia


    Raschke, Ulli; Schmitt, Ralf Thomas; McDonald, Iain; Reimold, Wolf Uwe; Mader, Dieter; Koeberl, Christian


    The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk-Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been inves...

  6. Spade: An H Chondrite Impact-melt Breccia that Experienced Post-shock Annealing (United States)

    Rubin, Alan E.; Jones, Rhian H.


    The low modal abundances of relict chondrules (1.8 Vol%) and of coarse (i.e. >= 2200 micron-size) isolated mafic silicate grains (1.8 Vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite-plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low-Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe-Ni cooled rapidly below the Fe-Ni solws and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite-plagioclase assemblages, and the impact-melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post-shock annealing (probably to stage Sl). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post-shock annealing. This may have been a common process on ordinary chondrites (OC) asteroids.

  7. A Breccia of Ureilitic and C2 Carbonaceous Chondrite Materials from Almahata Sitta: Implications for the Regolith of Urelitic Asteroids (United States)

    Goodrich, C. A.; Fioretti, A. M.; Zolensky, M.; Fries, M.; Shaddad, M.; Kohl, I.; Young, E.; Jenniskens, P.


    The Almahata Sitta (AhS) polymict ureilite is the first meteorite to originate from a spectrally classified asteroid (2008 TC3) [1-3], and provides an unprecedented opportunity to correlate properties of meteorites with those of their parent asteroid. AhS is also unique because its fragments comprise a wide variety of meteorite types. Of approximately140 stones studied to-date, 70% are ureilites (carbon-rich ultramafic achondrites) and 30% are various types of chondrites [4,5]. None of these show contacts between ureilitic and chondritic lithologies. It has been inferred that 2008 TC3 was loosely aggregated, so that it disintegrated in the atmosphere and only its most coherent clasts fell as individual stones [1,3,5]. Understanding the structure and composition of this asteroid is critical for missions to sample asteroid surfaces. We are studying [6] the University of Khartoum collection of AhS [3] to test hypotheses for the nature of 2008 TC3. We describe a sample that consists of both ureilitic and chondritic materials.

  8. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia (United States)

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.


    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  9. Pre-mining trace element and radiation exposure to biota from a breccia pipe uranium mine in the Grand Canyon (Arizona, USA) watershed. (United States)

    Hinck, Jo Ellen; Cleveland, Danielle; Brumbaugh, William G; Linder, Greg; Lankton, Julia


    The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9-31.4 μg/g) and Se (5.81-7.20 μg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.

  10. Pre-mining trace element and radiation exposure to biota from a breccia pipe uranium mine in the Grand Canyon (Arizona, USA) watershed (United States)

    Hinck, Jo E.; Cleveland, Danielle; Brumbaugh, William G.; Linder, Greg; Lankton, Julia S.


    The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (<10–17 pCi/g) and rodents (<10–43.5 pCi/g). Concentrations of U, Tl, Pb, Ni, Cu, and As in vegetation downwind from the mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9–31.4 μg/g) and Se (5.81–7.20 μg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.

  11. 40Ar/39Ar age of the Rotoiti Breccia and Rotoehu Ash, Okataina Volcanic Complex, New Zealand, and identification of heterogeneously distributed excess 40Ar in supercooled crystals

    DEFF Research Database (Denmark)

    Flude, Stephanie; Storey, Michael


    /39Ar stepped heating experiments on single K-feldspar crystals reveal the presence of heterogeneously distributed excess 40Ar, preferentially released at lower temperature steps (most likely from fluid/melt inclusions), which cannot reliably be characterised by, or corrected for using isotope...

  12. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona (United States)

    Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy


    This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other radionuclides are unknown for these biota.

  13. Chemistry, radiation and histopathology data in support of manuscript "Pre-mining trace element and radiation exposure to biota from a breccia pipe uranium mine in the Grand Canyon (Arizona, USA) watershed" (United States)

    Hinck, Jo E.; Cleveland, Danielle; Lankton, Julia S.


    The risks to wildlife and humans from uranium (U) mining to the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This data was collected to characterize the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathologies in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine.

  14. UNAM Scientific Drilling Program of Chicxulub Impact Structure-Evidence for a 300 kilometer crater diameter (United States)

    Urrutia-Fucugauchi, J.; Marin, L.; Trejo-Garcia, A.

    As part of the UNAM drilling program at the Chicxulub structure, two 700 m deep continuously cored boreholes were completed between April and July, 1995. The Peto UNAM-6 and Tekax UNAM-7 drilling sites are ˜150 km and 125 km, respectively, SSE of Chicxulub Puerto, near the crater's center. Core samples from both sites show a sequence of post-crater carbonates on top of a thick impact breccia pile covering the disturbed Mesozoic platform rocks. At UNAM-7, two impact breccia units were encountered: (1) an upper breccia, mean magnetic susceptibility is high (˜55 × 10-6 SI units), indicating a large component of silicate basement has been incorporated into this breccia, and (2) an evaporite-rich, low susceptibility impact breccia similar in character to the evaporite-rich breccias observed at the PEMEX drill sites further out. The upper breccia was encountered at ˜226 m below the surface and is ˜125 m thick; the lower breccia is immediately subjacent and is >240 m thick. This two-breccia sequence is typical of the suevite-Bunte breccia sequence found within other well preserved impact craters. The suevitic upper unit is not present at UNAM-6. Instead, a >240 m thick evaporite-rich breccia unit, similar to the lower breccia at UNAM-7, was encountered at a depth of ˜280 m. The absence of an upper breccia equivalent at UNAM-6 suggests some portion of the breccia sequence has been removed by erosion. This is consistent with interpretations that place the high-standing crater rim at 130-150 km from the center. Consequently, the stratigraphic observations and magnetic susceptibiity records on the upper and lower breccias (depth and thickness) support a ˜300 km diameter crater model.

  15. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada (United States)

    Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.


    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  16. Production of Synthetic Lunar Simulants Project (United States)

    National Aeronautics and Space Administration — Zybek Advanced Products has proven the ability to produce industrial quantities of lunar simulant materials, including glass, agglutinate and melt breccias. These...

  17. Age and significance of the Quaternary cemented deposits of the Duje Valley (Picos de Europa, Northern Spain) (United States)

    Villa, Elisa; Stoll, Heather; Farias, Pedro; Adrados, Luna; Edwards, R. Lawrence; Cheng, Hai


    Cemented calcareous breccias appear in the Picos de Europa (Cantabrian Mountains, Spain) resting on glacially abraded surfaces and covered by moraines. U/Th dating of the calcite coating the clasts was successful in two samples, the oldest one indicating that the breccias accumulated during or prior to Marine Isotope Stage (MIS) 11, and the youngest indicating later cementation during MIS 8. The former introduces a limit for the age of the glaciation preceding the breccias, which cannot correspond to an event younger than MIS 12. This is the oldest absolute age so far obtained for intercalated glacial/interglacial deposits of the Iberian Peninsula.

  18. Apollo 16 - Impact melt sheets, contrasting nature of the Cayley plains and Descartes mountains, and geologic history (United States)

    Mckinley, J. P.; Taylor, G. J.; Keil, K.; Ma, M.-S.; Schmitt, R. A.


    Apollo 16 stations four and five rake samples have been examined petrographically and by electron microprobe and INAA. Lithologic abundances support the idea (Korontev, 1981) that the variation of soil composition at Apollo 16 results from mixing between a component represented by station five and components much like either the dimict breccias or feldspathic fragmental breccias in composition. Pyroxene, olivine, and coexisting plagioclase compositions from within the anorthosite portions of dimict breccias bridge the gap between the Mg-rich and ferroan anorthosite fields. Analyses from associated cumulate and granulitic clasts indicate that they are the source of the intermediate material. Dimict breccias formed about 3.92 b.y. ago, the nectaris event occurred 3.84-3.92 b.y. ago, and the Cayley plains were deposited as a result of the Imbrium event sometime later than 3.84 b.y.

  19. 3.1 Ga crystallization age for magnesian and ferroan gabbro lithologies in the Northwest Africa 773 clan of lunar meteorites (United States)

    Shaulis, B. J.; Righter, M.; Lapen, T. J.; Jolliff, B. L.; Irving, A. J.


    The Northwest Africa (NWA) 773 clan of meteorites is a group of paired and/or petrogenetically related stones that contain at least six different lithologies: magnesian gabbro, ferroan gabbro, anorthositic gabbro, olivine phyric basalt, regolith breccia, and polymict breccia. Uranium-lead dates of baddeleyite in the magnesian gabbro, ferroan gabbro, and components within breccia lithologies of paired lunar meteorites NWA 773, NWA 3170, NWA 6950, and NWA 7007 indicate a chronologic link among the meteorites and their components. A total of 50 baddeleyite grains were analyzed and yielded weighted average 207Pb-206Pb dates of 3119.4 ± 9.4 (n = 27), 3108 ± 20 (n = 13), and 3113 ± 15 (n = 10) Ma for the magnesian gabbro, ferroan gabbro, and polymict breccia lithologies, respectively. A weighted average date of 3115.6 ± 6.8 Ma (n = 47/50) was calculated from the baddeleyite dates for all lithologies. A single large zircon grain found in a lithic clast in the polymict breccia of NWA 773 yielded a U-Pb concordia date of 3953 ± 18 Ma, indicating a much more ancient source for some of the components within the breccia. A U-Pb concordia date of apatite and merrillite grains from the magnesian gabbro and polymict breccia lithologies in NWA 773 is 3112 ± 33 Ma, identical to the baddeleyite dates. Magnesian and ferroan gabbros, as well as the dated baddeleyite and Ca-phosphate-bearing detritus in the breccia lithologies, formed during the same igneous event at about 3115 Ma. These data also strengthen proposed petrogenetic connections between magnesian and ferroan gabbro lithologies, which represent some of the youngest igneous rocks known from the Moon.

  20. Polyphased brecciation syn- to post-tectonic versus continuous carbonation illustrated by the Iberia-Newfoundland margins basement (United States)

    Picazo, S.; Faucheux, V.; Malvoisin, B.; Lafay, R.; Bouvier, A. S.; Baumgartner, L. P.; Vennemann, T. W.


    The relationship between carbonation and brecciation during and after exhumation of ultramafic rocks to the seafloor remains fuzzy. We describe 3 types of breccias in the IODP cores Sites 1068, 1070 from Iberia margin and Site1277 from Newfoundland margin; 1) tectonic breccias; 2) hydrothermal breccias and 3) sedimentary breccias. The aim is to characterize the setting (i.e. syn-tectonic and/or post-tectonic) of brecciation and carbonation. For this we combine the study of specific features of each type of breccias textures to the textures and temperature of carbonate formation. We differentiate carbonate replacing serpentinite from the carbonate growing in a sedimentary environment. We combine microprobe, SEM and cathodoluminescence with analyses of ∂18O for carbonates. We propose that carbonate replacing serpentine initiates in tectonic breccias and is characterized by carbonate growth in the mesh core as well as veining surrounding serpentinite clasts. In hydrothermal breccias, carbonate is growing in a vein setting, and in sedimentary breccias, carbonate is either replacing serpentinite, or growing as a fine-grained matrix. Cathodoluminescence tell us about the redox conditions of the fluids responsible for carbonate grain growth. Preliminary results on ∂18O from ophicarbonates replacing serpentine give us a higher temperature than for the sedimentary carbonates. In Site 1070 serpentinite, no replacement features were observed in mesh cores or carbonate veins do not surround serpentine clasts, thus we interpret that carbonation is only post-tectonic in this localized area (Site 1070), whereas carbonation starts while the detachment fault is still active in Sites 1068 and 1277. Ultimately, we use equilibrium thermodynamic modeling to calculate the stability field and composition of carbonates as a function of fluid/rock ratio and temperature.

  1. Golo rebro road tunnel crossing the Labot/Lavanttal tectonic zone


    Borut Petkovšek; Magda Čarman; Tomaž Budkovič


    The motorway tunnel Golo rebro is situated on Styrian motorway. It intersects eastern part of Konjiška gora. From the north to the south it intersects the following rocks: paleozoicclastic rocks (inner part of the Labot/Lavanttal fault zone), slope debris with clay matrix (probabbly of tertiary or quartenary age), dolomite, dolomitized limestone and limestone,carbonate breccia and dolomite, dolomitized limestone and limestone, which are partly converted into tectonic breccia. Carbonate rocks ...

  2. Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields (United States)

    Grajales-Nishimura, José M.; Cedillo-Pardo, Esteban; Rosales-Domínguez, Carmen; Morán-Zenteno, Dante J.; Alvarez, Walter; Claeys, Philippe; Ruíz-Morales, José; García-Hernández, Jesús; Padilla-Avila, Patricia; Sánchez-Ríos, Antonieta


    Stratigraphic and mineralogic studies of Cretaceous-Tertiary (K-T) boundary sections demonstrate that the offshore oil-producing breccias and seals from oil fields in the Campeche marine platform are of K-T boundary age and that their mode of formation is probably related to the K-T impact event at Chicxulub. The oil-producing carbonate breccia and the overlying dolomitized ejecta layer (seal) found in several wells on the Campeche marine platform contain typical Chicxulub impact products, such as shocked quartz and plagioclase, and altered glass. These offshore units are correlated with thick (˜50 300 m) onshore breccia and impact ejecta layers found at the K-T boundary in the Guayal (Tabasco) and Bochil (Chiapas) sections. Regionally the characteristic sequence is composed of, from base to top, coarse-grained carbonate breccia covered by an ejecta bed and typical K-T boundary clay. The onshore and offshore breccia sequences are likely to have resulted from major slumping of the carbonate platform margin triggered by the Chicxulub impact. Successive arrival times in this area, ˜350 600 km from the crater, of seismic shaking, ballistic ejecta, and tsunami waves fit the observed stratigraphic sequence. The K-T breccia reservoir and seal ejecta layer of the Cantarell oil field, with a current daily production of 1.3 million barrels of oil, are probably the most important known oil-producing units related to an impact event.

  3. Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota (United States)

    Hayes, Timothy Scott


    Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the

  4. Feldspar Variability in Northwest Africa 7034 (United States)

    Santos, A. R.; Lewis, J. A.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.


    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that provides important information about the rocks and processes of the martian crust (e.g., 1-3). Additional information can be gleaned from the components of the breccia. These components, specifically those designated as clasts, record the history of their parent rock (i.e., the rock that has been physically broken down to produce the clasts). In order to study these parent rocks, we must first determine which clasts within the breccia are de-rived from the same parent. Previous studies have be-gun this process (e.g., 4), but the search for genetic linkages between clasts has not integrated clasts with different grain sizes. We begin to take this approach here, incorporating igneous-textured clasts with both fine and coarse mineral grains. In NWA 7034, almost all materials (clasts and breccia matrix) are composed of the same mineral assemblages (feldspar, pyroxene, Fe-Ti oxides, apatite) with largely the same mineral compositions [1, 4-6]. Bulk breccia Sm-Nd systematics define a single isochron [7]. These observations are consistent with a majority of the components within NWA 7034 originating from the same geochemical source and crystallizing at roughly the same time.

  5. Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.; Nielson, D.L.


    Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

  6. Yucatán subsurface stratigraphy: Implications and constraints for the Chicxulub impact (United States)

    Ward, W. C.; Keller, G.; Stinnesbeck, W.; Adatte, T.


    Much of the discussion about the effects of an end-of-Cretaceous impact by a large extraterrestrial body in northwestern Yucatán has been done in the context of limited and partly erroneous published data on the Mesozoic stratigraphy of that area. Reexamination of cores and geophysical logs taken in several Pemex wells has produced improved lithologic and biostratigraphic correlation of the Jurassic to Maastrichtian section across the northern Yucatán peninsula. These data suggest that major disturbance of strata by an impact would have been confined to within about 100 km of the proposed impact center near Chicxulub. The only unusual lithologic unit is polymict breccia, which apparently was penetrated at or near the top of the Cretaceous section in all the deep wells of northern Yucatán. This breccia in Pemex wells Yucatán 1, 2, 4, 5A, and 6 is composed predominantly of detrital dolomite, limestone, and anhydrite clasts set in dolomitized carbonate mud matrix, which contains upper Maastrichtian foraminifers. These constituents, mixed with fragments of altered glass or melt rock, shocked quartz and feldspar, and basement rock, suggest an impact as the most likely origin for the breccia. The timing of brecciation is poorly constrained by biostratigraphic data. There is some evidence, however, that the breccia unit is overlain by about 18 m of uppermost Maastrichtian marls, suggesting an impact before the Cretaceous-Tertiary boundary. In addition, there may have been more than one episode of breccia deposition.

  7. Trace elements in 59 mostly highland moon rocks (United States)

    Ebihara, Mitsuru; Wolf, Rainer; Warren, Paul H.; Anders, Edward


    New chemical analyses for up to 26 trace elements, including seldom-determined highly siderophile elements Ir, Os, Re, Au, Pd, and Ge, for 59 lunar samples are reported. Most of these samples are polymict breccias from Apollo 16. Remarkably few have Group 7 (extremely low Au/Ir) meteoritic components. Several samples have uncommonly high Au/(Ir + Re) ratios, even higher than group 1L. Volatile-element enrichments are found in several fragments from rusty rock 66095. A matrix sample from fragmental breccia 60639 shows Cd and In enrichments, also observed previously in samples of anorthosite and mare basalt from the same breccia. Evidently, for these highly labile elements, chemical exchange has affected clasts that for most other elements are pristine.

  8. Age of Middle Pleistocene fauna and Lower Palaeolithic industries from Kent's Cavern, Devon (United States)

    Proctor, C. J.; Berridge, P. J.; Bishop, M. J.; Richards, D. A.; Smart, P. L.


    Kent's Cavern has long been known as potentially among the oldest Palaeolithic sites in the country, with the basal Breccia deposit containing a sparse Lower Palaeolithic industry. The sediment consists of a chaotic clayey conglomerate emplaced as a series of debris flows, which entered the cave via blocked entrances at its southwest end. The Breccia contains a fauna dominated by the bear Ursus deningeri, with lion Felis leo and the voles Arvicola cantiana and Microtus oeconomus, establishing a late Cromerian age for the deposit. The artefacts comprise an industry of crudely manufactured handaxes and flakes, and show damage suggesting that they were brought into the cave by the debris flows, and may thus predate the sediment and fauna. We demonstrate an age of >340 ka for the Breccia using two independant dating methods, consistent with existing models of the age of the British Middle Pleistocene sequence.

  9. Subsurface radar applications in the Delaware Basin. Final report, June 1, 1980-January 31, 1981. [To probe into potash bed

    Energy Technology Data Exchange (ETDEWEB)

    Unterberger, R.R.


    Purpose was to find a method of probing into potash to determine if dangers lie ahead. Of specific interest to Sandia, was the problem of outlining a breccia pipe which Mississippi Chemical Company (MCC) found protruded into the potash bed in Carlsbad, New Mexico, they were mining. MCC mined around it and continued their work. If, however, the discontinuity in the ore (breccia pipe) had any fractures linking with a high pressure water zone above the mining level, the act of mining into the pipe could have lost the mine to incoming water. Imperial Chemical Industries, Ltd. had this happen to them in their only salt mine in England. Chapter II discusses our attempts (unsuccessful) to probe through the potash ore and see the breccia pipe. Chapter III contains data on laboratory measurements of the complex electric permittivity (dielectric constant and loss tangent) of potash samples from MCC.

  10. Ubiquitous brecciation after metamorphism in equilibrated ordinary chondrites (United States)

    Scott, E. R. D.; Lusby, D.; Keil, K.


    Ten objects with aberrant Fe/(Fe + Mg) ratios have been found in apparently unbrecciated types 4-6 H and L chondrites. Since the Fe/(Fe + Mg) ratios of these objects are incompatible with the metamorphic history of the host chondrites, it is concluded that a high proportion of ordinary chondrites are breccias that were lithified after peak metamorphism. This is consistent with the results of Scott (1984), who concluded that most type three ordinary chondrites are breccias of materials with diverse thermal histories, even though they do not show prominent brecciation. It is found that the classification scheme of Van Schmus and Wood (1967) does not identify chondrites with similar thermal histories; the petrologic type of a chondrite is only a measure of the average thermal history of its ingredients. Chondrite and achondrite breccias are also compared in order to understand how brecciation of chondrites after metamorphism is so well camouflaged.

  11. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia (United States)

    Bowden, Bryan; Fraser, Geoff; Davidson, Garry J.; Meffre, Sebastien; Skirrow, Roger; Bull, Stuart; Thompson, Jay


    The Mesoproterozoic Prominent Hill iron-oxide copper-gold deposit lies on the fault-bound southern edge of the Mt Woods Domain, Gawler Craton, South Australia. Chalcocite-bornite-chalcopyrite ores occur in a hematitic breccia complex that has similarities to the Olympic Dam deposit, but were emplaced in a shallow water clastic-carbonate package overlying a thick andesite-dacite pile. The sequence has been overturned against the major, steep, east-west, Hangingwall Fault, beyond which lies the clastic to potentially evaporitic Blue Duck Metasediments. Immediately north of the deposit, these metasediments have been intruded by dacite porphyry and granitoid and metasomatised to form magnetite-calc-silicate skarn ± pyrite-chalcopyrite. The hematitic breccia complex is strongly sericitised and silicified, has a large sericite ± chlorite halo, and was intruded by dykes during and after sericitisation. This paper evaluates the age of sericite formation in the mineralised breccias and provides constraints on the timing of granitoid intrusion and skarn formation in the terrain adjoining the mineralisation. The breccia complex contains fragments of granitoid and porphyry that are found here to be part of the Gawler Range Volcanics/Hiltaba Suite magmatic event at 1600-1570 Ma. This indicates that some breccia formation post-dated granitoid intrusion. Monazite and apatite in Fe-P-REE-albite metasomatised granitoid, paragenetically linked with magnetite skarn formation north of the Hangingwall Fault, grew soon after granitoid intrusion, although the apatite experienced U-Pb-LREE loss during later fluid-mineral interaction; this accounts for its calculated age of 1544 ± 39 Ma. To the south of the fault, within the breccia, 40Ar-39Ar ages yield a minimum age of sericitisation (+Cu+Fe+REE) of dykes and volcanics of ˜1575 Ma, firmly placing Prominent Hill ore formation as part of the Gawler Range Volcanics/Hiltaba Suite magmatic event within the Olympic Cu-Au province of the

  12. Relationship between karstification and burial dolomitization in Permian platform carbonates (Lower Khuff - Oman) (United States)

    Beckert, Julia; Vandeginste, Veerle; John, Cédric M.


    Large breccia fabrics associated with karst constitute an important structure in massive limestone successions. The dimensions and shapes of breccia structures are controlled by the initial fracture pattern of the limestone and preferential pathways of the karstifying fluids, but subsequently breccia fabrics can also govern the migration of later fluids. Therefore, breccias are highly relevant features to capture for reservoir characterisation. Outcrop analogues for Lower Khuff units in the Middle East present in the Central Oman Mountains reveal brecciated fabrics up to 10s of metres in diameter. These brecciated units are closely associated with dolomite bodies of late diagenetic origin. Based on an integrated set of data, the breccias are interpreted as collapsed karst cavities either formed by meteoric or hypogenic fluids. The exact origin of the fluids could not be constrained due to an overprint by later dolomitizing fluids. Based on the composition of the clasts and matrix in the breccias, two dolomitization events are interpreted to have affected the succession, one prior to (early diagenetic [ED] dolomite) and one after brecciation (late diagenetic [DT2] dolomite). Dolomite of shallow burial origin (ED dolomite) was only observed as clasts within breccia and is much more frequent than late diagenetic (medium to deep burial) dolomite clasts. Thus, the timing of the brecciation and collapse is assumed to postdate shallow burial early diagenetic dolomitization. Late diagenetic replacive dolomite (DT2 dolomite) forms 90% of the matrix in the breccia fabrics with the exception of a small area that was not affected by dolomitization, but is rarely present as clasts. Stable isotope measurements [δ18O: - 2.5‰ to - 6‰ VPDB and δ13C: 2.9‰ to 4.8‰ VPDB] suggest a burial origin for the late diagenetic dolomite potentially with the participation of hydrothermal fluids. The dolomitized matrix indicates a migration of late dolomitizing fluids subsequent to or

  13. Genesis of the Etzel petroleum deposit. Facies, geochemistry, coal petrology. Die Entstehung der Erdoellagerstaette Etzel. Fazies, Geochemie, Kohlenpetrologie

    Energy Technology Data Exchange (ETDEWEB)

    Klose, P.S.


    The limestone breccia and Posidonia shale of the Etzel salt stock were investigated with the primary goal of obtaining information on the conditions of deposition and on their hydrocarbon potential. Drill cores were analyzed by microfacial, organic geochemical and organic petrological methods, and a model of the facies was established. In contrast to similar samples from the Paris basin, the results suggest a depletion (fetid limestone) and enrichment (breccia) process in the course of hydrocarbon migration. The concentration of saturated hydrocarbons and aromatic hydrocarbons increases with the distance from the bedrock, at the expense of the heterocomponents.

  14. Assessment of rock properties and slope stability at Pacaya Volcano, Guatemala (United States)

    Schaefer, Lauren; Kendrick, Jackie; Oommen, Thomas; Lavallee, Yan


    Pacaya is an active stratovolcano located 30 km south of Guatemala City, Guatemala. A large (0.65 km3) sector collapse of the volcano occurred 0.6 - 1.6 ka B.P., producing a debris avalanche that traveled 25 km SW of the edifice. The structural setting of the current cone, along with two recent smaller-volume collapses in 1962 and 2010, suggest gravitational instability of this volcano. Recent measurements of the geomechanical properties of lava and breccia from Pacaya are used to improve our understanding of the destabilizing potential of different volcanic processes. Room-temperature uniaxial and triaxial compressive tests, and total porosity tests, were conducted on 17 breccia and 21 lava samples. The average uniaxial compressive strength (σci) of lava rocks was moderately strong (σci = 72.4 MPa), with breccia rocks being 62.2% weaker (σci = 27.4 MPa). These values can partially be contributed to lava rock's very low porosity (0.054) and breccia rock's higher porosity (0.19). We also find an apparent rate-dependent strengthening of the samples as strain rate is increased from 10-5 to 10-1. Values of Poisson's Ratio (v) and Young's Modulus (E) calculated from triaxial tests, are v= 0.28 and E = 13.9 GPa for breccia and v= 0.31 and E = 17.6 GPa for lava. These experiments highlight the contrasting character of breccia versus lava, and suggest that sector collapse may have initiated in the weaker breccia. Additionally, cohesion (c) and friction angle (φ) calculated from triaxial tests yielded values of c = 1.8 MPa and φ = 19.4° for breccia and c = 4.0 MPa and φ = 41.4° for lava. Following sector collapse, the frictional properties of the rocks partially dictate the flow and deposition of the debris avalanche, and these were studied using high velocity rotary shear experiments on ash and lava rock. Experimental results are combined to understand the historical flank stability and assess the likelihood of future sector collapse at Pacaya.

  15. Ancient impact and aqueous processes at Endeavour Crater, Mars (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Calef, F.J.; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.


    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

  16. Golo rebro road tunnel crossing the Labot/Lavanttal tectonic zone

    Directory of Open Access Journals (Sweden)

    Borut Petkovšek


    Full Text Available The motorway tunnel Golo rebro is situated on Styrian motorway. It intersects eastern part of Konjiška gora. From the north to the south it intersects the following rocks: paleozoicclastic rocks (inner part of the Labot/Lavanttal fault zone, slope debris with clay matrix (probabbly of tertiary or quartenary age, dolomite, dolomitized limestone and limestone,carbonate breccia and dolomite, dolomitized limestone and limestone, which are partly converted into tectonic breccia. Carbonate rocks are of middle triassic – anisian age. Rocks are strongly tectonised.

  17. Apollo 16 exploration of Descartes - A geologic summary. (United States)


    The Cayley Plains at the Apollo 16 landing site consist of crudely stratified breccias to a depth of at least 200 meters, overlain by a regolith 10 to 15 meters thick. Samples, photographs, and observations by the astronauts indicate that most of the rocks are impact breccias derived from an anorthosite-gabbro complex. The least brecciated members of the suite include coarse-grained anorthosite and finer-grained, more mafic rocks, some with igneous and some with metamorphic textures. Much of the transverse area is covered by ejecta from North Ray and South Ray craters, but the abundance of rock fragments increases to the south toward the younger South Ray crater.

  18. An approach of understanding acid volcanics and tuffaceous ...

    Indian Academy of Sciences (India)


    shaped clasts of lava which consists of flow banded and pumice clasts. The aggregates are monomict, clast supported, matrix-poor, poorly sorted, and grade into in situ jigsaw-fit lava breccia and fractured coherent lava. 8. Peperite, a rock generated by mixing of coherent lava with unconsolidated wet sediment. (Fisher 1960 ...

  19. IR-Raman Correlation of Shocked Minerals in Csátalja Meteorite — Clues for Shock Stages (United States)

    Gyollai, I.; Kereszturi, A.; Fintor, K.; Kereszty, Zs.; Szabo, M.; Walter, H.


    The analyzed meteorite called Csátalja is an H chondrite (H4, S2, W2), and based on the differences between its certain parts, probably it is a breccia. The aim of methodological testing is characterizing shock deformation and heterogeneity.

  20. Apollo 14 glasses and the origin of lunar soils (United States)

    Wentworth, S. J.; Mckay, D. S.


    Electron microprobe for comparison with soil glass data were used to analyze homogeneous and heterogeneous glass clasts in four Apollo 14 regolith breccias (14042, 14301, 14313, and 14315). Glass types in the Apollo 14 samples were found to be dominated by highland compositions, which include KREEP, LKFM and highland basalt varieties. Only 14042 has a highland glass population similar to those of local Apollo 14 soils. Breccia 14301 stands out in that it is enriched in KREEP glasses with high K2O content, which are similar in composition to Apollo 12 ropy glasses. Only 14042 could be made from local present-day soils. Some of the ancient soils did not undergo breccia formation and closure, and they evolved by meteorite impact processing, by mixing together in various proportions, and by changes made by the addition of lithic fragments and other components. It is suggested that the Apollo 14 soils are made from mixtures of comminuted regolith breccias. A likely age sequence is presented.

  1. Hydrogeological Report, Lajes Field, Azores, Portugal (United States)


    Angra Ignimbrite Formation; (7) Lajes Ignimbrite Formation; (8) Pico Alto Peralkaline Volcanic Formation; (9) Biscoitos Breccia Formation; and (10...of Alkaline and satured Peralkaline Volcanics from Terceira Island, Azores. Contr. Min. Petrol., s.n., 54 (4): 293- 313 Sparks, R.S. 1976. Grain

  2. Hydrogeological Study Report, Lajes Field, Azores, Portugal (United States)


    Formation; (6) Angra Ignimbrite Formation; (7) Lajes Ignimbrite Formation; (8) Pico Alto Peralkaline Volcanic Formation; (9) Biscoitos Breccia...Age Relations of Alkaline and satured Peralkaline Volcanics from Terceira Island, Azores. Contr. Min. Petrol., s.n., 54 (4): 293- 313 Sparks, R.S

  3. International strategic mineral issues summary report: tungsten (United States)

    Werner, Antony B.T.; Sinclair, W. David; Amey, Earle B.


    Scheelite and wolframite are the principal minerals currently mined for tungsten. Both occur in hard-rock deposits; wolframite is also recovered from placer deposits. Most current mine production of tungsten is from vein/stockwork, skarn, porphyry, and strata-bound deposits. Minor amounts are produced from disseminated, pegmatite, breccia, and placer deposits.

  4. The Abakaliki Volcaniclastic Rocks: Field relations from resistivity ...

    African Journals Online (AJOL)

    Field geological descriptions shows that these rocks are pumices interstratified with thin dark grey to bluish shales, amygdoloidal lapilli basalts and pillow basalts. Apparent resistivity values of 240-275 ohm m suggests the presence of coarse grained agglomerates, breccias and microbrecias with angular to subangular ...

  5. Remnants of early Archean hydrothermal methane and brines in pillow-brecia from Isua Greenstone belt, West Greenland

    NARCIS (Netherlands)

    Touret, J.L.R.


    Fluid inclusions containing high-density methane and saline waters (brines), associated with carbonates, have been found in undeformed, annealed quartz-bearing vesicles from pillow-breccia at Isua (West Greenland). Massive quartz veins cementing the pillow fragments contain the same type of

  6. The global stratigraphy of the Cretaceous Tertiary boundary impact ejecta.

    NARCIS (Netherlands)

    Smit, J.


    The Chicxulub crater ejecta stratigraphy is reviewed, in the context of the stratigraphy of underlying and overlying rock sequences. The ejecta sequence is regionally grouped in (a) thick polymict and monomict breccia sequences inside the crater and within 300 km from the rim of the crater known

  7. Compositional data for twenty-one Fra Mauro lunar materials. (United States)

    Rose, H. J., Jr.; Cuttitta, F.; Annell, C. S.; Carron, M. K.; Christian, R. P.; Dwornik, E. J.; Greenland, L. P.; Ligon, D. T., Jr.


    Major, minor, and trace element analyses are presented for two igneous rocks, six breccias, four microbreccias, two breccia clasts, and six soils, as well as a sample of sawdust from rock 14066. Evaluation of the data suggests that the samples from the Fra Mauro highlands have the same nonterrestrial characteristics shown previously by the samples returned from the mare regions by Apollo 11 and 12 - namely, a high refractory element content, a lower volatile element content, and an excess reducing capacity above that due to FeO. The Fra Mauro soils have higher concentrations of Al2O3, Na2O, and K2O and lower amounts of FeO and TiO2 than do the mare soils. They also show a bimodal distribution of Ni, B, and Nb. The highland breccias are richer in SiO2, Al2O3, MgO, Na2O, and K2O than those returned from the mare lowlands. FeO, TiO2, and MnO are lower in concentration at Fra Mauro, and the highland breccias are more complex mineralogically than those collected previously.

  8. The Geometry and Structural Analysis of the Gold Deposits of ...

    African Journals Online (AJOL)



    Dec 2, 2016 ... the shear architecture of the CSZ and its related. CLH. Some breccia units contain foliated rock fragments which seem to suggest that brittle deformation of brecciation occurred after a major shearing event. Though the CLH seems to be a continuous structure, it has a sinuous geometry with subtle changes ...

  9. Proceedings of the Geophysical Laboratory/Lawrence Radiation Laboratory Cratering Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, Milo D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.

  10. Chlorine-bearing amphiboles from the Fraser mine, Sudbury, Ontario, Canada: Description and crystal chemistry (United States)

    McCormick, K.A.; McDonald, A.M.


    Three chemically distinct populations of Cl-bearing amphibole have been recognized in association with contact Ni-Cu ore deposits in Footwall Breccia at the Fraser mine, Sudbury, Ontario. The first population, defined as halogen-poor (700 ppm) and F (2500 ppm). These rocks thus may have been a significant contributor to the fluids.

  11. Effects of healing on the seismogenic potential of carbonate fault rocks : Experiments on samples from the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye; Verberne, Berend A.; Spiers, Christopher J.


    Fault slip and healing history may crucially affect the fault seismogenic potential in the earthquake nucleation regime. Here we report direct shear friction tests on simulated gouges derived from a carbonate fault breccia, and from a clay/carbonate fault-core gouge, retrieved from a surface

  12. Mineral shock signatures in rocks from Dhala (Mohar) impact ...

    Indian Academy of Sciences (India)

    A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz ...

  13. Some chemical characteristics of selected geological materials in ...

    African Journals Online (AJOL)

    This study was carried out in order to characterize some selected local geological materials so as to prove their potential use for crop production. For this purpose, two types of volcanic breccias, volcanic ash and marl from West Cameroon region were selected for chemical characterization. These chemical analyses were ...

  14. Mesolithic burial place in La Martina Cave (Dinant, Belgium); La grotte de La Martina (Dinant, Belgique) et sa sepulture mesolithique

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, M.; Gilot, E.; Groessens-Van-Dyck, M.C. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Cordy, J.M. [Liege Univ. (Belgium)


    The ``La Martina`` cave is located near Dinant (Belgium). Although the sediments had been shoveled out in the mid XIXth century, a calcic breccia has provided prehistoric bones. We can distinguish a Pleistocene fauna with cave bear, one Mesolithic burial place with two cromagnoid skeletons, from the 6th millennium BC, and some Holocene faunal remains. (authors). 7 refs.

  15. Compositions of Diverse Noachian Lithologies at Marathon Valley, Endeavour Crater Rim, Mars (United States)

    Mittlefehldt, David W.; Gellert, Ralf; Yen, Albert S.; Ming, Douglas W.; Van Bommel, Scott; Farrand, William H.; Arvidson, Raymond E.; Rice, James W., Jr.


    Mars Exploration Rover Opportunity has been exploring Meridiani Planum for 11+ years, and is presently investigating the geology of rim segments of 22 km diameter, Noachian-aged Endeavour crater. The Alpha Particle X-ray Spectrometer has determined the compositions of a pre-impact lithology and impact breccias representing ejecta from the crater. Opportunity is now investigating the head (higher elevation, western end) of Marathon Valley. This valley cuts eastward through the central portion of the Cape Tribulation rim segment and provides a window into the lower stratigraphic record of the rim. At the head of Marathon Valley is a shallow (few 10s of cm), ovoid depression approximately 27×36 m in size, named Spirit of Saint Louis, that is surrounded by approximately 20-30 cm wide zone of more reddish rocks (red zone). Opportunity has just entered a region of Marathon Valley that shows evidence for Fe-Mg smectite in Compact Reconnaissance Imaging Spectrometer for Mars spectra indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. Rocks at the head of Marathon Valley and within Spirit of Saint Louis are breccias (valley-head rocks). In some areas, layering inside Spirit of Saint Louis appears continuous with the rocks outside. The valley-head rocks are of similar, generally basaltic composition. The continuity in composition, texture and layering suggest the valley-head rocks are coeval breccias, likely from the Endeavour impact. These local breccias are similar in non-volatile-element composition to breccias investigated elsewhere on the rim. Rocks within the red zone are like those on either side in texture, but have higher Al, Si and Ge, and lower S, Mn, Fe, Ni and Zn as compared to rocks on either side. The valley-head rocks have higher S than most Endeavour rim breccias, while red zone rocks are like those latter breccias in S. Patches within the rocks outside Spirit of Saint Louis have higher Al, Si and Ge indicating

  16. Reverse Polarity Magnetized Melt Rocks from the Cretaceous/Tertiary Chicxulub Structure, Yucatan Peninsula, Mexico (United States)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.


    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petrolcos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 +/- 0.4 Ma. Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6 deg +/- 2.4 deg. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40 deg to -45 deg, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and pateolatitude are consistent with a time at the K/T boundary.

  17. Reverse polarity magnetized melt rocks from the cretaceous/tertiary chicxulub structure, Yucatan peninsula, Mexico (United States)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.


    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petroleos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 ± 0.4 Ma (Sharpton et al., 1992). Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6° ± 2.4°. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40° to -45°, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and paleolatitude are consistent with a time at the K/T boundary.

  18. Rock-avalanche and ocean-resurge deposits in the late Eocene Chesapeake Bay impact structure: Evidence from the ICDP-USGS Eyreville cores, Virginia, USA (United States)

    Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.


    An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated

  19. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa (United States)

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew


    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200-440°C and in crater-filling talus breccias and volcaniclastic breccias at 560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10-30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300-400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the

  20. Ultra-deep oxidation and exotic copper formation at the late pliocene boyongan and bayugo porphyry copper-gold deposits, surigao, philippines: Geology, mineralogy, paleoaltimetry, and their implications for Geologic, physiographic, and tectonic controls (United States)

    Braxton, D.P.; Cooke, D.R.; Ignacio, A.M.; Rye, R.O.; Waters, P.J.


    The Boyongan and Bayugo porphyry copper-gold deposits are part of an emerging belt of intrusion-centered gold-rich deposits in the Surigao district of northeast Mindanao, Philippines. Exhumation and weathering of these Late Pliocene-age deposits has led to the development of the world's deepest known porphyry oxidation profile at Boyongan (600 m), and yet only a modest (30-70 m) oxidation profile at adjacent Bayugo. Debris flows, volcanic rocks, and fluviolacustrine sediments accumulating in the actively extending Mainit graben subsequently covered the deposits and preserved the supergene profiles. At Boyongan and Bayugo, there is a vertical transition from shallower supergene copper oxide minerals (malachite + azurite + cuprite) to deeper sulfide-stable assemblages (chalcocite ?? hypogene sulfides). This transition provides a time-integrated proxy for the position of the water table at the base of the saturated zone during supergene oxidation. Contours of the elevation of the paleopotentiometric surface based on this min- eralogical transition show that the thickest portions of the unsaturated zone coincided with a silt-sand matrix diatreme breccia complex at Boyongan. Within the breccia complex, the thickness of the unsaturated zone approached 600 in, whereas outside the breccia complex (e.g., at Bayugo), the thickness averaged 50 m. Contours of the paleopotentiometric surface suggest that during weathering, groundwater flowed into the breccia complex from the north, south, and east, and exited along a high permeability zone to the west. The high relief (>550 m) on the elevation of the paleopotentiometric surface is consistent with an environment of high topographic relief, and the outflow zone to the west of the breccia complex probably reflects proximity to a steep scarp intersecting the western breccia complex margin. Stable isotope paleoaltimetry has enabled estimation of the elevation of the land surface, which further constrains the physiographic setting

  1. Paleocollapse structures as geological record for reconstruction of past karst processes during the upper miocene of Mallorca Island

    Directory of Open Access Journals (Sweden)

    Robledo Ardila Pedro A.


    Full Text Available Paleocollapse structures and collapse breccias are one of the major features for paleokarst analysis and paleoclimate record. These are affecting the Llucmajor and Santanyí carbonate platforms. These platforms, of southern and eastern Mallorca respectively, are a good example of progradation reef platform in the western Mediterranean. The Santanyí platform is constituted of two sedimentary units, both affected by paleocollapse structures: (1 The Reef Complex attributed to the upper Tortonian-lower Messinian; (2 Santanyí Limestone attributed to the Messinian. There are abundant paleocollapse outcropping in the Reef Complex and Santanyí Limestone units. These structures have been produced by roof collapse of caverns developed in the underlying reefal complex. According to the genetic model, the origin of same paleocollapse structures may be related to early diagenetic processes controlled by high-frequency sea-level fluctuations. During the lowstands of sea level, fresh water flow or mixing zone might have created a cave system near the water table by dissolution of aragonite in the reef front facies and coral patches existing in the lagoonal beds. During subsequent rise and highstands of sea level, inner-shelf beds overlaid the previously karstified reef-core and outer-lagoonal beds. Increase of loading by subsequent accretion of the shallow-water carbonate might have produced paleocollapse structures by gravitational collapse of cave roof. Morphometric and structural classification of paleocollapse is based on geometric and structural criteria according to the type of deformed strata and strata dip. Paleocollapse structures can be classified according to geometric section, size of the paleocave and lithification degree of the host rock when collapsed. Breccias are classified as crackle, mosaic and chaotic types. In same paleocollapse the type of breccias present a vertical and lateral gradation, from crackle in the upper part, to chaotic in

  2. Postimpact heat conduction and compaction-driven fluid flow in the Chesapeake Bay impact structure based on downhole vitrinite reflectance data, ICDP-USGS Eyreville deep core holes and Cape Charles test holes (United States)

    Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J.


    Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The

  3. Search for a meteoritic component at the Beaverhead impact structure, Montana (United States)

    Lee, Pascal; Kay, Robert W.


    The Beaverhead impact structure, in southwestern Montana, was identified recently by the presence of shatter cones and impactites in outcrops of Proterozoic sandstones of the Belt Supergroup. The cones occur over an area greater than 100 sq km. Because the geologic and tectonic history of this region is long and complex, the outline of the original impact crater is no longer identifiable. The extent of the area over which shatter cones occur suggests, however, that the feature may have been at least 60 km in diameter. The absence of shatter cones in younger sedimentary units suggests that the impact event occurred in late Precambrian or early Paleozoic time. We have collected samples of shocked sandstone from the so-called 'Main Site' of dark-matrix breccias, and of impact breccias and melts from the south end of Island Butte. The melts, occurring often as veins through brecciated sandstone, exhibit a distinctive fluidal texture, a greenish color, and a cryptocrystalline matrix, with small inclusions of deformed sandstone. Samples of the same type, along with country rock, were analyzed previously for major- and trace-element abundances. It was found that, although the major-element composition as relatively uniform, trace-element composition showed variations between the melt material and the adjacent sandstone. These variations were attributed to extensive weathering and hydrothermal alteration. In a more specific search for a possible meteoritic signature in the breccia and the melt material we have conducted a new series of trace-element analyses on powders of our own samples by thermal neutron activation analysis. Our results indicate that Ir abundances in the breccia, the melts, and the adjacent sandstone clasts are no greater than about 0.1 ppb, suggesting no Ir enrichment of the breccia or the melts relative to the country rock. However, both the breccia and the melt material exhibit notable enrichments in Cr (8- and 10-fold), in U (9- and 5-fold), and in

  4. Pervasive silicification and hanging wall overplating along the 13°20'N oceanic detachment fault (Mid-Atlantic Ridge) (United States)

    Bonnemains, D.; Escartín, J.; Mével, C.; Andreani, M.; Verlaguet, A.


    The corrugated detachment fault zone of the active 13°20'N oceanic core complex (Mid-Atlantic Ridge) was investigated with a deep-sea vehicle to assess the links between deformation, alteration, and magmatism at detachment fault zones. We present a study of 18 in situ fault rock samples from striated fault outcrops on the flanks of microbathymetric corrugations. All the samples are mafic breccias that are mostly derived from a diabase protolith, with two of them also showing mixing with ultramafic clasts. Breccias are cataclastic and display variable deformation textures, recording numerous slip events, and showing pervasive silicification throughout the fault zone. Deformation-silicification relationships are also complex, showing both static and syntectonic quartz precipitation; undeformed quartz overprints the fault breccia textures, and reflective and striated fault surfaces cross-cut silicified rocks. In situ detachment fault rocks are mainly fault breccias with almost exclusively basaltic clasts, with rare ultramafic ones, a lithology and texture never observed previously at other oceanic detachment fault zones. We propose the lower dyke complex in the hanging wall crust at the volcanic rift valley floor is the most plausible diabase source. Mechanical mixing of predominantly mafic and rare ultramafic clasts suggests an underlying ultramafic footwall and that mafic accretion operates in the shallowest crust (1-2 km), at the base of the dyke complex at temperatures >400°C. Silicification is produced by silica-rich fluids syntectonically channeled along the fault zone, and likely derived from hydrothermal alteration of basaltic rocks, likely mixed with serpentinization-derived fluids.Plain Language SummaryThis paper presents a textural, mineralogical, and microstructural study of the fault rocks recovered in situ on the 13°20'N detachment fault zone (Mid-Atlantic ridge) during the ODEMAR cruise in 2013. This detachment is unique for the presence of mafic

  5. Determination of the occurrence of gold in an unoxidized Carlin-type ore sample using synchrotron radiation (United States)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Bagby, W.C.; Rivers, M.L.; Sutton, S.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.


    The occurrence of the so-called invisible gold in two unoxidized Carlin-type gold samples from Nevada has been determined using synchrotron X-ray fluorescence (SXRF) analysis at the National Synchrotron Light Source, Brookhaven National Laboratory. A bedded sample from the East ore zone of the Carlin deposit and a breccia sample from Horse Canyon were analyzed. Preliminary results show that gold is found only in the Horse Canyon breccia sample. Experimental details including other X-ray line and diffraction peak interferences, standards used, and minimum detection limits (MDLs) are discussed. Gold, with a MDL range of 0.8 to 3 ppm, was not detected in euhedral pyrite crystals except in the interior porous portion of one grain. Gold was detected in some parts of the matrix. The phase which contains gold has not yet been identified. The highest content of gold so far analyzed is about 40 ppm. There are interesting implications of these new findings. ?? 1987.

  6. Origin of Apollo 17 rocks and soils (United States)

    Philpotts, J. A.; Schuhmann, S.; Kouns, C. W.; Lum, R. K. L.; Winzer, S.


    Lithophile trace element abundances have been determined by mass spectrometric isotope dilution for a suite of Apollo 17 samples. The six mare basalts have generally similar relative trace element abundances; they are also similar to Apollo 11 trace element poor basalts. It is suggested that these basalts were derived by partial fusion of cumulates. The Apollo 17 highland breccias show an order of magnitude range in trace element abundances although there is a clustering of KREEP-rich samples which are interpreted as mixtures. The Apollo 17 soils show only a limited range of trace element abundances. They are mixtures of highland breccias, mare basalts, and orange-black 'soil'. There appear to be two groups of soils, Light Mantle and the rest. Both groups seem to have the same basalt component, which is similar to Station 4 basalt from Shorty Crater and probably is the uppermost basalt unit throughout the Taurus-Littrow valley.

