WorldWideScience

Sample records for breathing improving health

  1. Relationships between breath ratios, spirituality and health ...

    African Journals Online (AJOL)

    The aim of this retrospective, quantitative study was to investigate relationships between breath ratios, spirituality perceptions and health perceptions, with special reference to breath ratios that best predict optimal health and spirituality. Significant negative correlations were found between breath ratios and spirituality ...

  2. Comprehensive yogic breathing program improves quality of life in patients with diabetes

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2012-01-01

    Full Text Available Objective: To assess the effect of a comprehensive yogic breathing program on glycemic control and quality of life (QOL in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Patients having HbA1c between 6 and 9% for at least 3 months with lifestyle modification and oral antidiabetic medication were included. They were followed-up and randomized at 6 months into two groups: one group receiving standard treatment of diabetes and the other group receiving standard treatment of diabetes and taught and told to regularly practice the comprehensive yogic breathing program (Sudarshan Kriya Yoga and Pranayam. Change in fasting and post-prandial blood sugars, glycated hemoglobin and QOL as assessed by the World Health Organization QOL WHOQOL BREF questionnaire were assessed. Results: There was a trend toward improvement in glycemic control in the group practicing the comprehensive yogic breathing program compared with the group following standard treatment alone, although this was not significant. There was significant improvement in physical, psychological and social domains and total QOL post-intervention in the group practicing the comprehensive yogic breathing program as compared with the group following standard treatment alone. Conclusion: There was significant improvement in the QOL and a non-significant trend toward improvement in glycemic control in the group practicing the comprehensive yogic breathing program compared with the group that was following standard treatment alone.

  3. Impact of breath holding on cardiovascular respiratory and cerebrovascular health.

    Science.gov (United States)

    Dujic, Zeljko; Breskovic, Toni

    2012-06-01

    Human underwater breath-hold diving is a fascinating example of applied environmental physiology. In combination with swimming, it is one of the most popular forms of summer outdoor physical activities. It is performed by a variety of individuals ranging from elite breath-hold divers, underwater hockey and rugby players, synchronized and sprint swimmers, spear fishermen, sponge harvesters and up to recreational swimmers. Very few data currently exist concerning the influence of regular breath holding on possible health risks such as cerebrovascular, cardiovascular and respiratory diseases. A literature search of the PubMed electronic search engine using keywords 'breath-hold diving' and 'apnoea diving' was performed. This review focuses on recent advances in knowledge regarding possibly harmful physiological changes and/or potential health risks associated with breath-hold diving. Available evidence indicates that deep breath-hold dives can be very dangerous and can cause serious acute health problems such a collapse of the lungs, barotrauma at descent and ascent, pulmonary oedema and alveolar haemorrhage, cardiac arrest, blackouts, nitrogen narcosis, decompression sickness and death. Moreover, even shallow apnoea dives, which are far more frequent, can present a significant health risk. The state of affairs is disturbing as athletes, as well as recreational individuals, practice voluntary apnoea on a regular basis. Long-term health risks of frequent maximal breath holds are at present unknown, but should be addressed in future research. Clearly, further studies are needed to better understand the mechanisms related to the possible development or worsening of different clinical disorders in recreational or competitive breath holding and to determine the potential changes in training/competition regimens in order to prevent these adverse events.

  4. Sudarshan kriya yoga: Breathing for health

    Directory of Open Access Journals (Sweden)

    Sameer A Zope

    2013-01-01

    Full Text Available Breathing techniques are regularly recommended for relaxation, stress management, control of psychophysiological states, and to improve organ function. Yogic breathing, defined as a manipulation of breath movement, has been shown to positively affect immune function, autonomic nervous system imbalances, and psychological or stress-related disorders. The aim of this study was to assess and provide a comprehensive review of the physiological mechanisms, the mind-body connection, and the benefits of Sudarshan Kriya Yoga (SKY in a wide range of clinical conditions. Various online databases searched were Medline, Psychinfo, EMBASE, and Google Scholar. All the results were carefully screened and articles on SKY were selected. The references from these articles were checked to find any other potentially relevant articles. SKY, a unique yogic breathing practice, involves several types of cyclical breathing patterns, ranging from slow and calming to rapid and stimulating. There is mounting evidence to suggest that SKY can be a beneficial, low-risk, low-cost adjunct to the treatment of stress, anxiety, post-traumatic stress disorder, depression, stress-related medical illnesses, substance abuse, and rehabilitation of criminal offenders.

  5. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  6. THE EFFECTS OF BREATHING EXERCISES TO INCREASE IMMUNITY IN ELDERLY HEALTH

    Directory of Open Access Journals (Sweden)

    Siswantoyo Siswantoyo

    2012-11-01

    Full Text Available Background: this study aimed to demonstrate influence of breathing exercise to increase immunity in elderly. It was an experimental study with Randomized Group Pre-Posttest design. The intervension was given in 21 meetings. Methods: The populations were elder participants of Satria Nusantara breathing exercise. Samples were 15 men aged over 45 years. each group. The unit of analysis was blood taken from cubital vein. Glucometer was to determine blood sugar levels. whereas beta-endorphin and lgG used ELISA (enzyme linked immunosorbent assay, by indirect sandwitch. Data were read by Elisa Reader with a sensitivity of 95%. Data were analyzed descriptives and inferential statistics by SPSS software and further analysis using t-tests. Results showed that, lgG significantly increased, p = 0013. The mean increase of lgG was 33.266 ng/mL. For beta-endorphin. Results t-tests showed the significance of 0.000. The mean increase of endorphine was 3.922ng/mL, and blood sugar levels showed a decrease after the breathing exercise. The decrease of blood sugar was significant of 0.000. The mean decrease in blood sugar levels was 28.9 mg/100ml. Conclusion: It can be concluded that regular targeted and programmed breathiing exercise over 21 meetings increased the production of lgG and beta endorphins, as well as decreasing blood sugar levels. Breathing exercise was alternative sports to improve immunity. Key words: breathing exercise, immunity, elderly of health

  7. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Association of oral breathing with dental malocclusions and general health in children.

    Science.gov (United States)

    Jiménez, Emilio L; Barrios, Rocío; Calvo, Juan C; de la Rosa, Maria T; Campillo, José S; Bayona, José C; Bravo, Manuel

    2017-06-01

    The aims of this study were to analyze the association of oral breathing with dental malocclusions and aspects of general health such as acute illnesses, oxygen saturation in blood and its possible implication in the process of nutrition. A prevalence analytic study was carried out. Five dentists explored to children between 6 and 12 years and measured their oxygen saturation. Parents completed a questionnaire of 11 items about general health (colds, ear infections, tonsillitis and taking antibiotics) and the food preferences of their children. At the end, children were classified in oral breathing group (prevalence cases) or nasal breathing group (controls). There were statistical differences between cases (452 children) and controls (752 children) in the facial morphometric measurements. Oral breathing children had statistically less percentage of oxygen saturation than controls (92.3±3.3% versus 96.5±2.3%), took less time to have lunch and preferred less consistent and sugary food. Cases had had more prevalence of pathologies in the last year and of taking the antibiotics. This group also had higher prevalence of allergies compared with controls group (POral breathing is significantly associated with specific dental malocclusions and important aspects of general health such as oxygen saturation and the nutrition. On the same line, oral breathing is related to a significantly higher prevalence of allergies and a significantly more likely getting sick and taking medication.

  9. Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency

    Directory of Open Access Journals (Sweden)

    Danny Lee, PhD

    2017-07-01

    Conclusions: This study demonstrated that audiovisual biofeedback can be used to improve the reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition to improving various medical imaging and treatments by using breath-hold procedures.

  10. The role of telemedicine and mobile health in the monitoring of sleep-breathing disorders: improving patient outcomes

    Directory of Open Access Journals (Sweden)

    Villanueva JA

    2017-02-01

    Full Text Available Jair A Villanueva,1,* Monique C Suarez,2,* Onintza Garmendia,2,3 Vera Lugo,2 Concepción Ruiz,2 Josep M Montserrat,2–5 1Unit of Biophysics and Bioengineering, Faculty of Medicine, University of Barcelona, 2Sleep Unit, Respiratory Medicine Department, Hospital Clinic, Barcelona, 3Center for Biomedical Research in Respiratory Diseases (CIBERES, Madrid, 4Faculty of Medicine, University of Barcelona, 5August Pi i Sunyer Biomedical Research Institute (IDIBAPS, Barcelona, Spain *These authors contributed equally to this work Abstract: Although the concepts are broad, telemedicine and mobile health (mHealth can be defined as a methodology to provide health care remotely and improve health services and outcomes using telecommunication tools. The widespread adoption of these technologies and current health care challenges, such as the aging population and increasing costs, has encouraged interest in the development of new strategies involving telemedicine. Overall, there is a lack of evidence rigorously assessing the impact of telemedicine and mHealth. Therefore, proper randomized controlled trials, with cost-effectiveness and impact on quality-of-life analysis, are urgently needed. They should also focus on specific populations and their comorbidities, since customizing telemedicine approaches is paramount to ensure success. Obstructive sleep apnea is a highly prevalent chronic condition and the most common of sleep-breathing disorders, and telemedicine and mHealth could play a pivotal role in the different phases of its management. In the future, using new devices capable of signal acquisition and analysis will refine obstructive sleep apnea diagnosis; even smartphones’ built-in sensors could offer improved comfort and the possibility of home sleep monitoring. Continuous positive airway pressure titration could be performed with wireless devices, whose parameters can be changed remotely from sleep centers. Finally, the follow-up phase could be

  11. The use of counting beads to improve the classification of fast breathing in low-resource settings: a multi-country review

    Science.gov (United States)

    Noordam, Aaltje Camielle; Barberá Laínez, Yolanda; Sadruddin, Salim; van Heck, Pabla Maria; Chono, Alex Opio; Acaye, Geoffrey Larry; Lara, Victor; Nanyonjo, Agnes; Ocan, Charles; Källander, Karin

    2015-01-01

    To decrease child mortality due to common but life-threatening illnesses, community health workers (CHWs) are trained to assess, classify and treat sick children. For pneumonia, CHWs are trained to count the respiratory rate of a child with cough and/or difficulty breathing, and determine whether the child has fast breathing or not based on how the child’s breath count relates to age-specific respiratory rate cut-off points. International organizations training CHWs to classify fast breathing realized that many of them faced challenges counting and determining how the respiratory rate relates to age-specific cut-off points. Counting beads were designed to overcome these challenges. This article presents findings from different studies on the utility of these beads, in conjunction with a timer, as a tool to improve classification of fast breathing. Studies conducted by the International Rescue Committee and Save the Children among illiterate CHWs assessed the effectiveness of counting beads to improve both counting and classifying respiratory rate against age-specific cut-off points. These studies found that the use of counting beads enabled and improved the assessment and classification of fast breathing. However, a Malaria Consortium study found that the use of counting beads decreased the accuracy of counting breaths among literate CHWs. Qualitative findings from these studies and two additional studies by UNICEF suggest that the design of the beads is crucial: beads should move comfortably, and a separate bead string, with colour coding, is required for the age groups with different cut-off thresholds—eliminating more complicated calculations. Further research, using standardized protocols and gold standard comparisons, is needed to understand the accuracy of beads in comparison to other tools used for classifying pneumonia, which CHWs benefit most from each different tool (i.e. disaggregating data by levels of literacy and numeracy) and what the impact is

  12. Take a Breath (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Breathing is a natural bodily function that most take for granted. But for people with chronic obstructive pulmonary disease, or COPD, inhaling and exhaling is a daily struggle. In this podcast, Dr. Anne Wheaton discusses health problems associated with COPD.

  13. Take a Deep Breath (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Nearly 16 million Americans have been diagnosed with COPD; however, many may not be aware they have the condition. This podcast discusses the importance of seeing a health care provider if you have trouble breathing.

  14. Effects of integral breath consciousness workshops on spirituality ...

    African Journals Online (AJOL)

    Although not quite reaching quantitative significant levels, qualitatively improved health was reported. The results are discussed in relation to previous and future research with regard to the influence of breath consciousness on perceptions of spirituality, health, psychological skills, stress and related phenomena.

  15. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  16. Effects of Breathing-Based Meditation on Earthquake-Affected Health Professionals.

    Science.gov (United States)

    Iwakuma, Miho; Oshita, Daien; Yamamoto, Akihiro; Urushibara-Miyachi, Yuka

    On March 11, 2013, the Great East Japan Earthquake (magnitude 9) hit the northern part of Japan (Tohoku), killing more than 15 000 people and leaving long-lasting scars, including psychological damage among evacuees, some of whom were health professionals. Little is known about meditation efficacy on disaster-affected health professionals. The present study investigated the effects of breathing-based meditation on seminar participants who were health professionals who had survived the earthquake. This study employed a mixed methods approach, using both survey data and handwritten qualitative data. Quantitative results of pre- and postmeditation practice indicated that all mood scales (anger, confusion, depression, fatigue, strain, and vigor) were significantly improved (N = 17). Qualitative results revealed several common themes (emancipation from chronic and bodily senses; holistic sense: transcending mind-body; re-turning an axis in life through reflection, self-control, and/or gratitude; meditation into mundane, everyday life; and coming out of pain in the aftermath of the earthquake) that had emerged as expressions of participant meditation experiences. Following the 45-minute meditation session, the present study participants reported improvements in all psychological states (anger, confusion, depression, fatigue, strain, and vigor) in the quantitative portion, which indicated efficacy of the meditation. Our analysis of the qualitative portion revealed what and how participants felt during meditating.

  17. What Causes Bad Breath?

    Science.gov (United States)

    ... Videos for Educators Search English Español What Causes Bad Breath? KidsHealth / For Teens / What Causes Bad Breath? Print en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  18. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching

    International Nuclear Information System (INIS)

    Neicu, Toni; Berbeco, Ross; Wolfgang, John; Jiang, Steve B

    2006-01-01

    Recently, at Massachusetts General Hospital (MGH) we proposed a new treatment technique called synchronized moving aperture radiation therapy (SMART) to account for tumour motion during radiotherapy. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator with the tumour motion induced by respiration. The two key requirements for being able to successfully use SMART in clinical practice are the precise and fast detection of tumour position during the simulation/treatment and the good reproducibility of the tumour motion pattern. To fulfil the first requirement, an integrated radiotherapy imaging system is currently being developed at MGH. The results of a previous study show that breath coaching techniques are required to make SMART an efficient technique in general. In this study, we investigate volunteer and patient respiratory coaching using a commercial respiratory gating system as a respiration coaching tool. Five healthy volunteers, observed during six sessions, and 33 lung cancer patients, observed during one session when undergoing 4D CT scans, were investigated with audio and visual promptings, with free breathing as a control. For all five volunteers, breath coaching was well tolerated and the intra- and inter-session reproducibility of the breathing pattern was greatly improved. Out of 33 patients, six exhibited a regular breathing pattern and needed no coaching, four could not be coached at all due to the patient's medical condition or had difficulty following the instructions, 13 could only be coached with audio instructions and 10 could follow the instructions of and benefit from audio-video coaching. We found that, for all volunteers and for those patients who could be properly coached, breath coaching improves the duty cycle of SMART treatment. However, about half of the patients could not follow both audio and video instructions simultaneously, suggesting that the current coaching

  19. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching

    Energy Technology Data Exchange (ETDEWEB)

    Neicu, Toni; Berbeco, Ross; Wolfgang, John; Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2006-02-07

    Recently, at Massachusetts General Hospital (MGH) we proposed a new treatment technique called synchronized moving aperture radiation therapy (SMART) to account for tumour motion during radiotherapy. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator with the tumour motion induced by respiration. The two key requirements for being able to successfully use SMART in clinical practice are the precise and fast detection of tumour position during the simulation/treatment and the good reproducibility of the tumour motion pattern. To fulfil the first requirement, an integrated radiotherapy imaging system is currently being developed at MGH. The results of a previous study show that breath coaching techniques are required to make SMART an efficient technique in general. In this study, we investigate volunteer and patient respiratory coaching using a commercial respiratory gating system as a respiration coaching tool. Five healthy volunteers, observed during six sessions, and 33 lung cancer patients, observed during one session when undergoing 4D CT scans, were investigated with audio and visual promptings, with free breathing as a control. For all five volunteers, breath coaching was well tolerated and the intra- and inter-session reproducibility of the breathing pattern was greatly improved. Out of 33 patients, six exhibited a regular breathing pattern and needed no coaching, four could not be coached at all due to the patient's medical condition or had difficulty following the instructions, 13 could only be coached with audio instructions and 10 could follow the instructions of and benefit from audio-video coaching. We found that, for all volunteers and for those patients who could be properly coached, breath coaching improves the duty cycle of SMART treatment. However, about half of the patients could not follow both audio and video instructions simultaneously, suggesting that the current coaching

  20. Take a Breath (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-03-26

    Breathing is a natural bodily function that most take for granted. But for people with chronic obstructive pulmonary disease, or COPD, inhaling and exhaling is a daily struggle. In this podcast, Dr. Anne Wheaton discusses health problems associated with COPD.  Created: 3/26/2015 by MMWR.   Date Released: 3/26/2015.

  1. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    Science.gov (United States)

    Arden-Close, Emily; Yardley, Lucy; Kirby, Sarah; Thomas, Mike; Bruton, Anne

    2017-10-05

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retraining delivered by digital versatile disc (DVD) or face-to-face sessions with a respiratory physiotherapist) took part in semi-structured telephone interviews about their experiences. Interviews were analysed using thematic analysis. Breathing retraining was perceived positively as a method of asthma management. Motivations for taking part included being asked, to enhance progress in research, to feel better/reduce symptoms, and to reduce medication. Participants were positive about the physiotherapist, liked having the materials tailored, found meetings motivational, and liked the DVD and booklet. The impact of breathing retraining following regular practice included increased awareness of breathing and development of new habits. Benefits of breathing retraining included increased control over breathing, reduced need for medication, feeling more relaxed, and improved health and quality of life. Problems included finding time to practice the exercises, and difficulty mastering techniques. Breathing retraining was acceptable and valued by almost all participants, and many reported improved wellbeing. Face to face physiotherapy was well received. However, some participants in the DVD group mentioned being unable to master techniques. PATIENTS RECEPTIVE TO BREATHING RETRAINING: Patients with asthma taught how to change their unconscious breathing patterns generally like non-pharmacological interventions. Researchers in the UK, led by Mike Thomas from the University of Southampton

  2. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  3. Take a Deep Breath (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2016-11-24

    Nearly 16 million Americans have been diagnosed with COPD; however, many may not be aware they have the condition. This podcast discusses the importance of seeing a health care provider if you have trouble breathing.  Created: 11/24/2016 by MMWR.   Date Released: 11/24/2016.

  4. Improvement of myocardial perfusion status in response to indian vedic breathing

    International Nuclear Information System (INIS)

    Anand, Y.N.I.; Muthu, G.S.

    2004-01-01

    Introduction: Yoga is the buzz word all over the world today. Amidst their busy schedule, people tend to ignore their personal health. Management of various disorders, especially those involving interventions, surgical or radiological, is very expensive. The Indian Vedic Exercises, of which Pranaayaama is one, emphasize on prevention of the diseases in order to keep the individual in good health. It is equally applicable to those who have already suffered from various disorders and in whom both improvement and/or avoidance of further deterioration are required. However, no Objective assessment of the disease status in response to these exercises has been reported so far. Objectives: This pilot study has been undertaken on patients with reversible myocardial perfusion defects to Objectively monitor the improvements in the myocardial perfusion in response to a breathing exercise, Pranayama, a breathing technique prescribed in the Indian Vedic Sciences. Methods: Two patients who were found to have reversible myocardial perfusion defects were taken up in this study. These defects were diagnosed from the myocardial perfusion SPECT done in stressed (on Tread Mill) and resting states with 99m Technetium labeled MIBI.These patients were taught the pranayama technique which is done for about 30 minutes every day. At the end of four months from the commencement of this technique, the myocardial perfusion SPECT studies were repeated. Details of the exercise in the form of a CD are available on request. Results: Overall good improvements were observed in all the quantitative parameters in the TMT and SPECT studies in the studies done after the pranayama procedures in both the patients. Perfusion defects seen in the stress images of the initial studies have almost completely reversed in the stress images of the later study. Patients are asymptomatic and are leading a comfortable life. Conclusion: This is only a study of two cases to Objectively evaluate the effects of pranayama

  5. Improved oxygenation during standing performance of deep breathing exercises with positive expiratory pressure after cardiac surgery: A randomized controlled trial.

    Science.gov (United States)

    Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth

    2015-09-01

    Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.

  6. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  7. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children

    International Nuclear Information System (INIS)

    Olivieri, Laura; O'Brien, Kendall J.; Cross, Russell; Xue, Hui; Kellman, Peter; Hansen, Michael S.

    2016-01-01

    -enhancement imaging with motion-corrected averaging is feasible in children, robust at high heart rates and with variable R-R intervals, and can be performed without breath-holding with higher image quality ratings than standard breath-held techniques. Use of free-breathing single-shot motion-corrected technique does not compromise LGE image quality in children who can hold their breath, and it can significantly improve image quality in children who cannot hold their breath or who have significant arrhythmia. (orig.)

  8. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Laura; O' Brien, Kendall J. [Children' s National Health System, Division of Cardiology, Washington, DC (United States); National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Cross, Russell [Children' s National Health System, Division of Cardiology, Washington, DC (United States); Xue, Hui; Kellman, Peter; Hansen, Michael S. [National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States)

    2016-06-15

    -enhancement imaging with motion-corrected averaging is feasible in children, robust at high heart rates and with variable R-R intervals, and can be performed without breath-holding with higher image quality ratings than standard breath-held techniques. Use of free-breathing single-shot motion-corrected technique does not compromise LGE image quality in children who can hold their breath, and it can significantly improve image quality in children who cannot hold their breath or who have significant arrhythmia. (orig.)

  9. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Xiao Ma

    2017-06-01

    Full Text Available A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG or a control group (CG. The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals.

  10. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults.

    Science.gov (United States)

    Ma, Xiao; Yue, Zi-Qi; Gong, Zhu-Qing; Zhang, Hong; Duan, Nai-Yue; Shi, Yu-Tong; Wei, Gao-Xia; Li, You-Fa

    2017-01-01

    A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG) or a control group (CG). The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals.

  11. Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals

    Directory of Open Access Journals (Sweden)

    Raquel Cumeras

    2014-09-01

    Full Text Available We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs. Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap. The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME and gas chromatography/mass spectrometry (GC/MS. A total of 70 chemicals were identified (58 positively identified in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.

  12. Chemical analysis of whale breath volatiles: a case study for non-invasive field health diagnostics of marine mammals.

    Science.gov (United States)

    Cumeras, Raquel; Cheung, William H K; Gulland, Frances; Goley, Dawn; Davis, Cristina E

    2014-09-12

    We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.

  13. Pharmacist leadership in ICU quality improvement: coordinating spontaneous awakening and breathing trials.

    Science.gov (United States)

    Stollings, Joanna L; Foss, Julie J; Ely, E Wesley; Ambrose, Anna M; Rice, Todd W; Girard, Timothy D; Wheeler, Arthur P

    2015-08-01

    Coordinating efforts across disciplines in the intensive care unit is a key component of quality improvement (QI) efforts. Spontaneous awakening trials (SATs) and spontaneous breathing trials (SBTs) are considered key components of guidelines, yet unfortunately are often not done or coordinated properly. To determine if a pharmacist-driven awakening and breathing coordination (ABC) QI program would improve compliance (ie, process measures) as compared with the previous protocol, which did not involve pharmacists. The QI program included pharmacist-led education, daily discussion on rounds, and weekly performance reports to staff. Using a pre-QI versus during-QI versus post-QI intervention design, we compared data from 500 control ventilator-days (pre-QI period) versus 580 prospective ventilator-days (during-QI period). We then evaluated the sustainability of the QI program in 216 ventilator-days in the post-QI period. SAT safety screens were performed on only 20% pre-QI patient-days versus 97% of during-QI patient-days (P improved process measures compliance, comparing the pre-QI versus during-QI rates of screening, performing, and coordinating SAT and SBTs, and these results were sustained in the 8-month follow-up period post-QI program. © The Author(s) 2015.

  14. Breath tests sustainability in hospital settings: cost analysis and reimbursement in the Italian National Health System.

    Science.gov (United States)

    Volpe, M; Scaldaferri, F; Ojetti, V; Poscia, A

    2013-01-01

    The high demand of Breath Tests (BT) in many gastroenterological conditions in time of limited resources for health care systems, generates increased interest in cost analysis from the point of view of the delivery of services to better understand how use the money to generate value. This study aims to measure the cost of C13 Urea and other most utilized breath tests in order to describe key aspects of costs and reimbursements looking at the economic sustainability for the hospital. A hospital based cost-analysis of the main breath tests commonly delivery in an ambulatory setting is performed. Mean salary for professional nurses and gastroenterologists, drugs/preparation used and disposable materials, purchase and depreciation of the instrument and the testing time was used to estimate the cost, while reimbursements are based on the 2013 Italian National Health System ambulatory pricelist. Variables that could influence the model are considered in the sensitivity analyses. The mean cost for C13--Urea, Lactulose and Lactose BT are, respectively, Euros 30,59; 45,20 and 30,29. National reimbursement often doesn't cover the cost of the analysis, especially considering the scenario with lower number of exam. On the contrary, in high performance scenario all the reimbursement could cover the cost, except for the C13 Urea BT that is high influenced by the drugs cost. However, consideration about the difference between Italian Regional Health System ambulatory pricelist are done. Our analysis shows that while national reimbursement rates cover the costs of H2 breath testing, they do not cover sufficiently C13 BT, particularly urea breath test. The real economic strength of these non invasive tests should be considered in the overall organization of inpatient and outpatient clinic, accounting for complete diagnostic pathway for each gastrointestinal disease.

  15. The Use of Breathing Exercises in the Treatment of Chronic, Nonspecific Low Back Pain.

    Science.gov (United States)

    Anderson, Barton E; Bliven, Kellie C Huxel

    2017-09-01

    Clinical Scenario: Research has shown a link between poor core stability and chronic, nonspecific low back pain, with data to suggest that alterations in core muscle activation patterns, breathing patterns, lung function, and diaphragm mechanics may occur. Traditional treatment approaches for chronic, nonspecific low back pain focus on exercise and manual therapy interventions, however it is not clear whether breathing exercises are effective in treating back pain. Focused Clinical Question: In adults with chronic, nonspecific low back pain, are breathing exercises effective in reducing pain, improving respiratory function, and/or health related quality of life? Summary of Key Findings: Following a literature search, 3 studies were identified for inclusion in the review. All reviewed studies were critically appraised at level 2 evidence and reported improvements in either low back pain or quality of life following breathing program intervention. Clinical Bottom Line: Exercise programs were shown to be effective in improving lung function, reducing back pain, and improving quality of life. Breathing program frequencies ranged from daily to 2-3 times per week, with durations ranging from 4 to 8 weeks. Based on these results, athletic trainers and physical therapists caring for patients with chronic, nonspecific low back pain should consider the inclusion of breathing exercises for the treatment of back pain when such treatments align with the clinician's own judgment and clinical expertise and the patient's preferences and values. Strength of Recommendation: Grade B evidence exists to support the use of breathing exercises in the treatment of chronic, nonspecific low back pain.

  16. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    Science.gov (United States)

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  17. Improvement in Limit of Detection of Enzymatic Biogas Sensor Utilizing Chromatography Paper for Breath Analysis.

    Science.gov (United States)

    Motooka, Masanobu; Uno, Shigeyasu

    2018-02-02

    Breath analysis is considered to be an effective method for point-of-care diagnosis due to its noninvasiveness, quickness and simplicity. Gas sensors for breath analysis require detection of low-concentration substances. In this paper, we propose that reduction of the background current improves the limit of detection of enzymatic biogas sensors utilizing chromatography paper. After clarifying the cause of the background current, we reduced the background current by improving the fabrication process of the sensors utilizing paper. Finally, we evaluated the limit of detection of the sensor with the sample vapor of ethanol gas. The experiment showed about a 50% reduction of the limit of detection compared to previously-reported sensor. This result presents the possibility of the sensor being applied in diagnosis, such as for diabetes, by further lowering the limit of detection.

  18. Towards The Design of a Smartphone-Based Biofeedback Breathing Training: Identifying Diaphragmatic Breathing Patterns from a Smartphone’s Microphone

    OpenAIRE

    Shih, Chen-Hsuan Iris; Kowatsch, Tobias; Tinschert, Peter; Barata, Filipe; Nißen, Marcia Katharina

    2016-01-01

    Asthma, diabetes, hypertension, or major depression are non-communicable diseases (NCDs) and impose a major burden on global health. Stress is linked to both the causes and consequences of NCDs and it has been shown that biofeedback-based breathing trainings (BBTs) are effective in coping with stress. Here, diaphragmatic breathing, i.e. deep abdominal breathing, belongs to the most distinguished breathing techniques. However, high costs and low scalability of state-of-the-art BBTs that requir...

  19. Deep breathing exercises performed 2 months following cardiac surgery: a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Urell, Charlotte; Jonsson, Marcus; Bryngelsson, Ing-Liss; Hedenström, Hans; Emtner, Margareta

    2014-01-01

    Postoperative breathing exercises are recommended to cardiac surgery patients. Instructions concerning how long patients should continue exercises after discharge vary, and the significance of treatment needs to be determined. Our aim was to assess the effects of home-based deep breathing exercises performed with a positive expiratory pressure device for 2 months following cardiac surgery. The study design was a prospective, single-blinded, parallel-group, randomized trial. Patients performing breathing exercises 2 months after cardiac surgery (n = 159) were compared with a control group (n = 154) performing no breathing exercises after discharge. The intervention consisted of 30 slow deep breaths performed with a positive expiratory pressure device (10-15 cm H2O), 5 times a day, during the first 2 months after surgery. The outcomes were lung function measurements, oxygen saturation, thoracic excursion mobility, subjective perception of breathing and pain, patient-perceived quality of recovery (40-Item Quality of Recovery score), health-related quality of life (36-Item Short Form Health Survey), and self-reported respiratory tract infection/pneumonia and antibiotic treatment. Two months postoperatively, the patients had significantly reduced lung function, with a mean decrease in forced expiratory volume in 1 second to 93 ± 12% (P< .001) of preoperative values. Oxygenation had returned to preoperative values, and 5 of 8 aspects in the 36-Item Short Form Health Survey were improved compared with preoperative values (P< .01). There were no significant differences between the groups in any of the measured outcomes. No significant differences in lung function, subjective perceptions, or quality of life were found between patients performing home-based deep breathing exercises and control patients 2 months after cardiac surgery.

  20. News from the Breath Analysis Summit 2011.

    Science.gov (United States)

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    analysis is now used to diagnose and monitor asthma, check for transplant organ rejection, detect lung cancer and test for Helicobacter pyloriinfection-and the list is growing. A major milestone in the scientific study of breath was marked in the 1970s when Linus Pauling demonstrated that there is more to exhaled breath than the classic gases of nitrogen, oxygen, carbon dioxide and water vapour-a lot more. Based on the gas-liquid partition chromatography analysis, Pauling reported the presence of 250 substances in exhaled breath. We now have the technology to test for any and all of these components. The field of breath analysis has made considerable advances in the 21st century and the utility of breath analysis in health care is advancing quickly. The science is rapidly expanding, the technology is improving and several new applications have been developed or are under commercial development. Breath analysis may rely on both direct (on line) and indirect (off line) reading methods: in the on-line method, breath analysis is immediately available, whereas the use of indirect methods generally involves collecting and trapping the breath sample and subsequently transferring it to an analytical instrument for analysis. Various kinds of breath samples have been used in biological monitoring, including mixed expired air and end expired air: end exhaled air represents the alveolar air concentration and mixed exhaled air represents the gas mixture coming from the dead space of the bronchial tree and the alveolar gas-exchange space. Exhaled breath analysis is an area where the modern day advances in technology and engineering meet the ever expanding need in medicine for more sensitive, specific and non-invasive tests which makes this area a major front in the interface between medicine and engineering. A major breakthrough over the past decade has been the increase in breath-based tests approved by the US Food and Drug Administration (FDA). Devices measuring common breath gases

  1. 21 CFR 862.3050 - Breath-alcohol test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened...

  2. Sleep disordered breathing and depression among U.S. adults: National Health and Nutrition Examination Survey, 2005-2008.

    Science.gov (United States)

    Wheaton, Anne G; Perry, Geraldine S; Chapman, Daniel P; Croft, Janet B

    2012-04-01

    To determine if symptoms of sleep disordered breathing (SDB) are associated with depression symptomology in a national sample. National Health and Nutrition Examination Survey. U.S., 2005-2008. 9,714 adults (≥ 18 years). Respondents were asked about frequency of snoring and snorting, gasping, or stopping breathing while asleep and completed the PHQ-9 (a 9-item depression screener). Odds ratios (OR) and 95% confidence intervals (CI) for SDB symptom-associated probable major depression (defined as a PHQ-9 score ≥ 10) were obtained from sex-specific logistic regression analyses adjusted for body mass index, age, race/ethnicity, and education. Among men, 6.0% reported physician-diagnosed sleep apnea, 37.2% snored ≥ 5 nights/week, 7.1% snorted/stopped breathing ≥ 5 nights/week, and 5.0% had PHQ-9 scores ≥ 10. Among women, 3.1% reported sleep apnea, 22.4% snored ≥ 5 nights/week, 4.3% snorted/stopped breathing ≥ 5 nights/week, and 8.4% had PHQ-9 scores ≥ 10. Sleep apnea was associated with probable major depression (OR = 2.4; 95% CI: 1.5, 3.6 among men; OR = 5.2; 95% CI: 2.7, 9.9 among women). Snoring was not associated with depression symptoms in men or women. Snorting/stopping breathing ≥ 5 nights/week compared to never was strongly associated with probable major depression in men (OR = 3.1; 95% CI: 1.8, 5.2) and women (OR = 3.0; 95% CI: 1.6, 5.4). Frequent snorting/stopping breathing was associated with probable major depression by the PHQ-9 in a national sample of adults. Additional research may be needed to determine whether regular screening for these conditions by mental health professionals and sleep specialists should be recommended.

  3. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  4. Health, social and economical consequences of sleep-disordered breathing

    DEFF Research Database (Denmark)

    Jennum, Poul; Kjellberg, Jakob

    2011-01-01

    The objective direct and indirect costs of sleep-disordered breathing (snoring, sleep apnoea (SA) and obesity hypoventilation syndrome (OHS)) and the treatment are incompletely described.......The objective direct and indirect costs of sleep-disordered breathing (snoring, sleep apnoea (SA) and obesity hypoventilation syndrome (OHS)) and the treatment are incompletely described....

  5. Breathing exercises as adjuvant in the management of COPD : An overview

    Directory of Open Access Journals (Sweden)

    Kant S

    2006-01-01

    Full Text Available COPD is the most common chronic lung disease. It is a major cause of chronic morbidity, mortality and health care used throughout the world and resulting in an economic and social burden that is both substantial and increasing also in our country. Pharmacotherapy alone does not optimize and have limited role in im-proving dyspnea, exercise limitation and quality of life which are characteristic and troublesome features of COPD. Breathing exercises are popular among patients, physician and physiotherapist and has been shown to improve efficiency of ventila-tion and exercise performance. But the efficacy of breathing exercises in relieving dyspnea varies greatly among patients. True values of these techniques have not yet been formally established, though they would seem to have intrinsic merit.

  6. Exercise training improves breathing strategy and performance during the six-minute walk test in obese adolescents.

    Science.gov (United States)

    Mendelson, Monique; Michallet, Anne-Sophie; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2014-08-15

    We aimed to examine ventilatory responses during the six-minute walk test in healthy-weight and obese adolescents before and after exercise training. Twenty obese adolescents (OB) (age: 14.5±1.7 years; BMI: 34.0±4.7kg·m(-2)) and 20 age and gender-matched healthy-weight adolescents (HW) (age: 15.5±1.5 years; BMI: 19.9±1.4kg·m(-2)) completed six-minute walk test during which breath-by-breath gas analysis and expiratory flow limitation (expFL) were measured. OB participated in a 12-week exercise-training program. Comparison between HW and OB participants showed lower distance achieved during the 6MWT in OB (-111.0m, 95%CI: -160.1 to 62.0, p<0.05) and exertional breathlessness was greater (+0.78 a.u., 95%CI: 0.091-3.27, p=0.039) when compared with HW. Obese adolescents breathed at lower lung volumes, as evidenced by lower end expiratory and end inspiratory lung volumes during exercise (p<0.05). Prevalence of expFL (8 OB vs 2 HW, p=0.028) and mean expFL (14.9±21.9 vs 5.32±14.6% VT, p=0.043, in OB and HW) were greater in OB. After exercise training, mean increase in the distance achieved during the 6MWT was 64.5 meters (95%CI: 28.1-100.9, p=0.014) and mean decrease in exertional breathlessness was 1.62 (95%CI: 0.47-2.71, p=0.05). Obese adolescents breathed at higher lung volumes, as evidenced by the increase in end inspiratory lung volume from rest to 6-min exercise (9.9±13.4 vs 20.0±13.6%TLC, p<0.05). Improved performance was associated with improved change in end inspiratory lung volume from rest to 6-min exercise (r=0.65, p=0.025). Our results suggest that exercise training can improve breathing strategy during submaximal exercise in obese adolescents and that this increase is associated with greater exercise performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. 21 CFR 868.2375 - Breathing frequency monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868.2375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a...

  8. Health and efficiency in trimix versus air breathing in compressed air workers.

    Science.gov (United States)

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  9. Effectiveness of a new toothbrush design versus a conventional tongue scraper in improving breath odor and reducing tongue microbiota

    Directory of Open Access Journals (Sweden)

    Luciana Assirati Casemiro

    2008-08-01

    Full Text Available For centuries, specific instruments or regular toothbrushes have routinely been used to remove tongue biofilm and improve breath odor. Toothbrushes with a tongue scraper on the back of their head have recently been introduced to the market. The present study compared the effectiveness of a manual toothbrush with this new design, i.e., possessing a tongue scraper, and a commercial tongue scraper in improving breath odor and reducing the aerobic and anaerobic microbiota of tongue surface. The evaluations occurred at 4 moments, when the participants (n=30 had their halitosis quantified with a halimeter and scored according to a 4-point scoring system corresponding to different levels of intensity. Saliva was collected for counts of aerobic and anaerobic microorganisms. Data were analyzed statistically by Friedman's test (p<0.05. When differences were detected, the Wilcoxon test adjusted for Bonferroni correction was used for multiple comparisons (group to group. The results confirmed the importance of mechanical cleaning of the tongue, since this procedure provided an improvement in halitosis and reduction of aerobe and anaerobe counts. Regarding the evaluated methods, the toothbrush's tongue scraper and conventional tongue scraper had a similar performance in terms of breath improvement and reduction of tongue microbiota, and may be indicated as effective methods for tongue cleaning.

  10. SU-E-J-236: Audiovisual Biofeedback Improves Breath-Hold Lung Tumor Position Reproducibility Measured with 4D MRI

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Keall, P; Greer, P; Lapuz, C; Ludbrook, J; Kim, T

    2015-01-01

    Purpose: Audiovisual biofeedback breath-hold (AVBH) was employed to reproduce tumor position on inhale and exhale breath-holds for 4D tumor information. We hypothesize that lung tumor position will be more consistent using AVBH compared with conventional breath-hold (CBH). Methods: Lung tumor positions were determined for seven lung cancer patients (age: 25 – 74) during to two separate 3T MRI sessions. A breathhold training session was performed prior to the MRI sessions to allow patients to become comfortable with AVBH and their exhale and inhale target positions. CBH and AVBH 4D image datasets were obtained in the first MRI session (pre-treatment) and the second MRI session (midtreatment) within six weeks of the first session. Audio-instruction (MRI: Siemens Skyra) in CBH and verbal-instruction (radiographer) in AVBH were used. A radiation oncologist contoured the lung tumor using Eclipse (Varian Medical Systems); tumor position was quantified as the centroid of the contoured tumor after rigid registration based on vertebral anatomy across two MRI sessions. CBH and AVBH were compared in terms of the reproducibility assessed via (1) the difference between the two exhale positions for the two sessions and the two inhale positions for the sessions. (2) The difference in amplitude (exhale to inhale) between the two sessions. Results: Compared to CBH, AVBH improved the reproducibility of two exhale (or inhale) lung tumor positions relative to each other by 33%, from 6.4±5.3 mm to 4.3±3.0 mm (p=0.005). Compared to CBH, AVBH improved the reproducibility of exhale and inhale amplitude by 66%, from 5.6±5.9 mm to 1.9±1.4 mm (p=0.005). Conclusions: This study demonstrated that audiovisual biofeedback can be utilized for improving the reproducibility of breath-hold lung tumor position. These results are advantageous towards achieving more accurate emerging radiation treatment planning methods, in addition to imaging and treatment modalities utilizing breath

  11. SU-E-J-236: Audiovisual Biofeedback Improves Breath-Hold Lung Tumor Position Reproducibility Measured with 4D MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D; Pollock, S; Keall, P [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, NSW (Australia); Greer, P [School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, NSW (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Lapuz, C; Ludbrook, J [Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Kim, T [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, NSW (Australia); Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA (United States)

    2015-06-15

    Purpose: Audiovisual biofeedback breath-hold (AVBH) was employed to reproduce tumor position on inhale and exhale breath-holds for 4D tumor information. We hypothesize that lung tumor position will be more consistent using AVBH compared with conventional breath-hold (CBH). Methods: Lung tumor positions were determined for seven lung cancer patients (age: 25 – 74) during to two separate 3T MRI sessions. A breathhold training session was performed prior to the MRI sessions to allow patients to become comfortable with AVBH and their exhale and inhale target positions. CBH and AVBH 4D image datasets were obtained in the first MRI session (pre-treatment) and the second MRI session (midtreatment) within six weeks of the first session. Audio-instruction (MRI: Siemens Skyra) in CBH and verbal-instruction (radiographer) in AVBH were used. A radiation oncologist contoured the lung tumor using Eclipse (Varian Medical Systems); tumor position was quantified as the centroid of the contoured tumor after rigid registration based on vertebral anatomy across two MRI sessions. CBH and AVBH were compared in terms of the reproducibility assessed via (1) the difference between the two exhale positions for the two sessions and the two inhale positions for the sessions. (2) The difference in amplitude (exhale to inhale) between the two sessions. Results: Compared to CBH, AVBH improved the reproducibility of two exhale (or inhale) lung tumor positions relative to each other by 33%, from 6.4±5.3 mm to 4.3±3.0 mm (p=0.005). Compared to CBH, AVBH improved the reproducibility of exhale and inhale amplitude by 66%, from 5.6±5.9 mm to 1.9±1.4 mm (p=0.005). Conclusions: This study demonstrated that audiovisual biofeedback can be utilized for improving the reproducibility of breath-hold lung tumor position. These results are advantageous towards achieving more accurate emerging radiation treatment planning methods, in addition to imaging and treatment modalities utilizing breath

  12. Sleep board review questions: sleep disordered breathing that improves in REM

    Directory of Open Access Journals (Sweden)

    Budhiraja R

    2012-08-01

    Full Text Available No abstract available. Article truncated at end of question. Which of the following breathing disorders is usually less severe in rapid eye movement (REM sleep compared to non-rapid eye movement (NREM sleep?1.Sleep-related hypoxemia in COPD2.Obstructive Sleep Apnea3.Cheyne Stokes Breathing4.Hypoxemia in Pulmonary Hypertension

  13. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols

    Science.gov (United States)

    Human breath, along with urine and blood, has long been one of the three major biological media for assessing human health and environmental exposure. In fact, the detection of odor on human breath, as described by Hippocrates in 400 BC, is considered the first analytical healt...

  14. Efficacy of a Respiratory Training System on the Regularity of Breathing

    International Nuclear Information System (INIS)

    Shin, Eun Hyuk; Park, Hee Chul; Han, Young Yih; Ju, Sang Gyu; Shin, Jung Suk; Ahn, Yong Chan

    2008-01-01

    In order to enhance the efficiency of respiratory gated 4-dimensional radiation therapy for more regular and stable respiratory period and amplitude, a respiration training system was designed, and its efficacy was evaluated. Materials and Methods: The experiment was designed to measure the difference in respiration regularity following the use of a training system. A total of 11 subjects (9 volunteers and 2 patients) were included in the experiments. Three different breathing signals, including free breathing (free-breathing), guided breathing that followed training software (guided-breathing), and free breathing after the guided-breathing (post guided-breathing), were consecutively recorded in each subject. The peak-to-peak (PTP) period of the breathing signal, standard deviation (SD), peak-amplitude and its SD, area of the one cycle of the breathing wave form, and its root mean square (RMS) were measured and computed. Results: The temporal regularity was significantly improved in guided-breathing since the SD of breathing period reduced (free-breathing 0.568 vs guided-breathing 0.344, p=0.0013). The SD of the breathing period representing the post guided-breathing was also reduced, but the difference was not statistically significant (free-breathing 0.568 vs. guided-breathing 0.512, p=ns). Also the SD of measured amplitude was reduced in guided-breathing (free-breathing 1.317 vs. guided-breathing 1.068, p=0.187), although not significant. This indicated that the tidal volume for each breath was kept more even in guided-breathing compared to free-breathing. There was no change in breathing pattern between free-breathing and guided-breathing. The average area of breathing wave form and its RMS in postguided-breathing, however, was reduced by 7% and 5.9%, respectively. Conclusion: The guided-breathing was more stable and regular than the other forms of breathing data. Therefore, the developed respiratory training system was effective in improving the temporal

  15. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  16. Effective of deep breath-hold SPECT in torso area. Examination concerning improvement of resolution

    International Nuclear Information System (INIS)

    Kawai, Takashi; Horiuchi, Shoji; Hayashi, Masuo; Sugibayashi, Keiichi

    2007-01-01

    The routine single photon emission computed tomography (SPECT) gives images with reduced resolution of internal organs like diaphragm due to breathing movements. In the present study, authors developed a breath-hold (BH) SPECT method where SPECT projection data were acquired during BH, and examined its usefulness. Equipments used were all Toshiba's dual-detector SPECT system E.CAM, image processor GMS-5500 A/PI, fusion software ART, and CT scanner Aquillion/M8. SPECT data were alternatively acquired at steps during BH and free breath (FB), for an entire step-and-shoot SPECT cycle, and acquisition time for 1 step (view) was set to be 10-15 sec depending on the subject's BH ability. Data from BH and FB views were extracted to get respective SPECT images. An evaluation was first done for a phantom simulating the breathing lung, an elliptical acrylic shell where a balloon connected with an ambu bag was placed. Two point sources of 99m Tc (14 MBq) were attached on the balloon. The phantom study revealed BH method did not give any artifacts. Clinically, 201 Tl-SPECT images of patients with lung tumors were compared for resolution between BH and FB and for their accuracy of registration by superimposing on CT images. Such results were observed as that, when FB gave two regions of Tl accumulation, BH, one region agreeing with the one lesion in the CT image, and that, when Tl accumulation was visualized in BH, but not in FB due to its overlapping with the liver area. Thus BH method could reduce respiratory motion artifacts to improve resolution, and was thought applicable to other imaging methods. (R.T.)

  17. Practical recommendations for breathing-adapted radiotherapy

    International Nuclear Information System (INIS)

    Simon, L.; Giraud, P.; Rosenwald, J.C.; Dumas, J.L.; Lorchel, F.; Marre, D.; Dupont, S.; Varmenot, N.; Ginestet, C.; Caron, J.; Marchesi, V.; Ferreira, I.; Garcia, R.

    2007-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  18. The assessment of the breath hold and the free breath methods about the blood flow evaluation by using phase contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Ho [Dept. of Radiology, Konkuk Medical center, Seoul (Korea, Republic of)

    2016-06-15

    Measurement of cardiac blood flow using the magnetic resonance imaging has been limited due to breathing and involuntary movements of the heart. The present study attempted to improve the accuracy of cardiac blood flow testing through phase contrast magnetic resonance imaging by presenting the adequate breathing method and imaging variables by comparing the measurement values of cardiac blood flow. Each was evaluated by comparing the breath hold retrospective 1NEX and non breath hold retrospective 1-3NEX in the ascending aorta and descending aorta. As a result, the average blood flow amount/ velocity of the breath hold retrosepctive 1NEX method in the ascending aorta were 96.17±19.12 ml/sec, 17.04±4.12 cm/sec respectively, which demonstrates a statistically significant difference(p<0.05) with the non-breath hold retrospective method 1NEX of 72.31±13.27 ml and 12.32±3.85. On the other hand, the average 2NEX blood flow and mean flow velocity is 101.90±24.09, 16.84±4.32, 3NEX 103.06±25.49, 16.88±4.19 did not show statistically significant differences(p>0.05).The average blood flow amount/ velocity of the breath hold retrospective 1NEX method in the descending aorta were 76.68±19.72 ml/s, and 22.23±4.8, which did not demonstrate a significant difference in comparison to non-breath hold retrospective method 1-3 NEX. Therefore, the non breath hold retrospective method does not significantly differ in terms of cardiac blood flow in comparison with the breath hold retrospective method in accordance with the increase of NEX, so pediatric patients or patients who are not able to breathe well must have the diagnostic value of their cardiac blood flow tests improved.

