WorldWideScience

Sample records for breathing flow-volume loops

  1. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  2. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    Science.gov (United States)

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise

  3. Flow-volume loops measured with electrical impedance tomography in pediatric patients with asthma.

    Science.gov (United States)

    Ngo, Chuong; Dippel, Falk; Tenbrock, Klaus; Leonhardt, Steffen; Lehmann, Sylvia

    2018-05-01

    Electrical impedance tomography (EIT) provides information on global and regional ventilation during tidal breathing and mechanical ventilation. During forced expiration maneuvers, the linearity of EIT and spirometric data has been documented in healthy persons. The present study investigates the potential diagnostic use of EIT in pediatric patients with asthma. EIT and spirometry were performed in 58 children with asthma (average age ± SD: 11.86 ± 3.13 years), and 58 healthy controls (average age ± SD: 12.12 ± 2.9 years). The correlation between EIT data and simultaneously acquired spirometric data were tested for FEV 1 , FEV 0.5 , MEF 75 , MEF 50 , and MEF 25 . Binary classification tests were performed for the EIT-derived Tiffeneau index FEV 1 /FVC and the bronchodilator test index ΔFEV 1 . Average flow-volume (FV) loops were generated for patients with pathologic spirometry to demonstrate the feasibility of EIT for graphic diagnosis of asthma. Spirometry and global EIT-based FV loops showed a strong correlation (P  0.9 in FEV 1 and FEV 0.5 ). In all criteria, the binary classification tests yielded high specificity (>93%), a high positive predictive value (≥75%) and a high negative predictive value (>80%), while sensitivity was higher in ΔFEV 1 (86.67%) and lower in FEV 1 /FVC (25% and 35.29%). A typical concave shape of the EIT-derived average FV loops was observed for asthmatic children with improvement after bronchospasmolysis. Global FV loops derived from EIT correlate well with spirometry. Positive bronchospasmolysis can be observed in EIT-derived FV loops. Flow-volume loops originated from EIT have a potential to visualize pulmonary function. © 2018 Wiley Periodicals, Inc.

  4. Real-time display of flow-pressure-volume loops.

    Science.gov (United States)

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Can flow-volume loops be used to diagnose exerciseinduced laryngeal obstructions?

    DEFF Research Database (Denmark)

    Christensen, Pernille Melia; Maltbæk, Niels; Jørgensen, Inger M

    2013-01-01

    BACKGROUND: Pre- and post-exercise flow-volume loops are often recommended as an easy non-invasive method for diagnosing or excluding exercise-induced laryngeal obstructions in patients with exercise-related respiratory symptoms. However, at present there is no evidence for this recommendation...

  6. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Science.gov (United States)

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  7. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Directory of Open Access Journals (Sweden)

    Snorri Donaldsson

    Full Text Available The ability to determine airflow during nasal CPAP (NCPAP treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing.Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically.The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance.The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  8. Assessment of the adequacy of bronchial stenting by flow-volume loops

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Clare A.; Roebuck, Derek J. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Pigott, Nick; Elliott, Martin J. [Great Ormond Street Hospital for Children, Cardiothoracic Unit, London (United Kingdom); Dunne, Catherine [Great Ormond Street Hospital for Children, Department of Physiotherapy, London (United Kingdom)

    2006-08-15

    Airway compression is a common problem in children with certain forms of congenital heart disease. Although various surgical approaches are available to overcome this form of airway obstruction, internal stenting is necessary in a minority of patients. It can be difficult to assess the success of stenting at the time of the procedure, and the interval to successful extubation is usually used as an outcome measure. Measurement of relevant parameters of respiratory physiology with flow-volume and volume-pressure loops permits immediate quantitative assessment of the adequacy of stenting. A 3-month-old infant who underwent bronchial stenting and physiological assessment at the time of the procedure is described. (orig.)

  9. Assessment of the adequacy of bronchial stenting by flow-volume loops

    International Nuclear Information System (INIS)

    McLaren, Clare A.; Roebuck, Derek J.; Pigott, Nick; Elliott, Martin J.; Dunne, Catherine

    2006-01-01

    Airway compression is a common problem in children with certain forms of congenital heart disease. Although various surgical approaches are available to overcome this form of airway obstruction, internal stenting is necessary in a minority of patients. It can be difficult to assess the success of stenting at the time of the procedure, and the interval to successful extubation is usually used as an outcome measure. Measurement of relevant parameters of respiratory physiology with flow-volume and volume-pressure loops permits immediate quantitative assessment of the adequacy of stenting. A 3-month-old infant who underwent bronchial stenting and physiological assessment at the time of the procedure is described. (orig.)

  10. An open-loop controlled active lung simulator for preterm infants.

    Science.gov (United States)

    Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio

    2011-01-01

    We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Relationship between spontaneous expiratory flow-volume curve pattern and air-flow obstruction in elderly COPD patients.

    Science.gov (United States)

    Nozoe, Masafumi; Mase, Kyoshi; Murakami, Shigefumi; Okada, Makoto; Ogino, Tomoyuki; Matsushita, Kazuhiro; Takashima, Sachie; Yamamoto, Noriyasu; Fukuda, Yoshihiro; Domen, Kazuhisa

    2013-10-01

    Assessment of the degree of air-flow obstruction is important for determining the treatment strategy in COPD patients. However, in some elderly COPD patients, measuring FVC is impossible because of cognitive dysfunction or severe dyspnea. In such patients a simple test of airways obstruction requiring only a short run of tidal breathing would be useful. We studied whether the spontaneous expiratory flow-volume (SEFV) curve pattern reflects the degree of air-flow obstruction in elderly COPD patients. In 34 elderly subjects (mean ± SD age 80 ± 7 y) with stable COPD (percent-of-predicted FEV(1) 39.0 ± 18.5%), and 12 age-matched healthy subjects, we measured FVC and recorded flow-volume curves during quiet breathing. We studied the SEFV curve patterns (concavity/convexity), spirometry results, breathing patterns, and demographics. The SEFV curve concavity/convexity prediction accuracy was examined by calculating the receiver operating characteristic curves, cutoff values, area under the curve, sensitivity, and specificity. Fourteen subjects with COPD had a concave SEFV curve. All the healthy subjects had convex SEFV curves. The COPD subjects who had concave SEFV curves often had very severe airway obstruction. The percent-of-predicted FEV(1)% (32.4%) was the most powerful SEFV curve concavity predictor (area under the curve 0.92, 95% CI 0.83-1.00), and had the highest sensitivity (0.93) and specificity (0.88). Concavity of the SEFV curve obtained during tidal breathing may be a useful test for determining the presence of very severe obstruction in elderly patients unable to perform a satisfactory FVC maneuver.

  12. The assessment of the breath hold and the free breath methods about the blood flow evaluation by using phase contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Ho [Dept. of Radiology, Konkuk Medical center, Seoul (Korea, Republic of)

    2016-06-15

    Measurement of cardiac blood flow using the magnetic resonance imaging has been limited due to breathing and involuntary movements of the heart. The present study attempted to improve the accuracy of cardiac blood flow testing through phase contrast magnetic resonance imaging by presenting the adequate breathing method and imaging variables by comparing the measurement values of cardiac blood flow. Each was evaluated by comparing the breath hold retrospective 1NEX and non breath hold retrospective 1-3NEX in the ascending aorta and descending aorta. As a result, the average blood flow amount/ velocity of the breath hold retrosepctive 1NEX method in the ascending aorta were 96.17±19.12 ml/sec, 17.04±4.12 cm/sec respectively, which demonstrates a statistically significant difference(p<0.05) with the non-breath hold retrospective method 1NEX of 72.31±13.27 ml and 12.32±3.85. On the other hand, the average 2NEX blood flow and mean flow velocity is 101.90±24.09, 16.84±4.32, 3NEX 103.06±25.49, 16.88±4.19 did not show statistically significant differences(p>0.05).The average blood flow amount/ velocity of the breath hold retrospective 1NEX method in the descending aorta were 76.68±19.72 ml/s, and 22.23±4.8, which did not demonstrate a significant difference in comparison to non-breath hold retrospective method 1-3 NEX. Therefore, the non breath hold retrospective method does not significantly differ in terms of cardiac blood flow in comparison with the breath hold retrospective method in accordance with the increase of NEX, so pediatric patients or patients who are not able to breathe well must have the diagnostic value of their cardiac blood flow tests improved.