  7. Cat Mountain: A meteoritic sample of an impact-melted chondritic asteroid (United States)

    Kring, David A.


    Although impact cratering and collisional disruption are the dominant geologic processes affecting asteroids, samples of impact melt breccias comprise less than 1 percent of ordinary chondritic material and none exist among enstatite and carbonaceous chondrite groups. Because the average collisional velocity among asteroids is sufficiently large to produce impact melts, this paucity of impact-melted material is generally believed to be a sampling bias, making it difficult to determine the evolutionary history of chondritic bodies and how impact processes may have affected the physical properties of asteroids (e.g., their structural integrity and reflectance spectra). To help address these and related issues, the first petrographic description of a new chondritic impact melt breccia sample, tentatively named Cat Mountain, is presented.

  8. Age of the moon: An isotopic study of uranium-thorium-lead systematics of lunar samples (United States)

    Tatsumoto, M.; Rosholt, J.N.


    Concentrations of U, Th, and Pb in Apollo 11 samples studied are low (U. 0.16 to 0.87; Th, 0.53 to 3.4; Pb, 0.29 to 1.7, in ppm) but the extremely radiogenic lead in samples allows radiometric dating. The fine dust and the breccia have a concordant age of 4.66 billion years on the basis of 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th ratios. This age is comparable with the age of meteorites and with the age generally accepted for the earth. Six crystalline and vesicular samples are distinctly younger than the dust and breccia. The 238U/235U ratio is the same as that in earth rocks, and 234U is in radioactive equilibrium with parent 238U.

  9. Experimental petrology and origin of rocks from the Descartes Highlands (United States)

    Walker, D.; Longhi, J.; Grove, T. L.; Stolper, E.; Hays, J. F.


    Petrographic studies of Apollo 16 samples indicate that rocks 62295 and 68415 are crystallization products of highly aluminous melts. 60025 is a shocked, crushed and partially annealed plagioclase cumulate. 60315 is a recrystallized noritic breccia of disputed origin. 60335 is a feldspathic basalt filled with xenoliths and xenocrysts of anorthosite, breccia, and anorthite. The Fe/(Fe+Mg) of plagioclase appears to be a relative crystallization index. Low pressure melting experiments with controlled Po2 indicate that the igneous samples crystallized at oxygen fugacities well below the Fe/FeO buffer. Crystallization experiments at various pressures suggest that the 62295 and 68415 compositions were produced by partial or complete melting of lunar crustal materials, and not by partial melting of the deep lunar interior.

  10. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    Energy Technology Data Exchange (ETDEWEB)

    Levey, Schon S.


    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  11. Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway) (United States)

    Amundsen, H. E. F.; Benning, L.; Blake, D. F.; Fogel, M.; Ming, D.; Skidmore, M.; Steele, A.


    The Sverrefjell and Sigurdfjell eruptive centers in the Bockfjord Volcanic Complex (BVC) on Svalbard (Norway) formed by subglacial eruptions ca. 1 Ma ago. These eruptive centers carry ubiquitous magnesian carbonate deposits including dolomitemagnesite globules similar to those in the Martian meteorite ALH84001. Carbonates in mantle xenoliths are dominated by ALH84001 type carbonate globules that formed during quenching of CO2-rich mantle fluids. Lava hosted carbonates include ALH84001 type carbonate globules occurring throughout lava vesicles and microfractures and massive carbonate deposits associated with vertical volcanic vents. Massive carbonates include < or equal 5 cm thick magnesite deposits protruding downwards into clear blue ice within volcanic vents and carbonate cemented lava breccias associated with volcanic vents. Carbonate cements comprise layered deposits of calcite, dolomite, huntite, magnesite and aragonite associated with ALH84001 type carbonate globules lining lava vesicles. Combined Mossbauer, XRD and VNIR data show that breccia carbonate cements at Sverrefjell are analog to Comanche carbonates at Gusev crater.

  12. Extensive soft sediment deformation and peperite formation at the base of a rhyolite lava: Owyhee Mountains, SW Idaho, USA


    Mclean, Charlotte E.; Brown, David J.; Rawcliffe, Heather J.


    In the Northern Owyhee Mountains (SW Idaho), a >200 m thick flow of the Miocene Jump Creek Rhyolite was erupted on to a sequence of tuffs, lapilli-tuffs, breccias and lacustrine siltstones of the Sucker Creek Formation. The rhyolite lava flowed over steep palaeotopography, resulting in the forceful emplacement of lava into poorly consolidated sediments. The lava invaded this sequence, liquefying and mobilizing the sediment, propagating sediment sub-vertically in large metre-scale fluidal diap...

  13. Coach as a Catalyst : Icehearts ideology in everyday activities


    Mustonen, Aapo; Breccia, Juan Fernando


    Mustonen, Aapo; Breccia, Juan. “Coach as a Catalyst”: Icehearts ideology in everyday activities. 92 pages 1 appendix. Language: English. Autumn 2013. Diaconia University of Applied Sciences. Degree Programme in Social Services. Degree: Bachelors of Social Services. The goal for the study is to explain the role of an Icehearts pedagogue in the process of preventing social exclusion of children through analysing the connection of the observed methods and the ideology, with the help of other ...

  14. Palaeo-earthquake events during the late Early Palaeozoic in the central Tarim Basin (NW China): evidence from deep drilling cores


    He, Bizhu; Qiao, Xiufu; Jiao, Cunli; Xu, Zhiqin; Cai, Zhihui; Guo, Xianpu; Zhang, Yinli


    Various millimetre-, centimetre- and metre-scale soft-sediment deformation structures (SSDS) have been identified in the Upper Ordovician and Lower-Middle Silurian from deep drilling cores in the Tarim Basin (NW China). These struc -tures include liquefied-sand veins, liquefaction-induced breccias, boudinage-like structures, load and diapir- or flame --like structures, dish and mixed-layer structures, hydroplastic convolutions and seismic unconformities. The deformed layers are interc...

  15. Analisis stratigrafi awal kegiatan Gunung Api Gajahdangak di daerah Bulu, Sukoharjo; Implikasinya terhadap stratigrafi batuan gunung api di Pegunungan Selatan, Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Hill Gendoet Hartono


    Full Text Available, Tertiary volcanisms in the Southern Mountains, Central Jawa were started with the formation of pillow lavas having basalt to basaltic andesite in composition. This initial stage volcanism developed into a  construction period of composite volcanoes that consist of alternating basaltic to andesitic lava flows, breccias, and tuffs. The construction period could be followed by a destructive phase, producing pumice-rich pyroclastic breccias, lapillistones, and tuffs of high silica andesite to dacite, or even rhyolite in composition. A stratigraphic measuring section at Bulu area, Sukoharjo Regency, presents an alternat- ing fine-grained andesitic volcaniclastic material and some limestones, with the total thickness is 143.33 m. The thickness of bedded volcaniclastic material tends to be thickening upward from 35 m until 90 m. The grain size of the volcaniclastic material also tends to be coarsening upward from clay size through silt and fine sand to coarse sand and granules. Paleontological analysis on fossils contained in the lime- stone gives an age of Early Miocene (N7 - N9. The volcaniclastic rocks is conformably overlain by the Mandalika Formation, comprising alternating andesitic breccias, lavas, and tuffs. These data imply that the fine-grained volcaniclastic material is an initial product of the construction period of Gajahdangak Volcano in the area, that formed the Mandalika Formation. This Formation is overlain by the Semilir Formation, composed of pumice-rich pyroclastic breccias and tuffs with dacitic composition. This as- sociated volcanic rock reflects a product of a caldera explosion or a destructive phase. Based on the characteristics of lithology of volcanic products from the initial stage, to a construction and destruction period, and compiled age data, the Southern Mountains represent formal volcanic rock units that are able to be divided into many formations.  

  16. Carbon chemistry of Apollo 14 size-fractionated fines. (United States)

    Holland, P. T.; Simoneit, B. R.; Wszolek, P. C.; Mcfadden , W. H.; Burlingame, A. L.


    Experiments have been conducted on several Apollo 12 and 14 samples that confirm the identification of CH4 and C2H6 in lunar fines and breccias. In particular, data for various size fractions of sample 14240,5 are reported which show that the concentrations of these species are dependent on particle size. Results strongly support proposals that solar wind activity is a source of CH4 in lunar samples.

  17. New insight into the origin of manganese oxide ore deposits in the Appalachian Valley and Ridge of northeastern Tennessee and northern Virginia, USA (United States)

    Carmichael, Sarah K.; Doctor, Daniel H.; Wilson, Crystal G.; Feierstein, Joshua; McAleer, Ryan J.


    Manganese oxide deposits have long been observed in association with carbonates within the Appalachian Mountains, but their origin has remained enigmatic for well over a century. Ore deposits of Mn oxides from several productive sites located in eastern Tennessee and northern Virginia display morphologies that include botryoidal and branching forms, massive nodules, breccia matrix cements, and fracture fills. The primary ore minerals include hollandite, cryptomelane, and romanèchite. Samples of Mn oxides from multiple localities in these regions were analyzed using electron microscopy, X-ray analysis, Fourier transform infrared spectroscopy, and trace and rare earth element (REE) geochemistry. The samples from eastern Tennessee have biological morphologies, contain residual biopolymers, and exhibit REE signatures that suggest the ore formation was due to supergene enrichment (likely coupled with microbial activity). In contrast, several northern Virginia ores hosted within quartz-sandstone breccias exhibit petrographic relations, mineral morphologies, and REE signatures indicating inorganic precipitation, and a likely hydrothermal origin with supergene overprinting. Nodular accumulations of Mn oxides within weathered alluvial deposits that occur close to breccia-hosted Mn deposits in Virginia show geochemical signatures that are distinct from the breccia matrices and appear to reflect remobilization of earlier-emplaced Mn and concentration within supergene traps. Based on the proximity of all of the productive ore deposits to mapped faults or other zones of deformation, we suggest that the primary source of all of the Mn may have been deep seated, and that Mn oxides with supergene and/or biological characteristics resulted from the local remobilization and concentration of this primary Mn.

  18. The Mesoproterozoic sub-Lifjell unconformity, central Telemark, Norway


    Kauko Laajoki


    The sub-Lifjell unconformity subdivides the traditional Seljord group of the Telemark supracrustals, south Norway, into the Vindeggen and Lifjell groups. It is defined by an in situ weathering breccia and an angular unconformity above quartzites of the 1155 Ma old Vindeggen group and by a volcaniclastic palaeoregolith developed above the 1155±2 Ma old porphyry of the Brunkeberg formation. Due to the complex deformation of the Vindeggen and Lifjell groups this unconformity has often been shea...

  19. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034 (United States)

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; hide


    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  20. Coseismic brecciation at fault stepovers and transient fluid pathways in a mid-crustal San Andreas analogue: The Pofadder Shear Zone, Namibia and South Africa (United States)

    Melosh, B. L.; Rowe, C. D.; Gerbi, C. C.


    Fluid transport along faults is important throughout the seismic cycle due to the effects on fault strength. Rheological boundaries in the crust such as the quartz brittle-plastic transition coincide with permeability changes, and play an important role in controlling fluid distribution. Here we present a newly recognized mechanism for fluid migration through the brittle-plastic transition in an ancient San Andreas Fault analogue: The Pofadder Shear Zone in Namibia and South Africa. Breccias formed in elongate pods during the passage of an earthquake rupture through a fault stepover. These breccias form subvertical fluid pathways (perpendicular to the slip direction). Over time, many overprinting or adjacent ruptures could have allowed fluid migration over a large (~ kms) scale, facilitating fluid flow through a low porosity region of the crust. These pathways were subsequently closed during breccia compaction by crystal plastic flow, facilitated by the presence of fluids. Thus, fluid migration within and across the brittle-plastic transitional zone is time and rate dependent and can both cause fault weakening and strengthening. We observed breccias formed in slip events with displacements between ~1-15 cm, consistent with small to moderate magnitude earthquakes and/or tectonic tremor, which occurs at similar depths in the San Andreas Fault. In addition to providing a new way of identifying paleo-seismic slip in the rock record, these observations may help explain co- post-seismic fluid advection in mid-crustal faults. This process of local brecciation in stepovers may be the origin of cryptic geophysical signals such as tremor bursts in continental faults.

  1. Evidence for coeval Late Triassic terrestrial impacts from the Rochechouart (France) meteorite crater


    Carporzen, Laurent; Gilder, Stuart,


    High temperature impact melt breccias from the Rochechouart (France) meteorite crater record magnetization component with antipodal, normal and reverse polarities. The corresponding paleomagnetic pole for this component lies between the 220 Ma and 210 Ma reference poles on the Eurasian apparent polar wander path, consistent with the 214 $\\pm$ 8 Ma 40Ar/39Ar age of the crater. Late Triassic tectonic reconstructions of the Eurasian and North American plates place this pole within 95% confidence...

  2. Post-metamorphic brecciation in type 3 ordinary chondrites (United States)

    Scott, E. R. D.; Mccoy, T. J.; Keil, K.


    Type 3.1-3.9 ordinary chondrites can be divided into two kinds: those in which the compositions of chondrule silicates are entirely consistent with metamorphism of type 3.0 material, and those in which the computational heterogeneity appears to be too extreme for in situ metamorphism. We present petrologic data for three LL3 chondrites of the second kind--Ngawi, ALH A77278 (both type 3.6), and Hamlet (type 3.9)--and compare these data with results for the first kind of LL3-4 chondrites. Given that chondrules form in the nebula and that metamorphic equilibration occurs in asteroids, our new data imply that Ngawi, A77278, Hamlet, and many other type 3 ordinary chondrites are post-metamorphic breccias containing materials with diverse metamorphic histories; they are not metamorphic rocks or special kinds of 'primitive breccias.' We infer also that metamorphism to type 3.1-3.9 levels produces very friable material that is easily remixed into breccias and lithified by mild shock. Thus, petrologic types and subtypes of chondrites indicate the mean metamorphic history of the ingredients, not the thermal history of the rock. The metamorphic history of individual type 1 or 2 porphyritic chondrules in type 3 breccias is best derived from olivine and pyroxene analyses and the data of McCoy et al. for unbrecciated chondrites. The new chondrule classification schemes of Sears, DeHart et al., appears to provide less information about the original state and metamorphic history of individual porphyritic chondrules and should not replace existing classification schemes.

  3. Trace elements in Zn Pb Ag deposits and related stream sediments, Brooks Range Alaska, with implications for Tl as a pathfinder element (United States)

    Graham, G.E.; Kelley, K.D.; Slack, J.F.; Koenig, A.E.


    The Zn-Pb-Ag metallogenic province of the western and central Brooks Range, Alaska, contains two distinct but mineralogically similar deposit types: shale-hosted massive sulphide (SHMS) and smaller vein-breccia occurrences. Recent investigations of the Red Dog and Anarraaq SHMS deposits demonstrated that these deposits are characterized by high trace-element concentrations of As, Ge, Sb and Tl. This paper examines geochemistry of additional SHMS deposits (Drenchwater and Su-Lik) to determine which trace elements are ubiquitously elevated in all SHMS deposits. Data from several vein-breccia occurrences are also presented to see if trace-element concentrations can distinguish SHMS deposits from vein-breccia occurrences. Whole-rock geochemical data indicate that Tl is the most consistently and highly concentrated characteristic trace element in SHMS deposits relative to regional unmineralized rock samples. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and sphalerite indicate that Tl is concentrated in pyrite in SHMS. Stream sediment data from the Drenchwater and Su-Lik SHMS show that high Tl concentrations are more broadly distributed proximal to known or suspected mineralization than As, Sb, Zn and Pb anomalies. This broader distribution of Tl in whole-rock and particularly stream sediment samples increases the footprint of exposed and shallowly buried SHMS mineralization. High Tl concentrations also distinguish SHMS mineralization from the vein-breccia deposits, as the latter lack high concentrations of Tl but can otherwise have similar trace-element signatures to SHMS deposits. ?? 2009 AAG/Geological Society of London.

  4. Stratigraphy, artefact industries and hominid associations for Sterkfontein, member 5. (United States)

    Kuman, K; Clarke, R J


    A revised stratigraphy for the early hominid site of Sterkfontein (Gauteng Province, South Africa) reveals a complex distribution of infills in the main excavation area between 2.8 and 1.4 m.y.a, as well as deposits dating to the mid to late Pleistocene. New research now shows that the Member 4 australopithecine breccia (2.8-2.6 Ma) extends further west than was previously thought, while a late phase of Member 4 is recognized in a southern area. The artefact-bearing breccias were defined sedimentologically as Member 5, but one supposed part of these younger breccias, the StW 53 infill, lacks in situ stone tools, although it does appear to post-date 2.6 Ma when artefacts first appear in the archaeological record. The StW 53 hominid, previously referred to Homo habilis, is here argued to be Australopithecus. The first artefact-bearing breccia of Member 5 is the Oldowan Infill, estimated at 2-1.7 Ma. It occupies a restricted distribution in Member 5 east and contains an expedient, flake-based tool industry associated with a few fossils of Paranthropos robustus. An enlarged cave opening subsequently admitted one or more Early Acheulean infills associated in Member 5 west with Homo ergaster. The artefacts attest to a larger site accumulation between ca. 1.7 and 1.4 Ma, with more intensive use of quartzite over quartz and a subtle but important shift to large flakes and heavier-duty tools. The available information on palaeoenvironments is summarized, showing an overall change from tropical to sub-tropical gallery forest, forest fringe and woodland conditions in Member 4 to more open woodland and grassland habitats in the later units, but with suggestions of a wet localized topography in the Paranthropus -bearing Oldowan Infill. Copyright 2000 Academic Press.

  5. Fault Rock Variation as a Function of Host Rock Lithology (United States)

    Fagereng, A.; Diener, J.


    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  6. Hydrotectonics; principles and relevance (United States)

    Kopf, R.W.


    Hydrotectonics combines the principles of hydraulics and rock mechanics. The hypothesis assumes that: (1) no faults are truly planar, (2) opposing noncongruent wavy wallrock surfaces form chambers and bottlenecks along the fault, and (3) most thrusting occurs beneath the water table. These physical constraints permit the following dynamics. Shear displacement accompanying faulting must constantly change the volume of each chamber. Addition of ground water liquefies dry fault breccia to a heavy incompressible viscous muddy breccia I call fault slurry. When the volume of a chamber along a thrust fault decreases faster than its fault slurry can escape laterally, overpressurized slurry is hydraulically injected into the base of near-vertical fractures in the otherwise impervious overriding plate. Breccia pipes commonly form where such fissures intersect. Alternating decrease and increase in volume of the chamber subjects this injection slurry to reversible surges that not only raft and abrade huge clasts sporadically spalled from the walls of the conduit but also act as a forceful hydraulic ram which periodically widens the conduit and extends its top. If the pipe perforates a petroleum reservoir, leaking hydrocarbons float to its top. Sudden faulting may generate a powerful water hammer that can be amplified at some distal narrow ends of the anastomosing plumbing system, where the shock may produce shatter cones. If vented on the Earth's surface, the muddy breccia, now called extrusion slurry, forms a mud volcano. This hypothesis suggests that many highly disturbed features presently attributed to such catastrophic processes as subsurface explosions or meteorite impacts are due to the rheology of tectonic slurry in an intermittently reactivated pressure-relief tube rooted in a powerful reciprocating hydrotectonic pump activated by a long-lived deep-seated thrust fault.

  7. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea (United States)

    Hosoi, Jun; Amano, Kazuo


    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  8. Exploring the Utilization of Low-Pressure, Piston-Cylinder Experiments to Determine the Bulk Compositions of Finite, Precious Materials (United States)

    Vander Kaaden, K. E.; McCubbin, F. M.; Harrington, A. D.


    Determining the bulk composition of precious materials with a finite mass (e.g., meteorite samples) is extremely important in the fields of Earth and Planetary Science. From meteorite studies we are able to place constraints on large scale planetary processes like global differentiation and subsequent volcanism, as well as smaller scale processes like crystallization in a magma chamber or sedimentary compaction at the surface. However, with meteorite samples in particular, far too often we are limited by how precious the sample is as well as its limited mass. In this study, we have utilized aliquots of samples previously studied for toxicological hazards, including both the fresh samples (lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt (MORB)), and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB). With these small masses of material, we performed low pressure (approx. 0.75 GPa), high temperature (greater than 1600 degrees Celsius) melting experiments. Each sample was analyzed using a JEOL 8530F electron microprobe to determine the bulk composition of the materials that were previously examined. When available, the results of our microprobe data were compared with bulk rock compositions in the literature. The results of this study show that with this technique, only approx. 50 mg of sample is required to accurately determine the bulk composition of the materials of interest.

  9. Litho-kinematic facies model for large landslide deposits in arid settings

    Energy Technology Data Exchange (ETDEWEB)

    Yarnold, J.C.; Lombard, J.P.


    Reconnaissance field studies of six large landslide deposits in the S. Basin and Range suggest that a set of characteristic features is common to the deposits of large landslides in an arid setting. These include a coarse boulder cap, an upper massive zone, a lower disrupted zone, and a mixed zone overlying disturbed substrate. The upper massive zone is dominated by crackel breccia. This grades downward into a lower disrupted zone composed of a more matrix-rich breccia that is internally sheared, intruded by clastic dikes, and often contains a cataclasite layer at its base. An underlying discontinuous mixed zone is composed of material from the overlying breccia mixed with material entrained from the underlying substrate. Bedding in the substrate sometimes displays folding and contortion that die out downward. The authors work suggests a spatial zonation of these characteristic features within many landslide deposits. In general, clastic dikes, the basal cataclasite, and folding in the substrate are observed mainly in distal parts of landslides. In most cases, total thickness, thickness of the basal disturbed and mixed zones, and the degree of internal shearing increase distally, whereas maximum clast size commonly decreases distally. Zonation of these features is interpreted to result from kinematics of emplacement that cause generally increased deformation in the distal regions of the landslide.

  10. New oil source rocks cut in Greek Ionian basin

    Energy Technology Data Exchange (ETDEWEB)

    Karakitsios, V. [Univ. of Athens (Greece); Rigakis, N. [Public Petroleum Corp., Athens (Greece)


    The Ionian zone of Northwest Greece (Epirus region) constitutes part of the most external zones of the Hellenides (Paxos zone, Ionian zone, Gavrovo Tripolitza zone). The rocks of the Ionian zone range from Triassic evaporites and associated breccias through a varied series of Jurassic through Upper Eocene carbonates and lesser cherts and shales followed by Oligocene flysch. The surface occurrences of petroleum in the Ionian zone are mainly attributed to Toarcian Lower Posidonia beds source rocks and lesser to late Callovian-Tithonian Upper Posidonia beds and to the Albian-Cenomanian Upper Siliceous zone or Vigla shales of the Vigla limestones. Oil that could not be attributed to the above source rocks is believed to have an origin from Triassic formations that contain potential source rocks in Albania and Italy. However, several samples of the shales of Triassic breccias from outcrops and drillholes were analyzed in the past, but the analytical results were not so promising since their hydrocarbon potential was low. In this article, the authors will present their analytical results of the Ioannina-1 well, where for the first time they identified some very rich source beds in the Triassic breccias formation of Northwest Greece.

  11. Geoelectricity Data Analysis For Identification The Aquifer Configuration In Bandorasawetan, Cilimus, Kuningan, West Java Province

    Directory of Open Access Journals (Sweden)

    Muhammad Kurniawan Alfadli


    Full Text Available Indonesian water consumption is influenced by the people growth. One of Water consumption fulfilment by groundwater aquifer. Bandorasawetan is one of the areas which predicted have proper potential due to located in East of Mt. Ceremai that predicted recharge area. Based on regional geological data, Bandorasawetan is an undifferentiated young volcanic product which consists of lava, breccia, lapilli, and tuffaceous sand. Geophysics method for groundwater prediction is 2-D geoelectrical with Wenner – Schlumberger configuration. The result of acquisition is obtained resistivity value from 0 - >1000 Ohm. m. Interpretation from data distribution is consist of two resistivity range that describes lithology on the research area, such as: 0 – 150 Ohm.m contributed as aquiqlud with tuffaceous sand lithology and > 150 Ohm.m interpreted as volcanic breccia lithology. Volcanic breccia has a role as aquifer in study area, the conclusion is distribution of resistivity value with range > 150 Ohm.m be the reference to developing groundwater resource in study area. Depth of aquifer is varying, deeper to the east. In Line – 1, depth of the aquifer is 48 meters and in Line – 2, depth of aquifer be 60 meters.

  12. Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt

    Directory of Open Access Journals (Sweden)

    Luciano Alves


    Full Text Available The utilization of rocks as fertilizers is limited by their low solubility. However, solubilization may be achieved by some micro-organisms, such as ectomycorrhizal fungi (ECMf. The aim of this study was to evaluate the potential of seven isolates of ECMf to solubilize two rocks, alkaline breccia and granite, and to liberate potassium and phosphorus for Eucalyptus dunnii seedlings under greenhouse conditions. Fungal inoculants were produced in a peat-vermiculite-liquid medium mixture and added to the planting substrate at 10 %. Rocks were ground up and added at 0.500 mg and 16.0 mg per plant, as a source of phosphorus and potassium, respectively. Other nutrients were added and E. dunnii seeds were sown. Control plants, non-inoculated, were fertilized with the same amount of phosphorus and potassium using soluble forms. After 90 days, the plant height, shoot dry weight, root length, phosphorus and potassium contents, and mycorrhizal colonization were evaluated. Alkaline breccia was more efficient than granite as a source of phosphorus and potassium for the plants, and may be an alternative to conventional fertilizers. Isolates UFSC-Pt22 (Pisolithus sp. and UFSC-Pt186 (Pisolithus microcarpus were the most efficient in promoting plant growth, mainly when combined with alkaline breccia to replace potassium and phosphorus fertilizers, respectively.

  13. The preservation of the Agoudal impact crater, Morocco, under a landslide: Indication of a genetic link between shatter cones and meteorite fragments (United States)

    Nachit, Hassane; Abia, El Hassan; Bonadiman, Costanza; Di Martino, Mario; Vaccaro, Carmela


    Geological studies and tomographic profiles of a locality nearby the Agoudal village (Morocco) showed the presence of a single impact crater, 500-600 m diameter, largely hidden by a limestone block, 220 m long and 40 m deep. The site was interpreted as a landslide that followed the fall of a cosmic body. The Agoudal impact crater was not affected by intense erosion. The lack of an evident impact structure, as well as the sporadic distribution of impactites and their limited occurrence, can be explained by a complex geological framework and by recent tectonics. The latter is the result of the sliding of limestone block, which hides almost two-thirds of the crater's depression, and the oblique fall of the meteoroid on sloping ground. In addition, some impact breccia dikes sharply cut the host rock in the Agoudal impact structure. They do not show any genetic relationship with tectonics or hydrothermal activity, nor are they related to any karst or calcrete formations. Altogether, the overlapping of the meteorite strewn field (11 km long and 3 km wide) with the area of occurrence of shatter cones and impact breccias, together with the presence of meteorite fragments (shrapnel) ejected from the crater, the presence of shatter cones contaminated by products of iron meteorites and the presence of impact breccias that contain meteorite fragments of the same chemical composition of the Agoudal meteorite indicate that the fall of this meteorite can be responsible for the formation of the impact structure.


    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović


    Full Text Available The research, that has been done both on the »intact« terrain and on the opened cuts and discontinuities, and which has been carried on in the basic caves of the object, as well as in the tunnels; has verified the engineering geological and basic tectonic characteristics of Senonian limestones, Eocene flysch, the Promina breccias and breccia-conglomerates, as well as Oligocene poorly sorted breccias, on the route of semi-highway Solin-Klis (Dalmatia, Croatia. The lab analyses, of the great number of the rock samples, have brought out the parametres of their basic physical and mechanical features within a particular engineering geological unit. The results, thus obtained, have been compared to the qualities of the rock structure block as a whole, and had been previously evaluated by applying RMR-classification of the rocks, and the results of the measured velocities of the longitudinal waves. It has been pointed out that similar procedure may be applied in the publication of General Engineering Geological Map of the Republic of Croatia (the paper is published in Croatian.

  15. Apollo 16 Evolved Lithology Sodic Ferrogabbro (United States)

    Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.


    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.

  16. Petrologic comparisons of Cayley and Descartes on the basis of Apollo 16 soils from stations 4 and 11 (United States)

    Basu, A.; Mckay, D. S.


    Petrologic aspects of the Cayley and Descartes formations are reviewed in the light of new data on Apollo 16 soils. Specific comparison of the modal abundances of lithic fragments in drive tube sample 64001/2 from the slopes of Stone Mountain (station 4) and in soil 67941 from the North Ray Crater rim (station 11) shows that melt rocks, especially poikilitic rocks, are more abundant at station 4 than at station 11; the reverse is true for fragmental breccias. Such lithologic differences suggest that stations 4 and 11 do not belong to the same geologic formation. Metamorphosed breccias are pervasive in both the formations and may represent a local component that has been reworked and diluted as fresh materials were added. Lithologic compositions inferred from the study of soil samples are different from lithologic compositions inferred from the study of rake samples or breccia clasts. This difference may be related to a mixing of material of different grain size distributions. The petrology of soils at the Apollo 16 site may not accurately reflect original material associated with either the Descartes or the Cayley formation because of extensive mixing with local material.

  17. Meteorite Dust and Health - A Novel Approach for Determining Bulk Compositions for Toxicological Assessments of Precious Materials (United States)

    Vander Kaaden, K. E.; Harrington, A. D.; McCubbin, F. M.


    With the resurgence of human curiosity to explore planetary bodies beyond our own, comes the possibility of health risks associated with the materials covering the surface of these planetary bodies. In order to mitigate these health risks and prepare ourselves for the eventuality of sending humans to other planetary bodies, toxicological evaluations of extraterrestrial materials is imperative (Harrington et al. 2017). Given our close proximity, as well as our increased datasets from various missions (e.g., Apollo, Mars Exploration Rovers, Dawn, etc…), the three most likely candidates for initial human surface exploration are the Moon, Mars, and asteroid 4Vesta. Seven samples, including lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt, were examined for bulk chemistry, mineralogy, geochemical reactivity, and inflammatory potential. In this study, we have taken alliquots from these samples, both the fresh samples and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB), and performed low pressure, high temperature melting experiments to determine the bulk composition of the materials that were previously examined.

  18. Geochemistry of 2-4-mm particles from Apollo 14 soil (14161) and implications regarding igneous components and soil-forming processes (United States)

    Jolliff, B. L.; Korotev, R. L.; Haskin, L. A.


    The present paper describes the compositional systematics of 381 particles analyzed from 14161, which was taken near the lunar module as part of the bulk sample. Attention is given to the distribution of lithologies, based on petrographic examination and compositions determined by INAA, and to implications of the compositions of polymict particles regarding igneous precursors and soil-forming processes. It was found that the most abundant particles are the impact-melt lithologies and regolith and fragmental breccias. The mean composition of the entire suite of 2-4-mm particles differs from that of the associated less-than-1-mm fines by having higher concentrations of incompatible trace elements and Na2O, and a lower concentration of CaO. There is a subset of regolith breccia particles and agglutinates in the 2-4-mm particles that have nearly identical compositions and Is/FeO similar to those of the less-than-1-mm fines. It is suggested that these particles are constructional products formed from the local regolith rather than comminuted fragments of ancient regolith breccias.

  19. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi


    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  20. Contribution to the speleology of Sterkfontein cave, Gauteng province, South Africa.

    Directory of Open Access Journals (Sweden)

    Martini Jacques E. J.


    Full Text Available The authors present more data about the speleological aspect of the Sterkfontein Cave, famous for its bone breccia which yielded abundant hominid remains. They also briefly review the previous voluminous studies by numerous authors, which are mainly dealing with the paleontology, stratigraphy and sedimentology of the breccia. The present investigations were oriented to hitherto poorly investigated aspects such as detail mapping of the cave, its country rock stratigraphy and recording the underground extension of the basal part of the breccia body. The cave consists of a complex network of phreatic channels, developed along joints in Neoarchaean cherty dolostone over a restricted surface of 250x250m. The combined length of all passages within this area amounts to 5,23km. The system extends over a height of about 50m and the dry part of it is limited downwards by the water-table appearing as numerous static pools. The fossiliferous breccia (= Sterkfontein Formation forms an irregular lenticular mass 75x25m horizontally by 40m vertically, which is included within the passage network. It crops out at surface and in the cave, and resulted from the filling of a collapse chamber, which was de-roofed by erosion. The present investigation confirmed that the cave and the Sterkfontein Formation are part of a single speleogenetic event. The breccia resulted from cavity filling by sediments introduced from a pit entrance, whereas many of the phreatic passages around it, which are developed at the same elevation, were only partly filled or remained entirely open up to present. This filling took place mainly in a vadose environment. Taking into account the age of the Sterkfontein Formation (>3,3-1,5 My, from base to top, the geomorphic evolution of the landscape and the context of other caves in the region, it seems that the cave might have started to form 5 My ago. It has been continuously developing up to present as a result of a slow drop of the water-table.

  1. Magmatic Processes in Monogenetic Eruptions, Procida Island, Campi Flegrei, Italy: Geochemical Evidence From Melt Inclusions (United States)

    Severs, M. J.; Fedele, L.; Esposito, R.; Bodnar, R.; Petrosino, P.; Lima, A.; de Vivo, B.; Shimizu, N.


    Campi Flegrei is an active volcanic complex located in the greater Naples area, which has produced more than 50 eruptions over the past 60,000 years. These have ranged from small eruptions such as Monte Nuovo eruption of 1538 CE to extremely large eruptions such as the Campanian Ignimbrite (150-200 DRE; Barbieri et al., 1978). The volcanic field includes the mainland area located to the west of Naples and also the two islands of Ischia and Procida. The volcanic products range from basalts to shoshonitic phonolites and trachytes, with the more evolved magmas being more abundant. Three eruptive units from Procida Island have been studied to observe geochemical trends over time within a small area and to better understand magmatic processes between monogenetic eruptions. Juvenile samples from Pozzo Vecchio, Breccia Museo, and Solchiara were collected to examine the geochemistry of the mineral phases present and melt inclusions (MIs) found within the phenocrysts. Solchiara contained phenocrysts of olivine and clinopyroxene, whereas Breccia Museo and Pozzo Vecchio samples contained clinopyroxene and sanidine as the dominant phenocryst phases. Melt inclusions from Solchiara have narrow compositional ranges in major and trace elements (i.e., CaO, TiO2, Zr, Dy, La) over a large range in SiO2 contents (47 to 55 wt%) while MI from the Breccia Museo have a limited range of SiO2 contents (57 to 61 wt%) with a wider range for major and trace elements (i.e., FeO, Al2O3, CaO, La, Th, Rb). Pozzo Vecchio MI from clinopyroxene and sanidine define different chemical compositions, but petrographic evidence does not suggest a xenocrystic origin for either mineral phase. This suggests that Pozzo Vecchio is the result of magma mixing. Modeling of fractional crystallization of olivine, clinopyroxene, and sanidine are capable of producing most of the trends in major and trace elements between the most primitive samples to the most evolved samples. Volatile concentrations between the

  2. Soot and palynologic analysis of Manson impact-related strata (Upper Cretaceous) of Iowa and South Dakota, USA (United States)

    Varricchio, D.J.; Raven, R.F.; Wolbach, W.S.; Elsik, W.C.; Witzke, B.J.


    The Campanian Manson impact structure of Iowa represents the best-preserved, large-diameter complex crater within the continental U.S. To assess the timing and potential mode of crater infilling and the possible presence of an impact event horizon, we analyzed samples from both within and distal to the impact structure for their elemental carbon, soot and palynomorphs. Within the impact structure, identifiable soot occurred in fragmented impact breccia and suevite but not in lower impact-melt breccia. Although most of this soot likely represents reworking of material from older Cretaceous marine shales, one high soot concentration occurs with melt material in a Keweenawan Shale-Phanerozoic clast breccia mix. This represents the first association of soot and impact-generated materials within an impact structure and the best sample candidate for Manson impact-generated soot. No palynomorphs occurred in the impact melt breccia. Overlying suevite (Keweenawan Shale clast breccia) of the central peak yielded sparse and thermally altered palynomorphs, indicating deposition prior to full cooling of the crater debris. Presence of easily degraded soot also argues for rapid backfilling of the crater. Distal samples from South Dakota represent the Sharon Springs and Crow Creek members of the Pierre Shale 230 km northwest of the Manson impact structure. Although containing shocked grains, the Crow Creek preserves no soot. In contrast, the Sharon Springs, generally considered as predating the Manson impact, has significant soot quantities. Palynomorphs differ markedly across the unconformity separating the two members with the Crow Creek containing more terrestrial forms, normapolles, and older reworked palynomorphs, consistent with a terrestrial impact to the east. Origin of the Sharon Springs soot remains unclear. Given soot occurrence within four of the five Cretaceous marine units sampled, the relatively shallow, anoxic bottom conditions of the Western Interior Cretaceous

  3. Secondary Magnetization of ZEBRA Dolomites in the Basin and Range Province of Eastern Nevada (United States)

    Elmore, R. D.; Dulin, S. A.


    Zebra dolomites within the Devonian Guilmette Formation of the southern Basin and Range Province, Nevada, are the focus of a paleomagnetic study to determine if a characteristic magnetization exists that will yield insight into the timing of zebra dolomite formation. Zebra dolomites consist of alternating bands of light and dark dolomite, and are found throughout Nevada, often associated with mineralized ore deposits. Although a variety of mechanisms have been suggested for formation, the zebra dolomite throughout Nevada is likely associated with hydrothermal fluid migration. The current study focuses on zebra dolomites that have formed in close stratigraphic proximity and within the Alamo Breccia in the Delamar Range in southeastern Nevada. The Alamo Breccia is an impact generated mega-breccia zone within the Devonian Guilmette Formation. The zebra dolomites, including those in the Alamo Breccia, and host Guilmette in the Delamar Range have a characteristic remanent magnetization (ChRM) with maximum laboratory unblocking temperatures of 480°C that is interpreted to reside in magnetite. The rocks were structurally rotated to remove Cenozoic extension, and the stratigraphic mean direction of the ChRM has a declination of 164.4°, with an inclination of -3°. The calculated pole is at 51.6°N, 90.7°E (dp = 2.2, dm = 4.3) which lies near the late Triassic portion of the apparent polar wander path (APWP) for North America. Based on low burial temperatures, this ChRM is interpreted as a chemical remanent magnetization (CRM) that was acquired due to the mobilization of brines possibly associated with the Triassic Sonoma orogeny. Geochemical data are consistent with alteration by externally derived fluids. The presence of a late Triassic magnetization indicates that the zebra dolomite can be no younger than Late Triassic. Preliminary results from zebra dolomites in other areas in southeastern Nevada indicate a more complex magnetization; some locations contain both

  4. Palaeomagnetic Emplacement Temperature Determinations of Pyroclastic and Volcaniclastic Deposits in Southern African Kimberlite Pipes (United States)

    Fontana, G.; Mac Niocaill, C.; Brown, R.; Sparks, R. S.; Matthew, F.; Gernon, T. M.


    Kimberlites are complex, ultramafic and diamond-bearing volcanic rocks preserved in volcanic pipes, dykes and craters. The formation of kimberlite pipes is a strongly debated issue and two principal theories have been proposed to explain pipe formation: (1) the explosive degassing of magma, and (2) the interaction of rising magma with groundwater (phreatomagmatism). Progressive thermal demagnetization studies are a powerful tool for determining the emplacement temperatures of ancient volcanic deposits and we present the first application of such techniques to kimberlite deposits. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater-fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The results provide important constraints on kimberlite emplacement mechanisms and eruption dynamics. Emplacement temperatures of >590°C for pipe-filling pyroclastic deposits

  5. Emplacement Temperatures of Pyroclastic and Volcaniclastic Deposits in Kimberlite Pipes in Southern Africa: New constraints From Palaeomagnetic Measurements (United States)

    Fontana, G. P.; Macniocaill, C.; Brown, R. J.; Sparks, S. R.; Field, M.; Gernon, T. M.


    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied for the first time to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater- fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The emplacement temperature results are comparable to the estimated emplacement temperatures of other kimberlite deposits and pyroclastic deposits from other volcanic systems, and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. This is in the range where welding and agglutination of juvenile pyroclasts occurs in other types of pyroclastic deposits. Such high emplacement temperatures for vent-filling pyroclastic deposits are consistent with volatile

  6. Geochemistry, Nd-Pb Isotopes, and Pb-Pb Ages of the Mesoproterozoic Pea Ridge Iron Oxide-Apatite–Rare Earth Element Deposit, Southeast Missouri (United States)

    Ayuso, Robert A.; Slack, John F.; Day, Warren C.; McCafferty, Anne E.


    Iron oxide-apatite and iron oxide-copper-gold deposits occur within ~1.48 to 1.47 Ga volcanic rocks of the St. Francois Mountains terrane near a regional boundary separating crustal blocks having contrasting depleted-mantle Sm-Nd model ages (TDM). Major and trace element analyses and Nd and Pb isotope data were obtained to characterize the Pea Ridge deposit, improve identification of exploration targets, and better understand the regional distribution of mineralization with respect to crustal blocks. The Pea Ridge deposit is spatially associated with felsic volcanic rocks and plutons. Mafic to intermediate-composition rocks are volumetrically minor. Data for major element variations are commonly scattered and strongly suggest element mobility. Ratios of relatively immobile elements indicate that the felsic rocks are evolved subalkaline dacite and rhyolite; the mafic rocks are basalt to basaltic andesite. Granites and rhyolites display geochemical features typical of rocks produced by subduction. Rare earth element (REE) variations for the rhyolites are diagnostic of rocks affected by hydrothermal alteration and associated REE mineralization. The magnetite-rich rocks and REE-rich breccias show similar REE and mantle-normalized trace element patterns.Nd isotope compositions (age corrected) show that: (1) host rhyolites have ɛNd from 3.44 to 4.25 and TDM from 1.51 to 1.59 Ga; (2) magnetite ore and specular hematite rocks display ɛNd from 3.04 to 4.21 and TDM from 1.6 to 1.51 Ga, and ɛNd from 2.23 to 2.81, respectively; (3) REE-rich breccias have ɛNd from 3.04 to 4.11 and TDM from 1.6 to 1.51 Ga; and (4) mafic to intermediate-composition rocks range in ɛNd from 2.35 to 3.66 and in TDM from 1.66 to 1.56. The ɛNd values of the magnetite and specular hematite samples show that the REE mineralization is magmatic; no evidence exists for major overprinting by younger, crustal meteoric fluids, or by externally derived Nd. Host rocks, breccias, and

  7. The Complex Stratigraphy of the Highland Crust in the Serenitatis Region of the Moon Inferred from Mineral Fragment Chemistry (United States)

    Ryder, Graham; Norman, Marc D.; Taylor, G. Jeffrey


    Large impact basins are natural drill holes into the Moon, and their ejecta carries unique information about the rock types and stratigraphy of the lunar crust. We have conducted an electron microprobe study of mineral fragments in the poikilitic melt breccias collected from the Taurus Mountains at the Apollo 17 landing site. These breccias are virtually unanimously agreed to be impact melt produced in the Serenitatis impact event. They contain lithic fragments and much more abundant mineral fragments of crustal origin. We have made precise microprobe analyses of minor element abundances in fragments of olivine, pyroxene, and plagioclase to provide new information on the possible source rocks and the crustal stratigraphy in the Serenitatis region. These data were also intended to elucidate the nature of the cryptic geochemical component in breccias such as these with low-K Fra Mauro basalt compositions. We chose the finest-grained (i.e., most rapidly quenched) breccias for study, to avoid reacted and partly assimilated fragments as much as possible. Most of the mineral fragments appear to have been derived from rocks that would fall into the pristine igneous Mg-suite as represented by lithic fragments in the Apollo collection, or reasonable extensions of it. Gabbroic rocks were more abundant in the target stratigraphy than is apparent from the Apollo sample collection. Some pyroxene and plagiociase, but probably not much olivine, could be derived from feldspathic granulites, which are metamorphosed polymict breccias. Some mineral fragments are from previously unknown rocks. These include highly magnesian olivines (up to Fo(sub 94)), possibly volcanic in origin, that exacerbate the difficulty in explaining highly magnesian rocks in the lunar crust. It appears that some part of the lunar interior has an mg*(= 100 x Mg/(Mg/Fe) atomic) greater than the conventional bulk Moon value of 80-84. Other volcanic rocks, including mare basalts, and rapidly- cooled impact melt

  8. Alteration mineralogy, mineral chemistry and stable isotope geochemistry of the Eocene pillow lavas from the Trabzon area, NE Turkey (United States)

    Abdioğlu Yazar, Emel


    The Eocene subaqueous volcanic units in NE Turkey developed as pillow, closely packed pillow, isolated pillow, pillow breccia, hyaloclastite breccia and rare peperitic facies with red micritic limestones. They are locally set on volcaniclastic sandstone and claystone alternations and gradually pass to tuffs and volcanic breccias. The pillow lava samples generally exhibit intersertal, intergranular, microlitic porphyritic, variolitic, vesicular and glomeroporphyritic and glassy textures with clinopyroxene (Wo47-52En40-45Fs6-8), plagioclase (An10 to An96), olivine (Fo79-87) and Fe-Ti oxides (Usp0-0.27). Saponite, interlayered chlorite/saponite, rare beidellite and calcite were determined after olivine, rarely after plagioclase as well as in the glassy groundmass. Illite was restricted to plagioclase and the glassy groundmass. Na-Ca zeolites, chlorites/saponites, beidellite, dolomite and calcite occur as void infillings and in the glassy groundmass. Mineralogical, lithochemical and isotopic interpretations as well as thermometric calculations reveal a low-temperature seawater alteration in a semi-closed environment for the alteration of primary minerals and volcanic glass in addition to sealed vesicles and open systems for crosscutting veins. Due to the short exposure time intervals of seawater to rocks, the total chemistry of the rocks is not fully changed and most of the elements seem to be immobile, remaining in the system as a result of precipitation in voids and cracks. Thermometric estimations indicate that, the temperature of heated seawater is approximately 160 °C at the highest point especially in the vesicles, and decreases to approximately 85 °C due to circulation, resulting in alterations of the primary phases and volcanic glass.

  9. Compositional evidence regarding the influx of interplanetary materials onto the lunar surface (United States)

    Wasson, J.T.; Boynton, W.V.; Chou, C.-L.; Baedecker, P.A.


    Siderophilic element/Ir ratios are higher in mature lunar soils from highlands sites than in those from mare sites. We infer that the population of materials responsible for the early intense bombardment of the Moon had high ratios, and that the population responsible for the essentially constant flux has low ratios. No group of chondrites has siderophile/Ir ratios identical to those in the mare or highlands soils; CM chondrites are the most similar, and CM-like materials may account for a major fraction of Earth-crossing materials during the past 3.7 b.y. Siderophile/Ir ratios may be used to determine the amount of highlands regolith in soils or breccias from the mare-highlands interface areas (Apollo 15 and 17), and to infer the time of formation of highlands breccias whose sideropbiles originated in mature soils. Arguments are summarized against the viewpoint that the siderophiles in most highlands breccias originated in basin-forming projectiles. Differences in mature soil siderophile concentrations at Apollo 14 and 16 indicate a substantially greater concentration at the latter site immediately following the Imbrium event. Siderophile concentrations are used to estimate mean regolith depths at the landing sites; as relative values these are more precise than estimates based on seismic or crater observations. The longlived flux is calculated to be 2.9 g cm-2 b.y.-1 averaged over the past 3.7 b.y. A consideration of the relationship between mass fluence and time indicates that the mass flux decreased with a half-life of about 40 m.y. immediately following the Imbrium event. ?? 1975 D. Reidel Publishing Company.