  19. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS.

    Science.gov (United States)

    Skoog, S M; Bharucha, A E; Zinsmeister, A R

    2008-05-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs. 0%, P = 0.002) and patients (40% vs. 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life.

  20. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    Science.gov (United States)

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  1. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    Science.gov (United States)

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.

  2. Sensitive Spectroscopic Analysis of Biomarkers in Exhaled Breath

    Science.gov (United States)

    Bicer, A.; Bounds, J.; Zhu, F.; Kolomenskii, A. A.; Kaya, N.; Aluauee, E.; Amani, M.; Schuessler, H. A.

    2018-06-01

    We have developed a novel optical setup which is based on a high finesse cavity and absorption laser spectroscopy in the near-IR spectral region. In pilot experiments, spectrally resolved absorption measurements of biomarkers in exhaled breath, such as methane and acetone, were carried out using cavity ring-down spectroscopy (CRDS). With a 172-cm-long cavity, an efficient optical path of 132 km was achieved. The CRDS technique is well suited for such measurements due to its high sensitivity and good spectral resolution. The detection limits for methane of 8 ppbv and acetone of 2.1 ppbv with spectral sampling of 0.005 cm-1 were achieved, which allowed to analyze multicomponent gas mixtures and to observe absorption peaks of 12CH4 and 13CH4. Further improvements of the technique have the potential to realize diagnostics of health conditions based on a multicomponent analysis of breath samples.

  3. Noninvasive work of breathing improves prediction of post-extubation outcome.

    Science.gov (United States)

    Banner, Michael J; Euliano, Neil R; Martin, A Daniel; Al-Rawas, Nawar; Layon, A Joseph; Gabrielli, Andrea

    2012-02-01

    We hypothesized that non-invasively determined work of breathing per minute (WOB(N)/min) (esophageal balloon not required) may be useful for predicting extubation outcome, i.e., appropriate work of breathing values may be associated with extubation success, while inappropriately increased values may be associated with failure. Adult candidates for extubation were divided into a training set (n = 38) to determine threshold values of indices for assessing extubation and a prospective validation set (n = 59) to determine the predictive power of the threshold values for patients successfully extubated and those who failed extubation. All were evaluated for extubation during a spontaneous breathing trial (5 cmH(2)O pressure support ventilation, 5 cmH(2)O positive end expiratory pressure) using routine clinical practice standards. WOB(N)/min data were blinded to attending physicians. Area under the receiver operating characteristic curves (AUC), sensitivity, specificity, and positive and negative predictive values of all extubation indices were determined. AUC for WOB(N)/min was 0.96 and significantly greater (p indices. WOB(N)/min had a specificity of 0.83, the highest sensitivity at 0.96, positive predictive value at 0.84, and negative predictive value at 0.96 compared to all indices. For 95% of those successfully extubated, WOB(N)/min was ≤10 J/min. WOB(N)/min had the greatest overall predictive accuracy for extubation compared to traditional indices. WOB(N)/min warrants consideration for use in a complementary manner with spontaneous breathing pattern data for predicting extubation outcome.

  4. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit bacterial filter. 868.5260 Section 868.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to remove...

  5. Sports-related lung injury during breath-hold diving

    Directory of Open Access Journals (Sweden)

    Tanja Mijacika

    2016-12-01

    Full Text Available The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise. In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition. According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  6. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.  Created: 11/16/2011 by National Center for Chronic Disease Prevention and Health Promotion, Division of Adult and Community Health (NCCDPHP, DACH).   Date Released: 11/16/2011.

  7. Medical Issues: Breathing

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common ...

  8. Breathing difficulty - lying down

    Science.gov (United States)

    ... other conditions that lead to it) Panic disorder Sleep apnea Snoring Home Care Your health care provider may recommend self-care measures. For example, weight loss may be suggested if you are obese. When to Contact a Medical Professional If you have any unexplained difficulty in breathing ...

  9. Improvement in pulmonary functions and clinical parameters due to addition of breathing exercises in asthma patients receiving optimal treatment

    Directory of Open Access Journals (Sweden)

    Dipti Agarwal

    2017-01-01

    Conclusions: Breathing exercises provided significant improvements in spirometric parameters and significant reduction in breathlessness, wheezing, and nocturnal symptoms as well as requirements of rescue medicines in asthma patients who were receiving optimal asthma treatment.

  10. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    International Nuclear Information System (INIS)

    Pollock, Sean; Keall, Paul; Keall, Robyn

    2015-01-01

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  11. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Sean, E-mail: sean.pollock@sydney.edu.au; Keall, Paul [Radiation Physics Laboratory, University of Sydney, Sydney 2050 (Australia); Keall, Robyn [Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care and Supportive Care Service, Greenwich 2065 (Australia)

    2015-09-15

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  12. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  13. Sleep-disordered breathing and mortality: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Naresh M Punjabi

    2009-08-01

    Full Text Available Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease. The overall objective of this study was to determine whether sleep-disordered breathing and its sequelae of intermittent hypoxemia and recurrent arousals are associated with mortality in a community sample of adults aged 40 years or older.We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. Sleep-disordered breathing was assessed with the apnea-hypopnea index (AHI based on an in-home polysomnogram. Survival analysis and proportional hazards regression models were used to calculate hazard ratios for mortality after adjusting for age, sex, race, smoking status, body mass index, and prevalent medical conditions. The average follow-up period for the cohort was 8.2 y during which 1,047 participants (587 men and 460 women died. Compared to those without sleep-disordered breathing (AHI: or=30.0 events/h sleep-disordered breathing were 0.93 (95% CI: 0.80-1.08, 1.17 (95% CI: 0.97-1.42, and 1.46 (95% CI: 1.14-1.86, respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40-70 y (hazard ratio: 2.09; 95% CI: 1.31-3.33. Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease-related mortality associated with sleep-disordered breathing showed a pattern of association similar to all-cause mortality.Sleep-disordered breathing is associated with all-cause mortality and specifically that due to coronary artery disease, particularly in men aged 40-70 y with severe sleep-disordered breathing. Please see later in the article for the Editors' Summary.

  14. Optimal technique for deep breathing exercises after cardiac surgery.

    Science.gov (United States)

    Westerdahl, E

    2015-06-01

    Cardiac surgery patients often develop a restrictive pulmonary impairment and gas exchange abnormalities in the early postoperative period. Chest physiotherapy is routinely prescribed in order to reduce or prevent these complications. Besides early mobilization, positioning and shoulder girdle exercises, various breathing exercises have been implemented as a major component of postoperative care. A variety of deep breathing maneuvres are recommended to the spontaneously breathing patient to reduce atelectasis and to improve lung function in the early postoperative period. Different breathing exercises are recommended in different parts of the world, and there is no consensus about the most effective breathing technique after cardiac surgery. Arbitrary instructions are given, and recommendations on performance and duration vary between hospitals. Deep breathing exercises are a major part of this therapy, but scientific evidence for the efficacy has been lacking until recently, and there is a lack of trials describing how postoperative breathing exercises actually should be performed. The purpose of this review is to provide a brief overview of postoperative breathing exercises for patients undergoing cardiac surgery via sternotomy, and to discuss and suggest an optimal technique for the performance of deep breathing exercises.

  15. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  16. Thoracic radiotherapy and breath control: current prospects; Radiotherapie thoracique et controle de la respiration: perspectives actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R. [Institut Sainte-Catherine, 84 - Avignon (France)

    2002-11-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  17. Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm

    International Nuclear Information System (INIS)

    Wintersperger, Bernd J.; Nikolaou, Konstantin; Dietrich, Olaf; Reiser, Maximilian F.; Schoenberg, Stefan O.; Rieber, Johannes; Nittka, Matthias

    2003-01-01

    The purpose of this study was to test parallel imaging techniques for improvement of temporal resolution in multislice single breath-hold real-time cine steady-state free precession (SSFP) in comparison with standard segmented single-slice SSFP techniques. Eighteen subjects were examined on a 1.5-T scanner using a multislice real-time cine SSFP technique using the GRAPPA algorithm. Global left ventricular parameters (EDV, ESV, SV, EF) were evaluated and results compared with a standard segmented single-slice SSFP technique. Results for EDV (r=0.93), ESV (r=0.99), SV (r=0.83), and EF (r=0.99) of real-time multislice SSFP imaging showed a high correlation with results of segmented SSFP acquisitions. Systematic differences between both techniques were statistically non-significant. Single breath-hold multislice techniques using GRAPPA allow for improvement of temporal resolution and for accurate assessment of global left ventricular functional parameters. (orig.)

  18. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    Science.gov (United States)

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  19. Breath Tests Application in Order to Improve the Outcomes of Treatment for Celiac Disease

    Directory of Open Access Journals (Sweden)

    Ye.Yu. Gubskaya

    2014-02-01

    Full Text Available The article presents data from an own study on modern opportunities to improve the effectiveness of treatment of patients with celiac disease (n = 41. All patients were on a gluten-free diet, nonetheless effectiveness of treatment was regarded as unsatisfactory. Due to the use of modern carbon and hydrogen breath tests and diagnosis of bacterial overgrowth syndrome, lactase deficiency and exocrine pancreatic insufficiency, which were the causes for the persistence of clinical symptoms, we obtained reasons for their correction and achieved a complete remission of the underlying disease.

  20. Periodontitis and Sleep Disordered Breathing in the Hispanic Community Health Study/Study of Latinos

    Science.gov (United States)

    Sanders, Anne E.; Essick, Greg K.; Beck, James D.; Cai, Jianwen; Beaver, Shirley; Finlayson, Tracy L.; Zee, Phyllis C.; Loredo, Jose S.; Ramos, Alberto R.; Singer, Richard H.; Jimenez, Monik C.; Barnhart, Janice M.; Redline, Susan

    2015-01-01

    Study Objectives: To investigate the association between sleep disordered breathing (SDB) and severe chronic periodontitis. Design: Cross-sectional data analysis from the Hispanic Community Health Study/Study of Latinos. Setting: Community-based setting with probability sampling from four urban US communities. Participants: 12,469 adults aged 18–74 y. Interventions: None. Measurements and Results: Severe chronic periodontitis was defined using the Centers for Disease Control and Prevention/American Academy of Periodontology case classification based on full-mouth periodontal assessments performed by calibrated dentists. SDB was evaluated in standardized home sleep tests, and defined as the number of apnea plus hypopnea events associated with ≥ 3% desaturation, per hour of estimated sleep. SDB was quantified using categories of the apnea-hypopnea index (AHI): 0.0 events (nonapneic); 0.1–4.9 (subclinical); 5.0–14.9 (mild); and ≥ 15 (moderate/severe). Covariates were demographic characteristics and established periodontitis risk factors. C-reactive protein was a potential explanatory variable. Using survey estimation, multivariable binary logistic regression estimated odds ratios (OR) and 95% confidence limits (CL). Following adjustment for confounding, the SDB and periodontitis relationship remained statistically significant, but was attenuated in strength and no longer dose-response. Compared with the nonapneic referent, adjusted odds of severe periodontitis were 40% higher with subclinical SDB (OR = 1.4, 95% CL: 1.0, 1.9), 60% higher with mild SDB (OR = 1.6, 95% CL: 1.1, 2.2) and 50% higher with moderate/severe SDB (OR = 1.5, 95% CL: 1.0, 2.3) demonstrating an independent association between SDB and severe periodontitis. Conclusions: This study identifies a novel association between mild sleep disordered breathing and periodontitis that was most pronounced in young adults. Citation: Sanders AE, Essick GK, Beck JD, Cai J, Beaver S, Finlayson TL, Zee PC

  1. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to zinc and “the prevention of bad breath by neutralising of volatile sulphur compounds in the mouth and oral cavity” pursuant to Article 13(5) of Regulation (EC

    DEFF Research Database (Denmark)

    Tetens, Inge

    claim related to zinc and “the prevention of bad breath by neutralising of volatile sulphur compounds in the mouth and oral cavity”. The scope of the application was proposed to fall under a health claim based on newly developed scientific evidence. The claimed effect is “prevents bad breath......Following an application from EJP Pharmaceutical ApS, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health...... by neutralising of volatile sulphur compounds in the mouth and oral cavity”. The target population, as proposed by the applicant, is adults over the age of 18 who wish to improve their bad breath. The Panel considers that the proposed claim is related to breath odour rather than to a function of the body...

  2. Improved fireman's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  3. Breathing circuit compliance and accuracy of displayed tidal volume during pressure-controlled ventilation of infants: A quality improvement project.

    Science.gov (United States)

    Glenski, Todd A; Diehl, Carrie; Clopton, Rachel G; Friesen, Robert H

    2017-09-01

    Anesthesia machines have evolved to deliver desired tidal volumes more accurately by measuring breathing circuit compliance during a preuse self-test and then incorporating the compliance value when calculating expired tidal volume. The initial compliance value is utilized in tidal volume calculation regardless of whether the actual compliance of the breathing circuit changes during a case, as happens when corrugated circuit tubing is manually expanded after the preuse self-test but before patient use. We noticed that the anesthesia machine preuse self-test was usually performed on nonexpanded pediatric circuit tubing, and then the breathing circuit was subsequently expanded for clinical use. We aimed to demonstrate that performing the preuse self-test in that manner could lead to incorrectly displayed tidal volume on the anesthesia machine monitor. The goal of this quality improvement project was to change the usual practice and improve the accuracy of displayed tidal volume in infants undergoing general anesthesia. There were four stages of the project: (i) gathering baseline data about the performance of the preuse self-test and using infant and adult test lungs to measure discrepancies of displayed tidal volumes when breathing circuit compliance was changed after the initial preuse self-test; (ii) gathering clinical data during pressure-controlled ventilation comparing anesthesia machine displayed tidal volume with actual spirometry tidal volume in patients less than 10 kg before (machine preuse self-test performed while the breathing circuit was nonexpanded) and after an intervention (machine preuse self-test performed after the breathing circuit was fully expanded); (iii) performing department-wide education to help implement practice change; (iv) gathering postintervention data to determine the prevalence of proper machine preuse self-test. At constant pressure-controlled ventilation through fully expanded circuit tubing, displayed tidal volume was 83

  4. Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunteers Breathing with Three Portable Ventilators and a Critical Care Ventilator

    National Research Council Canada - National Science Library

    Austin, Paul

    2001-01-01

    .... The purpose of this study was to assess the imposed inspiratory work of breathing and breathing comfort of nonintubated healthy volunteers breathing spontaneously through three portable ventilators...

  5. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    Science.gov (United States)

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  6. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  7. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    Science.gov (United States)

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  8. Can audio coached 4D CT emulate free breathing during the treatment course?

    DEFF Research Database (Denmark)

    Persson, Gitte F; Nygaard, Ditte E; Olsen, Mikael

    2008-01-01

    BACKGROUND: The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable...... breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. METHODS: Thirteen volunteers completed respiratory audio coaching on 3 days within...... a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing...

  9. Medication effects on sleep and breathing.

    Science.gov (United States)

    Seda, Gilbert; Tsai, Sheila; Lee-Chiong, Teofilo

    2014-09-01

    Sleep respiration is regulated by circadian, endocrine, mechanical and chemical factors, and characterized by diminished ventilatory drive and changes in Pao2 and Paco2 thresholds. Hypoxemia and hypercapnia are more pronounced during rapid eye movement. Breathing is influenced by sleep stage and airway muscle tone. Patient factors include medical comorbidities and body habitus. Medications partially improve obstructive sleep apnea and stabilize periodic breathing at altitude. Potential adverse consequences of medications include precipitation or worsening of disorders. Risk factors for adverse medication effects include aging, medical disorders, and use of multiple medications that affect respiration. Published by Elsevier Inc.

  10. Increased Prevalence of Sleep-Disordered Breathing in Adults

    Science.gov (United States)

    Peppard, Paul E.; Young, Terry; Barnet, Jodi H.; Palta, Mari; Hagen, Erika W.; Hla, Khin Mae

    2013-01-01

    Sleep-disordered breathing is a common disorder with a range of harmful sequelae. Obesity is a strong causal factor for sleep-disordered breathing, and because of the ongoing obesity epidemic, previous estimates of sleep-disordered breathing prevalence require updating. We estimated the prevalence of sleep-disordered breathing in the United States for the periods of 1988–1994 and 2007–2010 using data from the Wisconsin Sleep Cohort Study, an ongoing community-based study that was established in 1988 with participants randomly selected from an employed population of Wisconsin adults. A total of 1,520 participants who were 30–70 years of age had baseline polysomnography studies to assess the presence of sleep-disordered breathing. Participants were invited for repeat studies at 4-year intervals. The prevalence of sleep-disordered breathing was modeled as a function of age, sex, and body mass index, and estimates were extrapolated to US body mass index distributions estimated using data from the National Health and Nutrition Examination Survey. The current prevalence estimates of moderate to severe sleep-disordered breathing (apnea-hypopnea index, measured as events/hour, ≥15) are 10% (95% confidence interval (CI): 7, 12) among 30–49-year-old men; 17% (95% CI: 15, 21) among 50–70-year-old men; 3% (95% CI: 2, 4) among 30–49-year-old women; and 9% (95% CI: 7, 11) among 50–70 year-old women. These estimated prevalence rates represent substantial increases over the last 2 decades (relative increases of between 14% and 55% depending on the subgroup). PMID:23589584

  11. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  12. Infant breathing rate counter based on variable resistor for pneumonia

    Science.gov (United States)

    Sakti, Novi Angga; Hardiyanto, Ardy Dwi; La Febry Andira R., C.; Camelya, Kesa; Widiyanti, Prihartini

    2016-03-01

    Pneumonia is one of the leading causes of death in new born baby in Indonesia. According to WHO in 2002, breathing rate is very important index to be the symptom of pneumonia. In the Community Health Center, the nurses count with a stopwatch for exactly one minute. Miscalculation in Community Health Center occurs because of long time concentration and focus on two object at once. This calculation errors can cause the baby who should be admitted to the hospital only be attended at home. Therefore, an accurate breathing rate counter at Community Health Center level is necessary. In this work, resistance change of variable resistor is made to be breathing rate counter. Resistance change in voltage divider can produce voltage change. If the variable resistance moves periodically, the voltage will change periodically too. The voltage change counted by software in the microcontroller. For the every mm shift at the variable resistor produce average 0.96 voltage change. The software can count the number of wave generated by shifting resistor.

  13. In vivo proton MRS of normal pancreas metabolites during breath-holding and free-breathing

    International Nuclear Information System (INIS)

    Su, T.-H.; Jin, E.-H.; Shen, H.; Zhang, Y.; He, W.

    2012-01-01

    Aim: To characterize normal pancreas metabolites using in vivo proton magnetic resonance spectroscopy ( 1 H MRS) at 3 T under conditions of breath-holding and free-breathing. Materials and methods: The pancreases of 32 healthy volunteers were examined using 1 H MRS during breath-holding and free-breathing acquisitions in a single-voxel point-resolved selective spectroscopy sequence (PRESS) technique using a 3 T MRI system. Resonances were compared between paired spectra of the two breathing modes. Furthermore, correlations between lipid (Lip) content and age, body-mass index (BMI), as well as choline (Cho) peak visibility of the normal pancreas were analysed during breath-holding. Results: Twenty-nine pairs of spectra were successfully obtained showing three major resonances, Lip, Cho, cholesterol and the unsaturated parts of the olefinic region of fatty acids (Chol + Unsat). Breath-hold spectra were generally better, with higher signal-to-noise ratios (SNR; Z=–2.646, p = 0.008) and Cho peak visible status (Z=–2.449, p = 0.014). Correlations were significant between spectra acquired by the two breathing modes, especially for Lip height, Lip area, and the area of other peaks at 1.9–4.1 ppm. However, the Lip resonance was significantly different between the spectra of the two breathing modes (p 1 H MRS of the normal pancreas at 3 T is technically feasible and can characterize several metabolites. 1 H MRS during breath-holding acquisition is superior to that during free-breathing acquisition.

  14. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  15. Sleep-disordered breathing in epilepsy: epidemiology, mechanisms, and treatment.

    Science.gov (United States)

    Sivathamboo, Shobi; Perucca, Piero; Velakoulis, Dennis; Jones, Nigel C; Goldin, Jeremy; Kwan, Patrick; O'Brien, Terence J

    2018-04-01

    Epilepsy is a group of neurological conditions in which there is a pathological and enduring predisposition to generate recurrent seizures. Evidence over the last few decades suggests that epilepsy may be associated with increased sleep-disordered breathing, which may contribute towards sleep fragmentation, daytime somnolence, reduced seizure control, and cardiovascular-related morbidity and mortality. Chronic sleep-disordered breathing can result in loss of gray matter and cause deficits to memory and global cognitive function. Sleep-disordered breathing is a novel and independent predictor of sudden cardiac death and, as such, may be involved in the mechanisms leading to sudden unexpected death in epilepsy. Despite this, the long-term consequences of sleep-disordered breathing in epilepsy remain unknown, and there are no guidelines for screening or treating this population. There is currently insufficient evidence to indicate continuous positive airway pressure (CPAP) for the primary or secondary prevention of cardiovascular disease, and recent evidence has failed to show any reduction of fatal or nonfatal cardiovascular endpoints. Treatment of sleep-disordered breathing may potentially improve seizure control, daytime somnolence, and neurocognitive outcomes, but few studies have examined this relationship. In this review, we examine sleep-disordered breathing in epilepsy, and discuss the potential effect of epilepsy treatments. We consider the role of CPAP and other interventions for sleep-disordered breathing and discuss their implications for epilepsy management.

  16. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  17. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  18. Etiopathogenetic Mechanisms of Pulmonary Hypertension in Sleep-Related Breathing Disorders

    Directory of Open Access Journals (Sweden)

    Ayodeji Adegunsoye

    2012-01-01

    Full Text Available Obstructive sleep apnea syndrome is a common disorder with significant health consequences and is on the rise in consonance with the obesity pandemic. In view of the association between sleep-disordered breathing and pulmonary hypertension as depicted by multiple studies, current clinical practice guidelines categorize obstructive sleep apnea as a risk factor for pulmonary hypertension and recommend an assessment for sleep disordered breathing in evaluating patients with pulmonary hypertension. The dysregulatory mechanisms associated with hypoxemic episodes observed in sleep related breathing disorders contribute to the onset of pulmonary hypertension and identification of these potentially treatable factors might help in the reduction of overall cardiovascular mortality.

  19. 14C-urea breath test for the detection of Helicobacter pylori

    International Nuclear Information System (INIS)

    Veldhuyzen van Zanten, S.J.; Tytgat, K.M.; Hollingsworth, J.; Jalali, S.; Rshid, F.A.; Bowen, B.M.; Goldie, J.; Goodacre, R.L.; Riddell, R.H.; Hunt, R.H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14 C-urea breath test which uses 5 microCi 14 C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared the outcome of the breath test to the results of histology and culture of endoscopically obtained gastric biopsies in 84 patients. The breath test discriminated well between the 50 positive patients and the 34 patients negative for Helicobacter pylori: the calculated sensitivity was 100%, specificity 88%, positive predictive value 93%, and negative predictive value 100%. Treatment with bismuth subsalicylate and/or ampicillin resulted in lower counts of exhaled 14 CO 2 which correlated with histological improvement in gastritis. The 14 C-urea breath test is a better gold standard for the detection of Helicobacter pylori than histology and/or culture

  20. Breath biomarkers in toxicology.

    Science.gov (United States)

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  1. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  2. Breath acetone monitoring by portable Si:WO3 gas sensors

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  3. UNDERWATER STROKE KINEMATICS DURING BREATHING AND BREATH-HOLDING FRONT CRAWL SWIMMING

    Directory of Open Access Journals (Sweden)

    Nickos Vezos

    2007-03-01

    Full Text Available The aim of the present study was to determine the effects of breathing on the three - dimensional underwater stroke kinematics of front crawl swimming. Ten female competitive freestyle swimmers participated in the study. Each subject swam a number of front crawl trials of 25 m at a constant speed under breathing and breath-holding conditions. The underwater motion of each subject's right arm was filmed using two S-VHS cameras, operating at 60 Hz, which were positioned behind two underwater viewing windows. The spatial coordinates of selected points were calculated using the DLT procedure with 30 control points and after the digital filtering of the raw data with a cut-off frequency of 6 Hz, the hand's linear displacements and velocities were calculated. The results revealed that breathing caused significantly increases in the stroke duration (t9 = 2.764; p < 0.05, the backward hand displacement relative to the water (t9 = 2.471; p<0.05 and the lateral displacement of the hand in the X - axis during the downsweep (t9 = 2.638; p < 0.05. On the contrary, the peak backward hand velocity during the insweep (t9 = 2.368; p < 0.05 and the displacement of the hand during the push phase (t9 = -2.297; p < 0.05 were greatly reduced when breathing was involved. From the above, it was concluded that breathing action in front crawl swimming caused significant modifications in both the basic stroke parameters and the overall motor pattern were, possibly due to body roll during breathing

  4. Breath in the technoscientific imaginary

    OpenAIRE

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentr...

  5. Can audio coached 4D CT emulate free breathing during the treatment course?

    International Nuclear Information System (INIS)

    Persson, Gitte F.; Nygaard, Ditte E.; Olsen, Mikael; Juhler-Noettrup, Trine; Pedersen, Anders N.; Specht, Lena; Korreman, Stine S.

    2008-01-01

    Background. The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. Methods. Thirteen volunteers completed respiratory audio coaching on 3 days within a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing during an uncoached versus coached planning 4DCT, respectively, and compared the mean breathing cycle amplitude to the free versus coached breathing from day 2 and 3 simulating free versus coached breathing during treatment. Results. For most volunteers it was impossible to apply coaching without changes in breathing cycle amplitude. No significant decrease in standard deviation of breathing cycle amplitude distribution was seen. Generally it was not possible to predict the breathing cycle amplitude and its variation the following days based on the breathing in the reference session irrespective of coaching or free breathing. We found a significant tendency towards an increased breathing cycle amplitude variation with the duration of the coaching session. Conclusion. These results suggest that large interfraction variation is present in breathing amplitude irrespective of coaching, leading to the suggestion of daily image guidance for verification of respiratory pattern and tumour related motion. Until further investigated it is not recommendable to use coached 4DCT for

  6. Can audio coached 4D CT emulate free breathing during the treatment course?

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Gitte F.; Nygaard, Ditte E.; Olsen, Mikael; Juhler-Noettrup, Trine; Pedersen, Anders N.; Specht, Lena; Korreman, Stine S. (Dept. of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark))

    2008-08-15

    Background. The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. Methods. Thirteen volunteers completed respiratory audio coaching on 3 days within a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing during an uncoached versus coached planning 4DCT, respectively, and compared the mean breathing cycle amplitude to the free versus coached breathing from day 2 and 3 simulating free versus coached breathing during treatment. Results. For most volunteers it was impossible to apply coaching without changes in breathing cycle amplitude. No significant decrease in standard deviation of breathing cycle amplitude distribution was seen. Generally it was not possible to predict the breathing cycle amplitude and its variation the following days based on the breathing in the reference session irrespective of coaching or free breathing. We found a significant tendency towards an increased breathing cycle amplitude variation with the duration of the coaching session. Conclusion. These results suggest that large interfraction variation is present in breathing amplitude irrespective of coaching, leading to the suggestion of daily image guidance for verification of respiratory pattern and tumour related motion. Until further investigated it is not recommendable to use coached 4DCT for

  7. Bad-breath: Perceptions and misconceptions of Nigerian adults

    African Journals Online (AJOL)

    2015-03-02

    Mar 2, 2015 ... Key words: Bad‑breath, emerging adults, misconceptions, Nigeria, perceptions. Date of ... negligible minority being attributable to food and ill health. Many cases of ..... Intra‑ and extra‑oral halitosis: finding of a new form of ...

  8. Prevalence of abnormal lactose breath hydrogen tests in children with functional abdominal pain.

    Science.gov (United States)

    Garg, Neha; Basu, Srikanta; Singh, Preeti; Kumar, Ruchika; Sharma, Lokesh; Kumar, Praveen

    2017-05-01

    The study was undertaken to determine the prevalence of abnormal lactose breath hydrogen test in children with non-organic chronic abdominal pain. Children with chronic abdominal pain were examined and investigated for organic causes. All children without a known organic cause underwent lactose and glucose breath hydrogen test. After a standard dose of 2 g/kg of lactose to a maximum of 50 g, hydrogen in breath was measured at 15 min intervals for 3 h. A rise of 20 ppm above baseline was considered suggestive of lactose malabsorption. Of 108 children screened, organic causes were found in 46 children. Sixty-two patients without any organic cause underwent hydrogen breath test. Lactose hydrogen breath test (HBT) was positive in 36 of 62 (58%), while 11 (17%) had positive HBT with glucose suggestive of small intestinal bacterial overgrowth (SIBO). Twenty out of 34 (59%) improved on lactose free diet while 8 out of 11 (72%) children of SIBO improved on antibiotics. Lactose malabsorption was seen in 58% of children with non-organic chronic abdominal pain.

  9. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis - a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva

    2016-11-01

    Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.

  10. Breath-hold time during cold water immersion: effects of habituation with psychological training.

    Science.gov (United States)

    Barwood, Martin J; Datta, Avijit K; Thelwell, Richard C; Tipton, Michael J

    2007-11-01

    The loss of the conscious control of respiration on whole body cold water immersion (CWI) can result in the aspiration of water and drowning. Repeated CWI reduces the respiratory drive evoked by CWI and should prolong breath-hold time on CWI (BHmax(CWI)). Psychological skills training (PST) can also increase BHmax(CWI) by improving the ability of individuals to consciously suppress the drive to breathe. This study tested the hypothesis that combining PST and repeated CWI would extend BHmax(CWI) beyond that seen following only repeated CWI. There were 20 male subjects who completed two 2.5-min, head-out breath-hold CWI (BH1 and BH2) in water at 12 degrees C. Following BH1, subjects were matched on BHmax(CWI) and allocated to a habituation (HAB) group or a habituation plus PST group (H+PST). Between BH1 and BH2 both experimental groups undertook five 2.5-min CWI on separate days, during which they breathed freely. The H+PST also received psychological training to help tolerate cold and suppress the drive to breathe on immersion to extend BHmax(CWI). During BH1, mean BHmax(CWI) (+/- SD) in the HAB group was 22.00 (10.33) s and 22.38 (10.65) s in the H+PST. After the five free-breathing CWI, both groups had a longer BHmax(CWI) in BH2. The HAB group improved by 14.13 (20.21) s, an increase of 73%. H+PST improved by 26.86 (24.70) s, a 120% increase. No significant differences were identified between the groups. Habituation significantly increases BHmax on CWI, the addition of PST did not result in statistically significant improvements in BHmax(CWI), but may have practical significance.

  11. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command

    International Nuclear Information System (INIS)

    Gutzeit, Andreas; Matoori, Simon; Weymarn, Constantin von; Reischauer, Carolin; Goyen, Matthias; Hergan, Klaus; Meissnitzer, Matthias; Forstner, Rosemarie; Froehlich, Johannes M.; Kolokythas, Orpheus; Soyka, Jan D.; Doert, Aleksis; Koh, Dow-Mu

    2016-01-01

    To investigate whether a trained group of technicians using a modified breathing command during gadoxetate-enhanced liver MRI reduces respiratory motion artefacts compared to non-trained technicians using a traditional breathing command. The gadoxetate-enhanced liver MR images of 30 patients acquired using the traditional breathing command and the subsequent 30 patients after training the technicians to use a modified breathing command were analyzed. A subgroup of patients (n = 8) underwent scans both by trained and untrained technicians. Images obtained using the traditional and modified breathing command were compared for the presence of breathing artefacts [respiratory artefact-based image quality scores from 1 (best) to 5 (non-diagnostic)]. There was a highly significant improvement in the arterial phase image quality scores in patients using the modified breathing command compared to the traditional one (P < 0.001). The percentage of patients with severe and extensive breathing artefacts in the arterial phase decreased from 33.3 % to 6.7 % after introducing the modified breathing command (P = 0.021). In the subgroup that underwent MRI using both breathing commands, arterial phase image quality improved significantly (P = 0.008) using the modified breathing command. Training technicians to use a modified breathing command significantly improved arterial phase image quality of gadoxetate-enhanced liver MRI. (orig.)

  13. Organic Gas Sensor with an Improved Lifetime for Detecting Breath Ammonia in Hemodialysis Patients.

    Science.gov (United States)

    Chuang, Ming-Yen; Chen, Chang-Chiang; Zan, Hsiao-Wen; Meng, Hsin-Fei; Lu, Chia-Jung

    2017-12-22

    In this work, a TFB (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-s-butylphenyl)diphenylamine)]) sensor with a cylindrical nanopore structure exhibits a high sensitivity to ammonia in ppb-regime. The lifetime and sensitivity of the TFB sensor were studied and compared to those of P3HT (poly(3-hexylthiophene)), NPB (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine), and TAPC (4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]) sensors with the same cylindrical nanopore structures. The TFB sensor outstands the others in sensitivity and lifetime and it shows a sensing response (current variation ratio) of 13% to 100 ppb ammonia after 64 days of storage in air. A repeated sensing periods testing and a long-term measurement have also been demonstrated for the test of robustness. The performance of the TFB sensor is stable in both tests, which reveals that the TFB sensor can be utilized in our targeting clinical trials. In the last part of this work, we study the change of ammonia concentration in the breath of hemodialysis (HD) patients before and after dialysis. An obvious drop of breath ammonia concentration can be observed after dialysis. The reduction of breath ammonia is also correlated with the reduction of blood urea nitrogen (BUN). A correlation coefficient of 0.82 is achieved. The result implies that TFB sensor may be used as a real-time and low cost breath ammonia sensor for the daily tracking of hemodialysis patients.

  14. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  15. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Wong, John W.; Sharpe, Michael B.; Jaffray, David A.; Kini, Vijay R.; Robertson, John M.; Stromberg, Jannifer S.; Martinez, Alavro A.

    1999-01-01

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  16. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    Science.gov (United States)

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  17. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  18. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  19. Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

    International Nuclear Information System (INIS)

    Kim, Taeho; Kim, Siyong; Youn, Kaylin K; Park, Yang-Kyun; Keall, Paul; Lee, Rena

    2014-01-01

    A dual quasi-breath-hold (DQBH) technique is proposed for respiratory motion management (a hybrid technique combining breathing-guidance with breath-hold task in the middle). The aim of this study is to test a hypothesis that the DQBH biofeedback system improves both the capability of motion management and delivery efficiency. Fifteen healthy human subjects were recruited for two respiratory motion measurements (free breathing and DQBH biofeedback breathing for 15 min). In this study, the DQBH biofeedback system utilized the abdominal position obtained using an real-time position management (RPM) system (Varian Medical Systems, Palo Alto, USA) to audio-visually guide a human subject for 4 s breath-hold at EOI and 90% EOE (EOE 90% ) to improve delivery efficiency. We investigated the residual respiratory motion and the delivery efficiency (duty-cycle) of abdominal displacement within the gating window. The improvement of the abdominal motion reproducibility was evaluated in terms of cycle-to-cycle displacement variability, respiratory period and baseline drift. The DQBH biofeedback system improved the abdominal motion management capability compared to that with free breathing. With a phase based gating (mean ± std: 55  ±  5%), the averaged root mean square error (RMSE) of the abdominal displacement in the dual-gating windows decreased from 2.26 mm of free breathing to 1.16 mm of DQBH biofeedback (p-value = 0.007). The averaged RMSE of abdominal displacement over the entire respiratory cycles reduced from 2.23 mm of free breathing to 1.39 mm of DQBH biofeedback breathing in the dual-gating windows (p-value = 0.028). The averaged baseline drift dropped from 0.9 mm min −1 with free breathing to 0.09 mm min −1 with DQBH biofeedback (p-value = 0.048). The averaged duty-cycle with an 1 mm width of displacement bound increased from 15% of free breathing to 26% of DQBH biofeedback (p-value = 0.003). The study demonstrated that the DQBH

  20. Radiotherapy of lung cancer: the inspiration breath hold with a spirometric monitoring

    International Nuclear Information System (INIS)

    Garcia, R.; Oozeer, R.; Le Thanh, H.; Chastel, D.; Doyen, J.C.; Chauvet, B.; Reboul, F.

    2002-01-01

    A CT acquisition during a free breathing examination generates images of poor quality. It creates an uncertainty on the reconstructed gross tumour volume and dose distribution. The aim of this study is to test the feasibility of a breath hold method applied in all preparation and treatment days. Five patients received a thoracic radiotherapy with the benefit of this procedure. The breathing of the patient was measured with a spirometer. The patient was coached to reproduce a constant level of breath-hold in a deep inspiration. Video glasses helped the patients to fix the breath-hold at the reference level. The patients followed the coaching during preparation and treatment, without any difficulty. The better quality of the CT reconstructed images resulted in an easier contouring. No movements of the gross tumour volume lead to a better coverage. The deep breath hold decreased the volume of irradiated lung. This method improves the reproducibility of the thoracic irradiation. The decrease of irradiated lung volume offers prospects in dose escalation and intensity modulation radiotherapy. (authors)

  1. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  2. Improved pulmonary function in working divers breathing nitrox at shallow depths

    Science.gov (United States)

    Fitzpatrick, Daniel T.; Conkin, Johnny

    2003-01-01

    INTRODUCTION: There is limited data about the long-term pulmonary effects of nitrox use in divers at shallow depths. This study examined changes in pulmonary function in a cohort of working divers breathing a 46% oxygen enriched mixture while diving at depths less than 12 m. METHODS: A total of 43 working divers from the Neutral Buoyancy Laboratory (NBL), NASA-Johnson Space Center completed a questionnaire providing information on diving history prior to NBL employment, diving history outside the NBL since employment, and smoking history. Cumulative dive hours were obtained from the NBL dive-time database. Medical records were reviewed to obtain the diver's height, weight, and pulmonary function measurements from initial pre-dive, first year and third year annual medical examinations. RESULTS: The initial forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were greater than predicted, 104% and 102%, respectively. After 3 yr of diving at the NBL, both the FVC and FEV1 showed a significant (p volumes. Regular diving with nitrox at shallow depths over a 3-yr period did not impair pulmonary function. Improvements in FVC and FEV1 were primarily due to a training effect.

  3. Design and Implementation of a Laser-Based Ammonia Breath Sensor for Medical Applications

    KAUST Repository

    Owen, Kyle

    2012-06-01

    Laser-based sensors can be used as non-invasive monitoring tools to measure parts per billion (ppb) levels of trace gases. Ammonia sensors are useful for applications in environmental pollutant monitoring, atmospheric and combustion kinetic studies, and medical diagnostics. This sensor was specifically designed to measure ammonia in exhaled breath to be used as a medical diagnostic and monitoring tool, however, it can also be extended for use in other applications. Although ammonia is a naturally occurring species in exhaled breath, abnormally elevated levels can be an indication of adverse medical conditions. Laser-based breath diagnostics have many benefits since they are cost effective, non-invasive, painless, real time monitors. They have the potential to improve the quality of medical care by replacing currently used blood tests and providing immediate feedback to physicians. This sensor utilizes a Quantum Cascade Laser and Wavelength Modulation Spectroscopy with second harmonic normalized by first harmonic detection in a 76 m multi-pass absorption cell to measure ppb levels of ammonia with improved sensitivity over previous sensors. Initial measurements to determine the ammonia absorption line parameters were performed using direct absorption spectroscopy. This is the first experimental study of the ammonia absorption line transitions near 1103.46 cm1 with absorption spectroscopy. The linestrengths were measured with uncertainties less than 10%. The collisional broadening coefficients for each of the ammonia lines with nitrogen, oxygen, water vapor, and carbon dioxide were also measured, many of which had uncertainties less than 5%. The sensor was characterized to show a detectability limit of 10 ppb with an uncertainty of less than 5% at typical breath ammonia levels. Initial breath test results showed that some of the patients with chronic kidney disease had elevated ammonia levels while others had ammonia levels in the same range as expected for healthy

  4. INCENTIVE SPIROMETRY AND BREATHING EXERCISES WERE NOT ABLE TO IMPROVE RESTRICTIVE PULMONARY CHARACTERISTICS INDUCED BY WATER IMMERSION IN HEALTHY SUBJECTS

    OpenAIRE

    Aline A. Vepo,; Caroline S. Martinez; Giulia A. Wiggers; Franck M. Peçanha

    2016-01-01

    pulmonary volumes and capacities which could be at least in part similar to that happen in healthy individuals during water immersion. Objectives: To investigate if respiratory effects of water immersion are partially due to enhanced return venous from legs and arms and if physiotherapeutic techniques incentive spirometry (IS) and breathing exercises (BE) are able to improve pulmonary volumes and capacities in healthy subjects during water immersion. Design: Randomised, within-partici...

  5. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    International Nuclear Information System (INIS)

    Pollock, S; Keall, P; Keall, R

    2015-01-01

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  6. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, S; Keall, P [University of Sydney, Sydney (Australia); Keall, R [Hammond Care Palliative and Supportive Care Service, Sydney, NSW (Australia)

    2015-06-15

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  7. Body composition variation following diaphragmatic breathing ...

    African Journals Online (AJOL)

    Body composition variation following diaphragmatic breathing. ... effect of commonly prescribed diaphragmatic breathing training on the body composition ... a non-exercising control (NE) group (n = 22) or diaphragmatic breathing (DB) group.

  8. Taking Her Breath Away: The Rise of COPD in Women

    Science.gov (United States)

    ... Disparities Taking Her Breath Away: The Rise of COPD in Women Disparities in Lung Health Series More ... the U.S. live with chronic obstructive pulmonary disease (COPD), which includes chronic bronchitis and emphysema. Millions more ...

  9. Multiple breath washout analysis in infants: quality assessment and recommendations for improvement.

    Science.gov (United States)

    Anagnostopoulou, Pinelopi; Egger, Barbara; Lurà, Marco; Usemann, Jakob; Schmidt, Anne; Gorlanova, Olga; Korten, Insa; Roos, Markus; Frey, Urs; Latzin, Philipp

    2016-03-01

    Infant multiple breath washout (MBW) testing serves as a primary outcome in clinical studies. However, it is still unknown whether current software algorithms allow between-centre comparisons. In this study of healthy infants, we quantified MBW measurement errors and tried to improve data quality by simply changing software settings. We analyzed best quality MBW measurements performed with an ultrasonic flowmeter in 24 infants from two centres in Switzerland with the current software settings. To challenge the robustness of these settings, we also used alternative analysis approaches. Using the current analysis software, the coefficient of variation (CV) for functional residual capacity (FRC) differed significantly between centres (mean  ±  SD (%): 9.8  ±  5.6 and 5.8  ±  2.9, respectively, p  =  0.039). In addition, FRC values calculated during the washout differed between  -25 and  +30% from those of the washin of the same tracing. Results were mainly influenced by analysis settings and temperature recordings. Changing few algorithms resulted in significantly more robust analysis. Non-systematic inter-centre differences can be reduced by using correctly recorded environmental data and simple changes in the software algorithms. We provide implications that greatly improve infant MBW outcomes' quality and can be applied when multicentre trials are conducted.

  10. Use of an evidence-based protocol to screen for sleep-disordered breathing in a heart failure disease management clinic.

    Science.gov (United States)

    Garner, Shelby L; Traverse, Ramona D

    2014-01-01

    Undiagnosed and untreated sleep-disordered breathing can lead to negative health outcomes and increased utilization of health resources among patients with heart failure. The purpose of this evidence-based practice project was to implement and evaluate a new multifaceted sleep-disordered breathing screening protocol in a heart failure disease management clinic. The combined use of a symptoms questionnaire, the Epworth sleepiness scale, and overnight pulse oximetry was significantly more effective in identifying patients with a positive diagnosis of sleep-disordered breathing than using the Epworth sleepiness scale alone (P < .05).

  11. Suction/inspiration against resistance or standardized Mueller maneuver: a new breathing technique to improve contrast density within the pulmonary artery: a pilot CT study

    Energy Technology Data Exchange (ETDEWEB)

    Gutzeit, Andreas [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Hospital St. Anna, Institute of Radiology and Nuclear Medicine, Clinical Research Unit, Lucerne (Switzerland); Kantonsspital Winterthur, Department of Radiology, Winterthur (Switzerland); Froehlich, Johannes M.; Weymarn, Constantin von; Goyen, Matthias [Hirslanden Hospital St. Anna, Institute of Radiology and Nuclear Medicine, Clinical Research Unit, Lucerne (Switzerland); Waelti, Stephan [Cantonal Hospital St. Gallen, Department of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Roos, Justus E. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Meissnitzer, Matthias; Hergan, Klaus [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Czell, David [Cantonal Hospital Winterthur, Department of Neurology, Winterthur (Switzerland); Reischauer, Carolin [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Hospital St. Anna, Institute of Radiology and Nuclear Medicine, Clinical Research Unit, Lucerne (Switzerland)

    2015-11-15

    Our aim was to prospectively investigate whether the recently introduced suction/inspiration against resistance breathing method leads to higher computed tomography (CT) contrast density in the pulmonary artery compared to standard breathing. The present study was approved by the Medical Ethics committee and all subjects gave written informed consent. Fifteen patients, each without suspicious lung emboli, were randomly assigned to four different groups with different breathing maneuvers (suction against resistance, Valsalva, inspiration, expiration) during routine CT. Contrast enhancement in the central and peripheral sections of the pulmonary artery were measured and compared with one another. Peripheral enhancement during suction yielded increased mean densities of 138.14 Hounsfield units (HU) (p = 0.001), compared to Valsalva and a mean density of 67.97 HU superior to inspiration (p = 0.075). Finally, suction in comparison to expiration resulted in a mean increase of 30.51 HU (p = 0.42). Central parts of pulmonary arteries presented significantly increased enhancement values (95.74 HU) for suction versus the Valsalva technique (p = 0.020), while all other mean densities were in favour of suction (versus inspiration: p = 0.201; versus expiration: p = 0.790) without reaching significance. Suction/Inspiration against resistance is a promising technique to improve contrast density within pulmonary vessels, especially in the peripheral parts, in comparison to other breathing maneuvers. (orig.)

  12. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Yin, Y [Shandong Cancer Hospital, Jinan, Shandong (China)

    2014-06-01

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group, 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.

  13. Advanced air distribution: Improving health and comfort while reducing energy use

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    -quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing......Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high...... the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments...

  14. The experimental modification of sonorous breathing.

    OpenAIRE

    Josephson, S C; Rosen, R C

    1980-01-01

    Loud snoring is a noxious habit and potential personal health risk. We are reporting the first experimental study of simple behavioral techniques for the modification of chronic snoring. Twenty-four volunteers participated in a repeated measures, randomized group design over 2 weeks of intervention and one-month follow-up. Treatment groups included a contingent-awakening and breathing retraining (self-control) condition. Both treatment groups were compared to a no-treatment control. Despite c...

  15. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.

    Science.gov (United States)

    Bright, Molly G; Murphy, Kevin

    2013-12-01

    Cerebrovascular reactivity (CVR) can be mapped using BOLD fMRI to provide a clinical insight into vascular health that can be used to diagnose cerebrovascular disease. Breath-holds are a readily accessible method for producing the required arterial CO2 increases but their implementation into clinical studies is limited by concerns that patients will demonstrate highly variable performance of breath-hold challenges. This study assesses the repeatability of CVR measurements despite poor task performance, to determine if and how robust results could be achieved with breath-holds in patients. Twelve healthy volunteers were scanned at 3 T. Six functional scans were acquired, each consisting of 6 breath-hold challenges (10, 15, or 20 s duration) interleaved with periods of paced breathing. These scans simulated the varying breath-hold consistency and ability levels that may occur in patient data. Uniform ramps, time-scaled ramps, and end-tidal CO2 data were used as regressors in a general linear model in order to measure CVR at the grey matter, regional, and voxelwise level. The intraclass correlation coefficient (ICC) quantified the repeatability of the CVR measurement for each breath-hold regressor type and scale of interest across the variable task performances. The ramp regressors did not fully account for variability in breath-hold performance and did not achieve acceptable repeatability (ICC0.4). Further analysis of intra-subject CVR variability across the brain (ICCspatial and voxelwise correlation) supported the use of end-tidal CO2 data to extract robust whole-brain CVR maps, despite variability in breath-hold performance. We conclude that the incorporation of end-tidal CO2 monitoring into scanning enables robust, repeatable measurement of CVR that makes breath-hold challenges suitable for routine clinical practice. © 2013.