  13. Differences in tidal breathing between infants with chronic lung diseases and healthy controls

    Directory of Open Access Journals (Sweden)

    Wilitzki S

    2005-09-01

    Full Text Available Abstract Background The diagnostic value of tidal breathing (TB measurements in infants is controversially discussed. The aim of this study was to investigate to what extent the breathing pattern of sleeping infants with chronic lung diseases (CLD differ from healthy controls with the same postconceptional age and to assess the predictive value of TB parameters. Methods In the age of 36–42 postconceptional weeks TB measurements were performed in 48 healthy newborns (median age and weight 7d, 3100 g and 48 infants with CLD (80d, 2465 g using the deadspace-free flow-through technique. Once the infants had adapted to the mask and were sleeping quietly and breathing regularly, 20–60 breathing cycles were evaluated. Beside the shape of the tidal breathing flow-volume loop (TBFVL 18 TB parameters were analyzed using ANOVA with Bonferroni correction. Receiver-operator characteristic (ROC curves were calculated to investigate the discriminative ability of TB parameters. Results The incidence of concave expiratory limbs in CLD infants was 31% and significantly higher compared to controls (2% (p Conclusion The breathing pattern of CLD infants differs significantly from that of healthy controls. Concave TBFVL and an increased RR measured during quiet sleep and under standardized conditions may indicate diminished respiratory functions in CLD infants whereas most of the commonly used TB parameters are poorly predictive.

  14. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    Energy Technology Data Exchange (ETDEWEB)

    Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  15. Effects of tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome.

    Science.gov (United States)

    Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C

    2006-01-01

    To assess the effects of step-changes in tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury (ALI) or the acute respiratory distress syndrome (ARDS). Prospective, nonconsecutive patients with ALI/ARDS. Adult surgical, trauma, and medical intensive care units at a major inner-city, university-affiliated hospital. Ten patients with ALI/ARDS managed clinically with lung-protective ventilation. Five patients were ventilated at a progressively smaller tidal volume in 1 mL/kg steps between 8 and 5 mL/kg; five other patients were ventilated at a progressively larger tidal volume from 5 to 8 mL/kg. The volume mode was used with a flow rate of 75 L/min. Minute ventilation was maintained constant at each tidal volume setting. Afterward, patients were placed on continuous positive airway pressure for 1-2 mins to measure their spontaneous tidal volume. Work of breathing and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). Work of breathing progressively increased (0.86 +/- 0.32, 1.05 +/- 0.40, 1.22 +/- 0.36, and 1.57 +/- 0.43 J/L) at a tidal volume of 8, 7, 6, and 5 mL/kg, respectively. In nine of ten patients there was a strong negative correlation between work of breathing and the ventilator-to-patient tidal volume difference (R = -.75 to -.998). : The ventilator-delivered tidal volume exerts an independent influence on work of breathing during lung-protective ventilation in patients with ALI/ARDS. Patient work of breathing is inversely related to the difference between the ventilator-delivered tidal volume and patient-generated tidal volume during a brief trial of unassisted breathing.

  16. Role of bronchodilation and pattern of breathing in increasing tidal expiratory flow with progressive induced hypercapnia in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Finucane, Kevin E; Singh, Bhajan

    2018-01-01

    Hypercapnia (HC) in vitro relaxes airway smooth muscle; in vivo, it increases respiratory effort, tidal expiratory flows (V̇ exp ), and, by decreasing inspiratory duration (Ti), increases elastic recoil pressure (Pel) via lung viscoelasticity; however, its effect on airway resistance is uncertain. We examined the contributions of bronchodilation, Ti, and expiratory effort to increasing V̇ exp with progressive HC in 10 subjects with chronic obstructive pulmonary disease (COPD): mean forced expiratory volume in 1 s (FEV 1 ) 53% predicted. Lung volumes (Vl), V̇ exp , esophageal pressure (Pes), Ti, and end-tidal Pco 2 ([Formula: see text]) were measured during six tidal breaths followed by an inspiratory capacity (IC), breathing air, and at three levels of HC. V̇ exp and V̇ with submaximal forced vital capacities breathing air (V̇ sFVC ) were compared. Pulmonary resistance ( Rl) was measured from the Pes-V̇ relationship. V̇ exp and Pes at end-expiratory lung volume (EELV) + 0.3 tidal volume [V̇ (0.3Vt) and Pes (0.3Vt) , respectively], Ti, and Rl correlated with [Formula: see text] ( P pulmonary disease (COPD), progressive HC increases tidal expiratory flows by inducing bronchodilation and via an increased rate of inspiration and lung viscoelasticity, a probable increase in lung elastic recoil pressure, both changes increasing expiratory flows, promoting lung emptying and a stable end-expiratory volume. Bronchodilation with HC occurred despite optimal standard bronchodilator therapy, suggesting that in COPD further bronchodilation is possible.

  17. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  18. SLSF loop handling system. Volume I. Structural analysis

    International Nuclear Information System (INIS)

    Ahmed, H.; Cowie, A.; Ma, D.

    1978-10-01

    SLSF loop handling system was analyzed for deadweight and postulated dynamic loading conditions, identified in Chapters II and III in Volume I of this report, using a linear elastic static equivalent method of stress analysis. Stress analysis of the loop handling machine is presented in Volume I of this report. Chapter VII in Volume I of this report is a contribution by EG and G Co., who performed the work under ANL supervision

  19. Experimental and computational analysis of pressure response in a multiphase flow loop

    Science.gov (United States)

    Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

    2016-07-01

    The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

  20. EFFECTIVENESS OF BIOFEEDBACK IN THE CLOSED LOOP OF HEART RATE VARIABILITY AND PACED BREATHING IN THE PATIENTS WITH SOMATOFORM AUTONOMIC DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    K. E. Morozova

    2014-06-01

    Full Text Available To study the effectiveness of biofeedback (BFB in the closed loop of heart rate variability (HRV and paced breathing in patients with somatoform autonomic dysfunction (SAD 20 patients with SAD (14 women and 6 men, mean age 19,53 ± 1,55 were examined. All probationers were divided into two groups comparable for sex and age: 1 – BFB group (15 patients, in which 7 sessions was held and 2 – the comparison group (5 patients, where only two sessions were completed -at the first and seventh day of the study. Additionally, all patients in both groups received diet food (Table № 10 by Pevzner, mebicar, glycine, tiotriazolin. Effectiveness of biofeedback was evaluated by comparing of parameters optimality (O, sensitivity (S, the efficiency (E and the integral index BQI in both groups. It was determined that biofeedback in the closed loop of HRV and paced breathing allows to optimize the state of the regulatory systems of the body in patients with SAD, moreover the combination of biofeedback sessions in the test loop and medical treatment are significantly better than isolated pharmacological therapy. High effectiveness of biofeedback in closed loop of HRV and paced breathing in patients with SAD allows us to recommend it as independent method of treatment, and as a component of combined therapy of this disease.

  1. Left ventricular volume measurements with free breathing respiratory self-gated 3-dimensional golden angle radial whole-heart cine imaging - Feasibility and reproducibility.