  10. Evolution of crystalline target rocks and impactites in the chesapeake bay impact structure, ICDP-USGS eyreville B core (United States)

    Horton, J. Wright; Kunk, M.J.; Belkin, H.E.; Aleinikoff, J.N.; Jackson, J.C.; Chou, I.-Ming


    The 1766-m-deep Eyreville B core from the late Eocene Chesapeake Bay impact structure includes, in ascending order, a lower basement-derived section of schist and pegmatitic granite with impact breccia dikes, polymict impact breccias, and cataclas tic gneiss blocks overlain by suevites and clast-rich impact melt rocks, sand with an amphibolite block and lithic boulders, and a 275-m-thick granite slab overlain by crater-fill sediments and postimpact strata. Graphite-rich cataclasite marks a detachment fault atop the lower basement-derived section. Overlying impactites consist mainly of basement-derived clasts and impact melt particles, and coastalplain sediment clasts are underrepresented. Shocked quartz is common, and coesite and reidite are confirmed by Raman spectra. Silicate glasses have textures indicating immiscible melts at quench, and they are partly altered to smectite. Chrome spinel, baddeleyite, and corundum in silicate glass indicate high-temperature crystallization under silica undersaturation. Clast-rich impact melt rocks contain ??- cristobalite and monoclinic tridymite. The impactites record an upward transition from slumped ground surge to melt-rich fallback from the ejecta plume. Basement-derived rocks include amphibolite-facies schists, greenschist(?)-facies quartz-feldspar gneiss blocks and subgreenschist-facies shale and siltstone clasts in polymict impact breccias, the amphibolite block, and the granite slab. The granite slab, underlying sand, and amphibolite block represent rock avalanches from inward collapse of unshocked bedrock around the transient crater rim. Gneissic and massive granites in the slab yield U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dates of 615 ?? 7 Ma and 254 ?? 3 Ma, respectively. Postimpact heating was 7lt;~350 ??C in the lower basementderived section based on undisturbed 40Ar/ 39Ar plateau ages of muscovite and sand above the suevite based on 40Ar/39Ar age spectra of detrital microcline. ?? 2009 The

  11. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.


    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  12. Interpretation of Oil Seepage of Source Rock Based Magnetic Survey in Cipari Cilacap District

    Directory of Open Access Journals (Sweden)

    Sukmaji Anom Raharjo


    Full Text Available The magnetic survey had been conducted in Village of Cipari, District of Cipari, Region of  Cilacap to interpret to the location of the oil seepage source rock. Boundary of the research area is 108.75675°E – 108.77611°E and 7.42319°S – 7.43761°S. The observed total magnetic data is corrected and reducted to obtain the local magnetic anomaly data. The local magnetic anomaly data is applied to model the subsurface bodies anomalies based on the Mag2DC for Windows software. With be supported the geological information, the some bodies anomalies are interpreted as the basaltic igneous rock (c = 0.0051, the alternately of sandstone and claystone and insert of marl from Halang Formation (c = 0.0014, the breccia from Kumbang Formation (c = 0.0035, the alternately of sandstones and claystone with insert of marl and breccia from Halang Formation (c = 0.0036, the claystone from Tapak Formation (c = 0.0015, the alternately of sandstones and claystone with insert of marl and compacted breccia from Halang Formation (c = 0.0030, and the alternately of sandstone and claystone from   Halang Formation (c = 0.0020. The plantonic foraminifer fossils as resources of oil seepage are estimated in the sedimentaries rocks, where the oil flows from those rocks into the         reservoir (source rock. Based on the interpretation results, the source rock is above basaltic igneous rock with the approximate position is 108.76164°W and 7.43089°S; and the depth is 132.09 meters below the average topographic.

  13. Investigation of high-temperature, igneous-related hydraulic fracturing as a reservoir control in the Blackburn and Grant Canyon/Bacon Flat oil fields, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.


    Research in progress to evaluate natural, igenous-related hydrothermal fracturing as a reservoir control in two eastern Nevada oil fields has revealed evidence of a far more comprehensive role for moderate- to high-temperature hydrothermal systems in Basin-and-Range oil-reservoir evolution. Fluid-inclusion and petrographic studies have shown that (now) oil-bearing dolomite breccias of the Blackburn field (Pine Valley, Eureka County) were formed when overpressured, magmatically-heated, high-temperature (>350{degrees}C) hydrothermal brines explosively ruptured their host rocks; similar studies of texturally identical breccias of the Grant Canyon/Bacon Flat field (Railroad Valley, Nye County) so far do not support such an explosive origin. At Grant Canyon, however, hydrothermal, breccia-cementing quartz hosts primary oil, aqueous/oil, and aqueous fluid inclusions (homogenization temperature = 120{degrees}C) which document a direct geothermal connection for oil migration and entrapment. Moreover, at both Blackburn and Grant Canyon/Bacon Flat, the oil reservoirs are top- and side-sealed by hydrothermally altered Tertiary ignimbrites and epiclastic rocks. Contemporary geothermal activity is also apparent at grant Canyon/Bacon Flat, where subsurface water temperatures reach 171{degrees}C, and at Blackburn, above which a petroleum-providing hot spring issues at a temperature of 90{degrees}C. We suggest that in the Basin and Range province, hydrothermal systems may have: (1) matured oil from otherwise submature source rocks; (2) transported oil to ultimate entrapment sites by convection in moderate-to high-temperature fluids; and (3) sealed reservoir traps through hydrothermal alteration of overlying Tertiary caprocks. 69 refs., 11 figs., 1 tab.

  14. The Chicxulub crater - impact metamorphism of sulfate and carbonate lithologies (United States)

    Deutsch, A.; Langenhorst, F.; Hornemann, U.; Ivanov, B. A.


    It is discussed whether in the aftermath of the Chicxulub event, impact-released CO_2 and SO_x have changed the Earth's climate, acting also as lethal thread for life. Undoubtedly, vaporization of carbonates and sulfates, which are major target lithologies at the Chicxulub impact site, occurred in the footprint of the projectile. What happened to these lithologies outside this very restricted zone was so far unconstrained. Petrologic observations on PEMEX and UNAM as well as on the CSDP cores allow to set up a general classification for shock-related pro-grade effects on sulfate and carbonate sedimentary rocks. Shock effects in lithic breccias are restricted to brecciation and formation of twins in calcite. Suevites mostly lack melted carbonate clasts; annealing effects in anhydrite fragments are absent. The underlying melt breccias contain anhydrite fragments still displaying a sedimentary texture, and limestone clasts, whose texture reflect crystallization from melt. Impact melt breccias from deeper levels frequently contain partially resorbed anhydrite clasts and a melt matrix with the Ca-rich mineral assemblage quartz + plagioclase + clinopyroxene; this mineral assemblage provides evidence for partial dissociation of CaSO_4. Large clasts of anhydrite consist of equant crystals with 120^o triple junctions, a feature indicative for re-crystallization in the solid state. Tagamites (impact melt rocks) are virtually free of clasts from sedimentary lithologies. These rocks have an extremely high formation temperature, which caused total dissociation of CaSO_4 and CaCO_3. Finally, up to 100 μm wide veins of anhydrite + calcite + quartz cut the matrix of all lithologies except the tagamites. They probably represent "degassing vents". The given scheme is in qualitative accordance with data of shock recovery and annealing experiments as well as with modeling results. In addition, it substantiates that annealing plays a fundamental role in the impact metamorphism of

  15. Reconstructing Aquatic Environment and Volcanic Crater Lake Evolution in the Siberian Traps (United States)

    Fristad, K.; Svensen, H.; Pedentchouk, N.; Planke, S.; Polozov, A. G.


    The Tunguska Basin in Siberia contains hundreds of phreatomagmatic breccia pipes and a dozen overlying crater lake deposit formed contemporaneously with the Siberian Traps. These structures were created by the violent eruption-inducing interaction of basaltic magma with gigatonnes of greenhouse gases evolved from sill intrusions into organic rich sediments. This sudden release of greenhouse gases to the atmosphere had serious implications for the end-Permian environment (Svensen et al., EPSL, 2009). The crater lake deposits above such pipes retain a unique record of breccia pipe ejecta, fluid seepage and the local environment syn- and post-eruption. Examination of these sediments is key to understanding timing, duration and effects pipe formation and degassing had on the environment. Field expeditions to Siberia in 2006 returned samples of a 1.3 km core through the largest of the preserved lake deposits and underlying breccia pipe at Oktyabrskoe in the southern Tunguska Basin. The 505 m of crater lake sediments have been analyzed for sediment geochemistry, fossil content, organic geochemistry and carbon isotopic compositions. Sediments evolve from fine grained and ash-rich at the crater base to increased siliciclastic components and coarse grain layers in the upper meters. Lake basin stability Calcareous microfossils appear with lake basin stability and taxa shed light on water quality and ecology. The appearance of dense ash layers scattered throughout the sequence mark eruption activity in other Siberian Trap pipes. Bulk carbonate, organic, and n-alkane carbon isotopes highlight changes in DIC pool, fluid influx and CO2 values over time. Observations by these diverse methods enable analysis of the coevolving biologic and inorganic environment through time. This end-Permian lake provides a unique record of the terrestrial environment at the end-Permian crisis as well as the gas seep history and lake evolution of a volcanic lake during the largest flood basalt

  16. A tectonically-induced Eocene sedimentary mélange in the West Ligurian Alps, Italy (United States)

    Perotti, E.; Bertok, C.; d'Atri, A.; Martire, L.; Piana, F.; Catanzariti, R.


    The southern Alpine Foreland basin succession (Late Eocene-Early Oligocene?) lies over the Mesozoic condensed carbonate succession of the Provençal Dauphinois Domain, ends with a chaotic complex, and is overthrust by more internal Alpine units (San Remo-Monte Saccarello Ligurian unit) emplaced in Late Oligocene-Early Miocene times. The chaotic complex consists of debris flow paraconglomerates, breccias, and megablocks, up to km-sized. Despite the post-Eocene Alpine tectonics overprint, particularly intense in its uppermost part, the sedimentary origin of the chaotic complex is proved by the interbedding of paraconglomerates and breccias with fine-grained turbidites. Megablocks consist both of formations buried below the chaotic deposits (Mesozoic Provençal Dauphinois succession, Eocene Alpine Foreland basin succession) both of exotic units (Ligurian Helminthoides Flysch). Paraconglomerate and breccia clasts were sourced by the penecontemporaneous turbidite sands and muds as well as the same lithologies as megablocks. All these features suggest the activity of early Alpine Eocene strike-slip or transtensive fault systems that juxtaposed and exhumed the Helminthoides Flysch unit and the Provençal Dauphinois succession. Submarine ridges were generated and favored rock fall phenomena that involved both small, mm- to dm-sized, clasts and huge slabs detached from the main rock masses. These morphostructural highs were flanked by oversteepened slopes affected by failures that gave rise to debris flows, involving hemipelagic muds and turbidite sands and lithified fragments of older formations, which resulted in strongly polygenic paraconglomerates. The studied mélange is thus fully due to sedimentary processes that were, however, completely controlled by early Alpine tectonics.

  17. Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary (United States)

    Hips, Kinga; Haas, János; Győri, Orsolya


    Dolomitization of relatively thick carbonate successions occurs via an effective fluid circulation mechanism, since the replacement process requires a large amount of Mg-rich fluid interacting with the CaCO3 precursor. In the western end of the Neotethys, fault-controlled extensional basins developed during the Late Triassic spreading stage. In the Buda Hills and Danube-East blocks, distinct parts of silica and organic matter-rich slope and basinal deposits are dolomitized. Petrographic, geochemical, and fluid inclusion data distinguished two dolomite types: (1) finely to medium crystalline and (2) medium to coarsely crystalline. They commonly co-occur and show a gradual transition. Both exhibit breccia fabric under microscope. Dolomite texture reveals that the breccia fabric is not inherited from the precursor carbonates but was formed during the dolomitization process and under the influence of repeated seismic shocks. Dolomitization within the slope and basinal succession as well as within the breccia zones of the underlying basement block is interpreted as being related to fluid originated from the detachment zone and channelled along synsedimentary normal faults. The proposed conceptual model of dolomitization suggests that pervasive dolomitization occurred not only within and near the fault zones. Permeable beds have channelled the fluid towards the basin centre where the fluid was capable of partial dolomitization. The fluid inclusion data, compared with vitrinite reflectance and maturation data of organic matter, suggest that the ascending fluid was likely hydrothermal which cooled down via mixing with marine-derived pore fluid. Thermal gradient is considered as a potential driving force for fluid flow.

  18. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone


    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilled cores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System. The Chelungpu Fault System in Hole-A was encountered at a depth of between 1050 - 1250 m where deformation structures increased. Three major fault zone structures were found at approximate depths of 1111, 1153, and 1221 m. The presence of wide fault rock regions were mostly concentrated in these 3 fault zones. The fault zone at 1111 m mainly consists of a nearly brecciated fracture zone and a clayey fault gouge zone of about 1.05 m in thickness. Fault rocks from the fault zone at 1153 m are characterized by the presence of sand grains in the matrix content, consisting of a 1.1-m thick fault breccia zone and a 0.35-m thick fault gouge zone. The fault zone at 1221 m consists of fault breccia and fault gouge of 1.15 m in total thickness. These are relatively harder and darker in color than the previous 2 fault zones. Each of the 3 fault zones contains a few layers of dark colored rocks of approximately 5 - 80 mm in thickness within the fault breccia and fault gouge zones. These dark colored rocks were found distinctively within the fault rocks. However, there relation to the process of faulting is not clearly understood and shall be discussed in detail with the aid of microscopic observations.

  19. Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034 (United States)

    Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.


    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.

  20. Polyphase deformation in the Southern Province, Sudbury, Ontario (United States)

    Raharimahefa, T.; Lafrance, B.; Tinkham, D. K.


    The ca. 1.85 Ga Sudbury impact structure straddles the Paleoproterozoic Southern Province to the south and the Archean Superior Province to the north. Structures in the Southern Province formed during several deformation events that occurred both before and after the Sudbury meteoritic impact event. D1 structures are characterized by a strong S1 fabric that predates the formation of Sudbury breccia in the ca. 2420 Creighton granite. D1 formed as a result of north-south crustal shortening and deformation of the Southern Province during the pre-impact Blezardian Orogeny. Sudbury breccia along the syn-sedimentary ENE-trending Murray fault is overprinted by a strong foliation (S2) and down-dip lineation (L2), which formed during post-impact reverse dip-slip reactivation of the fault (D2). S2 is cut by olivine diabase dikes of the Sudbury dike swarm, indicating a pre-1238 Ma, Mazatzal or Penokean age for this deformation. Southern Province was further deformed during the Grenvillian Orogeny. Two Grenvillian thrusting events D3 and D4 postdate D2 and produced S3 and S4 mylonitic foliations that cut across the ca. 1.47 Ga Chief Lake Complex along the Grenville Front. S3 and S4 are characterized by strong down-dip mineral lineations with rotated feldspar wings consistent with NW-directed thrusting. D4 produced the most prominent fabrics along the Grenville Front. In the Creighton pluton, ~14 km northwest of the Grenville Front, NW-SE compression during D4 was accommodated by the formation of conjugate dextral east-striking transcurrent shear zones and by sinistral transcurrent shear zones that locally follow north-striking Sudbury breccia dikes.

  1. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas (United States)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..


    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  2. Weakly shocked and deformed CM microxenoliths in the Pułtusk H chondrite (United States)

    KrzesińSka, Agata; Fritz, JöRg


    The Pułtusk meteorite is a brecciated H4-5 chondrite cut by darkened cataclastic zones. Within the breccia, relict type IA, IB, and IIA chondrules, and microxenoliths of carbonaceous CM chondrite lithology occur. This is the first description of foreign clasts in the Pułtusk meteorite. The matrix of the xenoliths was identified by usage of microprobe and Raman spectroscopic analyses. Raman spectra show distinct bands related to the presence of slightly ordered carbonaceous matter at approximately 1320 and 1580-1584 cm-1. Bands related to serpentine group minerals are also visible, especially a peak at 692 cm-1 and moreover other weak bands are interpreted as evidence for tochilinite. We decipher the metamorphic and deformational history of the xenoliths. They experienced aqueous alteration before being incorporated into the unaltered and well-equilibrated parent rock of the Pułtusk chondrite. The xenoliths are weakly shocked as indicated by defects in the crystal structure of silicates and carbonates, but hydrated minerals (serpentine and tochilinite) are still present in the matrix. The carbonaceous matter within the clasts' matrix displays first order D and G Raman bands that suggests it is only slightly ordered as a result of mild thermal processing. Distinct shear bands are present in both the xenoliths and the surrounding rock, which testifies that the xenoliths were affected by a deformational event along with host rock. The host rock was brittly deformed, but the clasts experienced more ductile deformation revealed by semibrittle faulting of minerals, kinking of the tochilinite-cronstedtite matrix, and injections of xenolithic material into the adjacent breccia. We argue that both processes, the high strain-rate shear deformation and the incorporation of the xenoliths into the host Pułtusk breccia, could have been impact-related. The Pułtusk xenoliths are, thus, rather spalled collisional fragments, than trapped fossil micrometeorites.

  3. Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body (United States)

    Righter, K.; Abell, P.; Agresti, D.; Berger, E. L.; Burton, A. S.; Delaney, J. S.; Fries, M. D.; Gibson, E. K.; Haba, M. K.; Harrington, R.; Herzog, G. F.; Keller, L. P.; Locke, D.; Lindsay, F. N.; McCoy, T. J.; Morris, R. V.; Nagao, K.; Nakamura-Messenger, K.; Niles, P. B.; Nyquist, L. E.; Park, J.; Peng, Z. X.; Shih, C.-Y.; Simon, J. I.; Swisher, C. C.; Tappa, M. J.; Turrin, B. D.; Zeigler, R. A.


    Three masses of the Chelyabinsk meteorite have been studied with a wide range of analytical techniques to understand the mineralogical variation and thermal history of the Chelyabinsk parent body. The samples exhibit little to no postentry oxidation via Mössbauer and Raman spectroscopy indicating their fresh character, but despite the rapid collection and care of handling some low levels of terrestrial contamination did nonetheless result. Detailed studies show three distinct lithologies, indicative of a genomict breccia. A light-colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock-darkened LL5 material in which the darkening is caused by melt and metal-troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at high temperatures (~1600 °C), and it experienced rapid cooling and degassing of S2 gas. Portions of light and dark lithologies from Chel-101, and the impact melt breccias (Chel-102 and Chel-103) were prepared and analyzed for Rb-Sr, Sm-Nd, and Ar-Ar dating. When combined with results from other studies and chronometers, at least eight impact events (e.g., ~4.53 Ga, ~4.45 Ga, ~3.73 Ga, ~2.81 Ga, ~1.46 Ga, ~852 Ma, ~312 Ma, and ~27 Ma) are clearly identified for Chelyabinsk, indicating a complex history of impacts and heating events. Finally, noble gases yield young cosmic ray exposure ages, near 1 Ma. These young ages, together with the absence of measurable cosmogenic derived Sm and Cr, indicate that Chelyabinsk may have been derived from a recent breakup event on an NEO of LL chondrite composition.

  4. Co-Cu-Au deposits in metasedimentary rocks-A preliminary report (United States)

    Slack, J.F.; Causey, J.D.; Eppinger, R.G.; Gray, J.E.; Johnson, C.A.; Lund, K.I.; Schulz, K.J.


    A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of

  5. Deformation and Fluid Flow in the Etendeka Plateau, NW Namibia (United States)

    Salomon, Eric; Koehn, Daniel; Passchier, Cees; Davis, Jennifer; Salvona, Aron; Chung, Peter


    We studied deformation bands in sandstone and breccia veins in overlying basalts of the Etendeka Plateau, NW Namibia, regarding their development and history of fluid flow within. The studied deformation bands can be divided into disaggregation bands and cataclastic bands. The former appear to develop in unsorted sandstone, whereas the latter form in well sorted sandstone. We estimated the porosity of the bands and host rock in thin sections using a simple image analysis software (ImageJ). Results show, that no or only a minor decrease in porosity occur in disaggregation bands, while the porosity in cataclastic bands is decreased by up to 82 % with respect to the host rock. These observations are in agreement with results of existing studies (e.g. Fossen et al., 2007). Hence the cataclastic bands form a seal to fluid flow in the host rock, yet it is observed in outcrops that deformation bands can develop into open fractures which in turn increase the permeability of the rock. Breccia veins in the overlying basalts show intense fracturing where the basalt is locally fractured into elongated chips. Mineral precipitation in these breccia veins indicates a hydrothermal origin of the fluids since the precipitates consist of extremely fine-grained quartz aggregates. Secondary mineralization with large crystals indicates that a long-lived fluid circulation through tubular networks was active at a later stage, which eventually sealed the veins completely. We propose that the Etendeka basalts on top of the sandstone formation produced a localized deformation along deformation bands and heated up fluid below the lavas. At a later stage fluid pressures were either high enough to break through the basalt or fracturing due to ongoing extension produced fluid pathways. References Fossen, H., Schultz, R., Shipton, Z. and Mair, K. (2007). Deformation bands in sandstone: a review. J. Geol. Soc., 164, 755-769.

  6. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia (United States)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind


    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  7. Zn-Pb Ores of Mississippi Valley Type in the Lycksele-Storuman District, Northern Sweden: A Possible Rift-Related Cambrian Mineralisation Event

    Directory of Open Access Journals (Sweden)

    Kjell Billström


    Full Text Available The epigenetic Zn-Pb deposits in the Lycksele-Storuman ore district, northern Sweden, are hosted by Paleoproterozoic basement near the margin of the Caledonian mountains. A paleogeographic reconstruction suggests that platform sediments, including Cambrian shales, overlaid the mineralised basement. The mineralisation type, containing sphalerite, galena, calcite and fluorite, is confined to veins and breccias and interpreted to be of Mississippi Valley Type (MVT style. There is no appreciable wall rock alteration. Fluid inclusion work reveals coexisting aqueous and hydrocarbon fluids. Ore deposition is interpreted to have occurred during mixing of two fluids; a cool (

  8. Geologic Mapping in Nogal Peak Quadrangle: Geochemistry, Intrusive Relations and Mineralization in the Sierra Blanca Igneous Complex, New Mexico (United States)

    Goff, F.; Kelley, S. A.; Lawrence, J. R.; Cikowski, C. T.; Krier, D. J.; Goff, C. J.; McLemore, V. T.


    Nogal Peak quadrangle is located in the northern Sierra Blanca Igneous Complex (SBIC) and contains most of the White Mountain Wilderness (geologic map is available at The geology of the quad consists of a late Eocene to Oligocene volcanic pile (Sierra Blanca Volcanics, mostly alkali basalt to trachyte) intruded by a multitude of dikes, plugs and three stocks: Rialto, 31.4 Ma (mostly syenite), Three Rivers, ca. 29 to 27 Ma (quartz syenite intruded by subordinate alkali granite), and Bonito Lake, 26.6 Ma (mostly monzonite). Three Rivers stock is partially surrounded by alkali rhyolites that geochemically resemble the alkali granites. The circular shape of the stock and surrounding rhyolites suggests they form the root of a probable caldera. SBIC rocks have compositions typical of those found within the Rocky Mountain alkaline belt and those associated with continental rift zone magmatism. Because the volcanic host rocks are deeply eroded, intrusive relations with the stocks are well exposed. Most contacts at stock margins are near vertical. Roof pendants are common near some contacts and stoped blocks up to 700 m long are found within the Three Rivers stock. Contacts, pendants and stoped blocks generally display some combination of hornfelsing, brecciation, fracturing, faulting and mineralization. Sierra Blanca Volcanics display hydrothermal alteration increasing from argillic in the NW sector of the quad to high-temperature porpylitic near stock margins. Retrograde phyllic alteration occurs within breccia pipes and portions of the stocks. Mineral deposits consist of four types: Placer Au, fissure veins (mostly Ag-Pb-Zn±Au), breccia pipes (Au-Mo-Cu), and porphyry Mo-Cu. A singular pipe on the SW margin of Bonito Lake stock contains sapphire-lazulite-alunite. Although Au has been intermittently mined in the quad since 1865, best production of Au originated around the turn of the last

  9. Manufacturing High-Fidelity Lunar Agglutinate Simulants (United States)

    Gutafson, R. J.; Edmunson, J. E.; Rickman, D. L.


    The lunar regolith is very different from many naturally occurring material on Earth because it forms in the unique, impact-dominated environment of the lunar surface. Lunar regolith is composed of five basic particle types: mineral fragments, pristine crystalline rock fragments, breccia fragments, glasses of various kinds, and agglutinates (glass-bonded aggregates). Agglutinates are abundant in the lunar regolith, especially in mature regoliths where they can be the dominant component.This presentation will discuss the technical feasibility of manufacturing-simulated agglutinate particles that match many of the unique properties of lunar agglutinates.


    Segerstrom, Kenneth; Stotelmeyer, R.B.


    On the basis of a mineral survey the White Mountain Wilderness, which constitutes much of the western and northern White Mountains, New Mexico, is appraised to have six areas of probable mineral potential for base and precious metals. If mineral deposits exist in the wilderness, the potential is for small deposits of base and precious metals in veins and breccia pipes or, more significanlty, the possibility for large low-grade disseminated porphyry-type molybdenum deposits. There is little promise for the occurrence of geothermal energy resources in the area.

  11. New Insights into the Geology of the Mars Pathfinder Landing Site from Spectral and Morphologic Analysis of the 12-Color Superpan Panorama (United States)

    Murchie, S.; Barnouin-Jha, O.; Barnouin-Jha, K.; Bishop, J.; Johnson, J.; McSween, H.; Morris, R.


    New analyses of rocks and soils at the Mars Pathfinder landing site have been completed using the full Imager for Mars Pathfinder (IMP) 12- color SuperPan panorama. These revise early conclusions that rocks at the landing site are a single lithology coated only by windblown dust. We conclude instead that there is also a second lithology in addition to the dominant gray rock, and that it is consistent with highlands material excavated from beneath a thin veneer of northern plains; that many rocks have cemented coatings that formed during an early, probably wetter climate; and that young rocks excavated after coating formation ceased are mainly breccias or conglomerates.

  12. Evolution of Circular Polarization Ratio (CPR) Profiles of Kilometer-scale Craters on the Lunar Maria (United States)

    King, I. R.; Fassett, C. I.; Thomson, B. J.; Minton, D. A.; Watters, W. A.


    When sufficiently large impact craters form on the Moon, rocks and unweathered materials are excavated from beneath the regolith and deposited into their blocky ejecta. This enhances the rockiness and roughness of the proximal ejecta surrounding fresh impact craters. The interior of fresh craters are typically also rough, due to blocks, breccia, and impact melt. Thus, both the interior and proximal ejecta of fresh craters are usually radar bright and have high circular polarization ratios (CPR). Beyond the proximal ejecta, radar-dark halos are observed around some fresh craters, suggesting that distal ejecta is finer-grained than background regolith. The radar signatures of craters fade with time as the regolith grows.

  13. Morphology of the Nyurba kimberlite pipe and its relationship with the dolerite dike (United States)

    Tomshin, M. D.; Pokhilenko, N. P.; Tarskikh, E. V.


    Study of the magmatics in the Nakyn kimberlite field, with consideration of the isotope dating results, allowed us to establish a sequence of their formation. First, 368.5-374.4 Ma ago intrusions of the Vilyui-Markha dike belt formed. Then (363-364 Ma) intrusion of kimberlites took place. In the Early Carboniferous (338.2-345.6 Ma), alkaline basaltic magma intruded through faults controlling the kimberlites. The magmatic activity finished 331-324.9 Ma ago with the formation of explosive breccias. It has been found that the Nyurba kimberlite pipe consists of two bodies: their kimberlite melts have successively intruded through independent channels.

  14. H-Isotopic Composition of Apatite in Northwest Africa 7034 (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.


    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  15. The oldest complete skeleton of an Australopithecus in Africa (StW 573). (United States)

    Protsch von Zieten, R; Clarke, R J


    Although 78 years have elapsed since the discovery at Taung of the Australopithecus africanus, and despite intensive fieldwork in East Africa which resulted in 32 years of non-stop excavation at Sterkfontein, there has not been a discovery to date of a reasonably intact skull and associated skeleton of an ape-man. The following report is an account of an extraordinary series of events that led to the discovery of a complete skeleton on an Australopithecus, and a preliminary assessment of the significance of the fossil, which is still 5 years after its discovery largely embedded in the Member 2 breccia of the Sterkfontein Caves near Krugersdorp, South Africa.

  16. The serpulid worm Rotularia spirulaea from Eocene beds near Gračišće in Istria, Croatia

    Directory of Open Access Journals (Sweden)

    Vasja Mikuž


    Full Text Available In paper several selected specimens of sedentary Polychaetes of species Rotularia spirulaea (Lamarck, 1818 are presented. They were found in Middel Eocene – Lutetian calcareous breccias and conglomerates, respectively olistostromes,below the village of Gračišće near Pazin in Istria (Croatia. The rare individuals are of various shapes and sizes, and they occur among numerous nummulitines, corals, molluscs, echinoderms, bryozoans, lithothamnias and other fossil remains. The mentioned rocks and their contents are constituting parts of the Istrian Paleogene basins, in this istance of the Pazin flysch basin.

  17. Installation Restoration Program Information Management System (IRPIMS) Data Loading Handbook. Version 2.1 (United States)



  18. Seafloor distribution and last glacial to postglacial activity of mud volcanoes on the Calabrian accretionary prism, Ionian Sea (United States)

    Ceramicola, Silvia; Praeg, Daniel; Cova, Andrea; Accettella, Daniela; Zecchin, Massimo


    Mud volcanoes (MVs) are abundant along the eastern Mediterranean subduction zones, recording mud breccia extrusion over long timescales (106 years), but to date relatively few have been recognised in the northern Ionian Sea on the Calabrian accretionary prism (CAP). In the present study, the seafloor distribution and recent activity of MVs is investigated across a 35,600 km2 sector of the CAP using a regional acoustic dataset (multibeam bathymetric and backscatter imagery, integrated with subbottom profiles) locally ground-truthed by sediment cores. A total of 54 MVs are identified across water depths of 150-2,750 m using up to four geophysical criteria: distinctive morphology, high backscatter, unstratified subbottom facies and, in one case, a hydroacoustic flare. Fourteen MVs are identified from 3-4 criteria, of which five have been previously proven by cores containing mud breccia beneath up to 1.6 m of hemipelagic sediments (Madonna dello Ionio MVs 1-3, Pythagoras MV and the newly named Sartori MV), while nine others are identified for the first time (Athena, Catanzaro, Cerere, Diana, Giunone, Minerva, `right foot', Venere 1 and 2). Forty other as yet unnamed MVs are inferred from 1-2 geophysical criteria (three from distinctive morphology alone). All but one possible MV lie on the inner plateau of the CAP, landwards of the Calabrian Escarpment in a zone up to 120 km wide that includes the inner pre-Messinian wedge and the fore-arc basins, where they are interpreted to record the ascent from depth of overpressured fluids that interacted with tectonic structures and with evaporitic or shale seals within the fore-arc basins. The rise of fluids may have been triggered by post-Messinian out-of-sequence tectonism that affected the entire pre-Messinian prism, but Plio-Quaternary sedimentation rates and depositional styles support the inference that significant mud volcanism has taken place only on the inner plateau. Sedimentation rates across the CAP applied to a 12

  19. Age and geochemistry of the Charlestown Group, Ireland: Implications for the Grampian orogeny, its mineral potential and the Ordovician timescale (United States)

    Herrington, Richard J.; Hollis, Steven P.; Cooper, Mark R.; Stobbs, Iain; Tapster, Simon; Rushton, Adrian; McConnell, Brian; Jeffries, Teresa


    Accurately reconstructing the growth of continental margins during episodes of ocean closure has important implications for understanding the formation, preservation and location of mineral deposits in ancient orogens. The Charlestown Group of county Mayo, Ireland, forms an important yet understudied link in the Caledonian-Appalachian orogenic belt located between the well documented sectors of western Ireland and Northern Ireland. We have reassessed its role in the Ordovician Grampian orogeny, based on new fieldwork, high-resolution airborne geophysics, graptolite biostratigraphy, U-Pb zircon dating, whole rock geochemistry, and an examination of historic drillcore from across the volcanic inlier. The Charlestown Group can be divided into three formations: Horan, Carracastle, and Tawnyinah. The Horan Formation comprises a mixed sequence of tholeiitic to calc-alkaline basalt, crystal tuff and sedimentary rocks (e.g. black shale, chert), forming within an evolving peri-Laurentian affinity island arc. The presence of graptolites Pseudisograptus of the manubriatus group and the discovery of Exigraptus uniformis and Skiagraptus gnomonicus favour a latest Dapingian (i.e. Yapeenian Ya 2/late Arenig) age for the Horan Formation (equivalent to c. 471.2-470.5 Ma according to the timescale of Sadler et al., 2009). Together with three new U-Pb zircon ages of 471.95-470.82 Ma from enclosing felsic tuffs and volcanic breccias, this fauna provides an important new constraint for calibrating the Middle Ordovician timescale. Overlying deposits of the Carracastle and Tawnyinah formations are dominated by LILE- and LREE-enriched calc-alkaline andesitic tuffs and flows, coarse volcanic breccias and quartz-feldspar porphyritic intrusive rocks, overlain by more silicic tuffs and volcanic breccias with rare occurrences of sedimentary rocks. The relatively young age for the Charlestown Group in the Grampian orogeny, coupled with high Th/Yb and zircon inheritance (c. 2.7 Ga) in intrusive

  20. The Lake Bosumtwi impact crater, Ghana (United States)

    Jones, William B.; Bacon, Michael; Hastings, David A.


    The 1-m.y.-old Bosumtwi Crater, Ghana, has a nearly circular shape with a rim diameter of 11 km north-south and 10 km east-west. It is surrounded by a circular depression and an outer ridge of diameter 20 km. Polymict breccias averaging at least 20 m thick with clasts as much as 5 m long occur on the outer ridge, and the crater rim shows in situ shattered rock. Patches of suevite have been found in the circular depression north and south of the crater.

  1. Palaeo-earthquake events during the late Early Palaeozoic in the central Tarim Basin (NW China: evidence from deep drilling cores

    Directory of Open Access Journals (Sweden)

    He Bizhu


    Full Text Available Various millimetre-, centimetre- and metre-scale soft-sediment deformation structures (SSDS have been identified in the Upper Ordovician and Lower-Middle Silurian from deep drilling cores in the Tarim Basin (NW China. These structures include liquefied-sand veins, liquefaction-induced breccias, boudinage-like structures, load and diapir- or flame-like structures, dish and mixed-layer structures, hydroplastic convolutions and seismic unconformities. The deformed layers are intercalated by undeformed layers of varying thicknesses that are petrologically and sedimentologically similar to the deformed layers.

  2. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited (United States)

    Fucugauchi, J. U.; Perez-Cruz, L.


    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  3. An overview of the lithological and geochemical characteristics of the Mesoarchean (ca. 3075) Ivisaartoq greenstone belt, southern West Greenland

    DEFF Research Database (Denmark)

    Polat, A.; Frei, Robert; Appel, P.W.U.


    Archean greenstone belts in the area. The Ivisaartoq greenstone belt is the largest Mesoarchean supracrustal lithotectonic assemblage in the Nuuk region. The belt contains well-preserved primary magmatic structures including pillow lavas, volcanic breccias, and cumulate (picrite) layers. It also includes......, we suggest that the Ivisaartoq greenstone belt represents a relic of dismembered Mesoarchean suprasubduction zone oceanic crust. The Sm-Nd isotope system appears to have remained relatively undisturbed in picrites, tholeiitic pillow lavas, gabbros, and diorites. As a group, picrites have more...

  4. Discovery of the Ordovician Kinnekulle K-bentonite at the Põõsaspea cliff, NW Estonia

    Directory of Open Access Journals (Sweden)

    Hints, Linda


    Full Text Available A previously unknown outcrop of the Kinnekulle K-bentonite (metabentonite is reported from the Põõsaspea cliff, NW Estonia. The bed has a sharp lower and a gradational upper contact and comprises ca 28 cm of clay overlain by ca 10 cm of hard K-feldspar-rich variety. The latter contains a layer of breccia, which indicates early onset of recrystallization and hardening of volcanic material. The discovery shows that the Põõsaspea cliff section is younger than previously thought and includes rocks of both Haljala and Keila stages.

  5. Early Solar System Cryovolcanics in the Laboratory (United States)

    Zolensky, M.; Fries, M.; Bodnar, R.; Yurimoto, H.; Itoh, S.; Steele, A.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Le, L.; hide


    Two thermally-metamorphosed ordinary chondrite regolith breccias, Monahans 1998 (H5) and Zag (H3-6) contain fluid inclusion-bearing halite (NaCl) crystals, dated by K-Ar, Rb-Sr and I-Xe systematics to be approx. 4.5 billion years old. Heating/freezing studies of the aqueous fluid inclusions demonstrated that they were trapped near 25 C, and their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism.

  6. Brecha de turmalina del pórfido de cobre-oro San Jorge, Mendoza: alteración, mineralización y origen de los fluidos


    Mirta M. Garrido; M. Cristina Gómez; M. Lis Fernández; Soraya Lambrecht


    La brecha de turmalina (breccia pipe) asociada al pórfido de cobre oro San Jorge está desarrollada en las sedimentitas carboníferas (Formación Yalguaráz) ubicada en el contacto con el margen SO del cuerpo de granodiorita (Pérmico). Es clasto sostén y monomíctica (arenisca), con escasa matriz y cemento principalmente de turmalina. La intensidad del brechamiento disminuye hasta alcanzar un stockwork y una zona de menor densidad de venillas en la base. La alteración hidrotermal se manifiesta com...

  7. Shocked zircons in the Onaping Formation: Further proof of impact origin (United States)

    Bohor, B. F.; Betterton, W. J.


    The Onaping Formation fills the structural basin at Sudbury, Ontario, Canada. This formation is composed of three members: a basal, coarse, mainly quartzitic breccia (Basal Member); a light-colored, heavily included, polymict middle unit (Gray Member); and a similar but dark-colored upper unit (Black Member). Two different origins were proposed for the Onaping: (1) volcanic ash-flow sheet; and (2) impact fall-back ejecta. These origins are critically discussed in a review paper coauthored by proponents of each view.

  8. Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia — Evidence of advanced rifting in the Tethyan domain (United States)

    Palinkaš, Ladislav A.; Bermanec, Vladimir; Borojević Šoštarić, Sibila; Kolar-Jurkovšek, Tea; Palinkaš, Sabina Strmić; Molnar, Ferenc; Kniewald, Goran


    The Hru\\vskovec quarry of basaltoid rocks is situated on the northwestern slopes of Mt. Kalnik, within the Zagorje-Mid-Transdanubian zone, a part of the North-western Dinarides. The basaltoids are inter-bedded with radiolarites of the Middle and Upper Triassic age (Langobardian, Carnian-Norian). Spilites, altered diabases and meta-basalts form part of Triassic volcanic-sedimentary sequence, made of sandstones, shales, micritic limestone, altered vitric tuffs and radiolarian cherts, incorporated tectonically into the Jurassic-Cretaceous mélange. The architecture of the 2 km long and 100 m high pile of the extrusive basaltoid rocks is interpreted as a subaqueous basaltic lava flow. The presented research deals with a variety of volcanic facies of the subaqueous basaltic lava flow, which consists of several facial units: 1. Coherent pillow lavas, with massive core; the bending rims around the massive core, 30-50 cm thick, are dissected by polygonal columnar joints radiating from the pillow centres; 2. Closely packed pillows; densely packed and contorted pillows due to emplacement accommodation, clearly younging upward; 3. Pillow fragment breccia; clast supported, matrix poor, monomict breccia, formed proximal to the axis of the extrusion; 4. Isolated pillow breccia; matrix supported, clast poor breccia, made of lava pipes and tubes, within a matrix of fine-grained sideromelan granules and shards; 5. Pyjama-style pillows; spherical, decimetre to meter size pillow lava balls, grown and chilled in isostatic state (i.e. in a state of diminished density contrast) within water-soaked sediments, named after peculiar alternating basaltic shelves inside the sphere, which are encrusted with white secondary minerals; 6. Peperite and peperitic hyaloclastites; blocky and globular peperites developed at the contact of soft, wet sediment and hot intruding magma. Discovery of peperite and peperitic hyaloclastites within the Triassic radiolarian cherts, shales, and micritic

  9. Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia

    Directory of Open Access Journals (Sweden)

    Danielle S. Schmandt


    Full Text Available Olympic Dam is a world-class breccia-hosted iron-oxide copper-gold-uranium ore deposit located in the Gawler Craton, South Australia. It contains elevated concentrations of rare earth elements (REE which occur as the REE minerals bastnäsite, synchysite, florencite, monazite, and xenotime. This is the first study to focus on the mineralogy and composition of the most abundant REE mineral at Olympic Dam, bastnäsite, and subordinate synchysite. The sample suite extends across the deposit and represents different sulfide mineralization styles (chalcopyrite-bornite and bornite-chalcocite and breccias of various types, ranging from those dominated by clasts of granite, dykes, and hematite. The REE-fluorocarbonates (bastnäsite and synchysite typically occur as fine-grained (<50 μm disseminations in Cu-Fe-sulfides and gangue minerals, and also within breccia matrix. They are also locally concentrated within macroscopic REE-mineral-rich pockets at various locations across the deposit. Such coarse-grained samples formed the primary target of this study. Three general textural groups of bastnäsite are recognized: matrix (further divided into disseminated, fine-grained, and stubby types, irregular (sulfide-associated, and clast replacement. Textures are largely driven by the specific location and prevailing mineral assemblage, with morphology and grain size often controlled by the associated minerals (hematite, sulfides. Major element concentration data reveal limited compositional variation among the REE-fluorocarbonates; all are Ce-dominant. Subtle compositional differences among REE-fluorocarbonates define a spectrum from relatively La-enriched to (Ce + Nd-enriched phases. Granite-derived hydrothermal fluids were the likely source of F in the REE-fluorocarbonates, as well as some of the CO2, which may also have been contributed by associated mafic-ultramafic magmatism. However, transport of REE by Cl-ligands is the most likely scenario. Stubby bastn

  10. Lunar and Planetary Science Conference, 10th, Houston, Tex., March 19-23, 1979, Proceedings. Volume 1 - Meteorites and lunar rocks (United States)

    Merrill, R. B.


    Papers are presented concerning studies of lunar basalts, highland rocks, and meteorites. Specific topics include the petrology and chemistry of basaltic fragments from Apollo 11 soil; the composition, magma types and petrogenesis of Apollo 17 high-Ti mare basalts; the chemistry and probable origin of Apollo 15 green glass; experimental studies of the partitioning of nickel and chromium into olivine from synthetic basaltic melts; the petrology and geochemistry of pristine highland rocks; the argon isotope age systematics of consortium breccia 73255; magnetite-sulfide-metal complexes in the Allende meteorite; the fractionation of refractory lithophile elements in chondritic meteorites; and the origin and relation to enstatite chondrites of aubrites.

  11. Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: Insights from major-element and boron isotopic compositions of tourmaline (United States)

    Trumbull, Robert B.; Slack, John F.; Krienitz, M.-S.; Belkin, Harvey E.; Wiedenbeck, M.


    Tourmaline is a widespread mineral in the Mesoproterozoic Blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, where it occurs in both mineralized zones and wallrocks. We report here major-element and B-isotope compositions of tourmaline from stratabound sulfide deposits and their metasedimentary wallrocks, from mineralized and barren pipes of tourmaline breccia, from late barren quartz veins, and from Mesoproterozoic granite. The tourmalines are aluminous, intermediate in the schorl–dravite series, with Fe/(Fe + Mg) values of 0.30 to 0.85, and 10 to 50% X-site vacancies. Compositional zoning is prominent only in tourmaline from breccias and quartz veins; crystal rims are enriched in Mg, Ca and Ti, and depleted in Fe and Al relative to cores. The chemical composition of tourmaline does not correlate with the presence or absence of mineralization. The δ11B values fall into two groups. Isotopically light tourmaline (−21.7 to −7.6‰) occurs in unmineralized samples from wallrocks, late quartz veins and Mesoproterozoic granite, whereas heavy tourmaline (−6.9 to +3.2‰) is spatially associated with mineralization (stratabound and breccia-hosted), and is also found in barren breccia. At an inferred temperature of 300°C, boron in the hydrothermal fluid associated with mineralization had δ11B values of −3 to +7‰. The high end of this range indicates a marine source of the boron. A likely scenario involves leaching of boron principally from marine carbonate beds or B-bearing evaporites in Mesoproterozoic strata of the region. The δ11B values of the isotopically light tourmaline in the sulfide deposits are attributed to recrystallization during Cretaceous metamorphism, superimposed on a light boron component derived from footwall siliciclastic sediments (e.g., marine clays) during Mesoproterozoic mineralization, and possibly a minor component of light boron from a magmatic–hydrothermal fluid. The metal association of Bi–Be–Y–REE in the Blackbird

  12. Application of geophysical methods to gold prospecting in Minas de Corrales, Uruguay; Aplicacao de metodos geofisicos a prospeccao de ouro. Teste nas minas de Corrales, Uruguai

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Antonio Flavio U. [Companhia de Pesquisas de Recursos Minerais (CPRM), Rio de Janeiro, RJ (Brazil); Dias, Rogerio Aguirre; Barcelos, Andre B.B. de [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)


    Geophysical methods were tested in San Gregorio gold mine, Minas de Corrales, north region of Uruguay. The ores are mainly stockworks, sheeted veinlet zones, ore shoot and disseminated sulfides types, situated in a silicated and carbonated shear zone structure, over granitic mylonites, quartz diorites, quartz-feldspathic breccia, basic rocks and quartz veins. Magnetic and radiometric methods were applied . VLF and EM34-3 detected the high resistivity silicated and carbonated zone and IP detected a weak PFE anomaly associated with pyrite/gold zone. (author)

  13. Additional complexity in the lunar crust - Petrology of sodic anorthosites and sulfur-rich, ferroan noritic anorthosites (United States)

    Norman, Marc D.; Taylor, G. J.; Keil, Klaus


    Lunar breccia 67016 contains two suites of unusual highlands rocks: sulfur-rich, noritic anorthosites, and sodic anorthosites. Mineral compositions of the sulfur-rich noritic anorthosites closely match those of ferroan anorthosites. Unusually large amounts of sulfides, and sulfidation reactions involving olivine in these clasts probably reflect endogenous volatile transfer. The sodic anorthosites are mafic-poor, with mineral compositions intermediate between those of pristine ferroan and alkali anorthosites. Rare examples of pristine rocks with similar mineral compositions are known, and may represent a distinct class of lunar crustal rocks.

  14. Comparison of the Julian and Tuvalian beds in two cross-sections in the Central Sava Folds area (Slovenia)


    Matevž Novak; Stevo Dozet


    A lithostratigraphic subdivision of the Julian and Tuvalian beds in the Toško Čelo andVintarjevski potok area has been performed in this paper. The sedimentary sequence in the Toško Čelo area is subdivided into seven lithostratigraphic units, namely: bedded limestone, limestone and dolomite, oncolite, lower dolomite, platy limestone with chert,upper dolomite, and platy nodular limestone. Beds in the Vintarjevski potok area are subdivided into eight litostratigraphic units: basal breccia and c...

  15. Pyrenean hyper-extension : breaking, thinning, or stretching of the crust ? A view from the central north-Pyrenean zone (United States)

    de Saint Blanquat, Michel; Bajolet, Flora; Boulvais, Philippe; Boutin, Alexandre; Clerc, Camille; Delacour, Adélie; Deschamp, Fabien; Ford, Mary; Fourcade, Serge; Gouache, Corentin; Grool, Arjan; Labaume, Pierre; Lagabrielle, Yves; Lahfid, Abdeltif; Lemirre, Baptiste; Monié, Patrick; de Parseval, Philippe; Poujol, Marc


    The geology of the North Pyrenean Zone in the central Pyrenees allows for the observation in the field of the entire section of the Pyrenean rift, from the mantle to the crust and the Mesozoic cover (pre, syn and post rift). The good knowledge we have of the pre-Alpine history of the Pyrenees allows us to properly constrain the Alpine geological evolution of the pre-Triassic rocks which record both Variscan and Alpine orogenic cycles. The mantle outcrop as kilometric to centimetric fragments of peridotite dispersed within a carbonate metamorphic breccia. The study of peridotite serpentinisation shows several events of low-temperature serpentinisation, in contact with seawater. In some locallities, we can observe a mixture of fragments of variously serpentinized peridotites. This suggests a tectonic context where fragments of peridotites from different structural levels were sampled more or less synchronously. The granulitic basement is characterized by a Variscan syndeformational HT event (300-280 Ma). So far we have not found any trace of a Cretaceous HT event (> 500°C). On the other hand, the basement is affected by a regional metasomatism that began during the Jurassic and became more spatially focused with time until it was restricted to the Pyrenean rift during the Aptien, Albian and Cenomanian. The talc-chlorite metasomatism (120-95 Ma) shows an evolution from a static toward a syn-deformation hydrothermal event, under a more or less normal geothermal gradient. Extensional deformation is recorded by the reworking of several inherited low-angle Variscan tectonic contacts, but also by dispersed high-angle extensional shear zones formed under greenshist conditions. The metamorphic Mesozoic cover of the basement massifs, which constitute the so-called Internal Metamorphic Zone, is an allochtonous unit made of lenses of Mesozoic rocks enclosed into the breccia, which locally contains peridotite and basement clasts. The Mesozoic metamorphic carbonates show a first

  16. An ancient example of fluvial cave sediment derived from dust (eolian silt) infiltration (United States)

    Evans, J. E.