  16. 46 CFR 197.456 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  17. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  18. The effect of African breath psychotherapeutic workshops on ...

    African Journals Online (AJOL)

    The aim of this research was to investigate the effect of an African breath psychotherapeutic workshop called Shiso on spirituality perceptions and experiences. In view of previous pilot study findings, it was hypothesized that further Shiso workshops with enlarged samples would improve participants' spirituality in ...

  19. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  20. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  1. The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood

    Directory of Open Access Journals (Sweden)

    Patrick R. Steffen

    2017-08-01

    Full Text Available Heart rate variability biofeedback (HRVB significantly improves heart rate variability (HRV. Breathing at resonance frequency (RF, approximately 6 breaths/min constitutes a key part of HRVB training and is hypothesized to be a pathway through which biofeedback improves HRV. No studies to date, however, have experimentally examined whether RF breathing impacts measures of HRV. The present study addressed this question by comparing three groups: the RF group breathed at their determined RF for 15 min; the RF + 1 group breathed at 1 breath/min higher than their determined RF for 15 min; and the third group sat quietly for 15 min. After this 15-min period, all groups participated in the Paced Auditory Serial Addition Task (PASAT for 8 min, and then sat quietly during a 10-min recovery period. HRV, blood pressure, and mood were measured throughout the experiment. Groups were not significantly different on any of the measures at baseline. After the breathing exercise, the RF group reported higher positive mood than the other two groups and a significantly higher LF/HF HRV ratio relative to the control group, a key goal in HRVB training (p < 0.05. Additionally, the RF group showed lower systolic blood pressure during the PASAT and during the recovery period relative to the control group, with the RF + 1 group not being significantly different from either group (p < 0.05. Overall, RF breathing appears to play an important role in the positive effect HRVB has on measures of HRV.

  2. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Amy [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Gaebler, Carl P.; Huang, Hailiang; Olek, Devin [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-12-01

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for

  3. Deep Learning versus Professional Healthcare Equipment: A Fine-Grained Breathing Rate Monitoring Model

    Directory of Open Access Journals (Sweden)

    Bang Liu

    2018-01-01

    Full Text Available In mHealth field, accurate breathing rate monitoring technique has benefited a broad array of healthcare-related applications. Many approaches try to use smartphone or wearable device with fine-grained monitoring algorithm to accomplish the task, which can only be done by professional medical equipment before. However, such schemes usually result in bad performance in comparison to professional medical equipment. In this paper, we propose DeepFilter, a deep learning-based fine-grained breathing rate monitoring algorithm that works on smartphone and achieves professional-level accuracy. DeepFilter is a bidirectional recurrent neural network (RNN stacked with convolutional layers and speeded up by batch normalization. Moreover, we collect 16.17 GB breathing sound recording data of 248 hours from 109 and another 10 volunteers to train and test our model, respectively. The results show a reasonably good accuracy of breathing rate monitoring.

  4. Changes in the palatal dimensions of mouth breathing children caused by nasal obstruction

    Science.gov (United States)

    Indiarti, I. S.; Setyanto, D. B.; Kusumaningrum, A.; Budiardjo, S. B.

    2017-08-01

    During children’s growth and development, the breathing process plays an important role in craniofacial growth, especially of the palate. Nose breathing can stimulate the lateral growth of the maxilla, thus making the palate flat. Disturbances in nose breathing caused by nasal obstruction such as allergic rhinitis, adenoid hypertrophy, rhinosinusitis, nasal polyps, and obstructive sleep apnea can lead to a mouth breathing habit in children. This habit can cause palatal dimension changes such as a narrow V-shaped maxillary arch and a high palatal vault. This study analyzed the relationship between the mouth breathing habit in children who have nasal obstruction and palatal dimension changes. A cross-sectional descriptive study was conducted with a consecutive sampling method on children 7-18 years old with a history of allergic rhinitis, adenoid hypertrophy, rhinosinusitis, nasal polyps, and obstructive sleep apnea in the Pediatric Respirology and Pediatric Immunology Allergy Outpatient Clinic Kiara Maternal and Child Health Center at Cipto Mangunkusumo Hospital in Jakarta. The palatal dimensions were measured by the height and transversal width of the hard palate of castings of each child’s upper dental arch using vernier calipers. Palatal dimension changes were found in children with a mouth breathing habit due to nasal obstruction.

  5. Can baroreflex measurements with spontaneous sequence analysis be improved by also measuring breathing and by standardization of filtering strategies?

    International Nuclear Information System (INIS)

    Hollow, M R; Parkes, M J; Clutton-Brock, T H

    2011-01-01

    Baroreflex sensitivity (BRS) is known to be attenuated by inspiration and all the original BRS methodologies took this into account by measuring only in expiration. Spontaneous sequence analysis (SSA) is a non-invasive clinical tool widely used to estimate BRS in Man but does not take breathing into account. We have therefore modified it to test whether it too can detect inspiratory attenuation. Traditional SSA is also entangled with issues of distinguishing causal from random relationships between blood pressure and heart period and of the optimum choice of data filter settings. We have also tested whether the sequences our modified SSA rejects do behave as random relationships and show the limitations of the absence of filter standardization. SSA was performed on eupneic data from 1 h periods in 20 healthy subjects. Applying SSA traditionally produced a mean BRS of 23 ± 3 ms mmHg −1 . After modification to measure breathing, SSA detected significant inspiratory attenuation (11 ± 1 ms mmHg −1 ), and the mean expiratory BRS was significantly higher (26 ± 5 ms mmHg −1 ). Traditional SSA therefore underestimates BRS by an amount (3 ms mmHg −1 ) as big as the major physiological and clinical factors known to alter BRS. We show that the sequences rejected by SSA do behave like random associations between pressure and period. We also show the minimal effect of the r 2 filter and the biases that some pressure and heart period filters can introduce. We discuss whether SSA might be improved by standardization of filter settings and by also measuring breathing

  6. The role of arterial chemoreceptors in the breath-by-breath augmentation of inspiratory effort in rabbits during airway occlusion or elastic loading.

    Science.gov (United States)

    Callanan, D; Read, D J

    1974-08-01

    1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.

  7. Analysis of Exhaled Breath for Disease Detection

    Science.gov (United States)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  8. Improving employee productivity through improved health.

    Science.gov (United States)

    Mitchell, Rebecca J; Ozminkowski, Ronald J; Serxner, Seth

    2013-10-01

    The objective of this study was to estimate productivity-related savings associated with employee participation in health promotion programs. Propensity score weighting and multiple regression techniques were used to estimate savings. These techniques were adjusted for demographic and health status differences between participants who engaged in one or more telephonic health management programs and nonparticipants who were eligible for but did not engage in these programs. Employees who participated in a program and successfully improved their health care or lifestyle showed significant improvements in lost work time. These employees saved an average of $353 per person per year. This reflects about 10.3 hours in additional productive time annually, compared with similar, but nonparticipating employees. Participating in health promotion programs can help improve productivity levels among employees and save money for their employers.

  9. Sleep-Disordered Breathing in Neuromuscular Disease: Diagnostic and Therapeutic Challenges.

    Science.gov (United States)

    Aboussouan, Loutfi S; Mireles-Cabodevila, Eduardo

    2017-10-01

    Normal sleep-related rapid eye movement sleep atonia, reduced lung volumes, reduced chemosensitivity, and impaired airway dilator activity become significant vulnerabilities in the setting of neuromuscular disease. In that context, the compounding effects of respiratory muscle weakness and disease-specific features that promote upper airway collapse or cause dilated cardiomyopathy contribute to various sleep-disordered breathing events. The reduction in lung volumes with neuromuscular disease is further compromised by sleep and the supine position, exaggerating the tendency for upper airway collapse and desaturation with sleep-disordered breathing events. The most commonly identified events are diaphragmatic/pseudo-central, due to a decrease in the rib cage contribution to the tidal volume during phasic rapid eye movement sleep. Obstructive and central sleep apneas are also common. Noninvasive ventilation can improve survival and quality of sleep but should be used with caution in the context of dilated cardiomyopathy or significant bulbar symptoms. Noninvasive ventilation can also trigger sleep-disordered breathing events, including ineffective triggering, autotriggering, central sleep apnea, and glottic closure, which compromise the potential benefits of the intervention by increasing arousals, reducing adherence, and impairing sleep architecture. Polysomnography plays an important diagnostic and therapeutic role by correctly categorizing sleep-disordered events, identifying sleep-disordered breathing triggered by noninvasive ventilation, and improving noninvasive ventilation settings. Optimal management may require dedicated hypoventilation protocols and a technical staff well versed in the identification and troubleshooting of respiratory events. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  10. The indoor air we breathe.

    Science.gov (United States)

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions.

  11. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  12. BREATHE to Understand©

    Science.gov (United States)

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  13. Adsorption Properties of Typical Lung Cancer Breath Gases on Ni-SWCNTs through Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Qianqian Wan

    2017-01-01

    Full Text Available A lot of useful information is contained in the human breath gases, which makes it an effective way to diagnose diseases by detecting the typical breath gases. This work investigated the adsorption of typical lung cancer breath gases: benzene, styrene, isoprene, and 1-hexene onto the surface of intrinsic and Ni-doped single wall carbon nanotubes through density functional theory. Calculation results show that the typical lung cancer breath gases adsorb on intrinsic single wall carbon nanotubes surface by weak physisorption. Besides, the density of states changes little before and after typical lung cancer breath gases adsorption. Compared with single wall carbon nanotubes adsorption, single Ni atom doping significantly improves its adsorption properties to typical lung cancer breath gases by decreasing adsorption distance and increasing adsorption energy and charge transfer. The density of states presents different degrees of variation during the typical lung cancer breath gases adsorption, resulting in the specific change of conductivity of gas sensing material. Based on the different adsorption properties of Ni-SWCNTs to typical lung cancer breath gases, it provides an effective way to build a portable noninvasive portable device used to evaluate and diagnose lung cancer at early stage in time.

  14. Design and Validation of a Breathing Detection System for Scuba Divers

    Directory of Open Access Journals (Sweden)

    Corentin Altepe

    2017-06-01

    Full Text Available Drowning is the major cause of death in self-contained underwater breathing apparatus (SCUBA diving. This study proposes an embedded system with a live and light-weight algorithm which detects the breathing of divers through the analysis of the intermediate pressure (IP signal of the SCUBA regulator. A system composed mainly of two pressure sensors and a low-power microcontroller was designed and programmed to record the pressure sensors signals and provide alarms in absence of breathing. An algorithm was developed to analyze the signals and identify inhalation events of the diver. A waterproof case was built to accommodate the system and was tested up to a depth of 25 m in a pressure chamber. To validate the system in the real environment, a series of dives with two different types of workload requiring different ranges of breathing frequencies were planned. Eight professional SCUBA divers volunteered to dive with the system to collect their IP data in order to participate to validation trials. The subjects underwent two dives, each of 52 min on average and a maximum depth of 7 m. The algorithm was optimized for the collected dataset and proved a sensitivity of inhalation detection of 97.5% and a total number of 275 false positives (FP over a total recording time of 13.9 h. The detection algorithm presents a maximum delay of 5.2 s and requires only 800 bytes of random-access memory (RAM. The results were compared against the analysis of video records of the dives by two blinded observers and proved a sensitivity of 97.6% on the data set. The design includes a buzzer to provide audible alarms to accompanying dive buddies which will be triggered in case of degraded health conditions such as near drowning (absence of breathing, hyperventilation (breathing frequency too high and skip-breathing (breathing frequency too low measured by the improper breathing frequency. The system also measures the IP at rest before the dive and indicates with

  15. Improving Health Promotion Using Quality Improvement Techniques in Australian Indigenous Primary Health Care

    Science.gov (United States)

    Percival, Nikki; O’Donoghue, Lynette; Lin, Vivian; Tsey, Komla; Bailie, Ross Stewart

    2016-01-01

    Although some areas of clinical health care are becoming adept at implementing continuous quality improvement (CQI) projects, there has been limited experimentation of CQI in health promotion. In this study, we examined the impact of a CQI intervention on health promotion in four Australian Indigenous primary health care centers. Our study objectives were to (a) describe the scope and quality of health promotion activities, (b) describe the status of health center system support for health promotion activities, and (c) introduce a CQI intervention and examine the impact on health promotion activities and health centers systems over 2 years. Baseline assessments showed suboptimal health center systems support for health promotion and significant evidence-practice gaps. After two annual CQI cycles, there were improvements in staff understanding of health promotion and systems for planning and documenting health promotion activities had been introduced. Actions to improve best practice health promotion, such as community engagement and intersectoral partnerships, were inhibited by the way health center systems were organized, predominately to support clinical and curative services. These findings suggest that CQI can improve the delivery of evidence-based health promotion by engaging front line health practitioners in decision-making processes about the design/redesign of health center systems to support the delivery of best practice health promotion. However, further and sustained improvements in health promotion will require broader engagement of management, senior staff, and members of the local community to address organizational and policy level barriers. PMID:27066470

  16. Improving health promotion using quality improvement techniques in Australian Indigenous primary health care

    Directory of Open Access Journals (Sweden)

    Nikki ePercival

    2016-03-01

    Full Text Available While some areas of clinical health care are becoming adept at implementing continuous quality improvement (CQI projects, there has been limited experimentation of CQI in health promotion. In this study, we examined the impact of a CQI intervention on health promotion in four Australian Indigenous primary health care centres. Our study objectives were to: (a describe the scope and quality of health promotion activities; (b describe the status of health centre system support for health promotion activities; and (c introduce a CQI intervention and examine the impact on health promotion activities and health centres systems over two years. Baseline assessments showed sub-optimal health centre systems support for health promotion and significant evidence-practice gaps. After two annual CQI cycles, there were improvements in staff understanding of health promotion and systems for planning and documenting health promotion activities had been introduced. Actions to improve best practice health promotion, such as community engagement and intersectoral partnerships, were inhibited by the way health centre systems were organized, predominately to support clinical and curative services. These findings suggest that CQI can improve the delivery of evidence based health promotion by engaging front line health practitioners in decision making processes about the design/redesign of health centre systems to support the delivery of best practice health promotion. However, further and sustained improvements in health promotion will require broader engagement of management, senior staff and members of the local community to address organisational and policy level barriers.

  17. Improving Health Promotion Using Quality Improvement Techniques in Australian Indigenous Primary Health Care.

    Science.gov (United States)

    Percival, Nikki; O'Donoghue, Lynette; Lin, Vivian; Tsey, Komla; Bailie, Ross Stewart

    2016-01-01

    Although some areas of clinical health care are becoming adept at implementing continuous quality improvement (CQI) projects, there has been limited experimentation of CQI in health promotion. In this study, we examined the impact of a CQI intervention on health promotion in four Australian Indigenous primary health care centers. Our study objectives were to (a) describe the scope and quality of health promotion activities, (b) describe the status of health center system support for health promotion activities, and (c) introduce a CQI intervention and examine the impact on health promotion activities and health centers systems over 2 years. Baseline assessments showed suboptimal health center systems support for health promotion and significant evidence-practice gaps. After two annual CQI cycles, there were improvements in staff understanding of health promotion and systems for planning and documenting health promotion activities had been introduced. Actions to improve best practice health promotion, such as community engagement and intersectoral partnerships, were inhibited by the way health center systems were organized, predominately to support clinical and curative services. These findings suggest that CQI can improve the delivery of evidence-based health promotion by engaging front line health practitioners in decision-making processes about the design/redesign of health center systems to support the delivery of best practice health promotion. However, further and sustained improvements in health promotion will require broader engagement of management, senior staff, and members of the local community to address organizational and policy level barriers.

  18. Quantification of volatile organic compounds in exhaled human breath. Acetonitrile as biomarker for passive smoking. Model for isoprene in human breath

    International Nuclear Information System (INIS)

    Prazeller, P.

    2000-03-01

    The topic of this thesis is the quantification of volatile organic compounds in human breath under various circumstances. The composition of exhaled breath reflects metabolic processes in the human body. Breath analysis is a non invasive technique which makes it most interesting especially for medical or toxicological applications. Measurements were done with Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS). This technique combines the advantage of small fragmentation of chemical ionization with highly time resolved mass spectrometry. A big part of this work is about investigations of exposition due to tobacco smoke. After smoking cigarettes the initial increase and time dependence of some compounds in the human breath are monitored . The calculated decrease resulting only from breathing out the compounds is presented and compared to the measured decline in the breath. This allows the distinction whether breathing is the dominant loss of a compound or a different metabolic process remover it more efficiently. Acetonitrile measured in human breath is presented as a biomarker for exposition to tobacco smoke. Especially its use for quantification of passive smoking, the exposition to environmental tobacco smoke (ETS) is shown. The reached accuracy and the fast way of measuring of acetonitrile in human breath using PTR-MS offer a good alternative to common used biomarkers. Numerous publications have described measurements of breath isoprene in humans, and there has been a hope that breath isoprene analyses could be a non-invasive diagnostic tool to assess serum cholesterol levels or cholesterol synthesis rate. However, significant analytical problems in breath isoprene analysis and variability in isoprene levels with age, exercise, diet, etc. have limited the usefulness of these measurements. Here, we have applied proton-transfer-reaction mass spectrometry (PTR-MS) to this problem, allowing on-line detection of breath isoprene. We show that breath isoprene

  19. Evaluation of changes in sleep breathing patterns after primary palatoplasty in cleft children

    Directory of Open Access Journals (Sweden)

    Justice E. Reilly

    2014-09-01

    improvement but by no means complete resolution of their sleep disordered breathing patterns. Conclusions: We conclude that sleep breathing disturbance is not confined to Pierre Robin patients alone and all cleft palate patients should undergo pre-operative and post-operative sleep breathing analysis.

  20. Practical recommendations for breathing-adapted radiotherapy; Bonnes pratiques pour la radiotherapie asservie a la respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simon, L.; Giraud, P.; Rosenwald, J.C. [Institut Curie, Dept. d' Oncologie-radiotherapie, 75 - Paris (France); Dumas, J.L.; Lorchel, F. [CHU de Besancon, Hopital Jean-Minjoz, Service Radiotherapie, 25 - Besancon (France); Marre, D. [Institut Claudius-Regaud, Dept. des Radiations, 31 - Toulouse (France); Dupont, S. [Hopital Europeen Georges-Pompidou, Service d' Oncoradiotherapie, 75 - Paris (France); Varmenot, N. [Centre Henri-Becquerel, UnitE de Physique Medicale, 76 - Rouen (France); Ginestet, C. [Centre Leon-Berard, Dept. de Radiotherapie, 69 - Lyon (France); Caron, J. [Institut Bergonie, Dept. de Radiotherapie, 33 - Bordeaux (France); Marchesi, V. [Centre Alexis-Vautrin, Dept. de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France); Ferreira, I. [Institut Gustave-Roussy, Dept. d' Oncologie Radiotherapie, 94 - Villejuif (France); Garcia, R. [Institut Sainte-Catherine, Service de Radiotherapie, 84 - Avignon (France)

    2007-06-15

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  1. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  2. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    International Nuclear Information System (INIS)

    Cervino, Laura I; Gupta, Sonia; Rose, Mary A; Yashar, Catheryn; Jiang, Steve B

    2009-01-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  3. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    Science.gov (United States)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  4. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques

    International Nuclear Information System (INIS)

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Albiin, Nils; Segersvaerd, Ralf

    2012-01-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm 2 ) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 x 10 -3 mm 2 /s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. (orig.)

  5. Environmental contamination and breathing disease

    International Nuclear Information System (INIS)

    Cardona A, Jose D

    2003-01-01

    The atmospheric contamination is the main component of the environmental contamination and it can be defined as the presence in the atmosphere of an or several substances in enough quantity to produce alterations of the health, it is presented in aerosol form, with its gassy and specific components, altering the quality of the population's life and the degradation of the ecosystems. The main pollutant, as much for the frequency as for the importance of its effects, is the smoke of cigarettes. The paper mentions other types of polluting agents and their effects in the breathing apparatus

  6. Cardiorespiratory interactions during resistive load breathing.

    Science.gov (United States)

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  7. Craniofacial changes and symptoms of sleep-disordered breathing in healthy children

    Directory of Open Access Journals (Sweden)

    Maria Christina Thomé Pacheco

    2015-06-01

    Full Text Available INTRODUCTION: The main cause of mouth breathing and sleep-disordered breathing (SDB in childhood is associated with upper airway narrowing to varying degrees. OBJECTIVE: The aim of this study was to assess the prevalence of morphological and functional craniofacial changes and the main clinical symptoms of SDB in healthy children. METHODS: A cross-sectional observational study was conducted. A sample comprising 687 healthy schoolchildren, aged 7-12 years old and attending public schools, was assessed by medical history, clinical medical and dental examination, and respiratory tests. The self-perceived quality of life of mouth breathing children was obtained by a validated questionnaire. RESULTS: Out of the total sample, 520 children were nose breathers (NB while 167 (24.3% were mouth breathers (MB; 32.5% had severe hypertrophy of the palatine tonsils, 18% had a Mallampati score of III or IV, 26.1% had excessive overjet and 17.7% had anterior open bite malocclusion. Among the MB, 53.9% had atresic palate, 35.9% had lip incompetence, 33.5% reported sleepiness during the day, 32.2% often sneezed, 32.2% had a stuffy nose, 19.6% snored, and 9.4% reported having the feeling to stop breathing while asleep. However, the self-perception of their quality of life was considered good. CONCLUSION: High prevalence of facial changes as well as signs and symptoms of mouth breathing were found among health children, requiring early diagnosis and treatment to reduce the risk of SDB.

  8. High-pitch coronary CT angiography in dual-source CT during free breathing vs. breath holding in patients with low heart rates

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, Bernhard, E-mail: bernhard.bischoff@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich (Germany); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich (Germany); Meinel, Felix G. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich (Germany); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich (Germany); Del Prete, Alessandra [Department of Radiology Magrassi-Lanzara, Second University of Naples, Naples (Italy); Reiser, Maximilian F.; Becker, Hans-Christoph [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich (Germany); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich (Germany)

    2013-12-01

    Background: Coronary CT angiography (CCTA) is usually performed during breath holding to reduce motion artifacts caused by respiration. However, some patients are not able to follow the breathing commands adequately due to deafness, hearing impairment, agitation or pulmonary diseases. The aim of this study was to evaluate the potential of high-pitch CCTA in free breathing patients when compared to breath holding patients. Methods: In this study we evaluated 40 patients (20 free breathing and 20 breath holding patients) with a heart rate of 60 bpm or below referred for CCTA who were examined on a 2nd generation dual-source CT system. Image quality of each coronary artery segment was rated using a 4-point grading scale (1: non diagnostic–4: excellent). Results: Mean heart rate during image acquisition was 52 ±5 bpm in both groups. There was no significant difference in mean image quality, slightly favoring image acquisition during breath holding (mean image quality score 3.76 ± 0.32 in breath holding patients vs. 3.61 ± 0.45 in free breathing patients; p = 0.411). Due to a smaller amount of injected contrast medium, there was a trend for signal intensity to be slightly lower in free breathing patients, but this was not statistically significant (435 ± 123 HU vs. 473 ± 117 HU; p = 0.648). Conclusion: In patients with a low heart rate who are not able to hold their breath adequately, CCTA can also be acquired during free breathing without substantial loss of image quality when using a high pitch scan mode in 2nd generation dual-source CT.

  9. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    OpenAIRE

    Arden-Close, E; Yardley, L; Kirby, S; Thomas, M; Bruton, A

    2017-01-01

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retr...

  10. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Albiin, Nils [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Segersvaerd, Ralf [Karolinska University Hospital, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden)

    2012-10-15

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm{sup 2}) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 x 10{sup -3} mm{sup 2}/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. (orig.)

  11. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

    Science.gov (United States)

    Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar

    2018-03-01

    Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

  12. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  13. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  14. Optimal ventilatory patterns in periodic breathing.

    Science.gov (United States)

    Ghazanshahi, S D; Khoo, M C

    1993-01-01

    The goal of this study was to determine whether periodic breathing (PB), which is highly prevalent during sleep at high altitudes, imposes physiological penalties on the respiratory system in the absence of any accompanying disease. Using a computer model of respiratory gas exchange, we compared the effects of a variety of PB patterns on the chemical and mechanical costs of breathing to those resulting from regular tidal breathing. Although PB produced considerable fluctuation in arterial blood gas tensions, for the same cycle-averaged ventilation, higher arterial oxygen saturation and lower arterial carbon dioxide levels were achieved. This result can be explained by the fact that the combination of large breaths and apnea in PB leads to a substantial reduction in dead space ventilation. At the same time, the savings in mechanical cost achieved by the respiratory muscles during apnea partially offset the increase during the breathing phase. Consequently, the "pressure cost," a criterion based on mean inspiratory pressure, was elevated only slightly, although the average work rate of breathing increased significantly. We found that, at extreme altitudes, PB patterns with clusters of 2 to 4 large breaths that alternate with apnea produce the highest arterial oxygenation levels and lowest pressure costs. The common occurrence of PB patterns with closely similar features has been reported in sleeping healthy sojourners at extreme altitudes. Taken together, these findings suggest that PB favors a reduction in the oxygen demands of the respiratory muscles and therefore may not be as detrimental as it is generally believed to be.

  15. Work of breathing as a tool to diagnose severe fixed upper airway obstruction.

    Science.gov (United States)

    Khirani, S; Pierrot, S; Leboulanger, N; Ramirez, A; Breton, D; Couloigner, V; Fauroux, B

    2014-03-01

    A 4-year-old girl with bilateral vocal fold palsy was successfully decannulated from tracheotomy after seven laryngeal procedures. But an important stridor and dyspnea recurred 13 months after decannulation. Nocturnal gas exchange was normal but her daytime work of breathing was increased by fourfold, without any beneficial effect of nasal noninvasive continuous positive airway pressure ventilation (CPAP), reflecting a severe fixed airway obstruction. Endoscopic examination confirmed the work of breathing findings showing glottic and supraglottic stenosis. This upper airway obstruction was successfully treated with a recannulation. In conclusion, the major message of this case report is that measurement of the work of breathing was able to document the "fixed" nature of the airway obstruction, by showing no improvement even with highest tolerated levels of nasal CPAP. As such, the work of breathing may be proposed as a screening tool to quantify and assess the reversibility of severe upper airway obstruction in children. © 2013 Wiley Periodicals, Inc.

  16. 46 CFR 197.340 - Breathing gas supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  17. Bad Breath

    Science.gov (United States)

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  18. Assessment of the (/sup 14/C) aminopyrine breath test in liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Galizzi, J; Long, R G; Billing, B H; Sherlock, S [Royal Free Hospital, London (UK)

    1978-01-01

    Different methods of performing the (/sup 14/C) aminopyrine breath test have been assessed. A tracer dose of 2 ..mu..Ci without a loading dose and with a single breath collection at two hours was the method selected, since it gave the best discrimination between patients with hepatocellular diseases and normal subjects (5.2 +- 0.2%, mean - SEM). Reduced values occurred in patients with chronic active hepatitis (with and without cirrhosis) (1.5 +- 0.2%), alcoholic cirrhosis (1.7 +- 0.4%) and hepatitis (2.5 +- 0.3%), and late primary biliary cirrhosis suggesting defective microsomal function with respect to demethylation. Normal results were common in early primary biliary cirrhosis. Two weeks of prednisolone therapy caused some improvement in the breath test in nine of ten patients with chronic active hepatitis. It is concluded that the (/sup 14/C) aminopyrine breath test is a simple test for detecting hepatocellular dysfunction, but has no obvious diagnostic advantage over the determination of serum aspartate transaminase and two hour post-prandial bile-acids.

  19. Slow loaded breathing training improves blood pressure, lung capacity and arm exercise endurance for older people with treated and stable isolated systolic hypertension.

    Science.gov (United States)

    Ublosakka-Jones, Chulee; Tongdee, Phailin; Pachirat, Orathai; Jones, David A

    2018-03-28

    Hypertension and reduced lung function are important features of aging. Slow loaded breathing training reduces resting blood pressure and the question is whether this can also improve lung function. Thirty-two people (67 ± 5 years, 16 male) with controlled isolated systolic hypertension undertook an eight weeks randomised controlled training trial with an inspiratory load of 25% maximum inspiratory pressure (MIP) at 6 breaths per minute (slow loaded breathing; SLB) or deep breathing control (CON). Outcome measures were resting blood pressure (BP) and heart rate; MIP; lung capacity; chest and abdominal expansion; arm cranking exercise endurance at 50% heart rate reserve. Home based measurement of resting systolic BP decreased by 20 mm Hg (15 to 25) (Mean and 95%CI) for SLB and by 5 mm Hg (1 to 7) for CON. Heart rate and diastolic BP also decreased significantly for SLB but not CON. MIP increased by 15.8 cm H 2 O (11.8 to 19.8) and slow vital capacity by 0.21 L (0.15 to 0.27) for SLB but not for CON. Chest and abdominal expansion increased by 2.3 cm (2.05 to 2.55) and 2.5 cm (2.15 to 2.85), respectively for SLB and by 0.5 cm (0.26 to 0.74) and 1.7 cm (1.32 to 2.08) for CON. Arm exercise time increased by 4.9 min (3.65 to 5.15) for SLB with no significant change for CON. Slow inspiratory muscle training is not only effective in reducing resting BP, even in older people with well controlled isolated systolic hypertension but also increases inspiratory muscle strength, lung capacity and arm exercise duration. Copyright © 2018. Published by Elsevier Inc.

  20. Computer tomography guided lung biopsy using interactive breath-hold control

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Krag-Andersen, Shella; Naqibullah, Matiullah

    2017-01-01

    Background: Interactive breath-hold control (IBC) may improve the accuracy and decrease the complication rate of computed tomography (CT)-guided lung biopsy, but this presumption has not been proven in a randomized study. Methods: Patients admitted for CT-guided lung biopsy were randomized...

  1. Effects of Oral Breathing on the Nutritional Status: Why does it Happen?

    Directory of Open Access Journals (Sweden)

    Cunha, Daniele Andrade da

    2011-04-01

    Full Text Available Introduction: Some children who breathe through the mouth and present nocturnal obstructive apnea can present a delay in the pondero-statural growth. Objective: The objective of this article is to analyze the orofacial myofunctional alterations found in oral breathers and the effects on their nutritional status. It focuses on the importance of the interdisciplinary team following up with the overall oral breathing alterations. Method: The used method was a literature's revision based on articles published in indexed scientific magazines, books and post-graduation works. Most articles were identified on LILACS, MEDLINE, and SCIELO databases. Results: A relation between oral breathing and an alteration in the general feeding process is noticeable and associated with difficulties in smelling, tasting, and orofacial myofunctional disorders, what comes to have an effect on the nutritional status. Final commentaries: The wide range of causes involved in oral breathing requires an interdisciplinary team trained to identify such alterations, enabling preventive measures to be undertaken, in order to avoid alterations in the general health, regular development of the face, as well as in the nutritional status in these individuals' relevant growth stages.

  2. 46 CFR 197.312 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The maximum...

  3. Improving physical health international students enrolled in a technical college in Baikal region

    Directory of Open Access Journals (Sweden)

    M.M. Kolokoltsev

    2014-02-01

    Full Text Available Purpose : to improve the physical health of foreign students enrolled in a technical college Baikal region using an extended motor mode. Material : in the experiment participated 57 students attending the training of South-East Asia, 74 - from Central Asia and 455 - Slavs, natives of the Irkutsk region. Results : it was found poor fitness and low functional performance among foreign students. For this purpose they had used advanced motoring. It included, besides training curriculum additional group activities in the form of sports, participating in sports events and guided independent study physical education. Conclusion : the end of follow foreign students involved in the extended motor mode, significantly outperform their peers engaged on normal functional parameters (heart rate, a test with 20 squats, the recovery time after exercise, dynamometry hands, breath tests, adaptive capacity as well as motor qualities.

  4. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  5. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  6. Accredited Health Department Partnerships to Improve Health: An Analysis of Community Health Assessments and Improvement Plans.

    Science.gov (United States)

    Kronstadt, Jessica; Chime, Chinecherem; Bhattacharya, Bulbul; Pettenati, Nicole

    The Public Health Accreditation Board (PHAB) Standards & Measures require the development and updating of collaborative community health assessments (CHAs) and community health improvement plans (CHIPs). The goal of this study was to analyze the CHAs and CHIPs of PHAB-accredited health departments to identify the types of partners engaged, as well as the objectives selected to measure progress toward improving community health. The study team extracted and coded data from documents from 158 CHA/CHIP processes submitted as part of the accreditation process. Extracted data included population size, health department type, data sources, and types of partner organizations. Health outcome objectives were categorized by Healthy People 2020 Leading Health Indicator (LHI), as well as by the 7 broad areas in the PHAB reaccreditation framework for population health outcomes reporting. Participants included health departments accredited between 2013 and 2016 that submitted CHAs and CHIPs to PHAB, including 138 CHAs/CHIPs from local health departments and 20 from state health departments. All the CHAs/CHIPs documented collaboration with a broad array of partners, with hospitals and health care cited most frequently (99.0%). Other common partners included nonprofit service organizations, education, business, and faith-based organizations. Small health departments more frequently listed many partner types, including law enforcement and education, compared with large health departments. The majority of documents (88.6%) explicitly reference Healthy People 2020 goals, with most addressing the LHIs nutrition/obesity/physical activity and access to health services. The most common broad areas from PHAB's reaccreditation framework were preventive health care and individual behavior. This study demonstrates the range of partners accredited health departments engage with to collaborate on improving their communities' health as well as the objectives used to measure community health

  7. Completion report : Effect of Comprehensive Yogic Breathing program on type 2 diabetes: A randomized control trial

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2014-01-01

    Full Text Available Background: Yoga has been shown to be benefi cial in diabetes in many studies, though randomized control trials are few. The aim of this randomized control trial was to see the effect of Sudarshan Kriya and related practices (comprehensive yogic breathing program on quality of life, glycemic control, and cardiac autonomic functions in diabetes. Diabetes mellitus is a risk factor for sudden cardiac death. Cardiac autonomic neuropathy has been implicated in the causation of sudden cardiac death. Therefore, a maneuver to prevent progression of cardiac autonomic neuropathy holds signifi cance. Materials and Methods: A total of 120 patients of diabetes on oral medication and diet and exercise advice were randomized into two groups: (1 Continued to receive standard treatment for diabetes. (2 Patients administered comprehensive yogic breathing program and monitored to regularly practice yoga in addition to standard treatment of diabetes. At 6 months, quality of life and postprandial plasma glucose signifi cantly improved in the group practicing yoga compared to baseline, but there was no significant improvement in the fasting plasma glucose and glycated hemoglobin. Results: On per protocol analysis, sympathetic cardiac autonomic functions signifi cantly improved from baseline in the group practicing comprehensive yogic breathing. Conclusion: This randomized control trial points towards the beneficial effect of yogic breathing program in preventing progression of cardiac neuropathy. This has important implications as cardiac autonomic neuropathy has been considered as one of the factors for sudden cardiac deaths.Keywords: comprehensive yogic breathing program, diabetes mellitus, cardiac autonomic function

  8. Bad Breath

    Science.gov (United States)

    ... garlic, onions, cheese, orange juice, and soda poor dental hygiene (say: HI-jeen), meaning not brushing and flossing regularly smoking and other tobacco use Poor oral hygiene leads to bad breath because when food particles ...

  9. Breathing Difficulties

    Science.gov (United States)

    ... symptoms. Symptoms associated with weak respiratory muscles: Air “hunger” (gasping, labored breathing) with an without activity Fatigue ... Start your own fundraising event & help create a world without ALS Start an Event Site Map | Press ...

  10. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    Science.gov (United States)

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  11. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Gupta, Sonia; Rose, Mary A; Yashar, Catheryn; Jiang, Steve B [Department of Radiation Oncology, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92037-0843 (United States)], E-mail: sbjiang@ucsd.edu

    2009-11-21

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p < 0.001 for reproducibility, p < 0.01 for stability). Significant changes (>2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  12. How to breathe when you are short of breath

    Science.gov (United States)

    ... you: Watch TV Use your computer Read a newspaper How to do Pursed lip Breathing The steps ... of Medicine, Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Also ...

  13. Pilot Study on the Impact of Biogas as a Fuel Source on Respiratory Health of Women on Rural Kenyan Smallholder Dairy Farms

    Science.gov (United States)

    Dohoo, Carolyn; Guernsey, Judith Read; Critchley, Kimberley; VanLeeuwen, John

    2012-01-01

    Biomass burning in indoor environments has been highlighted as a major cause of respiratory morbidity for women and children in low-income countries. Inexpensive technological innovations which reduce such exposures are needed. This study evaluated the impact of low tech compost digesters, which generate biogas for cooking, versus traditional fuel sources on the respiratory health of nonsmoking Kenyan farmwomen. Women from 31 farms with biogas digesters were compared to age-matched women from 31 biomass-reliant farms, in June 2010. Only 43% of the biogas group reported any breathing problems, compared to 71% in the referent group (P = 0.03). Referent women self-reported higher rates of shortness of breath (52% versus 30%), difficulty breathing (42% versus 23%), and chest pain while breathing (35% versus 17%) during the last 6 months (P = 0.09 to 0.12) compared to biogas women. Biogas women demonstrated slightly better spirometry results but differences were not statistically significant, likely due to limited latency between biogas digester installation and spirometry testing. Most biogas women reported improved personal respiratory health (87%) and improved children's health (72%) since biogas digester installation. These findings suggest that using biogas in cookhouses improves respiratory symptoms but long-term impacts on lung function are unclear. PMID:22969815

  14. Dual registration of abdominal motion for motility assessment in free-breathing data sets acquired using dynamic MRI

    International Nuclear Information System (INIS)

    Menys, A; Hamy, V; Makanyanga, J; Taylor, S A; Atkinson, D; Hoad, C; Gowland, P; Odille, F

    2014-01-01

    At present, registration-based quantification of bowel motility from dynamic MRI is limited to breath-hold studies. Here we validate a dual-registration technique robust to respiratory motion for the assessment of small bowel and colonic motility. Small bowel datasets were acquired in breath-hold and free-breathing in 20 healthy individuals. A pre-processing step using an iterative registration of the low rank component of the data was applied to remove respiratory motion from the free breathing data. Motility was then quantified with an existing optic-flow (OF) based registration technique to form a dual-stage approach, termed Dual Registration of Abdominal Motion (DRAM). The benefit of respiratory motion correction was assessed by (1) assessing the fidelity of automatically propagated segmental regions of interest (ROIs) in the small bowel and colon and (2) comparing parametric motility maps to a breath-hold ground truth. DRAM demonstrated an improved ability to propagate ROIs through free-breathing small bowel and colonic motility data, with median error decreased by 90% and 55%, respectively. Comparison between global parametric maps showed high concordance between breath-hold data and free-breathing DRAM. Quantification of segmental and global motility in dynamic MR data is more accurate and robust to respiration when using the DRAM approach. (paper)

  15. Yogic breathing and Ayurveda in aphasia: a case study.

    Science.gov (United States)

    Mohapatra, Bijoyaa; Marshall, Rebecca Shisler; Laures-Gore, Jacqueline

    2014-01-01

    We present a case study of a woman who used yogic breathing as Ayurvedic medicine in her recovery from poststroke aphasia. Ayurvedic medicine is one of the most ancient medicines of the world, but it is not widely used for aphasia rehabilitation in many Western countries. The description of this case aims to further the understanding of the benefits that this type of medicine may provide to poststroke patients living with aphasia. After her stroke, the patient received brief conventional language therapy for her aphasia. At 5 weeks post stroke, she received no further conventional rehabilitation; instead, she consulted with a Vedic priest. She followed a regimen of different body manipulations, yogic breathing techniques, and ingestion of coconut oil. Cognitive and language testing was performed throughout a 3-month period while she was involved in this therapy. Overall, improvement was noted in language, visual attention, and some mood measures. Although case studies lead to limited conclusions, changes were observed for this individual using Ayurvedic medicine. Given the changes in language and some aspects of cognition seen in this patient, further exploration of the effectiveness of yogic breathing and Ayurvedic medicine in the treatment of poststroke aphasia is warranted.

  16. Oral hygiene practices, periodontal conditions, dentition status and self-reported bad mouth breath among young mothers, Tanzania.

    Science.gov (United States)

    Mumghamba, E G S; Manji, K P; Michael, J

    2006-11-01

    To determine the oral hygiene practices, periodontal conditions, dentition status and self-reported bad mouth breath (S-BMB) among young mothers. This was a cross-sectional descriptive study conducted at Muhimbili National Hospital, Dar es Salaam, Tanzania. A total of 302 postpartum mothers, aged 14-44 years, were interviewed on oral hygiene practices and S-BMB using structured questionnaire. Oral hygiene, dentition and periodontal status were assessed using the Community Periodontal Index probe and gingival recessions (GR) using Williams Periodontal probe. Tooth brushing practice was 99%; tongue brushing (95%), plastic toothbrush users (96%), chewing stick (1%), wooden toothpicks (76%), dental floss (oral health promotion and periodontal therapy are recommended. This study provides baseline information on oral health status and the complaint on bad mouth breath which necessitates in the future need for objective assessment, diagnosis and management of bad mouth breath for enhanced social and professional interaction without embarrassment.

  17. Breath Tests in Respiratory and Critical Care Medicine: From Research to Practice in Current Perspectives

    Directory of Open Access Journals (Sweden)

    Attapon Cheepsattayakorn

    2013-01-01

    Full Text Available Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future.

  18. Efficacy and tolerability of yoga breathing in patients with chronic obstructive pulmonary disease: a pilot study.

    Science.gov (United States)

    Pomidori, Luca; Campigotto, Federica; Amatya, Tara Man; Bernardi, Luciano; Cogo, Annalisa

    2009-01-01

    Yoga-derived breathing has been reported to improve gas exchange in patients with chronic heart failure and in participants exposed to high-altitude hypoxia. We investigated the tolerability and effect of yoga breathing on ventilatory pattern and oxygenation in patients with chronic obstructive pulmonary disease (COPD). Patients with COPD (N = 11, 3 women) without previous yoga practice and taking only short-acting beta2-adrenergic blocking drugs were enrolled. Ventilatory pattern and oxygen saturation were monitored by means of inductive plethysmography during 30-minute spontaneous breathing at rest (sb) and during a 30-minute yoga lesson (y). During the yoga lesson, the patients were requested to mobilize in sequence the diaphragm, lower chest, and upper chest adopting a slower and deeper breathing. We evaluated oxygen saturation (SaO2%), tidal volume (VT), minute ventilation (E), respiratory rate (i>f), inspiratory time, total breath time, fractional inspiratory time, an index of thoracoabdominal coordination, and an index of rapid shallow breathing. Changes in dyspnea during the yoga lesson were assessed with the Borg scale. During the yoga lesson, data showed the adoption of a deeper and slower breathing pattern (VTsb L 0.54[0.04], VTy L 0.74[0.08], P = .01; i>fsb 20.8[1.3], i>fy 13.8[0.2], P = .001) and a significant improvement in SaO2% with no change in E (SaO2%sb 91.5%[1.13], SaO2%y 93.5%[0.99], P = .02; Esb L/min 11.2[1.1], Ey L/min 10.2[0.9]). All the participants reported to be comfortable during the yoga lesson, with no increase in dyspnea index. We conclude that short-term training in yoga is well tolerated and induces favorable respiratory changes in patients with COPD.

  19. Motion Correction using Coil Arrays (MOCCA) for Free-Breathing Cardiac Cine MRI

    Science.gov (United States)

    Hu, Peng; Hong, Susie; Moghari, Mehdi H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Hauser, Thomas H.; Manning, Warren J; Nezafat, Reza

    2014-01-01

    In this study, we present a motion compensation technique based on coil arrays (MOCCA) and evaluate its application in free-breathing respiratory self-gated cine MRI. MOCCA takes advantages of the fact that motion-induced changes in k-space signal are modulated by individual coil sensitivity profiles. In the proposed implementation of MOCCA self-gating for free-breathing cine MRI, the k-space center line is acquired at the beginning of each k-space segment for each cardiac cycle with 4 repetitions. For each k-space segment, the k-space center line acquired immediately before was used to select one of the 4 acquired repetitions to be included in the final self-gated cine image by calculating the cross-correlation between the k-space center line with a reference line. The proposed method was tested on a cohort of healthy adult subjects for subjective image quality and objective blood-myocardium border sharpness. The method was also tested on a cohort of patients to compare the left and right ventricular volumes and ejection fraction measurements with that of standard breath-hold cine MRI. Our data indicate that the proposed MOCCA method provides significantly improved image quality and sharpness compared to free-breathing cine without respiratory self-gating, and provides similar volume measurements compared with breath-hold cine MRI. PMID:21773986

  20. Software-assisted small bowel motility analysis using free-breathing MRI: feasibility study.

    Science.gov (United States)

    Bickelhaupt, Sebastian; Froehlich, Johannes M; Cattin, Roger; Raible, Stephan; Bouquet, Hanspeter; Bill, Urs; Patak, Michael A

    2014-01-01

    To validate a software prototype allowing for small bowel motility analysis in free breathing by comparing it to manual measurements. In all, 25 patients (15 male, 10 female; mean age 39 years) were included in this Institutional Review Board-approved, retrospective study. Magnetic resonance imaging (MRI) was performed on a 1.5T system after standardized preparation acquiring motility sequences in free breathing over 69-84 seconds. Small bowel motility was analyzed manually and with the software. Functional parameters, measurement time, and reproducibility were compared using the coefficient of variance and paired Student's t-test. Correlation was analyzed using Pearson's correlation coefficient and linear regression. The 25 segments were analyzed twice both by hand and using the software with automatic breathing correction. All assessed parameters significantly correlated between the methods (P software (3.90%, standard deviation [SD] ± 5.69) than manual examinations (9.77%, SD ± 11.08). The time needed was significantly less (P software (4.52 minutes, SD ± 1.58) compared to manual measurement, lasting 17.48 minutes for manual (SD ± 1.75 minutes). The use of the software proves reliable and faster small bowel motility measurements in free-breathing MRI compared to manual analyses. The new technique allows for analyses of prolonged sequences acquired in free breathing, improving the informative value of the examinations by amplifying the evaluable data. Copyright © 2013 Wiley Periodicals, Inc.

  1. Breath tests: principles, problems, and promise

    International Nuclear Information System (INIS)

    Lo, C.W.; Carter, E.A.; Walker, W.A.

    1982-01-01

    Breath tests rely on the measurement of gases produced in the intestine, absorbed, and expired in the breath. Carbohydrates, such as lactose and sucrose, can be administered in ysiologic doses; if malabsorbed, they will be metabolized to hydrogen by colonic bacteria. Since hydrogen is not produced by human metabolic reactions, a rise in breath hydrogen, as measured by gas chromatography, is evidence of carbohydrate malabsorption. Likewise, a rise in breath hydrogen marks the transit time of nonabsorbable carbohydrates such as lactulose through the small intestine into the colon. Simple end-expiratory interval collection into nonsiliconized vacutainer tubes has made these noninvasive tests quite convenient to perform, but various problems, including changes in stool pH intestinal motility, or metabolic rate, may influence results. Another group of breath tests uses substrates labeled with radioactive or stable isotopes of carbon. Labeled fat substrates such as trioctanoin, tripalmitin, and triolein do not produce the expected rise in labeled breath CO 2 if there is fat malabsorption. Bile acid malabsorption and small intestinal bacterial overgrowth can be measured with labeled cholylglycine or cholyltaurine. Labeled drugs such as aminopyrine, methacetin, and phenacetin can be used as an indication of drug metabolism and liver function. Radioactive substrates have been used to trace metabolic pathways and can be measured by scintillation counters. The availability of nonradioactive stable isotopes has made these ideal for use in children and pregnant women, but the cost of substrates and the mass spectrometers to measure them has so far limited their use to research centers. It is hoped that new techniques of processing and measurement will allow further realization of the exciting potential breath analysis has in a growing list of clinical applications

  2. A mind you can count on: validating breath counting as a behavioral measure of mindfulness

    Directory of Open Access Journals (Sweden)

    Daniel B Levinson

    2014-10-01

    Full Text Available Mindfulness practice of present moment awareness promises many benefits, but has eluded rigorous behavioral measurement. To date, research has relied on self-reported mindfulness or heterogeneous mindfulness trainings to infer skillful mindfulness practice and its effects. In four independent studies with over 400 total participants, we present the first construct validation of a behavioral measure of mindfulness, breath counting. We found it was reliable, correlated with self-reported mindfulness, differentiated long-term meditators from age-matched controls, and was distinct from sustained attention and working memory measures. In addition, we employed breath counting to test the nomological network of mindfulness. As theorized, we found skill in breath counting associated with more meta-awareness, less mind wandering, better mood, and greater nonattachment (i.e. less attentional capture by distractors formerly paired with reward. We also found in a randomized online training study that 4 weeks of breath counting training improved mindfulness and decreased mind wandering relative to working memory training and no training controls. Together, these findings provide the first evidence for breath counting as a behavioral measure of mindfulness.