    Science.gov (United States)

    Holst, Karen; Ugander, Martin; Sigfridsson, Andreas

    2017-11-01

    To develop and evaluate a free breathing respiratory self-gated isotropic resolution technique for left ventricular (LV) volume measurements. A 3D radial trajectory with double golden-angle ordering was used for free-running data acquisition during free breathing in 9 healthy volunteers. A respiratory self-gating signal was extracted from the center of k-space and used with the electrocardiogram to bin all data into 3 respiratory and 25 cardiac phases. 3D image volumes were reconstructed and the LV endocardial border was segmented. LV volume measurements and reproducibility from 3D free breathing cine were compared to conventional 2D breath-held cine. No difference was found between 3D free breathing cine and 2D breath-held cine with regards to LV ejection fraction, stroke volume, end-systolic volume and end-diastolic volume (Pcine and 2D breath-held cine (Pcine and conventional 2D breath-held cine showed similar values and test-retest repeatability for LV volumes in healthy volunteers. 3D free breathing cine enabled retrospective sorting and arbitrary angulation of isotropic data, and could correctly measure LV volumes during free breathing acquisition. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Physiological techniques for detecting expiratory flow limitation during tidal breathing

    Directory of Open Access Journals (Sweden)

    N.G. Koulouris

    2011-09-01

    Full Text Available Patients with severe chronic obstructive pulmonary disease (COPD often exhale along the same flow–volume curve during quiet breathing as they do during the forced expiratory vital capacity manoeuvre, and this has been taken as an indicator of expiratory flow limitation at rest (EFLT. Therefore, EFLT, namely attainment of maximal expiratory flow during tidal expiration, occurs when an increase in transpulmonary pressure causes no increase in expiratory flow. EFLT leads to small airway injury and promotes dynamic pulmonary hyperinflation, with concurrent dyspnoea and exercise limitation. In fact, EFLT occurs commonly in COPD patients (mainly in Global Initiative for Chronic Obstructive Lung Disease III and IV stage, in whom the latter symptoms are common, but is not exclusive to COPD, since it can also be detected in other pulmonary and nonpulmonary diseases like asthma, acute respiratory distress syndrome, heart failure and obesity, etc. The existing up to date physiological techniques of assessing EFLT are reviewed in the present work. Among the currently available techniques, the negative expiratory pressure has been validated in a wide variety of settings and disorders. Consequently, it should be regarded as a simple, noninvasive, practical and accurate new technique.

  3. The Relationship between High Flow Nasal Cannula Flow Rate and Effort of Breathing in Children.

    Science.gov (United States)

    Weiler, Thomas; Kamerkar, Asavari; Hotz, Justin; Ross, Patrick A; Newth, Christopher J L; Khemani, Robinder G

    2017-10-01

    To use an objective metric of effort of breathing to determine optimal high flow nasal cannula (HFNC) flow rates in children flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/minute. For a subgroup of patients, 2 different HFNC delivery systems (Fisher & Paykel [Auckland, New Zealand] and Vapotherm [Exeter, New Hampshire]) were compared. Twenty-one patients (49 titration episodes) were studied. The most common diagnoses were bronchiolitis and pneumonia. Overall, there was a significant difference in the percent change in PRP from baseline (of 0.5 L/kg/minute) with increasing flow rates for the entire cohort (P flow rates were increased (P = .001) than patients >8 kg. The optimal HFNC flow rate to reduce effort of breathing in infants and young children is approximately 1.5-2.0 L/kg/minute with more benefit seen in children ≤8 kg. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia].

    Science.gov (United States)

    Li, Lan; Chen, Qaing; Zhang, Fan; Zhu, Shuang-Gui; Hu, Ci-Lang; Wu, Ai-Min

    2017-12-01

    To investigate the characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia (TBM). In this study, 30 children who were diagnosed with TBM using electronic bronchoscopy were enrolled in the observation group; 30 healthy children were recruited in the normal control group. For individuals in each group, the assessment of tidal breath pulmonary function was performed at diagnosis and 3, 6, 9, and 12 months after diagnosis. There were no significant differences in tidal volume, inspiratory time, expiratory time, and inspiratory to expiratory ratio between the two groups (P>0.05). Compared with the control group, the observation group had a significantly higher respiratory rate and significantly lower ratio of time to peak tidal expiratory flow to total expiratory time (TPTEF/TE) and ratio of volume to peak tidal expiratory flow to total expiratory volume (VPTEF/VE). There was a time-dependent increase in TPTEF/TE and VPTEF/VE for TBM children from the time of initial diagnosis to 12 months after diagnosis. Tidal breathing pulmonary function has characteristic changes in children with TBM. Tidal breathing pulmonary function tends to be recovered with increased age in children with TBM.

  5. Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency

    Directory of Open Access Journals (Sweden)

    Danny Lee, PhD

    2017-07-01

    Conclusions: This study demonstrated that audiovisual biofeedback can be used to improve the reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition to improving various medical imaging and treatments by using breath-hold procedures.

  6. Interaction of convective flow generated by human body with room ventilation flow: impact on transport of pollution to the breathing zone

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2014-01-01

    interaction with opposing flow from above and assisting flow from below; and secondly, implication of such a flow interaction on the particle transport from the feet to the breathing zone is examined. The results reveal that the human body heat transports the pollution to the breathing zone and increases......This study aims to investigate the interaction between the human convective boundary layer (CBL) and uniform airflow from two directions and with different velocities. The study has two objectives: first, to characterize the velocity field in the breathing zone of a thermal manikin under its...

  7. Carotid chemoreceptors tune breathing via multipath routing: reticular chain and loop operations supported by parallel spike train correlations.

    Science.gov (United States)

    Morris, Kendall F; Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E; O'Connor, Russell; Dean, Jay B; Ott, Mackenzie M; Alencar, Pierina A; Shuman, Dale; Horton, Kofi-Kermit; Taylor-Clark, Thomas E; Bolser, Donald C; Lindsey, Bruce G

    2018-02-01

    We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the

  8. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes.

    Science.gov (United States)

    Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C

    2005-12-01

    Pressure-control ventilation (PCV) and pressure-regulated volume-control (PRVC) ventilation are used during lung-protective ventilation because the high, variable, peak inspiratory flow rate (V (I)) may reduce patient work of breathing (WOB) more than the fixed V (I) of volume-control ventilation (VCV). Patient-triggered breaths during PCV and PRVC may result in excessive tidal volume (V(T)) delivery unless the inspiratory pressure is reduced, which in turn may decrease the peak V (I). We tested whether PCV and PRVC reduce WOB better than VCV with a high, fixed peak V (I) (75 L/min) while also maintaining a low V(T) target. Fourteen nonconsecutive patients with acute lung injury or acute respiratory distress syndrome were studied prospectively, using a random presentation of ventilator modes in a crossover, repeated-measures design. A target V(T) of 6.4 + 0.5 mL/kg was set during VCV and PRVC. During PCV the inspiratory pressure was set to achieve the same V(T). WOB and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). There was a nonsignificant trend toward higher WOB (in J/L) during PCV (1.27 + 0.58 J/L) and PRVC (1.35 + 0.60 J/L), compared to VCV (1.09 + 0.59 J/L). While mean V(T) was not statistically different between modes, in 40% of patients, V(T) markedly exceeded the lung-protective ventilation target during PRVC and PCV. During lung-protective ventilation, PCV and PRVC offer no advantage in reducing WOB, compared to VCV with a high flow rate, and in some patients did not allow control of V(T) to be as precise.