    Silt-rich grain size distributions are geologically rare and typically eolian. Such sediments (and lithified equivalents) are called dust/dustites in a general case, or loess/loessite in the special case of eolian silts derived from glacial deposits. In both cases, silt-rich deposits require a source area of silt-sized materials, transport mechanisms (prevailing winds of sufficient energy) and one or more depositional mechanisms (such as trapping in the lee of topographic obstacles or adhesion to surfaces with moisture or vegetation). This study evaluates a third type of silt-rich geological deposit, paleo-cave sediments derived from mixtures of dust (eolian silt) and karst breccias. Cave sediments can be autochthonous (speleothems), parautochthonous (karst breccias), and allochthonous (such as fluvial cave sediments). The provenance of fluvial cave sediments is the landscape overlying the cave-karst system, and they are introduced to the cave-karst system by flood events. The Mississippian Leadville Limestone (SW Colorado) was subject to karst processes following Late Mississippian eustatic sea-level fall. These processes included formation of phreatic tubes, tower karst (kegelkarst), solution valleys (poljes), sinkholes (dolines), solution-enhanced joints (grikes), surficial flutes (rillenkarren), solution pans (kamenitzas), and breakout domes containing mosaic and crackle breccias. Flowstone, dripstone, and cave pearls are interbedded with karst breccias and fluvial cave sediments in the Leadville Limestone. The overlying Pennsylvanian Molas Formation is an eolian siltstone (dustite) with sediment sources from the peri-Gondwanan and Grenville rocks of eastern North America. Evidence that the fluvial cave sediments in the Leadville Limestone are derived from this dustite include compositional and textural matches, especially grain size distribution trends vertically downward from the former landscape surface. These grain size trends indicate infiltration of the

  17. Evolution of Icelandic Central Volcanoes: Evidence from the Austurhorn Plutonic and Vestmannaeyjar Volcanic Complexes (United States)


    which host the Austurhorn intrusive complex. Clast lithologies do not include pyroclastic breccias, zeolitized basalts or silicic compositions, all of...tb-I b-38 db- 13X d--2 + + b 3 9 -2 0 -3 1 g b -3 PHV A6 N E S OFS Figure 4.2 Sample locality map for rocks referred to in this text. Heavy lines denote...clinopyroxene accumulation results in a concave-down pattern. 230 n gb-8 mm3m lm mlllm IIIIII~lN phases (e.g., epidote, hornblende, zeolites , clays). There are

  18. Crystallization Age and Impact Resetting of Ancient Lunar Crust from the Descartes Terrane (United States)

    Norman, M. D.; Borg, L. E.; Nyquist, L. E.; Bogard, D. D.


    Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.

  19. Survey of lunar carbon compounds. II - The carbon chemistry of Apollo 11, 12, 14, and 15 samples. (United States)

    Cadogan, P. H.; Eglinton, G.; Firth, J. N. M.; Maxwell, J. R.; Mays, B. J.; Pillinger, C. T.


    The methane and carbide concentrations of a number of Apollo 11, 12, 14, and 15 samples of fines and breccias have been examined by the deuterated acid dissolution method. Location studies indicate that these carbon compounds are concentrated in the outer surfaces of the fines particles of 48-152 micron diameter; for larger particles a volume-related component may contribute. In individual samples the methane and carbide concentrations correlate with parameters indicative of lunar surface exposure. The data provide further evidence that solar wind implantation is the major source of the methane in the fines and that the carbide originates from both solar wind implantation and meteorite impacts.

  20. Bournonia excavata (D’Orbigny from the Campanian-Maastrichtian of Stranice (north-east of Slovenia

    Directory of Open Access Journals (Sweden)

    Mauro Caffau


    Full Text Available The rudist fauna of Stranice, in the north-east of Slovenia, has been studied for a long time thanks to the good preservation-state of the specimens found in the calcareous breccias from Campanian-Maastrichtian. The presence of Bournonia excavata (d’Orbignyat Stranice is reported for the first time in this work. The specimen described in this paper is compared with other specimens from other carbonate platform deposits, previously described by different authors. In addition, a complete individual with both valves ofRadiolites angeiodes (Lapeirouse is described.

  1. The "suevite" conundrum, Part 1: The Ries suevite and Sudbury Onaping Formation compared (United States)

    Osinski, Gordon R.; Grieve, Richard A. F.; Chanou, Anna; Sapers, Haley M.


    The term "suevite" has been applied to various impact melt-bearing breccias found in different stratigraphic settings within terrestrial impact craters. Suevite was coined initially for impact glass-bearing breccias from the Ries impact structure, Germany, which is the type locality. Various working hypotheses have been proposed to account for the formation of the Ries suevite deposits over the past several decades, with the most recent being molten-fuel-coolant interaction (MFCI) between an impact melt pool and water. This mechanism is also the working hypothesis for the origin of the bulk of the Onaping Formation at the Sudbury impact structure, Canada. In this study, the key characteristics of the Ries suevite, the Onaping Formation and MFCI deposits from phreatomagmatic volcanic eruptions are compared. The conclusion is that there are clear and significant lithological, stratigraphic, and petrographic observational differences between the Onaping Formation and the Ries suevite. The Onaping Formation, however, shares many key similarities with MFCI deposits, including the presence of layering, their well-sorted and fine-grained nature, and the predominance of vitric particles with similar shapes and lacking included mineral and lithic clasts. These differences argue against the viability of MFCI as a working hypothesis for genesis of the Ries suevite and for a required alternative mechanism for its formation.

  2. Thermal regimes in the detachment fault environment as deduced from fluid inclusions (United States)

    Beane, R. E.; Wilkins, J., Jr.; Heidrick, T. L.


    Extensional tectonism, which dominates middle- and late-Tertiary geology in western Arizona, southeastern California, and southern Nevada, is characterized by normal regionally extensive, low-angle detachment faults. The decollement movement of Fupper plate rocks relative to lower plate assemblages created extensive zones of dilatency, including synthetic and antithetic listric normal faults, tear faults, tectonic crush breccias, shatter breccias, and gash veins in lithologic units above and below the detachment. The tectonically enhanced permeability above and below the detachment fault permitted mass migration of large volumes of hydrothermal solutions along the fault zone during and following upper plate movement. Major quantities of MgO, CaO, K2O, FeO/Fe2O3, SiO2 and CO2 were added to rocks in and near the detachment and related structures. Also introduced were varying amounts of trace elements including Mn, Cu, S, Mo, Ba, Au, Pb, Zn, U and/or Ag. Minerals containing fluid incusions were collected from all of these loci at locations in detachment faulted terranes in western Arizona and southeastern California.

  3. Sloping fan travertine, Belen, New Mexico, USA (United States)

    Cook, Megan; Chafetz, Henry S.


    Pliocene to Quaternary age travertines are very well-exposed in quarries near Belen, New Mexico, U.S.A., on the western edge of the Rio Grande Rift system. A series of hillside springs produced travertine tongues tens of meters thick and hundreds of meters long. The accumulations represent deposits from individual springs as well as the amalgamation of deposits. The overall architecture is predominantly composed of sloping fans with a smaller component of terrace mounds. The sloping fan deposits commonly have a dip of rock, sheets and rafts, and finely crystalline crusts that occur throughout the sloping fan and terrace mound accumulations. Sheets and rafts formed as precipitates in pools on the surfaces of the fans and terraces as well as spelean deposits on the water surfaces of pools within cavities in the overall accumulation. Thus, the spelean rafts provide valuable indicators of original horizontality in the sloping fan strata. In addition, intraformational breccias, composed of locally torn-up travertine intraclastic boulders and deposited in with other travertine, and extraformational breccias, composed of torn-up travertine intraclasts mixed with siliciclastic fines and sand and Paleozoic limestone clasts transported downslope from higher on the hillside, are a common constituent in the sloping fan accumulation. The Belen travertines provide a very well-exposed example of sloping fan travertines and may provide relevant data with regard to the subsurface Aptian Pre-Salt deposits, offshore Brazil.

  4. Epigene and Hypogene Gypsum Karst Manifestations of the Castile Formation: Eddy County, New Mexico and Culberson County, Texas, USA

    Directory of Open Access Journals (Sweden)

    Stafford Kevin W.


    Full Text Available Permian evaporites of the Castile Formation crop out over ~1,800 km2 in the western Delaware Basin (Eddy County, New Mexico and Culberson County, Texas, USA with abundant and diverse karst manifestations. Epigene karst occurs as well-developed karren on exposed bedrock, while sinkholes dominate the erosional landscape, including both solutional and collapse forms. Sinkhole analyses suggest that more than half of all sinks are the result of upward stoping of subsurface voids, while many solutional sinks are commonly the result of overprinting of collapsed forms. Epigene caves are laterally limited with rapid aperture decreases away from insurgence, with passages developed along fractures and anticline fold axes. Hypogene karst occurs as diverse manifestations, forming the deepest and longest caves within the region as well as abundant zones of brecciation. Hypogene caves exhibit a wide range of morphologies from complex maze and anastomotic patterns to simple, steeply dipping patterns, but all hypogene caves exhibit morphologic features (i.e. risers, outlet cupolas and half-tubes that provide a definitive suite of evidence of dissolution within a mixed convection (forced and free convection hydrologic system. Extensive blanket breccias, abundant breccia pipes and numerous occurrences of calcitized evaporites indicate widespread hypogene speleogenesis throughout the entire Castile Formation. Although most cave and karst development within the Castile outcrop region appears to have hypogene origins, epigene processes areactively overprinting features, creating a complex speleogenetic evolution within the Castile Formation.

  5. Noritic fragments in the Apollo 14 and 12 soils and the origin of Oceanus Procellarum. (United States)

    Taylor, G. J.; Marvin, U. B.; Reid, J. B., Jr.; Wood, J. A.


    Fragments of noritic breccias having a range of recrystallization textures and noritic basalts comprise about 80% of the 1 to 2 mm soil samples from Cone Crater (14142) and the bottom of the trench (14151). In five other samples, noritic fragments range in abundance from 42 to 56%. The remaining particles in each case are glasses, soil breccias, and glass-bonded aggregates; other crystalline rock types such as anorthosites constitute less than 1% of the soil. Noritic materials - i.e., Apollo 12 and 14 norites and ropy (KREEP) glass particles, can be divided into two broad groups on a chemical basis. The particles in one group have relatively high bulk TiO2 contents and high Fe/(Fe + Mg) ratios in their normative pyroxenes; the ropy glasses from Apollo 12 and 14 and a few Apollo 12 noritic rock fragments are in this category. Particles in the other class contain pyroxenes with a lower Fe/(Fe + Mg) and have a range of TiO2 contents; most noritic rock fragments from Apollo 12 and 14 are in this group. The ropy glasses may be from Copernicus or other rayed craters, but almost all the norites derive from the Fra Mauro formation or other noritic occurrences associated with Oceanus Procellarum.

  6. Possible impact-induced refractory-lithophile fractionations in EL chondrites (United States)

    Rubin, Alan E.; Huber, Heinz; Wasson, John T.


    Literature data show that refractory-lithophile elements in most chondrite groups are unfractionated relative to CI chondrites; the principal exception is the EL-chondrite group whose observed falls (all of which are type 6) are depleted in Ca and light REE. In contrast, literature data and our new INAA data on EL3 PCA 91020, EL3 MAC 88136 and EL4 Grein 002 show that some replicates of these samples have nearly flat REE patterns (unlike those of EL6 chondrites); other replicates exhibit fractionated REE patterns similar to those of EL6 chondrites. Petrographic examination shows that many EL6 (and some EL3 and EL4) chondrites are impact-melt breccias or contain impact-melted portions. We suggest that the same impact processes that formed these breccias and produced melt are responsible for the observed bulk compositional fractionations in refractory-lithophile elements, i.e., EL6 chondrites were produced from initially unequilibrated EL3 material. When large amounts of impact heat were deposited, plagioclase and/or oldhamite (CaS) (the major REE carriers in enstatite chondrites) may have been melted and then transported appreciable (>10 cm) distances. EL6 chondrites represent the residuum that is depleted in REE (particularly in LREE) and Ca. Unlike the case for EL chondrites, our new INAA data on ALH 84170, EET 87746 and SAH 97096 (all EH3) show some scatter but are consistent with the EH group having uniform refractory-lithophile abundances.

  7. Overview of the Chicxulub impactite and proximal ejecta (United States)

    Claeys, Ph


    Several types of impactites have now been recovered from the various wells drilled in the Chicxulub crater in Yucatan. The old Pemex wells (Yucatan 6 and Chicxulub 1) contain a highly heterogeneous and stratified suevite, which upper unit is unusually rich in carbonates, impact breccia and a possibly an impact melt at the very bottom of C1. They are located towards the crater center (C1), on the flank of the peak ring (Y6). The thickness of impactite in this zone exceeds 250 m. The UNAM wells just outside the crater rim reveal sedimentary breccia and a fall-out suevite richer in silicate melt and basement fragments, than its crater equivalent. There, the thickness of the impactite was probably several hundred meters, considering that its top might have been eroded. It can also be speculated that a cover of fall-back suevite extended over the ejecta blanket in Yucatan, all the way to Belize and perhaps even to the region of Tabasco, in Southern Mexico. The recently drilled Yaxcopoil contains about 100 m of impactites, which is currently under study. Preliminary data seem to show less variability than the material recovered from Y6. As in the UNAM well, the impactite is dominated by basement material, and shows alternating severely altered and better preserved horizons.

  8. Geochemistry and alteration of a Siberian crater lake coeval with the end-Permian mass extinction (United States)

    Fristad, Kirsten; Svensen, Henrik; Planke, Sverre; Polozov, Alexander


    Hundreds of phreatomagmatic breccia pipes formed contemporaneously with the Siberian Traps are located in the Tunguska Basin, Siberia. These pipes are believed to be formed by sill intrusions into organic rich sediments, which caused the violent release of gigatonnes of greenhouse gases to the atmosphere with serious implications for the end-Permian environment (Svensen et al., EPSL, 2009). Crater lake deposits overlying the pipes are preserved in some cases and contain a record of the local biology and sedimentation during formation of the Siberian Traps. We are studying the upper 550m of a core drilled through the center of a former crater lake and underlying brecciated pipe in the southern reaches of the Tunguska Basin. The core consists of fine to coarse-grained volcanoclastic sediments cemented by calcite and interspersed with tuff. We report on the bulk geochemistry and the nature of alteration throughout the sequence of crater lake sediments. We propose a model for lake formation, subsequent diagenesis, and the influence of degassing from the underlying breccia pipe. The development of the crater lake is explored in the context of the Siberian Trap flood basalts, phreatomagmatic deposits and the end-Permian environmental crisis.

  9. Stratigraphic and tectonic control of deep-water scarp accumulation in Paleogene synorogenic basins: a case study of the Súľov Conglomerates (Middle Váh Valley, Western Carpathians

    Directory of Open Access Journals (Sweden)

    Soták Ján


    Full Text Available The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4, early Ypresian (Zones P5 - E2 and late Ypresian to early Lutetian (Zones E5 - E9 age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites. The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE, which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW. Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.

  10. Abundance and distribution of ultramafic microbreccia in Moses Rock Dike: Quantitative application of AIS data (United States)

    Mustard, John F.; Pieters, Carle M.


    Moses Rock dike is a Tertiary diatreme containing serpentinized ultramafic microbreccia (SUM). Field evidence indicates the SUM was emplaced first followed by breccias derived from the Permian strata exposed in the walls of the diatreme and finally by complex breccias containing basement and mantle derived rocks. SUM is found primarily dispersed throughout the matrix of the diatreme. Moses Rock dike was examined with Airborne Imaging Spectrometer (AIS) to map the distribution and excess of SUM in the matrix and to better understand the nature of the eruption which formed this explosive volcanic feature. AIS data was calibrated by dividing the suite of AIS data by data from an internal standard area and then multiplying this relative reflectance data by the absolute bidirectional reflectance of a selected sample from the standard area which was measured in the lab. From the calibrated AIS data the minerals serpentine, gypsum, and illite as well as desert varnish and the lithologies SUM and other sandstones were identified. SUM distribution and abundance in the matrix of the diatreme were examined in detail and two distinct styles of SUM dispersion were observed. The two styles are discussed in detail.

  11. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    Energy Technology Data Exchange (ETDEWEB)

    Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.


    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

  12. Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan (United States)

    Goto, Yoshihiko; McPhie, Jocelyn


    Momo-iwa, Rebun Island, Hokkaido, Japan, is a dacite cryptodome 200-300 m across and 190 m high. The dome is inferred to have intruded wet, poorly consolidated sediment in a shallow marine environment. The internal structure of the dome is concentric, with a massive core, banded rim, and narrow brecciated border, all of which are composed of compositionally uniform feldspar-phyric dacite. Boundaries between each of the zones are distinct but gradational. The massive core consists of homogeneous coherent (unfractured) dacite and is characterized by radial columnar joints 60-200 cm across. The banded rim encircles the massive core and is 40 m wide. It is characterized by large-scale flow banding parallel to the dome surface. The flow banding comprises alternating partly crystalline and more glassy bands 80-150 cm thick. The outermost brecciated border is up to 80 cm thick, and consists of in situ breccia and blocky peperite. The in situ breccia comprises polyhedral dacite clasts 5-20 cm across and a cogenetic granular matrix. The blocky peperite consists of polyhedral dacite clasts 0.5-2 cm across separated by the host sediment (mudstone). The internal structures of the dome suggest endogenous growth involving a continuous magma supply during a single intrusive phase and simple expansion from the interior. Although much larger, the internal structures of Momo-iwa closely resemble those of lobes in subaqueous felsic lobe-hyaloclastite lavas.

  13. Carbonate Facies and Sedimentation of the Klapanunggal Formation in Cibinong, West Java

    Directory of Open Access Journals (Sweden)

    Praptisih Praptisih


    Full Text Available DOI:10.17014/ijog.v1i3.196The limestone of Klapanunggal Formation is well exposed in the area of Cibinong and its surrounding,West Java. Detailed Observation of carbonate rock has been conducted in this area and aims to studythe carbonate facies and its growth environment. The method used in the field is the detailedinvestigation, while mikropaleontology and petrogaphic analysis conducted in the laboratory. Theresult of this study indicate that the carbonate rocks in the study area consists of four facies. namely:(1 boundstone facies, (2 packstone facies, (3 rudstone facies, and (4 limestone breccia facies. Basedon these data be interpreted that the boundstone facies was deposited in the reef front to reef crestenvironment, packstone facies developed on the lower slope, upper slope, and back-reef lagoonenvironment. Rudstone facies formed on the reef front, and breccia limestone facies were formed inthe lower slope. Geographically, the position of the carbonate body environment that is at the reeffront, upper slope and lower slope is expected to be in the North – North East while the reef crest andback reef lagoon is on the South – Southwest.

  14. Paleokarst Evaluation in the Upper Albian Calcareous Platforms in Mexico, Guatemala and Honduras

    Directory of Open Access Journals (Sweden)

    Carrasco-Velázquez B.E.


    Full Text Available This paper presents the evaluation in México, Guatemala and Honduras of theUpper Albian platform carbonate rocks that were exposed to subaerial conditions by the falling of the sea level, exposing the rocks to the physical, chemical and temperature phenomena allowing for some type of karst formation. There is a methodology for the identification of paleokarsts by the petrology, fabrics, geometry and stratigraphy of the breccias. Only at Dengandho in the Actopan Platform there are the evidences to confirm a paleokarst. In the three countries mentioned there is literature related to the presence of “paleokarst” in the Upper Albian rocks of the Coahuila, Valles-San Luis Potosí, Golden Lane, Córdoba, Artesa-Mundo Nuevo, Chiapas, Guatemala and Honduras Platforms. As much of the work was done before the time when the methodology for paleokarsts was stablished, muchof the descriptions do not allow confirmation of the paleokarsts presence. Therefore, it is necessary to carry out field research and to study the subsurface rocks in order to confirm the paleokarst structures. In Texas, at the San Marcos Platform (Upper Albian rocks, the studies of the breccias confirm a paleokarst structure in the rocks. In the deep waters of the Gulf of Mexico the geophysics research done at the Jordan Knoll and the Campeche Scarp has discovered at Upper Albian rocks an unconformity at the Upper Albian rocks, but there are no physical evidences or rocks to confirm a paleokarst.

  15. Submarine geology of South Kona landslide complex: investigation using ROV Kaiko (United States)

    Yokose, H.; Yoshida, S.


    KR01-12 cruise of Japan Marine Science and Technology Center using ROV KAIKO and its mother ship R/V KAIREI were carried out around Hawaii islands in the early fall of 2001. During this cruise, two dives of ROV KAIKO were made on western submarine flank of the island of Hawaii: South Kona landslide complex (K210:proximal part of the south Kona landslide, K211: distal block of the landslide). One single channel seismic reflection line was collected from vicinity of the above dive sites. These areas have never been systematically studied using submersible due to the bad sea state and /or the depth of outcrops. Valuable information about the submarine geology and in situ rock samples from western franks of the island of Hawaii were obtained. K211 site is one of the distal landslide block and can be divided into 3 geological units from bottom to top: picritic sheet lava and hyaloclastite, volcaniclastic deposit with picritic breccia, muddy breccia with highly vesiculated ol basalt. On the other hand, rocks recovered from K210 are composed mainly of aa clinker and aa lava which are highly vesiculated and reddish in color. The rocks from K210 is similar to the upper part of K211 in their bulk rock chemistry. Based on the geological and bulk rock chemistry, rocks recovered from both sites should be erupted subaerially. It suggests that these landslide blocks were composed subaerial portion of the paleo-Mauna Loa volcano.

  16. New kind of type 3 chondrite with a graphite-magnetite matrix (United States)

    Scott, E. R. D.; Rubin, A. E.; Taylor, G. J.; Keil, K.


    Four clasts in three ordinary-chondrite regolith breccias are discovered which are a new kind of type 3 chondrite. As with ordinary and carbonaceous type 3 chondrites, they have distinct chondrules, some of which contain glass, highly heterogeneous olivines and pyroxenes, and predominantly monoclinic low-Ca pyroxenes. Instead of the usual, fine-grained, Fe-rich silicate matrix, however, the clasts have a matrix composed largely of aggregates of micron- and submicron-sized graphite and magnetite. The bulk compositions of the clasts, as well as the types of chondrules (largely porphyritic), are characteristic of type 3 ordinary chondrites, although chondrules in the clasts are somewhat smaller (0.1-0.5 mm). A close relationship with ordinary chondrites is also suggested by the presence of similar graphite-magnetite aggregates in seven type 3 ordinary chondrites. It is thought that this new kind of chondrite is probably the source of the abundant graphite-magnetite inclusions in ordinary-chondrite regolith breccias and that it may be more common than indicated by the absence of whole meteorites made of chondrules and graphite-magnetite.

  17. Triassic beds in the basement of the Adriatic-Dinaric carbonate platform of Mt. Svilaja (Croatia

    Directory of Open Access Journals (Sweden)

    Vladimir Jelaska


    Full Text Available On the southwestern slope of Mt. Svilaja a Triassic sequence is exposed. It is composed of Lower Triassic carbonate siliciclastic shelf beds that are unconformably overlain by Anisian breccia. The overlying pelagic Anisian and Ladinian strata with pyroclastic rockscan be interpreted as a result of rift tectonics of Adria micro-plate. A 500 m thick sequence is capped by an emersion surface by karstification and terrigenous sediments including conglomerate as a result of Late Triassic transgression and marking the lower boundaryof a new, Late Mesozoic, megasequence of the External Dinarides.By means of conodont study, in the lowermost part of the studied Mesozoic sequence, a Lower Triassic shallow-water conodont fauna yielding Pachycladina obliqua apparatus was recorded. Pelagic limestone beds overlying the »Otarnik breccia« are marked byconodont elements of the Anisian constricta Zone. The Ladinian interval is characterized (from bottom to top: trammeri A. Z., hungaricus A. Z. and mungoensis A. Z. The uppermost part of the section below the emersion surface is identified by Pseudofurnishiusmurchianus, indicating the Upper Ladinian-Lower Carnian murchianus Zone.

  18. Reconnaissance survey of the Duolun ring structure in Inner Mongolia: Not an impact structure (United States)

    Xu, Xiaoming; Kenkmann, Thomas; Xiao, Zhiyong; Sturm, Sebastian; Metzger, Nicolai; Yang, Yu; Weimer, Daniela; Krietsch, Hannes; Zhu, Meng-Hua


    The Duolun basin, which is located in Inner Mongolia, China, has been proposed to be an impact structure with an apparent rim diameter of about 70, or even 170 km. The designation as an impact structure was based on its nearly circular topography, consisting of an annular moat that surrounds an inner hummocky region, and the widespread occurrences of various igneous rocks, polymict breccias, and deformed crustal rocks. Critical shock metamorphic evidence is not available to support the impact hypothesis. We conducted two independent reconnaissance field surveys to this area and studied the lithology both within and outside of the ring structure. We collected samples from all lithologies that might contain evidence of shock metamorphism as suggested by their locations, especially those sharing similar appearances with impact breccias, suevites, impact melt rocks, and shatter cones. Field investigation, together with thin-section examination, discovered that the suspected impact melt rocks are actually Early Cretaceous and Late Jurassic lava flows and pyroclastic deposits of rhyolitic to trachytic compositions, and the interpreted impact glass is typical volcanic glass. Petrographic analyses of all the samples reveal no indications for shock metamorphic overprint. All these lines of evidence suggest that the Duolun basin was not formed through impact cratering. The structural deformation and spatial distribution pattern of the igneous rocks suggest that the Duolun basin is most likely a Jurassic-Cretaceous complex rhyolite caldera system that has been partly filled with sediments forming an annular basin, followed by resurgent doming of the central area.

  19. Stratigraphic and tectonic control of deep-water scarp accumulation in Paleogene synorogenic basins: a case study of the Súľov Conglomerates (Middle Váh Valley, Western Carpathians) (United States)

    Soták, Ján; Pulišová, Zuzana; Plašienka, Dušan; Šimonová, Viera


    The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4), early Ypresian (Zones P5 - E2) and late Ypresian to early Lutetian (Zones E5 - E9) age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites). The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE), which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW). Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.

  20. Stratigraphy of the Descartes region /Apollo 16/ - Implications for the origin of samples (United States)

    Head, J. W.


    Analysis of terrain in the Apollo 16 Descartes landing region shows a series of features that form a stratigraphic sequence which dominates the history and petrogenesis at the site. An ancient 150-km diam crater centered on the Apollo 16 site is one of the earliest recognizable major structures. Nectaris ejecta was concentrated in a regional low at the base of the back slope of the Nectaris basin to form the Descartes Mountains. Subsequently, a 60-km diam crater formed in the Descartes Mountains centered about 25 km to the west of the site. This crater dominates the geology and petrogenetic history of the site. Stone and Smoky Mountains represent the degraded terraced crater walls, and the dark matrix breccias and metaclastic rocks derived from North and South Ray craters represent floor fallback breccias from this cratering event. The interpretation is developed that the stratigraphy of the Cayley and Descartes, and thus the historical record of the Apollo 16 region, documents the complex interaction of deposits and morphology of local and regional impact cratering events. Large local 60- to 150-km diam craters have had a dramatic and previously unrecognized effect on the history and petrology of the Apollo 16 site.

  1. Photogeology: Part D: Descartes highlands: possible analogs around the Orientale Basin (United States)

    Hodges, Carroll Ann


    The Descartes highlands are adjacent to the terra plain on which the Apollo 16 lunar module landed (fig. 29-13). A variety of volcanic origins was proposed for the highlands before the mission (refs. 29-4, 29-21, and 29-35 to 29-37), but the returned samples of the area consist almost exclusively of nonvolcanic breccias. The breccias obtained from Stone Mountain have not been identified conclusively as sample materials of the Descartes Mountains (ref. 29-35). A volcanic origin is thus not yet precluded (sec. 6 of this report), but a review of possible impact-related origins seems to be appropriate. The orbital photography acquired during the Apollo 16 mission provides excellent imagery on which geomorphic interpretations may be based. No obvious local crater is a plausible source of the material, but there may be a relation to either the Nectaris or Imbrium Basin. The less degraded Orientale Basin (fig. 29-24) provides a model by which these comparisons can be made (part F of this section).


    Directory of Open Access Journals (Sweden)

    Riza Arfian Susanto


    Full Text Available Magnetic surveying have been done in the area around of the Carangandul site, District of Karang lewas, Regent of Banyumas. The research purpose is for identify Kadipaten Pasir Luhur’s remainder whom maybe buried at around that sites. The total magnetic intensity data obtained, then be processed, corrected, and reduced so thatbe obtained the local magnetic anomaly data. Modeling process to magnetic anomaly data with two dimensions (2D have been done by utilize Mag2DC for windows software. Based on the modeling results, be obtained the subsurface lithology section with magnetic susceptibility values of 0.0141 – 0.0626 cgs units. The interpretation ofmodeling resultsshow thatin the depth of 0 – 10 meters be found the sand stone, then in the depth of 10 – 125 meters befound the breccia-andesite rocks, then in the depth of 125 – 250 meters be found the andesite rocks with insert of sand, and then in the depth of 250–500 meters be found two pieces of rocks i.e. breccia-andesite and andesite-basaltic from volcanic lava boulder of Slamet Volcano which be estimated as the basement inthe research area. Based on the interpretation resultis not found available distribution of pure andesite as sites that exist on the surface.

  3. Landslides Monitoring on Salt Deposits Using Geophysical Methods, Case study – Slanic Prahova, Romania (United States)

    Ovidiu, Avram; Rusu, Emil; Maftei, Raluca-Mihaela; Ulmeanu, Antonio; Scutelnicu, Ioan; Filipciuc, Constantina; Tudor, Elena


    Electrometry is most frequently applied geophysical method to examine dynamical phenomena related to the massive salt presence due to resistivity contrasts between salt, salt breccia and geological covering formations. On the vertical resistivity sections obtained with VES devices these three compartments are clearly differentiates by high resistivity for the massive salt, very low for salt breccia and variable for geological covering formations. When the land surface is inclined, shallow formations are moving gravitationally on the salt back, producing a landslide. Landslide monitoring involves repeated periodically measurements of geoelectrical profiles into a grid covering the slippery surface, in the same conditions (climate, electrodes position, instrument and measurement parameters). The purpose of monitoring landslides in Slanic Prahova area, was to detect the changes in resistivity distribution profiles to superior part of subsoil measured in 2014 and 2015. Measurement grid include several representative cross sections in susceptibility to landslides point of view. The results are graphically represented by changing the distribution of topography and resistivity differences between the two sets of geophysical measurements.

  4. Conodonta, Trilobita, and Anthozoa near the Late Frasnian Upper Kellwasser Event of the Geipel Quarry section in Schleiz, Thuringian Mountains (Germany

    Directory of Open Access Journals (Sweden)

    D. Weyer


    Full Text Available New recoveries of Trilobita, Anthozoa and Conodonta from the linguiformis Zone close to the Frasnian/Famennian boundary and Immediately preceding the Upper Kellwasser Event level at Schleiz (Thuringia are investigated. The trilobites species are Harpes neogracilis Richter & Richter, 1924, Palpebralia cf. brecciae (Richter, 1913 and Acuticryphops acuticeps (Kayser, 1889, the latter is represented by several morphs with different numbers of eye-lenses; the trend to eye-reduction is discussed. The Rugosa fauna that was nearly unknown from the psychrospheric facies worldwide, comprise six taxa of the Cyathaxoniina. The rich conodont faunas permit tracing the exact boundary between the top of the Late Palmatolepis rhenana Zone and the Palmatolepis linguiformis Zone. Im Niveau der Frasnium/Famennium-Grenze werden neue Fossilfunde der letzten Trilobita, Anthozoa und Conodonta aus der linguiformis-Zone (vor dem Oberen Kellwasser-Event mitgeteilt. Harpes neogracilis Richter & Richter, 1924, Palpebralia cf. brecciae (Richter, 1913 und Acuticryphops acuticeps (Kayser, 1889 wurden beobachtet; bei letzterem wird an Hand verschiedener Morphen mit unterschiedlicher Linsenzahl der Trend zur Augenreduktion diskutiert. Von der Rugosa-Fauna, die weltweit aus solcher psychrosphaerischer Fazies fast unbekannt blieb, sind sechs Taxa der Cyathaxoniina skizziert. Die reichen Condonta-Faunen erlauben eine präzise Grenzziehung zwischen dem Top der Late Palmatolepis rhenana-Zone und der Palmatolepis linguiformis-Zone. doi:10.1002/mmng.20030060104

  5. Asymmetric deformation structure of lava spine in Unzen Volcano, Japan (United States)

    Miwa, T.; Okumura, S.; Matsushima, T.; Shimizu, H.


    Lava spine is commonly generated by effusive eruption of crystal-rich, dacitic-andesitic magmas. Especially, deformation rock on surface of lava spine has been related with processes of magma ascent, outgassing, and generation of volcanic earthquake (e.g., Cashman et al. 2008). To reveal the relationships and generation process of the spine, it is needed to understand a spatial distribution of the deformation rock. Here we show the spatial distribution of the deformation rock of lava spine in the Unzen volcano, Japan, to discuss the generation process of the spine. The lava spine in Unzen volcano is elongated in the E-W direction, showing a crest like shape with 150 long, 40 m wide and 50 m high. The lava spine is divided into following four parts: 1) Massive dacite part: Dense dacite with 30 m of maximum thickness, showing slickenside on the southern face; 2) Sheared dacite part: Flow band developed dacite with 1.0 m of maximum thickness; 3) Tuffisite part: Network of red colored vein develops in dacite with 0.5 m of maximum thickness; 4) Breccia part: Dacitic breccia with 10 m of maximum thickness. The Breccia part dominates in the northern part of the spine, and flops over Massive dacite part accross the Sheared dacite and Tuffisite parts. The slickenside on southern face of massive dacite demonstrates contact of solids. The slickenside breaks both of phenocryst and groundmass, demonstrating that the slickenside is formed after significant crystallization at the shallow conduit or on the ground surface. The lineation of the slickenside shows E-W direction with almost horizontal rake angle, which is consistent with the movement of the spine to an east before emplacement. Development of sub-vertical striation due to extrusion was observed on northern face of the spine (Hayashi, 1994). Therefore, we suggest that the spine just at extrusion consisted of Massive dacite, Sheared dacite, Tuffisite, Breccia, and Striation parts in the northern half of the spine. Such a

  6. Connecting Lunar Meteorites to Source Terrains on the Moon (United States)

    Jolliff, B. L.; Carpenter, P. K.; Korotev, R. L.; North-Valencia, S. N.; Wittmann, A.; Zeigler, R. A.


    The number of named stones found on Earth that have proven to be meteorites from the Moon is approx. 180 so far. Since the Moon has been mapped globally in composition and mineralogy from orbit, it has become possible to speculate broadly on the region of origin on the basis of distinctive compositional characteristics of some of the lunar meteorites. In particular, Lunar Prospector in 1998 [1,2] mapped Fe and Th at 0.5 degree/pixel and major elements at 5 degree/pixel using gamma ray spectroscopy. Also, various multispectral datasets have been used to derive FeO and TiO2 concentrations at 100 m/pixel spatial resolution or better using UV-VIS spectral features [e.g., 3]. Using these data, several lunar meteorite bulk compositions can be related to regions of the Moon that share their distinctive compositional characteristics. We then use EPMA to characterize the petrographic characteristics, including lithic clast components of the meteorites, which typically are breccias. In this way, we can extend knowledge of the Moon's crust to regions beyond the Apollo and Luna sample-return sites, including sites on the lunar farside. Feldspathic Regolith Breccias. One of the most distinctive general characteristics of many lunar meteorites is that they have highly feldspathic compositions (Al2O3 approx. 28% wt.%, FeO <5 wt.%, Th <1 ppm). These compositions are significant because they are similar to a vast region of the Moon's farside highlands, the Feldspathic Highlands Terrane, which are characterized by low Fe and Th in remotely sensed data [4]. The meteorites provide a perspective on the lithologic makeup of this part of the Moon, specifically, how anorthositic is the surface and what, if any, are the mafic lithic components? These meteorites are mostly regolith breccias dominated by anorthositic lithic clasts and feldspathic glasses, but they do also contain a variety of more mafic clasts. On the basis of textures, we infer these clasts to have formed by large impacts

  7. Morphology and mechanics of large collapses: Sotano de las Golondrinas, Mexico (United States)

    Lauritzen, S.-E.; Hammer, Ø.; Wheeler, W.; Redfield, T.; Blanco, M.; Rosales Lagarde, L.; Jamtveit, B.


    The dynamics and mode of formation of large karst pipes are not yet fully understood. We present precise Lidar and structural field data of the 340+ m deep open karst shaft el Sotano de las Golondrinas, and test the geometry on a a simplified 2D evolution model. The Golondrinas shaft is located in the San Luis county, northeastern México and is developed in massive, early cretaceous (Barremian-Coniacian) reef- limestones (El Abra/ El Doctor fm.). It is a bell-shaped breakout dome that has reached the land surface, i.e. a classical Einstrurtzdoline. The dimensions and shape makes it to an interesting case study, as it has similar dimensions as breccia-pipes encountered in many paleokarsts, but is incompletely filled, so that internal structure can be easily inspected. Second, with regard to stress mechanisms controlling roof collapse, the large dimensions (270 - 130 m diameter at the base) reduce the influence (anisotropy) of geological structures in comparison to smaller pipes (e.g. sinkhole hazard are closely related to the expected mature architecture of the collapse-pipe field. As a comparison to the Sotano de los Golondrinas, a late Paleozoic to early Mesozoic field of collapse pipes exposed on Svalbard consists of > 250-m-tall breccia-filled collapse pipes in limestone but related to deep dissolution of underlying gypsum. The average pipe diameter is 60 m, pipes are typically asymmetric by 15% of the diameter but aspect rations similar to Golondrines are not uncommon. Several of the 50 pipes reach diameters of over 150m. The lack of terrigenous material inside the pipes suggests they did not reach the surface. Collapse breccia pipes form strong vertical heterogeneities in rock properties such as porosity and permeability, matrix density, cement, mechanical strength and lithology, affecting fluid-flow characteristics on a meter to hundred-meter scale. It is rare that pipe fields are well exposed at the kilometre scale. Studies at the km scale are fundamental

  8. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation. (United States)

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S


    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of

  9. Insights into the Martian Regolith from Martian Meteorite Northwest Africa 7034 (United States)

    McCubbin, Francis M.; Boyce, Jeremy W.; Szabo, Timea; Santos, Alison R.; Domokos, Gabor; Vazquez, Jorge; Moser, Desmond E.; Jerolmack, Douglas J.; Keller, Lindsay P.; Tartese, Romain


    Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been

  10. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada (United States)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.


    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  11. Waduk Parangjoho dan Songputri: Alternatif Sumber Erupsi Formasi Semilir di daerah Eromoko, Kabupaten Wonogiri, Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Sutikno Bronto


    Full Text Available Semilir Formation was typically originated from products of a very explosive volcanic activity, i.e. breccias, lapillistones, and tuffs containing abundant pumice. It has a light grey to white colour and high silica andesite to dacite in composition, mainly rich in volcanic glass and quartz. Sedimentary structures of these volcanic rocks are massive, grading, planar bedding, and cross-bedding to antidunes, with grain size varies from ash (≤ 2 mm to lapilli (2 – 64 mm to bomb and block (> 64 mm. The formation is widely distributed from the west side (Pleret and Piyungan areas, Bantul Regency, Special Province of Yogyakarta until Eromoko area in the east (Wonogiri Regency, Jawa Tengah Province. Stratigraphically, the Semilir Formation underlies the Nglanggeran Formation, and overlies the Mandalika Formation in the eastern part and Kebo-Butak Formation in the western part. Geomorphological- and lithological analyses of the Semilir Formation in areas of Parangjoho and Song- putri Dams, Eromoko Sub-regency, Wonogiri Regency indicate that the two depressions were alternatively volcanic sources of the Semilir Formation in the Eromoko area. This is proved by the presence of co-ignimbrite breccias(co-ignimbrite lag fall deposits, that descriptively they are polymict breccias. This rock is characterized by a mixing of pumice and various hard rock fragments that primarily are juvenile materials (volcanic blocks, bombs, accessory-, and accidental rock fragments set in pumice-rich volcanic ash and lapilli sizes. The accessory materials came from older volcanic rocks, whereas the accidental ones were originated from basement rocks. During a caldera forming event or a destruction period of an older composite volcanic cone(s, all older rocks resting above the magma chamber were ejected to the surface by a very high magmatic pressure. Since they were heavier than the juvenile material, most accessory and

  12. Paleomagnetism of the Mississippian HP pipe and the western margin of the North American craton (United States)

    Symons, D. T. A.; Lewchuk, M. T.

    The HP pipe is a small oval (80m×40m) kimberlitic diatreme near Golden, B.C., in the fold-and-thrust belt of the Rocky Mountains. The pipe intrudes gently-dipping (˜10°S) Late Cambrian to Middle Ordovician limestones with nearly vertical contacts. It is comprised of carbonate breccia fragments and pyroxenite nodules in a light-green serpentine matrix and gives a Rb-Sr age of 348±7 Ma. A later phase of dark-green dikes cut the breccia and adjacent limestones. AF and thermal step demagnetization of 168 specimens from 42 oriented blocks was done using an automated cryogenic magnetometer in a shielded room for remanence measurement. The diatreme breccia and dikes retain a stable A remanence component after thermal cleaning above ˜400°C and AF cleaning above ˜20 mT. Their combined mean direction of 129.8°, -44.3° (α95 = 6.5°) after tilt correction gives a concordant Mississippian pole position of 138.5°E, 44.5°N (Dp = 5.1°, Dm = 8.2°). The limestones provide a positive contact test by giving a stable B component direction of 114.4°, -22.7° (α95 = 12.4°) with a concordant Late Cambrian to Middle Ordovician pole of 141.0°E, 24.3°N (δp = 7.0°, δm = 13.3°). These concordant poles indicate that the fold-and-thrust belt is part of the North American craton. Thus the suture with allochthonous terranes to the west must be located at or west of the Rocky Mountain Trench. Both the diatreme and limestones retain a low-coercivity and unblocking-temperature C component, isolated by vector subtraction without tilt correction, that records a minor overprint from the Laramide Orogeny combined with Pleistocene viscous remanence.

  13. The Serra da Cangalha impact structure, Brazil: Geological, stratigraphic and petrographic aspects of a recently confirmed impact structure (United States)

    Vasconcelos, Marcos Alberto Rodrigues; Crósta, Alvaro P.; Reimold, Wolf Uwe; Góes, Ana Maria; Kenkmann, Thomas; Poelchau, Michael H.


    Serra da Cangalha is a complex impact structure with an apparent diameter of 13.7 km located in essentially undisturbed sedimentary rocks of the Parnaíba basin in northeastern Brazil. The stratigraphy of the crater region includes, from bottom to top, the Longá, Poti, Piauí and Pedra de Fogo formations of Devonian to Late Permian age. The age of the impact event is constrained to structure comprises a ˜5.8 km wide central uplift involving the Piauí, Poti and Longá formations and a prominent ˜3 km wide collar of Poti Formation rocks. We divided Serra da Cangalha into four distinctive structural domains (i-iv), from the innermost zone outward. (i) The central domain, with an inner collar ˜1.5 km radius from the center, yielded all the samples with microscopic shock features identified so far. These include planar deformation features (PDF), feather features (FF), and planar fractures (PF) in quartz grains found in polymict breccias and shatter cones from the central depression. Furthermore, significant cementation with iron oxide is observed in the rocks of Serra da Cangalha, especially in the Poti Formation and in the polymict breccias, conferring to them a peculiar red color. Macroscopic deformation involves faulted, folded and subvertical strata within a ˜2.9 km radius from the center. (ii) The annular basin domain has limited outcrops; its most prominent features are two concentric annular ridges formed by chert breccias and fossilized wood-bearing folded strata of the Pedra de Fogo Formation. (iii) The crater rim and (iv) external domains comprise undisturbed strata of the Pedra de Fogo and Piauí formations with well-preserved sedimentary structures. Whilst the existing literature on Serra da Cangalha has focused on the structure morphology, general geology and some shock features, we present here a detailed description of the stratigraphy and the geology of each formation in the interior and around Serra da Cangalha, as well as further detailed

  14. Uranium-rich opal from the Nopal I uranium deposit, Peña Blanca, Mexico: Evidence for the uptake and retardation of radionuclides (United States)

    Schindler, Michael; Fayek, Mostafa; Hawthorne, Frank C.


    The Nopal I uranium deposit of the Sierra Peña Blanca, Mexico, has been the focus of numerous studies because of its economic importance and its use as a natural analog for nuclear-waste disposal in volcanic tuff. Secondary uranyl minerals such as uranophane, Ca[(UO 2)(SiO 3OH)] 2(H 2O) 5, and weeksite, (K,Na) 2[(UO 2) 2(Si 5O 13)](H 2O) 3, occur in the vadose zone of the deposit and are overgrown by silica glaze. These glazes consist mainly of opal A, which contains small particles of uraninite, UO 2, and weeksite. Close to a fault between brecciated volcanic rocks and welded tuff, a greenish silica glaze coats the altered breccia. Yellow silica glazes from the center of the breccia pipe and from the high-grade pile coat uranyl-silicates, predominantly uranophane and weeksite. All silica glazes are strongly zoned with respect to U and Ca, and the distribution of these elements indicates curved features and spherical particles inside the coatings. The concentrations of U and Ca correlate in the different zones and both elements inversely correlate with the concentration of Si. Zones within the silica glazes contain U and Ca in a 1:1 ratio with maximum concentrations of 0.08 and 0.15 at.% for the greenish and yellow glazes, respectively, suggesting trapping of either Ca 1U 1-aqueous species or -particles in the colloidal silica. X-ray photoelectron spectroscopy (XPS), Fourier-transform infra-red spectroscopy (FTIR), and oxygen-isotope ratios measured by secondary-ion mass spectrometry (SIMS) indicate higher U 6+/U 4+ ratios, higher proportions of Si-OH groups and lower δ 18O values for the greenish silica glaze than for the yellow silica glaze. These differences in composition reflect increasing brecciation, porosity, and permeability from the center of the breccia pipe (yellow silica glaze) toward the fault (green silica glaze), where the seepage of meteoric water and Eh are higher.

  15. Deep drilling in the Chesapeake Bay impact structure - An overview (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.


    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  16. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite

    Directory of Open Access Journals (Sweden)

    Naresh C. Ghose


    Full Text Available The late Aptian (118–115 Ma continental flood basalts of the Rajmahal Volcanic Province (RVP are part of the Kerguelen Large Igneous Province, and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin. The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts, bentonite, grey and black shale/mudstone and oolite, whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material. At the eastern margin and the north-central sector of the RVP, the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites. The pyroclastic rocks are largely felsic in composition, and comprise ignimbrite as well as coarse-grained tuff with lithic clasts, and tuff breccia with bombs, lapilli and ash that indicate explosive eruption of viscous rhyolitic magma. The rhyolites/dacites (>68 wt.% are separated from the andesites (<60 wt.% by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma. On the other hand, partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma, crystallizing orthopyroxene at a pressure-temperature of ∼3 kb/1150 °C. In contrast, the northwestern sector of the RVP is devoid of felsic-intermediate rocks, and the volcaniclastic rocks are predominantly mafic (basaltic in composition. Here, the presence of fine-grained tuffs, tuff breccia containing sideromelane shards and quenched texture, welded tuff breccia, peperite, shale/mudstone and oolite substantiates a subaqueous environment. Based on these observations, we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions. The presence

  17. Gumuk gunung api purba bawah laut di Tawangsari - Jomboran, Sukoharjo - Wonogiri, Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Gendoet Hartono


    Full Text Available paper discusses the study on the basalt volcanic rocks and the volcano morphology indicating the existence of an ancient submarine volcano in Tawangsari-Jomboran sub-regency, Sukoharjo- Wonogiri, Central Java. In general, this basalt volcanic rocks were identified as andesite breccia which might be grouped into the Mandalika Formation of Oligosen-Miosen age (Surono et al., 1992. The origin of the Mandalika Formation in relation to the classic sedimentation process and the submarine volcanism is still needed to be evaluated. The present study was based on the detailed descriptions of the rocks both in the field and in the laboratory. The autoclastic basalt outcrops consisting of breccias show the characteristics of the igneous rock fragment component embedded in the groundmass with the same composition, namely igneous rock, dark grey to black in colour; porphyritic texture, rough surface, brecciated; pillow structures, massive, fine vesicularities, amygdaloidal filled with calcite, and radial fractures; calk-alkaline andesite composition ( SiO = 54.71% , K O = 1.15% . This rock body attains the  dimension of 2 - 5 m length, and 40 cm - 1 m in diameter with the direction of the deposition varies following the direction of the eruption source. Brecciated structures on the surface was controlled by the high cooling rate and the low flow, while the interior of the rock is massive because it was not in a direct contact to the cooler mass outside. Autoclastic basalt breccias and or the pillow basalt lava was interpreted to be formed by the undulating low gradient of morphology with the average angle of <10o. On the other hand, the low basaltic magma viscosity produced the effusive eruption related to the formation of the low angle morphology. The distance between the hills generally composed of pillow basalt is between 500 m - 1 km. The typical pillow structure of the igneous rock as described above is

  18. Key Recent Scientific Results from the Opportunity Rover's Exploration of Endeavour Crater, Mars (United States)

    Arvidson, R. E.; Squyres, S. W.; Gellert, R.; Herkenhoff, K.; Mittlefehldt, D.; Crumpler, L.; McLennan, S.; Farrand, W. H.; Joliff, B. L.; Morris, R. V.