  3. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to...

  4. Off-line breath acetone analysis in critical illness.

    Science.gov (United States)

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  5. Deep breathing exercises with positive expiratory pressure at a higher rate improve oxygenation in the early period after cardiac surgery--a randomised controlled trial.

    Science.gov (United States)

    Urell, Charlotte; Emtner, Margareta; Hedenström, Hans; Tenling, Arne; Breidenskog, Marie; Westerdahl, Elisabeth

    2011-07-01

    In addition to early mobilisation, a variety of breathing exercises are used to prevent postoperative pulmonary complications after cardiac surgery. The optimal duration of the treatment is not well evaluated. The aim of this study was to determine the effect of 30 versus 10 deep breaths hourly, while awake, with positive expiratory pressure on oxygenation and pulmonary function the first days after cardiac surgery. A total of 181 patients, undergoing cardiac surgery, were randomised into a treatment group, performing 30 deep breaths hourly the first postoperative days, or into a control group performing 10 deep breaths hourly. The main outcome measurement arterial blood gases and the secondary outcome pulmonary function, evaluated with spirometry, were determined on the second postoperative day. Preoperatively, both study groups were similar in terms of age, SpO(2), forced expiratory volume in 1s and New York Heart Association classification. On the second postoperative day, arterial oxygen tension (PaO(2)) was 8.9 ± 1.7 kPa in the treatment group and 8.1 ± 1.4 kPa in the control group (p = 0.004). Arterial oxygen saturation (SaO(2)) was 92.7 ± 3.7% in the treatment group and 91.1 ± 3.8% in the control group (p = 0.016). There were no differences in measured lung function between the groups or in compliance to the breathing exercises. Compliance was 65% of possible breathing sessions. A significantly increased oxygenation was found in patients performing 30 deep breaths the first two postoperative days compared with control patients performing 10 deep breaths hourly. These results support the implementation of a higher rate of deep breathing exercises in the initial phase after cardiac surgery. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  6. Medical consequences and associations with untreated sleep-related breathing disorders and outcomes of treatments.

    Science.gov (United States)

    Norman, Daniel; Haberman, Paul B; Valladares, Edwin M

    2012-02-01

    Sleep-related breathing disorders are a broad group of disorders that include obstructive sleep apnea, central sleep apnea, and periodic breathing disorders. This article reviews the scientific literature that links SRBD to various medical conditions including hypertension, coronary artery disease, cardiac arrhythmias, stroke, diabetes mellitus, obesity, and depression. Pathophysiologic mechanisms by which SRBD may contribute to these disorders will be discussed, as will data on the degree to which treatment of SRBD may improve these conditions.

  7. Breath-to-breath variability of exhaled CO2 as a marker of lung dysmaturity in infancy.

    Science.gov (United States)

    Fouzas, Sotirios; Theodorakopoulos, Ilias; Delgado-Eckert, Edgar; Latzin, Philipp; Frey, Urs

    2017-12-01

    The concept of diffusional screening implies that breath-to-breath variations in CO 2 clearance, when related to the variability of breathing, may contain information on the quality and utilization of the available alveolar surface. We explored the validity of the above hypothesis in a cohort of young infants of comparable postmenstrual age but born at different stages of lung maturity, namely, in term-born infants ( n = 128), preterm-born infants without chronic lung disease of infancy (CLDI; n = 53), and preterm infants with moderate/severe CLDI ( n = 87). Exhaled CO 2 volume (V E,CO2 ) and concentration (F E,CO2 ) were determined by volumetric capnography, whereas their variance was assessed by linear and nonlinear variability metrics. The relationship between relative breath-to-breath change of V E,CO2 (ΔV E,CO2 ) and the corresponding change of tidal volume (ΔV T ) was also analyzed. Nonlinear F E,CO2 variability was lower in CLDI compared with term and non-CLDI preterm group ( P variability was attributed to the variability of V T ( r 2 = 0.749), whereas in term and healthy preterm infants this relationship was weaker ( r 2 = 0.507 and 0.630, respectively). The ΔV E,CO2 - ΔV T slope was less steep in the CLDI group (1.06 ± 0.07) compared with non-CLDI preterm (1.16 ± 0.07; P variability that can be quantified by nonlinear variability metrics and may reflect the degree of lung dysmaturity. In infants with moderate/severe chronic lung disease of infancy (CLDI), the variability of the exhaled CO 2 is mainly driven by the variability of breathing, whereas in term-born and healthy preterm infants this relationship is less strong. The slope of the relative CO 2 -to-volume change is less steep in CLDI infants, suggesting that dysmature lungs are less efficient in eliminating CO 2 under tidal breathing conditions.

  8. An automated method for breathing frequency determination for rat lung radiobiology in BNCT

    International Nuclear Information System (INIS)

    Kiger, J.L.; Coderre, J.A.; Kiger, W.S. III

    2006-01-01

    Whole-body plethysmography was used to the measure the breathing rate in rats as a functional indication of radiation-induced lung damage, either weekly or bi-weekly for a period of 180 days following thorax irradiations in a BNCT radiobiology study. A three-minute digital breathing signal was collected in each measurement. Software has been developed to automatically discriminate against large-amplitude noise due to animal movement. After segmenting the signal into consecutive, overlapping and circular blocks, the mean frequency spectrum of the processed signal was calculated using the Fast Fourier Transform (FFT). The breathing rate was defined as the primary frequency of the spectrum and the standard deviation was estimated using the bootstrap method. The mean standard deviation of all measurements in the data set (n=4269) was 2.4%. The improved accuracy with low standard deviation of the measurements ensures good sensitivity and a low threshold for detection of responding animals; breathing rates more than 20% (∼3 σ) above the control mean were considered responding. (author)

  9. Influence of Continuous Table Motion on Patient Breathing Patterns

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Richter, Anne; Herrmann, Christian; Ma Lei; Flentje, Michael; Guckenberger, Matthias

    2010-01-01

    Purpose: To investigate the influence of continuous table motion on patient breathing patterns for compensation of moving targets by a robotic treatment couch. Methods and Materials: Fifteen volunteers were placed on a robotic treatment couch, and the couch was moved on different breathing-correlated and -uncorrelated trajectories. External abdominal breathing motion of the patients was measured using an infrared camera system. The influence of table motion on breathing range and pattern was analyzed. Results: Continuous table motion was tolerated well by all test persons. Volunteers reacted differently to table motion. Four test persons showed no change of breathing range and pattern. Increased irregular breathing was observed in 4 patients; however, irregularity was not correlated with table motion. Only 4 test persons showed an increase in mean breathing amplitude of more than 2mm during motion of the couch. The mean cycle period decreased by more than 1 s for 2 test persons only. No abrupt changes in amplitude or cycle period could be observed. Conclusions: The observed small changes in breathing patterns support the application of motion compensation by a robotic treatment couch.

  10. Patient's breath controls comfort devices

    Science.gov (United States)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  11. Effects of Combined Training with Breathing Resistance and Sustained Physical Exertion to Improve Endurance Capacity and Respiratory Muscle Function in Healthy Young Adults

    OpenAIRE

    Kido, Satoshi; Nakajima, Yasuhiro; Miyasaka, Tomoya; Maeda, Yusuke; Tanaka, Toshiaki; Yu, Wenwei; Maruoka, Hiroshi; Takayanagi, Kiyomi

    2013-01-01

    [Purpose] In this study, combined training with breathing resistance and sustained physical exertion was carried out to evaluate its physiological effects and its effect on improve endurance capacity. [Subjects and Methods] The subjects were nine healthy adults (mean age 20.4, SD ? 1.7?years). The combined training group (n = 5) carried out 6 weeks of combined training using a cycle ergometer, with exercise load tests and respiratory function tests performed before and after the training. The...

  12. A fibre-optic oxygen sensor for monitoring human breathing

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Formenti, Federico; Hahn, Clive E W; Farmery, Andrew D; Obeid, Andy

    2013-01-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min –1 . A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min –1 , and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn. (note)

  13. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  14. A Novel Approach to the Identification of Compromised Pulmonary Systems in Smokers by Exploiting Tidal Breathing Patterns

    Directory of Open Access Journals (Sweden)

    Raj Rakshit

    2018-04-01

    Full Text Available Smoking causes unalterable physiological abnormalities in the pulmonary system. This is emerging as a serious threat worldwide. Unlike spirometry, tidal breathing does not require subjects to undergo forceful breathing maneuvers and is progressing as a new direction towards pulmonary health assessment. The aim of the paper is to evaluate whether tidal breathing signatures can indicate deteriorating adult lung condition in an otherwise healthy person. If successful, such a system can be used as a pre-screening tool for all people before some of them need to undergo a thorough clinical checkup. This work presents a novel systematic approach to identify compromised pulmonary systems in smokers from acquired tidal breathing patterns. Tidal breathing patterns are acquired during restful breathing of adult participants. Thereafter, physiological attributes are extracted from the acquired tidal breathing signals. Finally, a unique classification approach of locally weighted learning with ridge regression (LWL-ridge is implemented, which handles the subjective variations in tidal breathing data without performing feature normalization. The LWL-ridge classifier recognized compromised pulmonary systems in smokers with an average classification accuracy of 86.17% along with a sensitivity of 80% and a specificity of 92%. The implemented approach outperformed other variants of LWL as well as other standard classifiers and generated comparable results when applied on an external cohort. This end-to-end automated system is suitable for pre-screening people routinely for early detection of lung ailments as a preventive measure in an infrastructure-agnostic way.

  15. A Novel Approach to the Identification of Compromised Pulmonary Systems in Smokers by Exploiting Tidal Breathing Patterns.

    Science.gov (United States)

    Rakshit, Raj; Khasnobish, Anwesha; Chowdhury, Arijit; Sinharay, Arijit; Pal, Arpan; Chakravarty, Tapas

    2018-04-25

    Smoking causes unalterable physiological abnormalities in the pulmonary system. This is emerging as a serious threat worldwide. Unlike spirometry, tidal breathing does not require subjects to undergo forceful breathing maneuvers and is progressing as a new direction towards pulmonary health assessment. The aim of the paper is to evaluate whether tidal breathing signatures can indicate deteriorating adult lung condition in an otherwise healthy person. If successful, such a system can be used as a pre-screening tool for all people before some of them need to undergo a thorough clinical checkup. This work presents a novel systematic approach to identify compromised pulmonary systems in smokers from acquired tidal breathing patterns. Tidal breathing patterns are acquired during restful breathing of adult participants. Thereafter, physiological attributes are extracted from the acquired tidal breathing signals. Finally, a unique classification approach of locally weighted learning with ridge regression (LWL-ridge) is implemented, which handles the subjective variations in tidal breathing data without performing feature normalization. The LWL-ridge classifier recognized compromised pulmonary systems in smokers with an average classification accuracy of 86.17% along with a sensitivity of 80% and a specificity of 92%. The implemented approach outperformed other variants of LWL as well as other standard classifiers and generated comparable results when applied on an external cohort. This end-to-end automated system is suitable for pre-screening people routinely for early detection of lung ailments as a preventive measure in an infrastructure-agnostic way.

  16. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    Science.gov (United States)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  17. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Science.gov (United States)

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  18. The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance.

    Science.gov (United States)

    Clark, T J; Godfrey, S

    1969-05-01

    1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.

  19. Clinical Applications of CO2 and H2 Breath Test

    Directory of Open Access Journals (Sweden)

    ZHAO Si-qian;CHEN Bao-jun;LUO Zhi-fu

    2016-08-01

    Full Text Available Breath test is non-invasive, high sensitivity and high specificity. In this article, CO2 breath test, H2 breath test and their clinical applications were elaborated. The main applications of CO2 breath test include helicobacter pylori test, liver function detection, gastric emptying test, insulin resistance test, pancreatic exocrine secretion test, etc. H2 breath test can be applied in the diagnosis of lactose malabsorption and detecting small intestinal bacterial overgrowth. With further research, the breath test is expected to be applied in more diseases diagnosis.

  20. Afternoon serum-melatonin in sleep disordered breathing.

    Science.gov (United States)

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  1. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  2. Workplace health improvement: perspectives of environmental health officers.

    Science.gov (United States)

    Reynolds, J; Wills, J

    2012-01-01

    Environmental health practice in the field of occupational health and safety is traditionally concerned with protecting health relating to the workplace. However, little is currently known about environmental health officers' (EHOs) perceptions of their role in workplace health improvement, a pertinent topic in light of the recent government agenda for improving the health of the workforce in the UK. To explore how EHOs perceive workplace health improvement and its relevance to their professional role. A qualitative methodology was employed, using a case-study design with thematic analysis of 15 transcripts of in-depth telephone interviews with EHOs working in London, UK. EHOs view themselves primarily as enforcement officers, with legislation guiding their understandings of workplace health. Many interpret work-related ill health in terms of safety and physical injury and do not feel competent in assessing broader psychosocial elements of ill health. However, a few EHOs welcomed the opportunity to promote health in the workplace, recognizing the importance of prevention. This study indicates a gap between the contemporary EHO role framed by professional bodies as holistic and contributing to public health goals and the role perceived by EHOs 'on the ground'. A more traditional, protective and enforcement-based approach persists among EHOs in this sample, and few feel they have skills to address determinants beyond physical hazards to health. Yet, a minority of EHOs adopted a more health-promoting approach, suggesting that the potential contribution of EHOs to the workplace health improvement agenda should be explored further.

  3. Advantage of using deep inspiration breath hold with active breathing control and image-guided radiation therapy for patients treated with lung cancers

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Madhusudhansresty; Sha, Rajib Lochan; Raut, Birendra Kumar; Poornima; Subash; Mallikarjun; Anil; Krishnam Raju, A.; Vidya; Sudarshan, G.; Mahadev, Shankar; Narayana Murthy, P.

    2008-01-01

    To evaluate the impact of moderate deep inspiration breath hold (mDIBH) using an active breathing control (ABC) apparatus on heart, spinal cord, liver and contra lateral lung doses and its volumes compared with free breathing (FB) with lung cancer irradiation

  4. Predictive value of 14CO2 breath tests for clinical use of 13CO2 breath tests

    International Nuclear Information System (INIS)

    Glaubitt, D.M.H.

    1975-01-01

    The knowledge of the efficiency of 14 CO 2 breath tests makes possible the comparison of the efficiency of analogous tests using the stable isotope 13 C. 14 CO 2 exhalation studies render overall information. After parenteral administration of a 14 C labeled substrate, 14 CO 2 breath tests permit insight into the metabolism of the 14 C substrate and the associated intermediary metabolism. If the 14 C substrate is given orally or by intraduodenal instillation, 14 CO 2 breath tests supply information not only about gastrointenstinal absorption and digestion but also about the intermediary metabolism yielding 14 CO 2 , after the administered substrate or its degradation products have been absorbed in the gastrointestinal tract. The fraction of 14 CO 2 arising from absorption, digestion and intermediary metabolism can be estimated only by additional methods. 14 CO 2 breath tests are unable to delineate single metabolic reactions involved in the formation of carbon dioxide. Under these considerations the clinical application of 14 CO 2 breath tests may provide diagnostically useful results, especially in internal medicine and surgery. The tests are suitable for intraindividual assessment of the course of a disease and of therapeutic effects. They may be important in the research of the metabolism of 14 C labeled substrates

  5. Oral breathing and speech disorders in children

    Directory of Open Access Journals (Sweden)

    Silvia F. Hitos

    2013-07-01

    Conclusion: Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals.

  6. Bad-breath: Perceptions and misconceptions of Nigerian adults.

    Science.gov (United States)

    Nwhator, S O; Isiekwe, G I; Soroye, M O; Agbaje, M O

    2015-01-01

    To provide baseline data about bad-breath perception and misconceptions among Nigerian adults. Multi-center cross-sectional study of individuals aged 18-64 years using examiner-administered questionnaires. Age comparisons were based on the model of emerging adults versus full adults. Data were recoded for statistical analyses and univariate and secondary log-linear statistics applied. Participants had lopsided perceptions about bad-breath. While 730 (90.8%) identified the dentist as the expert on halitosis and 719 (89.4%) knew that bad-breath is not contagious, only 4.4% and 2.5% associated bad-breath with tooth decay and gum disease respectively. There were no significant sex differences but the older adults showed better knowledge in a few instances. Most respondents (747, 92.9%) would tell a spouse about their bad-breath and 683 (85%) would tell a friend. Participants had lop-sided knowledge and perceptions about bad-breath. Most Nigerian adults are their "brothers' keepers" who would tell a spouse or friend about their halitosis so they could seek treatment.

  7. The effect of mouth breathing on chewing efficiency.

    Science.gov (United States)

    Nagaiwa, Miho; Gunjigake, Kaori; Yamaguchi, Kazunori

    2016-03-01

    To examine the effect of mouth breathing on chewing efficiency by evaluating masticatory variables. Ten adult nasal breathers with normal occlusion and no temporomandibular dysfunction were selected. Subjects were instructed to bite the chewing gum on the habitual side. While breathing through the mouth and nose, the glucide elution from the chewing gum, number of chewing strokes, duration of chewing, and electromyography (EMG) activity of the masseter muscle were evaluated as variables of masticatory efficiency. The durations required for the chewing of 30, 60, 90, 120, 180, and 250 strokes were significantly (P chewing stroke between nose and mouth breathings. The glucide elution rates for 1- and 3-minute chewing were significantly (P chewing between nose and mouth breathings. While chewing for 1, 3, and 5 minutes, the chewing stroke and EMG activity of the masseter muscle were significantly (P chewing to obtain higher masticatory efficiency when breathing through the mouth. Therefore, mouth breathing will decrease the masticatory efficiency if the duration of chewing is restricted in everyday life.

  8. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Directory of Open Access Journals (Sweden)

    Snorri Donaldsson

    Full Text Available The ability to determine airflow during nasal CPAP (NCPAP treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing.Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically.The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance.The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  9. Nonhuman primate breath volatile organic compounds associate with developmental programming and cardio-metabolic status.

    Science.gov (United States)

    Bishop, Andrew C; Libardoni, Mark; Choudary, Ahsan; Misra, Biswapriya Biswavas; Lange, Kenneth; Bernal, John; Nijland, Mark; Li, Cun; Olivier, Michael; Nathanielsz, Peter W; Cox, Laura A

    2018-03-29

    Rodent and nonhuman primate (NHP) studies indicate that developmental programming by reduced perinatal nutrition negatively impacts life course cardio-metabolic health. We have developed a baboon model in which we feed control mothers (CON) ad libitum while nutrient restricted mothers are fed 70% of ad libitum global feed in pregnancy and lactation. Offspring of nutrient restricted mothers are intrauterine growth restricted (IUGR) at term. By 3.5 years IUGR baboons showed signs of insulin resistance, indicating a pre-diabetic phenotype, in contrast to healthy CON offspring. We hypothesized that a novel breath analysis approach would provide markers of the altered cardio-metabolic state in a non-invasive manner. Here we assess whether exhaled breath volatile organic compounds (VOCs) collected from this unique cohort of juvenile baboons with documented cardio-metabolic dysfunction resulting from in utero programming can be detected from their breath signatures. Breath was collected from male and female CON and IUGR baboons at 4.8±0.2 years (human equivalent ~13 years). Breath VOCs were quantified using a two-dimensional gas chromatography mass spectrometer (2D GC-MS). Two-way ANOVA, on 76 biologically relevant VOCs identified 27 VOCs (p<0.05) with altered abundances between groups (sex, birthweight, and sex x birthweight). The 27 VOCs included 2-pentanone, 2-octanone, 2,5,5 trimethyl-1-hexene and 2,2-dimethyl-undecane, which have not previously been associated with cardio-metabolic disease. Unsupervised principal component analysis of these VOCs could discriminate the four defined clusters defining males, females, CON and IUGR. This study, which is the first to assess quantifiable breath signatures associated with cardio-metabolic programing for any model of IUGR, demonstrates the translational value of this unique model to identify metabolites of programmed cardio-metabolic dysfunction in breath signatures. Future studies are required to validate the

  10. "What We Breathe Impacts Our Health : Improving Understanding of the Link between Air Pollution and Health"

    NARCIS (Netherlands)

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-01-01

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health

  11. An expiratory assist during spontaneous breathing can compensate for endotracheal tube resistance.

    Science.gov (United States)

    Uchiyama, Akinori; Chang, Cheng; Suzuki, Shinya; Mashimo, Takashi; Fujino, Yuji

    2009-08-01

    Although inspiratory assist of spontaneous breathing in intubated patients is common, expiratory assist functions have rarely been reported. Effective expiratory support (ES) could be used to compensate for endotracheal tube (ETT) resistance during spontaneous breathing. In this study, we examined the performance of a new system designed to provide both inspiratory support (IS) and ES during spontaneous breathing with the goal of reducing the effective resistance of the ETT. The ES system consisted of a ventilator demand valve and a computer-controlled piston cylinder, which aspirated gas from the respiratory circuit during the expiratory phase. The movement of the piston was synchronized with spontaneous breathing. We compared the pressures at the tip of the ETT and in the breathing circuit during spontaneous breathing through an ETT of internal diameter (ID) 5 mm with that of an ETT with ID 8 mm in nine healthy adult male volunteers. The ventilatory mode was set to maintain a continuous airway pressure of 0 cm H(2)O. Three ventilator settings (no support, IS only, and IS plus ES) were compared using ID 5 mm ETT. We monitored pressure in the breathing circuit (P(aw)), ETT tip pressure (P(tip)), and respiratory flow. The P(tip) of the ID 5 mm ETT showed a large negative deflection during inspiration and a positive deflection during expiration without support. IS alone did not improve the respiratory pattern through the small ETT. However, IS plus ES resulted in negative P(aw) during expiration in addition to positive deflection of P(aw) during inspiration, making the pressure characteristics of P(tip) similar to those of ID 8 mm ETT. Moreover, IS plus ES produced a respiratory pattern through the ID 5 mm ETT that was similar to that through the ID 8 mm ETT. In this study of healthy volunteers, IS plus ES compensated for the airway resistance imposed by a ID 5.0 mm ETT to create pressure changes at the tip of the ETT similar to those of an ID 8.0 mm ETT.

  12. Breathing pattern and head posture: changes in craniocervical angles.

    Science.gov (United States)

    Sabatucci, A; Raffaeli, F; Mastrovincenzo, M; Luchetta, A; Giannone, A; Ciavarella, D

    2015-04-01

    The aim of this study was to observe the influence of oral breathing on head posture and to establish possible postural changes observing the variation of craniocervical angles NSL/OPT and NSL/CVT between oral breathing subjects and physiological breathing subjects. A cross-sectional study was conducted. The sample included 115 subject, 56 boys and 59 girls, 5-22-year-old. Among these, 80 were classified as oral breathers and 35 as physiological breathers. The diagnosis of oral breathing was carried out thanks to characteristic signs and symptoms evaluated on clinical examination, the analysis of characteristic X-ray images, ENT examination with active anterior rhinomanometric (AAR) test. The structural and postural analysis was carried out, calculating the craniofacial angles NSL/OPT and NSL/CVT. Both NSL/OPT and NSL/CVT appear to be significantly greater to those observed in physiological breathing patients. This means that patients who tend to breathe through the mouth rather than exclusively through the nose show a reduction of cervical lordosis and a proinclination of the head. Our study confirms that the oral breathing modifies head position. The significant increase of the craniocervical angles NSL/OPT and NSL/CVT in patients with this altered breathing pattern suggests an elevation of the head and a greater extension of the head compared with the cervical spine. So, to correct the breathing pattern early, either during childhood or during adolescence, can lead to a progressive normalization of craniofacial morphology and head posture.

  13. [Prevalence of sleep-related breathing disorders of inpatients with psychiatric disorders].

    Science.gov (United States)

    Behr, M; Acker, J; Cohrs, S; Deuschle, M; Danker-Hopfe, H; Göder, R; Norra, C; Richter, K; Riemann, D; Schilling, C; Weeß, H-G; Wetter, T C; Wollenburg, L M; Pollmächer, T

    2018-06-06

    Sleep-related breathing disorders seriously impair well-being and increase the risk for relevant somatic and psychiatric disorders. Moreover, risk factors for sleep-related breathing disorders are highly prevalent in psychiatric patients. The aim of this study was for the first time in Germany to study the prevalence of obstructive sleep apnea syndrome (OSAS) as the most common form of sleep-related breathing disorder in patients with psychiatric disorders. In 10 psychiatric hospitals in Germany and 1 hospital in Switzerland, a total of 249 inpatients underwent an 8‑channel sleep polygraphy to investigate the prevalence of sleep apnea in this group of patients. With a conspicuous screening result of 23.7% of the subjects, a high prevalence of sleep-related breathing disorders was found to occur among this group of patients. Male gender, higher age and high body mass index (BMI) were identified as positive risk factors for the detection of OSAS. The high prevalence indicates that sleep apnea is a common sleep disorder among psychiatric patients. Although OSAS can lead to substantial disorders of the mental state and when untreated is accompanied by serious somatic health problems, screening procedures are not part of the routine work-up in psychiatric hospitals; therefore, sleep apnea is presumably underdiagnosed in psychiatric patients. In view of the results of this and previous studies, this topic complex should be the subject of further research studies.

  14. Sensing the effects of mouth breathing by using 3-tesla MRI

    Science.gov (United States)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  15. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    Pulmonary Function Responses to Active Cycle. Breathing ... Key Words: Heart Failure, Active Cycle of Breathing ... cough, fatigue, reduced respiratory muscle mass, and. [5] ... an amount of exercise which is said to lower disease. [9].

  16. Relationship between dysfunctional breathing patterns and ability to achieve target heart rate variability with features of "coherence" during biofeedback.

    Science.gov (United States)

    Courtney, Rosalba; Cohen, Marc; van Dixhoorn, Jan

    2011-01-01

    Heart rate variability (HRV) biofeedback is a self-regulation strategy used to improve conditions including asthma, stress, hypertension, and chronic obstructive pulmonary disease. Respiratory muscle function affects hemodynamic influences on respiratory sinus arrhythmia (RSA), and HRV and HRV-biofeedback protocols often include slow abdominal breathing to achieve physiologically optimal patterns of HRV with power spectral distribution concentrated around the 0.1-Hz frequency and large amplitude. It is likely that optimal balanced breathing patterns and ability to entrain heart rhythms to breathing reflect physiological efficiency and resilience and that individuals with dysfunctional breathing patterns may have difficulty voluntarily modulating HRV and RSA. The relationship between breathing movement patterns and HRV, however, has not been investigated. This study examines how individuals' habitual breathing patterns correspond with their ability to optimize HRV and RSA. Breathing pattern was assessed using the Manual Assessment of Respiratory Motion (MARM) and the Hi Lo manual palpation techniques in 83 people with possible dysfunctional breathing before they attempted HRV biofeedback. Mean respiratory rate was also assessed. Subsequently, participants applied a brief 5-minute biofeedback protocol, involving breathing and positive emotional focus, to achieve HRV patterns proposed to reflect physiological "coherence" and entrainment of heart rhythm oscillations to other oscillating body systems. Thoracic-dominant breathing was associated with decreased coherence of HRV (r = -.463, P = .0001). Individuals with paradoxical breathing had the lowest HRV coherence (t(8) = 10.7, P = .001), and the negative relationship between coherence of HRV and extent of thoracic breathing was strongest in this group (r = -.768, P = .03). Dysfunctional breathing patterns are associated with decreased ability to achieve HRV patterns that reflect cardiorespiratory efficiency and

  17. Breathing biofeedback as an adjunct to exposure in cognitive behavioral therapy hastens the reduction of PTSD symptoms: a pilot study.

    Science.gov (United States)

    Rosaura Polak, A; Witteveen, Anke B; Denys, Damiaan; Olff, Miranda

    2015-03-01

    Although trauma-focused cognitive behavioral therapy (TF-CBT) with exposure is an effective treatment for posttraumatic stress disorder (PTSD), not all patients recover. Addition of breathing biofeedback to exposure in TF-CBT is suggested as a promising complementary technique to improve recovery of PTSD symptoms. Patients (n = 8) with chronic PTSD were randomized to regular TF-CBT or TF-CBT with complementary breathing biofeedback to exposure. PTSD symptoms were measured before, during and after TF-CBT with the Impact of Event Scale-Revised. The results show that breathing biofeedback is feasible and can easily be complemented to TF-CBT. Although PTSD symptoms significantly decreased from pre to post treatment in both conditions, there was a clear trend towards a significantly faster (p = .051) symptom reduction in biofeedback compared to regular TF-CBT. The most important limitation was the small sample size. The hastened clinical improvement in the biofeedback condition supports the idea that breathing biofeedback may be an effective complementary component to exposure in PTSD patients. The mechanism of action of breathing biofeedback may relate to competing working memory resources decreasing vividness and emotionality, similar to eye movement desensitization and reprocessing. Future research is needed to examine this.

  18. Urinary cotinine and breath carbon monoxide levels among bar and restaurant employees in ankara.

    Science.gov (United States)

    Caman, Ozge Karadag; Erguder, Berrin I; Ozcebe, Hilal; Bilir, Nazmi

    2013-08-01

    Hospitality sector employees constitute one of the key groups with respect to their secondhand tobacco smoke exposure at work. This study aimed to detect urinary cotinine and breath carbon monoxide (CO) levels among bar and restaurant employees in Ankara, as well as the employees' opinions on the new antitobacco law, changes in smoking behavior, and subjective health status before and after the law entered into force. This before-after study was conducted in 19 premises, with the participation of 65 employees before implementation and 81 employees 3 months after implementation of the new antitobacco law in the hospitality sector. Data in both phases were collected through face-to-face surveys, breath CO measurements, and urinary cotinine analysis. Descriptive statistics were used to summarize data, whereas chi-square test, paired and unpaired t tests, and analysis of variance were used to compare groups. Most of the restaurant and bar employees were male and below 35 years old. Before-after comparison showed that health complaints of the hospitality sector employees such as watering and itching in the eyes, difficulty in breathing, and cough (p law. Among the smoking employees, mean number of cigarettes smoked was also found to decrease (p = .012). Majority of the employees (83.8%) were found to support the smoking ban in enclosed public places. Results of this study provide solid evidence on the positive health effects of smoke-free laws and employees' support for smoke-free workplaces.

  19. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  20. Double blind randomised controlled trial of two different breathing techniques in the management of asthma.

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic-Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-08-01

    Previous studies have shown that breathing techniques reduce short acting beta(2) agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non-specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non-specific upper body exercises.

  1. Aspiration tests in aqueous foam using a breathing simulator

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  2. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle

    2013-12-22

    The amount of ammonia in exhaled breath has been linked to a variety of adverse medical conditions, including chronic kidney disease (CKD). The development of accurate, reliable breath sensors has the potential to improve medical care. Wavelength modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating near 1,103.44 cm -1 and a multi-pass cell with an effective path length of 76.45 m. The sensor has a 7 ppbv detection limit and 5 % total uncertainty for breath measurements. The sensor was successfully used to detect ammonia in exhaled breath and compare healthy patients to patients diagnosed with CKD. © 2013 Springer-Verlag Berlin Heidelberg.

  3. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  4. Shortness of Breath

    Science.gov (United States)

    ... filled with air (called pneumotho- rax), it will hinder expansion of the lung, resulting in shortness of ... of Chest Physi- cians. Shortness of Breath: Patient Education. http: / / www. onebreath. org/ document. doc? id= 113. ...

  5. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  6. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  7. Passive in-vehicle driver breath alcohol detection using advanced sensor signal acquisition and fusion.

    Science.gov (United States)

    Ljungblad, Jonas; Hök, Bertil; Allalou, Amin; Pettersson, Håkan

    2017-05-29

    The research objective of the present investigation is to demonstrate the present status of passive in-vehicle driver breath alcohol detection and highlight the necessary conditions for large-scale implementation of such a system. Completely passive detection has remained a challenge mainly because of the requirements on signal resolution combined with the constraints of vehicle integration. The work is part of the Driver Alcohol Detection System for Safety (DADSS) program aiming at massive deployment of alcohol sensing systems that could potentially save thousands of American lives annually. The work reported here builds on earlier investigations, in which it has been shown that detection of alcohol vapor in the proximity of a human subject may be traced to that subject by means of simultaneous recording of carbon dioxide (CO 2 ) at the same location. Sensors based on infrared spectroscopy were developed to detect and quantify low concentrations of alcohol and CO 2 . In the present investigation, alcohol and CO 2 were recorded at various locations in a vehicle cabin while human subjects were performing normal in-step procedures and driving preparations. A video camera directed to the driver position was recording images of the driver's upper body parts, including the face, and the images were analyzed with respect to features of significance to the breathing behavior and breath detection, such as mouth opening and head direction. Improvement of the sensor system with respect to signal resolution including algorithm and software development, and fusion of the sensor and camera signals was successfully implemented and tested before starting the human study. In addition, experimental tests and simulations were performed with the purpose of connecting human subject data with repeatable experimental conditions. The results include occurrence statistics of detected breaths by signal peaks of CO 2 and alcohol. From the statistical data, the accuracy of breath alcohol

  8. Quality improvement and emerging global health priorities

    Science.gov (United States)

    Mensah Abrampah, Nana; Syed, Shamsuzzoha Babar; Hirschhorn, Lisa R; Nambiar, Bejoy; Iqbal, Usman; Garcia-Elorrio, Ezequiel; Chattu, Vijay Kumar; Devnani, Mahesh; Kelley, Edward

    2018-01-01

    Abstract Quality improvement approaches can strengthen action on a range of global health priorities. Quality improvement efforts are uniquely placed to reorient care delivery systems towards integrated people-centred health services and strengthen health systems to achieve Universal Health Coverage (UHC). This article makes the case for addressing shortfalls of previous agendas by articulating the critical role of quality improvement in the Sustainable Development Goal era. Quality improvement can stimulate convergence between health security and health systems; address global health security priorities through participatory quality improvement approaches; and improve health outcomes at all levels of the health system. Entry points for action include the linkage with antimicrobial resistance and the contentious issue of the health of migrants. The work required includes focussed attention on the continuum of national quality policy formulation, implementation and learning; alongside strengthening the measurement-improvement linkage. Quality improvement plays a key role in strengthening health systems to achieve UHC. PMID:29873793

  9. Deep Inspiration Breath Hold—Based Radiation Therapy: A Clinical Review

    Energy Technology Data Exchange (ETDEWEB)

    Boda-Heggemann, Judit, E-mail: judit.boda-heggemann@umm.de [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Knopf, Antje-Christin [The Institute of Cancer Research, Royal Cancer Hospital, London (United Kingdom); Simeonova-Chergou, Anna; Wertz, Hansjörg; Stieler, Florian; Jahnke, Anika; Jahnke, Lennart; Fleckenstein, Jens; Vogel, Lena; Arns, Anna; Blessing, Manuel; Wenz, Frederik; Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)

    2016-03-01

    Several recent developments in linear accelerator–based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effects in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.

  10. A one-day "Helping Babies Breathe" course improves simulated performance but not clinical management of neonates

    DEFF Research Database (Denmark)

    Ersdal, H L; Vossius, C; Bayo, E

    2013-01-01

    "Helping Babies Breathe" (HBB) is a simulation-based one-day course developed to help reduce neonatal mortality globally. The study objectives were to (1) determine the effect on practical skills and management strategies among providers using simulations seven months after HBB training, and (2...

  11. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    visible wavelengths led to an estimated seven times improvement in the detection sensitivity. The authors’ prototype device also demonstrated a 100-fold improvement over a recently reported detection limit of a reflective capillary fiber-based Raman cell for breath analysis. Continued development is underway to increase the detection sensitivity further to reach practical clinical applications.

  12. Human breath measurements in a clean-air chamber to determine half-lives for volatile organic compounds

    Science.gov (United States)

    Gordon, Sydney M.; Wallace, Lance A.; Pelllzzari, Edo D.; O'Neill, Hugh J.

    The expired breath of four non-occupationally exposed subjects was monitored following exposure at near-normal environmental concentrations using a specially developed pulmonary clearance technique. The four were exposed to polluted air on a heavily trafficked freeway or at a local dry-cleaning establishment, then spent the next 10 h in a clean-air environmental chamber. Breath and chamber-air samples were collected at regular intervals throughout the 10-h period and analyzed for the presence of selected target compounds. The breath levels of two of the compounds were elevated and decreased slowly with time once the subjects began to breathe clean air. Nonlinear least-squares fitting of the decay-uptake curves permitted the calculation of biological half-lives. Several of the target compounds occurred, however, at very low levels, and the resultant experimental scatter limited the value of these measurements. Higher initial exposures to most of the target compounds would have improved the reliability of the estimates.

  13. Chest physiotherapy with positive expiratory pressure breathing after abdominal and thoracic surgery: a systematic review.

    Science.gov (United States)

    Orman, J; Westerdahl, E

    2010-03-01

    A variety of chest physiotherapy techniques are used following abdominal and thoracic surgery to prevent or reduce post-operative complications. Breathing techniques with a positive expiratory pressure (PEP) are used to increase airway pressure and improve pulmonary function. No systematic review of the effects of PEP in surgery patients has been performed previously. The purpose of this systematic review was to determine the effect of PEP breathing after an open upper abdominal or thoracic surgery. A literature search of randomised-controlled trials (RCT) was performed in five databases. The trials included were systematically reviewed by two independent observers and critically assessed for methodological quality. We selected six RCT evaluating the PEP technique performed with a mechanical device in spontaneously breathing adult patients after abdominal or thoracic surgery via thoracotomy. The methodological quality score varied between 4 and 6 on the Physiotherapy Evidence Database score. The studies were published between 1979 and 1993. Only one of the included trials showed any positive effects of PEP compared to other breathing techniques. Today, there is scarce scientific evidence that PEP treatment is better than other physiotherapy breathing techniques in patients undergoing abdominal or thoracic surgery. There is a lack of studies investigating the effect of PEP over placebo or no physiotherapy treatment.

  14. Breath-Holding Spells

    Science.gov (United States)

    ... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...

  15. Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Spilak, Michal

    2014-01-01

    Inhaled air quality at a reduced supply of clean air was studied by controlling the airflow interaction at the breathing zone of a person using lobed jets as part of personalized ventilation (PV). Experiments were performed in a full-scale test room at 23°C (73.4°F) with a breathing thermal manikin...... seated at a workstation, with realistic free-convection flow around the body and a normal breathing cycle. The air in the room was mixed with tracer gas R134a. Clean air was supplied isothermally from three nozzles with circular, four-leafed clover, and six-edged star openings of 0.025 m (0.08 ft...... over the interaction between the inserted jets and the free convection flow was efficient. Over 80% clean PV air was measured in inhalation. The worst performing nozzle was the four-leafed clover: its best performance yielded 23% clean air inhalation, at the shortest distance and the highest velocity...

  16. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  17. Double blind randomised controlled trial of two different breathing techniques in the management of asthma

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic‐Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-01-01

    Background Previous studies have shown that breathing techniques reduce short acting β2 agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non‐specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. Methods After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Results Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Conclusion Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non‐specific upper body exercises. PMID:16517572

  18. Dysfunctional breathing: a review of the literature and proposal for classification

    Directory of Open Access Journals (Sweden)

    Richard Boulding

    2016-09-01

    Full Text Available Dysfunctional breathing is a term describing breathing disorders where chronic changes in breathing pattern result in dyspnoea and other symptoms in the absence or in excess of the magnitude of physiological respiratory or cardiac disease. We reviewed the literature and propose a classification system for the common dysfunctional breathing patterns described. The literature was searched using the terms: dysfunctional breathing, hyperventilation, Nijmegen questionnaire and thoraco-abdominal asynchrony. We have summarised the presentation, assessment and treatment of dysfunctional breathing, and propose that the following system be used for classification. 1 Hyperventilation syndrome: associated with symptoms both related to respiratory alkalosis and independent of hypocapnia. 2 Periodic deep sighing: frequent sighing with an irregular breathing pattern. 3 Thoracic dominant breathing: can often manifest in somatic disease, if occurring without disease it may be considered dysfunctional and results in dyspnoea. 4 Forced abdominal expiration: these patients utilise inappropriate and excessive abdominal muscle contraction to aid expiration. 5 Thoraco-abdominal asynchrony: where there is delay between rib cage and abdominal contraction resulting in ineffective breathing mechanics. This review highlights the common abnormalities, current diagnostic methods and therapeutic implications in dysfunctional breathing. Future work should aim to further investigate the prevalence, clinical associations and treatment of these presentations.

  19. Strengthening public health research for improved health

    Directory of Open Access Journals (Sweden)

    Enrique Gea-Izquierdo

    2012-08-01

    Full Text Available Research in public health is a range that includes from fundamental research to research in clinical practice, including novel advances, evaluation of results and their spreading. Actually, public health research is considered multidisciplinary incorporating numerous factors in its development. Establishing as a mainstay the scientific method, deepens in basic research, clinical epidemiological research and health services. The premise of quality and relevance is reflected in international scientific research, and in the daily work and good biomedical practices that should be included in the research as a common task. Therefore, the research must take a proactive stance of inquiry, integrating a concern planned and ongoing development of knowledge. This requires improve international coordination, seeking a balance between basic and applied research as well as science and technology. Thus research cannot be considered without innovation, weighing up the people and society needs. Acting on knowledge of scientific production processes requires greater procedures thoroughness and the effective expression of the results. It is noted as essential to establish explicit principles in review and evaluation of the adjustments of actions, always within the standards of scientific conduct and fairness of the research process. In the biomedical scientific lines it have to be consider general assessments that occur related to the impact and quality of health research, mostly leading efforts to areas that require further attention. However, other subject areas that may be deficient or with lower incidence in the population should not be overlook. Health research as a source of new applications and development provides knowledge, improving well-being. However, it is understandable without considering the needs and social demands. Therefore, in public health research and to improve the health of the population, we must refine and optimize the prevention and

  20. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, L; Quirk, S; Smith, WL [The University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Yeung, R; Phan, T [The University of Calgary, Calgary, AB (Canada); Hudson, A [Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  1. Deficits in working memory, reading comprehension and arithmetic skills in children with mouth breathing syndrome: analytical cross-sectional study.

    Science.gov (United States)

    Kuroishi, Rita Cristina Sadako; Garcia, Ricardo Basso; Valera, Fabiana Cardoso Pereira; Anselmo-Lima, Wilma Terezinha; Fukuda, Marisa Tomoe Hebihara

    2015-01-01

    Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. Analytical cross-sectional study with control group conducted in a public university hospital. 42 children (mean age = 8.7 years) who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years) matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords), reading comprehension and arithmetic skills. Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006), arithmetic (P = 0.025) and working memory for pseudowords (P = 0.002), but not for numbers (P = 0.76). Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.

  2. Salivary Markers and Microbial Flora in Mouth Breathing Late Adolescents

    Directory of Open Access Journals (Sweden)

    Stefano Mummolo

    2018-01-01

    Full Text Available Objective. This is a 6-month observational case-control study that aims to estimate plaque index (PI, salivary flow, buffering capacity of saliva, and specific Streptococcus mutans (S. mutans and Lactobacillus rates in a mouth breathing late adolescents sample, after a professional oral hygiene procedure and home oral hygiene instructions. Subjects and Methods. A sample of 20 mouth breathing late adolescents/young adults (average: 19.2±2.5; range: 18–23 years and a matched control group of nose breathing subjects (average: 18.3±3.2; range 18–23 years were included in the study. All the participants were subjected to a professional oral hygiene procedure and appropriate home oral hygiene instructions (t0. After three months (t1 and six months (t2, the PI, salivary flow, buffering capacity of saliva, and S. mutans and Lactobacilli rates were recorded. Results. The mean buffering capacity of saliva and the salivary flow rate showed no significant difference between the two groups, all over the observational period. For PI, a significantly higher mode (score 1 of PI was observed in the study group at t1 (score 0 = 35% of subjects; score 1 = 60%; score 2 = 5% and t2 (score 1 = 65% of subjects, score 2 = 35%, with respect to control group. Furthermore, mouth breathing subjects show a significant 4 times higher risk to develop S. mutans CFU > 105 (CI lower limit: 0.95; CI upper limit: 9.48; chi-square: 4.28; p=0.03, with respect to the control subjects. Conclusions. Mouth breathing late adolescents show a significantly higher risk to develop S. mutans CFU > 105 and an increased level of PI. Interceptive orthodontic treatments in growing subjects, like palatal expansion, are encouraged to improve the nasal air flow. In older subjects, orthodontic treatments should be performed with removable appliances like clear aligners, in order to allow a better oral hygiene level.

  3. Effects of high-frequency yoga breathing called kapalabhati compared with breath awareness on the degree of optical illusion perceived.

    Science.gov (United States)

    Telles, Shirley; Maharana, Kanchan; Balrana, Budhi; Balkrishna, Acharya

    2011-06-01

    Prior research has shown that methods of meditation, breath control, and different kinds of yoga breathing affect attention and visual perception, including decreasing the size of certain optical illusions. Evaluating relationships sheds light on the perceptual and cognitive changes induced by yoga and related methods, and the locus of the effects. In the present study, the degree of optical illusion was assessed using Müller-Lyer stimuli before and immediately after two different kinds of practice, a high frequency yoga breathing called kapalabhati, and breath awareness. A nonyoga, control session tested for practice effects. Thirty participants (with group M age = 26.9 yr., SD = 5.7) practiced the two techniques for 18 min. on two separate days. The control group had 15 nonyoga practitioners assessed before and after 18 min. in which they did not perform any specific activity but were seated and relaxed. After both kapalabhati and breath awareness there was a significant decrease in the degree of optical illusion. The possibility that this was due to a practice or repetition effect was ruled out when 15 nonyoga practitioners showed no change in the degree of illusion when retested after 18 min. The changes were interpreted as due to changes in perception related to the way the stimuli were judged.

  4. Improved pulmonary function in working divers breathing nitrox at shallow depths

    Science.gov (United States)

    Fitzpatrick, Daniel T.; Conkin, Johnny

    2003-01-01

    INTRODUCTION: There is limited data about the long-term pulmonary effects of nitrox use in divers at shallow depths. This study examined changes in pulmonary function in a cohort of working divers breathing a 46% oxygen enriched mixture while diving at depths less than 12 m. METHODS: A total of 43 working divers from the Neutral Buoyancy Laboratory (NBL), NASA-Johnson Space Center completed a questionnaire providing information on diving history prior to NBL employment, diving history outside the NBL since employment, and smoking history. Cumulative dive hours were obtained from the NBL dive-time database. Medical records were reviewed to obtain the diver's height, weight, and pulmonary function measurements from initial pre-dive, first year and third year annual medical examinations. RESULTS: The initial forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were greater than predicted, 104% and 102%, respectively. After 3 yr of diving at the NBL, both the FVC and FEV1 showed a significant (p < 0.01) increase of 6.3% and 5.5%, respectively. There were no significant changes in peak expiratory flow (PEF), forced mid-expiratory flow rate (FEF(25-75%)), and forced expiratory flow rates at 25%, 50%, and 75% of FVC expired (FEF25%, FEF50%, FEF75%). Cumulative NBL dive hours was the only contributing variable found to be significantly associated with both FVC and FEV1 at 1 and 3 yr. CONCLUSIONS: NBL divers initially belong to a select group with larger than predicted lung volumes. Regular diving with nitrox at shallow depths over a 3-yr period did not impair pulmonary function. Improvements in FVC and FEV1 were primarily due to a training effect.

  5. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.

    Science.gov (United States)

    Bu, Xiangwei; He, Guangjun; Wang, Ke

    2018-04-01

    This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Prospective respiratory-gated micro-CT of free breathing rodents

    International Nuclear Information System (INIS)

    Ford, Nancy L.; Nikolov, Hristo N.; Norley, Chris J.D.; Thornton, Michael M.; Foster, Paula J.; Drangova, Maria; Holdsworth, David W.