  9. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C [University of Kansas Medical Center, Kansas City, KS (United States)

    2016-06-15

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  10. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    International Nuclear Information System (INIS)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C

    2016-01-01

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  11. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    Science.gov (United States)

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Variability in blood flow and pO2 in tumors in response to carbogen breathing

    International Nuclear Information System (INIS)

    Lanzen, Jennifer L.; Braun, Rod D.; Ong, Aqui L.; Dewhirst, Mark W.

    1998-01-01

    Purpose: There is speculation that the CO 2 in carbogen (95% O 2 , 5% CO 2 ) can block the vasoconstrictive effects of oxygen. However, it has recently been shown that blood flow in human tumors is variable while patients breathe carbogen. Furthermore, we have shown a consistent decrease in tumor blood flow (TBF) with carbogen breathing in the rat window chamber model. Also, we have previously shown that there is no significant difference in tumor growth time after radiation with air vs. carbogen breathing. This study was designed to investigate the effects of carbogen breathing on blood flow and oxygen levels in a solid tumor. Methods: Measurements were made in Fischer-344 rats with 8-10 mm diameter R3230Ac tumors transplanted either within the quadriceps muscle (n = 16) or subcutis (n = 14). Nontumor-bearing quadriceps muscle was studied in six other rats. After a 20-minute air-breathing baseline, rats breathed carbogen for an additional 40 minutes. Partial pressure of oxygen (pO 2 ) was continuously monitored at one position for 60 minutes using 9-12 μm diameter oxygen microelectrodes. Blood flow was simultaneously monitored in all animals using laser Doppler flowmetry (1-2 probes/tumor). Results: Blood flow changes during carbogen breathing were variable in all tissues and intratumoral heterogeneity was observed. Despite variability in blood flow, pO 2 consistently increased in normal muscle but varied in both tumor sites. During carbogen breathing, the percent pO 2 measurements greater than the baseline average were 99.5% ± 0.4% (mean ± SEM), 42.7% ± 13.8%, and 79.8% ± 11.0% in normal muscle, subcutaneous tumor, and muscle tumor, respectively. To show the magnitude of change, average pO 2 values during air and carbogen breathing were calculated for each site. Normal muscle increased from 14.9 ± 2.3 to 39.0 ± 6.4 mm Hg (paired t-test; p = 0.009). Muscle tumors showed a rise from 14.6 ± 3.2 to 34.5 ± 8.2 mm Hg (p = 0.019). However, pO 2 in subcutaneous

  13. Can a central blood volume deficit be detected by systolic pressure variation during spontaneous breathing?

    DEFF Research Database (Denmark)

    Dahl, Michael; Hayes, Chris; Steen Rasmussen, Bodil

    2016-01-01

    BACKGROUND: Whether during spontaneous breathing arterial pressure variations (APV) can detect a volume deficit is not established. We hypothesized that amplification of intra-thoracic pressure oscillations by breathing through resistors would enhance APV to allow identification of a reduced card...

  14. Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji

    2013-09-01

    Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.

  15. ac power control in the Core Flow Test Loop

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report

  16. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  17. Breath acetone monitoring by portable Si:WO3 gas sensors

    International Nuclear Information System (INIS)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2012-01-01

    Highlights: ► Portable sensors were developed and tested for monitoring acetone in the human breath. ► Acetone concentrations down to 20 ppb were measured with short response times ( 3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  18. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    International Nuclear Information System (INIS)

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  19. MR coronary angiography with breath-hold targeted volumes: preliminary clinical results

    NARCIS (Netherlands)

    R.J.M. van Geuns (Robert Jan); P.A. Wielopolski (Piotr); H.G. de Bruin (Hein); B.J.W.M. Rensing (Benno); M. Hulshoff (Maarten); P.M.A. van Ooijen (Peter); P.J. de Feyter (Pim); M. Oudkerk (Matthijs)

    2000-01-01

    textabstractPURPOSE: To assess the clinical value of a magnetic resonance (MR) coronary angiography strategy involving a small targeted volume to image one coronary segment in a single breath hold for the detection of greater than 50% stenosis. MATERIALS AND METHODS:

  20. SPIRONOLACTONE IN BIOFEEDBACK SESSIONS IN THE LOOP OF PACED BREATHING AND HEART RATE VARIABILITY IN HEALTHY VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    E. Nazarenko

    2015-12-01

    Full Text Available In 7 conditionally healthy volunteers, aged from 19 to 21 years (average age is 19,53 ± 1,55 years, influence of spironolactone on alterations of regulatory systems state of the organism combined with biofeedback (BFB sessions in the loop of paced breathing (PB and heart rate variability (HRV parameters was evaluated. All volunteers were conducted 2 series of everyday BFB sessions in analyzed loop for 5 days with a 3 months interval between them, 2nd series of sessions were conducted 6 hours after oral application of 25 mg spironolactone. The data was analyzed using non-parametric statistical methods. Optimization of regulatory systems state under influence of BFB sessions in the loop of PB and HRV parameters was found. Spironolactone in studied dose had no significant effect on optimization of regulatory systems state.

  1. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    Science.gov (United States)

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  2. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Science.gov (United States)

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  3. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  4. Topologically protected loop flows in high voltage AC power grids

    International Nuclear Information System (INIS)

    Coletta, T; Delabays, R; Jacquod, Ph; Adagideli, I

    2016-01-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids. (paper)

  5. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation.

    Science.gov (United States)

    Wellman, Andrew; Malhotra, Atul; Fogel, Robert B; Edwards, Jill K; Schory, Karen; White, David P

    2003-01-01

    We hypothesized that increased chemical control instability (CCI) in men could partially explain the male predominance in obstructive sleep apnea (OSA). CCI was assessed by sequentially increasing respiratory control system loop gain (LG) with proportional-assist ventilation (PAV) in 10 men (age 24-48 yr) and 9 women (age 22-36 yr) until periodic breathing or awakening occurred. Women were studied in both the follicular and luteal phases of the menstrual cycle. The amount by which PAV amplified LG was quantified from the tidal volume amplification factor [(VtAF) assisted tidal volume/unassisted tidal volume]. LG was calculated as the inverse of the VtAF occurring at the assist level immediately preceding the emergence of periodic breathing (when LG x VtAF = 1). Only 1 of 10 men and 2 of 9 women developed periodic breathing with PAV. The rest were resistant to periodic breathing despite moderately high levels of PAV amplification. We conclude that LG is low in the majority of normal men and women and that higher volume amplification factors are needed to determine whether gender differences exist in this low range.

  6. MR coronary angiography with breath-hold targeted volumes : Preliminary clinical results

    NARCIS (Netherlands)

    van Geuns, R J; Wielopolski, P A; de Bruin, Hein G.; Rensing, B J; Hulshoff, Marc; van Ooijen, P M; de Feyter, P J; Oudkerk, M

    2000-01-01

    PURPOSE: To assess the clinical value of a magnetic resonance (MR) coronary angiography strategy involving a small targeted volume to image one coronary segment in a single breath hold for the detection of greater than 50% stenosis. MATERIALS AND METHODS: Thirty-eight patients referred for elective

  7. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Wong, John W.; Sharpe, Michael B.; Jaffray, David A.; Kini, Vijay R.; Robertson, John M.; Stromberg, Jannifer S.; Martinez, Alavro A.