    The Opportunity Rover is currently in its 11th year of operations, exploring the rim of the approximately 22 km wide Noachian-age Endeavour Crater. Opportunity spent its 5th winter season in Cook Haven, a gentle swale along Murray Ridge. Two small rocks serendipitously overturned by rover wheel motions show evidence for aqueous precipitation of sulfates, and interaction with a strong oxidant (e.g., O2) to form a thin, high valence state Mn oxide coating. After the winter, Opportunity headed south to Cape Tribulation and explored Shoemaker formation impact breccias, finding numerous Ca-sulfate veins cutting across outcrops. A key target for Opportunity's measurements has been the Spirit of Saint Louis crater (SoSL), which is approximately 25 m wide, oval in plan view, shallow, flat-floored, and has a slightly raised rim. SoSL crater is surrounded by an apron of bright, polygonally-shaped outcrops and is superimposed on a gentle swale in Cape Tribulation. Rocks in a thin reddish zone on the rim are enriched in hematite, Si, and Ge, and depleted in Fe, relative to surrounding rocks. Apron rocks include an outcrop also enriched in Si and Ge, and slightly depleted in Fe. In general rocks in the crater and apron have elevated S relative to Shoemaker formation breccias, tracking values observed in the Cook Haven and the Hueytown (fracture running perpendicular to Cape Tribulation) outcrops. SoSL crater lies just to the west of Marathon Valley, a key target for exploration by Opportunity because five separate CRISM observations indicate the presence of Fe/Mg smectites on the upper valley floor. Opportunity data show that low relief, relatively bright polygonal outcrops dominate the valley floor where not covered by scree and soil shed from surrounding walls. Initial reconnaissance shows that the outcrops are breccias with compositions similar to the typical SoSL crater apron and floor rocks, although only the very upper portion of the valley has been explored as of August

  19. Mineralizing conditions and source fluid composition of base metal sulfides in the Lon District, southeastern Iceland (United States)

    Kremer, C. H.; Thomas, D.; García del Real, P.; Zierenberg, R. A.; Bird, D. K.


    Hydrothermal base metal mineralization is rare in Iceland due to the scarcity of evolved magma bodies that discharge metal-rich aqueous fluids into bedrock. One exception is the Lon District of southeastern Iceland, where explosively emplaced rhyolitic breccias host base metal sulfide minerals. We performed petrographic, fluid inclusion, and stable isotope analyses on samples collected in Lon to constrain the conditions of sulfide mineral formation. Based on outcrop and hand sample observations, hot, early-stage hydrothermal fluids precipitated sulfide minerals, quartz, and epidote in rhyolitic breccia and basalt flows. Cooler late-stage fluids precipitated carbonates and quartz in rhyolitic breccia and basalt flows. The order of precipitation of the sulfides was: galena, sphalerite, then chalcopyrite. Homogenization temperatures of liquid-dominated multi-phase fluid inclusions in hydrothermal early-stage quartz coeval with chalcopyrite cluster around 303 °C and 330 °C, indicating precipitation of metallic sulfides in two main hydrothermal fluid pulses early in the period of hydrothermal activity in the Lon District. Freezing point depression analyses of fluid inclusions in quartz show that the sulfide minerals precipitated from a solution that was 4 wt. % NaCl. The 𝛿34S values of sulfides indicate that early-stage hydrothermal sulfur was derived from igneous rocks, either through leaching by non-magmatic hydrothermal fluids or by exsolution of magmatic waters. Early stage epidote 𝛿D values were on average -65.96 per mil, about 14 per mil higher than reported values in epidotes from elsewhere in southeastern Iceland. The 𝛿13C and 𝛿18O values of late-stage carbonates indicate that late stage hydrothermal fluids were meteoric in origin. Collectively, fluid inclusion and stable isotope analyses suggest that early-stage aqueous fluids derived from a mixture of magmatic waters exsolved from the proximal Geitafell intrusion and meteoric

  20. A 4.2 billion year old impact basin on the Moon: U-Pb dating of zirconolite and apatite in lunar melt rock 67955 (United States)

    Norman, Marc D.; Nemchin, Alexander A.


    A sharp rise in the flux of asteroid-size bodies traversing the inner Solar System at 3.9 Ga has become a central tenet of recent models describing planetary dynamics and the potential habitability of early terrestrial environments. The prevalence of ˜3.9 Ga crystallization ages for lunar impact-melt breccias and U-Pb isotopic compositions of lunar crustal rocks provide the primary evidence for a short-lived, cataclysmic episode of late heavy bombardment at that time. Here we report U-Pb isotopic compositions of zirconolite and apatite in coarse-grained lunar melt rock 67955, measured by ion microprobe, that date a basin-scale impact melting event on the Moon at 4.22±0.01 Ga followed by entrainment within lower grade ejecta from a younger basin approximately 300 million yr later. Significant impacts prior to 3.9 Ga are also recorded by lunar zircons although the magnitudes of those events are difficult to establish. Other isotopic evidence such as 40Ar-39Ar ages of granulitic lunar breccias, regolith fragments, and clasts extracted from fragmental breccias, and Re-Os isotopic compositions of lunar metal is also suggestive of impact-related thermal events in the lunar crust during the period 4.1-4.3 Ga. We conclude that numerous large impactors hit the Moon prior to the canonical 3.9 Ga cataclysm, that some of those pre-cataclysm impacts were similar in size to the younger lunar basins, and that the oldest preserved lunar basins are likely to be significantly older than 3.9 Ga. This provides sample-based support for dynamical models capable of producing older basins on the Moon and discrete populations of impactors. An extended period of basin formation implies a less intense cataclysm at 3.9 Ga, and therefore a better opportunity for preservation of early habitable niches and Hadean crust on the Earth. A diminished cataclysm at 3.9 Ga suggests that the similarity in the age of the oldest terrestrial continental crust with the canonical lunar cataclysm is likely

  1. New Three-Dimensional Model for the Chicxulub Crater Based on Joint Inversion of Gravity and Magnetics, Constrained with Seismic and Well Data (United States)

    Perez-Flores, M. A.; Batista-Rodriguez, J. A.; Fucugauchi, J. U.


    A new three-dimensional (3-D) geophysical-geological model is presented for the Chicxulub multiring crater. Chicxulub crater, located in the northwestern Yucatan peninsula, southern Gulf of Mexico, was formed by a large impact at the Cretaceous/Tertiary boundary. The structure is the best preserved example of a large complex multi-ring crater in the terrestrial record. Investigation of this structure is important for understanding of mechanisms for formation of large impact basins on other planetary surfaces. Therefore, it has been intensively investigated in the past two decades, by geological and geophysical surveys and numerical modeling, mapping the morphology, structure and geometry of the crater. Our new 3-D model is obtained from joint inversion of gravity and aeromagnetic data and constrained by borehole data on land and seismic lines on the marine area. For the modeling, we use an inversion method that estimates depth to the top of an assemblage of rectangular prisms from quadratic programming. We use six different prismatic assemblages to model the crater units that include the melt, suevitic breccias, Bunte breccias, Cretaceous carbonates, upper crust, lower crust and Tertiary carbonate sediments. Each assemblage has a uniform density contrast. Prisms are 10 x 10 km with variable height determined in the inversion. Each prism is assigned an ID number for identification through the inversion procedure. Different density contrasts were used in the inversion. The resulting best-fit model accounts for the observed data sets reasonably well (91 %), and agrees with constraints from the seismic and borehole data on the major features. Analyzing the faults, these are clearly circular, showing a circular fracturing system. Fault systems over the pre-impact carbonates are related with the rings observed on the gravity horizontal gradients. The gravity high in the central sector is modeled by the structural uplift, which presents high density contrasts and a

  2. The Sudbury impact layer in the paleoproterozoiciron ranges of northern Michigan, USA (United States)

    Cannon, W.F.; Schulz, K.J.; Horton, J. Wright; King, David A.


    A layer of breccia that contains fragments of impact ejecta has been found at 10 sites in the Paleoproterozoic iron ranges of northern Michigan, in the Lake Superior region of the United States. Radiometric age constraints from events predating and postdating deposition of the breccia are ca. 1875 Ma and 1830 Ma. The major bolide impact that occurred at 1850 Ma at Sudbury, Ontario, 500–700 km east of these sites, is the likely causative event. The Michigan sites described here, along with previously described sites in Minnesota and Ontario, define an extensive ejecta-bearing deposit throughout the Paleoproterozoic iron ranges of the Lake Superior region that we refer to as the Sudbury impact layer. The layer at the sites in Michigan exhibits a range of thicknesses, lithologic characters, and sedimentary settings. The diversity of rock types and internal stratigraphic details of the layer imply that several different processes of transport and deposition are represented, but the detailed investigations needed to document them are incomplete. Many of the sites had been described and interpreted previously as products of common terrestrial processes, but the presence of relict shock-induced planar deformation features in quartz indicates that the breccia layer is in fact the product of an extraterrestrial impact. At most localities, this layer also contains relict fragments of altered devitrified glass and/or accretionary lapilli. One immediate use of the impact layer is as an ultraprecise time line that ties together the well-known stratigraphic sequences of the various geographically separated iron ranges, the correlation of which has remained controversial for many decades. The Sudbury impact layer most commonly lies at a horizon that records a significant change in the character of sediments across the region. The impact layer marks the end of a major period of banded iron formation deposition that was succeeded by deposition of fine clastic rocks, commonly

  3. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia

    Directory of Open Access Journals (Sweden)

    I.V. Ashchepkov


    Full Text Available Mantle xenoliths (>150 and concentrates from late autolithic breccia and porphyritic kimberlite from the Sytykanskaya pipe of the Alakit field (Yakutia were analyzed by EPMA and LAM ICP methods. In P-T-X-f(O2 diagrams minerals from xenoliths show widest variations, the trends P-Fe#-CaO, f(O2 for minerals from porphyric kimberlites are more stepped than for xenocrysts from breccia. Ilmenite PTX points mark moving for protokimberlites from the lithosphere base (7.5 GPa to pyroxenite lens (5–3.5 GPa accompanied by Cr increase by AFC and creation of two trends P-Fe#Ol ∼10–12% and 13–15%. The Opx-Gar-based mantle geotherm in Alakit field is close to 35 mW/m2 at 65 GPa and 600 °C near Moho was determined. The oxidation state for the megacrystalline ilmenites is lower for the metasomatic associations due to reduction of protokimberlites on peridotites than for uncontaminated varieties at the lithosphere base. Highly inclined linear REE patterns with deep HFSE troughs for the parental melts of clinopyroxene and garnet xenocrysts from breccia were influenced by differentiated protokimberlite. Melts for metasomatic xenoliths reveal less inclined slopes without deep troughs in spider diagrams. Garnets reveal S-shaped REE patterns. The clinopyroxenes from graphite bearing Cr-websterites show inclined and inflected in Gd spectrums with LREE variations due to AFC differentiation. Melts for garnets display less inclined patterns and Ba-Sr troughs but enrichment in Nb-Ta-U. The 40Ar/39Ar ages for micas from the Alakit mantle xenoliths for disseminated phlogopites reveal Proterozoic (1154 Ma age of metasomatism in early Rodinia mantle. Veined glimmerites with richterite – like amphiboles mark ∼1015 Ma plume event in Rodinia mantle. The ∼600–550 Ma stage manifests final Rodinia break-up. The last 385 Ma metasomatism is protokimberlite-related.

  4. Internal Structure of the Extinct Skagi-Hunafloi Rift Zone and Implications for Magmatic Construction (United States)

    Siler, D. L.; Karson, J. A.; Varga, R. J.; Horst, A. J.


    Structural relief ~1.5 km of basaltic crust on the eastern flank of the now-extinct Skagi-Hunafloi rift zone (active between 8 and 4 Ma) is exposed in two mountain ranges bounding the glacially excavated Vatnsdalur in northwestern Iceland. This area reveals both the along- and across-strike variations within an abandoned Tertiary rift zone. Regionally the rift zone is characterized by a "flexure zone" with basaltic lavas that dip 5-10° westward, toward the rift axis. Superimposed on this structure is a bowl-shaped depression at least 800 m deep and ~5 km in diameter in which lava flows dip as much as 50° inward. The lowest package of lavas associated with the depression are basaltic and minor rhyolitic flows (7.62±0.32 Ma), which are at least 400 m thick and have been tectonically rotated during subsidence, as indicated by field relationships and preliminary paleomagnetic data. Overlying these tilted, pre-subsidence flows are syn-subsidence basaltic lavas, which are at least 150 m thick and breccias all of which thicken toward the center of the depression. Overlying the syn- subsidence flows is a ~250 m thick basaltic lens (6.98±0.32 Ma). Ages and thicknesses of units associated with the depression roughly constrain the local subsidence rates at ~1 km/my. Just to the west, gabbroic to granophyric intrusions and hydrothermally altered igneous rocks and breccias mark a dissected volcanic center. Dense (cone?) sheet swarms dip radially inward. This entire assemblage is overlain by gently dipping basaltic to rhyolitic lavas showing that magmatic construction did not result in generation of high relief. Crustal thickening was accommodated by subsidence and backfilling near the depression and by basaltic to minor rhyolitic sheet intrusions over a broader surrounding area. Folding of the pre-subsidence lavas was likely accommodated by slip on steeply dipping fractures and within flow top breccia units. Focused subaxial subsidence in rift zones may result from

  5. Paleozoic Akiyoshi broken limestone of iron and carbon-bearing quenched veins by impacts on water Earth (United States)

    Miura, Y.


    As active Earth has been described by the present site after accretionary moved formations through the surface. In fact, the present Japanese Islands have less young volcanic rocks compared with much sedimentary rocks (ca. 60 vol. % ) of the Paleozoic Akiyoshi limestone remained from ocean-floor aggregates and uplifted to form the brecciated plateau in the Miocene at present site of Sea of Japan. The main purpose of the paper is to elucidate the in-situ material evidence of brecciated limestone blocks. The Akiyoshi underground samples (up to 250m in depth from the Kaerimizu site) drilled by the Akiyoshi Science Museum show significant changes of physical properties of powdered calcite minerals along the fossil reversal distributions [1-4] with anomalous abundances of siderophiles of bulk XRF data analysis at the bottom of 243m in depth[3]. The present in-situ data of FE-ASEM and Raman data show that the deep samples have re- crystallized calcite-halite and rapid veins with iron-carbon grains with shocked nano-carbon [2-4]. To compare with overseas samples, four American Paleozoic samples are investigated in this study of Carlsbad limestone, Sierra Madera Permian limestone, Alamo breccias and Santa-Fe breccias, where the Santa-Fe sample contains shocked quartz and limestone with fluid-tube texture and separated nano-carbon grains in this study [4]. The Akiyoshi limestone formed near at Equator has been remained as shallow impact breccias stored in the interior with Chinese blocks to present site by continental drift process followed by recent impact to be uplifted at the formed site of the Japan islands [4], which might be typical characteristics of active water planet Earth. Reference: [1] Miura Y. (1986): Bull. Akiyoshi-Dai Museum of Natural History (Yamaguchi), 22, 1-22. [3] Miura Y. (1996): Shock-wave Handbook (SV-Tokyo), p.1073-1209. [4] Miura Y. (2014, 2015): Japan G U-2014,2015 (English), each pp.1.

  6. Depositional History and Sequence Stratigraphy of the Middle Ordovician Yeongheung Formation (Yeongweol Group), Taebaeksan Basin, mid-east Korea (United States)

    Kwon, Yoo Jin; Kwon, Yi Kyun


    The Middle Ordovician Yeongheung Formation consists of numerous meter-scale, shallowing-upward cycles which were deposited on a shallow-marine carbonate platform. Many diagnostic sedimentary textures and structures such as supratidal laminite, tepee structure, and solution-collapsed breccia are observed, which enable to infer the dry climate and high salinity conditions during deposition of the formation. In order to understand its depositional history, this study focuses on vertical and spatial stacking patterns of the second- to third-order sequences through the detailed outcrop description and geologic mapping. A total 19 lithofacies have been recognized, which can be grouped into 5 facies associations (FAs): FA1 (Supratidal flat), FA2 (Supratidal or dolomitization of peritidal facies), FA3 (Intertidal flat), FA4 (Shallow subtidal to peritidal platform), FA5 (Shallow subtidal shoal). Global mega-sequence boundary (Sauk-Tippecanoe) occurs in solution-collapsed breccia zone in the lower part of the formation. Correlation of the shallowing-upward cycle stacking pattern across the study area defines 6 transgressive-regressive depositional sequences. Each depositional sequences comprises a package of vertical and spatial staking of shallow subtidal cycles in the lower part and peritidal cycles in the upper part of the formation. According to sequence stratigraphic interpretation, the reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. Based on the absence of siliciclastic sequence such as the Jigunsan Formation and the lithologic & stratigraphic differences, however, the Yeongweol and Taebaek groups might not belong to a single depositional system within the North China platform. The Yeongweol Group can be divided by the four subunits into their unique lithologic successions and geographic distributions. The Eastern subunit of the Yeongweol Group is composed dominantly of carbonate rocks with a high

  7. Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean (United States)

    López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruíz, F.; Comas, M.


    Mud volcanoes (MVs) are the most prominent indicators of active methane/hydrocarbon venting at the seafloor on both passive and active continental margins. Their occurrence in the western Mediterranean is patent at the West Alboran Basin, where numerous MVs develop overlaying a major sedimentary depocentre containing overpressured shales. Although some of these MVs have been studied, the detailed biogeochemistry of expelled mud so far has not been examined in detail. This work provides the first results on the composition and origin of organic matter, anaerobic oxidation of methane (AOM) processes and general characteristics on MV dynamics using lipid biomarkers as the main tool. Lipid biomarker analysis was performed on MV expelled material (mud breccias) and interbedded hemipelagic sediments from Perejil, Kalinin and Schneider's Heart MVs located in the northwest margin of the Alboran Sea. The n alkane distributions and n alkane-derived indices (CPI and ACL), in combination with the epimerization degree of hopanes (22S/(22S+22R)) indicate that all studied mud breccia have a similar biomarker composition consisting of mainly thermally immature organic matter with an admixture of petroleum-derived compounds. This concordant composition indicates that common source strata must feed all three studied MVs. The past or present AOM activity was established using lipid biomarkers specific for anaerobic methanotrophic archaea (irregular isoprenoids and dialkyl glycerol diethers) and the depleted carbon isotope composition (δ13C) of crocetane/phytane. The presence of these lipid biomarkers, together with the low amounts of detected glycerol dialkyl glycerol tetraethers, is consistent with the dominance of anaerobic methanotrophs of the ANME-2 over ANME-1, at least in mud breccia from Perejil MVs. In contrast, the scarce presence or lack of these AOM-related lipid biomarkers in sediments from Kalinin and Schneider's Heart MVs, suggests that no recent active methane seepage

  8. Active hydrocarbon (methane) seepage at the Alboran Sea mud volcanoes indicated by specific lipid biomarkers. (United States)

    Lopez-Rodriguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruiz, F.; Comas, M.; Sinninghe Damsté, J. S.


    Mud volcanoes (MVs) and pockmark fields are known to occur in the Alboran Basin (Westernmost Mediterranean). These MVs occur above a major sedimentary depocenter that includes up to 7 km thick early Miocene to Holocene sequences. MVs located on the top of diapiric structures that originated from undercompacted Miocene clays and olistostromes. Here we provide results from geochemical data-analyses of four gravity cores acquired in the Northern Mud Volcano Field (north of the 36°N): i.e. Perejil, Kalinin and Schneiderś Heart mud expulsion structures. Extruded materials include different types of mud breccias. Specific lipid biomarkers (n-alkanes, hopanes, irregular isoprenoid hydrocarbons and Dialkyl Glycerol Diethers (DGDs) were analysed by gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS). Determination of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) by high performance liquid chromatography-spectrometry (HPLC-MS), and analysis of biomarker δ13C values were performed in selected samples. Lipid biomarker analysis from the three MVs revealed similar n-alkane distributions in all mud breccia intervals, showing significant hydrocarbon-derived signals and the presence of thermally immature organic-matter admixture. This suggests that similar strata fed these MVs. The hemipelagic drapes reveal comparable n-alkane distributions, suggesting that significant upward diffusion of fluids occurs. Distributions of GDGTs are generally accepted as usefull biomarkers to locate the anaerobic oxidation of methane (AOM) in marine sediments. However, our GDGT profiles only reflect the marine thaumarchaeotal signature. There seems to be no archaea producing specific GDGTs involved in AOM in the recovered interval. Evidence of recent activity (i.e., methane gas-bubbling and chemosynthetic fauna at the Perejil MV) and the presence of specific lipid biomarker related with methanotropic archaea (Irregular Isoprenoids and DGDs), however, suggest the existence of

  9. Chronology for the Cueva Victoria fossil site (SE Spain): Evidence for Early Pleistocene Afro-Iberian dispersals. (United States)

    Gibert, Luis; Scott, Gary R; Scholz, Denis; Budsky, Alexander; Ferràndez, Carles; Ribot, Francesc; Martin, Robert A; Lería, María


    Cueva Victoria has provided remains of more than 90 species of fossil vertebrates, including a hominin phalanx, and the only specimens of the African cercopithecid Theropithecus oswaldi in Europe. To constrain the age of the vertebrate remains we used paleomagnetism, vertebrate biostratigraphy and (230)Th/U dating. Normal polarity was identified in the non-fossiliferous lowest and highest stratigraphic units (red clay and capping flowstones) while reverse polarity was found in the intermediate stratigraphic unit (fossiliferous breccia). A lower polarity change occurred during the deposition of the decalcification clay, when the cave was closed and karstification was active. A second polarity change occurred during the capping flowstone formation, when the upper galleries were filled with breccia. The mammal association indicates a post-Jaramillo age, which allows us to correlate this upper reversal with the Brunhes-Matuyama boundary (0.78 Ma). Consequently, the lower reversal (N-R) is interpreted as the end of the Jaramillo magnetochron (0.99 Ma). These ages bracket the age of the fossiliferous breccia between 0.99 and 0.78 Ma, suggesting that the capping flowstone was formed during the wet Marine Isotopic Stage 19, which includes the Brunhes-Matuyama boundary. Fossil remains of Theropithecus have been only found in situ ∼1 m below the B/M boundary, which allows us to place the arrival of Theropithecus to Cueva Victoria at ∼0.9-0.85 Ma. The fauna of Cueva Victoria lived during a period of important climatic change, known as the Early-Middle Pleistocene Climatic Transition. The occurrence of the oldest European Acheulean tools at the contemporaneous nearby site of Cueva Negra suggest an African dispersal into SE Iberia through the Strait of Gibraltar during MIS 22, when sea-level was ∼100 m below its present position, allowing the passage into Europe of, at least, Theropithecus and Homo bearing Acheulean technology. Copyright © 2015 Elsevier Ltd. All

  10. New observations on the quartz monzodiorite-granite suite. [in lunar soil (United States)

    Marvin, U. B.; Holmberg, B. B.; Lindstrom, M. M.; Martinez, R. R.


    Five new fragments of quartz monzodiorite (QMD) were identified in particles from soil 15403, which was collected from the boulder sampled as rock 15405, an impact-melt breccia containing clasts of KREEP basalt, QMD, granite, and a more primitive alkali norite. Petrographic and geochemical studies of the fragments show considerable variation in modal proportions and bulk composition. This heterogeneity is due to unrepresentative sampling in small fragments of coarse-grained rocks. Variations in the proportions of accessory minerals have marked effects on incompatible-trace-element concentrations and ratios. Semiquantitative calculations support the derivation of QMD from 60-percent fractional crystallization of a KREEP basalt magma as suggested by Hess (1989). Apollo 15 KREEP basalt cannot be the actual parent magma because the evolved rocks predate volcanic KREEP basalts. It is suggested that ancient KREEP basalt magmas have crystallized as plutons, with alkali norite clasts offering the only direct evidence of this precursor.

  11. Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin (United States)

    Bookstrom, Arthur A.; Box, Stephen E.; Cossette, Pamela M.; Frost, Thomas P.; Gillerman, Virginia; King, George; Zirakparvar, N. Alex


    . Discordant quartz-biotite and quartz-tourmaline breccias, and veins contain cobaltite3 ± xenotime3 (ca. 1058–990 Ma).Mesoproterozoic cobaltite deposition was followed by: (1) within-plate plutonism (530–485 Ma) and emplacement of mafic dikes (which cut cobaltite lodes but are cut by quartz-Fe-Cu-sulfide veins); (2) garnet-grade metamorphism (ca. 151–93 Ma); (3) Fe-Cu-sulfide mineralization (ca. 110–92 Ma); and (4) minor quartz ± Au-Ag ± Bi mineralization (ca. 92–83 Ma).Cretaceous Fe-Cu-sulfide vein, breccia, and replacement-style deposits contain various combinations of chalcopyrite ± pyrrhotite ± pyrite ± cobaltian arsenopyrite (not cobaltite) ± arsenopyrite ± quartz ± siderite ± monazite (ca. 144–88 Ma but mostly 110–92 Ma) ± xenotime (104–93 Ma). Highly radiogenic Pb (in these sulfides) and Sr (in siderite) indicate that these elements resided in Mesoproterozoic source rocks until they were mobilized after ca. 100 Ma. Fe-Cu-sulfide veins, breccias, and replacement deposits appear relatively undeformed and generally lack metamorphic fabrics.Composite Co-Cu-Au ore contains early cobaltite-biotite lodes, cut by Fe-Cu-sulfide veins and breccias, or overprinted by Fe-Cu-sulfide replacement-style deposits, and locally cut by quartz veinlets ± Au-Ag ± Bi minerals.

  12. Gypsum karst in Great Britain

    Directory of Open Access Journals (Sweden)

    Cooper A.H.


    Full Text Available In Great Britain the most spectacular gypsum karst development is in the Zechstein gypsum (late Permian mainly in north-eastern England. The Midlands of England also has some karst developed in the Triassic gypsum in the vicinity of Nottingham. Along the north-east coast, south of Sunderland, well-developed palaeokarst, with magnificent breccia pipes, was produced by dissolution of Permian gypsum. In north-west England a small gypsum cave system of phreatic origin has been surveyed and recorded. A large actively evolving phreatic gypsum cave system has been postulated beneath the Ripon area on the basis of studies of subsidence and boreholes. The rate of gypsum dissolution here, and the associated collapse lead to difficult civil engineering and construction conditions, which can also be aggravated by water abstraction.

  13. Geology of coal fires: case studies from around the world

    Energy Technology Data Exchange (ETDEWEB)

    Glenn B. Stracher (ed.)


    Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products of combustion destroy floral and faunal habitats while polluting the air, water, and soil. This volume includes chapters devoted to spontaneous combustion and greenhouse gases, gas-vent mineralogy and petrology, paralavas and combustion metamorphic rocks, geochronology and landforms, magnetic signatures and geophysical modeling, remote-sensing detection and fire-depth estimation of concealed fires, and coal fires and public policy.

  14. Hydrocarbons in carbonate rocks of the Neoproterozoic Alto Paraguay basin, Mato Grosso, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Afonso C.R. [Fundacao Univ. do Amazonas, Manaus (Brazil). Dept. de Geociencias; Kerkis, Alexei; Hidalgo, Renata L. [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias. Programa de Pos-graduacao em Geologia Sedimentar; Riccomini, Claudio; Fairchild, Thomas R. [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias]. E-mail:


    Full text of publication follows: A singular occurrence of hydrocarbons (bitumen) was found in Neo proterozoic carbonate rocks of the Araras Formation (Alto Paraguay basin) in the Terconi quarry (Mirassol d'Oeste, Mato Grosso, Brazil). The bitumen occurs in a transgressive carbonate succession overlying Varanger tillites, that consists of two facies associations: (1) lagoon complex, with pink parallel-laminated dolomicrites and fenestral stromatolitic biostromite, and (2) tidal-flat complex, represented by terrigenous gray micrites and pseudosparites, with parallel lamination, asymmetric ripple marks, tepee breccia, planar stromatolites and evaporites. When fresh, the bitumen is compact and vitreous, filling fractures, stylolites and dissolution cavities, generally associated with calcite cement and euhedral dolomite crystals. Microscopic examination shows the bitumen filling pores of primary (fenestral) and secondary (moldic and intragranular) origins. As the first record of hydrocarbon in Neoproterozoic rocks of the Paraguay Belt, this occurrence opens a new perspective for the evaluation of oil potential in Precambrian rocks of Central Brazil. (author)

  15. Te-Rich argyrodite occurrence in Roşia Montană ore deposit, Apuseni Mountains, Romania (United States)

    Bailly, Laurent; Tămaş, Călin-Gabriel; Minuţ, Adrian


    A new argyrodite occurrence has been discovered in the Roşia Montană ore deposit located in the South Apuseni Mountains, Romania. Argyrodite is associated with common base metal sulfides and sulfosalts (galena, sphalerite, chalcopyrite, tetrahedrite ± alabandite, pyrite, and marcasite), tellurides (hessite, altaite, sylvanite) and rare electrum grains in the Ag-rich Cârnicel vein hosted by an extracraterial phreatomagmatic breccia within the Cârnic massif. SEM and EPMA analyses revealed that this argyrodite is Te-rich and a mean Ag 8.04Ge 0.9Te 2.07S 3.77 formula was calculated. This phase could be the germaniferous equivalent of the previously-described Te-rich canfieldite. To cite this article: L. Bailly et al., C. R. Geoscience 337 (2005).

  16. Origin and modal petrography of Luna 24 soils (United States)

    Basu, A.; Mckay, D. S.; Fruland, R. M.


    Petrographic modal analyses of polished grain mounts of fractions in the 20 to 250 micron size range from Luna 24 soil samples are presented and used to infer the nature and relative contributions of source rocks. It is found that more than 90% of the identifiable rock fragments are mare basalts, with about 11% of the soil consisting of the crystalline form. Soil breccias, which make up nearly 10% of the soil, are found to be immature. Electron probe analysis of glass particles reveals principle clusters conforming to anorthosite, anorthositic gabbro and mare basalts. More than half of the soil is composed of monomineralic particles, with pyroxene as the most abundant mineral. It is concluded that 85% of the regolith is derived from local mare basalts and gabbros and about 10% is derived from early cumulates of local mare basalt magma. Highland sources are considered to contribute not more than 3% of the regolith.

  17. Lunar Science Conference, 4th, Houston, Tex., March 5-8, 1973, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 - Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties (United States)

    Gose, W. A.


    The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.

  18. Signification des ferruginisations des formations néoprotérozoïques du Nord-Burkina Faso (Afrique de l'Ouest)Meaning of ironstones in the sedimentary Neoproterozoic formations of the northern Burkina Faso (western Africa) (United States)

    Blot, Alain


    There are many small ferruginous outcrops of different facies, often breccia-like, in the Neoproterozoic sedimentary formations in northern Burkina. These outcrops are made up of goethite and quartz, and are often along with high grades of various elements. It could be a question of gossans. Their large distribution in this part of the Taoudéni Basin offers it prospects as a province geochemically rich in Cu, Pb, Zn, Mo, As, Cd, Co... This basin would be a geochemical bin for ancient formations, which would have been evacuated before the Neoproterozoic. The ironstones would be the mark of further concentrations. To cite this article: A. Blot, C. R. Geoscience 334 (2002) 909-915.

  19. Pairing Relationships Among Feldspathic Lunar Meteorites from Miller Range, Antarctica (United States)

    Zeigler, Ryan A.; Korotev, R. L.; Jolliff, B. L.


    The Miller Range ice fields have been amongst the most prolific for lunar meteorites that ANSMET has searched [1-3]. Six different stones have been recovered during the 2005, 2007, and 2009 field seasons: MIL 05035 (142 g), MIL 07006 (1.4 g), MIL 090034 (196 g), MIL 090036 (245 g), MIL 090070 (137 g), and MIL 090075 (144 g). Of these, the five stones collected during the 2007 and 2009 seasons are feldspathic breccias. Previous work on the Miller Range feldspathic lunar meteorites (FLMs) has suggested that they are not all paired with each other [4-5]. Here we examine the pairing relationships among the Miller Range FLMs using petrography in concert with traceand major-element compositions.

  20. Sima de los Huesos (Sierra de Atapuerca, Spain). The site. (United States)

    Arsuaga, J L; Martínez, I; Gracia, A; Carretero, J M; Lorenzo, C; García, N


    In this article a topographical description of the Cueva Mayor Cueva de Silo cave system is provided, including a more detailed topography of the Sala de los Ciclopes Sala de las Oseras-Sima de los Huesos sector. The history of the excavations and discoveries of human and carnivore fossils in Sima de los Huesos and adjacent passages is briefly reported, as well as the increase, throughout the succeeding field seasons, of the human collection and changes in the relative representation of the different skeletal elements and major biases. The carnivore assemblage structure is also considered. Examining the characteristics of the bone breccia, and the current and ancient karst topography, different alternative accesses are discussed for the accumulation of carnivores and humans in the Sima de los Huesos. Taking into account all the available information, an anthropic origin for the accumulation of human fossils seems to us to be the most likely explanation.

  1. The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400-500 kyr: New radiometric dates (United States)

    Bischoff, J.L.; Shamp, D.D.; Aramburu, Arantza; Arsuaga, J.L.; Carbonell, E.; Bermudez de Castro, Jose Maria


    The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud breccia underlying an accumulation of the Middle Pleistocene cave bear (U. deningeri). Earlier dating estimates of 200 to 320 kyr were based on U-series and ESR methods applied to bones, made inaccurate by unquantifiable uranium cycling. We report here on a new discovery within the Sima de los Huesos of human bones stratigraphically underlying an in situ speleothem. U-series analyses of the speleothem shows the lower part to be at isotopic U/Th equilibrium, translating to a firm lower limit of 350 kyr for the SH hominids. Finite dates on the upper part suggest a speleothem growth rate of c. 1 cm/32 kyr. This rate, along with paleontological constraints, place the likely age of the hominids in the interval of 400 to 600 kyr. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard (United States)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.


    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity

  3. Discovery of microscopic evidence for shock metamorphism at the Serpent Mound structure, south-central Ohio: Confirmation of an origin by impact (United States)

    Carlton, R.W.; Koeberl, C.; Baranoski, M.T.; SchuMacHer, G.A.


    The origin of the Serpent Mound structure in south-central Ohio has been disputed for many years. Clearly, more evidence was needed to resolve the confusion concerning the origin of the Serpent Mound feature either by endogenic processes or by hypervelocity impact. A petrographic study of 21 samples taken from a core 903 m long drilled in the central uplift of the structure provides evidence of shock metamorphism in the form of multiple sets of planar deformation features in quartz grains, as well as the presence of clasts of altered impact-melt rock. Crystallographic orientations of the planar deformation features show maxima at the shock-characteristic planes of {101??3} and {101??2} and additional maxima at {101??1}, {213??1}, and {516??1}. Geochemical analyses of impact breccias show minor enrichments in the abundances of the siderophile elements Cr, Co, Ni, and Ir, indicating the presence of a minor meteoritic component.

  4. Evidence for a chondritic impactor, evaporation-condensation effects and melting of the Precambrian basement beneath the 'target' Deccan basalts at Lonar crater, India (United States)

    Das Gupta, Rahul; Banerjee, Anupam; Goderis, Steven; Claeys, Philippe; Vanhaecke, Frank; Chakrabarti, Ramananda


    The ∼1.88 km diameter Lonar impact crater formed ∼570 ka ago and is an almost circular depression hosted entirely in the Poladpur suite of the ∼65 Ma old basalts of the Deccan Traps. To understand the effects of impact cratering on basaltic targets, commonly found on the surfaces of inner Solar System planetary bodies, major and trace element concentrations as well as Nd and Sr isotopic compositions were determined on a suite of selected samples composed of: basalts, a red bole sample, which is a product of basalt alteration, impact breccia, and impact glasses, either in the form of spherules (glasses (>1 mm and 43.0). The Group 1 spherules are further subdivided into Groups 1a and 1b, with Group 1a spherules showing higher Ni and mostly higher Cr compared to the Group 1b spherules. Iridium and Cr concentrations of the spherules are consistent with the admixture of 1-8 wt% of a chondritic impactor to the basaltic target rocks. The impactor contribution is most prominent in the Group 1a and Group 2 spherules, which show higher Ni/Co, Ni/Cr and Cr/Co ratios compared to the target basalts. In contrast, the Group 1b spherules show major and trace element compositions that overlap with those of the impact breccia and are characterized by high EFTh (Enrichment Factor for Th defined as the Nb-normalized concentration of Th relative to that of the average basalt) as well as fractionated La/Sm(N), and higher large ion lithophile element (LILE) concentrations compared to the basalts. The relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the impact breccia and non-spherical impact glasses compared to the target basalts are consistent with melting and mixing of the Precambrian basement beneath the Deccan basalt with up to 15 wt% contribution of the basement to these samples. Variations in the moderately siderophile element (MSE) concentration ratios of the impact breccia as well as all the spherules are best explained by contributions from

  5. «Mi è tornata la fantasia del narratore»: Pasolini cinquant'anni fa

    Directory of Open Access Journals (Sweden)

    Alfredo Barberis


    Full Text Available Per quanto sia ossessivamente evocato, santificato, servito in tutte le salse, legato  a tutte le bandiere, tirato in ballo a ogni proposito e pure a sproposito, si sa che con Pasolini non si finisce mai. Anche per la banale ragione che è stato un autore abituato a non risparmiarsi, sempre generoso di sé, sempre sulla breccia: tra l’altro, presente sui giornali nei modi più vari, attraverso articoli, tavole rotonde, interventi polemici, note occasionali, e interviste del tipo più dinamico, in cui le risposte all’intervistatore disegnavano un autentico ragionamento in fieri. Ripresentiamo qui una delle più interessanti: rilasciata a un brillante giornalista di lungo corso, Alfredo Barberis, comparsa alla fine del 1964 sul supplemento culturale del «Giorno», e ripubblicata una sola volta, in un volume a cura di Oronzo Parlangèli ormai fuori catalogo.

  6. Alisitos Formation, calcareous facies: Early Cretaceous episode of tectonic calm

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Vidal, F.


    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of the peninsula of Baja California bounding the Peninsular Range batholith. Lithologically, this formation is formed by volcanic-breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during the tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic reef barrier, behind an island arc. Such conditions existed south of the Agua Blanca fault and extended to El Arco, Baja California. Based upon field observations and petrological analysis of the Alisitos limestone, an attempt is made to recreate the environmental condition in the Punta China and San Fernando, Baja California, sites.

  7. Deposit model for volcanogenic uranium deposits (United States)

    Breit, George N.; Hall, Susan M.


    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  8. Core lithology, Valles caldera No. 1, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.N.; Goff, F.; Goff, S.; Maassen, L.; Mathews, K.; Wachs, D.; Wilson, D.


    Vallas caldera No. 1 (VC-1) is the first Continental Scientific Drilling Program research core hole in the Vallas caldera and the first continuously cored hole in the region. The hole penetrated 298 m of moat volcanics and caldera-fill ignimbrites, 35 m of volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales with over 95% core recovery. The primary research objectives included coring through the youngest rhyolite flow within the caldera; obtaining structural and stratigraphic information near the intersection of the ring-fracture zone and the pre-caldera Jemez fault zone; and penetrating a high-temperature hydrothermal outflow plume near its source. This report presents a compilation of lithologic and geophysical logs and photographs of core that were collected while drilling VC-1. It is intended to be a reference tool for researchers interested in caldera processes and associated geologic phenomena.

  9. Chaotic deposition by a giant wave, Molokai, Hawaii (United States)

    Moore, J.G.; Bryan, W.B.; Ludwig, K. R.


    A coral-basalt breccia-conglomerate is exposed >60m above present sea level and nearly 2km inland from the present shoreline on the southwest side of East Molokai Volcano. This deposits was apparently laid down by a giant wave that broke over an outer reef, similar to the present fringing reef, and advanced as a turbulent bore over the back-reef flat, picking up a slurry of carbonate-rich debris and depositing it on the slopes inland as the wave advanced. U-series dating of coral fragments indicates that the age of this deposit is 240-200 ka. This giant wave was most likley caused by one of the many large submarine landslides that have been identified on the lower slopes of the major Hawaiian Islands. -from Authors

  10. Paleomagnetism of the Mississippi Valley-type Zn-Pb deposits of the Silesian-Cracow area, Poland (United States)

    Symons, David T. A.; Sangster, D.F.; Leach, D.L.


    Paleomagnetic analysis of zinc-lead ore and host rocks from 35 sites in three mines and several quarries was completed using alternating field and thermal step demagnetization and saturation isothermal remanent magnetization methods. Paleomagnetic conglomerate, breccia and fold tests were used to test for remanence stability. Most limestone and dolostone sites of the Middle Triassic Muschelkalk Formation carry a dual-polarity primary or diagenetic Middle to Upper Triassic remanence. Late dolomite and Mississippi Valley-type (MVT) mineralization from 14 sites carry a dual-polarity Tertiary magnetization that is shown to be post-brecciation and syndeformational by the paleomagnetic tests. This age supports gravity-driven fluid flow models for ore genesis that are associated with the Alpine orogeny.

  11. Geology of the Desert Hot Springs-Upper Coachella Valley Area, California (with a selected bibliography of the Coachella Valley, Salton Sea, and vicinity)

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, Richard J.


    The Desert Hot Springs area is in the upper Coachella Valley at the junction of three natural geomorphic provinces of California--the Transverse Ranges, the Peninsular Ranges, and the Colorado Desert. The mapped area is about 100 miles east of Los Angeles and lies principally in north central Riverside County. The oldest rocks in the area are Precambrian(?) amphibolitic and migmatized paragneisses of the San Gorgonio igneous-metamorphic (Chuckwalla) complex. They are intruded by Cretaceous diorite porphyry, Cactus Granite, quartz monzonite, intrusive breccia, and basic plutonic rocks. Of probable late Paleozoic age are the metamorphic rocks of the San Jacinto Mountains which form spurs projecting into San Gorgonio Pass and Coachella Valley.

  12. Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern equatorial Pacific) (United States)

    Hekinian, Roger; Bideau, Daniel; Francheteau, Jean; Cheminee, Jean L.; Armijo, Rolando; Lonsdale, Peter; Blum, Norbert


    The E-W trending Intrarift ridge is an outcrop of recent (1 m.y.) crustal and subcrustal material created at the axis of the East Pacific Rise and emplaced during the lithospheric extention that caused the westward propagation of the Cocos-Nazca rift (Francheteau et al., 1990). The mixed and erratic distribution of rock types and the occurrence of polygenic breccias and gabbroic mylonites attest to the cataclastic deformation of the lithospheric block. The protolith textures of the samples are generally well preserved, even though the samples are metamorphosed to varying degrees. Several episodes of recrystallization from the upper greenschist facies (ultramafics and gabbros) to diagenetic alteration (volcanics) are recorded in the partial retrograde metamorphism of most of the rocks. In situ outcrops of isotropic gabbros, doleritic dikes, and extrusives were found on the scarps forming the northern wall of the Hess Deep, and the contact between the sheeted dike complex and the high level isotropic gabbros was observed.

  13. Contribution to the use of marble in Central-Lusitania in Roman times: The stone architectural decoration of Ammaia (São Salvador da Aramenha, Portugal

    Directory of Open Access Journals (Sweden)

    Taelman, Devi


    Full Text Available This paper reports the results of a quantitative and qualitative study of the imported architectural decorative stone of the Roman town of Ammaia (São Salvador da Aramenha, Portugal, located centrally in the province of Lusitania. All studied ornamental stones were counted, weighed, classified and their provenance was determined. Six types of stone were used for the architectural decoration at Ammaia: white marble, pink–purple limestone, grey– white marble, two marble breccias and granite. Granite was the most widely used building stone and was used for the production of columns and capitals. Previous studies have established a local source for the Ammaia granite (Taelman et alii in press. The provenance of the remaining ornamental stones is primarily regional (the southern part of the Iberian Peninsula. Only the two marble breccia varieties were imported from the Mediterranean: africano from Teos (Turkey and breccia di Sciro from the island of Skyros also (Greece. The predominant use of regionally available stones is observed in other Roman towns located in the interior of the Iberian Peninsula, such as Emerita Augusta, Asturica Augusta and Munigua, and results mainly from the geographic location of the sites, remote from any seaport and/or navigable river.El presente trabajo presenta los resultados de una valorización cuantitativa y cualitativa de la utilización de las piedras decorativas arquitectónicas importadas de la ciudad romana lusitana de Ammaia (São Salvador da Aramenha, Portugal. Todas las piedras decorativas estudiadas fueron contadas, pesadas, clasificadas y su procedencia fue determinada. En la época romana se utilizaron seis tipos de piedra para la decoración arquitectónica de la ciudad de Ammaia: mármol blanco, caliza morada–rosa, mármol blanco y gris, dos brechas compuestas de fragmentos de mármol blanco y granito. El granito fue la piedra de construcción principal en Ammaia. Además, el granito se utiliz

  14. Is There any Relationship Between the Santa Elena Depression and Chicxulub Impact Crater, Northwestern Yucatan Peninsula, Mexico? (United States)

    Lefticariu, L.


    isolated saline lake (Middle Eocene), and 3) shallow marine water (Middle-Late Eocene?). In places, the deeper-water facies are similar to those within the Chicxulub Sedimentary Basin. The shallow-water facies is similar to those occurring outside the Basin. In general, quartz and silicates are rare in the Cenozoic sedimentary carbonate of the northwestern Yucatan Peninsula. Therefore, their presence in the UNAM 5 core could be attributed to either impact breccia reworking or silicic volcanic processes. Quartz, chert, zeolite, and clay also are common in the suevite breccia of both Yax-1 and UNAM 5 cores. The fact that the Santa Elena Depression was a distinct sedimentary basin during much of the Paleogene could be explained by any or a combination of the following hypotheses: 1) In spite of being located outside the cenote ring, the Depression is a sub-basin of the larger and deeper Chicxulub Sedimentary Basin and is therefore located within the Chicxulub Impact Crater, 2) the Depression coincides with an impact crater distinct from the Chicxulub Impact Crater, 3) the Depression formed after the Chicxulub bolide impact due to slumping, crater wall failure, or larger-scale tectonic processes. The lack of conclusive evidence for multiple impact breccia layers in the northwestern Yucatan Peninsula, corroborated with the presence on top of the impact breccia from UNAM 5 core of deeper-water limestone similar to that of Late Paleocene-Early Eocene age from Yax-1 core, would be more consistent with either the first or third hypothesis.

  15. Field and geochemical characterisitics of the Mesoarchean (~3075 ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in a supra-subduction oceanic crust

    DEFF Research Database (Denmark)

    Polat, A.; Appel, P.W.U.; Frei, Robert


    The Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt in southern West Greenland includes variably deformed and metamorphosed pillow basalts, ultramafic flows (picrites), serpentinized ultramafic rocks, gabbros, sulphide-rich siliceous layers, and minor siliciclastic sedimentary rocks. Primary...... magmatic features such as concentric cooling-cracks and drainage cavities in pillows, volcanic breccia, ocelli interpreted as liquid immiscibility textures in pillows and gabbros, magmatic layering in gabbros, and clinopyroxene cumulates in ultramafic flows are well preserved in low-strain domains....... The belt underwent at least two stages of calc-silicate metasomatic alteration and polyphase deformation between 2963 and 3075 Ma. The stage I metasomatic assemblage is composed predominantly of epidote (now mostly diopside) + quartz + plagioclase ± hornblende ± scapolite, and occurs mainly in pillow cores...