    2005-01-01

    Microcomputed tomography (Micro-CT) has the potential to noninvasively image the structure of organs in rodent models with high spatial resolution and relatively short image acquisition times. However, motion artifacts associated with the normal respiratory motion of the animal may arise when imaging the abdomen or thorax. To reduce these artifacts and the accompanying loss of spatial resolution, we propose a prospective respiratory gating technique for use with anaesthetized, free-breathing rodents. A custom-made bed with an embedded pressure chamber was connected to a pressure transducer. Anaesthetized animals were placed in the prone position on the bed with their abdomens located over the chamber. During inspiration, the motion of the diaphragm caused an increase in the chamber pressure, which was converted into a voltage signal by the transducer. An output voltage was used to trigger image acquisition at any desired time point in the respiratory cycle. Digital radiographic images were acquired of anaesthetized, free-breathing rats with a digital radiographic system to correlate the respiratory wave form with respiration-induced organ motion. The respiratory wave form was monitored and recorded simultaneously with the x-ray radiation pulses, and an imaging window was defined, beginning at end expiration. Phantom experiments were performed to verify that the respiratory gating apparatus was triggering the micro-CT system. Attached to the distensible phantom were 100 μm diameter copper wires and the measured full width at half maximum was used to assess differences in image quality between respiratory-gated and ungated imaging protocols. This experiment allowed us to quantify the improvement in the spatial resolution, and the reduction of motion artifacts caused by moving structures, in the images resulting from respiratory-gated image acquisitions. The measured wire diameters were 0.135 mm for the stationary phantom image, 0.137 mm for the image gated at end

  7. Neuropsychological Function in Patients With Acute Tetraplegia and Sleep Disordered Breathing.

    Science.gov (United States)

    Schembri, Rachel; Spong, Jo; Graco, Marnie; Berlowitz, David J

    2017-02-01

    To investigate the relationship between apnea severity and neuropsychological function in patients with acute-onset tetraplegia and sleep disordered breathing. Polysomnography and neuropsychological testing were performed on 104 participants (age M = 45.60, SD = 16.38; 10 female) across 11 international sites, 2 months postinjury (M = 60.70 days, SD = 39.48). Neuropsychological tests assessed attention, information processing, executive function, memory, learning, mood, and quality of life. More severe sleep apnea was associated with poorer attention, information processing, and immediate recall. Deficits did not extend to memory. Higher preinjury intelligence and being younger reduced the associations with sleep disordered breathing; however, these protective factors were insufficient to counter the damage to attention, immediate recall, and information processing associated with sleep disordered breathing. These data suggest that new spinal cord injury may function as a model of "acute sleep apnea" and that more widespread sleep apnea-related deficits, including memory, may only be seen with longer exposure to apnea. These findings have important implications for functioning and skill acquisition during rehabilitation and, as such, highlight the importance of sleep health following tetraplegia. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Clinical case review: A method to improve identification of true clinical and radiographic pneumonia in children meeting the World Health Organization definition for pneumonia

    OpenAIRE

    Puumalainen, Taneli; Quiambao, Beatriz; Abucejo-Ladesma, Erma; Lupisan, Socorro; Heiskanen-Kosma, Tarja; Ruutu, Petri; Lucero, Marilla G; Nohynek, Hanna; Simoes, Eric AF; Riley, Ian

    2008-01-01

    Abstract Background The World Health Organization's (WHO) case definition for childhood pneumonia, composed of simple clinical signs of cough, difficult breathing and fast breathing, is widely used in resource poor settings to guide management of acute respiratory infections. The definition is also commonly used as an entry criteria or endpoint in different intervention and disease burden studies. Methods A group of paediatricians conducted a retrospective review of clinical and laboratory da...

  9. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C [University of Kansas Medical Center, Kansas City, KS (United States)

    2016-06-15

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  10. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    International Nuclear Information System (INIS)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C

    2016-01-01

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  11. Pulmonary function and health-related quality of life 1-year follow up after cardiac surgery.

    Science.gov (United States)

    Westerdahl, Elisabeth; Jonsson, Marcus; Emtner, Margareta

    2016-07-08

    Pulmonary function is severely reduced in the early period after cardiac surgery, and impairments have been described up to 4-6 months after surgery. Evaluation of pulmonary function in a longer perspective is lacking. In this prospective study pulmonary function and health-related quality of life were investigated 1 year after cardiac surgery. Pulmonary function measurements, health-related quality of life (SF-36), dyspnoea, subjective breathing and coughing ability and pain were evaluated before and 1 year after surgery in 150 patients undergoing coronary artery bypass grafting, valve surgery or combined surgery. One year after surgery the forced vital capacity and forced expiratory volume in 1 s were significantly decreased (by 4-5 %) compared to preoperative values (p < 0.05). Saturation of peripheral oxygen was unchanged 1 year postoperatively compared to baseline. A significantly improved health-related quality of life was found 1 year after surgery, with improvements in all eight aspects of SF-36 (p < 0.001). Sternotomy-related pain was low 1 year postoperatively at rest (median 0 [min-max; 0-7]), while taking a deep breath (0 [0-4]) and while coughing (0 [0-8]). A more pronounced decrease in pulmonary function was associated with dyspnoea limitations and impaired subjective breathing and coughing ability. One year after cardiac surgery static and dynamic lung function measurements were slightly decreased, while health-related quality of life was improved in comparison to preoperative values. Measured levels of pain were low and saturation of peripheral oxygen was same as preoperatively.

  12. Voluntary Breath-hold Technique for Reducing Heart Dose in Left Breast Radiotherapy

    Science.gov (United States)

    Bartlett, Frederick R.; Colgan, Ruth M.; Donovan, Ellen M.; Carr, Karen; Landeg, Steven; Clements, Nicola; McNair, Helen A.; Locke, Imogen; Evans, Philip M.; Haviland, Joanne S.; Yarnold, John R.; Kirby, Anna M.

    2014-01-01

    Breath-holding techniques reduce the amount of radiation received by cardiac structures during tangential-field left breast radiotherapy. With these techniques, patients hold their breath while radiotherapy is delivered, pushing the heart down and away from the radiotherapy field. Despite clear dosimetric benefits, these techniques are not yet in widespread use. One reason for this is that commercially available solutions require specialist equipment, necessitating not only significant capital investment, but often also incurring ongoing costs such as a need for daily disposable mouthpieces. The voluntary breath-hold technique described here does not require any additional specialist equipment. All breath-holding techniques require a surrogate to monitor breath-hold consistency and whether breath-hold is maintained. Voluntary breath-hold uses the distance moved by the anterior and lateral reference marks (tattoos) away from the treatment room lasers in breath-hold to monitor consistency at CT-planning and treatment setup. Light fields are then used to monitor breath-hold consistency prior to and during radiotherapy delivery. PMID:25046661

  13. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    International Nuclear Information System (INIS)

    Mistry, Nilesh N.; Diwanji, Tejan; Shi, Xiutao; Pokharel, Sabin; Feigenberg, Steven; Scharf, Steven M.; D'Souza, Warren D.

    2013-01-01

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R 2 of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance

  14. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Diwanji, Tejan; Shi, Xiutao [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Pokharel, Sabin [Morgan State University, Baltimore, Maryland (United States); Feigenberg, Steven [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Scharf, Steven M. [Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland (United States); D' Souza, Warren D. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic

  15. Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Liu, Xiaowei [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001 (China); MEMS Center, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Peng; Zhang, Bo; Li, Jianmin; Deng, Huichao [MEMS Center, Harbin Institute of Technology, Harbin 150001 (China)

    2010-06-15

    An air-breathing direct methanol fuel cell with a novel cathode shutter current collector is fabricated to develop the power sources for consumer electronic devices. Compared with the conventional circular cathode current collector, the shutter one improves the oxygen consumption and mass transport. The anode and cathode current collectors are made of stainless steel using thermal stamping die process. Moreover, an encapsulation method using the tailor-made clamps is designed to assemble the current collectors and MEA for distributing the stress of the edges and inside uniformly. It is observed that the maximum power density of the air-breathing DMFC operating with 1 M methanol solution achieves 19.7 mW/cm{sup 2} at room temperature. Based on the individual DMFCs, the air-breathing stack consisting of 36 DMFC units is achieved and applied to power a notebook computer. (author)

  16. Breath-hold monitoring and visual feedback for radiotherapy using a charge-coupled device camera and a head-mounted display. System development and feasibility

    International Nuclear Information System (INIS)

    Yoshitake, Tadamasa; Nakamura, Katsumasa; Shioyama, Yoshiyuki

    2008-01-01

    The aim of this study was to present the technical aspects of the breath-hold technique with respiratory monitoring and visual feedback and to evaluate the feasibility of this system in healthy volunteers. To monitor respiration, the vertical position of the fiducial marker placed on the patient's abdomen was tracked by a machine vision system with a charge-coupled device camera. A monocular head-mounted display was used to provide the patient with visual feedback about the breathing trace. Five healthy male volunteers were enrolled in this study. They held their breath at the end-inspiration and the end-expiration phases. They performed five repetitions of the same type of 15-s breath-holds with and without a head-mounted display, respectively. A standard deviation of five mean positions of the fiducial marker during a 15-s breath-hold in each breath-hold type was used as the reproducibility value of breath-hold. All five volunteers well tolerated the breath-hold maneuver. For the inspiration breath-hold, the standard deviations with and without visual feedback were 1.74 mm and 0.84 mm, respectively (P=0.20). For the expiration breath-hold, the standard deviations with and without visual feedback were 0.63 mm and 0.96 mm, respectively (P=0.025). Our newly developed system might help the patient achieve improved breath-hold reproducibility. (author)

  17. Prospective MR image alignment between breath-holds: Application to renal BOLD MRI.

    Science.gov (United States)

    Kalis, Inge M; Pilutti, David; Krafft, Axel J; Hennig, Jürgen; Bock, Michael

    2017-04-01

    To present an image registration method for renal blood oxygen level-dependent (BOLD) measurements that enables semiautomatic assessment of parenchymal and medullary R2* changes under a functional challenge. In a series of breath-hold acquisitions, three-dimensional data were acquired initially for prospective image registration of subsequent BOLD measurements. An algorithm for kidney alignment for BOLD renal imaging (KALIBRI) was implemented to detect the positions of the left and right kidney so that the kidneys were acquired in the subsequent BOLD measurement at consistent anatomical locations. Residual in-plane distortions were corrected retrospectively so that semiautomatic dynamic R2* measurements of the renal cortex and medulla become feasible. KALIBRI was tested in six healthy volunteers during a series of BOLD experiments, which included a 600- to 1000-mL water challenge. Prospective image registration and BOLD imaging of each kidney was achieved within a total measurement time of about 17 s, enabling its execution within a single breath-hold. KALIBRI improved the registration by up to 35% as found with mutual information measures. In four volunteers, a medullary R2* decrease of up to 40% was observed after water ingestion. KALIBRI improves the quality of two-dimensional time-resolved renal BOLD MRI by aligning local renal anatomy, which allows for consistent R2* measurements over many breath-holds. Magn Reson Med 77:1573-1582, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Additional Value of CH4 Measurement in a Combined 13C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis

    Science.gov (United States)

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-01-01

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H2) excretion after an oral dose of lactose. We use a combined 13C/H2 lactose breath test that measures breath 13CO2 as a measure of lactose digestion in addition to H2 and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 13C/H2 lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH4 in addition to H2 and 13CO2. Based on the 13C/H2 breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH4 further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H2-excretion were found to excrete CH4. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH4-concentrations has an added value to the 13C/H2 breath test to identify methanogenic subjects with lactose malabsorption or SIBO. PMID:26371034

  19. The Effect of mechanical resistive loading on optimal respiratory signals and breathing patterns under added dead space and CO2 breathing

    Directory of Open Access Journals (Sweden)

    Lin Shyan-Lung

    2016-01-01

    Full Text Available Current study aims to investigate how the respiratory resistive loading affects the behaviour of the optimal chemical-mechanical respiratory control model, the respiratory signals and breathing pattern are optimized under external dead space loading and CO2 breathing. The respiratory control was modelled to include a neuro-muscular drive as the control output to derive the waveshapes of instantaneous airflow, lung volume profiles, and breathing pattern, including total/alveolar ventilation, breathing frequency, tidal volume, inspiratory/expiratory duration, duty cycle, and arterial CO2 pressure. The simulations were performed under various respiratory resistive loads, including no load, inspiratory resistive load, expiratory resistive load, and continuous resistive load. The dead space measurement was described with Gray’s derivation, and simulation results were studied and compared with experimental findings.

  20. Mercury Quick Facts: Health Effects of Mercury Exposure

    Science.gov (United States)

    ... 2012 What are the Health Effects of Mercury Exposure? The health effects that can be caused by breathing mercury depend ... they breathe faster and have smaller lungs. Health effects caused by long-term exposure to mercury vapors • • Anxiety • • Excessive shyness • • Anorexia • • Sleeping ...

  1. A fibre optic oxygen sensor for monitoring of human breathing

    Science.gov (United States)

    Chen, Rongsheng; Farmery, Andrew D.; Chen, Rui; Hahn, Clive E. W.

    2011-11-01

    A reliable and cost effective fibre optic oxygen sensor for monitoring of human breathing has been developed using a normal 200μm silica core/silica cladding optical fibre and a polymer sensing matrix. The fibre optic oxygen sensor is based on the fluorescence quenching of a fluorophore by oxygen. The sensing matrix, containing immobilized Pt(II) complexes, was coated at the end of the silica core/silica cladding optical fibre. The sensitivity and time response of the sensor were evaluated using the method of luminescence lifetime measurement. The polymer substrate influence on the time response of the sensor was improved by using a fibre taper design, and the response time of the optimized sensor was less than 200ms. This silica fibre based optic oxygen sensor is suitable for monitoring of patient breathing in intensive care unit in terms of safety and low cost.

  2. Real-time continuous visual biofeedback in the treatment of speech breathing disorders following childhood traumatic brain injury: report of one case.

    Science.gov (United States)

    Murdoch, B E; Pitt, G; Theodoros, D G; Ward, E C

    1999-01-01

    The efficacy of traditional and physiological biofeedback methods for modifying abnormal speech breathing patterns was investigated in a child with persistent dysarthria following severe traumatic brain injury (TBI). An A-B-A-B single-subject experimental research design was utilized to provide the subject with two exclusive periods of therapy for speech breathing, based on traditional therapy techniques and physiological biofeedback methods, respectively. Traditional therapy techniques included establishing optimal posture for speech breathing, explanation of the movement of the respiratory muscles, and a hierarchy of non-speech and speech tasks focusing on establishing an appropriate level of sub-glottal air pressure, and improving the subject's control of inhalation and exhalation. The biofeedback phase of therapy utilized variable inductance plethysmography (or Respitrace) to provide real-time, continuous visual biofeedback of ribcage circumference during breathing. As in traditional therapy, a hierarchy of non-speech and speech tasks were devised to improve the subject's control of his respiratory pattern. Throughout the project, the subject's respiratory support for speech was assessed both instrumentally and perceptually. Instrumental assessment included kinematic and spirometric measures, and perceptual assessment included the Frenchay Dysarthria Assessment, Assessment of Intelligibility of Dysarthric Speech, and analysis of a speech sample. The results of the study demonstrated that real-time continuous visual biofeedback techniques for modifying speech breathing patterns were not only effective, but superior to the traditional therapy techniques for modifying abnormal speech breathing patterns in a child with persistent dysarthria following severe TBI. These results show that physiological biofeedback techniques are potentially useful clinical tools for the remediation of speech breathing impairment in the paediatric dysarthric population.

  3. Breath acetone monitoring by portable Si:WO3 gas sensors

    International Nuclear Information System (INIS)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2012-01-01

    Highlights: ► Portable sensors were developed and tested for monitoring acetone in the human breath. ► Acetone concentrations down to 20 ppb were measured with short response times ( 3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  4. Remote monitoring of breathing dynamics using infrared thermography.

    Science.gov (United States)

    Pereira, Carina Barbosa; Yu, Xinchi; Czaplik, Michael; Rossaint, Rolf; Blazek, Vladimir; Leonhardt, Steffen

    2015-11-01

    An atypical or irregular respiratory frequency is considered to be one of the earliest markers of physiological distress. In addition, monitoring of this vital parameter plays a major role in diagnosis of respiratory disorders, as well as in early detection of sudden infant death syndrome. Nevertheless, the current measurement modalities require attachment of sensors to the patient's body, leading to discomfort and stress. The current paper presents a new robust algorithm to remotely monitor breathing rate (BR) by using thermal imaging. This approach permits to detect and to track the region of interest (nose) as well as to estimate BR. In order to study the performance of the algorithm, and its robustness against motion and breathing disorders, three different thermal recordings of 11 healthy volunteers were acquired (sequence 1: normal breathing; sequence 2: normal breathing plus arbitrary head movements; and sequence 3: sequence of specific breathing patterns). Thoracic effort (piezoplethysmography) served as "gold standard" for validation of our results. An excellent agreement between estimated BR and ground truth was achieved. Whereas the mean correlation for sequence 1-3 were 0.968, 0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96 bpm (breaths per minute), respectively. In brief, this work demonstrates that infrared thermography is a promising, clinically relevant alternative for the currently available measuring modalities due to its performance and diverse remarkable advantages.

  5. A simple, remote, video based breathing monitor.

    Science.gov (United States)

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  6. Sex differences in sleep disordered breathing in adults.

    Science.gov (United States)

    Lozo, Tijana; Komnenov, Dragana; Badr, M Safwan; Mateika, Jason H

    2017-11-01

    The prevalence of sleep disordered breathing is greater in men compared to women. This disparity could be due to sex differences in the diagnosis and presentation of sleep apnea, and the pathophysiological mechanisms that instigate this disorder. Women tend to report more non-typical symptoms of sleep apnea compared to men, and the presentation of apneic events are more prevalent in rapid compared to non-rapid eye movement sleep. In addition, there is evidence of sex differences in upper airway structure and mechanics and in neural mechanisms that impact on the control of breathing. The purpose of this review is to summarize the literature that addresses sex differences in sleep-disordered breathing, and to discuss the influence that upper airway mechanics, chemoreflex properties, and sex hormones have in modulating breathing during sleep in men and women. Published by Elsevier B.V.

  7. Awareness of breathing: the structure of language descriptors of respiratory sensations.

    Science.gov (United States)

    Petersen, Sibylle; Orth, Bernhard; Ritz, Thomas

    2008-01-01

    Recent research suggests that dyspnea is not a single sensation but a multidimensional construct reflected in different verbal descriptors that can provide useful diagnostic information. In this study superordinated clusters of dyspnea were investigated in combination with a dimensional approach. We examined the use of 20 respiratory symptom descriptors by healthy volunteers who completed a protocol of seven experimental conditions: Quiet breathing, breath holding, paced breathing, climbing stairs, resistive load breathing, voluntary hyperinflation, and voluntary hyperventilation. We analyzed the ratings of these descriptors with multidimensional scaling (MDS) and cluster analysis. While similarities with prior studies were found on a lower fusion level, we were able to demonstrate the usefulness of interpreting higher fusion levels with four clusters related to work of breathing, coordination, suffocation, and struggling for air, merging into two superordinated clusters, effort and air hunger that are compatible with widely accepted primary components of dyspnea. MDS results also suggested that future studies should consider further breathing sensations related to cognitive control of breathing.

  8. Analysis of human exhaled breath in a population of young volunteers

    Directory of Open Access Journals (Sweden)

    Zarić Božidarka

    2014-01-01

    Full Text Available Analysis of volatile organic compounds (VOCs in human breath can provide information about the current physiological state of an individual, such as clinical conditions and exposure to exogenous pollutants. The blood-borne VOCs present in exhaled breath offer the possibility of exploring physiological and pathological processes in a noninvasive way. However, the field of exhaled breath analysis is still in its infancy. We undertook this study in order to define interindividual variation and common compounds in breath VOCs of 48 young human volunteers. Alveolar breath samples were analyzed by automated thermal desorption, gas chromatography with flame ionization detector (FID and electron capture detector (ECD using SUPELCO standards with 66 compounds. Predominant compounds in the alveolar breath of analyzed subjects are ethylbenzene, 1-ethyl-4-methylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene (over 50% of the subjects. Isopropyl alcohol, propylene, acetone, ethanol were found as well. We detected substituted compounds in exhaled breath. [Projekat Ministarstva nauke Republike Srbije, br. 172001

  9. Breathing multichimera states in nonlocally coupled phase oscillators

    Science.gov (United States)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  10. Cell phone–based health education messaging improves health ...

    African Journals Online (AJOL)

    SMS), provides new and innovative opportunities for disease prevention and health education. Objective: To explore the use of cell phone–based health education SMS to improve the health literacy of community residents in China. Methods: ...

  11. The effect of various breathing exercises (pranayama in patients with bronchial asthma of mild to moderate severity

    Directory of Open Access Journals (Sweden)

    Saxena Tarun

    2009-01-01

    Full Text Available Background/Aim: The incidence of bronchial asthma is on increase. Chemotherapy is helpful during early course of the disease, but later on morbidity and mortality increases. The efficacy of yoga therapy though appreciated is yet to be defined and modified. Aim: To study the effect of breathing exercises ( pranayama in patients with bronchial asthma of mild to moderate severity. Materials and Methods: Fifty cases of bronchial asthma (Forced Expiratory Volume in one second (FEV1 > 70% were studied for 12 weeks. Patients were allocated to two groups: group A and group B (control group. Patients in group A were treated with breathing exercises (deep breathing, Brahmari , and Omkara , etc. for 20 minutes twice daily for a period of 12 weeks. Patients were trained to perform Omkara at high pitch (forceful with prolonged exhalation as compared to normal Omkara . Group B was treated with meditation for 20 minutes twice daily for a period of 12 weeks. Subjective assessment, FEV1%, and Peak Expiratory Flow Rate (PEFR were done in each case initially and after 12 weeks. Results: After 12 weeks, group A subjects had significant improvement in symptoms, FEV1, and PEFR as compared to group B subjects. Conclusion: Breathing exercises ( pranayama , mainly expiratory exercises, improved lung function subjectively and objectively and should be regular part of therapy.

  12. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  13. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    Science.gov (United States)

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  14. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing

    Directory of Open Access Journals (Sweden)

    Áron Kőszeghy

    2018-04-01

    Full Text Available The orbitofrontal cortex (OFC has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  15. Variability in blood flow and pO2 in tumors in response to carbogen breathing

    International Nuclear Information System (INIS)

    Lanzen, Jennifer L.; Braun, Rod D.; Ong, Aqui L.; Dewhirst, Mark W.

    1998-01-01

    tumors remained unchanged, with a pO 2 of 7.3 ± 2.0 mm Hg on air and 7.3 ± 4.1 mm Hg (p = 0.995) during carbogen breathing. Conclusions: Carbogen had no consistent effect on blood flow and was ineffective at increasing tumor pO 2 . These results may partially explain why carbogen breathing failed to improve the efficacy of radiation in this tumor model when transplanted subcutaneously

  16. Sleep Disordered Breathing in Early Childhood: Quality of Life for Children and Families

    Science.gov (United States)

    Jackman, Angela R.; Biggs, Sarah N.; Walter, Lisa M.; Embuldeniya, Upeka S.; Davey, Margot J.; Nixon, Gillian M.; Anderson, Vicki; Trinder, John; Horne, Rosemary S. C.

    2013-01-01

    Objectives: To characterize health-related quality of life (QOL) in preschool children with sleep disordered breathing (SDB) and their families compared with nonsnoring control patients in the community. It was hypothesized that children with SDB and their families would have poorer QOL than control children, that a relationship would be found between SDB severity and QOL, and that even children with mild SDB and their families would have reduced QOL. Participants and Methods: A clinical sample of preschool children (3-5 y) with SDB diagnosed by gold standard polysomnography (primary snoring, PS = 56, mild obstructive sleep apnea, OSA = 35, moderate/severe OSA = 24) and control children recruited from the community (n = 38) were studied. Parents completed health-related QOL and parenting stress questionnaires. Results: Children and families in the PS and mild OSA groups had consistently poorer QOL than control children (both P Biggs SN; Walter LM; Embuldeniya US; Davey MJ; Nixon GM; Anderson V; Trinder J; Horne RSC. Sleep disordered breathing in early childhood: quality of life for children and families. SLEEP 2013;36(11):1639-1646. PMID:24179296

  17. Repeatability of FDG PET/CT metrics assessed in free breathing and deep inspiration breath hold in lung cancer patients.

    Science.gov (United States)

    Nygård, Lotte; Aznar, Marianne C; Fischer, Barbara M; Persson, Gitte F; Christensen, Charlotte B; Andersen, Flemming L; Josipovic, Mirjana; Langer, Seppo W; Kjær, Andreas; Vogelius, Ivan R; Bentzen, Søren M

    2018-01-01

    We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV) peak , SUV max , SUV mean , metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUV max . FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUV peak FB/DIBH: 16.2%/16.5%; SUV max : 18.2%/22.1%; SUV mean : 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUV max of 12.6%, SUV peak 4.4% and SUV mean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients.

  18. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  19. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  20. Deficits in working memory, reading comprehension and arithmetic skills in children with mouth breathing syndrome: analytical cross-sectional study

    Directory of Open Access Journals (Sweden)

    Rita Cristina Sadako Kuroishi

    Full Text Available CONTEXT AND OBJECTIVE: Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. DESIGN AND SETTING: Analytical cross-sectional study with control group conducted in a public university hospital. METHODS: 42 children (mean age = 8.7 years who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords, reading comprehension and arithmetic skills. RESULTS: Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006, arithmetic (P = 0.025 and working memory for pseudowords (P = 0.002, but not for numbers (P = 0.76. CONCLUSION: Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.

  1. Can resistive breathing injure the lung? Implications for COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Vassilakopoulos T

    2016-09-01

    Full Text Available Theodoros Vassilakopoulos, Dimitrios Toumpanakis Pulmonary and Critical Care Medicine, Medical School, National and Kapodistrian University of Athens, Greece Abstract: In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction. The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence. Keywords: resistive breathing, COPD, mechanotransduction, bronchoconstriction, inflammation

  2. EIT based pulsatile impedance monitoring during spontaneous breathing in cystic fibrosis.

    Science.gov (United States)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Gong, Bo; Müller-Lisse, Ullrich; Moeller, Knut

    2017-06-01

    Evaluating the lung function in patients with obstructive lung disease by electrical impedance tomography (EIT) usually requires breathing maneuvers containing deep inspirations and forced expirations. Since these maneuvers strongly depend on the patient's co-operation and health status, normal tidal breathing was investigated in an attempt to develop continuous maneuver-free measurements. Ventilation related and pulsatile impedance changes were systematically analyzed during normal tidal breathing in 12 cystic fibrosis (CF) patients and 12 lung-healthy controls (HL). Tidal breaths were subdivided into three inspiratory (In1, In2, In3) and three expiratory (Ex1, Ex2, Ex3) sections of the same amplitude of global impedance change. Maximal changes of the ventilation and the pulsatile impedance signal occurring during these sections were determined (▵I V and ▵I P ). Differences in ▵I V and ▵I P among sections were ascertained in relation to the first inspiratory section. In addition, ▵I V /▵I P was calculated for each section. Medians of changes in ▵I V were  <0.05% in all sections for both subject groups. Both groups showed a similar pattern of ▵I P changes during tidal breathing. Changes in ▵I P first decreased during inspiration (In2), then increased towards the end of inspiration (In3) and reached a maximum at the beginning of expiration (Ex1). During the last two sections of expiration (Ex2, Ex3) ▵I P changes decreased. The CF patients showed higher variations in ▵I P changes compared to the controls (CF:  -426.5%, HL:  -158.1%, coefficient of variation). Furthermore, ▵I V /▵I P significantly differed between expiratory sections for the CF patients (Ex1-Ex2, p  <  0.01; Ex1-Ex3, p  <  0.001; Ex2-Ex3, p  <  0.05), but not for the controls. No significant differences in ▵I V /▵I P between inspiratory sections were determined for both groups. Differences in ▵I P changes and in ▵I V /▵I P between

  3. Optimization of imaging before pulmonary vein isolation by radiofrequency ablation: breath-held ungated versus ECG/breath-gated MRA

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, C.; Haller, S.; Bremerich, J. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Zellweger, M.J.; Sticherling, C.; Buser, P.T. [University Hospital Basel, Department of Cardiology, Basel (Switzerland); Weber, O. [University Hospital Basel, Department of Medical Physics, Basel (Switzerland)

    2008-12-15

    Isolation of the pulmonary veins has emerged as a new therapy for atrial fibrillation. Pre-procedural magnetic resonance (MR) imaging enhances safety and efficacy; moreover, it reduces radiation exposure of the patients and interventional team. The purpose of this study was to optimize the MR protocol with respect to image quality and acquisition time. In 31 patients (23-73 years), the anatomy of the pulmonary veins, left atrium and oesophagus was assessed on a 1.5-Tesla scanner with four different sequences: (1) ungated two-dimensional true fast imaging with steady precession (2D-TrueFISP), (2) ECG/breath-gated 3D-TrueFISP, (3) ungated breath-held contrast-enhanced three-dimensional turbo fast low-angle shot (CE-3D-tFLASH), and (4) ECG/breath-gated CE-3D-TrueFISP. Image quality was scored from 1 (structure not visible) to 5 (excellent visibility), and the acquisition time was monitored. The pulmonary veins and left atrium were best visualized with CE-3D-tFLASH (scores 4.50 {+-} 0.52 and 4.59 {+-} 0.43) and ECG/breath-gated CE-3D-TrueFISP (4.47 {+-} 0.49 and 4.63 {+-} 0.39). Conspicuity of the oesophagus was optimal with CE-3D-TrueFISP and 2D-TrueFISP (4.59 {+-} 0.35 and 4.19 {+-} 0.46) but poor with CE-3D-tFLASH (1.03 {+-} 0.13) (p < 0.05). Acquisition times were shorter for 2D-TrueFISP (44 {+-} 1 s) and CE-3D-tFLASH (345 {+-} 113 s) compared with ECG/breath-gated 3D-TrueFISP (634 {+-} 197 s) and ECG/breath-gated CE-3D-TrueFISP (636 {+-} 230 s) (p < 0.05). In conclusion, an MR imaging protocol comprising CE-3D-tFLASH and 2D-TrueFISP allows assessment of the pulmonary veins, left atrium and oesophagus in less than 7 min and can be recommended for pre-procedural imaging before electric isolation of pulmonary veins. (orig.)

  4. Breath-by-breath analysis of expiratory gas concentration in chickens.

    Science.gov (United States)

    Itabisashi, T

    1981-01-01

    Expiratory oxygen and carbon-dioxide concentration were analysed breath by breath in order to examine their wave forms in adult awake hens restrained in various postural positions, including supine, prone and sitting positions. Expired gas was collected at the nostril in almost all the hens. In the sitting position free from vocalization, feeding, drinking, panting, and restlessness, hens showed various forms of stable pattern of oxygen-gas curves. These forms were classified into three types, or the ascending, flat and descending types, with respect to the plateau inclination. The waves of carbon-dioxide were not always a mirror image of those of oxygen. The rate of occurrence of each type varied with the hen's postural position. The wave form was altered with the experimental body-rotation of the hen. When placed between the deflections of stable pattern, the episodes of wave deformation resembling that seen at the time of uneven pulmonary ventilation in mammals could frequently be observed in any hen's posture examined. Cardiogenic oscillation appeared on the plateau of expired-gas curves.

  5. Non-breathing-related sleep disorders following stroke.

    Science.gov (United States)

    Marquez-Romero, J M; Morales-Ramírez, M; Arauz, A

    2014-01-01

    It has been shown that sleep-related breathing disorders, especially sleep apnea, are very common in patients who have had a stroke, and that they also reduce the potential for neurological recovery. Nevertheless, other sleep disorders caused by stroke (excessive daytime sleepiness, insomnia, sleep related movement disorders) can also cause or increase stroke-related disability, and this fact is less commonly known. Studies with polysomnography have shown many abnormalities in sleep architecture during the acute phase of stroke; these abnormalities have a negative impact on the patient's quality of life although they tend to improve with time. This also happens with other sleep disorders occurring as the result of a stroke (insomnia, narcolepsy, restless legs syndrome, periodic limb movement disorder and REM sleep behavior disorder), which are nevertheless potentially treatable. In this article, we briefly review the physiopathology and epidemiology of the disorders listed above in order to raise awareness about the importance of these disorders and the effects they elicit in stroke patients. Sleep disorders that are not breathing-related have scarcely been studied in stroke patients despite the fact that almost all such disorders may present as a result of a cerebrovascular event. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  6. Breath acetone concentration; biological variability and the influence of diet

    International Nuclear Information System (INIS)

    Španěl, Patrik; Dryahina, Kseniya; Rejšková, Alžběta; Chippendale, Thomas W E; Smith, David

    2011-01-01

    Previous measurements of acetone concentrations in the exhaled breath of healthy individuals and the small amount of comparable data for individuals suffering from diabetes are briefly reviewed as a prelude to the presentation of new data on the sporadic and wide variations of breath acetone that occur in ostensibly healthy individuals. Data are also presented which show that following a ketogenic diet taken by eight healthy individuals their breath acetone concentrations increased up to five times over the subsequent 6 h. Similarly, the breath acetone increased six and nine times when a low carbohydrate diet was taken by two volunteers and remained high for the several days for which the diet was continued. These new data, together with the previous data, clearly indicate that diet and natural intra-individual biological and diurnal variability result in wide variations in breath acetone concentration. This places an uncertainty in the use of breath acetone alone to monitor blood glucose and glycaemic control, except and unless the individual acts as their own control and is cognizant of the need for dietary control. (note)

  7. Reducing Health Disparities and Improving Health Equity in Saint Lucia

    Directory of Open Access Journals (Sweden)

    Kisha Holden

    2015-12-01

    Full Text Available St. Lucia is an island nation in the Eastern Caribbean, with a population of 179,000 people, where chronic health conditions, such as hypertension and diabetes, are significant. The purpose of this pilot study is to create a model for community health education, tracking, and monitoring of these health conditions, research training, and policy interventions in St. Lucia, which may apply to other Caribbean populations, including those in the U.S. This paper reports on phase one of the study, which utilized a mixed method analytic approach. Adult clients at risk for, or diagnosed with, diabetes (n = 157, and health care providers/clinic administrators (n = 42, were recruited from five healthcare facilities in St. Lucia to assess their views on health status, health services, and improving health equity. Preliminary content analyses indicated that patients and providers acknowledge the relatively high prevalence of diabetes and other chronic illnesses, recognize the impact that socioeconomic status has on health outcomes, and desire improved access to healthcare and improvements to healthcare infrastructures. These findings could inform strategies, such as community education and workforce development, which may help improve health outcomes among St. Lucians with chronic health conditions, and inform similar efforts among other selected populations.

  8. Reducing Health Disparities and Improving Health Equity in Saint Lucia.

    Science.gov (United States)

    Holden, Kisha; Charles, Lisa; King, Stephen; McGregor, Brian; Satcher, David; Belton, Allyson

    2015-12-22

    St. Lucia is an island nation in the Eastern Caribbean, with a population of 179,000 people, where chronic health conditions, such as hypertension and diabetes, are significant. The purpose of this pilot study is to create a model for community health education, tracking, and monitoring of these health conditions, research training, and policy interventions in St. Lucia, which may apply to other Caribbean populations, including those in the U.S. This paper reports on phase one of the study, which utilized a mixed method analytic approach. Adult clients at risk for, or diagnosed with, diabetes (n = 157), and health care providers/clinic administrators (n = 42), were recruited from five healthcare facilities in St. Lucia to assess their views on health status, health services, and improving health equity. Preliminary content analyses indicated that patients and providers acknowledge the relatively high prevalence of diabetes and other chronic illnesses, recognize the impact that socioeconomic status has on health outcomes, and desire improved access to healthcare and improvements to healthcare infrastructures. These findings could inform strategies, such as community education and workforce development, which may help improve health outcomes among St. Lucians with chronic health conditions, and inform similar efforts among other selected populations.

  9. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.

    by the fall of a prey item on the water surface, and in tapping motions of goldfish, a behaviour that was interpreted to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air...

  10. Oral and non oral diseases and conditions associated with bad breath.

    Science.gov (United States)

    Migliario, M; Rimondini, L

    2011-03-01

    The causes of bad breath are numerous and related to conditions dependent or not on oral and general health. The aim of our observational study is the assessment of the simultaneous relationships between halitosis, oral and/or nonoral diseases, and lifestyles using the principal components analysis of categorical data (CATPCA) to identify the main components involved in the detection of the symptom. A sample of 192 patients, who requested general dental examination at the Dental Clinic, participated at the study. Alimentary and voluptuary habits, general health information, drugs assumption, the status of teeth and intraoral medical devices including fillers, lesions of the oral mucosa, tongue coating score (TCS), plaque index (PI), probing bleeding index (PBI) and organoleptic tests were all evaluated. Data were analysed using CATPCA model. A strong relationship between halitosis and plaque, probing bleeding and tongue coating indexes was observed, whereas incongruous fillers, prostheses, systemic pathologies or diet were not clearly associated with halitosis probably because their effects on breath were clinically sheltered by the periodontal condition. The data of our observational study confirm that halitosis is more indicative of tongue coating and periodontal disease, rather than other oral and non oral associated conditions, like systemic pathologies or specific habits of life.

  11. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  12. IMPLICATIONS OF MOUTH BREATHING AND ATYPICAL SWALLOWING IN BODY POSTURE

    Directory of Open Access Journals (Sweden)

    Veronique Sousa

    2017-07-01

    Conclusion: Statistically significant associations were established between the breathing pattern and the horizontal alignment of acromions, as well as the horizontal and vertical alignment of the head; between the pattern of breathing and swallowing with occlusal relationship anteroposterior and occlusal relationship vertical and also between breathing pattern and swallowing with digital sucking habits and pacifier use.

  13. Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk

    OpenAIRE

    Shimouchi, Akito; Nose, Kazutoshi; Yamaguchi, Makoto; Ishiguro, Hiroshi; Kondo, Takaharu

    2009-01-01

    Objective: To compare how and to what extent ingestion of hydrogen water and milk increase breath hydrogen in adults.Methods: Five subjects without specific diseases, ingested distilled or hydrogen water and milk as a reference material that could increase breath hydrogen. Their end-alveolar breath hydrogen was measured.Results: Ingestion of hydrogen water rapidly increased breath hydrogen to the maximal level of approximately 40 ppm 10–15 min after ingestion and thereafter rapidly decrease...

  14. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  15. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.

  16. Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns.

    Science.gov (United States)

    Pleil, Joachim D; Stiegel, Matthew A; Fent, Kenneth W

    2014-09-01

    Firefighters wear fireproof clothing and self-contained breathing apparatus (SCBA) during rescue and fire suppression activities to protect against acute effects from heat and toxic chemicals. Fire services are also concerned about long-term health outcomes from chemical exposures over a working lifetime, in particular about low-level exposures that might serve as initiating events for adverse outcome pathways (AOP) leading to cancer. As part of a larger US National Institute for Occupational Safety and Health (NIOSH) study of dermal exposure protection from safety gear used by the City of Chicago firefighters, we collected pre- and post-fire fighting breath samples and analyzed for single-ring and polycyclic aromatic hydrocarbons as bioindicators of occupational exposure to gas-phase toxicants. Under the assumption that SCBA protects completely against inhalation exposures, any changes in the exhaled profile of combustion products were attributed to dermal exposures from gas and particle penetration through the protective clothing. Two separate rounds of firefighting activity were performed each with 15 firefighters per round. Exhaled breath samples were collected onto adsorbent tubes and analyzed with gas-chromatography-mass spectrometry (GC-MS) with a targeted approach using selective ion monitoring. We found that single ring aromatics and some PAHs were statistically elevated in post-firefighting samples of some individuals, suggesting that fire protective gear may allow for dermal exposures to airborne contaminants. However, in comparison to a previous occupational study of Air Force maintenance personnel where similar compounds were measured, these exposures are much lower suggesting that firefighters' gear is very effective. This study suggests that exhaled breath sampling and analysis for specific targeted compounds is a suitable method for assessing systemic dermal exposure in a simple and non-invasive manner.

  17. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    Science.gov (United States)

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. © 2015 The Fisheries Society of the British Isles.

  18. Extracting breathing rate information from a wearable reflectance pulse oximeter sensor.

    Science.gov (United States)

    Johnston, W S; Mendelson, Y

    2004-01-01

    The integration of multiple vital physiological measurements could help combat medics and field commanders to better predict a soldier's health condition and enhance their ability to perform remote triage procedures. In this paper we demonstrate the feasibility of extracting accurate breathing rate information from a photoplethysmographic signal that was recorded by a reflectance pulse oximeter sensor mounted on the forehead and subsequently processed by a simple time domain filtering and frequency domain Fourier analysis.

  19. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    Science.gov (United States)

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  20. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    Science.gov (United States)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  1. Relationship between musical characteristics and temporal breathing pattern in piano performance

    Directory of Open Access Journals (Sweden)

    Yutaka Sakaguchi

    2016-07-01

    Full Text Available Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon’s exercise, J. S. Bach’s Invention, Mozart’s Sonatas, and Debussy’s Clair de lune, was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. 1 Mean breath interval was shortened for excerpts in faster tempi. 2 Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. 3 Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise, but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. 4 Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. 5 Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  2. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    Science.gov (United States)

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  3. Sleep-disordered breathing and mortality: a prospective cohort study.

    OpenAIRE

    Naresh M Punjabi; Brian S Caffo; James L Goodwin; Daniel J Gottlieb; Anne B Newman; George T O'Connor; David M Rapoport; Susan Redline; Helaine E Resnick; John A Robbins; Eyal Shahar; Mark L Unruh; Jonathan M Samet

    2009-01-01

    Editors' Summary Background About 1 in 10 women and 1 in 4 men have a chronic condition called sleep-disordered breathing although most are unaware of their problem. Sleep-disordered breathing, which is commonest in middle-aged and elderly people, is characterized by numerous, brief (10 second or so) interruptions of breathing during sleep. These interruptions, which usually occur when relaxation of the upper airway muscles decreases airflow, lower the level of oxygen in the blood and, as a r...

  4. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation

    International Nuclear Information System (INIS)

    Hanley, J.; Debois, M.M.; Raben, A.; Mageras, G.S.; Lutz, W.R.; Mychalczak, B.; Schwartz, L.H.; Gloeggler, P.J.; Leibel, S.A.; Fuks, Z.; Kutcher, G.J.

    1996-01-01

    Purpose/Objective: Lung tumors are subject to movement due to respiratory motion. Conventionally, a margin is applied to the clinical target volume (CTV) to account for this and other treatment uncertainties. The purpose of this study is to evaluate the dosimetric benefits of a deep inspiration breath-hold (DIBH) technique which has two distinct features - deep inspiration which reduces lung density and breath-hold which immobilizes lung tumors. Both properties can potentially reduce the mass of normal lung tissue in the high dose region, thus improving the possibility of dose escalation. Methods and Materials: To study the efficacy of the DIBH technique, CT scans are acquired for each patient under 4 respiration conditions: free-breathing; DIBH; shallow inspiration breath-hold; shallow expiration breath-hold. The free-breathing and DIBH scans are used to generate treatment plans for comparison of standard and DIBH techniques, while the shallow inspiration and expiration scans provide information on the maximum extent of tumor motion under free-breathing conditions. To acquire the breath-hold scans, the patients are brought to reproducible respiration levels using spirometry and slow vital capacity maneuvers. For the treatment plan comparison free-breathing and DIBH planning target volumes (PTVs) are constructed consisting of the CTV plus a margin for setup error and lung tumor motion. For both plans the margin for setup error is the same while the margin for lung tumor motion differs. The margin for organ motion in free-breathing is determined by the maximum tumor excursions in the shallow inspiration and expiration CT scans. For the DIBH, tumor motion is reduced to the extent to which DIBH can be maintained and the margin for any residual tumor motion is determined from repeat fluoroscopic movies, acquired with the patient monitored using spirometry. Three-dimensional treatment plans, generated using apertures based on the free-breathing and DIBH PTVs, are

  5. Effects of Mat Pilates training and habitual physical activity on thoracoabdominal expansion during quiet and vital capacity breathing in healthy women.

    Science.gov (United States)

    Campos, Jeniffer L; Vancini, Rodrigo L; Zanoni, Graziely R; Barbosa DE Lira, Claudio A; Santos Andrade, Marilia; Sarro, Karine J

    2017-10-27

    Pilates is a body/mind method that requires different types of exercise (balance, endurance, strength, and flexibility) and attention to muscle control, posture, and breathing. The aim of the present study was to investigate the effects of 12 weeks of Mat Pilates training and habitual physical activity on thoracoabdominal motion of healthy and physically active women. Thirty-five women without experience in Pilates exercise, aged between 18 and 35 years, participated in the study (habitual physical activity group, n=14; and Mat Pilates group, n=21). Three- dimensional kinematic analysis was used to evaluate total and separate thoracoabdominal compartments' expansion (superior and inferior thorax and abdomen), contribution of each compartment to total thoracoabdominal expansion, and coordination between thoracoabdominal compartments. After 12 weeks of Mat Pilates training, thoracoabdominal expansion during quiet breathing was improved by increasing the expansion of abdomen by about 33% (P=0.01). Moreover, expansion of superior (P=0.04) and inferior thorax (P=0.02) and abdomen (P=0.01) was also improved in Pilates (35%, 33% and 37%, respectively) compared to the habitual physical activity group, after the experimental protocol. Finally, the habitual physical activity group presented a decrease of 13% in the expansion of abdomen (P = 0.002). The results suggest the capability of Mat Pilates in improving the action of respiratory and abdominal muscles during breathing and, thus, its benefits to breathing mechanics.

  6. Childhood obstructive sleep-disordered breathing: a clinical update and discussion of technological innovations and challenges.

    Science.gov (United States)

    Halbower, Ann C; Ishman, Stacey L; McGinley, Brian M

    2007-12-01

    Childhood sleep-disordered breathing (SDB) has been known to be associated with health and cognitive impacts for more than a century, and yet our understanding of this disorder is in its infancy. Neuropsychological consequences in children with snoring or subtle breathing disturbances not meeting the traditional definition of sleep apnea suggest that "benign, or primary snoring" may be clinically significant, and that the true prevalence of SDB might be underestimated. There is no standard definition of SDB in children. The polysomnographic technology used in many sleep laboratories may be inadequate to diagnose serious but subtle forms of clinically important airflow limitation. In the last several years, advances in digital technology as well as new observational studies of respiratory and arousal patterns in large populations of healthy children have led to alternative views of what constitutes sleep-related breathing and arousal abnormalities that may refine our diagnostic criteria. This article reviews our knowledge of childhood SDB, highlights recent advances in technology, and discusses diagnostic and treatment strategies that will advance the management of children with pediatric SDB.

  7. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    Science.gov (United States)

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  8. Measuring breath acetone for monitoring fat loss: Review.

    Science.gov (United States)

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  9. Continuous Quality Improvement and Comprehensive Primary Health Care: A Systems Framework to Improve Service Quality and Health Outcomes.

    Science.gov (United States)

    McCalman, Janya; Bailie, Ross; Bainbridge, Roxanne; McPhail-Bell, Karen; Percival, Nikki; Askew, Deborah; Fagan, Ruth; Tsey, Komla

    2018-01-01

    Continuous quality improvement (CQI) processes for improving clinical care and health outcomes have been implemented by primary health-care services, with resultant health-care impacts. But only 10-20% of gain in health outcomes is contributed by health-care services; a much larger share is determined by social and cultural factors. This perspective paper argues that health care and health outcomes can be enhanced through applying CQI as a systems approach to comprehensive primary health care. Referring to the Aboriginal and Torres Strait Islander Australian context as an example, the authors provide a systems framework that includes strategies and conditions to facilitate evidence-based and local decision making by primary health-care services. The framework describes the integration of CQI vertically to improve linkages with governments and community members and horizontally with other sectors to influence the social and cultural determinants of health. Further, government and primary health-care service investment is required to support and extend integration and evaluation of CQI efforts vertically and horizontally.

  10. 14C-urea breath test in the detection of Helicobacter pylori infection

    International Nuclear Information System (INIS)

    Artiko, V.M.; Obradovic, V.B.; Petrovic, N.S.; Davidovic, B.M.; Grujic-Adanja, G.S.; Nastic-Miric, D.R.; Milosavljevic, T.N.

    2001-01-01

    Helicobacter pylori infection is supposed to be one of the major causes of digestive and other diseases. Among a lot of invasive and non-invasive methods for its detection, none is ideal. The aim is an assessment of the Helicobacter pylori infection in the stomach using breath test and comparison to other diagnostic methods, as well as following up the effects of therapy. In 17 patients with digestive discomfort, breath test, rapid urease test and histology were performed, while in 47 patients with proven HP infection the effect of therapy was followed up using breath test and clinical findings. Breath test was performed after per oral administration of the capsule of 14 C urea (37 kBq). Findings of the breath and urease tests were in accordance in 14/17 patients (83%) while breath test and histology in 16/17 patients (94%). During follow-up of the therapeutic effects, breath test and clinical findings were in accordance in 43/47 patients (98%). Breath test can be useful in diagnosis but is a method of choice in following up the patients after therapy for H. pylori infection, because it is non-invasive, fast and precise. (author)

  11. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  12. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2011-01-01

    The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all e...