    1999-01-01

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  8. Ventilator flow data predict bronchopulmonary dysplasia in extremely premature neonates

    Directory of Open Access Journals (Sweden)

    Mariann H. Bentsen

    2018-03-01

    Full Text Available Early prediction of bronchopulmonary dysplasia (BPD may facilitate tailored management for neonates at risk. We investigated whether easily accessible flow data from a mechanical ventilator can predict BPD in neonates born extremely premature (EP. In a prospective population-based study of EP-born neonates, flow data were obtained from the ventilator during the first 48 h of life. Data were logged for >10 min and then converted to flow–volume loops using custom-made software. Tidal breathing parameters were calculated and averaged from ≥200 breath cycles, and data were compared between those who later developed moderate/severe and no/mild BPD. Of 33 neonates, 18 developed moderate/severe and 15 no/mild BPD. The groups did not differ in gestational age, surfactant treatment or ventilator settings. The infants who developed moderate/severe BPD had evidence of less airflow obstruction, significantly so for tidal expiratory flow at 50% of tidal expiratory volume (TEF50 expressed as a ratio of peak tidal expiratory flow (PTEF (p=0.007. A compound model estimated by multiple logistic regression incorporating TEF50/PTEF, birthweight z-score and sex predicted moderate/severe BPD with good accuracy (area under the curve 0.893, 95% CI 0.735–0.973. This study suggests that flow data obtained from ventilators during the first hours of life may predict later BPD in premature neonates. Future and larger studies are needed to validate these findings and to determine their clinical usefulness.

  9. Breathing circuit compliance and accuracy of displayed tidal volume during pressure-controlled ventilation of infants: A quality improvement project.

    Science.gov (United States)

    Glenski, Todd A; Diehl, Carrie; Clopton, Rachel G; Friesen, Robert H

    2017-09-01

    Anesthesia machines have evolved to deliver desired tidal volumes more accurately by measuring breathing circuit compliance during a preuse self-test and then incorporating the compliance value when calculating expired tidal volume. The initial compliance value is utilized in tidal volume calculation regardless of whether the actual compliance of the breathing circuit changes during a case, as happens when corrugated circuit tubing is manually expanded after the preuse self-test but before patient use. We noticed that the anesthesia machine preuse self-test was usually performed on nonexpanded pediatric circuit tubing, and then the breathing circuit was subsequently expanded for clinical use. We aimed to demonstrate that performing the preuse self-test in that manner could lead to incorrectly displayed tidal volume on the anesthesia machine monitor. The goal of this quality improvement project was to change the usual practice and improve the accuracy of displayed tidal volume in infants undergoing general anesthesia. There were four stages of the project: (i) gathering baseline data about the performance of the preuse self-test and using infant and adult test lungs to measure discrepancies of displayed tidal volumes when breathing circuit compliance was changed after the initial preuse self-test; (ii) gathering clinical data during pressure-controlled ventilation comparing anesthesia machine displayed tidal volume with actual spirometry tidal volume in patients less than 10 kg before (machine preuse self-test performed while the breathing circuit was nonexpanded) and after an intervention (machine preuse self-test performed after the breathing circuit was fully expanded); (iii) performing department-wide education to help implement practice change; (iv) gathering postintervention data to determine the prevalence of proper machine preuse self-test. At constant pressure-controlled ventilation through fully expanded circuit tubing, displayed tidal volume was 83

  10. Graphical calculus of volume, inverse volume and Hamiltonian operators in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinsong [Guizhou University, Department of Physics, Guiyang (China); Academia Sinica, Institute of Physics, Taipei (China); Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)

    2017-04-15

    To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature. (orig.)

  11. Breath acetone monitoring by portable Si:WO3 gas sensors

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  12. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    Science.gov (United States)

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia

    2017-01-01

    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  13. Effect of leak and breathing pattern on the accuracy of tidal volume estimation by commercial home ventilators: a bench study.

    Science.gov (United States)

    Luján, Manel; Sogo, Ana; Pomares, Xavier; Monsó, Eduard; Sales, Bernat; Blanch, Lluís

    2013-05-01

    New home ventilators are able to provide clinicians data of interest through built-in software. Monitoring of tidal volume (VT) is a key point in the assessment of the efficacy of home mechanical ventilation. To assess the reliability of the VT provided by 5 ventilators in a bench test. Five commercial ventilators from 4 different manufacturers were tested in pressure support mode with the help of a breathing simulator under different conditions of mechanical respiratory pattern, inflation pressure, and intentional leakage. Values provided by the built-in software of each ventilator were compared breath to breath with the VT monitored through an external pneumotachograph. Ten breaths for each condition were compared for every tested situation. All tested ventilators underestimated VT (ranges of -21.7 mL to -83.5 mL, which corresponded to -3.6% to -14.7% of the externally measured VT). A direct relationship between leak and underestimation was found in 4 ventilators, with higher underestimations of the VT when the leakage increased, ranging between -2.27% and -5.42% for each 10 L/min increase in the leakage. A ventilator that included an algorithm that computes the pressure loss through the tube as a function of the flow exiting the ventilator had the minimal effect of leaks on the estimation of VT (0.3%). In 3 ventilators the underestimation was also influenced by mechanical pattern (lower underestimation with restrictive, and higher with obstructive). The inclusion of algorithms that calculate the pressure loss as a function of the flow exiting the ventilator in commercial models may increase the reliability of VT estimation.

  14. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    Science.gov (United States)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  15. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Babu-Narayan Sonya V

    2009-01-01

    Full Text Available Abstract Background Pulmonary regurgitation is a common and clinically important residual lesion after repair of tetralogy of Fallot. Cardiovascular magnetic resonance (CMR phase contrast velocity mapping is widely used for measurement of pulmonary regurgitant fraction. Breath-hold acquisitions, usually acquired during held expiration, are more convenient than the non-breath-hold approach, but we hypothesized that breath-holding might affect the amount of pulmonary regurgitation. Methods Forty-three adult patients with a previous repair of tetralogy of Fallot and residual pulmonary regurgitation were investigated with CMR. In each, pulmonary regurgitant fraction was measured from velocity maps transecting the pulmonary trunk, acquired during held expiration, held inspiration, by non-breath-hold acquisition, and also from the difference of right and left ventricular stroke volume measurements. Results Pulmonary regurgitant fraction was lower when measured by velocity mapping in held expiration compared with held inspiration, non-breath-hold or stroke volume difference (30.8 vs. 37.0, 35.6, 35.4%, p = 0.00017, 0.0035, 0.026. The regurgitant volume was lower in held expiration than in held inspiration (41.9 vs. 48.3, p = 0.0018. Pulmonary forward flow volume was larger during held expiration than during non-breath-hold (132 vs. 124 ml, p = 0.0024. Conclusion Pulmonary regurgitant fraction was significantly lower in held expiration compared with held inspiration, free breathing and stroke volume difference. Altered airway pressure could be a contributory factor. This information is relevant if breath-hold acquisition is to be substituted for non-breath-hold in the investigation of patients with a view to re-intervention.

  16. Limiting volume with modern ventilators.

    Science.gov (United States)

    Wing, Thomas J; Haan, Lutana; Ashworth, Lonny J; Anderson, Jeff

    2015-06-01

    The acute respiratory distress syndrome (ARDS) network low tidal-volume study comparing tidal volumes of 12 ml/kg versus 6 ml/kg was published in 2000. The study was stopped early as data revealed a 22% relative reduction in mortality rate when using 6 ml/kg tidal volume. The current generation of critical care ventilators allows the tidal volume to be set during volume-targeted, assist/control (volume A/C); however, some ventilators include options that may prevent the tidal volume from being controlled. The purpose of this bench study was to evaluate the delivered tidal volume, when these options are active, in a spontaneously breathing lung model using an electronic breathing simulator. Four ventilators were evaluated: CareFusion AVEA (AVEA), Dräger Evita® XL (Evita XL), Covidien Puritan Bennett® 840(TM) (PB 840), and Maquet SERVO-i (SERVO-i). Each ventilator was connected to the Hans Rudolph Electronic Breathing Simulator at an amplitude of 0 cm H2O and then 10 cm H2O. All four ventilators were set to deliver volume A/C, tidal volume 400 ml, respiratory rate 20 bpm, positive end-expiratory pressure 5 cm H2O, peak flowrate 60 L/min. The displayed tidal volume was recorded for each ventilator at the above settings with additional options OFF and then ON. The AVEA has two options in volume A/C: demand breaths and V-sync. When activated, these options allow the patient to exceed the set tidal volume. When using the Evita XL, the option AutoFlow can be turned ON or OFF, and when this option is ON, the tidal volume may vary. The PB 840 does not have any additional options that affect volume delivery, and it maintains the set tidal volume regardless of patient effort. The SERVO-i's demand valve allows additional flow if the patient's inspiratory flowrate exceeds the set flowrate, increasing the delivered tidal volume; this option can be turned OFF with the latest software upgrade. Modern ventilators have an increasing number of optional settings. These settings may

  17. Scoping erosion flow loop test results in support of Hanford WTP

    International Nuclear Information System (INIS)

    Duignan, M.; Imrich, K.; Fowley, M.; Restivo, M.; Reigel, M.