    Directory of Open Access Journals (Sweden)



    Full Text Available Ocnele Mari-Ocniţa. Resources, exploitation, risks, valorization. In Ocnele Mari Town and its constituent locality - Ocniţa, Vâlcea County, following the extraction of a large volume of salt through its underground dissolution, the soil and the breccias covering the salt have become unstable, producing landfalls and landslides that affected the exploitation installations, the transport infrastructure and several homes, during the last decennia, especially in the area of Ocniţa locality. In order to avoid major imbalances in this geographic area, following the mining activities, and also in order to reduce the consequences of the pollution triggered by saltwater, the main affected areas-locations have been identified and analyzed. This paper presents the resources existing in the exploitation area, the modifications occurred following the salt mining activities and their effects on: economic efficiency, local population, environmental balance, tourist potential and utilisation.

  17. Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Stadnitskaia, Alina; Weering, Tjeerd C.E. van [Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, Texel (Netherlands); Ivanov, Michail K.; Blinova, Valentina [Geological Faculty, UNESCO-MSU Centre for Marine Geosciences, Moscow State University, Vorobjevy Gory, Moscow 119899 (Russian Federation); Kreulen, Rob [ISOLAB, 1e Tieflaarsestraat 23, 4182 PC Neerijnen (Netherlands)


    Investigations of molecular and carbon isotopic variability of hydrocarbon gases from methane through butanes (pentanes) have been performed on six mud volcanoes from two fluid venting provinces located in the Gulf of Cadiz, NE Atlantic. The main aims were to define the basic gas types, to describe their geochemical characteristics in relationship to their sources, and to determine the secondary effects due to migration/mixing and microbial alteration. Hydrocarbon gas data reveal two groups of gases. Despite the different maturation characteristics, both gas groups are allochthonous to the erupted mud breccia and represent a complex of redeposited, secondary migrated, mixed, and microbially altered hydrocarbons. It may possibly imply the presence of hydrocarbon accumulations in the deep subsurface of the Gulf of Cadiz. (author)

  18. Chemistry and petrology of Apollo 17 highland coarse fines - Plutonic and melt rocks (United States)

    Laul, J. C.; Gosselin, D. C.; Galbreath, K. C.; Simon, S. B.; Papike, J. J.


    A suite of 21 fragments from the Apollo 17 coarse-fines consists of ferroan anorthosites, anorthositic gabbros, granulitic and regolith breccias, and impact melts. These samples belong to known petrographic and chemical groups. Three ferroan anorthosites were found, including one which appears to be the lowest in REE (La = 0.60X) and probably the purest of the Apollo 17 anorthosites identified thus far. The ferroan suite is a more important component at the Apollo 17 site than previously recognized. The Apollo 17 melt rocks are similar to other samples with LKFM and low-K KREEP compositions and show less diversity in trace elements (REE) than the Apollo 15 melt rocks. Apollo 17 melt rocks consist of aphanitic and poikilitic types that show some compositional variability with identical Ni/Ir, suggesting that either two distinct melt sheets formed by similar projectiles, or compositional heterogeneity within one melt sheet is possible.

  19. Meteorite impact craters and possibly impact-related structures in Estonia (United States)

    Plado, Jüri


    Three structures (Neugrund, Kärdla, and Kaali) of proven impact origin make Estonia the most cratered country in the world by area. In addition, several candidate impact structures exist, waiting for future studies to determine their origin. This article is an overview of these proven and possible impact structures, including some breccia layers. It summarizes the information and descriptions of the morphology; geological characteristics; and mineralogical, chemical, and geophysical data available in the literature. The overview was prepared to make information in many earlier publications in local journals (many of which had been published in Estonian or Russian) accessible to the international community. This review summarizes the facts and observations in a historical fashion, summarizing the current state of knowledge with some additional comments, and providing the references.

  20. The Ngatamariki Geothermal Field, NZ: Surface Manifestations - Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Brotheridge, J.M.A.; Browne, P.R.L.; Hochstein, M.P.


    The Ngatamariki geothermal field, located 7 km south of Orakeikorako, discharges dilute chloride-bicarbonate waters of almost neutral pH from springs mostly on the margins of the field. Rhyolite tuffs in the northwestern part of the field are weakly silicified, probably due to their having reacted with heated groundwaters. Sinter deposits are common at Ngatamariki but are mostly relict from former activity. In 1994, the natural heat loss from the field was 30 {+-} 5 MW{sub thermal}. There has been a shift of thermal activity southward over the past 60 years; the changes were recognized by comparing air photographs taken in 1941 and 1991. In 1948, a hydrothermal eruption deposited breccia around its crater, which is now occupied by a pool at 52.5 C. Another pool at 88 C, first noticed in 1993, deposits a mixture of silica and calcite.


    Directory of Open Access Journals (Sweden)



    Full Text Available The new problematic sponge Sarsteinia babai n. gen., n. sp. is described from the Kimmeridgian to Tithonian Plassen and Lärchberg Formations of the Northern Calcareous Alps of Austria. The type-locality is the Sarsteinalm north of Mount Hoher Sarstein in the Austrian Salzkammergut, other findings come from Mount Sandling, Mount Jainzen, Mount Trisselwand and the Litzlkogel-Gerhardstein-complex west of Lofer. Most findings can be attributed to a fore-reef to upper slope facies or slope-of-toe breccias, small fragments can occasionally also be found in the back-reef facies. The suprageneric systematic position of the new sponge is unknown so far since it shows morphological characteristics known from Inozoa but also from "stromatoporoids".

  2. A Comparison of Anorthositic Lunar Lithologies: Variation on the FAN Theme (United States)

    Nyquist, L. E.; Shih, C-Y.; Yamaguchi, A.; Mittlefehldt, D. W.; Peng, Z. X.; Park, J.; Herzog, G. F.; Shirai, N.


    Certain anorthositic rocks that are rare in the returned lunar samples have been identified among lunar meteorites. The variety of anorthosites in the Apollo collection also is more varied than is widely recognized. James eta. identified three lithologies in a composite clast o ferroan anorthosite (FAN)-suite rocks in lunar breccia 64435. They further divided all FANs into four subgroups: anorthositic ferroan (AF), mafic magnesian (MM), mafic ferroan (MF), and anorthositic sodic (AS, absent in the 64435 clast). Here we report Sm-Nd isotopic studies of the lithologies present in the 64435 composite clast and compare the new data to our previous data for lunar anorthosites incuding lunar anorthositic meteorites. Mineralogy-petrography, in situ trace element studies, Sr-isotope studies, and Ar-Ar chronology are included, but only the Nd-isotopic studies are currently complete.

  3. Paleoproterozoic high-sulfidation mineralization in the Tapajós gold province, Amazonian Craton, Brazil: geology, mineralogy, alunite argon age, and stable-isotope constraints (United States)

    Juliani, Caetano; Rye, Robert O.; Nunes, Carmen M.D.; Snee, Lawrence W.; Correa, Rafael H.; Monteiro, Lena V.S.; Bettencourt, Jorge S.; Neumann, Rainer; Neto, Arnaldo A.


    The Brazilian Tapajós gold province contains the first evidence of high-sulfidation gold mineralization in the Amazonian Craton. The mineralization appears to be in large nested calderas. The Tapajós–Parima (or Ventuari–Tapajós) geological province consists of a metamorphic, igneous, and sedimentary sequence formed during a 2.10 to 1.87 Ga ocean−continent orogeny. The high-sulfidation mineralization with magmatic-hydrothermal alunite is related to hydrothermal breccias hosted in a rhyolitic volcanic ring complex that contains granitic stocks ranging in age from 1.89 to 1.87 Ga. Cone-shaped hydrothermal breccias, which flare upward, contain vuggy silica and have an overlying brecciated cap of massive silica; the deposits are located in the uppermost part of a ring-structure volcanic cone. Drill cores of one of the hydrothermal breccias contain alunite, natroalunite, pyrophyllite, andalusite, quartz, rutile, diaspore, woodhouseite–svanbergite, kaolinite, and pyrite along with inclusions of enargite–luzonite, chalcopyrite, bornite, and covellite. The siliceous core of this alteration center is surrounded by advanced argillic and argillic alteration zones that grade outward into large areas of propylitically altered rocks with sericitic alteration assemblages at depth. Several occurrences and generations of alunite are observed. Alunite is disseminated in the advanced argillic haloes that envelop massive and vuggy silica or that underlie the brecciated silica cap. Coarse-grained alunite also occurs in branching veins and locally is partly replaced by a later generation of fine-grained alunite. Silicified hydrothermal breccias associated with the alunite contain an estimated reserve of 30 tonnes of gold in rock that grades up to 4.5 g t−1 Au. Seven alunite samples gave 40Ar/39Ar ages of 1.869 to 1.846 Ga, with various degrees of apparent minor Ar loss. Stable isotopic data require a magmatic-hydrothermal origin for the alunite, typical for high

  4. Early lunar magnetism (United States)

    Banerjee, S. K.; Mellema, J. P.


    A new method (Shaw, 1974) for investigating paleointensity (the ancient magnetic field) was applied to three subsamples of a single, 1-m homogeneous clast from a recrystallized boulder of lunar breccia. Several dating methods established 4 billion years as the age of boulder assembly. Results indicate that the strength of the ambient magnetic field at the Taurus-Littrow region of the moon was about 0.4 oersted at 4 billion years ago. Values as high as 1.2 oersted have been reported (Collison et al., 1973). The required fields are approximately 10,000 times greater than present interplanetary or solar flare fields. It is suggested that this large field could have arisen from a pre-main sequence T-Tauri sun.

  5. Emplacement of the La Peña alkaline igneous complex, Mendoza, Argentina (33° S): Implications for the early Miocene tectonic regime in the retroarc of the Andes (United States)

    Pagano, D. S.; Galliski, M. A.; Márquez-Zavalía, M. F.


    The La Peña alkaline complex (LPC) of Miocene age (18-19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400-2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW-SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N-S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R‧), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW-SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by

  6. Upper Miocene reef complex of Mallorca, Balearic Islands, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pomar, L.


    The late Tortonian-Messinian coral reef platform of south Mallorca onlaps a folded middle late Miocene carbonate platform on which progradation of up to 20 km occurs. Vertical sea cliffs (up to 100 m high) superbly show the last 5 km of this progradation and complement the numerous water-well cores from the island interior. The Mallorca reef presents the most complete facies zonation of the Miocene reefs of the western Mediterranean. The reef wall framework is up to 20 m thick and shows (1) erosional reef flat with reef breccia and small corals; (2) spur-and-grove zone with large, massive corals; (3) deep buttresses and pinnacles with terraces of branching corals; and (4) deep reef wall with flat, laminar coral colonies, branching red algae, and Halimeda sands.

  7. The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, J.S.


    This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository.

  8. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill (United States)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)


    A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.


    Directory of Open Access Journals (Sweden)



    Full Text Available Preliminary results are reported from an investigation of the conodont associations found in the Late Triassic carbonate succession of the so-called "Catena Costiera Calabrese" that crops out in the tectonic window of Monte Cocuzzo. The succession of Colle del Crapio consists of alternating carbonate mud, breccia and calciturbidites deposited in a toe-of-slope to basin setting and contains rich and well-preserved conodont faunas pertaining to two biozones. The lower zone is characterised by the occurrence of Epigondolella slovakensis and may be referred to the Late Norian (Sevatian. The upper zone is characterised by Misikella hernsteini associated with M. posthernsteini. The chronostratigraphic setting of the latter zone is more controversial, as it may be regarded as latest Sevatian (Upper Norian according to Krystyn (1990 and Golebiowski (1990, while according to the zonation of Kozur & Mock (1991 the first occurrence of M. posthernsteini marks the beginning of the Rhaetian stage.   

  10. Dacite – siltstone peperite from Trlično at Rogatec, Eastern Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Kralj


    Full Text Available Dacitic glassy lava flow at Trlično is surrounded by a dacite – siltstone peperite and peperitic breccia that underwent alteration, recognised in two, only a few metres thick zones. In the higher-temperature alteration zone, albite extensively replaces volcanic glass and primary plagioclases. The siltstone components are altered to microcrystalline quartz, iron oxides and interlayered illite/smectite clay minerals. This zone developed upon thermalmetamorphosis related to the transfer of heat from the cooling lava. In the lower temperature alteration zone, analcime occurs as the replacement of volcanic glass and pore- and fissure-filling, while the primary plagioclases and poorly lithified siltstone remained fairly unchanged. This zone developed under hydrothermal conditions related to the heating, circulation and reactions of pore waters in the sediment surrounding the lava flow.

  11. Allan Hills A77219 - The first Antarctic mesosiderite (United States)

    Agosto, W. N.; Hewins, R. H.; Clarke, R. S., Jr.


    The abundance of orthopyroxene, inverted pigeonite, plagioclase, tridymite, kamacite, and tetrataenite, plus the whole rock analysis, indicates that ALHA 77219 is a mesosiderite. The presence of inverted pigeonite rims on orthopyroxene clasts plus the range of Fe/Mg and Fe/Mn ratios for pyroxene and olivine are characteristic of mesosiderites. All the petrographic and chemical data are consistent with classification of ALHA 77219 as a mesosiderite and, because the matrix is fine-grained and little recrystallized, as a subgroup I mesosiderite. The Fe/Mn trends in pyroxenes of mesosiderites such as ALHA 77219 can be explained by igneous fractionation of pyroxene along with metal and subsequent subsolidus reduction in the breccia.

  12. Composition of bulk samples and a possible pristine clast from Allan Hills A81005 (United States)

    Boynton, W. V.; Hill, D. H.


    Abundances of thirty-five elements were determined in two bulk samples and a white clast in the Allan Hills A81005 meteorite. High siderophile element content indicates that the sample is a regolith breccia. An Fe/Mn ratio of 77 in this meteorite eliminates parent bodies of known differentiated meteorites as the source of ALHA 81005. The incompatible elements are very similar to those found in most lunar highlands rocks, and provide very strong evidence that the sample is lunar in origin. The clast sample has the trace element pattern of a lunar anorthosite and is very low in KREEP and siderophile elements. It may be a fragment of a pristine lunar rock.

  13. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005 (United States)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.


    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years.

  14. New Pleistocene mammal site in Črni Kal quarry (Primorska region, Slovenia with discussion on problems of protection and preservation of fossil sites in quarries

    Directory of Open Access Journals (Sweden)

    Matija Križnar


    Full Text Available The Črni Kal quarry has been known for decades for fossils of Pleistocene mammal preserved in sinkholes or karst fisures filings. We present some of the new fossil material discovered in the northern part of the quarry in 2016. The new site is an expanded karst fisure or cave filed with flwstone rubble and fie grained sediments with only one layer of bone breccia. The preliminary results of the analysis of fossil vertebrate remains show the presence of Merck's rhinoceros, currently unidentifid species of deer and fragmented teeth of carnivores. Furthermore, we discuss some problems in documenting, protecting and preserving of Pleistocene fossil vertebrate sites in quarries in Slovenia.

  15. Retóricas del Che muerto: entre la información y significación

    Directory of Open Access Journals (Sweden)

    Cossia, Lautaro


    Full Text Available [es] Este trabajo propone comparar el uso de una misma imagen como estrategias de cierre organizadas sobre diferentes materias significantes: el rostro congelado de Ernesto Che Guevara con que culmina la película “La hora de los hornos”, obra de Octavio Getino y Fernando Solanas estrenada en Italia en 1968, y la imagen del guerrillero asesinado en la viñeta final de la historieta “La vida del Che”, biografía dibujada de Héctor Oesterheld y Alberto Breccia publicada ese mismo año. Dicho recorte analítico tiene el propósito de observar las gramáticas visuales puestas en juego en el marco de un proceso histórico que reconoce nuevos modos de socialización del arte y un contorno político que carga de significados la resolución de ambas obras. [en] This paper proposes to compare the use of the same image as strategies of closure organized on different “significant materials”: the frozen face of Ernesto Che Guevara with which the film “The Hour of the Furnaces” ends, movie of Fernando Solanas and Octavio Getino that was released in Italy in 1968, and the image of the murdered “guerrillero” in the final vignette of the comic “The life of Che”, biography drawn by Hector Oesterheld and Alberto Breccia and published the same year. This selection in the analysis proposes to observe the “visual grammars” that have played in the framework of one historical process which recognizes new manners of socialization of art and a political outline that charge of meanings the resolution of both works.

  16. Slanic Tuff and associated Miocene evaporite deposits, Eastern Carpathians, Romania (United States)

    Bojar, Ana-Voica; Halas, Stanislaw; Barbu, Victor; Bojar, Hans-Peter; Wojtowicz, Artur; Duliu, Octavian


    Miocene tuffs of calcalkaline composition are widespread in the Carpathians, Pannonian and Eastern Alpine realm. Their occurrences are described in outcrops as well as in the subsurface. The presence of such tuffs may offer important criteria for stratigraphic correlations and help to establish the absolute age of deposits and associated climatic and environmental changes. The Green Stone Hill (Muntele Piatra Verde) is situated to the north of Slanic-Prahova salt mine, in the bend region of the Eastern Carpathians, Romania. From bottom to top the section is composed of: marls with Globigerina followed by the so called Slanic tuff, gypsum and salt breccia and, on the top, radiolarian bearing shales. The stratigraphic age of the section is Middle to Upper Badenian (nannoplankton zones NN5 to NN6). XRD investigations of the green Slanic tuff show that the main mineralogical component is clinoptilolite (zeolite) followed by quartz and plagioclase. For this type of tuff there is no crystalline phase, which may be used for radiometric dating. In the middle part of the green tuff interval, we found discrete layers of a much coarser white tuff, with mineralogy consisting of quartz, plagioclase, biotite and clinoptilolite. The white tuff forming distinct layers within the green tuff, has an andesitic composition. 40Ar/39Ar dating of biotite concentrates from the white tuff gives an age of 13.6±0.2Ma, the dated layer being situated below the gypsum and salt breccia. We consider that the age is well constraining the time when the green tuffs were formed at the border of the basin. From this level upwards discrete gypsum layers occurs within the green tuffs, the age may be considered as indicating the base of the evaporitic sequence. To the south-east, from this level upwards evaporites, mainly salt formed. The age suggests that evaporitic deposits formed after the Mid Badenian climatic optimum, evaporitic formation being related to restricted circulation due the drop of sea

  17. Stratigraphy and eruption history of pre-Green Tuff peralkaline welded ignimbrites, Pantelleria, Italy (United States)

    Jordan, Nina; Branney, Mike, ,, Dr; Williams, Rebecca, ,, Dr; Norry, Mike, ,, Dr


    A revised volcanic stratigraphy is presented for the ignimbrites of Pantelleria, a peralkaline caldera volcano situated in the submerged continental rift between Africa and Sicily. The volcano has been active for ×325 ka (Mahood & Hildreth, 1986), producing eight major ignimbrites from large central eruptions, which appear to have alternated with numerous minor pumice falls and lavas from scattered local centres. The main ignimbrites can be traced along superb coastal exposures and have been logged in detail. Eruption-units have been defined by the position of palaeosols and a type section designated. Lithic breccias and pumice fall deposits associated with these major ignimbrites are interpreted as part of the same eruption overcoming correlation problems encountered by previous workers (cf Mahood & Hildreth, 1986). The ignimbrites are 2 to >20 m thick, welded to rheomorphic and cover most of the island, recording devastating, radial, high-temperature density currents. Five of the eight major ignimbrites contain lithic breccias, which have commonly been interpreted as recording caldera collapse events, but the details of individual calderas are not clear. The ignimbrites were erupted between 181 and 50 ka suggesting that the early history of the island (325 to 181 ka) differs from later stages in that only local pumice and lava-producing eruptions have occurred. This means that the amount of erupted magma increased in the later stage as the ignimbrites represent eruptions of many times the volume of the local centres. Distal peralkaline tephras have been found around the Mediterranean as far away as ~1200 km. With only this volcano erupting peralkaline compositions, it suggests that eruptions from Pantelleria have had a substantial impact on their environment. We infer that there were few Plinian events on the island, and that the distal tephras may be co-ignimbrite ashfall deposits. REFERENCES: Mahood, G.A., Hildreth, W., (1986) Bulletin of Volcanology 48, 143-172.

  18. Chemical and Mineralogical Features of Smectite from the Morron de Mateo Bentonite Deposit (Cabo de Gata, Almeria) in Relation to the Parent Rocks and the Alteration Processes Occurred After the Bentonite Formation: Analogies and Implications for the Engineered Clayey Barrier of a Deep Geological Rad waste Repository; Naturaleza de las Esmectitas del Yacimiento de Morron de Mateo (Cabo de Gata, Almeria) en Relacion con la Roca Madre y con los Procesos Posteriores a la Bentonitizacion: Implicaciones Analogicas para la Barrera de Ingenieria de un Almacenamiento Geologico de Residuos Radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Pelayo, M.; Labajo, M. A.; Garcia Romero, L.; Perez del Villar, L.


    The Morron de Mateo bentonite deposit is being studied as a natural analogue of the thermal and geochemical effects on the clayey barrier of a Deep Geological Rad waste Repository (DGRR) after its closure, in relation to the radioactive decay of the fission products and the container corrosion. This bentonite deposit and their host rocks were intruded by a rhyodacitic volcanic dome that induced a hydrothermal metasomatic process affecting the bioclastic calcarenite beds close to the dome. Bentonite from the NE sector of the deposit have been chemically and mineralogically characterized. Pyroclastic rocks (white tuffs), epyclastic rocks (mass flow) and andesitic breccia all of them hydrothermally altered, have been studied at the site. Samples are composed of feldspars, quartz and amphybols, as inherited minerals, and phyllosilicates, zeolites, crystoballite and calcite, as new formed minerals. White tuffs have the highest phyllosilicate contents, mainly dioctahedral smectite of montmorillonite type. Epyclastic rocks and andesitic breccia have a highest proportion of inherited minerals, the new formed phillosilicates being di octahedral smectite of beidellite type and an ordered interlayer chlorite/smectite mineral, of corrensite type. Smectite from the epyclastic rocks have higher Fe and Mg contents and chemical variability, as a consequence of nature of their parent rocks. The presence of corrensite in the epyclastic rocks suggests that in the Morron de Mateo area a propilitic alteration process occurred after bentonite formation, which transformed Fe-Mg-rich smectite into corrensite. This transformation was probably favoured by the sub volcanic intrusion, which also produced a temperature increase in the geological media and a supply of Fe-Mg-rich solutions, which also were the responsible for the metasomatic transformations observed in the calcarenite beds. (Author) 57 refs.

  19. Alteration and petrology of Intrusive Rocks associated with Gold Mineralization at Kuh-E-Zar Gold Deposit, Torbat-e-Heydaryeh

    Directory of Open Access Journals (Sweden)

    Alireza Mazloumi Bajestani


    Full Text Available Kuh- e -Zar gold deposit located 35 km west of Torbat-e-Heydaryeh, (Khorassan e- Razavi province, East of Iran. This deposit is a specularite-rich Iron oxide type (IOCG. This mine is situated within Khaf-Bardascan volcanic plutonic belt. Based on recent exploration along this belt, several IOCG type system plus Kuh-e-Zar deposit are discovered. In the study area, several type of tuff and lava having acid to intermediate composition are identified (upper Eocene. Oligo-Miocene granite, granodiorite, synogranite and monzonite intruded upper Eocene andesite-dacite-rhyolite. Intrusive rocks are meta-aluminous, medium to high-K series I-type. Based on spider diagram, intrusive rocks show enrichment in LILE = K, Th, Rb and depletion in HFSE = Nb, Sr, Ti. Based geochemistry of igneous rock, they formed in continental margin subduction zone. Propylitic (chlorite alteration is dominated and covers large area. Silicification is restricted only to mineralized zones. Argillic and albitization is found in certain location and cover small areas. The style of mineralization was controlled by the type and geometry of fault zones. Mineralization is found as vein, stockwork and breccias. Hypogene mineral Paragenesis include: specularite-quartz-gold-chlorite ± chalcopyrite ± pyrite ± galena ± barite. Secondary minerals formed due to oxidation are: goethite, limonite, lepidocrucite, Malachite, Azurite, Covelite, Cerucite, hydrocerucite, Pyrolusite and Smitsonite. In a few localities, chalcopyrite and minor pyrite and galena are found. Based on SEM analysis gold is present as electrum. Mineralization appeared in different type such as vein, stockwork and Hydrothermal breccia in strike sleep fault zone which are hidden inside volcano plutonic rocks. The average gold grade is between 3.02 ppm and ore reserve is estimated more than 3 million tons (cut off grade = 0.7 ppm.

  20. The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin (United States)

    Tornos, Fernando; Wiedenbeck, Michael; Velasco, Francisco


    Hydrothermal tourmaline is common in the iron oxide-copper-gold (IOCG) deposits of the Coastal Cordillera of Chile where it occurs as large crystals in the groundmass of magmatic-hydrothermal breccias, such as in the Silvita or Tropezón ore bodies, or as small grains in replacive bodies or breccia cement in the ore-bearing andesite, as seen at the Candelaria or Carola deposits. Tourmaline shows strong chemical zoning and has a composition of schorl-dravite with significant povondraite and uvite components. The observed boron isotope composition is fairly variable, between -10.4‰ and +6.0‰ with no major differences among the different deposits, suggesting a common genetic mechanism. The δ11B values are significantly lower than those of seawater or marine evaporites and very similar to those of younger porphyry copper deposits and volcanic rocks in the region, indicating that the boron has a common, likely magmatic, origin. The predominant boron source was ultimately dewatering of the subducting slab with a significant contribution derived from the overlying continental basement. The range of δ11B values is between those of the porphyry copper deposits and the porphyry tin deposits of the Andes, suggesting that the IOCG mineralization might be genetically related to fluids having more crustal contamination than the porphyry copper deposits; such an interpretation is at odds with current models that propose that the Andean IOCG deposits are related to juvenile melts or to the circulation of basinal brines. Furthermore, the obtained δ11B data are markedly different from those of the tourmaline in the Carajás IOCG district (Brazil), suggesting that IOCGs do not form by a unique mechanism involving only one type of fluids.

  1. Tholeitic basalts and ophiolitic complexes of the Mesorif Zone (External Rif, Morocco) at the Jurassic-Cretaceous boundary and the importance of the Ouerrha Accident in the palaeogeographic and geodynamic evolution of the Rif Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Benzaggagh, M.


    The stratigraphical series around the Jurassic-Cretaceous boundary of the External Rif Mountains, in particular those in the Mesorif Zone, exhibits many outcrops with volcanic materials spread westwards over 200 km. These materials show diverse aspects: basalt lithoclasts reworked into calcareous breccia beds or in marly matrix breccia, interstratified lava flows and volcanoclastic complexes incorporated within the Berriasian marls. In the Central Rif, several magmatic blocks outcrop, usually regarded as granite scales from the Paleozoic basement or as intrusive gabbros of Barremian age. Actually these magmatic massifs display typical ophiolitic sequences and they are overlaid by mega-olistoliths of Jurassic materials and locally by radiolarite layers. Geochemical analysis of several basalt and gabbro samples belonging to the Mesorif Zone evidenced that both display a typical E-MORB magma indicating at least partial oceanization of the Mesorif basement. Concerning geodynamics, the Mesorif Zone had undergone, at the Jurassic-Cretaceous boundary interval, two successive palaeogeographic phases: an uplift, close to emersion during the Kimmeridgian-Early Tithonian interval, stressed by important submarine volcanic activities and intense brecciation of the carbonate formations, followed by a general collapse at the Late Tithonian, underlined by lava flows, slumping as mega-olistoliths and the formation of an oceanic crust, at least in the Central Rif. These magmatic materials, distributed on both sides of the Ouerrha Valley, evidence that this westwards extending valley (the Nekor Accident), may correspond in the Central Rif, to two palaeo-subduction planes which become two major overlapping thrusts in the western part of the Rif Mountains. (Author)

  2. Delineation of an Optimal Location for Oil Sand Exploration through Transition Probabilities of Composing Lithology (United States)

    Kwon, M.; Jeong, J.; Park, E.; Han, W. S.; Kim, K. Y.


    Three-dimensional geostatistical studies of delineating an optimal exploitation location for oil sand in McMurray Formation, Athabasca, Canada were carried out. The area is mainly composed of unconsolidated to semi-consolidated sand where breccia, mud, clay, etc. are associated as alternating layers. For the prediction of the optimal location of steam assisted gravity drainage (SAGD) technique, the conventional approach of cumulating the predicted thickness of the media with higher bitumen bearing possibility (i.e. Breccia and Sand) was pursued. As an alternative measure, mean vertical extension of the permeable media was also assessed based on vertical transition rate of each media and the corresponding optimal location was decided. For the both predictions, 110 borehole data acquired from the study area were analyzed under Markovian transition probability (TP) framework and three-dimensional distributions of the composing media were predicted stochastically through an existing TP based geostatistical model. The effectiveness of the two competing measures (cumulative thickness and mean vertical extension) for SAGD applications was verified through two-dimensional dual-phase flow simulations where high temperature steam was injected in the delineated reservoirs, and the size of steam chamber was compared. The results of the two-dimensional SAGD simulation has shown that the geologic formation containing the highest mean vertical extension of permeable media is more suitable for the development of the oil sand by developing larger size of steam chamber compared to that from the highest cumulative thickness. Given those two-dimensional results, the cumulative thickness alone may not be a sufficient criterion for an optimal SAGD site and the mean vertical extension of the permeable media needs to be jointly considered for the sound selections.

  3. Epithermal uranium deposits in a volcanogenic context: the example of Nopal 1 deposit, Sierra de Pena Blanca, Mexico (United States)

    Calas, G.; Angiboust, S.; Fayek, M.; Camacho, A.; Allard, T.; Agrinier, P.


    The Peña Blanca molybdenum-uranium field (Chihuahua, Mexico) exhibits over 100 airborne anomalies hosted in tertiary ignimbritic ash-flow tuffs (44 Ma) overlying the Pozos conglomerate and a sequence of Cretaceous carbonate rocks. Uranium occurrences are associated with breccia zones at the intersection of two or more fault systems. Periodic reactivation of these structures associated with Basin and Range and Rio Grande tectonic events resulted in the mobilization of U and other elements by meteoric fluids heated by geothermal activity. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions. In addition, O- and H-isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25-75 °C. Focussed along breccia zones, fluids precipitated several generations of pyrite and uraninite together with kaolinite, as in the Nopal 1 mine, indicating that mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous. Low δ34S values (~ -24.5 ‰) of pyrites intimately associated with uraninite suggest that the reducing conditions at the origin of the U-mineralization arise from biological activity. Later, the uplift of Sierra Pena Blanca resulted in oxidation and remobilization of uranium, as confirmed by the spatial distribution of radiation-induced defect centers in kaolinites. These data show that tectonism and biogenic reducing conditions can play a major role in the formation and remobilization of uranium in epithermal deposits. By comparison with the other uranium deposits at Sierra Pena Blanca and nearby Sierra de Gomez, Nopal 1 deposit is one of the few deposits having retained a reduced uranium mineralization.

  4. Opportunity Microscopic Imager Results from the Western Rim of Endeavour Crater, Mars (United States)

    Arvidson, R. E.; Herkenhoff, K. E.; Mittlefehldt, D. W.; Sullivan, R. J., Jr.


    Opportunity has been exploring exposures of Noachian-age rocks along the rim of Endeavour crater since August 2011, motivated by orbital spectral evidence for phyllosilicates at multiple locations along the crater's rim. As reported previously, Opportunity discovered multiple bright linear features at "Cape York" that have been interpreted as veins of Ca sulfate deposited in bedrock fractures, and in-situ measurements are consistent with the presence of smectite clays in rocks and veneers on the east side of Cape York. The inferred neutral pH and relatively low temperature of the fluids involved in multiple phases of alteration would have provided a habitable environment if life existed on Mars at that time. Because Opportunity can no longer directly sense phyllosilicate mineralogy with the MiniTES or Mössbauer spectrometers, it is focusing on characterizing outcrop multispectral reflectance with Pancam, chemistry with the Alpha Particle X-ray Spectrometer and microtexture with the Microscopic Imager (MI) of potential phyllosilicate host rocks. While traversing the western side of "Murray Ridge," Opportunity found outcrops of breccia that are similar in texture and chemical composition to the Shoemaker Formation rocks exposed at Cape York. MI images of the breccias show cm-size angular clasts in fine-grained matrix, consistent with an impact origin. At "Cook Haven," the rover wheels overturned a few rocks, exposing dark Mn-rich coatings and haloes on brighter sulfates (Figure 1), which suggest aqueous precipitation followed by interaction with a strong oxidant. The dark, resistant coatings on "Thessaloniki" are less than about 0.1 mm thick, barely resolved in places by MI stereogrammetry. Opportunity's mission continues, with the rover exploring more exposures of phyllosilicates detected from orbit on "Cape Tribulation." The latest MI results, including observations in "Marathon Valley," will be presented at the conference.

  5. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico (United States)

    Lenhardt, Nils; Götz, Annette E.


    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  6. Eocene age of the Baranowski Glacier Group at Red Hill, King George Island, West Antarctica

    Directory of Open Access Journals (Sweden)

    Mozer Anna


    Full Text Available Radiometric and geochemical studies were carried out at Red Hill in the southern part of King George Island (South Shetland Islands, northern Antarctic Peninsula on the Bransfield Strait coast. The rock succession at Red Hill has been determined to represent the Baranowski Glacier Group that was previously assigned a Late Cretaceous age. Two formations were distinguished within this succession: the lower Llano Point Formation and the upper Zamek Formation. These formations have stratotypes defined further to the north on the western coast of Admiralty Bay. On Red Hill the Llano Point Formation consists of terrestrial lavas and pyroclastic breccia; the Zamek Formation consist predominantly of fine to coarse tuff, pyroclastic breccia, lavas, tuffaceous mud-, silt-, and sandstone, locally conglomeratic. The lower part of the Zamek Formation contains plant detritus (Nothofagus, dicotyledonous, thermophilous ferns and numerous coal seams (vitrinitic composition that confirm the abundance of vegetation on stratovolcanic slopes and surrounding lowlands at that time. Selected basic to intermediate igneous rocks from the succession have been analysed for the whole-rock K-Ar age determination. The obtained results indicate that the Red Hill succession was formed in two stages: (1 from about 51–50 Ma; and (2 46–42 Ma, i.e. during the Early to Middle Eocene. This, in combination with other data obtained from other Baranowski Glacier Group exposures on western coast of Admiralty Bay, confirms the recently defined position of the volcano-clastic succession in the stratigraphic scheme of King George Island. The new stratigraphic position and lithofacies development of the Red Hill succession strongly suggest its correlation with other Eocene formations containing fossil plants and coal seams that commonly occur on King George Island.

  7. Petrographic investigation of melt and matrix relationships in Chicxulub crater Yaxcopoil-1 brecciated melt rock and melt rock-bearing suevite (846-885 m, units 4 and 5) (United States)

    Nelson, Melissa J.; Newsom, Horton E.; Spilde, Michael N.; Salge, Tobias


    The drill core from the International Continental Drill Program’s Chicxulub Scientific Drilling Project Yaxcopoil-1 (Yax-1) borehole, in the annular trough of the Chicxulub crater, exhibits from 794 to 895 m a continuous sequence of impactites consisting of reworked fallout, fallout suevite, and brecciated impact melt rock. These impact breccias exhibit a complex history of deposition, fracturing, matrix emplacement and hydrothermal alteration. Detailed investigation of the mineralogy and chemistry of these breccias has led to a better understanding of the complex events involved in their formation. We find that the paragenesis of the brecciated impact melt rock (unit 5, 861-885 m) involved fracturing of melt rock and early K-metasomatism during a hydrothermal alteration episode as suggested by earlier work. However, the present work has identified the role of multiple episodes of precipitation of Mg-rich phyllosilicates and formation and dissolution of accessory minerals in a relatively high temperature (>300 °C) hydrothermal event. The earliest matrix formation event involved precipitation of Mg-rich phyllosilicate, accessory quartz, calcite, apatite, and andradite garnet from a hydrothermal fluid with a brine or seawater component. The fluid could have partly incorporated elements and shock-metamorphosed mineral phases derived from sedimentary lithologies, including calcite and dolomite that underwent complex phase transformations such as melting, decomposition and possible back-reactions. The discovery of andradite garnet in the matrix confirms the presence of an early high temperature hydrothermal event previously identified by mineralogical, stable isotope and fluid inclusion studies. The mineral assemblage, including Mg-rich saponite, suggests the involvement of seawater by comparison with similar alteration assemblages in hydrothermal systems involving seawater around the world. The presence of a later, low-temperature phase of the hydrothermal system

  8. First petrographic results on impactites from the Yaxcopoil-1 borehole Chicxulub structure, Mexico (United States)

    Tuchscherer, Martin G.; Reimold, W. Uwe; Koeberl, Christian; Gibson, Roger L.; de Bruin, Deon


    The ICDP Yaxcopoil-1 (Yax-1) borehole located 60 km south-southwest of the center of the Chicxulub impact structure intercepted an interval of allogenic impactites (depth of 795-895 m). Petrographic analysis of these impactites allows them to be differentiated into five units based on their textural and modal variations. Unit 1 (795-922 m) comprises an apparently reworked, poorly sorted and graded, fine-grained, clast-supported, melt fragment-bearing suevitic breccia. The interstitial material, similar to units 2 and 3, is permeated by numerous carbonate veinlets. Units 2 (823-846 m) and 3 (846-861 m) are groundmass-supported breccias that comprise green to variegated angular and fluidal melt particles. The groundmass of units 2 and 3 comprises predominantly fine-grained calcite, altered alkali element-, Ca-, and Si-rich cement, as well as occasional lithic fragments. Unit 4 (861- 885 m) represents a massive, variably devitrified, and brecciated impact melt rock. The lowermost unit, unit 5 (885-895 m), comprises highly variable proportions of melt rock particles (MRP) and lithic fragments in a fine-grained, carbonate-dominated groundmass. This groundmass could represent either a secondary hydrothermal phase or a carbonate melt phase, or both. Units 1 and 5 contain well-preserved foraminifera fossils and a significantly higher proportion of carbonate clasts than the other units. All units show diagnostic shock deformation features in quartz and feldspar clasts. Our observations reveal that most felsic and all mafic MRP are altered. They register extensive K-metasomatism. In terms of emplacement, we suggest that units 1 to 3 represent fallout suevite from a collapsing impact plume, whereby unit 1 was subsequently reworked by resurging water. Unit 4 represents a coherent impact melt body, the formation of which involved a significant proportion of crystalline basement. Unit 5 is believed to represent an initial ejecta/ground-surge deposit.

  9. Characterisation of Na-metasomatism in the Sveconorwegian Bamble Sector of South Norway

    Directory of Open Access Journals (Sweden)

    Ane K. Engvik


    Full Text Available Na-metasomatism in the form of albitisation is regionally extensive in the Precambrian crust of southern Scandinavia and is particularly widespread in the Bamble Sector, the Kongsberg-Modum Sector and the Norwegian part of the Mylonite Zone. Sites of albitisation outside these belts are associated with hydrothermal breccia pipes and fracture-bound alteration. The albitites are composed of near end-member sodic plagioclase (An0–5Ab94–99 with minor carbonate (calcite and dolomite, rutile, clinopyroxene (En30Fs21–23Wo47–49, amphibole (edenite-pargasite, quartz, titanite, tourmaline, epidote (Fe3+ = 0.20–0.85 a.p.f.u and chlorite (Mg# = 0.81–0.89. The albitites have been studied in detail in the region around the town of Kragerø, and are described as albitisation along veins, as breccias, albitic felsites, massive carbonate-bearing albitites and megascale clinopyroxene-titanite-bearing albitite. The strong fluid control on their formation is illustrated by the veining and mineral replacement reactions, showing fluid transport by a H2O-CO2 fluid rich in Na, depleting Fe and Mg from the host rock, in accordance with calculated mass transfer. A study of the mineralogical replacement reactions in combination with a regional compilation has demonstrated the relationship between metasomatic processes and the formation of apatite, rutile and Fe deposits. The albitites occur spatially associated with other metasomatic rocks such as scapolitised metagabbros. We document that metasomatism is an important mineral- and rock-forming process in the continental crust, which in the Bamble Sector is a part of the tectonometamorphic evolution of the Sveconorwegian orogen.

  10. Investigating the response of biotite to impact metamorphism: Examples from the Steen River impact structure, Canada (United States)

    Walton, E. L.; Sharp, T. G.; Hu, J.; Tschauner, O.


    Impact metamorphic effects from quartz and feldspar and to a lesser extent olivine and pyroxene have been studied in detail. Comparatively, studies documenting shock effects in other minerals, such as double chain inosilicates, phyllosilicates, carbonates, and sulfates, are lacking. In this study, we investigate impact metamorphism recorded in crystalline basement rocks from the Steen River impact structure (SRIS), a 25 km diameter complex crater in NW Alberta, Canada. An array of advanced analytical techniques was used to characterize the breakdown of biotite in two distinct settings: along the margins of localized regions of shock melting and within granitic target rocks entrained as clasts in a breccia. In response to elevated temperature gradients along shock vein margins, biotite transformed at high pressure to an almandine-Ca/Fe majorite-rich garnet with a density of 4.2 g cm-3. The shock-produced garnets are poikilitic, with oxide and silicate glass inclusions. Areas interstitial to garnets are vesiculated, in support of models for the formation of shock veins via oscillatory slip, with deformation continuing during pressure release. Biotite within granitic clasts entrained within the hot breccia matrix thermally decomposed at ambient pressure to produce a fine-grained mineral assemblage of orthopyroxene + sanidine + titanomagnetite. These minerals are aligned to the (001) cleavage plane of the original crystal. In this and previous work, the transformation of an inosilicate (pargasite) and a phyllosilicate (biotite) to form garnet, an easily identifiable, robust mineral, has been documented. We contend that in deeply eroded astroblemes, high-pressure minerals that form within or in the environs of shock veins may serve as one of the possibly few surviving indicators of impact metamorphism.

  11. Analysis of potential flooding in the education Jatinangor based approach morphology, land cover, and geology (United States)

    Rifai, Achmad; Hadian, Sapari Dwi; Mufti, Iqbal Jabbari; Fathoni, Azmi Rizqi; Azy, Fikri Noor; Jihadi, Lutfan Harisan


    Jatinangor formerly an agricultural area dominated by rice field. Water in Jatinangor comes from a spring located in north Jatinangor or proximal region of Manglayang mountain to flow to the south and southwest Jatinangor up to Citarum River. Jatinangor plain that was once almost all the rice fields, but now become a land settlement that grew very rapidly since its founding colleges. Flow and puddle were originally be used for agricultural land, but now turned into a disaster risks for humans. The research method using qualitative methods with the weighing factor, scoring, and overlay maps. The cause of the flood is distinguished into two: the first is the natural factors such as the condition of landform, lithology, river flow patterns, and annual rainfall. The second is non-natural factors such as land cover of settlement, irrigation, and land use. The amount of flood risks using probability Gilbert White frequency, magnitude and duration of existing events then correlated with these factors. Based on the results of the study, were divided into 3 zones Jatinangor disaster-prone (high, medium, and safe). High flood zone is located in the South Jatinangor which covers an area Cikeruh Village, Sayang Village, Cipacing village, Mekargalih village, Cintamulya village, west of Jatimukti village, and South Hegarmanah village, has a dominant causative factor is the use of solid land, poor drainage, lithology lacustrine conditions with low permeability, and flat topography. Medium flood zone was located in the central and western regions covering Cibeusi village, Cileles village, south of Cilayung village, Hegarmanah village and Padjadjaran Region, has a dominant causative factor is rather dense land use, lithology breccias and Tuffaceous Sand with moderate permeability, topography is moderately steep. Safe flood zone is located in the east Jatinangor covering Jatiroke village, Cisepur village, east Hegarmanah village, has a dominant factor in the form of a rather steep

  12. Evaporite-karst problems and studies in the USA (United States)

    Johnson, K.S.


    Evaporites, including rock salt (halite) and gypsum (or anhydrite), are the most soluble among common rocks; they dissolve readily to form the same types of karst features that commonly are found in limestones and dolomites. Evaporites are present in 32 of the 48 contiguous states in USA, and they underlie about 40% of the land area. Typical evaporite-karst features observed in outcrops include sinkholes, caves, disappearing streams, and springs, whereas other evidence of active evaporite karst includes surface-collapse structures and saline springs or saline plumes that result from salt dissolution. Many evaporites also contain evidence of paleokarst, such as dissolution breccias, breccia pipes, slumped beds, and collapse structures. All these natural karst phenomena can be sources of engineering or environmental problems. Dangerous sinkholes and caves can form rapidly in evaporite rocks, or pre-existing karst features can be reactivated and open up (collapse) under certain hydrologic conditions or when the land is put to new uses. Many karst features also propagate upward through overlying surficial deposits. Human activities also have caused development of evaporite karst, primarily in salt deposits. Boreholes (petroleum tests or solution-mining operations) or underground mines may enable unsaturated water to flow through or against salt deposits, either intentionally or accidentally, thus allowing development of small to large dissolution cavities. If the dissolution cavity is large enough and shallow enough, successive roof failures can cause land subsidence and/or catastrophic collapse. Evaporite karst, natural and human-induced, is far more prevalent than is commonly believed. ?? 2007 Springer-Verlag.


    Directory of Open Access Journals (Sweden)



    Full Text Available The Slovenian Basin was a Mesozoic deep-water paleogeographic domain located north of the Dinaric Carbonate Platform. Due to a considerable amount of southward-directed thrusting and subsequent erosion, the marginal parts of this basin are only sparsely preserved. The southernmost remains of the Slovenian Basin in western Slovenia are found in the Ponikve Klippe, where we studied a Middle Jurassic (? Aalenian to Lower Cretaceous (Albian succession. We dated the succession with radiolarians, calpionellids, and benthic foraminifers. The succession is divided into three formations. The first is the Middle Jurassic to Lower Tithonian Tolmin Formation, composed of radiolarian cherts, siliceous limestone, and calciturbidites. The second formation is the Upper Tithonian–Berriasian Biancone limestone, which consists of pelagic limestone with calpionellids and one interstratified calciturbidite. The third formation, the Lower flyschoid formation, rests upon a prominent, regionally recognized erosional unconformity. The formation begins with calcareous breccia and continues with finer-grained calciturbidites that alternate with marl/shale and chert. Only the lower part of this formation was investigated and dated to the late Aptian to early Albian.The correlation of the studied section with the previously described successions of the Slovenian Basin shows that the Jurassic part of the section clearly exhibits a more marginal setting, whereas the Cretaceous part of the section correlates well with the central basinal succession. This inversion was related to the late Aptian tectonic event that was also responsible for the considerable submarine erosion and deposition of the basal breccia of the Lower flyschoid formation.

  14. Internal architecture of the proto-Kern Canyon Fault at Engineer's Point, Lake Isabella Dam site, Kern County, California (United States)

    Martindale, Z. S.; Andrews, G. D.; Brown, S. R.; Krugh, W. C.


    The core of the Cretaceous (?) proto-Kern Canyon Fault (KCF) is exposed continuously for 1.25 km along Engineer's Point at Lake Isabella, Kern County, California. The proto-KCF is notable for (1) its long and complex history within, and perhaps preceding the Sierra Nevada batholith, and (2) hosting the Quaternary Kern Canyon Fault, an active fault that threatens the integrity of the Lake Isabella auxiliary dam and surrounding communities. We are investigating the internal architecture of the proto-KCF to explore its control on the likely behavior of the modern KCF. The proto-KCF is developed in the Alta Sierra biotite-granodiorite pluton. A traverse across Engineer's Point, perpendicular to the proto-KCF trace, reveals gradational increases in fracture density, fracture length, bulk alteration, and decreases in fracture spacing and grain size toward the fault core. Mapping of the fault core reveals two prominent and laterally extensive zones: (1) continuous foliated blastomylonitic granodiorite with steeply-dipping, anastomosing shear bands and minor mylonite planes, and (2) foliated orange and green fault breccia with intergranular gouge, strong C/S fabric, and a central gouge plane. The fault breccia zone is intruded by a lensoidal, post-deformation dacite dike, probably ca. 105 - 102 Ma (Nadin & Saleeby, 2008) and is weakly overprinted by a set of cross-cutting spaced, short, brittle fractures, often coated in calcite, which we infer to be genetically related to the modern KCF. We present our structural and lithological data that will be supported by mineralogical and geochemical analyses. E. Nadin & J. Saleeby (2008) Disruption of regional primary structure of the Sierra Nevada batholith by the Kern Canyon fault system, California: Geological Society of America Special Paper 438, p. 429-454.