  13. Sleep disordered breathing in spinal cord injury: A systematic review.

    Science.gov (United States)

    Chiodo, Anthony E; Sitrin, Robert G; Bauman, Kristy A

    2016-07-01

    Spinal cord injury commonly results in neuromuscular weakness that impacts respiratory function. This would be expected to be associated with an increased likelihood of sleep-disordered breathing. (1) Understand the incidence and prevalence of sleep disordered breathing in spinal cord injury. (2) Understand the relationship between injury and patient characteristics and the incidence of sleep disordered breathing in spinal cord injury. (3) Distinguish between obstructive sleep apnea and central sleep apnea incidence in spinal cord injury. (4) Clarify the relationship between sleep disordered breathing and stroke, myocardial infarction, metabolic dysfunction, injuries, autonomic dysreflexia and spasticity incidence in persons with spinal cord injury. (5) Understand treatment tolerance and outcome in persons with spinal cord injury and sleep disordered breathing. Extensive database search including PubMed, Cochrane Library, CINAHL and Web of Science. Given the current literature limitations, sleep disordered breathing as currently defined is high in patients with spinal cord injury, approaching 60% in motor complete persons with tetraplegia. Central apnea is more common in patients with tetraplegia than in patients with paraplegia. Early formal sleep study in patients with acute complete tetraplegia is recommended. In patients with incomplete tetraplegia and with paraplegia, the incidence of sleep-disordered breathing is significantly higher than the general population. With the lack of correlation between symptoms and SDB, formal study would be reasonable. There is insufficient evidence in the literature on the impact of treatment on morbidity, mortality and quality of life outcomes.

  14. Methodological aspects of breath hydrogen (H2) analysis. Evaluation of a H2 monitor and interpretation of the breath H2 test

    DEFF Research Database (Denmark)

    Rumessen, J J; Kokholm, G; Gudmand-Høyer, E

    1987-01-01

    The reliability of end-expiratory hydrogen (H2) breath tests were assessed and the significance of some important pitfalls were studied, using a compact, rapid H2-monitor with electrochemical cells. The H2 response was shown to be linear and stable. The reproducibility of the breath collection...... were studied in 10 healthy adults during a 4-month period and they showed very marked inter- and intra-individual variability (16% above 40 p.p.m.). Initial peaks (early, short-lived H2 rises unrelated to carbohydrate malabsorption) were identified in 25% of the breath tests (in 4% above 20 p.......p.m). It is concluded that the technique used for interval sampling of end-expiratory breath samples for H2 concentration gives reliable results. The biological significance of H2 concentration increments can only be evaluated if the limitations of the technical procedures and the individual ability to produce H2...

  15. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  16. Cardio-metabolic Diseases Prevention by Self-monitoring the Breath

    Directory of Open Access Journals (Sweden)

    Danila GERMANESE

    2017-08-01

    Full Text Available As new as very promising technique, breath analysis allows for monitoring the biochemical processes that occur in human body in a non-invasive way. Nevertheless, the high costs for standard analytical instrumentation (i.e., gas chromatograph, mass spectrometer, the need for specialized personnel able to read the results and the lack of protocols to collect breath samples, set limit to the exploitation of breath analysis in clinical practice. Here, we describe the development of a device, named Wize Sniffer, which is portable and entirely based on low cost technology: it uses an array of commercial, semiconductor gas sensors and a widely employed open source controller, an Arduino Mega2560 with Ethernet module. In addition, it is very easy-to-use also for non-specialized personnel and able to analyze in real time the composition of the breath. The Wize Sniffer is composed of three modules: signal measurement module, signal conditioning module and signal processing module. The idea was born in the framework of European SEMEiotic Oriented Technology for Individual's CardiOmetabolic risk self-assessmeNt and Self-monitoring (SEMEOTICONS Project, in order to monitor individual's lifestyle by detecting in the breath those molecules related to the noxious habits for cardio-metabolic risk (alcohol intake, smoking, wrong diet. Nonetheless, the modular configuration of the device allows for changing the sensors according to the molecules to be detected, thus fully exploiting the potential of breath analysis.

  17. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.

    Science.gov (United States)

    Brauner, C J; Matey, V; Wilson, J M; Bernier, N J; Val, A L

    2004-04-01

    The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill design and (2) the relocation of physiological processes from the gills to the kidney during the evolution of air-breathing. Arapaima gigas undergoes a transition from water- to air-breathing during development, resulting in striking changes in gill morphology. In small fish (10 g), the gills are qualitatively similar in appearance to another closely related water-breathing fish (Osteoglossum bicirrhosum); however, as fish grow (100-1000 g), the inter-lamellar spaces become filled with cells, including mitochondria-rich (MR) cells, leaving only column-shaped filaments. At this stage, there is a high density of MR cells and strong immunolocalization of Na(+)/K(+)-ATPase along the outer cell layer of the gill filament. Despite the greatly reduced overall gill surface area, which is typical of obligate air-breathing fish, the gills may remain an important site for ionoregulation and acid-base regulation. The kidney is greatly enlarged in A. gigas relative to that in O. bicirrhosum and may comprise a significant pathway for nitrogenous waste excretion. Quantification of the physiological role of the gill and the kidney in A. gigas during development and in adults will yield important insights into developmental physiology and the evolution of air-breathing.

  18. Comparison of two single-breath-held 3-D acquisitions with multi-breath-held 2-D cine steady-state free precession MRI acquisition in children with single ventricles

    Energy Technology Data Exchange (ETDEWEB)

    Atweh, Lamya A.; Dodd, Nicholas A.; Krishnamurthy, Ramkumar; Chu, Zili D. [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Pednekar, Amol [Philips Healthcare, Houston, TX (United States); Krishnamurthy, Rajesh [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Baylor College of Medicine, Department of Radiology, Houston, TX (United States); Baylor College of Medicine, Department of Pediatrics, Houston, TX (United States)

    2016-05-15

    Breath-held two-dimensional balanced steady-state free precession cine acquisition (2-D breath-held SSFP), accelerated with parallel imaging, is the method of choice for evaluating ventricular function due to its superior blood-to-myocardial contrast, edge definition and high intrinsic signal-to-noise ratio throughout the cardiac cycle. The purpose of this study is to qualitatively and quantitatively compare the two different single-breath-hold 3-D cine SSFP acquisitions using 1) multidirectional sensitivity encoding (SENSE) acceleration factors (3-D multiple SENSE SSFP), and 2) k-t broad-use linear acceleration speed-up technique (3-D k-t SSFP) with the conventional 2-D breath-held SSFP in non-sedated asymptomatic volunteers and children with single ventricle congenital heart disease. Our prospective study was performed on 30 non-sedated subjects (9 healthy volunteers and 21 functional single ventricle patients), ages 12.5 +/- 2.8 years. Two-dimensional breath-held SSFP with SENSE acceleration factor of 2, eight-fold accelerated 3-D k-t SSFP, and 3-D multiple SENSE SSFP with total parallel imaging factor of 4 were performed to evaluate ventricular volumes and mass in the short-axis orientation. Image quality scores (blood myocardial contrast, edge definition and interslice alignment) and volumetric analysis (end systolic volume, end diastolic volume and ejection fraction) were performed on the data sets by experienced users. Paired t-test was performed to compare each of the 3-D k-t SSFP and 3-D multiple SENSE SSFP clinical scores against 2-D breath-held SSFP. Bland-Altman analysis was performed on left ventricle (LV) and single ventricle volumetry. Interobserver and intraobserver variability in volumetric measurements were determined using intraclass coefficients. The clinical scores were highest for the 2-D breath-held SSFP images. Between the two 3-D sequences, 3-D multiple SENSE SSFP performed better than 3-D k-t SSFP. Bland-Altman analysis for volumes

  19. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome.

    Science.gov (United States)

    Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama

    2014-11-01

    To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway

  20. Breath hydrogen analysis in patients with ileoanal pouch anastomosis

    DEFF Research Database (Denmark)

    Bruun, E; Meyer, J N; Rumessen, J J

    1995-01-01

    The possible influence on functional outcomes of hydrogen production in the ileoanal pouch after restorative proctocolectomy was investigated by means of lactulose H2 breath tests. Eight of 15 patients had significant increases in breath hydrogen after 10 g lactulose. One patient declined...... to participate in further investigations, the remaining seven responders had no evidence of small bowel bacterial overgrowth after glucose H2 breath tests. The ability to produce hydrogen by anaerobic fermentation of lactulose in the pouch was unrelated to the age of the patients or of the pouch. Seven of eight...... responders had successive breath tests after ingestion of lactulose 20 g and wheat starch 100 g. Five of seven had significant increases after lactulose but none after wheat starch. The overall function of the pouch continence, spontaneity of defecation, and 24 hour stool frequency was significantly better...

  1. A Pilot Study on the Effects of Slow Paced Breathing on Current Food Craving.

    Science.gov (United States)

    Meule, Adrian; Kübler, Andrea

    2017-03-01

    Heart rate variability biofeedback (HRV-BF) involves slow paced breathing (approximately six breaths per minute), thereby maximizing low-frequent heart rate oscillations and baroreflex gain. Mounting evidence suggests that HRV-BF promotes symptom reductions in a variety of physical and mental disorders. It may also positively affect eating behavior by reducing food cravings. The aim of the current study was to investigate if slow paced breathing can be useful for attenuating momentary food craving. Female students performed paced breathing either at six breaths per minute (n = 32) or at nine breaths per minute (n = 33) while watching their favorite food on the computer screen. Current food craving decreased during a first resting period, increased during paced breathing, and decreased during a second resting period in both conditions. Although current hunger increased in both conditions during paced breathing as well, it remained elevated after the second resting period in the nine breaths condition only. Thus, breathing rate did not influence specific food craving, but slow paced breathing appeared to have a delayed influence on state hunger. Future avenues are suggested for the study of HRV-BF in the context of eating behavior.

  2. Natural Vibration of a Beam with a Breathing Oblique Crack

    Directory of Open Access Journals (Sweden)

    Yijiang Ma

    2017-01-01

    Full Text Available An analytical method is proposed to calculate the natural frequency of a cantilever beam with a breathing oblique crack. A double-linear-springs-model is developed in the modal analysis process to describe the breathing oblique crack, and the breathing behaviour of the oblique crack is objectively simulated. The finite element method (FEM analysis software ABAQUS is used to calculate the geometric correction factors when the cracked plate is subjected to a pure bending moment at different oblique crack angles and relative depths. The Galerkin method is applied to simplify the cracked beam to a single degree of freedom system, allowing the natural frequency of the beam with the breathing oblique crack to be calculated. Compared with the natural frequencies of the breathing oblique cracked beam obtained using the ABAQUS FEM method, the proposed analytical method exhibits a high computational accuracy, with a maximum error of only 4.65%.

  3. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  4. Theme and variations: amphibious air-breathing intertidal fishes.

    Science.gov (United States)

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  5. Leadership for health improvement--implementation and evaluation.

    Science.gov (United States)

    Carr, Susan M; Carr, Sue; Lhussier, Monique; Reynolds, Joanna; Hunter, David J; Hannaway, Catherine

    2009-01-01

    The purpose of this paper is to present a co-authored reflection on the health improvement leadership development programme and the key evaluation messages derived from piloting in an English National Health Service region. It highlights the specific attributes of this approach to health improvement leadership development and clarifies health improvement development issues. Appreciative inquiry and soft systems methodology are combined in an evaluation approach designed to capture individual as well as organisation learning and how it impacts on leadership in specific contexts. The evaluation exposes the health improvement leadership needs of a multi-organisation cohort, offers some explanations for successful achievement of learning needs while also exposing of the challenges and paradoxes faced in this endeavour. There are limited reported templates of how to develop leadership for health improvement. This paper details a whole systems approach, acknowledging the impact of context on leadership and an approach to evaluating such complex initiatives.

  6. Health benefits of particle filtration.

    Science.gov (United States)

    Fisk, W J

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. Published 2013. This article is a US Government work and is in the public domain in the USA.

  7. Breathing Air Purification for Hyperbaric Purposes, Part II

    Directory of Open Access Journals (Sweden)

    Woźniak Arkadiusz

    2015-03-01

    Full Text Available Determining the efficiency of breathing air purification for hyperbaric purposes with the use of filtration systems is of a crucial importance. However, when the Polish Navy took samples of breathing air from their own filtration plant for quality purposes, these were found to not meet the required standard. The identification of this problem imposed the need to undertake actions aimed at the elimination of the identified disruptions in the process of breathing air production, with the objective of assuring its proper quality. This study presents the results of the initial tests on the air supply sources utilised by the Polish Navy, which were carried out for the purpose of setting a proper direction of future works and implementing corrective measures in order to optimise the breathing air production process. The obtained test results will be used in a subsequent publication devoted to the assessment of the level of efficiency of air purification with the use of a multifaceted approach consisting in the utilisation of various types of air supply sources and different configurations of purification systems.

  8. BREATHING EXERCISE RELAXATION INCREASE PHSYCOLOGICAL RESPONSE PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-07-01

    Full Text Available Introduction: Being hospitalize will be made the children become stress. Hospitalization response of the child particularly is afraid sense regard to painfull procedure and increase to attack the invasive procedure. The aimed of this study was to describe the influence of breathing exercise relaxation technique regarded to phsycological receiving responses in the preeliminary school chidren while they were receiving invasive procedure. Method: A quasy experimental purposive sampling design was used in this study. There were 20 respondents who met to the inclusion criteria. The independent variable was the breathing exercise relaxation technique and the dependent variable was phsycological receiving responses. Data for phsylogical response were collected by using observation form then analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level α≤0.05. Result :  The result showed that breathing exercise relaxation technique had significance influence to phsycological response (p=0.000. Discussion: It,s can be concluded that breathing exercise relaxation technique has an effect to increase pshycological response in preeliminary school children who received invasive procedure.

  9. SU-F-T-415: Differences in Lung Sparing in Deep Inspiration Breath-Hold and Free Breathing Breast Plans Calculated in Pinnacle and Monaco

    Energy Technology Data Exchange (ETDEWEB)

    Saenz, D; Stathakis, S [University of Texas Health Science Center San Antonio, San Antonio, TX (United States)

    2016-06-15

    Purpose: Deep inspiration breath-hold (DIBH) is used for left-sided breast radiotherapy to spare the heart and lung. The magnitude of sparing has been shown to be significant. Monte Carlo, furthermore, has the potential to calculate most accurately the dose in the heterogeneous lung medium at the interface with the lung wall. The lung dose was investigated in Monaco to determine the level of sparing relative to that calculated in Pinnacle{sup 3}. Methods: Five patients undergoing DIBH radiotherapy on an Elekta Versa HD linear accelerator in conjunction with the Catalyst C-RAD surface imaging system were planned using Phillips Pinnacle{sup 3}. Free breathing plans were also created to clinically assure a benefit. Both plans were re-calculated in Monaco to determine if there were any significant differences. The mean heart dose, mean left lung, and mean total lung dose were compared in addition to the V20 for left and both lungs. Dose was calculated as dose to medium as well as dose to water with a statistical precision of 0.7%. Results: Mean lung dose was significantly different (p < 0.003) between the two calculations for both DIBH (11.6% higher in Monaco) and free breathing (14.2% higher in Monaco). V20 was also higher in Monaco (p < 0.05) for DIBH (5.7% higher) and free breathing (4.9% higher). The mean heart dose was not significantly different between the dose calculations for either DIBH or free breathing. Results were no more than 0.1% different when calculated as dose to water. Conclusion: The use of Monte Carlo can provide insight on the lung dose for both free breathing and DIBH techniques for whole breast irradiation. While the sparing (dose reductions with DIBH as compared to free breathing) is equivalent for either planning system, the lung doses themselves are higher when calculated with Monaco.

  10. Air-Breathing Launch Vehicle Technology Being Developed

    Science.gov (United States)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  11. With age a lower individual breathing reserve is associated with a higher maximal heart rate.

    Science.gov (United States)

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2018-01-01

    Maximal heart rate (HRmax) is linearly declining with increasing age. Regular exercise training is supposed to partly prevent this decline, whereas sex and habitual physical activity do not. High exercise capacity is associated with a high cardiac output (HR x stroke volume) and high ventilatory requirements. Due to the close cardiorespiratory coupling, we hypothesized that the individual ventilatory response to maximal exercise might be associated with the age-related HRmax. Retrospective analyses have been conducted on the results of 129 consecutively performed routine cardiopulmonary exercise tests. The study sample comprised healthy subjects of both sexes of a broad range of age (20-86 years). Maximal values of power output, minute ventilation, oxygen uptake and heart rate were assessed by the use of incremental cycle spiroergometry. Linear multivariate regression analysis revealed that in addition to age the individual breathing reserve at maximal exercise was independently predictive for HRmax. A lower breathing reserve due to a high ventilatory demand and/or a low ventilatory capacity, which is more pronounced at a higher age, was associated with higher HRmax. Age explained the observed variance in HRmax by 72% and was improved to 83% when the variable "breathing reserve" was entered. The presented findings indicate an independent association between the breathing reserve at maximal exercise and maximal heart rate, i.e. a low individual breathing reserve is associated with a higher age-related HRmax. A deeper understanding of this association has to be investigated in a more physiological scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Improving global health: counting reasons why.

    Science.gov (United States)

    Selgelid, Michael J

    2008-08-01

    This paper examines cumulative ethical and self-interested reasons why wealthy developed nations should be motivated to do more to improve health care in developing countries. Egalitarian and human rights reasons why wealthy nations should do more to improve global health are that doing so would (1) promote equality of opportunity (2) improve the situation of the worst-off, (3) promote respect of the human right to have one's most basic needs met, and (4) reduce undeserved inequalities in well-being. Utilitarian reasons for improving global health are that this would (5) promote the greater good of humankind, and (6) achieve enormous benefits while requiring only small sacrifices. Libertarian reasons are that this would (7) amend historical injustices and (8) meet the obligation to amend injustices that developed world countries have contributed to. Self-interested reasons why wealthy nations should do more to improve global health are that doing so would (9) reduce the threat of infectious diseases to developed countries, (10) promote developed countries' economic interests, and (11) promote global security. All of these reasons count, and together they add up to make an overwhelmingly powerful case for change. Those opposed to wealthy government funding of developing world health improvement would most likely appeal, implicitly or explicitly to the idea that coercive taxation for redistributive purposes would violate the right of an individual to keep his hard-earned income. The idea that this reason not to improve global health should outweigh the combination of rights and values embodied in the eleven reasons enumerated above, however is implausibly extreme, morally repugnant and perhaps imprudent.

  13. Is sleep-disordered breathing an independent risk factor for hypertension in the general population (13,057 subjects)?

    NARCIS (Netherlands)

    Ohayon, MM; Guilleminault, C; Priest, RG; Zulley, J; Smirne, S

    Objective: Sleep-disordered breathing has been hypothesized to have a close relationship with hypertension but previous studies have reported mixed results. This is an important health issue that requires further clarification because of the potential impact on the prevention and control of

  14. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    Science.gov (United States)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  15. 14C-urea breath test for the detection of Helicobacter pylori

    NARCIS (Netherlands)

    Veldhuyzen van Zanten, S. J.; Tytgat, K. M.; Hollingsworth, J.; Jalali, S.; Rshid, F. A.; Bowen, B. M.; Goldie, J.; Goodacre, R. L.; Riddell, R. H.; Hunt, R. H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14C-urea breath test which uses 5 microCi 14C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared

  16. Continuous Quality Improvement and Comprehensive Primary Health Care: A Systems Framework to Improve Service Quality and Health Outcomes

    Directory of Open Access Journals (Sweden)

    Janya McCalman

    2018-03-01

    Full Text Available Continuous quality improvement (CQI processes for improving clinical care and health outcomes have been implemented by primary health-care services, with resultant health-care impacts. But only 10–20% of gain in health outcomes is contributed by health-care services; a much larger share is determined by social and cultural factors. This perspective paper argues that health care and health outcomes can be enhanced through applying CQI as a systems approach to comprehensive primary health care. Referring to the Aboriginal and Torres Strait Islander Australian context as an example, the authors provide a systems framework that includes strategies and conditions to facilitate evidence-based and local decision making by primary health-care services. The framework describes the integration of CQI vertically to improve linkages with governments and community members and horizontally with other sectors to influence the social and cultural determinants of health. Further, government and primary health-care service investment is required to support and extend integration and evaluation of CQI efforts vertically and horizontally.

  17. Continuous Quality Improvement and Comprehensive Primary Health Care: A Systems Framework to Improve Service Quality and Health Outcomes

    Science.gov (United States)

    McCalman, Janya; Bailie, Ross; Bainbridge, Roxanne; McPhail-Bell, Karen; Percival, Nikki; Askew, Deborah; Fagan, Ruth; Tsey, Komla

    2018-01-01

    Continuous quality improvement (CQI) processes for improving clinical care and health outcomes have been implemented by primary health-care services, with resultant health-care impacts. But only 10–20% of gain in health outcomes is contributed by health-care services; a much larger share is determined by social and cultural factors. This perspective paper argues that health care and health outcomes can be enhanced through applying CQI as a systems approach to comprehensive primary health care. Referring to the Aboriginal and Torres Strait Islander Australian context as an example, the authors provide a systems framework that includes strategies and conditions to facilitate evidence-based and local decision making by primary health-care services. The framework describes the integration of CQI vertically to improve linkages with governments and community members and horizontally with other sectors to influence the social and cultural determinants of health. Further, government and primary health-care service investment is required to support and extend integration and evaluation of CQI efforts vertically and horizontally. PMID:29623271

  18. Effect of influenza vaccination on oxidative stress products in breath.

    Science.gov (United States)

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Danaher, Patrick J; Devadiga, Anantrai; Legendre, David A; Nail, Kim L; Schmitt, Peter; Wai, James

    2010-06-01

    Viral infections cause increased oxidative stress, so a breath test for oxidative stress biomarkers (alkanes and alkane derivatives) might provide a new tool for early diagnosis. We studied 33 normal healthy human subjects receiving scheduled treatment with live attenuated influenza vaccine (LAIV). Each subject was his or her own control, since they were studied on day 0 prior to vaccination, and then on days 2, 7 and 14 following vaccination. Breath volatile organic compounds (VOCs) were collected with a breath collection apparatus, then analyzed by automated thermal desorption with gas chromatography and mass spectroscopy. A Monte Carlo simulation technique identified non-random VOC biomarkers of infection based on their C-statistic values (area under curve of receiver operating characteristic). Treatment with LAIV was followed by non-random changes in the abundance of breath VOCs. 2, 8-Dimethyl-undecane and other alkane derivatives were observed on all days. Conservative multivariate models identified vaccinated subjects on day 2 (C-statistic = 0.82, sensitivity = 63.6% and specificity = 88.5%); day 7 (C-statistic = 0.94, sensitivity = 88.5% and specificity = 92.3%); and day 14 (C-statistic = 0.95, sensitivity = 92.3% and specificity = 92.3%). The altered breath VOCs were not detected in live attenuated influenza vaccine, excluding artifactual contamination. LAIV vaccination in healthy humans elicited a prompt and sustained increase in breath biomarkers of oxidative stress. A breath test for these VOCs could potentially identify humans who are acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease.

  19. Breath tests and irritable bowel syndrome.

    Science.gov (United States)

    Rana, Satya Vati; Malik, Aastha

    2014-06-28

    Breath tests are non-invasive tests and can detect H₂ and CH₄ gases which are produced by bacterial fermentation of unabsorbed intestinal carbohydrate and are excreted in the breath. These tests are used in the diagnosis of carbohydrate malabsorption, small intestinal bacterial overgrowth, and for measuring the orocecal transit time. Malabsorption of carbohydrates is a key trigger of irritable bowel syndrome (IBS)-type symptoms such as diarrhea and/or constipation, bloating, excess flatulence, headaches and lack of energy. Abdominal bloating is a common nonspecific symptom which can negatively impact quality of life. It may reflect dietary imbalance, such as excess fiber intake, or may be a manifestation of IBS. However, bloating may also represent small intestinal bacterial overgrowth. Patients with persistent symptoms of abdominal bloating and distension despite dietary interventions should be referred for H₂ breath testing to determine the presence or absence of bacterial overgrowth. If bacterial overgrowth is identified, patients are typically treated with antibiotics. Evaluation of IBS generally includes testing of other disorders that cause similar symptoms. Carbohydrate malabsorption (lactose, fructose, sorbitol) can cause abdominal fullness, bloating, nausea, abdominal pain, flatulence, and diarrhea, which are similar to the symptoms of IBS. However, it is unclear if these digestive disorders contribute to or cause the symptoms of IBS. Research studies show that a proper diagnosis and effective dietary intervention significantly reduces the severity and frequency of gastrointestinal symptoms in IBS. Thus, diagnosis of malabsorption of these carbohydrates in IBS using a breath test is very important to guide the clinician in the proper treatment of IBS patients.

  20. Advances in public health accreditation readiness and quality improvement: evaluation findings from the National Public Health Improvement Initiative.

    Science.gov (United States)

    McLees, Anita W; Thomas, Craig W; Nawaz, Saira; Young, Andrea C; Rider, Nikki; Davis, Mary

    2014-01-01

    Continuous quality improvement is a central tenet of the Public Health Accreditation Board's (PHAB) national voluntary public health accreditation program. Similarly, the Centers for Disease Control and Prevention launched the National Public Health Improvement Initiative (NPHII) in 2010 with the goal of advancing accreditation readiness, performance management, and quality improvement (QI). Evaluate the extent to which NPHII awardees have achieved program goals. NPHII awardees responded to an annual assessment and program monitoring data requests. Analysis included simple descriptive statistics. Seventy-four state, tribal, local, and territorial public health agencies receiving NPHII funds. NPHII performance improvement managers or principal investigators. Development of accreditation prerequisites, completion of an organizational self-assessment against the PHAB Standards and Measures, Version 1.0, establishment of a performance management system, and implementation of QI initiatives to increase efficiency and effectiveness. Of the 73 responding NPHII awardees, 42.5% had a current health assessment, 26% had a current health improvement plan, and 48% had a current strategic plan in place at the end of the second program year. Approximately 26% of awardees had completed an organizational PHAB self-assessment, 72% had established at least 1 of the 4 components of a performance management system, and 90% had conducted QI activities focused on increasing efficiencies and/or effectiveness. NPHII appears to be supporting awardees' initial achievement of program outcomes. As NPHII enters its third year, there will be additional opportunities to advance the work of NPHII, compile and disseminate results, and inform a vision of high-quality public health necessary to improve the health of the population.

  1. The effects of metronome breathing on the variability of autonomic activity measurements.

    Science.gov (United States)

    Driscoll, D; Dicicco, G

    2000-01-01

    Many chiropractors hypothesize that spinal manipulation affects the autonomic nervous system (ANS). However, the ANS responses to chiropractic manipulative therapy are not well documented, and more research is needed to support this hypothesis. This study represents a step toward the development of a reliable method by which to document that chiropractic manipulative therapy does affect the ANS by exploring the use of paced breathing as a way to reduce the inherent variability in ANS measurements. To examine the hypothesis that the variability of ANS measurements would be reduced if breathing were paced to a metronome at 12 breaths/min. The study was performed at Parker College Research Institute. Eight normotensive subjects were recruited from the student body and staff. Respiration frequency was measured through a strain gauge. A 3-lead electrocardiogram (ECG) was used to register the electric activity of the heart, and arterial tonometry monitors were used to record the left and right radial artery blood pressures. Signals were recorded on an IBM-compatible computer with a sampling frequency of 100 Hz. Normal breathing was used for the first 3 recordings, and breathing was paced to a metronome for the final 3 recordings at 12 breaths/min. Fourier analysis was performed on the beat-by-beat fluctuations of the ECG-determined R-R interval and systolic arterial pressure (SBP). Low-frequency fluctuations (LF; 0.04-0.15 Hz) reflected sympathetic activity, whereas high-frequency fluctuations (HF; 0.15-0.4 Hz) represented parasympathetic activity. Sympathovagal indices were determined from the ratio of the two bandwidths (LF/HF). The coefficient of variation (CV%) for autonomic parameters was calculated ([average/SD] x 100%) to compare breathing normally and breathing to a metronome with respect to variability. One-way analysis of variance was used to detect differences. A value of P Metronome breathing did not produce any significant changes in blood pressure for the

  2. Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Rijpkema, Mark; Kaanders, Johannes H.A.M.; Joosten, Frank; Kogel, Albert J. van der; Heerschap, Arend

    2002-01-01

    Purpose: For head-and-neck tumors, breathing a hyperoxic hypercapnic gas mixture and administration of nicotinamide has been shown to result in a significantly improved tumor response to accelerated radiotherapy (ARCON, Accelerated Radiotherapy with CarbOgen and Nicotinamide). This may be caused by improved tumor oxygenation, possibly mediated by vascular effects. In this study, both blood oxygenation and vascular effects of breathing a hyperoxic hypercapnic gas mixture (98% O 2 +2% CO 2 ) were assessed by magnetic resonance imaging (MRI) in patients with head-and-neck tumors. Methods and Materials: Tumor vascularity and oxygenation were investigated by dynamic gadolinium contrast-enhanced MRI and blood oxygen level dependent (BOLD) MRI, respectively. Eleven patients with primary head-and-neck tumors were each measured twice; with and without breathing the hyperoxic hypercapnic gas mixture. Results: BOLD MR imaging revealed a significant increase of the MRI time constant of transverse magnetization decay (T 2 *) in the tumor during hypercapnic hyperoxygenation, which correlates to a decrease of the deoxyhemoglobin concentration. No changes in overall tumor vascularity were observed, as measured by the gadolinium contrast uptake rate in the tumor. Conclusion: Breathing a hyperoxic hypercapnic gas mixture improves tumor blood oxygenation in patients with head-and-neck tumors, which may contribute to the success of the ARCON therapy

  3. Symptoms of Sleep Disordered Breathing and Risk of Cancer

    DEFF Research Database (Denmark)

    Christensen, Anne Sofie; Clark, Alice; Salo, Paula

    2013-01-01

    Sleep disordered breathing (SDB) has been associated with oxidative stress, inflammation, and altered hormonal levels, all of which could affect the risk of cancer. The aim of the study is to examine if symptoms of SDB including snoring, breathing cessations, and daytime sleepiness affect...

  4. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath.

    Science.gov (United States)

    Fan, Gang-Ting; Yang, Chien-Lin; Lin, Cheng-Huang; Chen, Chien-Chung; Shih, Chung-Hung

    2014-03-01

    The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed to detect acetone, a biomarker for diabetes mellitus (DM) prediction, in human breath. Samples of exhaled breath were collected from four DM patients (one type-I and three type-II) and eight volunteers (nondiabetic healthy subjects), respectively. The gas samples, without any pretreatment, were simultaneously injected into a GC column through a Hadamard-injector based on Hadamard codes. Under optimized conditions, when cyclic S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the acetone signals were substantially improved by 8.0-, 16.0- and 22.6-fold, respectively; these improvements are in good agreement with theoretically calculated values. We found that the breath acetone concentration levels in the four DM patients and the eight volunteers ranged from 1 to 10 ppmv and 0.1 to 1 ppmv, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Breath pentane as a potential biomarker for survival in hepatic ischemia and reperfusion injury--a pilot study.

    Directory of Open Access Journals (Sweden)

    Changsong Wang

    Full Text Available BACKGROUND: Exhaled pentane, which is produced as a consequence of reactive oxygen species-mediated lipid peroxidation, is a marker of oxidative stress. Propofol is widely used as a hypnotic agent in intensive care units and the operating room. Moreover, this agent has been reported to inhibit lipid peroxidation by directly scavenging reactive oxygen species. In this study, using a porcine liver ischemia-reperfusion injury model, we have evaluated the hypothesis that high concentrations of breath pentane are related to adverse outcome and that propofol could reduce breath pentane and improve liver injury and outcome in swine in this situation. METHODOLOGY/PRINCIPAL FINDINGS: Twenty male swine were assigned to two groups: propofol (n = 10 and chloral hydrate groups (n = 10. Hepatic ischemia was induced by occluding the portal inflow vessels. Ischemia lasted for 30 min, followed by reperfusion for 360 min. Exhaled and blood pentane concentrations in the chloral hydrate group markedly increased 1 min after reperfusion and then decreased to baseline. Breath and blood pentane concentrations in the propofol group increased 1 min after reperfusion but were significantly lower than in the chloral hydrate group. A negative correlation was found between breath pentane levels and survival in the chloral hydrate group. The median overall survival was 251 min after reperfusion (range 150-360 min in the chloral hydrate group. All of the swine were alive in the propofol group. CONCLUSIONS: Monitoring of exhaled pentane may be useful for evaluating the severity of hepatic ischemia-reperfusion injury and aid in predicting the outcome; propofol may improve the outcome in this situation.

  6. Ventilatory and Cardiovascular Regulation in the Air-Breathing Fish Pangasianodon Hypophthalmus

    DEFF Research Database (Denmark)

    Thomsen, Mikkel; Wang, Tobias; Bayley, Mark

    The air-breathing fish Pangasianodon hypophthalmus is abundant in the Mekong river system where it is also intensively cultured. In contrast to most other air-breathing fishes it has well developed gills as well as a highly traberculated swim bladder with a large surface area used for air-breathing...... systems provide information on when gill ventilation is insufficient for oxygen uptake and hence initiate air-breathing. Here we investigate the ventilatory and cardiovascular responses to changes in either in the external media or internally in the blood in resting fish. We found ventilation in P....... Its native waters have been shown to be periodically strongly hypoxic and hypercarbic, forcing P. hypophthalmus to switch from exclusively branchial ventilation to air-breathing to maintain its aerobic metabolism. This ability to switch respiratory media demands that the oxygen- and CO¬2 sensory...

  7. Health programmes for school employees: improving quality of life, health and productivity.

    Science.gov (United States)

    Kolbe, Lloyd J; Tirozzi, Gerald N; Marx, Eva; Bobbitt-Cooke, Mary; Riedel, Sara; Jones, Jack; Schmoyer, Michael

    2005-01-01

    School health programmes in the 21st century could include eight components: 1) health services; 2) health education; 3) healthy physical and psychosocial environments; 4) psychological, counselling, and social services; 5) physical education and other physical activities; 6) healthy food services; and 7) integrated efforts of schools, families, and communities to improve the health of school students and employees. The eighth component of modern school health programmes, health programmes for school employees, is the focus of this article. Health programmes for school employees could be designed to increase the recruitment, retention, and productivity of school employees by partially focusing each of the preceding seven components of the school health programme on improving the health and quality of life of school employees as well as students. Thus, efforts to improve the quality of life, health, and productivity of school employees may be distinct from, but integrated with, efforts to improve the quality of life, health, and education of students. School employee health programmes can improve employee: 1) recruitment; 2) morale; 3) retention; and 4) productivity. They can reduce employee: 5) risk behaviours (e.g., physical inactivity); 6) risk factors (e.g., stress, obesity, high blood pressure); (7) illnesses; 8) work-related injuries; 9) absentee days; 10) worker compensation and disability claims; and 11) health care and health insurance costs. Further, if we hope to improve our schools' performance and raise student achievement levels, developing effective school employee health programmes can increase the likelihood that employees will: 12) serve as healthy role models for students; 13) implement effective school health programmes for students; and 14) present a positive image of the school to the community. If we are to improve the quality of life, health, and productivity of school employees in the 21st century: school administrators, employees, and

  8. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS

    OpenAIRE

    Skoog, S. M.; Bharucha, A. E.; Zinsmeister, A. R.

    2008-01-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) pr...

  9. Air-breathing fishes in aquaculture. What can we learn from physiology?

    Science.gov (United States)

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues. © 2014 The Fisheries Society of the British Isles.

  10. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique.

    Science.gov (United States)

    Armstrong, Tess; Ly, Karrie V; Murthy, Smruthi; Ghahremani, Shahnaz; Kim, Grace Hyun J; Calkins, Kara L; Wu, Holden H

    2018-05-04

    In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MD within ). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρ c ) and Bland-Altman analysis (mean difference). Phepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.

  11. Detection of bronchial breathing caused by pneumonia.

    Science.gov (United States)

    Gross, V; Fachinger, P; Penzel, Th; Koehler, U; von Wichert, P; Vogelmeier, C

    2002-06-01

    The classic auscultation with stethoscope is the established clinical method for the detection of lung diseases. The interpretation of the sounds depends on the experience of the investigating physician. Therefore, a new computer-based method has been developed to classify breath sounds from digital lung sound recordings. Lung sounds of 11 patients with one-sided pneumonia and bronchial breathing were recorded on both the pneumonia side and on contralateral healthy side simultaneously using two microphones. The spectral power for the 300-600 Hz frequency band was computed for four respiratory cycles and normalized. For each breath, the ratio R between the time-segments (duration = 0.1 s) with the highest inspiratory and highest expiratory flow was calculated and averaged. We found significant differences in R between the pneumonia side (R = 1.4 +/- 1.3) and the healthy side (R = 0.5 +/- 0.5; p = 0.003 Wilcoxon-test) of lung. In 218 healthy volunteers we found R = 0.3 +/- 0.2 as a reference-value. The differences of ratio R (delta R) between the pneumonia side and the healthy side (delta R = 1.0 +/- 0.9) were significantly higher compared to follow-up studies after recovery (delta R = 0.0 +/- 0.1, p = 0.005 Wilcoxon-test). The computer based detection of bronchial breathing can be considered useful as part of a quantitative monitoring of patients at risk to develop pneumonia.

  12. Measurement and prediction of indoor air quality using a breathing thermal manikin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method......The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...

  13. A prospective gating method to acquire a diverse set of free-breathing CT images for model-based 4DCT

    Science.gov (United States)

    O'Connell, D.; Ruan, D.; Thomas, D. H.; Dou, T. H.; Lewis, J. H.; Santhanam, A.; Lee, P.; Low, D. A.

    2018-02-01

    Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5  ⩽  N  ⩽  9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or ‘spread’, of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5  ±  4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while

  14. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    Directory of Open Access Journals (Sweden)

    Paolo Domenici

    2014-12-01

    Full Text Available Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1 which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger.

  15. Lung function, diagnosis, and treatment of sleep-disordered breathing in children with achondroplasia.

    Science.gov (United States)

    Julliand, Sébastien; Boulé, Michèle; Baujat, Geneviève; Ramirez, Adriana; Couloigner, Vincent; Beydon, Nicole; Zerah, Michel; di Rocco, Federico; Lemerrer, Martine; Cormier-Daire, Valérie; Fauroux, Brigitte

    2012-08-01

    Children with achondroplasia are at risk of sleep-disordered breathing. The aim of the study was to evaluate lung function and sleep-disordered breathing in children with achondroplasia. An interview, clinical examination, lung function tests with blood gases, and a polygraphic sleep study were obtained as part of routine annual evaluation in consecutive children with achondroplasia. We included 30 children (median age 3.0 years, range: 0.4-17.1) over a period of 21 months. Habitual snoring and witnessed apneas were observed in 77% and 33% of the patients, respectively. Prior to the sleep study, 10/29 (34%) patients had undergone upper airway surgery and 5/29 (17%) craniocervical decompression operation. Arterial blood gases were abnormal in two (7%) patients. Sleep findings were abnormal in 28/30 (93%) patients. Eleven (37%) patients had an apnea index≥1 event/hr and 26 (87%) had an apnea-hypopnea index≥5 events/hr. The ≥3% desaturation index was >5/hr in 22 (73%) patients. Sixteen (53%) patients had a minimal pulse oximetry50 mmHg during sleep. As a consequence, the following therapeutic interventions were performed: upper airway surgery in four patients and noninvasive positive pressure ventilation (NPPV) in five other patients, resulting in an improvement in sleep studies in all nine patients. Systematic sleep studies are recommended in children with achondroplasia because of the high prevalence of sleep-disordered breathing. Upper airway surgery and NPPV are effective treatments of sleep-disordered breathing. Copyright © 2012 Wiley Periodicals, Inc.

  16. Exchange coupling transformations in Cu (II) heterospin complexes of “breathing crystals” under structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N., E-mail: luk@tomo.nsc.ru [International Tomography Center SB RUS, Institutskaya Str. 3a, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090 (Russian Federation)

    2015-08-15

    Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal” family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.

  17. Does postprandial itopride intake affect the rate of gastric emptying? A crossover study using the continuous real time 13C breath test (BreathID system).

    Science.gov (United States)

    Nonaka, Takashi; Kessoku, Takaomi; Ogawa, Yuji; Yanagisawa, Shogo; Shiba, Tadahiko; Sahaguchi, Takashi; Atsukawa, Kazuhiro; Takahashi, Hisao; Sekino, Yusuke; Iida, Hiroshi; Hosono, Kunihiro; Endo, Hiroki; Sakamoto, Yasunari; Koide, Tomoko; Takahashi, Hirokazu; Tokoro, Chikako; Abe, Yasunobu; Maeda, Shin; Nakajima, Atsushi; Inamori, Masahiko

    2011-01-01

    The aim of this study was to determine whether oral Itopride hydrochloride (itopride) intake might have any effect on the rate of gastric emptying, using a novel non-invasive technique for measuring the rate of gastric emptying, namely, the continuous real time 13C breath test (BreathID system: Exalenz Bioscience Ltd., Israel). Eight healthy male volunteers participated in this randomized, two-way crossover study. The subjects fasted overnight and were randomly assigned to receive 50mg itopride following a test meal (200 kcal per 200mL, containing 100mg 13C acetate), or the test meal alone. Under both conditions, gastric emptying was monitored for 4 hours after administration of the test meal by the 13C-acetic acid breath test performed continually using the BreathID system. Using Oridion Research Software (beta version), the time required for emptying of 50% of the labeled meal (T 1/2), the analog to the scintigraphy lag time for 10% emptying of the labeled meal (T lag), the gastric emptying coefficient (GEC), and the regression-estimated constants (beta and kappa) were calculated. The parameters measured under the two conditions were compared using the Wilcoxon's signed-rank test. No significant differences in the calculated parameters, namely, the T 1/2, T lag, GEC, beta or kappa, were observed between the two test conditions, namely, administration of a test meal+itopride and administration of the test meal alone. The present study revealed that postprandial itopride intake had no significant influence on the rate of gastric emptying. Recently, several studies have shown that itopride may be effective in the treatment of patients with functional dyspepsia. Our results suggest that the efficacy of itopride in patients with functional dyspepsia may be based on its effect of improving functions other than the rate of gastric emptying, such as the activities at neuronal sites, brain-gut correlation, visceral hypersensitivity, gastric accommodation and distension

  18. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    Science.gov (United States)

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage

  19. The breathtaking truth about breath alcohol readings of zero

    NARCIS (Netherlands)

    Verster, Joris C; Mackus, Marlou; van de Loo, Aurora Jae; Garssen, Johan; Scholey, Andrew

    INTRODUCTION: It has been postulated that the hangover state starts when breath alcohol concentration is zero. METHODS: Data from 2 studies that assessed ethanol in breath, blood and urine were compared. RESULTS: The data revealed that ethanol may still be present in the blood and urine during the

  20. How Important Is a Reproducible Breath Hold for Deep Inspiration Breath Hold Breast Radiation Therapy?

    International Nuclear Information System (INIS)

    Wiant, David; Wentworth, Stacy; Liu, Han; Sintay, Benjamin

    2015-01-01

    Purpose: Deep inspiration breath hold (DIBH) for left-sided breast cancer has been shown to reduce heart dose. Surface imaging helps to ensure accurate breast positioning, but it does not guarantee a reproducible breath hold (BH) at DIBH treatments. We examine the effects of variable BH positions for DIBH treatments. Methods and Materials: Twenty-five patients who underwent free breathing (FB) and DIBH scans were reviewed. Four plans were created for each patient: FB, DIBH, FB-DIBH (the DIBH plans were copied to the FB images and recalculated, and image registration was based on breast tissue), and P-DIBH (a partial BH with the heart shifted midway between the FB and DIBH positions). The FB-DIBH plans give a “worst-case” scenario for surface imaging DIBH, where the breast is aligned by surface imaging but the patient is not holding their breath. Kolmogorov-Smirnov tests were used to compare the dose metrics. Results: The DIBH plans gave lower heart dose and comparable breast coverage versus FB in all cases. The FB-DIBH plans showed no significant difference versus FB plans for breast coverage, mean heart dose, or maximum heart dose (P≥.10). The mean heart dose differed between FB-DIBH and FB by <2 Gy for all cases, and the maximum heart dose differed by <2 Gy for 21 cases. The P-DIBH plans showed significantly lower mean heart dose than FB (P<.01). The mean heart doses for the P-DIBH plans were < FB for 22 cases, the maximum dose was < FB for 18 cases. Conclusions: A DIBH plan delivered to a FB patient setup with surface imaging will yield dosimetry similar to that of a plan created and delivered FB. A DIBH plan delivered with even a partial BH can give reduced heart dose compared with FB techniques.

  1. How Important Is a Reproducible Breath Hold for Deep Inspiration Breath Hold Breast Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, David, E-mail: David.wiant@conehealth.com; Wentworth, Stacy; Liu, Han; Sintay, Benjamin

    2015-11-15

    Purpose: Deep inspiration breath hold (DIBH) for left-sided breast cancer has been shown to reduce heart dose. Surface imaging helps to ensure accurate breast positioning, but it does not guarantee a reproducible breath hold (BH) at DIBH treatments. We examine the effects of variable BH positions for DIBH treatments. Methods and Materials: Twenty-five patients who underwent free breathing (FB) and DIBH scans were reviewed. Four plans were created for each patient: FB, DIBH, FB-DIBH (the DIBH plans were copied to the FB images and recalculated, and image registration was based on breast tissue), and P-DIBH (a partial BH with the heart shifted midway between the FB and DIBH positions). The FB-DIBH plans give a “worst-case” scenario for surface imaging DIBH, where the breast is aligned by surface imaging but the patient is not holding their breath. Kolmogorov-Smirnov tests were used to compare the dose metrics. Results: The DIBH plans gave lower heart dose and comparable breast coverage versus FB in all cases. The FB-DIBH plans showed no significant difference versus FB plans for breast coverage, mean heart dose, or maximum heart dose (P≥.10). The mean heart dose differed between FB-DIBH and FB by <2 Gy for all cases, and the maximum heart dose differed by <2 Gy for 21 cases. The P-DIBH plans showed significantly lower mean heart dose than FB (P<.01). The mean heart doses for the P-DIBH plans were

  2. Breath-hold gadolinium-enhanced MRA : clinical application

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kang, Ji Hee; Kim, Won Hong; Lim, Myung Kwan; Cho, Young Kook; Cho, Soon Gu; Suh, Chang Hae

    1998-01-01

    The purpose of this study is to compare breath-hold gadolinium enhanced MR angiography (MRA) with digital subtraction angiography. Ten patients underwent angiography and breath-hold gadolinium enhanced MRA; the latter performed at 1.5T with 3D FSPGR after a bolus injection of gadopentetate dimeglumine (0.4m mol/kg). Seven of ten pathologic conditions (70%) evaluated by both techniques had a similar appearance. The conditions examined were as follows: the artery feeding renal cell carcinoma(n=2); renal artery stenosis (n=2); pulmonary AVM(n=2); abdominal aortic aneurysm (n=1); atheromatous plaque in the lower abdominal aorta (n=1); an enlarged bronchial artery (n=1); and an aberrant renal artery (n=1). For evaluating an anatomic relationship, a reconstructed 3D image obtained by MRA is more advantageous. Breath hold contrast enhanced MRA is a potentially useful noninvasive screening method for detecting vascular abnormality of the aorta and its branches. (author). 13 refs., 1 tab., 4 figs

  3. Breath-hold gadolinium-enhanced MRA : clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kang, Ji Hee; Kim, Won Hong; Lim, Myung Kwan; Cho, Young Kook; Cho, Soon Gu; Suh, Chang Hae [Inha University Hospital, Inchon (Korea, Republic of)

    1998-05-01

    The purpose of this study is to compare breath-hold gadolinium enhanced MR angiography (MRA) with digital subtraction angiography. Ten patients underwent angiography and breath-hold gadolinium enhanced MRA; the latter performed at 1.5T with 3D FSPGR after a bolus injection of gadopentetate dimeglumine (0.4m mol/kg). Seven of ten pathologic conditions (70%) evaluated by both techniques had a similar appearance. The conditions examined were as follows: the artery feeding renal cell carcinoma(n=2); renal artery stenosis (n=2); pulmonary AVM(n=2); abdominal aortic aneurysm (n=1); atheromatous plaque in the lower abdominal aorta (n=1); an enlarged bronchial artery (n=1); and an aberrant renal artery (n=1). For evaluating an anatomic relationship, a reconstructed 3D image obtained by MRA is more advantageous. Breath hold contrast enhanced MRA is a potentially useful noninvasive screening method for detecting vascular abnormality of the aorta and its branches. (author). 13 refs., 1 tab., 4 figs.

  4. Markers of Lipid Oxidative Damage in the Exhaled Breath Condensate of Nano TiO2 Production Workers.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Zíková, Naděžda; Komarc, M.; Fenclová, Z.; Vlčková, Š.; Schwarz, Jaroslav; Makeš, Otakar; Syslová, K.; Navrátil, Tomáš; Turci, F.; Corazzari, I.; Zakharov, S.; Bello, D.