    2015-01-01

    The Waste Treatment and Immobilization Plant (WTP) will process Hanford Site tank waste by converting the waste into a stable glass form. Before the tank waste can be vitrified, the baseline plan is to process the waste through the Pretreatment (PT) Facility where it will be mixed in various process vessels using Pulse Jet Mixers (PJM) and transferred to the High Level Waste (HLW) or Low Activity Waste (LAW) vitrification facilities. The Department of Energy (DOE) and Defense Nuclear Facility Safety Board (DNFSB), as well as independent review groups, have raised concerns regarding the design basis for piping erosion in the PT Facility. Due to the complex nature of slurry erosion/corrosion wear and the unique conditions that exist within the PT Facility, additional testing has been recommended by these entities. Pipe loop testing is necessary to analyze the potential for localized wear at elbows and bends, close the outstanding PT and HLW erosion/corrosion technical issues, and underpin BNI's design basis for a 40-year operational life for black cell piping and vessels. SRNL is consulting with the DOE Office of River Protection (ORP) to resolve technical concerns related to piping erosion/corrosion (wear) design basis for PT. SRNL was tasked by ORP to start designing, building, and testing a flow loop to obtain long-term total-wear rate data using bounding simulant chemistry, operating conditions, and prototypical materials. The initial test involved a scoping paint loop to locate experimentally the potential high-wear locations. This information will provide a basis for the placement of the many sensitive wear measurement instruments in the appropriate locations so that the principal flow-loop test has the best chance to estimate long-term erosion and corrosion. It is important to note that the scoping paint loop test only utilized a bounding erosion simulant for this test. A full chemical simulant needs to be added for the complete test flow loop. The

  18. Exploratory assessment of left ventricular strain–volume loops in severe aortic valve diseases

    Science.gov (United States)

    Hulshof, Hugo G.; van Dijk, Arie P.; George, Keith P.; Hopman, Maria T. E.; Thijssen, Dick H. J.

    2017-01-01

    Key points Severe aortic valve diseases are common cardiac abnormalities that are associated with poor long‐term survival.Before any reduction in left ventricular (LV) function, the left ventricle undergoes structural remodelling under the influence of changing haemodynamic conditions.In this study, we combined temporal changes in LV structure (volume) with alterations in LV functional characteristics (strain, ԑ) into a ԑ–volume loop, in order to provide novel insight into the haemodynamic cardiac consequences of aortic valve diseases in those with preserved LV ejection fraction.We showed that our novel ԑ–volume loop and the specific loop characteristics provide additional insight into the functional and mechanical haemodynamic consequences of severe aortic valve diseases (with preserved LV ejection fraction).Finally, we showed that the ԑ–volume loop characteristics provide discriminative capacity compared with conventional measures of LV function. Abstract The purpose of this study was to examine left ventricular (LV) strain (ԑ)–volume loops to provide novel insight into the haemodynamic cardiac consequences of aortic valve stenosis (AS) and aortic valve regurgitation (AR). Twenty‐seven participants were retrospectively recruited: AR (n = 7), AS (n = 10) and control subjects (n = 10). Standard transthoracic echocardiography was used to obtain apical four‐chamber images to construct ԑ–volume relationships, which were assessed using the following parameters: early systolic ԑ (ԑ_ES); slope of ԑ–volume relationship during systole (Sslope); end‐systolic peak ԑ (peak ԑ); and diastolic uncoupling (systolic ԑ–diastolic ԑ at same volume) during early diastole (UNCOUP_ED) and late diastole (UNCOUP_LD). Receiver operating characteristic curves were used to determine the ability to detect impaired LV function. Although LV ejection fraction was comparable between groups, longitudinal peak ԑ was reduced compared with control subjects

  19. Exploratory assessment of left ventricular strain-volume loops in severe aortic valve diseases.

    Science.gov (United States)

    Hulshof, Hugo G; van Dijk, Arie P; George, Keith P; Hopman, Maria T E; Thijssen, Dick H J; Oxborough, David L

    2017-06-15

    Severe aortic valve diseases are common cardiac abnormalities that are associated with poor long-term survival. Before any reduction in left ventricular (LV) function, the left ventricle undergoes structural remodelling under the influence of changing haemodynamic conditions. In this study, we combined temporal changes in LV structure (volume) with alterations in LV functional characteristics (strain, ԑ) into a ԑ-volume loop, in order to provide novel insight into the haemodynamic cardiac consequences of aortic valve diseases in those with preserved LV ejection fraction. We showed that our novel ԑ-volume loop and the specific loop characteristics provide additional insight into the functional and mechanical haemodynamic consequences of severe aortic valve diseases (with preserved LV ejection fraction). Finally, we showed that the ԑ-volume loop characteristics provide discriminative capacity compared with conventional measures of LV function. The purpose of this study was to examine left ventricular (LV) strain (ԑ)-volume loops to provide novel insight into the haemodynamic cardiac consequences of aortic valve stenosis (AS) and aortic valve regurgitation (AR). Twenty-seven participants were retrospectively recruited: AR (n = 7), AS (n = 10) and control subjects (n = 10). Standard transthoracic echocardiography was used to obtain apical four-chamber images to construct ԑ-volume relationships, which were assessed using the following parameters: early systolic ԑ (ԑ_ES); slope of ԑ-volume relationship during systole (Sslope); end-systolic peak ԑ (peak ԑ); and diastolic uncoupling (systolic ԑ-diastolic ԑ at same volume) during early diastole (UNCOUP_ED) and late diastole (UNCOUP_LD). Receiver operating characteristic curves were used to determine the ability to detect impaired LV function. Although LV ejection fraction was comparable between groups, longitudinal peak ԑ was reduced compared with control subjects. In contrast, ԑ_ES and Sslope were

  20. Effects of breathing frequency and flow rate on the total inward leakage of an elastomeric half-mask donned on an advanced manikin headform.

    Science.gov (United States)

    He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; McKay, Roy; Bergman, Michael S; Zhuang, Ziqing

    2014-03-01

    The objective of this study was to investigate the effects of breathing frequency and flow rate on the total inward leakage (TIL) of an elastomeric half-mask donned on an advanced manikin headform and challenged with combustion aerosols. An elastomeric half-mask respirator equipped with P100 filters was donned on an advanced manikin headform covered with life-like soft skin and challenged with aerosols originated by burning three materials: wood, paper, and plastic (polyethylene). TIL was determined as the ratio of aerosol concentrations inside (C in) and outside (C out) of the respirator (C in/C out) measured with a nanoparticle spectrometer operating in the particle size range of 20-200nm. The testing was performed under three cyclic breathing flows [mean inspiratory flow (MIF) of 30, 55, and 85 l/min] and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). A completely randomized factorial study design was chosen with four replicates for each combination of breathing flow rate and frequency. Particle size, MIF, and combustion material had significant (P plastic aerosol produced higher mean TIL values than wood and paper aerosols. The effect of the breathing frequency was complex. When analyzed using all combustion aerosols and MIFs (pooled data), breathing frequency did not significantly (P = 0.08) affect TIL. However, once the data were stratified according to combustion aerosol and MIF, the effect of breathing frequency became significant (P plastic combustion aerosol. The effect of breathing frequency on TIL is less significant than the effects of combustion aerosol and breathing flow rate for the tested elastomeric half-mask respirator. The greatest TIL occurred when challenged with plastic aerosol at 30 l/min and at a breathing frequency of 30 breaths/min.