  15. The integration of physical rock properties, mineralogy and geochemistry for the exploration of large zinc silicate deposits: A case study of the Vazante zinc deposits, Minas Gerais, Brazil (United States)

    McGladrey, Alexandra J.; Olivo, Gema Ribeiro; Silva, Adalene Moreira; Oliveira, Gustavo Diniz; Neto, Basilio Botura; Perrouty, Stéphane


    The Vazante deposit, which is the world's largest zinc silicate deposit, occurs in brecciated dolomite and comprises mainly willemite with various proportions of hematite, Fe-carbonate, minor franklinite and magnetite. Exploration for this type of deposit is more challenging than zinc sulfide deposits, as they do not exhibit similar geophysical anomalies. To improve the application of geophysical surveys to the exploration of hypogene silicate zinc deposits, data from 475 samples were investigated from drill holes representative of the various types of ore and host rocks as well as barren zones of known geophysical anomalies in the Vazante District. Lithogeochemical and mineralogical (optical, SEM and MLA) data were integrated with physical rock properties (density, magnetic susceptibility and Ksbnd Usbnd Th gamma-ray spectrometry) to assist in exploring for this type of deposit. The most distinct physical property of the ore is density, compared with the host rocks due to high proportion of denser minerals (hematite and willemite). However, barren hematite breccias also have high densities. The zinc ore and hematite breccias yielded higher magnetic susceptibilities than the surrounding host rocks, with the highest values associated with greater proportions of franklinite and magnetite. The density and magnetic susceptibility contrasts are a result of hydrothermal fluids interacting with and altering the carbonate host rocks. Zinc ore also yielded elevated U concentrations relative to the various host rocks, yielding higher gamma-ray spectrometric values. The results of this investigation indicate that an integration of magnetic, gravimetric and radiometric surveys would be required to identify zinc silicate ore zones.

  16. Hydrothermal alteration in basalts from Vargeão impact structure, south Brazil, and implications for recognition of impact-induced hydrothermalism on Mars (United States)

    Yokoyama, Elder; Nédélec, Anne; Baratoux, David; Trindade, Ricardo I. F.; Fabre, Sébastien; Berger, Gilles


    The 12-km-wide Vargeão impact structure was formed 123 Myr ago in the Paraná basaltic province (southern Brazil). At this time the province region had a dry climate, although a large brackish aquifer had been formed in the underlying sandstones. It is therefore one of the best terrestrial analogs for studying impact-related products on a dry martian surface environment with preserved ice-rich ground. The basalts within the impact structure display cm-sized breccia veins filled with lithic clasts, glassy remnants, newly formed Fe-oxyhydroxides and secondary phases, such as calcite, phyllosilicates and, subordinately quartz and zeolite. The textural and mineralogical study of these phases demonstrate their hydrothermal origin. Although the very center of the structure has experienced the highest pressures and temperatures, the most developed hydrothermal changes are recognized in an inner collar surrounding the central depression. This inner collar is also the location of major modifications of the rock magnetic properties. These magnetic signatures are related to the distribution of impact-related faults and to the formation of new iron oxides. Geochemical modeling indicate that hydrothermal phases formation required low water/rock ratios. Our observations therefore suggest that hydrothermal alteration took place following the perturbation of the aquifer by the impact, but evidence for hydrothermal circulation is limited in comparison with other impact-related hydrothermal systems. This situation may be explained by the presence of the aquifer below the heat source, such a setting being exceptional for the Earth, but common on Mars. However, the spectroscopic signatures in visible/near infrared images suggest that this kind of impact-related hydrothermal alteration may be still indentified in large impact craters on Mars by orbital instruments. These results does not exclude the possibility that more developed alteration took place in breccias that are today

  17. Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption. (United States)

    Collignon, Marine; Schmid, Daniel W.; Galerne, Christophe; Lupi, Matteo; Mazzini, Adriano


    Clastic eruptions involve the rapid ascension of clasts together with fluids, gas and/or liquid phases that may deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and more generally piercement structures. They involve various processes, acting over a wide range of scales which makes them a complex and challenging, multi-phase system to model. Although piercement structures have been widely studied and discussed, only few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is probably the most spectacular clastic eruption. Lusi's eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand the dynamics driving clastic eruptions, including fossil clastic systems. We use both analytical formulations and numerical models to simulate Lusi's eruptive dynamics and to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement system cannot exceeds a few meters at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m deep for the methane and between 750 m and 1000 m for the carbon dioxide.

  18. Carbonatite associated with ultramafic diatremes in the Avon Volcanic District, Missouri, USA: Field, petrographic, and geochemical constraints (United States)

    Shavers, Ethan J.; Ghulam, Abduwasit; Encarnacion, John; Bridges, David L.; Luetkemeyer, P. Benjamin


    Here we report field, petrographic, and geochemical analyses of the southeast Missouri Avon Volcanic District intrusive rocks and present the first combined textural and geochemical evidence for the presence of a primary magmatic carbonatite phase among ultramafic dikes, pipes, and diatremes of olivine melilitite, alnöite, and calciocarbonatite. The δ13CVPDB values measured for primary calciocarbonatite as well as carbonates in olivine melilitite and alnöite rocks range from - 3.8‰ to - 8.2‰, which are within the typical range of mantle values and are distinct from values of the carbonate country rocks, 0.0‰ to - 1.3‰. The carbonate oxygen isotope compositions for the intrusive lithologies are in the range of 21.5‰ to 26.2‰ (VSMOW), consistent with post-emplacement low temperature hydrothermal alteration or kinetic fractionation effects associated with decompression and devolatilization. Metasomatized country rock and breccia-contaminated igneous lithologies have carbonate δ13CVPDB values gradational between primary carbonatite values and country rock values. Unaltered sedimentary dolomite breccia and mafic spheroids entrained by calciocarbonatite and the lack of microstratigraphic crystal growth typical of carbonate replacement, also exclude the possibility of hydrothermal replacement as the cause of the magmatic-textured carbonates. Rare earth element (REE) patterns for the alnöite, olivine melilitite, and carbonatite are similar to each other with strong light REE enrichment and heavy REE depletion relative to MORB. These patterns are distinct from those of country rock rhyolite and sedimentary carbonate. These data suggest that rocks of the Avon Volcanic District represent a single ultramafic-carbonatite intrusive complex possibly derived from a single mantle source.

  19. The Early Mesozoic volcanic arc of western North America in northeastern Mexico (United States)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora


    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  20. Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group (United States)

    Schulze, H.; Bischoff, A.; Palme, H.; Spettel, B.; Dreibus, G.; Otto, J.


    The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:45 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3-6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa(approximately 39) with about 70 vol%. Feldspar (approximately 14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilemenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, and Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in delta O-17 (5.52%) and delta O-18 (5.07%). With Rumuruti, nine meteorites samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutites) after the first and only fall among these meteorites. The meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite

  1. Geochemistry and geochronology of carbonate-hosted base metal deposits in the southern Brooks Range, Alaska: temporal association with VMS deposits and metallogenic implications (United States)

    Kelly, Karen; Slack, John; Selby, David


    The Brooks Range contains enormous accumulations of zinc and copper, either as VMS or sediment-hosted deposits. The Ruby Creek and Omar deposits are Cu-Co stratabound deposits associated with dolomitic breccias. Numerous volcanogenic Cu-Zn (+/-Ag, Au) deposits are situated ~20 km north of the Ruby Creek deposit. The carbonate-hosted deposits consist of chalcopyrite and bornite that fill open spaces, replace the matrix of the breccias, and occur in later cross-cutting veins. Cobaltiferous pyrite, chalcocite, minor tennantite-tetrahedrite, galena, and sphalerite are also present. At Ruby Creek, phases such as carrollite, renierite, and germanite occur rarely. The deposits have undergone post-depositional metamorphism (Ruby Creek, low greenschist facies; Omar, blueschist facies). The unusual geochemical signature includes Cu-Co +/- Ag, As, Au, Bi, Ge, Hg, Sb, and U with sporadic high Re concentrations (up to 2.7 ppm). New Re-Os data were obtained for chalcopyrite, bornite, and pyrite from the Ruby Creek deposit (analyses of sulfides from Omar are in progress). The data show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the Ruby Creek deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization occurred at 384 +/-4.2 Ma, which coincides with zircon U-Pb ages from igneous rocks that are spatially and genetically associated with VMS deposits. This suggests a temporal link between regional magmatism and hydrothermal mineralization.

  2. Key Recent Scientific Results from the Opportunity Rover's Exploration of Cape Tribulation, Endeavour Crater, Mars (United States)

    Arvidson, R. E.; Squyres, S. W.; Gellert, R.; Herkenhoff, K. E.; Mittlefehldt, D. W.; Crumpler, L. S.; McLennan, S. M.; Farrand, W. H.; Jolliff, B. L.; Morris, R. V.


    The Opportunity Rover is in its 11th year of exploration, currently exploring the Cape Tribulation rim segment of the ~22 km wide Noachian Endeavour Crater and its tilted and fractured outcrops. A key target for Opportunity's measurements has been the Spirit of Saint Louis crater (SoSL), which is ~25 m wide, oval in plan view, shallow, flat-floored, and has a slightly raised rim. SoSL crater is surrounded by an apron of bright, polygonally-shaped outcrops and is superimposed on a gentle swale in Cape Tribulation. Rocks in a thin reddish zone on the rim are enriched in hematite, Si, and Ge, and depleted in Fe, relative to surrounding rocks. Apron rocks include an outcrop also enriched in Si and Ge, and slightly depleted in Fe. In general rocks in the crater and apron have elevated S levels relative to Shoemaker formation breccias, tracking values observed in the Cook Haven (gentle swale superimposed on Murray Ridge and site of Opportunity's 5th winter site) and the Hueytown fracture (running perpendicular to Cape Tribulation) outcrops. SoSL crater lies just to the west of Marathon Valley, a key target for exploration by Opportunity because five separate CRISM observations indicate the presence of Fe/Mg smectites on the upper valley floor. Opportunity data show that low relief, relatively bright, wind-scoured outcrops dominate the valley floor where not covered by scree and soil shed from surrounding walls. Initial reconnaissance shows that the outcrops are breccias with compositions similar to the typical SoSL crater apron and floor rocks, although only the very upper portion of the valley has been explored as of August 2015. Pervasive but modest aqueous alteration of Endeavour's rim is implied by the combination of CRISM and Opportunity data, providing insight into early aqueous processes dominated in this location by relatively low water to rock ratios, and at least in part associated with enhanced fluid flow along fractures.

  3. The Muruntau gold deposit (Uzbekistan – A unique ancient hydrothermal system in the southern Tien Shan

    Directory of Open Access Journals (Sweden)

    Ulf Kempe


    Full Text Available The Muruntau gold deposit in the Central Kyzylkum, Uzbekistan is one of the largest single gold deposits worldwide. Data available from the literature are reviewed with the aim to (1 integrate the present knowledge on this unique deposit from Russian and English literature; (2 show the considerable progress made in the understanding of the genesis of the Muruntau deposit during the last decades; and (3 point to problems still open for future research. Deposit formation occurred through a multi-stage process involving sedimentation, regional metamorphism including thrusting, magmatism with formation of hornfels aureoles and several stages of hydrothermal activity. According to recent knowledge, synsedimentary or pure metamorphic formation of gold mineralization seems unlikely. The role of granite magmatism occurring roughly within the same time interval as the main hydrothermal gold precipitation remains uncertain. There are no signs of interaction of matter between the magma(s and the hydrothermal system(s. On the other hand, there was an intense, high-temperature (above 400 °C fluid – wall rock interaction resulting in the formation of gold-bearing, cone-like stockworks with veins, veinlets and gold-bearing metasomatites. Several chemical and isotope indicators hint at an involvement of lower-crustal or mantle-related sources as well as of surface waters in ore formation. Deposit formation through brecciation involving explosion, hydrothermal or tectonic breccias might explain these data. Further investigations on breccia formation as well as on the exact timing of relevant sedimentary, metamorphic, magmatic and hydrothermal events are recommended.

  4. Geology and Slope Stability Analysis using Markland Method on Road Segment of Piyungan – Patuk, Sleman and Gunungkidul Regencies, Yogyakarta Special Region, Indonesia

    Directory of Open Access Journals (Sweden)

    B. N. Kresna Citrabhuwana


    Full Text Available Road segment of Piyungan - Patuk is a part of Yogyakarta - Wonosari highway, fairly dense traversed by vehicles, from bicycles to buses and trucks. This road crosses hilly topography, causing its sides bounded by quite steep slopes or cliffs. Steep slopes and cliffs are potential to create mass movement. Geologic condition of the surrounding area is built of various volcanic lithology such as breccia, siltstone, sandstone and tuff. There are also geologic structures of joints and faults that affect the stability of the slopes around this road. Slope stability analysis for road segment of Piyungan – Patuk was conducted by applying Markland method. Laboratory testings were done to determine the mechanical and physical properties of rocks that influence the slope strength. Results of the testings show that cohesion and friction angle of volcanic breccia are c = 20.0441 kg/cm2 and  = 56.38˚; cohesion and friction angle of sandstone are cr = 0.6862 kg/cm2, cp = 4.6037 kg/cm2, r = 26.37˚, and p = 32.79˚; cohesion and friction angle of tuff is cr = 1.677 kg/cm2, cp = 7.5553 kg/cm2, r = 17.85˚, and p = 24.19˚. Based on the analysis, some slopes in the study area are potential to move. The movements can be classified into rock fall, debris fall, and rock slides with the sliding plane categorized as planar and wedge. On the other hand, landslide prone zones in the study area can be divided into: Areas with high vulnerability, Areas with moderate vulnerability, and Areas with low vulnerability. Areas prone to landslide should be managed by a series of measures, among others understand natural phenomena, recognizing symptoms of avalanche, attempting to reduce the risk, and land use regulation. The management activities should involve all stakeholders in an integrated manner of implementation.

  5. Initial results from VC-1, First Continental Scientific Drilling Program Core Hole in Valles Caldera, New Mexico (United States)

    Goff, Fraser; Rowley, John; Gardner, Jamie N.; Hawkins, Ward; Goff, Sue; Charles, Robert; Wachs, Daniel; Maassen, Larry; Heiken, Grant


    Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphie information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, arid to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the Battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

  6. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping (United States)

    Tice, Michael M.; Quezergue, Kimbra; Pope, Michael C.


    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks.

  7. Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils (United States)

    Humayun, Munir; Clayton, Robert N.


    We detail a method for the precise and accurate determination of isotopic variations in the 41K/39K ratio with a precision of ±0.5‰ (2 σm). Purified potassium is chemically extracted from rocks, soils, minerals, or solutions by ion exchange chromatography. Complete chemical yields (>99.8%) are achieved in order to avoid laboratory-induced isotopic fractionations. The purified potassium is converted to a glass by melting with barium borate flux, and the resultant bead is mounted for ion probe analysis. The SIMS method utilized by the ion probe produces extremely stable K+ ion beams, with no measurable temporal variability in the isotope ratio. The instrumental fractionation is steady at about -4‰, and is corrected for by measurement of a standard. The measurement of gravimetrically prepared isotopic standards indicates that the method is accurate at the stated level of precision and free of egregious errors. Analysis of terrestrial samples including peridotite, basalts, granites, carbonatite, biotite schists, and seawater, indicate the complete absence of isotopic variations in δ41 1K among terrestrial materials at the 0.5%o level. Application to lunar soils and a regolith breccia confirms previously observed large isotopic fractionation effects (Garner et al., 1975a; Church et al., 1976). Some lunar soils, e.g., 14163, are shown to have large sample heterogeneity (≈7%o), while others, e.g., soils and a regolith breccia at several Apollo 15 sites (Station 7/9), are homogeneous at the level of analytical precision. The presence of potassium isotopic effects in bulk soils (up to +12.7‰ in this study) with magnitudes comparable to the Rayleigh fractionation factor (25‰) indicates that volatility during micrometeorite impact melting played a large role in lunar regolith formation. As much as 15% of the regolith potassium has been lost from the Moon, through the tenuous lunar atmosphere.

  8. Geology and geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific (United States)

    Rytuba, J.J.; Miller, W.R.


    The Palau and Yap arcs are part of an intra-oceanic island-arc-trench system which separates the Pacific and Philippine plates in the western Pacific Ocean. The 350-km-long Palau arc consists of over 200 islands while the 400-km-long Yap arc located to the north has only four major islands exposed. Four of the largest islands in Palau are composed primarily of early Eocene to mid-Miocene volcanic rocks and the four islands comprising Yap contain only Miocene volcanic rocks. Basalt and basaltic andesites of the Babelthuap Formation are the oldest volcanic rocks in Palau and are characterized by high MgO, Ni and Cr and low TiO2 and have a boninitic affinity. They form the central and southeastern parts of Babelthuap Island. Oligocene arc tholeiite flows having an age of 34-35.5 Ma comprise most of the three smaller volcanic islands in Palau and the western part of Babelthuap. The youngest volcanic rocks are dacitic intrusions having an age of 22.7-23.2 Ma. The Yap arc is unusual in that metamorphic rocks up to amphibolite grade form most of the islands. These are underlain by a melange composed of igneous and volcanic clasts as well as clasts from a dismembered copper-gold skarn deposit. Miocene volcanic rocks consisting of flows and volcaniclastic deposits overlie the melange and metamorphic complex. An epithermal precious-metal vein system hosted by flows and flow breccias of the Babelthuap Formation occurs in an area 1.5 km by 1 km on the southeast side of Babelthuap Island. Over 50 veins and mineralized breccias ranging up to 2 m in width and having a strike length up to 500 m contain from trace to 13.0 ppm gold. The veins consist of quartz with varying amounts of sulfides and iron oxides after sulfides and the mineralized breccias consist of brecciated country rock cemented by quartz and iron oxides after sulfides. The veins and mineralized breccias generally dip within 15?? of vertical and have two preferred orientations, north-northwest and north

  9. The Moon (United States)

    Warren, P. H.


    obvious; and for ancient highland samples, never obvious. The closest approach toin situ sampling of bedrock came on the Apollo 15 mission. The regolith is very thin near the edge of the Hadley Rille, and many samples of clearly comagmatic basalts were acquired within meters of their 3.3 Ga "young," nearly intact, lava flow, so that their collective provenance is certain (Ryder and Cox, 1996). Even the regional provenance of any individual lunar sample is potentially allocthonous. However, most lunar rocks, even ancient highland rocks, are found within a few hundred kilometers of their original locations. This conclusion stems from theoretical modeling of cratered landscapes ( Shoemaker et al., 1970; Melosh, 1989), plus observational evidence such as the sharpness of geochemical boundaries between lava-flooded maria and adjacent highlands (e.g., Li and Mustard, 2000).Besides breaking up rock into loose debris, impacts create melt. Traces of melt along grain boundaries may suffice to produce new rock out of formerly loose debris; the resultant rock would be classified as either regolith breccia or fragmental breccia, depending upon whether surface fines were important, or not, respectively, in the precursor matter (Stöffler et al., 1980). Features diagnostic of a surface component include the presence of glass spherules (typically a mix of endogenous mare-pyroclastic glasses and impact-splash glasses) or abundant solar-wind-implanted noble gases (e.g., Eugster et al., 2000).Elsewhere, especially in the largest events in which a planet's gravitational strength limits displacement and the kinetic energy of impact is mainly partitioned into heat (Melosh, 1989), impact melt may constitute a major fraction of the volume of the material that becomes new rock. Rocks formed in this manner are classified as impact-melt breccias and subclassified based on whether they are clast-poor or clast-rich, and whether their matrix is crystalline or glassy ( Stöffler et al., 1980). Obvious

  10. Au-bearing magnetite mineralizaion in Kashmar (alteration, mineralization, geochemistry, geochemistry and fluid inclusions;

    Directory of Open Access Journals (Sweden)

    Alireza Almasi


    fractures of rocks are filled with tourmaline (Dumortierite type and iron oxides. Kashmar surface mineralization is described in the ore-bearing quartz veins. Principal mineralization textures are layered, comb and Brecciation. The most important types of veins are those containing Chalcopyrite - Quartz veins, Specularite-rich veins – Quartz-Galena veins accompany with hydrothermal Breccias. Barren barite veins also exist in the region. The Chalcopyrite - Quartz veins occur on the main fracture zone and next to the Argillic alterations and silica cap in three regions (Bahariyeh, Uch Palang and Sarsefidal. Hydrothermal Breccias, Spicularite- rich veins, Quartz - Galena and barite veins occurred within Hematite- Carbonate-Chlorite-Silicification alterations in the Kamarmard area. Geochemistry of veins indicates anomalies of gold, copper, lead and zinc in them. Most enrichments of gold are accompanied with copper, lead and zinc and they occurs in hydrothermal Breccias and then specularite- rich veins. Gold values up to about 15 ppm and Cu, Pb and Zn each to > 1%. Temperature – salinity studies of fluid inclusions of ore-bearing Quartz veins in Kashmar show the fluid temperature and salinity values in all veins are close together. Temperatures are moderate to relatively high and between 245° C and 530 ° C and salinities are relatively low to moderate and between 14 to 18 (wt% NaCl. Maximum and minimum of temperatures and salinities are related to fluid inclusions of hydrothermal Breccias and Quartz-Galena vein. Co-existence between two-phase liquid-vapor rich fluids and single-phase gas fluids in the veins indicate that conditions were close to boiling, and maybe a little boiling occurred, which strengthened with brecciaing of rock and view rare CO2-bearing fluid inclusion in veins on the Kamarmard peak. Non-existence of vuggy Quartz in silica caps in the region shows this issue. The frequency of oxide minerals (Specularite, Barite, H2O-NaCl-CaCl2 system, and the low

  11. Geoelectrical structure of the central zone of Piton de la Fournaise volcano (Reunion) (United States)

    Lenat, J.-F.; Fitterman, D.; Jackson, D.B.; Labazuy, P.


    A study of the geoelectrical structure of the central part of Piton de la Fournaise volcano (Reunion, Indian Ocean) was made using direct current electrical (DC) and transient electromagnetic soundings (TEM). Piton de la Fournaise is a highly active oceanic basaltic shield and has been active for more than half a million years. Joint interpretation of the DC and TEM data allows us to obtain reliable 1D models of the resistivity distribution. The depth of investigation is of the order of 1.5 km but varies with the resistivity pattern encountered at each sounding. Two-dimensional resistivity cross sections were constructed by interpolation between the soundings of the 1D interpreted models. Conductors with resistivities less than 100 ohm-m are present at depth beneath all of the soundings and are located high in the volcanic edifice at elevations between 2000 and 1200 m. The deepest conductor has a resistivity less than 20 ohm-m for soundings located inside the Enclos and less than 60-100 ohm-m for soundings outside the Enclos. From the resistivity distributions, two zones are distinguished: (a) the central zone of the Enclos; and (b) the outer zone beyond the Enclos. Beneath the highly active summit area, the conductor rises to within a few hundred meters of the surface. This bulge coincides with a 2000-mV self-potential anomaly. Low-resistivity zones are inferred to show the presence of a hydrothermal system where alteration by steam and hot water has lowered the resistivity of the rocks. Farther from the summit, but inside the Enclos the depth to the conductive layers increases to approximately 1 km and is inferred to be a deepening of the hydrothermally altered zone. Outside of the Enclos, the nature of the deep, conductive layers is not established. The observed resistivities suggest the presence of hydrated minerals, which could be found in landslide breccias, in hydrothermally altered zones, or in thick pyroclastic layers. Such formations often create perched

  12. Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA (United States)

    Lefebvre, Nathalie S.; White, James D. L.; Kjarsgaard, Bruce A.


    Maar-diatreme volcanoes, defined by their relatively large pyroclastic debris-filled subsurface structures and craters that cut into the pre-eruptive land surface, are typically found in small-volume mafic to ultramafic monogenetic volcanic fields. Diatremes are associated with strong explosions throughout most of their development, focused along feeder dikes and generally attributed to magma-water interaction, or high magmatic volatiles. Detailed mapping of the magnificently exposed Standing Rocks East (SRE) diatreme shows evidence of additional eruptive complexity, and offers new insights into how the plumbing and vent structures of small-volume volcanoes evolve during an eruption. SRE is part of a larger, basanitic volcanic complex that includes several diatremes formed along a series of irregular, offset NW-SE trending dikes exposed 300 m below the pre-eruptive land surface. Its similarly oriented elliptical-shaped diatreme structure comprises predominantly country rock lithic-rich breccia of coarse inhomogeneously mixed wall-rock blocks sourced from above and below the current surface, plus sparse juvenile material. Domains of pyroclastic deposits crosscut the country rock breccia deposits, and the best exposed is the NW massif rising 35 m above the current erosional surface. It represents a cross-section of an evolving crater floor, and comprises matrix-rich lapilli tuff and spatter deposits cut by irregularly distributed dikes, some with very complex textures. The most significant deposit, in terms of volume, is an unbedded lapilli tuff that is poorly sorted and has a well-mixed population of wall-rock and juvenile clast varieties, thus resembling deposits typical of diatremes. It is overlain by and locally intercalated with spatter deposits, and this irregular contact demarcates the base of what was during eruption an uneven, evolving crater floor. The generally massive, variably welded spatter deposits constitute mostly lapilli-sized juvenile clasts with

  13. High resolution shallow imaging of the mega-splay fault in the central Nankai Trough off Kumano (United States)

    Ashi, J.


    Steep slopes are continuously developed at water depths between 2200 to 2800 m at the Nankai accretionary prism off Kumano. These slopes are interpreted to be surface expressions caused by the megasplay fault on seismic reflection profiles. The fault plane has been drilled at multiple depths below seafloor by IODP NanTroSEIZE project. Mud breccias only recognized at the hanging wall of the fault (Site C0004) by Xray CT scanner are interpreted be formed by strong ground shaking and the age of the shallowest event of mud breccia layers suggests deformation in 1944 Tonankai earthquake (Sakaguchi et al., 2011). Detailed structures around the fault have been examined by seismic reflection profiles including 3D experiments. Although the fault plane deeper than 100 m is well imaged, the structure shallower than 100 m is characterized by obscure sediment veneer suggesting no recent fault activity. Investigation of shallow deformation structures is significant for understanding of recent tectonic activity. Therefore, we carried out deep towed subbottom profile survey by ROV NSS (Navigable Sampling System) during Hakuho-maru KH-11-9 cruise. We introduced a chirp subbottom profiling system of EdgeTech DW-106 for high resolution mapping of shallow structures. ROV NSS also has capability to take a long core with a pinpoint accuracy. The subbottom profiler crossing the megasplay fault near Site C0004 exhibits a landward dipping reflector suggesting the fault plane. The shallowest depth of the reflector is about 10 m below seafloor and the strata above it shows reflectors parallel to the seafloor without any topographic undulation. The fault must have displaced the shallow formation because intense deformation indicated by mud breccia was restricted to near fault zone. Slumping or sliding probably modified the shallow formation after the faulting. The shallow deformations near the megasplay fault were well imaged at the fault scarp 20 km southwest of Site C0004. Although the

  14. Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization (United States)

    Saintilan, N.J.; Creaser, R.A.; Bookstrom, Arthur A.


    We report the first study of the Re-Os systematics of cobaltite (CoAsS) using disseminated grains and massive sulfides from samples of two breccia-type and two stratabound deposits in the Co-Cu-Au Idaho cobalt belt (ICB), Lemhi subbasin to the Belt-Purcell Basin, Idaho, USA. Using a 185Re + 190Os spike solution, magnetic and non-magnetic fractions of cobaltite mineral separates give reproducible Re-Os analytical data for aliquot sizes of 150 to 200 mg. Cobaltite from the ICB has highly radiogenic 187Os/188Os ratios (17–45) and high 187Re/188Os ratios (600–1800) but low Re and total Os contents (ca. 0.4–4 ppb and 14–64 ppt, respectively). Containing 30 to 74% radiogenic 187Os, cobaltite from the ICB is amenable to Re-Os age determination using the isochron regression approach.Re-Os data for disseminated cobaltite mineralization in a quartz-tourmaline breccia from the Haynes-Stellite deposit yield a Model 1 isochron age of 1349 ± 76 Ma (2σ, n = 4, mean squared weighted deviation MSWD = 2.1, initial 187Os/188Os ratio = 4.7 ± 2.2). This middle Mesoproterozoic age is preserved despite a possible metamorphic overprint or a pulse of metamorphic-hydrothermal remobilization of pre-existing cobaltite that formed along fold cleavages during the ca. 1190–1006 Ma Grenvillian orogeny. This phase of remobilization is tentatively identified by a Model 3 isochron age of 1132 ± 240 Ma (2σ, n = 7, MSWD = 9.3, initial 187Os/188Os ratio of 9.0 ± 2.9) for cobaltite in the quartz-tourmaline breccia from the Idaho zone in the Blackbird mine.All Mesoproterozoic cobaltite mineralization in the district was affected by greenschist- to lower amphibolite-facies (garnet zone) metamorphism during the Late Jurassic to Late Cretaceous Cordilleran orogeny. However, the fine- to coarse-grained massive cobaltite mineralization from the shear zone-hosted Chicago zone, Blackbird mine, is the only studied deposit that has severely disturbed Re

  15. Magnetic fabric of brittle fault rocks (United States)

    Pomella, Hannah


    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  16. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features (United States)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.


    Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-13.3 ‰), though wider-ranging δD (-58.5 to -36.5 ‰) and δ11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35-0.78] and oxydravite [Mg/(Mg + Fe) = 0.51-0.58], respectively. Boron contents of the granitic rocks are low (Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the

  17. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.


    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  18. Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru (United States)

    André-Mayer, Anne-Sylvie; Leroy, Jacques; Bailly, Laurent; Chauvet, Alain; Marcoux, Eric; Grancea, Luminita; Llosa, Fernando; Rosas, Juan


    The Au-Ag (±Pb-Zn) Apacheta deposit is located in the Shila district, 600 km southeast of Lima in the Cordillera Occidental of Arequipa Province, southern Peru. The vein mineralization is found in Early to Middle Miocene calc-alkaline lava flows and volcanic breccias. Both gangue and sulfide mineralization express a typical low-sulfidation system; assay data show element zoning with base metals enriched at depth and higher concentrations of precious metals in the upper part of the veins. Three main deposition stages are observed: (1) early pyrite and base-metal sulfides with minor electrum 1 and acanthite; (2) brecciation of this mineral assemblage and cross-cutting veinlets with subhedral quartz crystals, Mn-bearing calcite and rhombic adularia crystals; and finally (3) veinlets and geodal filling of an assemblage of tennantite/tetrahedrite + colorless sphalerite 2 + galena + chalcopyrite + electrum 2. Fluid inclusions in the mineralized veins display two distinct types: aqueous-carbonic liquid-rich Lw-c inclusions, and aqueous-carbonic vapor-rich Vw-c inclusions. Microthermometric data indicate that the ore minerals were deposited between 300 and 225 °C from relatively dilute hydrothermal fluids (0.6-3.4 wt% NaCl). The physical and chemical characteristics of the hydrothermal fluids show a vertical evolution, with in particular a drop in temperature and a loss of H2S. The presence of adularia and platy calcite and of co-existing liquid-rich and vapor-rich inclusions in the ore-stage indicates a boiling event. Strong H2S enrichment in the Vw-c inclusions observed at -200 m, the abundance of platy calcite, and the occurrence of hydrothermal breccia at this level may indicate a zone of intense boiling. The vertical element zoning observed in the Apacheta deposit thus seems to be directly related to the vertical evolution of hydrothermal-fluid characteristics. Precious-metal deposition mainly occurred above the 200-m level below the present-day surface, in response

  19. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation (United States)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck


    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with {010} slip. The deformation bands are unlike curved

  20. Autonomous Segmentation of Outcrop Images Using Computer Vision and Machine Learning (United States)

    Francis, R.; McIsaac, K.; Osinski, G. R.; Thompson, D. R.


    As planetary exploration missions become increasingly complex and capable, the motivation grows for improved autonomous science. New capabilities for onboard science data analysis may relieve radio-link data limits and provide greater throughput of scientific information. Adaptive data acquisition, storage and downlink may ultimately hold implications for mission design and operations. For surface missions, geology remains an essential focus, and the investigation of in place, exposed geological materials provides the greatest scientific insight and context for the formation and history of planetary materials and processes. The goal of this research program is to develop techniques for autonomous segmentation of images of rock outcrops. Recognition of the relationships between different geological units is the first step in mapping and interpreting a geological setting. Applications of automatic segmentation include instrument placement and targeting and data triage for downlink. Here, we report on the development of a new technique in which a photograph of a rock outcrop is processed by several elementary image processing techniques, generating a feature space which can be interrogated and classified. A distance metric learning technique (Multiclass Discriminant Analysis, or MDA) is tested as a means of finding the best numerical representation of the feature space. MDA produces a linear transformation that maximizes the separation between data points from different geological units. This ';training step' is completed on one or more images from a given locality. Then we apply the same transformation to improve the segmentation of new scenes containing similar materials to those used for training. The technique was tested using imagery from Mars analogue settings at the Cima volcanic flows in the Mojave Desert, California; impact breccias from the Sudbury impact structure in Ontario, Canada; and an outcrop showing embedded mineral veins in Gale Crater on Mars

  1. A fossil venting system in the Feragen Ultramafic Body, Norway? (United States)

    Dunkel, Kristina G.; Jamtveit, Bjørn; Austrheim, Håkon


    Carbonation of ultramafic rocks in ophiolites and on the seafloor has recently been the focus of extensive research, as this alteration reaction not only influences the carbon flux between hydro- and lithosphere, but also provides natural analogues for industrial CO2 sequestration. It is a significant part of the hydrothermal circulation in the oceanic crust, as demonstrated by carbonate precipitation at hydrothermal vents. We provide microstructural and geochemical data from a previously little known ophicarbonate occurrence in the Feragen Ultramafic Body, Sør-Trøndelag, Norway. Along the northern edge of the Feragen Ultramafic Body, strongly serpentinised peridotites are carbonated. In places, the carbonation took place pervasively, leading to the formation of soapstones consisting mainly of talc and magnesite. More common is the carbonation of serpentinite breccias. Within the clasts, some of the serpentine mesh centres are replaced by magnesite, and, subordinately, dolomite or calcium carbonate. Four types of matrix have been identified in different localities: fine-grained magnesite, coarse-grained calcium carbonate, brucite occurring in large fans (up to 1 mm in diameter), and dolomite. Inclusion trails in the coarse-grained calcium carbonates record botryoidal growth, indicating crystallisation from a fluid in open space, and a hexagonal precursor phase, suggesting that aragonite was replaced by calcite. Brucite-cemented serpentinite breccias occur very locally in two outcrops with a size less than 10 m2. Many of the brucite fans have a similar arrangement of inclusions, with an area rich in dolomite inclusions in the centre of the brucite crystals, and magnetite inclusions concentrated in the tips. Dolomite as a matrix phase often grows inwards from hexagonal, rectangular, rhomboidal, or irregular pores. Many dolomite grains are probably cast pseudomorphs after (calcitised) aragonite. Some carbonate crystals are crosscut or replaced by serpentine. The

  2. Monte guardia sequence: a late-pleistocene eruptive cycle on Lipari (Italy) (United States)

    Crisci, G. M.; de Rosa, R.; Lanzafame, G.; Mazzuoli, R.; Sheridan, M. F.; Zuffa, G. G.


    This paper documents a complex sequence of interbedded lapilli-fall, base-surge, and pyroclastic-flow deposits, here named the Monte Guardia sequence, that erupted from volcanic centers in the southern part of Lipari (Aeolian Island Arc). Radiocarbon data from ash-flow tuffs above and below this sequence bracket its eruption between 22,600 and 16,800 years ago. Geologic evidence, however, suggests that this single eruptive cycle had a more restricted duration of years to tens-of-years. The basis for our interpretations comes from data measured at 38 detailed sections located throughout the island. The Monte Guardia sequence rests on a series of lower rhyolitic endogenous domes in the southern part of Lipari and it covers the oldest lavas, lahars, and pyroclastic flows in the north. Only in the northeast part of the island is it covered by younger deposits which there consist of lapilli tuffs and lavas of the Monte Pilato rhyolitic cycle. The deposit ranges in thickness from more than 60 m surrounding the vents in the south to less than a few decimeters at 10 km distance in the north. Throughout most of the island the Monte Guardia sequence overlies a thin andesitic lapilli-fall layer which is a key bed for correlation. This lapilli tuff probably erupted from a volcanic center on another island of the Aeolian Arc (possibly Salina). The principal activity of the Monte Guardia sequence started with an explosion that formed a continuous breccia blanket covering most of the island. Some pumiceous blocks within this breccia are composed of alternating bands of acidic and andesitic composition suggesting that the initiation of pyroclastic activity could have been triggered by magma mixing. Typical Monte Guardia sequence consists of explosive products that grade from magmatic (pumice-fall) to phreatomagmatic (base-surge) character. The eruptive cycle is characterized by a number of energy decreasing megarhythms that start with a lapilli-fall bed and end with a base

  3. Porosity characterization of fresh and altered stones by ultrasound velocity and mercury intrusion porosimetry (United States)

    Scrivano, Simona; Gaggero, Laura; Gisbert Aguilar, Josep


    Porosity is the main physical feature dealing with rocks durability and storage capacity. The analysis of this parameter is key factor in predicting rock performances (Molina et al., 2011). There are several techniques that can be applied to acquire the widest information range possible about pores (e.g. size, shape, distribution), leading to a better understanding of decay processes and trapping capacity. The coupling of a detailed minero-petrographic analysis with physical measures such as ultrasounds and mercury intrusion porosimetry (MIP) proved to be a valid tool for understanding the porous network and its evolution during weathering processes. Both fresh and salt-weathered samples were analysed to investigate the modification triggered in the porous network by crystallization. The ageing process was induced using a Na2SO4 saturated saline solution with the partial continuous immersion method (Benavente et al., 2001). The study was addressed to four sedimentary lithotypes: 1) Arenaria Macigno, a greywacke made up of thickened clasts of quartz, plagioclase and K-feldspar cemented by micritic calcite and phyllosilicates; 2) Breccia Aurora, a calcareous breccia with nodules of compact limestone and micritic cement joints; 3) Rosso Verona, a biomicrite where the compact bio-micrite matrix is cut by clay minerals veins; and 4) Vicenza Stone, an organogenic limestone rich in micro- and macro foraminifera, algae, bryozoans and remains of echinoderms, with iron oxides. An appropriate description of the porous network variation and recognition of the origin of secondary porosity was attained. The study defined that the pore shape and distribution (anisotropy coefficient K) has a fluctuation up to the 50% after weathering treatments and pore-size distribution (defined in a range between 0,0025 - 75 μm), allowing modelling the mechanisms of water transport and evaluating decay susceptibility of these lithotypes. Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L

  4. Volcanoes as elastic inclusions: Their effects on the propagation of dykes, volcanic fissures, and volcanic zones in Iceland (United States)

    Andrew, Ruth E. B.; Gudmundsson, Agust


    Mechanically, many volcanoes may be regarded as elastic inclusions, either softer (with a lower Young's modulus) or stiffer (with a higher Young's modulus) than the host-rock matrix. For example, many central volcanoes (stratovolcanoes, composite volcanoes) are composed of rocks that are softer than the crustal segments that host them. This is particularly clear in Iceland where central volcanoes are mostly made of soft rocks such as rhyolite, pyroclastics, hyaloclastites, and sediments whereas the host rock is primarily stiff basaltic lava flows. Most active central volcanoes also contain fluid magma chambers, and many have collapse calderas. Fluid magma chambers are best modelled as cavities (in three dimensions) or holes (in two dimensions), entire calderas as holes, and the ring faults themselves, which commonly include soft materials such as breccias, as soft inclusions. Many hyaloclastite (basaltic breccias) mountains partly buried in the basaltic lava pile also function as soft inclusions. Modelling volcanoes as soft inclusions or holes, we present three main numerical results. The first, using the hole model, shows the mechanical interaction between all the active central volcanoes in Iceland and, in particular, those forming the two main clusters at the north and south end of the East Volcanic Zone (EVZ). The strong indication of mechanical interaction through shared dykes and faults in the northern cluster of the EVZ is supported by observations. The second model, using a soft inclusion, shows that the Torfajökull central volcano, which contains the largest active caldera in Iceland, suppresses the spreading-generated tensile stress in its surroundings. We propose that this partly explains why the proper rift zone northeast of Torfajökull has not managed to propagate through the volcano. Apparently, Torfajökull tends to slow down the rate of southwest propagation of the rift-zone part of the EVZ. The third model, again using a soft inclusion, indicates

  5. Concealed basalt-matrix diatremes with Cu-Au-Ag-(Mo)-mineralized xenoliths, Santa Cruz Porphyry Cu-(Mo) System, Pinal County, Arizona (United States)

    Vikre, Peter; Graybeal, Frederick T.; Koutz, Fleetwood R.


    The Santa Cruz porphyry Cu-(Mo) system near Casa Grande, Arizona, includes the Sacaton mine deposits and at least five other concealed, mineralized fault blocks with an estimated minimum resource of 1.5 Gt @ 0.6% Cu. The Late Cretaceous-Paleocene system has been dismembered and rotated by Tertiary extension, partially eroded, and covered by Tertiary-Quaternary basin-fill deposits. The mine and mineralized fault blocks, which form an 11 km (~7 miles) by 1.6 km (~1 mile) NE-SW–trending alignment, represent either pieces of one large deposit, several deposits, or pieces of several deposits. The southwestern part of the known system is penetrated by three or more diatremes that consist of heterolithic breccia pipes with basalt and clastic matrices, and subannular tuff ring and maar-fill sedimentary deposits associated with vents. The tephra and maar-fill deposits, which are covered by ~485 to 910 m (~1,600–3,000 ft) of basin fill, lie on a mid-Tertiary erosion surface of Middle Proterozoic granite and Late Cretaceous porphyry, which compose most xenoliths in pipes and are the host rocks of the system. Some igneous xenoliths in the pipes contain bornite-chalcopyrite-covellite assemblages with hypogene grades >1 wt % Cu, 0.01 ounces per ton (oz/t) Au, 0.5 oz/t Ag, and small amounts of Mo (fluid which, based on fluid inclusion populations in mineralized xenoliths, was saline water and CO2. The large vertical extent (~600 m; ~2,000 ft) of basalt matrix in pipes, near-paleosurface matrix vesiculation, and plastically deformed basalt lapilli indicates that diatreme eruptions were predominantly phreatic.Diatreme xenoliths represent crustal stratigraphy and, as in the Santa Cruz system, provide evidence of concealed mineral resources that can guide exploration drilling through cover. Vectors to the source of bornite-dominant xenoliths containing >1% Cu and significant Au and Ag could be determined by refinement of breccia pipe geometries, by reassembly of mineralized fault

  6. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia) (United States)

    Duran, C.J.; Barnes, S-J.; Pleše, P.; Prašek, M. Kudrna; Zientek, Michael L.; Pagé, P.


    The distribution of platinum-group elements (PGE) within zoned magmatic ore bodies has been extensively studied and appears to be controlled by the partitioning behavior of the PGE during fractional crystallization of magmatic sulfide liquids. However, other chalcophile elements, especially TABS (Te, As, Bi, Sb, and Sn) have been neglected despite their critical role in forming platinum-group minerals (PGM). TABS are volatile trace elements that are considered to be mobile so investigating their primary distribution may be challenging in magmatic ore bodies that have been somewhat altered. Magmatic sulfide ore bodies from the Noril’sk-Talnakh mining district (polar Siberia, Russia) offer an exceptional opportunity to investigate the behavior of TABS during fractional crystallization of sulfide liquids and PGM formation as the primary features of the ore bodies have been relatively well preserved. In this study, new petrographic (2D and 3D) and whole-rock geochemical data from Cu-poor to Cu-rich sulfide ores of the Noril’sk-Talnakh mining district are integrated with published data to consider the role of fractional crystallization in generating mineralogical and geochemical variations across the different ore types (disseminated to massive). Despite textural variations in Cu-rich massive sulfides (lenses, veins, and breccias), these sulfides have similar chemical compositions, which suggests that Cu-rich veins and breccias formed from fractionated sulfide liquids that were injected into the surrounding rocks. Numerical modeling using the median disseminated sulfide composition as the initial sulfide liquid composition and recent DMSS/liq and DISS/liq predicts the compositional variations observed in the massive sulfides, especially in terms of Pt, Pd, and TABS. Therefore, distribution of these elements in the massive sulfides was likely controlled by their partitioning behavior during sulfide liquid fractional crystallization, prior to PGM formation. Our

  7. Phlogopite-bearing peridotite from the 25°S oceanic core complex, along the Central Indian Ocean Ridge (United States)

    Soda, Y.; Igarashi, M.; Ogasawara, Y.; Takagi, H.; Sawaguchi, T.; Neo, N.; Morishita, T.; Nakamura, K.; Kumagai, H.; Yk05-16Leg1 Scientific Party


    The 25°S oceanic core complex (OCC) is located nearby the Rodriguez Triple Junction in the Indian Ocean. We performed three dives of manned submersible, SHINKAI 6500, during YK05-16 (Kumagai et al., 2008, Morishita et al., 2009), and corrected samples directly from the surface of the OCC. Deformed rocks described here are peridotite, gabbro, basalt, breccia and their metasomatic products. Peridotite is altered to talc-rich rocks and amphibole schist. Weakly metasomatized part of peridotite consists of olivine, orthopyroxene, phlogopite and Cr-spinel. Olivine and orthopyroxene grains show ductile deformation textures. Phlogopite exists in grain boundaries and fractures of olivine grains. Most of phlogopite grains have undergone chloritization with various degrees. In the phlogopite abounding part, array of them are made up of the foliation. Cr-spinel (altered to ferrite chromite) is surrounded by phlogopite. Serpentine (chrysotile; identified by Laser Raman spectroscopy) occurs only in talc vein walls and solid inclusions (Boschi et al., 2006, Schroeder et al., 2007), the fault rocks from the 25°S OCC show that the strong fluid infiltration and the deformation concentration on metasomatic rocks along the detachment fault surface. However, comparison with occurrences of other OCC regions, it is a difference that absences of serpentinite clasts in the breccia and existences of phlogopite in the peridotite. The deformational and metasomatic properties of the fault rocks from the OCC surface should depend on the depth and timing of fluid circulation in the mantle peridotite. References Boschi, C. et al., 2006, Geochem. Geophys. Geosyst., 7, doi: 10.1029/2005GC001074 Escartin, J. et al., 2003, Geochem. Geophys. Geosyst., 4, doi: 10.1029/2002GC000472 Kumagai, H. et al., 2008, Geofluids, 8, 239-251 Morishita, T. et al., 2009, Jour. Petrol. 50, 1299-1325 Schroeder, T. and John, B.E., 2004, Geochem. Geophys. Geosyst., 5, doi: 10.1029/2004GC000728 Schroeder, T. et al

  8. Linking the Lusi mud eruption dynamics with regional and global seismic activity: a statistical analysis. (United States)

    Collignon, Marine; Hammer, Øyvind; Fallahi, Mohammad J.; Lupi, Matteo; Schmid, Daniel W.; Alwi, Husein; Hadi, Soffian; Mazzini, Adriano


    The 29th May 2006, gas water and mud breccia started to erupt at several localities along the Watukosek fault system in the Sidoarjo Regency in East Java Indonesia. The most prominent eruption site, named Lusi, is still active and the emitted material now covers a surface of nearly 7 km2, resulting in the displacement of 60.000 people (up to date). Due to its social and economic impacts, as well as its spectacular dimensions, the Lusi eruption still attracts the attention of international media and scientists. In the framework of the Lusi Lab project (ERC grant n° 308126), many efforts were made to develop a quasi-constant monitoring of the site and the regional areas. Several studies attempted to predict the flow rate evolution or ground deformation, resulting in either overestimating or underestimating the longevity of the eruption. Models have failed because Lusi is not a mud volcano but a sedimentary hosted hydrothermal system that became apparent after the M6.3 Yogyakarta earthquake. Another reason is because such models usually assume that the flow will decrease pacing the overpressure reduction during the deflation of the chamber. These models typically consider a closed system with a unique chamber that is not being recharged. Overall the flow rate has decreased over the past ten years, although it has been largely fluctuating with monthly periods of higher mud breccia discharge. Monitoring of the eruption has revealed that numerous anomalous events are temporally linked to punctual events such as earthquakes or volcanic eruptions. Nevertheless, the quantification of these events has never been investigated in details. In this study, we present a compilation of anomalous events observed at the Lusi site during the last 10 years. Using Monte Carlo simulations, we then statistically compare the displacement, recorded at different seismic stations around Lusi, with the regional and global earthquakes catalogue to test the probability that an earthquake

  9. The Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science (United States)

    Spray, John G.; Thompson, Lucy M.; Biren, Marc B.; O'Connell-Cooper, Catherine


    The 90 km diameter, late Triassic Manicouagan impact structure of Québec, Canada, is a well-preserved, undeformed complex crater possessing an anorthositic central uplift and a 55 km diameter melt sheet. As such, it provides a valuable terrestrial analogue for impact structures developed on other planetary bodies, especially the Moon and Mars, which are currently the focus of exploration initiatives. The scientific value of Manicouagan has recently been enhanced due to the production, between 1994 and 2006, of ˜18 km of drill core from 38 holes by the mineral exploration industry. Three of these holes are in excess of 1.5 km deep, with the deepest reaching 1.8 km. Here we combine recent field work, sampling and the drill core data with previous knowledge to provide insight into processes occurring at Manicouagan and, by inference, within extraterrestrial impact structures. Four areas of comparative planetology are discussed: impact melt sheets, central uplifts, impact-generated hydrothermal regimes and footwall breccias. Human training and instrument testing opportunities are also considered. The drill core reveals that the impact melt and clast-bearing impact melts in the centre of the structure reach thicknesses of 1.4 km. The 1.1 km thick impact melt has undergone differentiation to yield a lower monzodiorite, a transitional quartz monzodiorite and an upper quartz monzonite sequence. This calls into question the previous citing of Manicouagan as an exemplar of a relatively large crater possessing an undifferentiated melt sheet, which was used as a rationale for assigning different composition lunar impact melts and clast-bearing impact melts to separate cratering events. The predominantly anorthositic central uplift at Manicouagan is comparable to certain lunar highlands material, with morphometric analogies to the King, Tycho, Pythagoras, Jackson, and Copernicus impact structures, which have similar diameters and uplift structure. Excellent exposure of the

  10. Interpretasi Mineralisasi Epitermal Berdasarkan Studi Ubahan Hidrotermal dan Tekstur Urat Kuarsa di Kawasan Hutan Lindung Taliwang, Nusa Tenggara Barat

    Directory of Open Access Journals (Sweden)

    Danny Zulkifli Herman


    Full Text Available conservation forest, West Nusa Tenggara, is particularly covered by volcanic rocks consisting of alternated breccia and tuff. The breccia is composed of andesitic – dioritic clasts and matrix of fine-grained to lapilli tuff which had partially been hidrothermally altered and invaded by gold bearing quartz veins. Outcrops of quartz veins are commonly limonitized, trending nearly east-west and north-south with respectively dip of 70o and 85o. Identification of quartz veins originated from people mining’s waste leads to a prediction that there are quartz stockworks beneath the earth surface (50 – 100 m depth in the conservation forest area, from which quartz veins penetrated the illite-paragonite-calcite-siderite- nacrite altered country rock. Textures of quartz veins were identified such as comb with some coarse- grained euhedral crystals, sugary/saccharoidal/fine grained crystalline quartz and ghost-bladed. Veins and host rocks generally contain disseminated and spotted pyrites. Evaluation of quartz textures, altered rocks analysis (PIMA method, fluid inclusion studies and chemical analysis (AAS method of selective altered rocks/quartz vein samples exhibits that the alteration and mineralization processes might occur in an epithermal system, connecting with a change of hydrothermal fluids from near neutral into acid conditions at a temperature ranging from 231 to 185oC. Alteration of illite-paragonite-kalsit-siderite is suggested as a result of reaction between host rock and a near neutral fluid, whilst nacrite (kaolin group or argillic is a result of reaction between host rock and an acid fluid, within a mixing zone of meteoric fluid and condensed acid gas released during boiling process of hydrothermal fluid in the depth. On the basis of salinity ranging from 0.9 to 2.2 equivalent wt.% NaCl of fluid inclusion, it is predicted that the deposition of gold bearing quartz and associated

  11. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.