    2017-01-01

    Roč. 11, č. 1 (2017), s. 52-63 ISSN 1743-5390 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : exhaled breath condensate * aldehydes * oxidative stress * occupational exposure * monitoring Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Public and environmental health; Physical chemistry (UFCH-W) Impact factor: 6.428, year: 2016

  5. Universe out of a breathing bubble

    International Nuclear Information System (INIS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-01-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model

  6. Association between breastfeeding and breathing pattern in children: a sectional study

    Directory of Open Access Journals (Sweden)

    Teresinha S.P. Lopes

    2014-07-01

    Full Text Available OBJECTIVE: to determine the prevalence of mouth breathing and to associate the history of breastfeeding with breathing patterns in children. METHODS: this was an observational study with 252 children of both genders, aged 30 to 48 months, who participated in a dental care program for mothers and newborns. As an instrument of data collection, a semi-structured questionnaire was administered to the children's mothers assessing the form and duration of breastfeeding and the oral habits of non-nutritive sucking. To determine the breathing patterns that the children had developed, medical history and clinical examination were used. Statistical analysis was conducted to examine the effects of exposure on the primary outcome (mouth breathing, and the prevalence ratio was calculated with a 95% confidence interval. RESULTS: of the total sample, 43.1% of the children were mouth breathers, 48.4% had been breastfed exclusively until six months of age or more, and 27.4% had non-nutritive sucking habits. Statistically significant associations were found for bottle-feeding (p < 0.001 and oral habits of non-nutritive sucking (p = 0.009, with an increased likelihood of children exhibiting a predominantly oral breathing pattern. A statistically significant association was also observed between a longer duration of exclusive breastfeeding and a nasal breathing pattern presented by children. CONCLUSION: an increased duration of exclusive breastfeeding lowers the chances of children exhibiting a predominantly oral breathing pattern.

  7. Cell phone-based health education messaging improves health literacy.

    Science.gov (United States)

    Zhuang, Runsen; Xiang, Yueying; Han, Tieguang; Yang, Guo-An; Zhang, Yuan

    2016-03-01

    The ubiquity of cell phones, which allow for short message service (SMS), provides new and innovative opportunities for disease prevention and health education. To explore the use of cell phone-based health education SMS to improve the health literacy of community residents in China. A multi-stage random sampling method was used to select representative study communities and participants ≥ 18 years old. Intervention participants were sent health education SMSs once a week for 1 year and controls were sent conventional, basic health education measures. Health literacy levels of the residents before and after the intervention were evaluated between intervention and control groups. Public health literacy scores increased 1.5 points, from 61.8 to 63.3, after SMS intervention for 1 year (P<0.01); the increase was greater for males than females (2.01 vs. 1.03; P<0.01) and for Shenzhen local residents than non-permanent residents (2.56 vs. 1.14; P<0.01). The frequency of high health literacy scores was greater for the intervention than control group (22.03% to 30.93% vs. 22.07% to 20.82%). With health literacy as a cost-effective index, the cost-effectiveness per intervention was 0.54. SMS may be a useful tool for improving health literacy.

  8. Cardiorespiratory and autonomic interactions during snoring related resistive breathing.

    Science.gov (United States)

    Mateika, J H; Mitru, G

    2001-03-15

    We hypothesized that blood pressure (BP) is less during snoring as compared to periods of non-snoring in non-apneic individuals. Furthermore, we hypothesized that this reduction may be accompanied by a simultaneous decrease in sympathetic (SNSA) and parasympathetic (PNSA) nervous system activity and an increase in heart rate (HR). N/A. N/A. N/A. The variables mentioned above in addition to breathing frequency were measured in 9 subjects during NREM sleep. In addition, the lowest systolic (SBP) and diastolic blood pressure (DBP) during inspiration and the highest SBP and DBP during expiration was determined breath-by-breath from segments selected from each NREM cycle. Heart rate variability was used as a marker of autonomic nervous system activity. Our results showed that BP during snoring decreased compared to non-snoring and the breath-by-breath BP analysis suggested that this difference may have been mediated by changes in intrathoracic pressure. In conjunction with the decrease in BP, SNSA decreased and HR increased however PNSA remained constant. Thus, a decrease in PNSA was likely not the primary mechanism responsible for the HR response. We conclude that BP responses and SNSA during snoring are similar to that reported previously in non-snoring individuals. However, the causal mechanisms maybe different and manifested in other measures such as HR. Thus, nocturnal cardiovascular and autonomic function maybe uniquely different in non-apneic snoring individuals.

  9. Acoustic rhinometry in mouth breathing patients: a systematic review.

    Science.gov (United States)

    Melo, Ana Carolina Cardoso de; Gomes, Adriana de Oliveira de Camargo; Cavalcanti, Arlene Santos; Silva, Hilton Justino da

    2015-01-01

    When there is a change in the physiological pattern of nasal breathing, mouth breathing may already be present. The diagnosis of mouth breathing is related to nasal patency. One way to access nasal patency is by acoustic rhinometry. To systematically review the effectiveness of acoustic rhinometry for the diagnosis of patients with mouth breathing. Electronic databases LILACS, MEDLINE via PubMed and Bireme, SciELO, Web of Science, Scopus, PsycInfo, CINAHL, and Science Direct, from August to December 2013, were consulted. 11,439 articles were found: 30 from LILACS, 54 from MEDLINE via Bireme, 5558 from MEDLINE via PubMed, 11 from SciELO, 2056 from Web of Science, 1734 from Scopus, 13 from PsycInfo, 1108 from CINAHL, and 875 from Science Direct. Of these, two articles were selected. The heterogeneity in the use of equipment and materials for the assessment of respiratory mode in these studies reveals that there is not yet consensus in the assessment and diagnosis of patients with mouth breathing. According to the articles, acoustic rhinometry has been used for almost twenty years, but controlled studies attesting to the efficacy of measuring the geometry of nasal cavities for complementary diagnosis of respiratory mode are warranted. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Improving the use of health data for health system strengthening

    Directory of Open Access Journals (Sweden)

    Tara Nutley

    2013-02-01

    Full Text Available Background: Good quality and timely data from health information systems are the foundation of all health systems. However, too often data sit in reports, on shelves or in databases and are not sufficiently utilised in policy and program development, improvement, strategic planning and advocacy. Without specific interventions aimed at improving the use of data produced by information systems, health systems will never fully be able to meet the needs of the populations they serve. Objective: To employ a logic model to describe a pathway of how specific activities and interventions can strengthen the use of health data in decision making to ultimately strengthen the health system. Design: A logic model was developed to provide a practical strategy for developing, monitoring and evaluating interventions to strengthen the use of data in decision making. The model draws on the collective strengths and similarities of previous work and adds to those previous works by making specific recommendations about interventions and activities that are most proximate to affect the use of data in decision making. The model provides an organizing framework for how interventions and activities work to strengthen the systematic demand, synthesis, review, and use of data. Results: The logic model and guidance are presented to facilitate its widespread use and to enable improved data-informed decision making in program review and planning, advocacy, policy development. Real world examples from the literature support the feasible application of the activities outlined in the model. Conclusions: The logic model provides specific and comprehensive guidance to improve data demand and use. It can be used to design, monitor and evaluate interventions, and to improve demand for, and use of, data in decision making. As more interventions are implemented to improve use of health data, those efforts need to be evaluated.

  11. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  12. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    International Nuclear Information System (INIS)

    McDonald, C.W.

    1963-11-01

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  13. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C W [Radiological and Safety Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-11-15

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  14. Design of Wearable Breathing Sound Monitoring System for Real-Time Wheeze Detection

    Directory of Open Access Journals (Sweden)

    Shih-Hong Li

    2017-01-01

    Full Text Available In the clinic, the wheezing sound is usually considered as an indicator symptom to reflect the degree of airway obstruction. The auscultation approach is the most common way to diagnose wheezing sounds, but it subjectively depends on the experience of the physician. Several previous studies attempted to extract the features of breathing sounds to detect wheezing sounds automatically. However, there is still a lack of suitable monitoring systems for real-time wheeze detection in daily life. In this study, a wearable and wireless breathing sound monitoring system for real-time wheeze detection was proposed. Moreover, a breathing sounds analysis algorithm was designed to continuously extract and analyze the features of breathing sounds to provide the objectively quantitative information of breathing sounds to professional physicians. Here, normalized spectral integration (NSI was also designed and applied in wheeze detection. The proposed algorithm required only short-term data of breathing sounds and lower computational complexity to perform real-time wheeze detection, and is suitable to be implemented in a commercial portable device, which contains relatively low computing power and memory. From the experimental results, the proposed system could provide good performance on wheeze detection exactly and might be a useful assisting tool for analysis of breathing sounds in clinical diagnosis.

  15. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  16. Age specific fast breathing in under-five diarrheal children in an urban hospital: Acidosis or pneumonia?

    Science.gov (United States)

    Nuzhat, Sharika; Ahmed, Tahmeed; Kawser, Chowdhury Ali; Khan, Azharul Islam; Islam, S M Rafiqul; Shahrin, Lubaba; Shahunja, K M; Shahid, Abu S M S B; Al Imran, Abdullah; Chisti, Mohammod Jobayer

    2017-01-01

    Children with diarrhea often present with fast breathing due to metabolic acidosis from dehydration. On the other hand, age specific fast breathing is the cornerstone for the diagnosis of pneumonia following classification of pneumonia recommended by the World Health Organization (WHO). Correction of metabolic acidosis by rehydrating the diarrheal children requires time, which delays early initiation of appropriate antimicrobials for pneumonia and thereby increases the risk of deaths. We need to further investigate the simple clinical features other than fast breathing which might help us in earliest diagnosis of pneumonia in children with diarrhea Thus, the objective of our study was to identify other contributing clinical features that may independently help for early diagnosis of pneumonia in diarrheal children who present with age specific fast breathing. This was an unmatched case-control study. Diarrheal children aged 0-59 months, admitted to Dhaka Hospital of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b) during January 2014 to December 2014 having age specific fast breathing (11-59 months ≥40 breaths/min) were studied. The study children with clinical and radiological pneumonia constituted the cases (n = 276) and those without pneumonia constituted the controls (n = 446). Comparison of clinical features and outcomes between the cases and the controls was made. The distribution of acidosis among the cases and the controls was comparable (35% vs. 41%, p = 0.12). The cases had proportionately higher deaths compared to the controls, however, the difference was not statistically significant (3% vs. 1%; p = 0.23). In logistic regression analysis after adjusting for potential confounders, the cases were independently associated with cough (OR = 62.19, 95% CI = 27.79-139.19; ppneumonia. The results underscore the importance of early identification of these simple clinical features that may help to minimize potential delay due to

  17. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    Science.gov (United States)

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  18. Climate Services to Improve Public Health

    Science.gov (United States)

    Jancloes, Michel; Thomson, Madeleine; Costa, María Máñez; Hewitt, Chris; Corvalan, Carlos; Dinku, Tufa; Lowe, Rachel; Hayden, Mary

    2014-01-01

    A high level expert panel discussed how climate and health services could best collaborate to improve public health. This was on the agenda of the recent Third International Climate Services Conference, held in Montego Bay, Jamaica, 4–6 December 2013. Issues and challenges concerning a demand led approach to serve the health sector needs, were identified and analysed. Important recommendations emerged to ensure that innovative collaboration between climate and health services assist decision-making processes and the management of climate-sensitive health risk. Key recommendations included: a move from risk assessment towards risk management; the engagement of the public health community with both the climate sector and development sectors, whose decisions impact on health, particularly the most vulnerable; to increase operational research on the use of policy-relevant climate information to manage climate- sensitive health risks; and to develop in-country capacities to improve local knowledge (including collection of epidemiological, climate and socio-economic data), along with institutional interaction with policy makers. PMID:24776719

  19. Effect of yogic breathing on accommodate braille version of six-letter cancellation test in students with visual impairment

    Directory of Open Access Journals (Sweden)

    Balaram Pradhan

    2018-01-01

    Full Text Available Context: Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT was used for students with visual impairment (VI. Aim: This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr and breath awareness (BA on students with VI. Methods: This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females, with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari; on the 2nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. Results: The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days (P < 0.001. BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA (P < 0.05, but the increase in the score after Bhramari was not significant. Conclusions: Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied.

  20. Effect of Yogic Breathing on Accommodate Braille Version of Six-letter Cancellation Test in Students with Visual Impairment.

    Science.gov (United States)

    Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex

    2018-01-01

    Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1 st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari ; on the 2 nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days ( P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA ( P < 0.05), but the increase in the score after Bhramari was not significant. Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied.

  1. A Study on How to Breathe Properly When Practicing Tai Chi Chuan

    Science.gov (United States)

    Yang, Hanchun

    2011-01-01

    When practicing Tai Chi Chuan, proper breath plays an important role in shaping Tai Chi Chuan's style and its fitness value. The paper aims to analyse the postures of Tai Chi Chuan and its breath characteristics. The paper also presents some new insights on how to co-ordinate breath with postures by case studies.

  2. Hydrogen peroxide in exhaled breath condensate: A clinical study

    Directory of Open Access Journals (Sweden)

    C Nagaraja

    2012-01-01

    Full Text Available Objectives: To study the ongoing inflammatory process of lung in healthy individuals with risk factors and comparing with that of a known diseased condition. To study the inflammatory response to treatment. Background: Morbidity and mortality of respiratory diseases are raising in trend due to increased smokers, urbanization and air pollution, the diagnosis of these conditions during early stage and management can improve patient′s lifestyle and morbidity. Materials and Methods: One hundred subjects were studied from July 2010 to September 2010; the level of hydrogen peroxide concentration in exhaled breath condensate was measured using Ecocheck. Results: Of the 100 subjects studied, 23 were healthy individuals with risk factors (smoking, exposure to air pollution, and urbanization; the values of hydrogen peroxide in smokers were 200-2220 nmol/l and in non-smokers 340-760 nmol/l. In people residing in rural areas values were 20-140 nmol/l in non-smokers and 180 nmol/l in smokers. In chronic obstructive pulmonary disease cases, during acute exacerbations values were 540-3040 nmol/l and 240-480 nmol/l following treatment. In acute exacerbations of bronchial asthma, values were 400-1140 nmol/l and 100-320 nmol/l following treatment. In cases of bronchiectasis, values were 300-340 nmol/l and 200-280 nmol/l following treatment. In diagnosed pneumonia cases values were 1060-11800 nmol/l and 540-700 nmol/l following treatment. In interstitial lung diseases, values ranged from 220-720 nmol/l and 210-510 nmol/l following treatment. Conclusion: Exhaled breath condensate provides a non-invasive means of sampling the lower respiratory tract. Collection of exhaled breath condensate might be useful to detect the oxidative destruction of the lung as well as early inflammation of the airways in a healthy individual with risk factors and comparing the inflammatory response to treatment.

  3. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  4. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath

    Science.gov (United States)

    Alphus D. Wilson

    2015-01-01

    Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...

  5. Epidemiology of sleep apnoea/hypopnoea syndrome and sleep-disordered breathing

    DEFF Research Database (Denmark)

    Jennum, P; Riha, R L

    2009-01-01

    Epidemiological studies have revealed a high prevalence of sleep-disordered breathing in the community (up to 20%). A subset of these patients has concurrent symptoms of excessive daytime sleepiness attributable to their nocturnal breathing disorder and is classified as having obstructive sleep a...

  6. Response of Hepatoma 9618a and Normal Liver to Host Carbogen and Carbon Monoxide Breathing

    Directory of Open Access Journals (Sweden)

    Simon P. Robinson

    1999-12-01

    Full Text Available The effects of hyperoxia (induced by host carbogen 95% oxygen/5% carbon dioxide breathing. and hypoxia (induced by host carbon monoxide CO at 660 ppm. breathing were compared by using noninvasive magnetic resonance (MR methods to gain simultaneous information on blood flow/oxygenation and the bioenergetic status of rat Morris H9618a hepatomas. Both carbogen and CO breathing induced a 1.5- to 2-fold increase in signal intensity in blood oxygenation level dependent (BOLD MR images. This was due to a decrease in deoxyhemoglobin (deoxyHb, which acts as an endogenous contrast agent, caused either by formation of oxyhemoglobin in the case of carbogen breathing, or carboxyhemoglobin with CO breathing. The results were confirmed by observation of similar changes in deoxyHb in arterial blood samples examined ex vivo after carbogen or CO breathing. There was no change in nucleoside triphosphates (NTP/PI in either tumor or liver after CO breathing, whereas NTP/Pl increased twofold in the hepatoma (but not in the liver after carbogen breathing. No changes in tumor intracellular pH were seen after either treatment, whereas extracellular pH became more alkaline after CO breathing and more acid after carbogen breathing, respectively. This tumor type and the liver are unaffected by CO breathing at 660 ppm, which implies an adequate oxygen supply.

  7. Thoron-in-breath monitoring at CRNL

    International Nuclear Information System (INIS)

    Peterman, B.F.

    1985-04-01

    This report contains a description of the thoron-in-breath monitor (TIBM) developed at CRNL. This monitor can be used to estimate the amount of thorium (Th-232 and/or Th-228) in humans. Thoron-in-breath monitoring is based on the fact that thoron (Rn-220) is a decay product of thorium, and hence deposited thorium produces thoron in vivo, a fraction of which will be exhaled. Experiences with the TIBM indicate that the monitoring is easy to perform and the results in terms of contaminated vs uncontaminated subjects can be easily interpreted. Work on relationships between thoron exhaled and deposited thorium and hence between thoron exhaled and dose, is continuing

  8. Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus.

    Science.gov (United States)

    Ling, Xi; Liang, Liangbo; Huang, Shengxi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-06-10

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and, thus, their frequencies show a stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that in the temperature range -150 to 30 °C, the breathing modes have a weak anharmonic behavior, in contrast to the HF Raman modes that exhibit strong anharmonicity.

  9. An algorithm for the detection of individual breaths from the pulse oximeter waveform.

    Science.gov (United States)

    Leonard, Paul; Grubb, Neil R; Addison, Paul S; Clifton, David; Watson, James N

    2004-12-01

    To determine if wavelet analysis techniques can be used to reliably identify individual breaths from the photoplethysmogram (PPG). Photoplethysmograms were obtained from 22 healthy adult volunteers timing their respiration rate in synchronisation with a metronome. A secondary timing signal was obtained by asking the volunteers to actuate a small push button switch, held in their right hand, in synchronisation with their respiration. Each PPG was analyzed using primary wavelet decomposition and two new, related, secondary decompositions to determine the accuracy of individual breath detection. The optimal breath capture was obtained by manually polling the three techniques, allowing detection of 466 out of the 472 breaths studied; a detection rate of 98.7% with no false positive breaths detected. Our technique allows the accurate capture of individual breaths from the photoplethysmogram, and leads the way for developing a simple non-invasive combined respiration and saturation monitor.

  10. Breath-hold duration in man and the diving response induced by face immersion.

    Science.gov (United States)

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  11. Breathing is different in the quantum world

    Science.gov (United States)

    Bonitz, Michael; Bauch, Sebastian; Balzer, Karsten; Henning, Christian; Hochstuhl, David

    2009-11-01

    Interacting classicle particles in a harmonic trap are known to possess a radial collective oscillation -- the breathing mode (BM). In case of Coulomb interaction its frequency is universal -- it is independent of the particle number and system dimensionality [1]. Here we study strongly correlated quantum systems. We report a qualitatively different breathing behavior: a quantum system has two BMs one of which is universal whereas the frequency of the other varies with system dimensionality, the particle spin and the strength of the pair interaction. The results are based on exact solutions of the time-dependent Schr"odinger equation for two particles and on time-dependent many-body results for larger particle numbers. Finally, we discuss experimental ways to excite and measure the breathing frequencies which should give direct access to key properties of trapped particles, including their many-body effects [2]. [4pt] [1] C. Henning et al., Phys. Rev. Lett. 101, 045002 (2008) [0pt] [2] S. Bauch, K. Balzer, C. Henning, and M. Bonitz, submitted to Phys. Rev. Lett., arXiv:0903.1993

  12. A Pilot Study Exploring the Use of Breath Analysis to Differentiate Healthy Cattle from Cattle Experimentally Infected with Mycobacterium bovis

    Science.gov (United States)

    Ellis, Christine K.; Stahl, Randal S.; Nol, Pauline; Waters, W. Ray; Palmer, Mitchell V.; Rhyan, Jack C.; VerCauteren, Kurt C.; McCollum, Matthew; Salman, M. D.

    2014-01-01

    Bovine tuberculosis, caused by Mycobacterium bovis, is a zoonotic disease of international public health importance. Ante-mortem surveillance is essential for control; however, current surveillance tests are hampered by limitations affecting ease of use or quality of results. There is an emerging interest in human and veterinary medicine in diagnosing disease via identification of volatile organic compounds produced by pathogens and host-pathogen interactions. The objective of this pilot study was to explore application of existing human breath collection and analysis methodologies to cattle as a means to identify M. bovis infection through detection of unique volatile organic compounds or changes in the volatile organic compound profiles present in breath. Breath samples from 23 male Holstein calves (7 non-infected and 16 M. bovis-infected) were collected onto commercially available sorbent cartridges using a mask system at 90 days post-inoculation with M. bovis. Samples were analyzed using gas chromatography-mass spectrometry, and chromatographic data were analyzed using standard analytical chemical and metabolomic analyses, principle components analysis, and a linear discriminant algorithm. The findings provide proof of concept that breath-derived volatile organic compound analysis can be used to differentiate between healthy and M. bovis-infected cattle. PMID:24586655

  13. WE-DE-209-02: Active Breathing Control

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D. [Stronach Regional Cancer Centre (Canada)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  14. WE-DE-209-02: Active Breathing Control

    International Nuclear Information System (INIS)

    Comsa, D.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  15. Health Effects of Air Pollution

    Science.gov (United States)

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  16. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms.

    Science.gov (United States)

    Baertsch, Nathan Andrew; Baertsch, Hans Christopher; Ramirez, Jan Marino

    2018-02-26

    The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.

  17. Effect of upper costal and costo-diaphragmatic breathing types on electromyographic activity of respiratory muscles.

    Science.gov (United States)

    Celhay, Isabel; Cordova, Rosa; Miralles, Rodolfo; Meza, Francisco; Erices, Pia; Barrientos, Camilo; Valenzuela, Saúl

    2015-04-01

    To compare electromyographic (EMG) activity in young-adult subjects with different breathing types. This study included 50 healthy male subjects with complete natural dentition, and no history of orofacial pain or craniomandibular-cervical-spinal disorders. Subjects were classified into two groups: upper costal breathing type, and costo-diaphragmatic breathing. Bipolar surface electrodes were located on sternocleidomastoid, diaphragm, external intercostal, and latissimus dorsi muscles. Electromyographic activity was recorded during the following tasks: (1) normal quiet breathing; (2) speaking the word 'Mississippi'; (3) swallowing saliva; and (4) forced deep breathing. Sternocleidomastoid and latissimus dorsi EMG activity was not significantly different between breathing types, whereas diaphragm and external intercostal EMG activity was significantly higher in the upper costal than costo-diaphragmatic breathing type in all tasks (P<0·05; Wilcoxon signed rank-sum test). Diaphragm and external intercostal EMG activity suggests that there could be differences in motor unit recruitment strategies depending on the breathing type.

  18. Adhesion of volatile propofol to breathing circuit tubing.

    Science.gov (United States)

    Lorenz, Dominik; Maurer, Felix; Trautner, Katharina; Fink, Tobias; Hüppe, Tobias; Sessler, Daniel I; Baumbach, Jörg Ingo; Volk, Thomas; Kreuer, Sascha

    2017-08-21

    Propofol in exhaled breath can be measured and may provide a real-time estimate of plasma concentration. However, propofol is absorbed in plastic tubing, thus estimates may fail to reflect lung/blood concentration if expired gas is not extracted directly from the endotracheal tube. We evaluated exhaled propofol in five ventilated ICU patients who were sedated with propofol. Exhaled propofol was measured once per minute using ion mobility spectrometry. Exhaled air was sampled directly from the endotracheal tube and at the ventilator end of the expiratory side of the anesthetic circuit. The circuit was disconnected from the patient and propofol was washed out with a separate clean ventilator. Propofol molecules, which discharged from the expiratory portion of the breathing circuit, were measured for up to 60 h. We also determined whether propofol passes through the plastic of breathing circuits. A total of 984 data pairs (presented as median values, with 95% confidence interval), consisting of both concentrations were collected. The concentration of propofol sampled near the patient was always substantially higher, at 10.4 [10.25-10.55] versus 5.73 [5.66-5.88] ppb (p tubing was 4.58 [4.48-4.68] ppb, 3.46 [3.21-3.73] in the first hour, 4.05 [3.77-4.34] in the second hour, and 4.01 [3.36-4.40] in the third hour. Out-gassing propofol from the breathing circuit remained at 2.8 ppb after 60 h of washing out. Diffusion through the plastic was not observed. Volatile propofol binds or adsorbs to the plastic of a breathing circuit with saturation kinetics. The bond is reversible so propofol can be washed out from the plastic. Our data confirm earlier findings that accurate measurements of volatile propofol require exhaled air to be sampled as close as possible to the patient.

  19. Periaqueductal Gray Control of Breathing

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert; Homma,; Onimaru, H; Fukuchi, Y

    2010-01-01

    Change of the basic respiratory rhythm (eupnea) is a pre-requisite for survival. For example, sudden escape from danger needs rapid shallow breathing, strenuous exercise requires tachypnea for sufficient supply of oxygen and a strong anxiety reaction necessitates gasping. Also for vocalization (and

  20. Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using RR variability.

    Science.gov (United States)

    Bloomfield, D M; Magnano, A; Bigger, J T; Rivadeneira, H; Parides, M; Steinman, R C

    2001-03-01

    R-R interval variability (RR variability) is increasingly being used as an index of autonomic activity. High-frequency (HF) power reflects vagal modulation of the sinus node. Since vagal modulation occurs at the respiratory frequency, some investigators have suggested that HF power cannot be interpreted unless the breathing rate is controlled. We hypothesized that HF power during spontaneous breathing would not differ significantly from HF power during metronome-guided breathing. We measured HF power during spontaneous breathing in 20 healthy subjects and 19 patients with heart disease. Each subject's spontaneous breathing rate was determined, and the calculation of HF power was repeated with a metronome set to his or her average spontaneous breathing rate. There was no significant difference between the logarithm of HF power measured during spontaneous and metronome-guided breathing [4.88 +/- 0.29 vs. 5.29 +/- 0.30 ln(ms(2)), P = 0.32] in the group as a whole and when patients and healthy subjects were examined separately. We did observe a small (9.9%) decrease in HF power with increasing metronome-guided breathing rates (from 9 to 20 breaths/min). These data indicate that HF power during spontaneous and metronome-guided breathing differs at most by very small amounts. This variability is several logarithmic units less than the wide discrepancies observed between healthy subjects and cardiac patients with a heterogeneous group of cardiovascular disorders. In addition, HF power is relatively constant across the range of typical breathing rates. These data indicate that there is no need to control breathing rate to interpret HF power when RR variability (and specifically HF power) is used to identify high-risk cardiac patients.

  1. Medical Diagnostic Breath Analysis by Cavity Ring Down Spectroscopy

    Science.gov (United States)

    Guss, Joseph S.; Metsälä, Markus; Halonen, Lauri

    2009-06-01

    Certain medical conditions give rise to the presence of chemicals in the bloodstream. These chemicals - known as biomarkers - may also be present in low concentrations in human breath. Cavity ring down spectroscopy possesses the requisite selectivity and sensitivity to detect such biomarkers in the congested spectrum of a breath sample. The ulcer-causing bacterium, Helicobacter pylori, is a prolific producer of the enzyme urease, which catalyses the breakdown of urea ((NH_2)_2CO) in the stomach as follows: (NH_2)_2CO + H_2O ⟶ CO_2 + 2NH_3 Currently, breath tests seeking altered carbon-isotope ratios in exhaled CO_2 after the ingestion of ^{13}C- or ^{14}C-labeled urea are used to diagnose H. pylori infection. We present recent results from an ongoing collaboration with Tampere Area University Hospital. The study involves 100 patients (both infected and uninfected) and concerns the possible correlation between the bacterial infection and breath ammonia. D. Y. Graham, P. D. Klein, D. J. Evans, Jr, D. G. Evans, L. C. Alpert, A. R. Opekun, T. W. Boutton, Lancet 1(8543), 1174-7 March 1987.

  2. Air-breathing behavior, oxygen concentrations, and ROS defense in the swimbladders of two erythrinid fish, the facultative air-breathing jeju, and the non-air-breathing traira during normoxia, hypoxia and hyperoxia.

    Science.gov (United States)

    Pelster, Bernd; Wood, Chris M; Jung, Ellen; Val, Adalberto L

    2018-05-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two neighboring genera from the family of erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized, and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Measurement of swimbladder oxygen partial pressure (PO 2 ) of fish kept at 26 °C in normoxic, hyperoxic (28-32 mg O 2 L - 1 ) or hypoxic (1-1.5 mg O 2 L - 1 ) water revealed constant values in traira swimbladder. Under normoxic conditions in the jeju swimbladder PO 2 was higher than in traira, and the PO 2 significantly increased under hyperoxic conditions, even in the absence of air breathing. In jeju, air-breathing activity increased significantly under hypoxic conditions. Hypoxic air-breathing activity was negatively correlated to swimbladder PO 2 , indicating that the swimbladder was intensely used for gas exchange under these conditions. In traira, the capacity of the ROS defense system, as assessed by measurement of activities of enzymes involved in ROS degradation and total glutathione (GSH + GSSG) concentration, was elevated after 4 h of hyperoxic and/or hypoxic exposure, although swimbladder PO 2 was not affected. In jeju, experiencing a higher variability in swimbladder PO 2 due to the air-breathing activity, only a reduced responsiveness of the ROS defense system to changing environmental PO 2 was detected.

  3. Breath-by-breath analysis of cardiorespiratory interaction for quantifying developmental maturity in premature infants

    Science.gov (United States)

    Rusin, Craig G.; Hudson, John L.; Lee, Hoshik; Delos, John B.; Guin, Lauren E.; Vergales, Brooke D.; Paget-Brown, Alix; Kattwinkel, John; Lake, Douglas E.; Moorman, J. Randall

    2012-01-01

    In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Schäfer and coworkers (Schäfer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239–240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge. PMID:22174403

  4. Health Hazard Evaluation Report HETA 84-204-1600, Dental Health Associates, Paoli, Pennsylvania. [Nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, M.S.

    1985-06-01

    Area air and breathing-zone samples were analyzed for nitrous oxide at Dental Health Associates, Paoli, Pennsylvania on August 2, 1984. The evaluation was requested by a dental assistant because of general concern about the extent of nitrous oxide exposure, especially since the office was not equipped with a waste-anesthetic gas-scavenging system. The author recommends installing a waste anesthetic gas scavenging system with a dedicated exhaust. The nitrous oxide delivery and mixing system should be checked for leaks monthly and work practices for handling nitrous oxide should be improved.

  5. Breath-holding times in various phases of respiration and effect of respiratory training in lung cancer patients.

    Science.gov (United States)

    Tibdewal, Anil; Munshi, Anusheel; Pathak, Rima; Misra, Shagun; Daptardar, Anuradha; Singh, Vincent; Agarwal, Jai Prakash

    2015-08-01

    Breath-holding (BH) technique is used for reducing the intrafraction-tumour motion in mobile lung tumours treated with radiotherapy (RT). There is paucity of literature evaluating differences in BH times in various phases of respiration in patients with lung cancer. One hundred consecutive patients with lung cancer planned for radical RT/chemoradiation were accrued in the study. Eighty-seven patients were eligible for analysis at RT conclusion. Baseline pulmonary function test (PFT) were performed in all patients, and respiratory training was given from the day of RT planning. Deep inspiration breath hold (DIBH), deep expiration breath hold (DEBH) and mid-ventilation breath hold (MVBH) were recorded manually with a stopwatch for each patient at four time points (RT planning/baseline, RT starting, during RT and RT conclusion). Median DIBH times at RT planning, RT starting, during RT and RT conclusion were 21.2, 20.6, 20.1 and 21.1 s, respectively. The corresponding median DEBH and MVBH times were 16.3, 18.2, 18.3, 18.5 s and 19.9, 20.5, 21.3, 22.1 s, respectively. Respiratory training increased MVBH time at RT conclusion compared to baseline, which was statistically significant (19.9-22.1 s, P = 0.002). DIBH or DEBH times were stable at various time points with neither a significant improvement nor decline. Among various patient and tumour factors Forced Vital Capacity pre-bronchodilation (FVCpre ) was the only factor that consistently predicted DIBH, DEBH and MVBH at all four time points with P value phases of respiration. Respiratory training improved MVBH time while consistently maintaining DIBH and DEBH times throughout the course of radiotherapy. © 2015 The Royal Australian and New Zealand College of Radiologists.

  6. Preliminary report on a breathing coaching and assessment system for use by patients at home

    International Nuclear Information System (INIS)

    Fox, C.D.; Kron, T.; Winton, J.R.S.; Rothwell, R.

    2010-01-01

    Full text: Respiratory-gated radiotherapy requires consistent breathing. Therefore, we developed a system that will assess breathing consistency and allow patients to train themselves at home. Real-time feedback is to be provided visually to patients against a reference breathing track derived from their own breathing pattern. The system would need to generate the reference track and to use this reference track for coaching. The system should be simple, robust and affordable, without complex setup. Results The system uses a net book with a USB connected data acquisition module (DAQ). The patient's breathing is sampled by the DAQ, measuring intra-nasal pressure through nasal prongs. Software was written in collaboration with the Victorian eResearch Strategic Initiative (YERSi). The system is used to collect a patient reference breathing track. This track is processed to generate a 'golden breathing cycle' (GBC), normalised in both amplitude and duration, containing the shape of the breathing cycle. After training, the patient takes the system home for a number of sessions of coaching and assessment. In coaching mode the patient is asked to maintain a graphic representation of their current state of breathing in close correlation to the golden breathing cycle as it moves across the screen. Displayed GBC amplitude and duration respond dynamically to the patient's breathing rhythm. Statistics are collected measuring the patient's ability to conform to the GBC and may be used to decide suitability for gated therapy. Conclusion The DAQ hardware is completed, and software is approaching completion. Sample data has been collected from volunteers.

  7. Evaluation of a simple non-invasive 13C breath test to evaluate diet effects on gastric emptying in pigs

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Strathe, Anders Bjerring; Theil, Peter Kappel

    2010-01-01

    to feeding (15.5 h after the previous meal) on the day when the 5 h sample was taken. In the breath test four pregnant sows were placed in respiration chambers and the 13C marker was added in the morning meal and air samples were collected up to 18 h at the outlet from the chambers and detected on an infra...... of the gastric content. Thus, the breath test is applicable for evaluating dietary effects on gastric emptying and potentially improves the behaviour and well being of gestating sows and lends confidence to applicability in clinical human trials....

  8. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    Science.gov (United States)

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  9. eAMI: A Qualitative Quantification of Periodic Breathing Based on Amplitude of Oscillations

    Science.gov (United States)

    Fernandez Tellez, Helio; Pattyn, Nathalie; Mairesse, Olivier; Dolenc-Groselj, Leja; Eiken, Ola; Mekjavic, Igor B.; Migeotte, P. F.; Macdonald-Nethercott, Eoin; Meeusen, Romain; Neyt, Xavier

    2015-01-01

    Study Objectives: Periodic breathing is sleep disordered breathing characterized by instability in the respiratory pattern that exhibits an oscillatory behavior. Periodic breathing is associated with increased mortality, and it is observed in a variety of situations, such as acute hypoxia, chronic heart failure, and damage to respiratory centers. The standard quantification for the diagnosis of sleep related breathing disorders is the apnea-hypopnea index (AHI), which measures the proportion of apneic/hypopneic events during polysomnography. Determining the AHI is labor-intensive and requires the simultaneous recording of airflow and oxygen saturation. In this paper, we propose an automated, simple, and novel methodology for the detection and qualification of periodic breathing: the estimated amplitude modulation index (eAMI). Patients or Participants: Antarctic cohort (3,800 meters): 13 normal individuals. Clinical cohort: 39 different patients suffering from diverse sleep-related pathologies. Measurements and Results: When tested in a population with high levels of periodic breathing (Antarctic cohort), eAMI was closely correlated with AHI (r = 0.95, P Dolenc-Groselj L, Eiken O, Mekjavic IB, Migeotte PF, Macdonald-Nethercott E, Meeusen R, Neyt X. eAMI: a qualitative quantification of periodic breathing based on amplitude of oscillations. SLEEP 2015;38(3):381–389. PMID:25581914

  10. Breath acetone to monitor life style interventions in field conditions: an exploratory study.

    Science.gov (United States)

    Samudrala, Devasena; Lammers, Gerwen; Mandon, Julien; Blanchet, Lionel; Schreuder, Tim H A; Hopman, Maria T; Harren, Frans J M; Tappy, Luc; Cristescu, Simona M

    2014-04-01

    To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions. Copyright © 2014 The Obesity Society.

  11. Assessment of breathing rate of adult Korean for use in internal dosimetry

    International Nuclear Information System (INIS)

    Kim, J.I.; Lee, Y.J.; Jin, Y.W.; Kim, C.S.; Lee, J.K.

    2003-01-01

    Breathing rate is one of the key factors in evaluating doses due to inhalation of airborne radionuclides. Since the reference values of breathing rate provided by the International Commission on Radiological Protection (ICRP) are based on the physiology of Caucasian, they are not necessarily appropriate for internal dosimetry for Korean. In this study, we assessed breathing rate of Korean by measuring the forced vital capacity (FVC), the forced expiratory volume in second (FEV1) and the minute ventilation(MV). Measurements were made using SP-1 spirometry unit (Schiller AG. 1998) for 1474 adult Koreans whose heights and weights are in the range of one standard deviation from the mean values. The total liters of air breathed for working and resting were evaluated after the ICRP approach. We also considered smoking and ailment in the lungs. The resulting breathing rate appears to be 2.3x10 4 L/day which well agrees with the value given in ICRP 23

  12. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension.

    Science.gov (United States)

    Li, Changjun; Chang, Qinghua; Zhang, Jia; Chai, Wenshu

    2018-05-01

    This study is to investigate the effects of slow breathing on heart rate variability (HRV) and arterial baroreflex sensitivity in essential hypertension.We studied 60 patients with essential hypertension and 60 healthy controls. All subjects underwent controlled breathing at 8 and 16 breaths per minute. Electrocardiogram, respiratory, and blood pressure signals were recorded simultaneously. We studied effects of slow breathing on heart rate, blood pressure and respiratory peak, high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio of HRV with traditional and corrected spectral analysis. Besides, we tested whether slow breathing was capable of modifying baroreflex sensitivity in hypertensive subjects.Slow breathing, compared with 16 breaths per minute, decreased the heart rate and blood pressure (all P hypertensive subjects. Slow breathing increased baroreflex sensitivity in hypertensive subjects (from 59.48 ± 6.39 to 78.93 ± 5.04 ms/mm Hg, P hypertension. Besides, slow breathing increased baroreflex sensitivity in hypertensive subjects. These demonstrate slow breathing is indeed capable of shifting sympatho-vagal balance toward vagal activities and increasing baroreflex sensitivity, suggesting a safe, therapeutic approach for essential hypertension.

  13. Experimental study on L-[1-13C] phenylalanine breath test for quantitative assessment of liver function with animal

    International Nuclear Information System (INIS)

    Yan Weili; Fudan Univ., Shanghai; Lin Xiangtong; Sun Dayu; Jiang Yibin; Sun Xu; Rong Lan; Liang Qi

    2006-01-01

    Objective: Using a small animal breath test model we designed and L-[1- 13 C] phenylalanine breath test ( 13 C-PheBT) of rats, the authors investigated its feasibility and validity and determined effective parameter of the test. Methods: Twenty male Sprague-Dawley (SD) weighting 280-290 g rats randomized into two groups acute hepatitis rats (n=10) and control rats (n=10). Hepatitis was induced by carbon tetrachloride (CCl 4 ) olive oil administration through intragastric gavage. PheBT was assisted by small mechanical ventilator improved and air samples were collected discontinuously, 20 mg/kg body weight L-[1- 13 C] phenylalanine ( 13 C-Phe) was administered intravenously. Twenty-nine breath samples were taken before and different intervals within sixty minutes after administration. 13 Cenrichment was measured by isotope ratio mass spectrometer. Results: All time phase curves of 13 C enrichment in rat breath reached a peak almost at 2 min after the intravenous administration of 13 C-Phe. The PheBT parameters, 13 C excretion rate constant (PheBT-K), of CCl 4 hepatitis rats were significantly lower than that of normal control rats [(2.45 ± 0.25) x 10 -2 min -1 vs (2.98 ± 0.19) x 10 -2 min -1 , t = 5.40, P 13 C fast phase disposition constant did not statistically differ between the two groups (t=0.58, P>0.05). PheBT-K had significant negative cor-relation with serum ALT, AKP, TBA and total bilirum TBIL (the correlation coefficient r is -0.74, -0.73, -0.82 and -0.67 respectively, P 0.05). Conclusions: It was indicated that the small animal breath test model we designed was a virtual tool to use in experimental study on breath test and PheBT-K was a sensitive index. (authors)

  14. Breathing Like a Fish

    Science.gov (United States)

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  15. A wireless breathing-training support system for kinesitherapy.

    Science.gov (United States)

    Tawa, Hiroki; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton

    2009-01-01

    We have developed a new wireless breathing-training support system for kinesitherapy. The system consists of an optical sensor, an accelerometer, a microcontroller, a Bluetooth module and a laptop computer. The optical sensor, which is attached to the patient's chest, measures chest circumference. The low frequency components of circumference are mainly generated by breathing. The optical sensor outputs the circumference as serial digital data. The accelerometer measures the dynamic acceleration force produced by exercise, such as walking. The microcontroller sequentially samples this force. The acceleration force and chest circumference are sent sequentially via Bluetooth to a physical therapist's laptop computer, which receives and stores the data. The computer simultaneously displays these data so that the physical therapist can monitor the patient's breathing and acceleration waveforms and give instructions to the patient in real time during exercise. Moreover, the system enables a quantitative training evaluation and calculation the volume of air inspired and expired by the lungs.

  16. The role of size in synchronous air breathing of Hoplosternum littorale.

    Science.gov (United States)

    Sloman, Katherine A; Sloman, Richard D; De Boeck, Gudrun; Scott, Graham R; Iftikar, Fathima I; Wood, Chris M; Almeida-Val, Vera M F; Val, Adalberto L

    2009-01-01

    Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated P(crit) (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ.

  17. Impact of manakin motion on particle transport in the breathing zone

    Science.gov (United States)

    The current experimental investigation is focused on particle measurements using Phase Doppler Anemometry (PDA) in the breathing zone of a seated, breathing, thermal manikin under stationary and rotational conditions. Particle size, concentration, flux, and velocity data were co...

  18. [*C]octanoic acid breath test to measure gastric emptying rate of solids.

    Science.gov (United States)

    Maes, B D; Ghoos, Y F; Rutgeerts, P J; Hiele, M I; Geypens, B; Vantrappen, G

    1994-12-01

    We have developed a breath test to measure solid gastric emptying using a standardized scrambled egg test meal (250 kcal) labeled with [14C]octanoic acid or [13C]octanoic acid. In vitro incubation studies showed that octanoic acid is a reliable marker of the solid phase. The breath test was validated in 36 subjects by simultaneous radioscintigraphic and breath test measurements. Nine healthy volunteers were studied after intravenous administration of 200 mg erythromycin and peroral administration of 30 mg propantheline, respectively. Erythromycin significantly enhanced gastric emptying, while propantheline significantly reduced gastric emptying rates. We conclude that the [*C]octanoic breath test is a promising and reliable test for measuring the gastric emptying rate of solids.

  19. Masticatory Changes in Oral Breath Secondary to Allergic Rhinitis: Integrative Review

    Directory of Open Access Journals (Sweden)

    Bezerra, Luciana Ângelo

    2014-04-01

    Full Text Available Introduction The III Brazilian Consensus on Rhinitis (2012 defines allergic rhinitis as a nasal mucosa inflammation, mediated by immunoglobulin E, after exposure to allergens. The classic signs and symptoms of allergic rhinitis are nasal obstruction, watery rhinorrhea, sneezing, and nasal itching, often reversible either spontaneously or with treatment, and mouth breathing (breathing predominantly through the mouth, regardless of the cause, due to a nasal breathing impairment in some cases. Objective To evaluate the literature on masticatory changes in children with mouth breathing due to allergic rhinitis. Methods We conducted a search of the past 10 years, at Bireme and MEDLINE databases, for articles that covered masticatory changes in children with mouth breathing secondary to allergic rhinitis. Results We found 1,986 articles, including 15 repeated in databases, but only two articles met the inclusion criteria fully. Discussion We found few studies to answer the question raised in this review, and those studies have some methodological limitations. Most articles claimed no have statistically significant differences in masticatory changes in this population. Conclusion A better controlled study (isolating diseases, exposure time, with a larger sample (sample calculation appropriate, would be necessary to examine such changes.

  20. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E. [Mayo Clinic (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  1. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    International Nuclear Information System (INIS)

    Tryggestad, E.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  2. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing

    International Nuclear Information System (INIS)

    Low, Daniel A.; Nystrom, Michelle; Kalinin, Eugene; Parikh, Parag; Dempsey, James F.; Bradley, Jeffrey D.; Mutic, Sasa; Wahab, Sasha H.; Islam, Tareque; Christensen, Gary; Politte, David G.; Whiting, Bruce R.

    2003-01-01

    Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity-modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath-hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four-dimensional (4-D) image set, where tidal lung volume is the additional dimension. An analysis of this 4-D data leads to methods for digital-spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4-D image set is generated by sorting free-breathing multislice CT scans according to user-defined tidal-volume bins. A multislice CT scanner is operated in the cine mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital-spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 cm 3 . An analysis of sagittal and

  3. Metronome Use for Coordination of Breaths and Cardiac Compressions Delivered by Minimally-Trained Caregivers During Two-Person CPR

    Science.gov (United States)

    Hurst, Victor, IV; West, Sarah; Austin, Paul; Branson, Richard; Beck, George

    2005-01-01

    Astronaut crew medical officers (CMO) aboard the International Space Station (ISS) receive 40 hours of medical training over 18 months before each mission, including two-person cardiopulmonary resuscitation (2CPR) as recommended by the American Heart Association (AHA). Recent studies have concluded that the use of metronomic tones improves the coordination of 2CPR by trained clinicians. 2CPR performance data for minimally-trained caregivers has been limited. The goal of this study was to determine whether use of a metronome by minimally-trained caregivers (CMO analogues) would improve 2CPR performance. 20 pairs of minimally-trained caregivers certified in 2CPR via AHA guidelines performed 2CPR for 4 minutes on an instrumented manikin using 3 interventions: 1) Standard 2CPR without a metronome [NONE], 2) Standard 2CPR plus a metronome for coordinating compression rate only [MET], 3) Standard 2CPR plus a metronome for coordinating both the compression rate and ventilation rate [BOTH]. Caregivers were evaluated for their ability to meet the AHA guideline of 32 breaths-240 compressions in 4 minutes. All (100%) caregivers using the BOTH intervention provided the required number of ventilation breaths as compared with the NONE caregivers (10%) and MET caregivers (0%). For compressions, 97.5% of the BOTH caregivers were not successful in meeting the AHA compression guideline; however, an average of 238 compressions of the desired 240 were completed. None of the caregivers were successful in meeting the compression guideline using the NONE and MET interventions. This study demonstrates that use of metronomic tones by minimally-trained caregivers for coordinating both compressions and breaths improves 2CPR performance. Meeting the breath guideline is important to minimize air entering the stomach, thus decreasing the likelihood of gastric aspiration. These results suggest that manifesting a metronome for the ISS may augment the performance of 2CPR on orbit and thus may

  4. Almagate interference in breath test results for the diagnosis of Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    Carles Pons

    2014-08-01

    Full Text Available Background: Infection by Helicobacter pylori is common and affects both genders at any age. The 13C-urea breath test is a widely used test for the diagnosis of this infection. However, multiple drugs used for the treatment of Helicobacter pylori infection symptoms have interactions with this breath test that generate false negative results. This observational study was to assess the potential interaction between almagate and the breath test. Methods: Thirty subjects on almagate therapy who underwent a breath test were included. If the result was negative, almagate was withdrawn for a month and the breath test was then repeated. Results: In general, 51.9 % of assessed subjects had a negative result after the first test, and 100 % of these also had a negative result after the second test. Conclusions: It was concluded that the use of almagate does not interfere in breath test results. These results provide a drug therapy option for the treatment of symptoms associated with Helicobacter pylori infection during the diagnostic process.