  1. Quantitating aortic regurgitation by cardiovascular magnetic resonance: significant variations due to slice location and breath holding

    International Nuclear Information System (INIS)

    Chaturvedi, Abhishek; Hamilton-Craig, Christian; Cawley, Peter J.; Maki, Jeffrey H.; Mitsumori, Lee M.; Otto, Catherine M.

    2016-01-01

    Compare variability in flow measurements by phase contrast MRI, performed at different locations in the aorta and pulmonary artery (PA) using breath-held (BH) and free-breathing (FB) sequences. Fifty-seven patients with valvular heart disease, confirmed by echocardiography, were scanned using BH technique at 3 locations in the ascending aorta (SOV = sinus of Valsalva, STJ = sinotubular junction, ASC = ascending aorta at level of right pulmonary artery) and 2 locations in PA. Single FB measurement was obtained at STJ for aorta. Obtained metrics (SV = stroke volume, FV = forward volume, BV = backward volume, RF = regurgitant fraction) were evaluated separately for patients with aortic regurgitation (AR, n = 31) and mitral regurgitation (n = 26). No difference was noted between the two measurements in the PA. Significant differences were noted in measured SV at different aortic locations. SV measurements obtained at ASC correlated best with the measurements obtained in the PA. Strongest correlation of AR was measured at the STJ. Measurements of flow volumes by phase contrast MRI differ depending on slice location. When using stroke volumes to calculate pulmonary to systemic blood flow ratio (Qp/Qs), ASC should be used. For quantifying aortic regurgitation, measurement should be obtained at STJ. (orig.)

  2. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    International Nuclear Information System (INIS)

    Sugano, Shigeo; Yamamoto, Kunihiro; Sasao, Ken-ichiro; Watanabe, Manabu

    1999-01-01

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3±0.2 l/min in controls vs 1.0±0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0±0.2 l/min in controls vs 0.9±0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5±0.2 l/min in controls vs 1.1±0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6±8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5±4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8±9.4% vs +5.9±11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly physiologic conditions

  3. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Shigeo; Yamamoto, Kunihiro; Sasao, Ken-ichiro; Watanabe, Manabu [Saiseikai Wakakusa Hospital, Yakohama (Japan)

    1999-07-01

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3{+-}0.2 l/min in controls vs 1.0{+-}0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0{+-}0.2 l/min in controls vs 0.9{+-}0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5{+-}0.2 l/min in controls vs 1.1{+-}0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6{+-}8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5{+-}4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8{+-}9.4% vs +5.9{+-}11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly

  4. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  5. Changes in inferior vena cava blood flow velocity and diameter during breathing movements in the human fetus

    NARCIS (Netherlands)

    T. Huisman (T.); S. van den Eijnde (Stefan); P.A. Stewart (Patricia); J.W. Wladimiroff (Juriy)

    1993-01-01

    textabstractBreathing movements in the human fetus cause distinct changes in Doppler flow velocity measurements at arterial, venous and cardiac levels. In adults, breathing movements result in a momentary inspiratory collapse of the inferior vena cava vessel wall. The study objective was to quantify

  6. Role of cerebral blood flow in extreme breath holding.

    Science.gov (United States)

    Bain, Anthony R; Ainslie, Philip N; Hoiland, Ryan L; Willie, Chris K; MacLeod, David B; Madden, Dennis; Maslov, Petra Zubin; Drviš, Ivan; Dujić, Željko

    2016-01-01

    The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO 2 ) by about 26% (p tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H + washout, and therefore central chemoreceptive drive to breathe, rather than to CDO 2 .

  7. A generalised correlation for the steady state flow in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Bade, M.H.; Saha, D.; Sinha, R.K.; Venkat Raj, V.

    2000-08-01

    To establish the heat transport capability of natural circulation loops, it is essential to know the flow rate. A generalized correlation for steady state flow valid for uniform and non-uniform diameter loops has been theoretically derived

  8. Effects of Air Stacking Maneuver on Cough Peak Flow and Chest Wall Compartmental Volumes of Subjects With Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Sarmento, Antonio; Resqueti, Vanessa; Dourado-Júnior, Mario; Saturnino, Lailane; Aliverti, Andrea; Fregonezi, Guilherme; de Andrade, Armele Dornelas

    2017-11-01

    To assess the acute effects of air stacking on cough peak flow (CPF) and chest wall compartmental volumes of persons with amyotrophic lateral sclerosis (ALS) versus healthy subjects positioned at 45° body inclination. Cross-sectional study with a matched-pair design. University hospital. Persons (N=24) with ALS (n=12) and age-matched healthy subjects (n=12). CPF, chest wall compartmental inspiratory capacity, chest wall vital capacity, chest wall tidal volume and operational volumes, breathing pattern, and percentage of contribution of the compartments to the inspired volume were measured by optoelectronic plethysmography. Compared with healthy subjects, significantly lower CPF (P=.007), chest wall compartmental inspiratory capacity (Pprotocol in the healthy subjects, mainly because of end-inspiratory (P<.001) and abdominal volumes (P=.008). No significant differences were observed in percentage of contribution of the compartments to the inspired volume and end-expiratory volume of both groups. No significant differences were found in chest wall tidal volume, operational volume, and breathing pattern in persons with ALS. Air stacking is effective in increasing CPF, chest wall compartmental inspiratory capacity, and chest wall vital capacity of persons with ALS with no hyperinflation. Differences in compartmental volume contributions are probably because of lung and chest wall physiological changes. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Study of the Human Breathing Flow Profile in a Room with three Different Ventilation Strategies

    DEFF Research Database (Denmark)

    Olmedo, Ines; Nielsen, Peter V.; de Adana, Manuel Ruiz

    2010-01-01

    the exhalation airflow was analyzed. In order to simulate the gaseous exhaled substances in human breathing, N2O was used as a tracer gas. The concentration of N2O and the velocity of the exhaled flow were measured in the center line of the exhalation flow. The velocity decay of the exhalation flow versus...