    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  12. Aqueous Alteration of Outcrops on Endeavour Crater on Mars Inferred from Spatially Oversampled CRISM Spectra and Opportunity Rover Data (United States)

    Arvidson, R. E.; Squyres, S. W.; Murchie, S. L.; McLennan, S. M.; Knoll, A. H.; Catalano, J. G.


    Spatially-sharpened CRISM hyperspectral imaging data enabled orbital mapping of a subtle (several weight percent) nontronite (Fe+3 dioctahedral smectite) clay signature in a previously unidentified small rock outcrop on the Cape York portion of the rim of the Noachian-aged Endeavour Crater. Opportunity rover data show that the signature corresponds to finely-layered strata (subset of the Whitewater Lake formation) that were uplifted and overlain by Shoemaker formation impact breccias during the Endeavour crater-forming event. Layers within these Whitewater Lake strata are typically less than or about equal to ~1 cm thick and texturally range from muddy sandstones to materials too fine to resolve in the 30 μm/pixel Microscopic Imager data. These rocks are partially covered by thin, glossy dark veneers locally associated with box-like fractures filled with dark veins. The rocks and veneers have basaltic elemental compositions, with higher concentrations in the veneers of elements easily mobilized by water (Zn, S, Cl, and Br). Cross cutting relationships demonstrate that the veneers post-date Ca-sulfate veins that cut through Whitewater Lake rocks and the overlying impact breccias and also post-date relatively large Whitewater Lake boxwork fractures where compositional data indicate extensive aqueous leaching of rocks within the fractures. Weakly acidic groundwater is inferred to have flowed through fractures and permeable layers within the layered Whitewater Lake strata and become neutralized by reactions with the basaltic materials, leaving behind salts and a minor amount of nontronite in the dark veneers. A greater water flux through the large, permeable boxwork fractures is inferred to have locally produced a greater degree of alteration. Three episodes of post-depositional aqueous alteration are thus clearly evident in the investigated strata: formation of Ca-sulfate veins after Endeavour crater formed, significant alteration to produce extensive alteration

  13. Meteoric diagenesis of catastrophic rockslide deposits of the Alps: diagenetic systems and implications for radiometric age-dating. (United States)

    Sanders, D.; Ostermann, M.; Kramers, J.; Brandner, R.


    Deposits of catastrophic subaerial rockslides (=rapid mass-wasting events involving more than a million cubic meters of rock) composed of lithologies rich in carbonate minerals may undergo precipitation of cements that, in many cases, can be used to U/Th proxy-date the rockslide event and/or subsequent changes of the rockslide mass. In the Alps, lithification of rockslide masses into breccias is observed in rockslides composed of limestones, dolostones, calcitic-dolomitic marbles, and calcphyllites. Cementation may be localized to meteoric 'runoff-shadows' below larger boulders, or may comprise a continous surface veneer of breccia or, more rarely, may affect the entire rockslide mass. In addition, precipitation of flowstone cements and stalactites may take place in megapores along the underside of boulders. Cements comprise skalenohedral calcite, prismatic calcite, blocky calcite, calcimicrite, micropeloidal calcitic cement and, rarely, isopachous to botryoidal aragonite. Cement formation probably is driven by meteoric dissolution-reprecipitation of fine-grained, abrasive rock powder generated during the rockslide event. U/Th ages of cements indicate that most, but not all, precipitation starts closely after a rockslide event. In rockslides composed of calcphyllites with an accessory content of pyrite, aside of 'normal' meteoric dissolution-reprecipitation of abrasive carbonate gauge, oxidation of pyrite drives widespread carbonate dissolution followed by reprecipitation, as a cement, of part of the dissolved calcium carbonate. Drill coring indicates that rockslide deposits composed of pyritiferous calcphyllites can be lithified from top to bottom. Limestone-precipitating springs emerging from rockslide deposits, and well-cemented 'secondary' deposits (e. g. talus slopes or fluvial conglomerates onlapping rockslide deposits) percolated by groundwaters emerging from rockslide masses, indicate that rockslide deposits remain diagenetically active for thousands of

  14. Thellier-Thellier Paleointensity of the Lunar Core Dynamo (United States)

    Suavet, C. R.; Weiss, B. P.; Andrade Lima, E.; Tikoo, S. M.; Fu, R. R.; Wang, H.; Wang, J.; Chen-Wiegart, Y. C. K.


    A number of paleomagnetic studies based on Alternating Field (AF) demagnetization of lunar samples have recently shown that the Moon had a dynamo magnetic field of several tens of μT at 4.2 Ga, 3.72 Ga, 3.56 Ga, and that the field had declined to below a few μT by 3.2 Ga. Although uncertainties associated with AF-derived paleointensity estimates are up to a factor of 3, these values are too high to be explained by current lunar dynamo models: based on estimates of the power available to drive a dynamo in the early history of the Moon, it is expected that the field intensity should have been of the order of a few μT. Thermal demagnetization-based techniques such as the Thellier-Thellier paleointensity method have much lower uncertainties on the paleofield, but attempts have consistently failed due to alteration of the metal-bearing lunar samples when heated. We have recently designed the first system to conduct thermal demagnetization with oxygen fugacity control using mixtures of H2 and CO2to mitigate alteration. We are applying this method to the following lunar samples: - Regolith breccia 15498. Impact melt from this breccia acquired a magnetization at 1.0-1.3 Ga. We conducted a Thellier-Thellier paleointensity experiment in a controlled atmosphere with oxygen fugacity at IW-1 log(atm). pTRM checks indicate that alteration is negligible up to 500°C. A paleointensity of 3.2 μT is obtained for the origin-trending high-temperature (>250°C) component. This is consistent with estimates based on AF-demagnetization data. - Troctolite 76535. A single plagioclase crystal from 4.2 Gyr-old troctolite 76535 was thermally demagnetized in a controlled atmosphere with oxygen fugacity at IW-1 log(atm). The synchrotron transmission X-ray microscopy and hysteresis parameters show that the major magnetization carriers are fine-grained pseudo-single domain metal inclusions. Due to the small size and weak magnetization of the sample (natural remanent magnetization (NRM) ~5x10

  15. Uranium;L'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Poty, B. [CNRS, 54 - Gondreville (France); Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.


    concentration in peat bogs, deposits combined with marine phosphates, with coal and lignite, with black shales, with carbonate rocks, deposits in Precambrian quartz pebble conglomerates, basal-type deposits, deposits in sandstones (tabular, roll-type and tectono-lithologic deposits), breccia chimney filling deposits, deposits in metamorphic rocks, metasomatic deposits, deposits in intrusive rocks, deposits associated with hematite breccia complexes, deposits in granitic rocks, deposits in volcanic rocks, deposits in proterozoic discordances (Athabasca basin, Pine Creek geo-syncline); 4 - French uranium bearing areas and deposits: history of the French uranium mining industry, geological characteristics of French deposits (black shales, sandstones, granites), abroad success of French mining companies (Africa, North America, South America, Australia, Asia); 5 - exploration and exploitation; 6 - uranium economy: perspectives of uranium demand, present day production status, secondary resources, possible resources, market balances, prices and trends, future availability and nuclear perspectives. (J.S.)

  16. Activation of gas bubble emissions indicated by the upward decreasing Lead-210 activity at a submarine mud volcano (TY1) offshore southwestern Taiwan (United States)

    Hiruta, Akihiro; Yang, Tsanyao Frank; Lin, Saulwood; Su, Chih-Chieh; Chen, Nai-Chen; Chen, Yi-Jyun; Chen, Hsuan-Wen; Yang, Tsung-Han; Huang, Yu-Chun; Wei, Kuo-Yen; Huang, Jyh-Jaan; Chen, Song-Chuen; Song, Sheng-Rong


    A submarine mud volcano (MV) known as TY1 is one of the largest conical structures found offshore southwestern Taiwan. Active gas bubble emissions at the flat crest of the mud volcano disperse sediment particles into the water column. Changes in the mud volcanism of TY1 were revealed by radiograph and grain size analysis of the sediment cores. 210Pb geochronology was applied to the near-seafloor sediments to reveal the detailed mud volcanism from the deposition rate. In a 58-cm long sediment core taken from the northern margin of the crest, known as TY1-N.170, the size and frequency of the mud clasts decrease upward. The clasts are smaller than 8 mm above a sediment depth of 34 cm below the sea floor (cmbsf). Sediments between 0 and 19 cmbsf are massive, and particles larger than 2 mm are absent. An enrichment of coarse, silt-sized particles in the massive sediment unit and the restricted distribution of the unit suggest that the massive unit was generated by re-deposition of sediment particles that were dispersed into the water column by gas bubble emission. These characteristics suggest that during the last mud volcanism of TY1, there was a decrease in mud eruption energy, and gas bubble emission became the main activity. In core TY1-S.440, taken from the southern slope, a massive sediment unit enriched with coarse, silt-sized particles, is intercalated between mud breccia structures. This suggests repeated mud breccia flows caused by TY1. The excess 210Pb activity present in the massive sediment unit of TY1-N.170 suggests activation of gas bubble emission. In the massive unit, a decrease in excess 210Pb activity appears upward toward the seafloor. The highest value is 3.1 dpm/g at 19.8 cmbsf (26.4 g/cm2 in cumulative mass); values lower than 1.0 dpm/g are distributed 2.8-6.8 cmbsf (3.6-8.8 g/cm2). The upwardly decreasing trend is opposite that of the reference core from which a reasonable areal sedimentation rate was obtained using a constant-flux constant

  17. Lunar Reconnaissance Orbiter Camera Observations Relating to Science and Landing Site Selection in South Pole-Aitken Basin for a Robotic Sample Return Mission (United States)

    Jolliff, B. L.; Clegg-Watkins, R. N.; Petro, N. E.; Lawrence, S. J.


    The Moon's South Pole-Aitken basin (SPA) is a high priority target for Solar System exploration, and sample return from SPA is a specific objective in NASA's New Frontiers program. Samples returned from SPA will improve our understanding of early lunar and Solar System events, mainly by placing firm timing constraints on SPA formation and post-SPA late-heavy bombardment (LHB). Lunar Reconnaissance Orbiter Camera (LROC) images and topographic data, especially Narrow Angle Camera (NAC) scale (1-3 mpp) morphology and digital terrain model (DTM) data are critical for selecting landing sites and assessing landing hazards. Rock components in regolith at a given landing site should include (1) original SPA impact-melt rocks and breccia (to determine the age of the impact event and what materials were incorporated into the melt); (2) impact-melt rocks and breccia from large craters and basins (other than SPA) that represent the post-SPA LHB interval; (3) volcanic basalts derived from the sub-SPA mantle; and (4) older, "cryptomare" (ancient buried volcanics excavated by impact craters, to determine the volcanic history of SPA basin). All of these rock types are sought for sample return. The ancient SPA-derived impact-melt rocks and later-formed melt rocks are needed to determine chronology, and thus address questions of early Solar System dynamics, lunar history, and effects of giant impacts. Surface compositions from remote sensing are consistent with mixtures of SPA impactite and volcanic materials, and near infrared spectral data distinguish areas with variable volcanic contents vs. excavated SPA substrate. Estimating proportions of these rock types in the regolith requires knowledge of the surface deposits, evaluated via morphology, slopes, and terrain ruggedness. These data allow determination of mare-cryptomare-nonmare deposit interfaces in combination with compositional and mineralogical remote sensing to establish the types and relative proportions of materials

  18. Slope-apron deposition in an Ordovician arc-related setting: the Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina (United States)

    Mángano, María Gabriela; Buatois, Luis Alberto


    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic are in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high- and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning- and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of

  19. Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile (United States)

    Veloso, E.; Cembrano, J.; Arancibia, G.; Heuser, G.; Neira, S.; Siña, A.; Garrido, I.; Vermeesch, P.; Selby, D.


    The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe-Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite-magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite-magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U-Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe-Cu-rich (vermiculite-anhydrite-chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re-Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite-calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime

  20. The Chicxulub event - sulfur-bearing minerals and lithologies (United States)

    Strauss, H.; Deutsch, A.


    Evaporates form a major target lithology at the Chicxulub impact site. One of the postulated effects of the impact event at the Cretaceous/Tertiary boundary is the impact-induced dissociation of anhydrite to form sulfur-oxides and a solid residue; large isotope fractionation effects in sulfur should accompany this process. We have analyzed the sulfur isotope composition of (i) annealed anhydrite clasts in impact melt breccias of PEMEX core Yucatan-6 N 19, (ii) unshocked anhydrite from the CSDP well Yaxcopoil-1, which belong to the megabreccia below the suevite layer (YAX-1 1369, and 1376 m depth), and (iii) sulfide grains of hydrothermal origin in a finest-grained breccia, which transects a large limestone block of this megabreccia at a depth of 1369 m. Samples of groups (i) and (ii) yielded δ34S values between 18.0 and 19.8 ppm CDT (unweighted mean is 18.3 ppm, n=7), with one slightly lower value of 15.3 ppm for an anhydrite clast in Y-6 N19/Part 6. These data are in agreement with the δ34S value for the Late Cretaceous seawater (Strauss 1999). The δ34S obviously remained unchanged despite the fact that textural features indicate a severe annealing of the clasts in the impact melt. Sulfides of group (iii) show δ34S values around 41 ppm CDT (n=7), which are quite unusual values if these minerals are of non-biogenic origin. In contrast, δ34S for the yellow glass from the K/T boundary at Haiti range from 1.5 to 13.2 ppm (Chaussidon et al. 1996). Using this preliminary evidence, we conclude that only distant ejecta lithologies, and probably secondary material inside the crater, may display impact-related fractionation of sulfur isotopes. This observation is consistent with petrologic data, modeling results as well as of shock recovery and annealing experiments: anhydrite obviously is quite resistant to shock-related dissociation.

  1. Chicxulub Impact Crater and Yucatan Carbonate Platform - Stratigraphy and Petrography of PEMEX Borehole Cores (United States)

    Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.


    Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on

  2. Thickness distributions and evolution of growth mechanisms of NH4-illite from the fossil hydrothermal system of Harghita Bai, Eastern Carpathians, Romania (United States)

    Bobos, Iuliu; Eberl, D.D.


    The crystal growth of NH4-illite (NH4-I) from the hydrothermal system of Harghita Bãi (Eastern Carpathians) was deduced from the shapes of crystal thickness distributions (CTDs). The 4-illite-smectite (I-S) interstratified structures (R1, R2, and R3-type ordering) with a variable smectite-layer content. The NH4-I-S (40–5% S) structures were identified underground in a hydrothermal breccia structure, whereas the K-I/NH4-I mixtures were found at the deepest level sampled (−110 m). The percentage of smectite interlayers generally decreases with increasing depth in the deposit. This decrease in smectite content is related to the increase in degree of fracturing in the breccia structure and corresponds to a general increase in mean illite crystal thickness. In order to determine the thickness distributions of NH4-I crystals (fundamental illite particles) which make up the NH4-I-S interstratified structures and the NH4,-I/K-I mixtures, 27 samples were saturated with Li+ and aqueous solutions of PVP-10 to remove swelling and then were analyzed by X-ray diffraction. The profiles for the mean crystallite thickness (Tmean) and crystallite thickness distribution (CTD) of NH4-I crystallites were determined by the Bertaut-Warren-Averbach method using the MudMaster computer code. The Tmean of NH4-I from NH4-I-S samples ranges from 3.4 to 7.8 nm. The Tmean measured for the NH4-I/K-I mixture phase ranges from 7.8 nm to 11.7 nm (NH4-I) and from 12.1 to 24.7 nm (K-I). The CTD shapes of NH4-I fundamental particles are asymptotic and lognormal, whereas illites from NH4-I/K-I mixtures have bimodal shapes related to the presence of two lognormal-like CTDs corresponding to NH4-I and K-I. The crystal-growth mechanism for NH4-I samples was simulated using the Galoper code. Reaction pathways for NH4-I crystal nucleation and growth could be determined for each sample by plotting their CTD parameters on an α–β2 diagram constructed using Galoper. This analysis shows that NH4-I

  3. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating (United States)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.


    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of

  4. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project (United States)

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel


    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  5. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina (United States)

    Mangano, M.G.; Buatois, L.A.


    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh

  6. The Ignimbrite Campana Magma Chamber: Pre-eruptive P-t-x Conditions From Melt Inclusion Data (United States)

    Marianelli, P.; Proto, M.; Sbrana, A.

    The Ignimbrite Campana (36 ka) represents the most powerful eruption characterizing the volcanic history of the Campi Flegrei caldera. The eruption was fed by a stratified magma chamber (Civetta et al., 1997). This study, based on melt inclusion investigations in phenocrysts of pumice, is aimed to better constrain depth, thermal conditions and composition of magmas hosted in the magma chamber. Samples from the Breccia Museo products (proximal deposits of the Ignimbrite Campana) were selected, due to their sin-eruptive and sin-depositional quenching. On the basis of melt inclusions investigations important informations about crystallization conditions (P, T, X) and volatile contents have been obtained. Glass compositions fall in the trachyte field close to the trachyte-phonolite boundary, similarly to the others Ignimbrite Campana products. The temperature of homogenization ranges between 850 and 1135°C. These values of temperature, that can be assumed as crystallization temperatures, correlate to the host crystal compositions with the highest one corresponding to melt inclusions trapped in less Fe-rich pyroxene. FTIR analyses on double -polished melt inclusions were carried out in order to investigate H2O and CO2 contents. Preliminary results indicate values of H2O that range from about 2 up to 8.0wt%, whereas CO2 was not detected. Lowest values of H2O (modal value = 2- 3wt%) correspond to the melt inclusions from layers at the top of the Breccia Museo (pumice flow deposits). Minimum pressures of crystallization are estimated in the range 100-200 MPa, assuming saturation conditions for the trapped melts and calculating the solubility of H2O in trachytic magmas according to the model of Moore et al. (1998). References Civetta L., Orsi G., Pappalardo L., Fisher R.V., Heiken G., Ort M. (1997): Geochemical zoning, mingling, eruptive dynamics and depositional processes ­ the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geoth. Res., 75: 183

  7. Geological model of supercritical geothermal reservoir related to subduction system (United States)

    Tsuchiya, Noriyoshi


    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  8. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California (United States)

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.


    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  9. Petrography, mineralogy, and geochemistry of deep gravelly sands in the Eyreville B core, Chesapeake Bay impact structure (United States)

    Bartosova, Katerina; Gier, Susanne; Horton, J. Wright; Koeberl, Christian; Mader, Dieter; Dypvik, Henning


    The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement-derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size-sorting and subtle, discontinuous layers occur locally. Quartz and K-feldspar are the main sand-size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K-feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer-grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean-resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive

  10. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project. (United States)

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John


    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  11. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination (United States)

    Zeigler, R. A.; Righter, K.; Allen, C. C.


    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent

  12. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site (United States)

    McSween, H.Y.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F.; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M.P.; Greenwood, J.P.; Johnson, J. R.; Moore, H.J.; Morris, R.V.; Parker, T.J.; Rieder, R.; Singer, R.; Wänke, H.


    Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence

  13. The nature of Mars's surface hydration: converging views from satellite (MEX), surface (MSL) and meteorite (NWA 7034 / 7533 and co) observations. (United States)

    Beck, P.; Pommerol, A.; Zanda, B.; Remusat, L.; Lorand, J. P.; Gopel, C. H.; Hewins, R.; Pont, S.; Lewin, E.; Quirico, E.; Schmitt, B.; Montes-Hernandez, G.; Garenne, A.; Bonal, L.; Proux, O.; Hazemann, J. L.; Chevrier, V.; Martín-Torres, J.; Zorzano, M. P.; Gasnault, O.; Maurice, S.; Wiens, R. C.


    Early infrared observations of the Martian surface have revealed the presence of a deep absorption between 2.6 and 3.5 µm usually referred to as the 3-µm band. Two non-exclusive explanations have been formulated to account for this 3-µm band. The first possibility is that it relates to the presence of some amount of adsorbed atmospheric water, water that would be exchangeable and could play a role in present day Mars water cycle. The alternative is that this absorption is due to an -OH or H2O bearing mineral component within the Martian dust, which would imply that water is involved at some stage of the dust production mechanism. Several lines of evidences seem to converge toward the second hypothesis. First, after 10 years of mapping of the martian surface with OMEGA (MEX), the lack of variation of the 3-µm feature with surface relative humidity suggests that the surface hydration does not exchange with the atmosphere. This is in agreement with laboratory adsorption experiments under Mars conditions. 
More recently the Mars Science Laboratory with unprecedented payload has provided some crucial constraints on the nature of surface hydration. The ChemCam instrument onboard MSL has detected hydrogen in dust and soil, and revealed the lack of variation of H concentration with surface humidity, including nighttime measurements. Also, evolved gas analysis by SAM of Gale crater soils shows that water is released at relatively high-temperature and suggest that -OH or H2O bearing phases are trapped in the amorphous component of soils. 
Finally, the exceptional "black beauty" meteorite might also provide clues to the nature of Mars's surface hydration. This Martian breccia shows elevated amount of water with respect to any other Martian meteorite. By studying the spectral properties of NWA 7533, we were able to show the presence of a 3-µm band and a small red-slope; this Martian breccia seems to contain a fine-oxidized-H-bearing component, possibly similar to that

  14. Earthquake-induced barium anomalies in the Lisan Formation, Dead Sea Rift valley, Israel (United States)

    Katz, Amitai; Agnon, Amotz; Marco, Shmuel


    Prominent barium concentration anomalies that appear within earthquake brecciated layers (seismites) in the late Pleistocene lacustrine Lisan Formation in the Dead Sea Basin (DSB) are described and discussed here for the first time. Chemical analyses of samples from vertical profiles through the seismites display asymmetric Ba concentration peaks. The peaks start a few centimeters above the seismite's base and gradually rise to maxima reaching some 1000 ppm Ba, before falling off to background values (around 100 ppm), or abutting against the upper boundary of the breccia layer. High resolution SEM and electron microprobe analyses disclose that the Ba in the anomalies resides within prismatic crystallites (mostly sorting relationship with the latter. The peaks of the anomalies reflect higher population density, rather than larger crystal sizes, of the BM crystallites therein. Mass balance calculations show that the mass of Ba 2+ dissolved in the lake above a unit area of the seismites was mostly several times larger than that found in the seismite. The concentration of Ba 2+ in DSB Ca-chloride brines is mostly lesser than that in the DSB Lake, ruling out the former as a source of Ba to the anomalies. We propose that, during earthquakes, the uppermost bottom sediment layers in the DSB Lake were shaken and re-suspended into the overlying brine. The larger, faster-settling fragments and grains remained almost intact or were rapidly removed, unaffected, from the slurry. However, the finer grains remained in suspension for longer periods, allowing nucleation and growth of BM crystallites on their surfaces from the surrounding brine before reaching the bottom. The lag of Ba trapping behind the breccia accumulation and the asymmetrical peak shapes of the anomalies are accounted for by decreasing dilution of the Ba-rich finer particles by Ba-poor coarse grains during seismite accumulation, as reflected by the graded bedding of the seismite layers. The supply rate of Ba 2

  15. Lunar Reconnaissance Orbiter Camera Observations Relating to Science and Landing Site Selection in South Pole-Aitken Basin for a Robotic Sample Return Mission (United States)

    Jolliff, B. L.; Clegg-Watkins, R. N.; Petro, N. E.; Lawrence, S. L.


    The Moon's South Pole-Aitken basin (SPA) is a high priority target for Solar System exploration, and sample return from SPA is a specific objective in NASA's New Frontiers program. Samples returned from SPA will improve our understanding of early lunar and Solar System events, mainly by placing firm timing constraints on SPA formation and the post-SPA late-heavy bombardment (LHB). Lunar Reconnaissance Orbiter Camera (LROC) images and topographic data, especially Narrow Angle Camera (NAC) scale (1-3 mpp) morphology and digital terrain model (DTM) data are critical for selecting landing sites and assessing landing hazards. Rock components in regolith at a given landing site should include (1) original SPA impact-melt rocks and breccia (to determine the age of the impact event and what materials were incorporated into the melt); (2) impact-melt rocks and breccia from large craters and basins (other than SPA) that represent the post-SPA LHB interval; (3) volcanic basalts derived from the sub-SPA mantle; and (4) older, "cryptomare" (ancient buried volcanics excavated by impact craters, to determine the volcanic history of SPA basin). All of these rock types are sought for sample return. The ancient SPA-derived impact-melt rocks and later-formed melt rocks are needed to determine chronology, and thus address questions of early Solar System dynamics, lunar history, and effects of giant impacts. Surface compositions from remote sensing are consistent with mixtures of SPA impactite and volcanic materials, and near infrared spectral data distinguish areas with variable volcanic contents vs. excavated SPA substrate. Estimating proportions of these rock types in the regolith requires knowledge of the surface deposits, evaluated via morphology, slopes, and terrain ruggedness. These data allow determination of mare-cryptomare-nonmare deposit interfaces in combination with compositional and mineralogical remote sensing to establish the types and relative proportions of materials

  16. Ductile and Brittle Neogene Deformation of Late Permian Orthogneiss in the Northern Ailao Shan-Red River Shear Zone: View from the Xuelong Shan Block (United States)

    Wintsch, R. P.; Yi, D.; Yi, K.; Wang, Q. F.; Wang, G. H.


    The orthogneisses in the core of the Xuelong Shan block are surrounded by ductile and then brittle fault rocks. This lens-shape block is in fault contact with Triassic marbles on the eastern margin and Jurassic-Cretaceous mudstones on the western margin. The rocks in the core of the Xuelong Shan block contain multiply foliated feldspathic orthogneisses with local amphibolites, largely overprinted by protomylonitic deformation. Foliation strengthens to the east to become mylonites and ultramylonites, with a 30 m wide zone of loosely cemented fault breccia adjacent to brittlely faulted Triassic marbles. In contrast, the rocks to the west are dominated by brittle deformation, with mylonites becoming cataclasites and then breccias facing the mudstones to the east. Well-foliated phyllonites are locally present within the cataclasites. Early S1 gneissosity striking ENE are recognized only in the interior protomylonite. In the east, the dominate mylonitic S2 foliation strikes 340° with a moderate dip to the east, and an L2 mineral stretching lineation plunges gently north. However, in the west S2 cleavage is transposed into a NNW trending schistosity that dips steeply to the ENE, with down-dip mineral stretching lineations. Whole rock chemistry indicates a granitic to granodioritic protolith for all the rocks including the ultramylonites, but also suggests the progressive loss of alkalis with increasing deformation. Trace element compositions show these rocks lie in the volcanic arc/syn-collisional granite field. U-Pb SHRIMP ages show an Early Triassic age for these granite, with possible Middle Permian inheritance in some cores. These ages are consistent with the period of the closure of the northern Paleo-Tethys ocean. Metamorphic rim ages of ~ 30 Ma record a small amount of zircon dissolution/precipitation probably associated with the Oligocene ductile deformation that produced the upper greenschist facies mylonites. These results support the geologic history of the

  17. Mineralogy, petrography, geochemistry, and classification of the Košice meteorite (United States)

    OzdíN, Daniel; PlavčAn, Jozef; HoråáčKová, Michaela; Uher, Pavel; PorubčAn, VladimíR.; Veis, Pavel; Rakovský, Jozef; Tóth, Juraj; KonečNý, Patrik; Svoreå, JáN.


    The Košice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Košice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan-like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black-gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe-Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase-like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Košice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Košice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Košice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron-microprobe analysis (EMPA) with focused and defocused electron beam, whole-rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration-free laser induced breakdown spectroscopy (CF-LIBS) were used to characterize the Košice fragments. The results provide further evidence that whole-rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF-LIBS), but only major and minor elements can be evaluated due to the

  18. A study of the heavy mineral suite of the sandstones of the Ecca Group of the Karoo Supergroup (United States)

    Diskin, Sorcha; Coetzee, Stephan; Wendorff, Marek; Lethsolo, Maatle


    The Karoo Supergroup comprises successions of sedimentary and volcanic rocks spread across southern Africa. In neighbouring South Africa and Namibia these rocks are well exposed and the lithostratigraphy is well constrained by the fossil record, whereas in Botswana the succession is largely covered by the Kalahari sands. Analysis of detrital minerals using SEM techniques has proven very useful in determining provenance. Here we present the preliminary conclusions of a study of the heavy mineral suite of the sandstones of the Ecca Group of the Karoo Supergroup using .SEM - EDAX along with standard SEM microscopy to investigate the provenance and comment on the likely source rock. Samples were taken from a borehole (10181C, Kang, Central Botswana) and the heavy mineral fraction was separated using standard preparation techniques; analyses were conducted on a Philips XL30 ESEM equipped with an EDAX EDS system. SEM-EDAX results show a progression in garnet composition down hole to include more pyrope rich garnets, which is indicative of derivation from a sediment source evolving from a region of higher to lower grade metamorphism. There are also some more grossular garnets present, potentially indicating a minor igneous component. Grain morphology was noted to remain similar regardless of grain size. Garnets here are quite broken indicating relatively short transport path/time, however some show rounding which may be due to dissolution. Examination of larger grains using SEM indicated that many were not monomineralic and in fact formed a type of breccia. These breccias comprise a range of minerals including rutile and staurolite. Some of the material appears to be a titanian pyrope (garnet), this is significant as these types of garnet are particularly associated with kimberlites, suggesting that these very high grade metamorphic rocks are a potential source for the sediment. Detrital feldspars overgrown with barite were also noted. The barites are particularly

  19. Titanium stable isotopic variations in chondrites, achondrites and lunar rocks (United States)

    Greber, Nicolas D.; Dauphas, Nicolas; Puchtel, Igor S.; Hofmann, Beda A.; Arndt, Nicholas T.


    Titanium isotopes are potential tracers of processes of evaporation/condensation in the solar nebula and magmatic differentiation in planetary bodies. To gain new insights into the processes that control Ti isotopic variations in planetary materials, 25 komatiites, 15 chondrites, 11 HED-clan meteorites, 5 angrites, 6 aubrites, a martian shergottite, and a KREEP-rich impact melt breccia have been analyzed for their mass-dependent Ti isotopic compositions, presented using the δ49Ti notation (deviation in permil of the 49Ti/47Ti ratio relative to the OL-Ti standard). No significant variation in δ49Ti is found among ordinary, enstatite, and carbonaceous chondrites, and the average chondritic δ49Ti value of +0.004 ± 0.010‰ is in excellent agreement with the published estimate for the bulk silicate Earth, the Moon, Mars, and the HED and angrite parent-bodies. The average δ49Ti value of komatiites of -0.001 ± 0.019‰ is also identical to that of the bulk silicate Earth and chondrites. OL-Ti has a Ti isotopic composition that is indistinguishable from chondrites and is therefore a suitable material for reporting δ49Ti values. Previously published isotope data on another highly refractory element, Ca, show measurable variations among chondrites. The decoupling between Ca and Ti isotope systematics most likely occurred during condensation in the solar nebula. Aubrites exhibit significant variations in δ49Ti, from -0.07 to +0.24‰. This is likely due to the uniquely reducing conditions under which the aubrite parent-body differentiated, allowing chalcophile Ti3+ and lithophile Ti4+ to co-exist. Consequently, the observed negative correlation between δ49Ti values and MgO concentrations among aubrites is interpreted to be the result of isotope fractionation driven by the different oxidation states of Ti in this environment, such that isotopically heavy Ti4+ was concentrated in the residual liquid during magmatic differentiation. Finally, KREEPy impact melt breccia

  20. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran (United States)

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.


    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  1. Magmatic and related mineral deposits of the Pan-African Saldania belt in the Western Cape Province, South Africa (United States)

    Rozendaal, A.; Scheepers, R.


    Mineral deposits and prospects of the Pan-African Saldania orogenic belt in the Western Cape Province, South Africa, are reviewed. The polyphase, deformed, low-grade metamorphosed, volcano-sedimentary Malmesbury Group constitutes a complex, poorly understood supracrustal sequence that has been loosely subdivided into the Tygerberg, Swartland and Boland tectono-stratigraphic terranes on the basis of NW-trending fault zones. Syn- and post-tectonic granitoids of the Cape Granite Suite selectively intruded these terranes. Early S-types preferred the Tygerberg terrane, whereas the later I-types dominate the remaining areas. Anorogenic A-type granites, however, occur in all three terranes. Despite the absence of operating base or precious metal mines in the area, this study has established at least four metal associations directly or indirectly related to the intrusions: i) Cassiterite-wolframite (±Au, Cu, Mo, Zn, As, Fe-sulphides) in quartz and quartz/aplite veins hosted by tour-malinized and locally greissenized S-type granite. Similar exo-granitic veins occur in proximal metamorphites; ii) Juxtaposed, disseminated, stockwork breccia and vein style CuMoFe(Au)-sulphide mineralization hosted by mafic- to intermediate-intrusions of high-K calc-alkaline, I-type affinity; iii) CuMoAu-sulphides hosted by hydraulic breccia pipes, stocks and veins occurring in anorogenic A-type alkali feldspar granites and amphibole quartz syenites; iv) Scheelite with minor CuMoAu-sulphides associated with endo- and exo-skams spatially related to I-type monzogranite, granite and alkali feldspar granite. The first three associations occur along the Yzerfontein-Helderberg-zone, a 180 km lineament in the Tygerberg terrane, exploited by syn-, late- and post-tectonic intrusions and their related mineralization. The fourth association is typical of the Boland terrane. The spatial and temporal relationships among the various metal associations are interpreted as the result of

  2. Trace element geochemistry and the early lunar differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S.; Reed, G.W. Jr.


    Convection cells in the early lunar magma ocean suggest a laterally inhomogeneous crust. In general, mineralogy and petrology of samples may be relatively insensitive to which cell they evolved in since major and minor element concentrations would not be expected to vary greatly from cell to cell. It is established that, although most samples are local material, a few samples are fragments of projectiles that excavated secondary craters and that they are exotic--i.e. originated in different cell--to their present locations. Thus caution must be exercised in genetically relating samples found at a given site. Ru and Os have been fractionated from one another and also partitioned in the stratigraphic column resulting from the differentiation of the early lunar magma ocean. Lithic breccias contain two types of fractionated Ru-Os which appear to be related to near-surface crustal stratigraphy. Basalts contain fractionated Ru-Os which is correlated with their depths of origin. These are based on the ages of extrusion which are time related to the depths at which melting occurred.

  3. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo


    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  4. Asteroid 2008 TC3 Breakup and Meteorite Fractions (United States)

    Goodrich, C.; Jenniskens, P.; Shaddad, M. H.; Zolensky, M. E.; Fioretti, A. M.


    The recovery of meteorites from the impact of asteroid 2008 TC3 in the Nubian Desert of Sudan on October 7, 2008, marked the first time meteorites were collected from an asteroid observed in space by astronomical techniques before impacting. Search teams from the University of Khartoum traced the location of the strewn field and collected about 660 meteorites in four expeditions to the fall region, all of which have known fall coordinates. Upon further study, the Almahata Sitta meteorites proved to be a mixed bag of mostly ureilites (course grained, fine grained, and sulfide-metal assemblages), enstatite chondrites (EL3-6, EH3, EH5, breccias) and ordinary chondrites (H5-6, L4-5). One bencubbinite-like carbonaceous chondrite was identified, as well as one unique Rumuruti-like chondrite and an Enstatite achondrite. New analysis: The analysed meteorites so far suggest a high 30-40 percent fraction of non-ureilites among the recovered samples, but that high fraction does not appear to be in agreement with the meteorites in the University of Khartoum (UoK) collection. Ureilites dominate the meteorites that were recovered by the Sudanese teams. To better understand the fraction of recovered materials that fell to Earth, a program has been initiated to type the meteorites in the UoK collection in defined search areas. At this meeting, we will present some preliminary results from that investigation.

  5. Early Solar System hydrothermal activity in chondritic asteroids on 1-10-year timescales. (United States)

    Dyl, Kathryn A; Bischoff, Addi; Ziegler, Karen; Young, Edward D; Wimmer, Karl; Bland, Phil A


    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water-rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water-rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water-rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H(2)O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa(-1)Al(-1) exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1-10 y. This result has wide-ranging implications for the geological history of chondritic asteroids.

  6. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales (United States)

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.


    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  7. The Foreign Clast Populations of Anomalous Polymict Urelite Almahata Sitta (Asteroid 2008 TC(sub3) and Typical Polymict Ureilites: Implications for Asteroid-Meteorite Connections (United States)

    Goodrich, C. A.; Treiman, A. H.; Zolensky, M.; Kita, N. T.; Defouilloy, C.; Fioretti, A. M.; O'Brien, D. P.; Jenniskens, P.; Shaddad, M. H.


    Almahata Sitta (AhS) is the first meteorite to originate from an asteroid (2008 TC3) that had been studied in space before it hit Earth [1,2]. It is also unique because the fallen fragments comprise a variety of types: approximately 69% ureilites (achondrites) and 31% chondrites [3]. Two models have been proposed for the origin 2008 TC3: 1) an accretionary model [3,4]; or 2) a regolith model [5,6]. Typical polymict ureilites are interpreted to represent regolith, and contain a few % foreign clasts [7,8]. The most common are dark (CC matrix-like) clasts similar to those in many meteoritic breccias [9]. A variety of other chondrites, as well as achondrites (angrites), have also been reported [7,9,10]. We have been working to determine the full diversity of these clasts [10-13] for comparison with AhS. We discuss implications for mixing of materials in the early solar system and the origin of 2008 TC3.

  8. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 331 Scientists


    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 331 drilled into the Iheya North hydrothermal system in the middle Okinawa Trough in order to investigate active subseafloor microbial ecosystems and their physical and chemical settings. We drilled five sites during Expedition 331 using special guide bases at three holes for reentry, casing, and capping, including installation of a steel mesh platformwith valve controls for postcruise sampling of fluids. At Site C0016, drilling at the base of the North Big Chimney (NBCmound yielded low recovery, but core included the first Kuroko-type black ore ever recovered from the modern subseafloor. The other four sites yielded interbedded hemipelagic and strongly pumiceous volcaniclastic sediment, along with volcanogenic breccias that are variably hydrothermally altered and mineralized. At most sites, analyses of interstitial water and headspace gas yielded complex patterns withdepth and lateral distance of only a few meters. Documented processes included formation of brines and vapor-rich fluids by phase separation and segregation, uptake of Mg and Na by alteration minerals in exchange for Ca, leaching of K at high temperature and uptake at low temperature, anhydrite precipitation, potential microbial oxidation of organic matter and anaerobic oxidation of methane utilizing sulfate, and methanogenesis. Shipboard analyses have found evidence for microbial activity in sediments within the upper 10–30 m below seafloor (mbsf where temperatures were relativelylow, but little evidence in the deeper hydrothermally altered zones and hydrothermal fluid regime.

  9. A two-billion-year history for the lunar dynamo. (United States)

    Tikoo, Sonia M; Weiss, Benjamin P; Shuster, David L; Suavet, Clément; Wang, Huapei; Grove, Timothy L


    Magnetic studies of lunar rocks indicate that the Moon generated a core dynamo with surface field intensities of ~20 to 110 μT between at least 4.25 and 3.56 billion years ago (Ga). The field subsequently declined to dynamo had terminated by this time or just greatly weakened in intensity. We present analyses that demonstrate that the melt glass matrix of a young regolith breccia was magnetized in a ~5 ± 2 μT dynamo field at ~1 to ~2.5 Ga. These data extend the known lifetime of the lunar dynamo by at least 1 billion years. Such a protracted history requires an extraordinarily long-lived power source like core crystallization or precession. No single dynamo mechanism proposed thus far can explain the strong fields inferred for the period before 3.56 Ga while also allowing the dynamo to persist in such a weakened state beyond ~2.5 Ga. Therefore, our results suggest that the dynamo was powered by at least two distinct mechanisms operating during early and late lunar history.

  10. Preuves de la non-stratification du Trias dans le Turonien de la Koudiat Sidii (Nord-Ouest de la Tunisie)Evidence of the non-interbedding of the Triassic evaporites within the Turonian sediments in the Koudiat Sidii area (north-western Tunisia) (United States)

    Chikhaoui, Mongi; Braham, Ahmed; Turki, Mohamed Moncef


    The cartographic and biostratigraphic datings carried out at Koudiat Sidii do not confirm the interbedding of the Triassic rocks within the Turonian sediments. Interrelationships between cartographic, drill holes and gravimetric dating show that the Triassic rocks form the core of a large anticline, flanked by Cretaceous and Neogene outcrops. Of this structure, in large parts collapsed and buried under a thick Quaternary deposit, we only see the western flank, formed by dolomitic breccia of Triassic rocks supporting a set that spreads from Upper Cenomanian to Upper Senonian. The occurrence of Triassic debris flow reworked in the Turonian allows us to interpret the Triassic material as a diapiric extrusion, which reached the surface during the Turonian times, in the tectonic corner of ancient faults trending north-south and NE-SW. During the Tertiary tightening phases, oriented NW-SE, the induced folded structures are strongly controlled by these tectonic directions. Particularly, the meridian fold corresponds to the torsion of J. Hout NE-SW fold in the neighbourhood of the north-south palaeofaults.

  11. Topography and Volcanology of the Huangtsuishan Volcano Subgroup, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai


    Full Text Available Combining the shaded relief topography model and the slope map from the Digital Terrain Model (DTM images, toporaphical map, field occurrences and petrography, the volcanic sequences of the Huangtsuishan Volcano Subgroup (HVS can be constructed. Two types of volcanic centers can be identified in this area. One is the Tachienhou volcanic dome, which may be located in the center of an older caldera. The other is the Huangtsui composite volcano, which is composed of interbedding lava flows and pyroclastic deposits with a volcanic crater named the Huangtsui pond at the summit. Eight lava plateaus radiated from Mts. Huangtsui and Tachienhou to the north and the east can be distinguished based on the DTM images. The volcanic deposits are comprised of four lithofacies, the lava flows, pyroclastic breccias, tuffs and lahars on the base of field occurrences. At least thirteen layers of lava flow, named the H1 to H13 can be recognized in the HVS and can be reconstructed and categorized into four stages. An old and large volcano erupted lava flows to form the products of stages one and two, then collapsed to form a caldera with a dome for the third stage. The latest stage of lava flow was poured out from the Huangtsui volcano, which formed a crater at the summit.

  12. Spectroscopic studies of terrestrial impact materials: Preparation for Popigai expedition (United States)

    Evdokimova, N. A.; Rodin, A. V.; Masaitis, V. L.; Timofeev, I. S.; Roste, O. Z.; Korablev, O. I.; Dolnikov, G. G.


    Terrestrial craters give us an excellent opportunity of direct analisys as opposed to craters out of the E arth. However, on the Earth there are only few sites where traces of strong impacts event could be studied in the fi eld. The traces of ancient impacts are better preserved in the frozen subsoil at subpolar latitudes. One of such sites is Popigai crater, located in subpolar Siberia, Russia, presumably caused by a giant impactor 35 Ma ago. This astrobleme gives a good chance to observe in situ the asteroid crater, impact materials and other consequenses of great energy deposition. T he crater was thoroughly studied during last few decades due to impact diamond inventories associated with it [1]. However a number of problems remain unresolved and wait for further studies: the physics and chemistry of impactites and impact breccias; mineral components with metamorphic rocks affected by great shock and impactites; material ejecta; structural forms invoked by crater formation; problems of remote sensing studies and problems related to comparative planetology. In the framework o f Europlanet program, we plan the expedition to Popigai site scheduled to 2012.

  13. Discovering Hominins - Application of Medical Computed Tomography (CT) to Fossil-Bearing Rocks from the Site of Malapa, South Africa (United States)

    Smilg, Jacqueline S.; Berger, Lee R.


    In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application. PMID:26684299

  14. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13 (United States)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.


    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  15. Organic geochemistry of impactites from the Haughton impact structure, Devon Island, Nunavut, Canada (United States)

    Parnell, John; Bowden, Stephen A.; Osinski, Gordon R.; Lee, Pascal; Green, Paul; Taylor, Colin; Baron, Martin


    Organic matter in impactites from the 24 km wide and 39 Ma old Haughton impact structure, Canadian High Arctic, is a mixture of fossil and modern biological components. The fossil component represents a conventional oil that was generated from Lower Palaeozoic marine source material before impact and permeates bedrock dolomites. Biomarker maturity parameters record the thermal effect of the mid-Tertiary impact. Maturity-influenced sterane, rearranged hopanoid, and triaromatic steroid ratios all increase towards the centre of the impact structure, where thermal alteration was greatest. The heating was probably dominated by an impact-related hydrothermal system, as such systems last long enough for kinetically-based thermal alteration to occur. Kinetically-related biomarker data suggest that the hydrothermal heating lasted for c. 5000 years. Biomarkers are also preserved in dolomite clasts within impact melt breccia, and indicate strong thermal alteration. Modern biological contamination of the rocks is responsible for the superposition of two geochemical signatures (which could be cyanobacteria, non-marine algae, or higher plant matter) onto the fossil component, but they can be recognized and distinguished. The data show that the impact structure system holds a record of both the pre-impact organic signature and the thermal signature of the impact, and thereby indicates that organic geochemistry is a valuable tool in documenting the response of rocks to impacts.

  16. Neyshabour turquoise mine: the first Iron Oxide Cu-Au-U-LREE (IOCG mineralized system in Iran

    Directory of Open Access Journals (