  5. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    International Nuclear Information System (INIS)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D; Xie, R

    2016-01-01

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  6. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, WA (United States); Xie, R [Ironwood Cancer and Research Centers, Chandler, AZ (United States)

    2016-06-15

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  7. Impact of breathing on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2011-01-01

    The characteristics of the thermal plume above a human body should be well-defined in order to properly design the indoor environment and allow correct simulation of the indoor conditions by CFD or experimentally. The objective of the presented study was to investigate the influence of breathing....... A thermal manikin with female body shape equipped with an artificial lung was used to simulate the dry heat loss and breathing process of a sitting occupant. Three cases were examined: non-breathing, exhalation through nose, and exhalation through mouth. Measurements of the air temperature and speed...

  8. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    Directory of Open Access Journals (Sweden)

    Van Sickle David

    2008-03-01

    Full Text Available Abstract Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male. Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86 and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification.

  9. Health care in China: improvement, challenges, and reform.

    Science.gov (United States)

    Wang, Chen; Rao, Keqin; Wu, Sinan; Liu, Qian

    2013-02-01

    Over the past 2 decades, significant progress has been made in improving the health-care system and people's health conditions in China. Following rapid economic growth and social development, China's health-care system is facing new challenges, such as increased health-care demands and expenditure, inefficient use of health-care resources, unsatisfying implementation of disease management guidelines, and inadequate health-care insurance. Facing these challenges, the Chinese government carried out a national health-care reform in 2009. A series of policies were developed and implemented to improve the health-care insurance system, the medical care system, the public health service system, the pharmaceutical supply system, and the health-care institution management system in China. Although these measures have shown promising results, further efforts are needed to achieve the ultimate goal of providing affordable and high-quality care for both urban and rural residents in China. This article not only covers the improvement, challenges, and reform of health care in general in China, but also highlights the status of respiratory medicine-related issues.

  10. Time course of ozone-induced changes in breathing pattern in healthy exercising humans.

    Science.gov (United States)

    Schelegle, Edward S; Walby, William F; Adams, William C

    2007-02-01

    We examined the time course of O3-induced changes in breathing pattern in 97 healthy human subjects (70 men and 27 women). One- to five-minute averages of breathing frequency (f(B)) and minute ventilation (Ve) were used to generate plots of cumulative breaths and cumulative exposure volume vs. time and cumulative exposure volume vs. cumulative breaths. Analysis revealed a three-phase response; delay, no response detected; onset, f(B) began to increase; response, f(B) stabilized. Regression analysis was used to identify four parameters: time to onset, number of breaths at onset, cumulative inhaled dose of ozone at onset of O3-induced tachypnea, and the percent change in f(B). The effect of altering O3 concentration, Ve, atropine treatment, and indomethacin treatment were examined. We found that the lower the O3 concentration, the greater the number of breaths at onset of tachypnea at a fixed ventilation, whereas number of breaths at onset of tachypnea remains unchanged when Ve is altered and O3 concentration is fixed. The cumulative inhaled dose of O3 at onset of tachypnea remained constant and showed no relationship with the magnitude of percent change in f(B). Atropine did not affect any of the derived parameters, whereas indomethacin did not affect time to onset, number of breaths at onset, or cumulative inhaled dose of O3 at onset of tachypnea but did attenuate percent change in f(B). The results are discussed in the context of dose response and intrinsic mechanisms of action.

  11. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    Science.gov (United States)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  12. Improving adolescent maternal health

    African Journals Online (AJOL)

    2 Department of Obstetrics and Gynaecology, Faculty of Health Sciences, Nelson R ... of information concerning their bodies and ..... improve quality of healthcare services for adolescents[15] – services that .... equipment, medicines, supplies and technology needed to ensure effective service provision to adolescents.

  13. Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs.

    Science.gov (United States)

    Trefz, Phillip; Kamysek, Svend; Fuchs, Patricia; Sukul, Pritam; Schubert, Jochen K; Miekisch, Wolfram

    2017-03-20

    Breath analysis not only holds great potential for the development of new non-invasive diagnostic methods, but also for the identification and follow up of drug levels in breath. This is of interest for both, forensic and medical science. On the one hand, the detection of drugs of abuse in exhaled breath-similar to the well-known breath alcohol tests-would be highly desirable as an alternative to blood or urine analysis in situations such as police controls for drugged driving. The non-invasive detection of drugs and their metabolites is thus of great interest in forensic science, especially since marijuana is becoming legalized in certain parts of the US and the EU. The detection and monitoring of medical drugs in exhaled breath without the need of drawing blood samples on the other hand, is of high relevance in the clinical environment. This could facilitate a more precise medication and enable therapy control without any burden to the patient. Furthermore, it could be a step towards personalized medicine. This review gives an overview of the current state of drug detection in breath, including both volatile and non-volatile substances. The review is divided into two sections. The first section deals with qualitative detection of drugs (drugs of abuse), while the second is related to quantitative drug detection (medical drugs). Chances and limitations are discussed for both aspects. The detection of the intravenous anesthetic propofol is presented as a detailed example that demonstrates the potential, requirements, pitfalls and limitations of therapeutic drug monitoring by means of breath analysis.

  14. A small business worksite wellness model for improving health behaviors.

    Science.gov (United States)

    Merrill, Ray M

    2013-08-01

    To evaluate the effectiveness of a wellness program delivered by WellSteps, LLC, aimed at improving employee health behaviors in small companies that lack the resources to independently develop and manage a wellness program. Analyses are based on 618 employees from five diverse companies that completed an initial personal health assessment. Exercise and dietary behaviors significantly improved across the five companies. Significant improvements in health perception and life satisfaction also resulted and were associated with improvements in health behaviors. Three of the five companies, each with fewer than 50 employees, were most effective in influencing positive health behaviors, health perceptions, and life satisfaction. The worksite wellness program effectively improved health behaviors, health perceptions, and life satisfaction.

  15. Quality Improvement in Athletic Health Care.

    Science.gov (United States)

    Lopes Sauers, Andrea D; Sauers, Eric L; Valier, Alison R Snyder

    2017-11-01

      Quality improvement (QI) is a health care concept that ensures patients receive high-quality (safe, timely, effective, efficient, equitable, patient-centered) and affordable care. Despite its importance, the application of QI in athletic health care has been limited.   To describe the need for and define QI in health care, to describe how to measure quality in health care, and to present a QI case in athletic training.   As the athletic training profession continues to grow, a widespread engagement in QI efforts is necessary to establish the value of athletic training services for the patients that we serve. A review of the importance of QI in health care, historical perspectives of QI, tools to drive QI efforts, and examples of common QI initiatives is presented to assist clinicians in better understanding the value of QI for advancing athletic health care and the profession. Clinical and Research Advantages:  By engaging clinicians in strategies to measure outcomes and improve their patient care services, QI practice can help athletic trainers provide high-quality and affordable care to patients.

  16. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    Science.gov (United States)

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas

  17. Prevalence of malocclusion among mouth breathing children: do expectations meet reality?

    Science.gov (United States)

    Souki, Bernardo Q; Pimenta, Giovana B; Souki, Marcelo Q; Franco, Leticia P; Becker, Helena M G; Pinto, Jorge A

    2009-05-01

    The aim of this study was to report epidemiological data on the prevalence of malocclusion among a group of children, consecutively admitted at a referral mouth breathing otorhinolaryngological (ENT) center. We assessed the association between the severity of the obstruction by adenoids/tonsils hyperplasia or the presence of allergic rhinitis and the prevalence of class II malocclusion, anterior open bite and posterior crossbite. Cross-sectional, descriptive study, carried out at an Outpatient Clinic for Mouth-Breathers. Dental inter-arch relationship and nasal obstructive variables were diagnosed and the appropriate cross-tabulations were done. Four hundred and one patients were included. Mean age was 6 years and 6 months (S.D.: 2 years and 7 months), ranging from 2 to 12 years. All subjects were evaluated by otorhinolaryngologists to confirm mouth breathing. Adenoid/tonsil obstruction was detected in 71.8% of this sample, regardless of the presence of rhinitis. Allergic rhinitis alone was found in 18.7% of the children. Non-obstructive mouth breathing was diagnosed in 9.5% of this sample. Posterior crossbite was detected in almost 30% of the children during primary and mixed dentitions and 48% in permanent dentition. During mixed and permanent dentitions, anterior open bite and class II malocclusion were highly prevalent. More than 50% of the mouth breathing children carried a normal inter-arch relationship in the sagital, transversal and vertical planes. Univariate analysis showed no significant association between the type of the obstruction (adenoids/tonsils obstructive hyperplasia or the presence of allergic rhinitis) and malocclusions (class II, anterior open bite and posterior crossbite). The prevalence of posterior crossbite is higher in mouth breathing children than in the general population. During mixed and permanent dentitions, anterior open bite and class II malocclusion were more likely to be present in mouth breathers. Although more children showed

  18. Ethylene and ammonia traces measurements from the patients' breath with renal failure via LPAS method

    Science.gov (United States)

    Popa, C.; Dutu, D. C. A.; Cernat, R.; Matei, C.; Bratu, A. M.; Banita, S.; Dumitras, D. C.

    2011-11-01

    The application of laser photoacoustic spectroscopy (LPAS) for fast and precise measurements of breath biomarkers has opened up new promises for monitoring and diagnostics in recent years, especially because breath test is a non-invasive method, safe, rapid and acceptable to patients. Our study involved assessment of breath ethylene and breath ammonia levels in patients with renal failure receiving haemodialysis (HD) treatment. Breath samples from healthy subjects and from patients with renal failure were collected using chemically inert aluminized bags and were subsequently analyzed using the LPAS technique. We have found out that the composition of exhaled breath in patients with renal failure contains not only ethylene, but also ammonia and gives valuable information for determining efficacy and endpoint of HD. Analysis of ethylene and ammonia traces from the human breath may provide insight into severity of oxidative stress and metabolic disturbances and may ensure optimal therapy and prevention of pathology at patients on continuous HD.

  19. Collaboration between local health and local government agencies for health improvement.

    Science.gov (United States)

    Hayes, Sara L; Mann, Mala K; Morgan, Fiona M; Kelly, Mark J; Weightman, Alison L

    2012-10-17

    In many countries, national, regional and local inter- and intra-agency collaborations have been introduced to improve health outcomes. Evidence is needed on the effectiveness of locally developed partnerships which target changes in health outcomes and behaviours. To evaluate the effects of interagency collaboration between local health and local government agencies on health outcomes in any population or age group. We searched the Cochrane Public Health Group Specialised Register, AMED, ASSIA, CENTRAL, CINAHL, DoPHER, EMBASE, ERIC, HMIC, IBSS, MEDLINE, MEDLINE In-Process, OpenGrey, PsycINFO, Rehabdata, Social Care Online, Social Services Abstracts, Sociological Abstracts, TRoPHI and Web of Science from 1966 through to January 2012. 'Snowballing' methods were used, including expert contact, citation tracking, website searching and reference list follow-up. Randomized controlled trials (RCTs), controlled clinical trials (CCTs), controlled before-and-after studies (CBAs) and interrupted time series (ITS) where the study reported individual health outcomes arising from interagency collaboration between health and local government agencies compared to standard care. Studies were selected independently in duplicate, with no restriction on population subgroup or disease. Two authors independently conducted data extraction and assessed risk of bias for each study. Sixteen studies were identified (28,212 participants). Only two were considered to be at low risk of bias. Eleven studies contributed data to the meta-analyses but a narrative synthesis was undertaken for all 16 studies. Six studies examined mental health initiatives, of which one showed health benefit, four showed modest improvement in one or more of the outcomes measured but no clear overall health gain, and one showed no evidence of health gain. Four studies considered lifestyle improvements, of which one showed some limited short-term improvements, two failed to show health gains for the intervention

  20. A pilot study exploring the use of breath analysis to differentiate healthy cattle from cattle experimentally infected with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Christine K Ellis

    Full Text Available Bovine tuberculosis, caused by Mycobacterium bovis, is a zoonotic disease of international public health importance. Ante-mortem surveillance is essential for control; however, current surveillance tests are hampered by limitations affecting ease of use or quality of results. There is an emerging interest in human and veterinary medicine in diagnosing disease via identification of volatile organic compounds produced by pathogens and host-pathogen interactions. The objective of this pilot study was to explore application of existing human breath collection and analysis methodologies to cattle as a means to identify M. bovis infection through detection of unique volatile organic compounds or changes in the volatile organic compound profiles present in breath. Breath samples from 23 male Holstein calves (7 non-infected and 16 M. bovis-infected were collected onto commercially available sorbent cartridges using a mask system at 90 days post-inoculation with M. bovis. Samples were analyzed using gas chromatography-mass spectrometry, and chromatographic data were analyzed using standard analytical chemical and metabolomic analyses, principle components analysis, and a linear discriminant algorithm. The findings provide proof of concept that breath-derived volatile organic compound analysis can be used to differentiate between healthy and M. bovis-infected cattle.

  1. How could health information be improved? Recommended actions from the Victorian Consultation on Health Literacy.

    Science.gov (United States)

    Hill, Sophie J; Sofra, Tanya A

    2017-03-07

    Objective Health literacy is on the policy agenda. Accessible, high-quality health information is a major component of health literacy. Health information materials include print, electronic or other media-based information enabling people to understand health and make health-related decisions. The aim of the present study was to present the findings and recommended actions as they relate to health information of the Victorian Consultation on Health Literacy. Methods Notes and submissions from the 2014 Victorian Consultation workshops and submissions were analysed thematically and a report prepared with input from an advisory committee. Results Health information needs to improve and recommendations are grouped into two overarching themes. First, the quality of information needs to be increased and this can be done by developing a principle-based framework to inform updating guidance for information production, formulating standards to raise quality and improving the systems for delivering information to people. Second, there needs to be a focus on users of health information. Recommendation actions were for information that promoted active participation in health encounters, resources to encourage critical users of health information and increased availability of information tailored to population diversity. Conclusion A framework to improve health information would underpin the efforts to meet literacy needs in a more consistent way, improving standards and ultimately increasing the participation by consumers and carers in health decision making and self-management. What is known about the topic? Health information is a critical component of the concept of health literacy. Poorer health literacy is associated with poorer health outcomes across a range of measures. Improving access to and the use of quality sources of health information is an important strategy for meeting the health literacy needs of the population. In recent years, health services and

  2. Psychological predictors of the antihypertensive effects of music-guided slow breathing.

    Science.gov (United States)

    Modesti, Pietro Amedeo; Ferrari, Antonella; Bazzini, Cristina; Costanzo, Giusi; Simonetti, Ignazio; Taddei, Stefano; Biggeri, Annibale; Parati, Gianfranco; Gensini, Gian Franco; Sirigatti, Saulo

    2010-05-01

    The possibility that daily sessions of music-guided slow breathing may reduce 24-h ambulatory blood pressure (ABP), and predictors of efficacy were explored in a randomized, placebo-controlled trial with parallel design. Age-matched and sex-matched hypertensive patients were randomized to music-guided slow breathing exercises (4-6 breaths/min; 1: 2 ratio of inspiration: expiration duration) (Intervention; n = 29) or to control groups who were thought to relax while either listening to slow music (Control-M; n = 26) or reading a book (Control-R; n = 31). At baseline and at follow-up visits (1 week and 1, 3 and 6 months), ABP monitoring was performed. At mixed model analysis, intervention was associated with a significant reduction of 24-h (P = 0.001) and night-time (0100-0600 h) (P music-guided slow breathing significantly reduce 24-h systolic ABP, and psychological predictors of efficacy can be identified.

  3. Evolution of lung breathing from a lungless primitive vertebrate.

    Science.gov (United States)

    Hoffman, M; Taylor, B E; Harris, M B

    2016-04-01

    Air breathing was critical to the terrestrial radiation and evolution of tetrapods and arose in fish. The vertebrate lung originated from a progenitor structure present in primitive boney fish. The origin of the neural substrates, which are sensitive to metabolically produced CO2 and which rhythmically activate respiratory muscles to match lung ventilation to metabolic demand, is enigmatic. We have found that a distinct periodic centrally generated rhythm, described as "cough" and occurring in lamprey in vivo and in vitro, is modulated by central sensitivity to CO2. This suggests that elements critical for the evolution of breathing in tetrapods, were present in the most basal vertebrate ancestors prior to the evolution of the lung. We propose that the evolution of breathing in all vertebrates occurred through exaptations derived from these critical basal elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The effects of aquatic hypercapnia on air-breathing fishes

    DEFF Research Database (Denmark)

    Jew, Corey James; Thomsen, Mikkel; Hicks, James W

    The notion that bimodal breathers (animals that breathe both air and water) obtain O2 from the air and exhale CO2 into the water has been well established in the literature. However, while the majority of supporting experiments tested animals maintained in hypoxic water, the freshwater systems...... that bimodal breathers inhabit have been reported to be hypercapnic as well. Using a biomodal respirometer, data from three air-breathing fishes show that when in hypercapnic water, excretion of CO2 into the air signicantly increases and can account for 10% to 70% of metabolically produced CO2 depending...... on species. The large variation between species suggests the independent evolution of air-breathing organs and behaviors results in different blood PCO2 regulating strategies. However, all three species continued to rely on the water for CO2 excretion to some extent when submerged....

  5. Health Activities Project (HAP): Breathing Fitness Module.

    Science.gov (United States)

    Buller, Dave; And Others

    Contained within this Health Activities Project (HAP) learning packet are activities for children in grades 5-8. Design of the activities centers around the idea that students can control their own health and safety. Within this module are teacher and student folios describing four activities which involve students in learning how to measure their…

  6. Scintigraphic determination of gastrointestinal transit times. A comparison with breath hydrogen and radiologic methods

    DEFF Research Database (Denmark)

    Madsen, J L; Larsen, N E; Hilsted, J

    1991-01-01

    A scintigraphic method for determination of gastrointestinal transit times was compared with the breath hydrogen test and a multiple-bolus, single-radiograph technique. A close temporal association was found between the caecal appearance of radioactivity and the onset of breath hydrogen excretion...... the breath hydrogen concentration profiles....

  7. Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Eldh, T.; Heinzelmann, F.; Velalakan, A. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Budach, W. [Duesseldorf Univ. (Germany). Dept. of Radiation Oncology; Belka, C. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Muenchen Univ. (Germany). Dept. of Radiation Oncology; Jendrossek, V. [Univ. Hospital of Tuebingen (Germany). Dept. of Radiation Oncology; Duisburg-Essen Univ., Essen (DE). Inst. of Cell Biology (Cancer Research)

    2012-03-15

    Pneumonitis and fibrosis constitute serious adverse effects of radiotherapy in the thoracic region. In this study, time-course and dose-dependence of clinically relevant parameters of radiation-induced lung injury in C57BL/6J mice were analyzed. A well-characterized disease model is necessary for the analysis of the cellular and molecular mechanisms using genetically modified mice. C57BL/6J mice received single dose right hemithorax irradiation with 12.5 or 22.5 Gy. Body weight and breathing frequency were recorded as parameters for health impairment. Lung tissue was collected over 24 weeks for histological analysis. Hemithorax irradiation with 12.5 or 22.5 Gy induced biphasic breathing impairment with the first increase between days 7 and 70. Although breathing impairment was more pronounced in the 22.5 Gy group, it was accompanied in both dose groups by pneumonitis-associated histological changes. A second rise in breathing frequency ratios became visible starting on day 70 with a steady increase until day 210. Again, breathing was more strongly affected in the 22.5 Gy group. However, breathing impairment coincided only in the 22.5 Gy group with a significant increase in collagen deposition in the lung tissue by day 210. Tissue inflammation and fibrosis were observed in the irradiated and the shielded lungs, pointing toward involvement of systemic effects. Hemithorax irradiation induces time-dependent pneumonitis and fibrosis in C57BL/6J mice. While hemithorax irradiation with 12.5 Gy is sufficient to induce lung inflammation, it is below the threshold for collagen deposition and fibrosis development by day 210.

  8. Combined diet and physical activity is better than diet or physical activity alone at improving health outcomes for patients in New Zealand's primary care intervention.

    Science.gov (United States)

    Elliot, Catherine Anne; Hamlin, Michael John

    2018-02-08

    A dearth of knowledge exists regarding how multiple health behavior changes made within an exercise prescription programme can improve health parameters. This study aimed to analyse the impact of changing diet and increasing exercise on health improvements among exercise prescription patients. In 2016, a representative sample of all enroled New Zealand exercise prescription programme (Green Prescription) patients were surveyed (N = 1488, 29% male, 46% ≥ 60 yr). Seven subsamples were created according to their associated health problems; metabolic (n = 1192), physiological (n = 627), psychological (n = 447), sleep problems (n = 253), breathing difficulties (n = 243), fall prevention (n = 104), and smoking (n = 67). After controlling for sex and age, multinomial regression analyses were executed. Overall, weight problems were most prevalent (n = 886, 60%), followed by high blood pressure/risk of stroke (n = 424, 29%), arthritis (n = 397, 27%), and back pain/problems (n = 382, 26%). Among patients who reported metabolic health problems, those who changed their diet were 7.2, 2.4 and 3.5 times more likely to lose weight, lower their blood pressure, and lower their cholesterol, respectively compared to the control group. Moreover, those who increased their physical activity levels were 5.2 times more likely to lose weight in comparison to controls. Patients who both increased physical activity and improved diet revealed higher odds of experiencing health improvements than those who only made one change. Most notably, the odds of losing weight were much higher for patients changing both behaviours (17.5) versus changing only physical activity (5.2) or only diet (7.2). Although it is not currently a programme objective, policy-makers could include nutrition education within the Green Prescription initiative, particularly for the 55% of patients who changed their diet while in the programme. Physical activity prescription with a

  9. SU-E-J-227: Breathing Pattern Consistency and Reproducibility: Comparative Analysis for Supine and Prone Body Positioning

    International Nuclear Information System (INIS)

    Laugeman, E; Weiss, E; Chen, S; Hugo, G; Rosu, M

    2014-01-01

    Purpose: Evaluate and compare the cycle-to-cycle consistency of breathing patterns and their reproducibility over the course of treatment, for supine and prone positioning. Methods: Respiratory traces from 25 patients were recorded for sequential supine/prone 4DCT scans acquired prior to treatment, and during the course of the treatment (weekly or bi-weekly). For each breathing cycle, the average(AVE), end-of-exhale(EoE) and end-of-inhale( EoI) locations were identified using in-house developed software. In addition, the mean values and variations for the above quantities were computed for each breathing trace. F-tests were used to compare the cycle-to-cycle consistency of all pairs of sequential supine and prone scans. Analysis of variances was also performed using population means for AVE, EoE and EoI to quantify differences between the reproducibility of prone and supine respiration traces over the treatment course. Results: Consistency: Cycle-to-cycle variations are less in prone than supine in the pre-treatment and during-treatment scans for AVE, EoE and EoI points, for the majority of patients (differences significant at p<0.05). The few cases where the respiratory pattern had more variability in prone appeared to be random events. Reproducibility: The reproducibility of breathing patterns (supine and prone) improved as treatment progressed, perhaps due to patients becoming more comfortable with the procedure. However, variability in supine position continued to remain significantly larger than in prone (p<0.05), as indicated by the variance analysis of population means for the pretreatment and subsequent during-treatment scans. Conclusions: Prone positioning stabilizes breathing patterns in most subjects investigated in this study. Importantly, a parallel analysis of the same group of patients revealed a tendency towards increasing motion amplitude of tumor targets in prone position regardless of their size or location; thus, the choice for body positioning

  10. Application of the glycocolate 14C breath test in the stydy of rosacea

    International Nuclear Information System (INIS)

    Woscoff, A.; Wainer, S.; Gaon, D.; Pisarello de Troparevsky, M.L.; Arciprete, C.P.; Mitta, A.E.A.

    1987-01-01

    Small bowel bacterial contamination was determined in patients affected by rosacea normal or gastric hyposecretors. The Breath Test 14 C was used with glycocolate 14 C Na. The study was completed by determination of gastric acidity, Key test, Schilling test and d xilosa test with positive results. Metronidazol was administered to these patients, thus normalizing the small bowel contamination and, at the same time, improving the dermatological process. (M.E.L.) [es

  11. Improving high quality, equitable maternal health services in Malawi ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving high quality, equitable maternal health services in Malawi (IMCHA) ... In response, the Ministry of Health implemented a Standards-Based Management and Recognition for Reproductive Health initiative to improve ... Total funding.

  12. Do elite breath-hold divers suffer from mild short-term memory impairments?

    Science.gov (United States)

    Billaut, François; Gueit, Patrice; Faure, Sylvane; Costalat, Guillaume; Lemaître, Frédéric

    2018-03-01

    Repeated apneas are associated with severe hypoxemia that may ultimately lead to loss of consciousness in some breath-hold divers. Despite increasing number of practitioners, the relationship between apnea-induced hypoxia and neurocognitive functions is still poorly understood in the sport of free diving. To shed light onto this phenomenon, we examined the impact of long-term breath-hold diving training on attentional processing, short-term memory, and long-term mnesic and executive functions. Thirty-six men matched for age, height, and weight were separated into the following 3 groups: (i) 12 elite breath-hold divers (EBHD), mean static apnea best time 371 s, 105 months mean apnea experience; (ii) 12 novice breath-hold divers, mean best time 243 s, 8.75 months mean apnea experience; and (iii) 12 physical education students with no breath-hold diving experience; all of these participants performed varied written and computerized neuropsychological tasks. Compared with the 2 other groups, the EBHD group was slower to complete the interference card during a Stroop test (F [1,33] = 4.70, p short-term memory impairments.

  13. The effectiveness of M-health technologies for improving health and health services: a systematic review protocol

    Directory of Open Access Journals (Sweden)

    Patel Vikram

    2010-10-01

    Full Text Available Abstract Background The application of mobile computing and communication technology is rapidly expanding in the fields of health care and public health. This systematic review will summarise the evidence for the effectiveness of mobile technology interventions for improving health and health service outcomes (M-health around the world. Findings To be included in the review interventions must aim to improve or promote health or health service use and quality, employing any mobile computing and communication technology. This includes: (1 interventions designed to improve diagnosis, investigation, treatment, monitoring and management of disease; (2 interventions to deliver treatment or disease management programmes to patients, health promotion interventions, and interventions designed to improve treatment compliance; and (3 interventions to improve health care processes e.g. appointment attendance, result notification, vaccination reminders. A comprehensive, electronic search strategy will be used to identify controlled studies, published since 1990, and indexed in MEDLINE, EMBASE, PsycINFO, Global Health, Web of Science, the Cochrane Library, or the UK NHS Health Technology Assessment database. The search strategy will include terms (and synonyms for the following mobile electronic devices (MEDs and a range of compatible media: mobile phone; personal digital assistant (PDA; handheld computer (e.g. tablet PC; PDA phone (e.g. BlackBerry, Palm Pilot; Smartphone; enterprise digital assistant; portable media player (i.e. MP3 or MP4 player; handheld video game console. No terms for health or health service outcomes will be included, to ensure that all applications of mobile technology in public health and health services are identified. Bibliographies of primary studies and review articles meeting the inclusion criteria will be searched manually to identify further eligible studies. Data on objective and self-reported outcomes and study quality will

  14. The effectiveness of M-health technologies for improving health and health services: a systematic review protocol.

    Science.gov (United States)

    Free, Caroline; Phillips, Gemma; Felix, Lambert; Galli, Leandro; Patel, Vikram; Edwards, Philip

    2010-10-06

    The application of mobile computing and communication technology is rapidly expanding in the fields of health care and public health. This systematic review will summarise the evidence for the effectiveness of mobile technology interventions for improving health and health service outcomes (M-health) around the world. To be included in the review interventions must aim to improve or promote health or health service use and quality, employing any mobile computing and communication technology. This includes: (1) interventions designed to improve diagnosis, investigation, treatment, monitoring and management of disease; (2) interventions to deliver treatment or disease management programmes to patients, health promotion interventions, and interventions designed to improve treatment compliance; and (3) interventions to improve health care processes e.g. appointment attendance, result notification, vaccination reminders.A comprehensive, electronic search strategy will be used to identify controlled studies, published since 1990, and indexed in MEDLINE, EMBASE, PsycINFO, Global Health, Web of Science, the Cochrane Library, or the UK NHS Health Technology Assessment database. The search strategy will include terms (and synonyms) for the following mobile electronic devices (MEDs) and a range of compatible media: mobile phone; personal digital assistant (PDA); handheld computer (e.g. tablet PC); PDA phone (e.g. BlackBerry, Palm Pilot); Smartphone; enterprise digital assistant; portable media player (i.e. MP3 or MP4 player); handheld video game console. No terms for health or health service outcomes will be included, to ensure that all applications of mobile technology in public health and health services are identified. Bibliographies of primary studies and review articles meeting the inclusion criteria will be searched manually to identify further eligible studies. Data on objective and self-reported outcomes and study quality will be independently extracted by two review

  15. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  16. Sleep-Disordered Breathing in Heart Failure - A Therapeutic Dilemma.

    Science.gov (United States)

    Haruki, Nobuhiko; Floras, John S

    2017-06-23

    Sleep-disordered breathing (SDB) occurs in approximately 50% of patients with reduced left ventricular ejection fraction receiving contemporary heart failure (HF) therapies. Obstructive (OSA) and central sleep apneas (CSA) interrupt breathing by different mechanisms but impose qualitatively similar autonomic, chemical, mechanical, and inflammatory burdens on the heart and circulation. Because contemporary evidence-based drug and device HF therapies have little or no mitigating effect on the acute or long-term consequences of such stimuli, there is a sound mechanistic rationale for targeting SDB to reduce cardiovascular event rates and prolong life. However, the promise of observational studies and randomized trials of small size and duration describing a beneficial effect of treating SDB in HF via positive airway pressure was not realized in 2 recent randomized outcome-driven trials: SAVE, which evaluated the cardiovascular effect of treating OSA in a cohort without HF, and SERVE-HF, which reported the results of a strategy of random allocation of minute-ventilation-triggered adaptive servo-ventilation (ASV) for HF patients with CSA. Whether effective treatment of either OSA or CSA improves the HF trajectory by reducing cardiovascular morbidity or mortality has yet to be definitively established. ADVENT-HF, designed to determine the effect of treating both CSA and non-sleepy OSA HF patients with a peak-airflow triggered ASV algorithm, could resolve this present clinical equipoise concerning the treatment of SDB.

  17. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2015-03-01

    Full Text Available Recent advancements in the use of electronic-nose (e-nose devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.

  18. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  19. 'Breath figure' PLGA films as implant coatings for controlled drug release

    Science.gov (United States)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  20. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results

  1. Housing improvements for health and associated socio-economic outcomes.

    Science.gov (United States)

    Thomson, Hilary; Thomas, Sian; Sellstrom, Eva; Petticrew, Mark

    2013-02-28

    The well established links between poor housing and poor health indicate that housing improvement may be an important mechanism through which public investment can lead to health improvement. Intervention studies which have assessed the health impacts of housing improvements are an important data resource to test assumptions about the potential for health improvement. Evaluations may not detect long term health impacts due to limited follow-up periods. Impacts on socio-economic determinants of health may be a valuable proxy indication of the potential for longer term health impacts. To assess the health and social impacts on residents following improvements to the physical fabric of housing. Twenty seven academic and grey literature bibliographic databases were searched for housing intervention studies from 1887 to July 2012 (ASSIA; Avery Index; CAB Abstracts; The Campbell Library; CINAHL; The Cochrane Library; COPAC; DH-DATA: Health Admin; EMBASE; Geobase; Global Health; IBSS; ICONDA; MEDLINE; MEDLINE In-Process & Other Non-Indexed Citations; NTIS; PAIS; PLANEX; PsycINFO; RIBA; SCIE; Sociological Abstracts; Social Science Citations Index; Science Citations Index expanded; SIGLE; SPECTR). Twelve Scandinavian grey literature and policy databases (Libris; SveMed+; Libris uppsök; DIVA; Artikelsök; NORART; DEFF; AKF; DSI; SBI; Statens Institut for Folkesundhed; Social.dk) and 23 relevant websites were searched. In addition, a request to topic experts was issued for details of relevant studies. Searches were not restricted by language or publication status. Studies which assessed change in any health outcome following housing improvement were included. This included experimental studies and uncontrolled studies. Cross-sectional studies were excluded as correlations are not able to shed light on changes in outcomes. Studies reporting only socio-economic outcomes or indirect measures of health, such as health service use, were excluded. All housing improvements which

  2. Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives

    DEFF Research Database (Denmark)

    Cristescu, S M; Marchenko, D; Mandon, J

    2012-01-01

    monitoring of NO concentrations in exhaled breath, and from plants under pathogen attack. A simple hand-held breath sampling device that allows single breath collection at various exhalation flows (15, 50, 100 and 300mL/s, respectively) is developed for off-line measurements and validated in combination...... with the WMS-based sensor. Additionally, the capability of plants to remove environmental NO is presented....

  3. Can life coaching improve health outcomes?

    DEFF Research Database (Denmark)

    Ammentorp, Jette

    26. Ammentorp J, Uhrenfeldt L, Angel F, Ehrensvärd, Carlsen E, Kofoed P-E. Can life coaching improve health outcomes? – A systematic review of intervention studies. Poster presented at the International Conference on Communication in Healthcare, Montreal Canada, 30 Sept 2013.......26. Ammentorp J, Uhrenfeldt L, Angel F, Ehrensvärd, Carlsen E, Kofoed P-E. Can life coaching improve health outcomes? – A systematic review of intervention studies. Poster presented at the International Conference on Communication in Healthcare, Montreal Canada, 30 Sept 2013....

  4. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    Energy Technology Data Exchange (ETDEWEB)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  5. Health activism: the way forward to improve health in difficult times.

    Science.gov (United States)

    Laverack, Glenn

    2013-09-01

    Health activism is an action on behalf of a cause, action that goes beyond what is conventional or routine in society. It involves a challenge to the existing order whenever it is perceived to lead to a social injustice or inequality. Today social injustice is killing people on a grand scale and it is timely for health activism to be used as a way forward to improve health during difficult economic and political times. Health activism is essential because it can create the necessary conditions for people to take control over their own lives when others cannot or will not act on their behalf. Health promotion agencies and the practitioners that they employ, professional organisations and researchers can also play an important role. What is clear is that if greedy corporations and complacent governments are not challenged, we will continue to have limited success in improving health.

  6. The Impact of Sleep-Disordered Breathing on Body Mass Index (BMI): The Sleep Heart Health Study (SHHS).

    Science.gov (United States)

    Brown, Mark A; Goodwin, James L; Silva, Graciela E; Behari, Ajay; Newman, Anne B; Punjabi, Naresh M; Resnick, Helaine E; Robbins, John A; Quan, Stuart F

    2011-12-08

    INTRODUCTION: It is well known that obesity is a risk factor for sleep-disordered breathing (SDB). However, whether SDB predicts increase in BMI is not well defined. Data from the Sleep Heart Health Study (SHHS) were analyzed to determine whether SDB predicts longitudinal increase in BMI, adjusted for confounding factors. METHODS: A full-montage unattended home polysomnogram (PSG) and body anthropometric measurements were obtained approximately five years apart in 3001 participants. Apnea-hypopnea index (AHI) was categorized using clinical thresholds: sleep apnea), and ≥ 15 (moderate to severe sleep apnea). Linear regression was used to examine the association between the three AHI groups and increased BMI. The model included age, gender, race, baseline BMI, and change in AHI as covariates. RESULTS: Mean (SD) age was 62.2 years (10.14), 55.2% were female and 76.1% were Caucasian. Five-year increase in BMI was modest with a mean (SD) change of 0.53 (2.62) kg/m(2) (p=0.071). A multivariate regression model showed that subjects with a baseline AHI between 5-15 had a mean increase in BMI of 0.22 kg/m(2) (p=0.055) and those with baseline AHI ≥ 15 had a BMI increase of 0.51 kg/m(2) (plosing weight.

  7. Sleep-disordered breathing in patients with myelomeningocele.

    Science.gov (United States)

    Patel, Daxa M; Rocque, Brandon G; Hopson, Betsy; Arynchyna, Anastasia; Bishop, E Ralee'; Lozano, David; Blount, Jeffrey P

    2015-07-01

    corrected for multiple measures). CONCLUSIONS A large proportion of patients with myelomeningocele who had undergone polysomnography showed evidence of disordered sleep on an initial study. Furthermore, 31% of patients had moderate or severe obstructive sleep apnea. Myelomeningocele patients with an abnormal sleep structure who had undergone nonoperative treatment with peripheral oxygen supplementation showed improvement in the apnea-hypopnea index. Results in this study suggested that polysomnography in patients with myelomeningocele may present an opportunity to detect and classify sleep apnea, identify low-risk interventions, and prevent future implications of sleep-disordered breathing.

  8. The glucose breath test: a diagnostic test for small bowel stricture(s) in Crohn's disease.

    Science.gov (United States)

    Mishkin, Daniel; Boston, Francis M; Blank, David; Yalovsky, Morty; Mishkin, Seymour

    2002-03-01

    The aim of this study was to determine whether an indirect noninvasive indicator of proximal bacterial overgrowth, the glucose breath test, was of diagnostic value in inflammatory bowel disease. Twenty four of 71 Crohn's disease patients tested had a positive glucose breath test. No statistical conclusions could be drawn between the Crohn's disease activity index and glucose breath test status. Of patients with radiologic evidence of small bowel stricture(s), 96.0% had a positive glucose breath test, while only one of 46 negative glucose breath test patients had a stricture. The positive and negative predictive values for a positive glucose breath test as an indicator of stricture formation were 96.0% and 97.8%, respectively. This correlation was not altered in Crohn's disease patients with fistulae or status postresection of the terminal ileum. The data in ulcerative colitis were nondiagnostic. In conclusion, the glucose breath test appears to be an accurate noninvasive inexpensive diagnostic test for small bowel stricture(s) and secondary bacterial overgrowth in Crohn's disease.

  9. Bio-magnetic signatures of fetal breathing movement

    International Nuclear Information System (INIS)

    Ulusar, U D; Wilson, J D; Murphy, P; Govindan, R B; Preissl, H; Lowery, C L; Eswaran, H

    2011-01-01

    The purpose of fetal magnetoencephalography (fMEG) is to record and analyze fetal brain activity. Unavoidably, these recordings consist of a complex mixture of bio-magnetic signals from both mother and fetus. The acquired data include biological signals that are related to maternal and fetal heart function as well as fetal gross body and breathing movements. Since fetal breathing generates a significant source of bio-magnetic interference during these recordings, the goal of this study was to identify and quantify the signatures pertaining to fetal breathing movements (FBM). The fMEG signals were captured using superconducting quantum interference devices (SQUIDs) The existence of FBM was verified and recorded concurrently by an ultrasound-based video technique. This simultaneous recording is challenging since SQUIDs are extremely sensitive to magnetic signals and highly susceptible to interference from electronic equipment. For each recording, an ultrasound-FBM (UFBM) signal was extracted by tracing the displacement of the boundary defined by the fetal thorax frame by frame. The start of each FBM was identified by using the peak points of the UFBM signal. The bio-magnetic signals associated with FBM were obtained by averaging the bio-magnetic signals time locked to the FBMs. The results showed the existence of a distinctive sinusoidal signal pattern of FBM in fMEG data

  10. Age specific fast breathing in under-five diarrheal children in an urban hospital: Acidosis or pneumonia?

    Directory of Open Access Journals (Sweden)

    Sharika Nuzhat

    Full Text Available Children with diarrhea often present with fast breathing due to metabolic acidosis from dehydration. On the other hand, age specific fast breathing is the cornerstone for the diagnosis of pneumonia following classification of pneumonia recommended by the World Health Organization (WHO. Correction of metabolic acidosis by rehydrating the diarrheal children requires time, which delays early initiation of appropriate antimicrobials for pneumonia and thereby increases the risk of deaths. We need to further investigate the simple clinical features other than fast breathing which might help us in earliest diagnosis of pneumonia in children with diarrhea Thus, the objective of our study was to identify other contributing clinical features that may independently help for early diagnosis of pneumonia in diarrheal children who present with age specific fast breathing.This was an unmatched case-control study. Diarrheal children aged 0-59 months, admitted to Dhaka Hospital of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b during January 2014 to December 2014 having age specific fast breathing (11-59 months ≥40 breaths/min were studied. The study children with clinical and radiological pneumonia constituted the cases (n = 276 and those without pneumonia constituted the controls (n = 446. Comparison of clinical features and outcomes between the cases and the controls was made.The distribution of acidosis among the cases and the controls was comparable (35% vs. 41%, p = 0.12. The cases had proportionately higher deaths compared to the controls, however, the difference was not statistically significant (3% vs. 1%; p = 0.23. In logistic regression analysis after adjusting for potential confounders, the cases were independently associated with cough (OR = 62.19, 95% CI = 27.79-139.19; p<0.01 and chest wall indrawing (OR = 31.05, 95%CI = 13.43-71.82; p<0.01 and less often had severe acute malnutrition (OR = 0.33, 95%CI = 0

  11. Common and Critical Components Among Community Health Assessment and Community Health Improvement Planning Models.

    Science.gov (United States)

    Pennel, Cara L; Burdine, James N; Prochaska, John D; McLeroy, Kenneth R

    Community health assessment and community health improvement planning are continuous, systematic processes for assessing and addressing health needs in a community. Since there are different models to guide assessment and planning, as well as a variety of organizations and agencies that carry out these activities, there may be confusion in choosing among approaches. By examining the various components of the different assessment and planning models, we are able to identify areas for coordination, ways to maximize collaboration, and strategies to further improve community health. We identified 11 common assessment and planning components across 18 models and requirements, with a particular focus on health department, health system, and hospital models and requirements. These common components included preplanning; developing partnerships; developing vision and scope; collecting, analyzing, and interpreting data; identifying community assets; identifying priorities; developing and implementing an intervention plan; developing and implementing an evaluation plan; communicating and receiving feedback on the assessment findings and/or the plan; planning for sustainability; and celebrating success. Within several of these components, we discuss characteristics that are critical to improving community health. Practice implications include better understanding of different models and requirements by health departments, hospitals, and others involved in assessment and planning to improve cross-sector collaboration, collective impact, and community health. In addition, federal and state policy and accreditation requirements may be revised or implemented to better facilitate assessment and planning collaboration between health departments, hospitals, and others for the purpose of improving community health.

  12. Appropriate sample bags and syringes for preserving breath samples in breath odor research : a technical note

    NARCIS (Netherlands)

    Winkel, E. G.; Tangerman, A.

    It is now generally accepted that the volatile sulfur compounds (VSCs) hydrogen sulfide, methyl mercaptan and dimethyl sulfide are the main contributors to halitosis when of oropharyngeal origin. The VSCs hydrogen sulfide and methyl mercaptan are the major causes of bad breath in oral malodour

  13. The ins and outs of breath holding: simple demonstrations of complex respiratory physiology.

    Science.gov (United States)

    Skow, Rachel J; Day, Trevor A; Fuller, Jonathan E; Bruce, Christina D; Steinback, Craig D

    2015-09-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology behind breath-hold duration. These activities require minimal equipment and are easily adapted to small-group demonstrations or a larger-group inquiry format where students can design a protocol and collect and analyze data from their classmates. Specifically, breath-hold duration is measured during a number of maneuvers, including after end expiration, end inspiration, voluntary prior hyperventilation, and inspired hyperoxia. Further activities illustrate the potential contribution of chemoreflexes through rebreathing and repeated rebreathing after a maximum breath hold. The outcome measures resulting from each intervention are easily visualized and plotted and can comprise a comprehensive data set to illustrate and discuss complex and integrated cardiorespiratory physiology. Copyright © 2015 The American Physiological Society.

  14. Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 - Dry Exercise

    Science.gov (United States)

    2016-01-01

    endurance times. 15. SUBJECT TERMS control of breathing, ventilation, CO2, carbon dioxide, hypercapnia, CO2 retention , dyspnea, exercise, performance...to be near his exercise capacity , until the subject could no longer continue. Subjects were asked to give scores of Relative Perceived Exertion (RPE...span gas (5% CO2 and 16% O2 in nitrogen). The pressure transducer outputs were compared to a water manometer. Data analysis Breath by breath

  15. [Characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia].

    Science.gov (United States)

    Li, Lan; Chen, Qaing; Zhang, Fan; Zhu, Shuang-Gui; Hu, Ci-Lang; Wu, Ai-Min

    2017-12-01

    To investigate the characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia (TBM). In this study, 30 children who were diagnosed with TBM using electronic bronchoscopy were enrolled in the observation group; 30 healthy children were recruited in the normal control group. For individuals in each group, the assessment of tidal breath pulmonary function was performed at diagnosis and 3, 6, 9, and 12 months after diagnosis. There were no significant differences in tidal volume, inspiratory time, expiratory time, and inspiratory to expiratory ratio between the two groups (P>0.05). Compared with the control group, the observation group had a significantly higher respiratory rate and significantly lower ratio of time to peak tidal expiratory flow to total expiratory time (TPTEF/TE) and ratio of volume to peak tidal expiratory flow to total expiratory volume (VPTEF/VE). There was a time-dependent increase in TPTEF/TE and VPTEF/VE for TBM children from the time of initial diagnosis to 12 months after diagnosis. Tidal breathing pulmonary function has characteristic changes in children with TBM. Tidal breathing pulmonary function tends to be recovered with increased age in children with TBM.

  16. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  17. The effect of climbing Mount Everest on spleen contraction and increase in hemoglobin concentration during breath holding and exercise.

    Science.gov (United States)

    Engan, Harald K; Lodin-Sundström, Angelica; Schagatay, Fanny; Schagatay, Erika

    2014-04-01

    Release of stored red blood cells resulting from spleen contraction improves human performance in various hypoxic situations. This study determined spleen volume resulting from two contraction-evoking stimuli: breath holding and exercise before and after altitude acclimatization during a Mount Everest ascent (8848 m). Eight climbers performed the following protocol before and after the climb: 5 min ambient air respiration at 1370 m during rest, 20 min oxygen respiration, 20 min ambient air respiration at 1370 m, three maximal-effort breath holds spaced by 2 min, 10 min ambient air respiration, 5 min of cycling at 100 W, and finally 10 min ambient air respiration. We measured spleen volume by ultrasound and capillary hemoglobin (HB) concentration after each exposure, and heart rate (HR) and arterial oxygen saturation (Sao2) continuously. Mean (SD) baseline spleen volume was unchanged at 213 (101) mL before and 206 (52) mL after the climb. Before the climb, spleen volume was reduced to 184 (83) mL after three breath holds, and after the climb three breath holds resulted in a spleen volume of 132 (26) mL (p=0.032). After exercise, the preclimb spleen volume was 186 (89) mL vs. 112 (389) mL) after the climb (p=0.003). Breath hold duration and cardiovascular responses were unchanged after the climb. We concluded that spleen contraction may be enhanced by altitude acclimatization, probably reflecting both the acclimatization to chronic hypoxic exposure and acute hypoxia during physical work.

  18. Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji

    2013-09-01

    Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.

  19. If you can't measure it- you can't change it - a longitudinal study on improving quality of care in hospitals and health centers in rural Kenya.

    Science.gov (United States)

    Marx, Michael; Nitschke, Christine; Nafula, Maureen; Nangami, Mabel; Brodowski, Marc; Marx, Irmgard; Prytherch, Helen; Kandie, Charles; Omogi, Irene; Paul-Fariborz, Friederike; Szecsenyi, Joachim

    2018-04-05

    of some was found in the dimensions 'delivery' and 'postnatal care'. This comprehensive quality improvement approach breathes life into the process of collecting data for indicators and creates ownership among users and providers of health services. It offers a reflection on the relevance of evidence-based quality improvement for health system strengthening and has the potential to lay a solid ground for further certification and accreditation.

  20. Creating Quality Improvement Culture in Public Health Agencies

    Science.gov (United States)

    Mahanna, Elizabeth; Joly, Brenda; Zelek, Michael; Riley, William; Verma, Pooja; Fisher, Jessica Solomon

    2014-01-01

    Objectives. We conducted case studies of 10 agencies that participated in early quality improvement efforts. Methods. The agencies participated in a project conducted by the National Association of County and City Health Officials (2007–2008). Case study participants included health directors and quality improvement team leaders and members. We implemented multiple qualitative analysis processes, including cross-case analysis and logic modeling. We categorized agencies according to the extent to which they had developed a quality improvement culture. Results. Agencies were conducting informal quality improvement projects (n = 4), conducting formal quality improvement projects (n = 3), or creating a quality improvement culture (n = 4). Agencies conducting formal quality improvement and creating a quality improvement culture had leadership support for quality improvement, participated in national quality improvement initiatives, had a greater number of staff trained in quality improvement and quality improvement teams that met regularly with decision-making authority. Agencies conducting informal quality improvement were likely to report that accreditation is the major driver for quality improvement work. Agencies creating a quality improvement culture were more likely to have a history of evidence-based decision-making and use quality improvement to address emerging issues. Conclusions. Our findings support previous research and add the roles of national public health accreditation and emerging issues as factors in agencies’ ability to create and sustain a quality improvement culture. PMID:24228680