  10. Determination of total flow rate and flow rate of every operating branch in commissioning of heavy water loop for ARR-2

    International Nuclear Information System (INIS)

    Han Yan

    1997-01-01

    The heavy water loop (i,e, RCS) for ARR-2 in Algeria is a complex loop. Flow regulating means are not provided by the design in order to operate the reactor safely and simplify operating processes. How to determine precisely the orifice diameters of resistance parts for the loop is a key point for decreasing deviation between practical and design flow rates. Commissioning tests shall ensure that under every one of combined operating modes for the pumps, total coolant flow rate is about the same (the number of pumps operating in parallel is the same) and is consistent with design requirement, as well as the distribution of coolant flow rate to every branch is uniform. The flow Determination is divided into two steps. First and foremost, corresponding resistance part at each pump outlet is determined in commissioning test of shorted heavy water loop with light water, so that the problem about uniform distribution of the flow rate to each branch is solved, Secondly, resistance part at the reactor inlet is determined in commissioning test of heavy water loop connected with the vessel, so that the problem about that total heavy water flow rate is within optimal range is solved. According to practical requirements of the project, a computer program of hydraulic calculation and analysis for heavy water loop has been developed, and hydraulic characteristics test for a part of loop has been conducted in order to correct calculation error. By means of program calculation combining with tests in site, orifice diameters of 9 resistance parts has been determined rapidly and precisely and requirements of design and operation has been met adequately

  11. Assessment of a volume-dependent dynamic respiratory system compliance in ALI/ARDS by pooling breathing cycles

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Guttmann, Josef

    2012-01-01

    New methods were developed to calculate the volume-dependent dynamic respiratory system compliance (C rs ) in mechanically ventilated patients. Due to noise in respiratory signals and different characteristics of the methods, their results can considerably differ. The aim of the study was to establish a practical procedure to validate the estimation of intratidal dynamic C rs . A total of 28 patients from intensive care units of eight German university hospitals with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) were studied retrospectively. Dynamic volume-dependent C rs was determined during ongoing mechanical ventilation with the SLICE method, dynostatic algorithm and adaptive slice method. Conventional two-point compliance C 2P was calculated for comparison. A number of consecutive breathing cycles were pooled to reduce noise in the respiratory signals. C rs -volume curves produced with different methods converged when the number of pooling cycles increased (n ≥ 7). The mean volume-dependent C rs of 20 breaths was highly correlated with mean C 2P (C 2P,mean = 0.945 × C rs,mean − 0.053, r 2 = 0.968, p < 0.0001). The Bland–Altman analysis indicated that C 2P,mean was lower than C rs,mean (−2.4 ± 6.4 ml cm −1 H 2 O, mean bias ± 2 SD), but not significant according to the paired t-test (p > 0.05). Methods for analyzing dynamic respiratory mechanics are sensitive to noise and will converge to a unique solution when the number of pooled cycles increases. Under steady-state conditions, assessment of the volume-dependent C rs in ALI/ARDS patients can be validated by pooling respiratory data of consecutive breaths regardless of which method is applied. Confidence in dynamic C rs determination may be increased with the proposed pooling. (note)

  12. Carbogen Breathing Differentially Enhances Blood Plasma Volume and 5-Fluorouracil Uptake in Two Murine Colon Tumor Models with a Distinct Vascular Structure

    Directory of Open Access Journals (Sweden)

    Hanneke W.M. van Laarhoven

    2006-06-01

    Full Text Available For the systemic treatment of colorectal cancer, 5-fluorouracil (FU-based chemotherapy is the standard. However, only a subset of patients responds to chemotherapy. Breathing of carbogen (95% O2 and 5% CO2 may increase the uptake of FU through changes in tumor physiology. This study aims to monitor in animal models in vivo the effects of carbogen breathing on tumor blood plasma volume, pH, and energy status, and on FU uptake and metabolism in two colon tumor models C38 and C26a, which differ in their vascular structure and hypoxic status. Phosphorus-31 magnetic resonance spectroscopy (MRS was used to assess tumor pH and energy status, and fluorine-19 MRS was used to follow FU uptake and metabolism. Advanced magnetic resonance imaging methods using ultrasmall particles of iron oxide were performed to assess blood plasma volume. The results showed that carbogen breathing significantly decreased extracellular pH and increased tumor blood plasma volume and FU uptake in tumors. These effects were most significant in the C38 tumor line, which has the largest relative vascular area. In the C26a tumor line, carbogen breathing increased tumor growth delay by FU. In this study, carbogen breathing also enhanced systemic toxicity by FU.

  13. Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops.

    Science.gov (United States)

    Warriner, David R; Brown, Alistair G; Varma, Susheel; Sheridan, Paul J; Lawford, Patricia; Hose, David R; Al-Mohammad, Abdallah; Shi, Yubing

    2014-01-01

    The American Heart Association (AHA)/American College of Cardiology (ACC) guidelines for the classification of heart failure (HF) are descriptive but lack precise and objective measures which would assist in categorising such patients. Our aim was two fold, firstly to demonstrate quantitatively the progression of HF through each stage using a meta-analysis of existing left ventricular (LV) pressure-volume (PV) loop data and secondly use the LV PV loop data to create stage specific HF models. A literature search yielded 31 papers with PV data, representing over 200 patients in different stages of HF. The raw pressure and volume data were extracted from the papers using a digitising software package and the means were calculated. The data demonstrated that, as HF progressed, stroke volume (SV), ejection fraction (EF%) decreased while LV volumes increased. A 2-element lumped parameter model was employed to model the mean loops and the error was calculated between the loops, demonstrating close fit between the loops. The only parameter that was consistently and statistically different across all the stages was the elastance (Emax). For the first time, the authors have created a visual and quantitative representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The study demonstrates that robust, load-independent and reproducible parameters, such as elastance, can be used to categorise and model HF, complementing the existing classification. The modelled PV loops establish previously unknown physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV elastance and highlight that it this parameter alone, in lumped parameter models, that determines the severity of HF. Such information will enable cardiovascular modellers with an interest in HF, to create more accurate models of the heart as it fails.

  14. Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops.

    Directory of Open Access Journals (Sweden)

    David R Warriner

    Full Text Available INTRODUCTION: The American Heart Association (AHA/American College of Cardiology (ACC guidelines for the classification of heart failure (HF are descriptive but lack precise and objective measures which would assist in categorising such patients. Our aim was two fold, firstly to demonstrate quantitatively the progression of HF through each stage using a meta-analysis of existing left ventricular (LV pressure-volume (PV loop data and secondly use the LV PV loop data to create stage specific HF models. METHODS AND RESULTS: A literature search yielded 31 papers with PV data, representing over 200 patients in different stages of HF. The raw pressure and volume data were extracted from the papers using a digitising software package and the means were calculated. The data demonstrated that, as HF progressed, stroke volume (SV, ejection fraction (EF% decreased while LV volumes increased. A 2-element lumped parameter model was employed to model the mean loops and the error was calculated between the loops, demonstrating close fit between the loops. The only parameter that was consistently and statistically different across all the stages was the elastance (Emax. CONCLUSIONS: For the first time, the authors have created a visual and quantitative representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The study demonstrates that robust, load-independent and reproducible parameters, such as elastance, can be used to categorise and model HF, complementing the existing classification. The modelled PV loops establish previously unknown physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV elastance and highlight that it this parameter alone, in lumped parameter models, that determines the severity of HF. Such information will enable cardiovascular modellers with an interest in HF, to create more accurate models of the heart as it fails.

  15. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, J. [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Zuccarello, F. P.; Aulanier, G.; Schmieder, B.; Démoulin, P., E-mail: jaroslav.dudik@asu.cas.cz [LESIA, Observatoire de Paris, Psl Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-07-20

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171 Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.

  16. IVABRADINE AND QUALITY OF BIOFEEDBACK IN THE LOOP OF PACED BREATHING UNDER THE CONTROL OF HEART RATE VARIABILITY PARAMETERS IN HEALTHY VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    S. A. S. Belal

    2013-06-01

    Full Text Available On 15 healthy volunteers aged from 18 to 22 years the effect of ivabradine on the quality of biofeedback in the loop of paced breathing under the control of heart rate variability parameters were estimated. It was found that ivabradine contributes to an earlier onset and more significant optimization of regulatory systems in systematic sessions of biofeedback that allows to expand the indications for its clinical use.

  17. CFD and experimental data of closed-loop wind tunnel flow

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2016-06-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled ‘A validated design methodology for a closed loop subsonic wind tunnel’ (Calautit et al., 2014 [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD. The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section.

  18. Adaptive support ventilation: A translational study evaluating the size of delivered tidal volumes

    NARCIS (Netherlands)

    Veelo, Denise P.; Dongelmans, Dave A.; Binnekade, Jan M.; Paulus, Frederique; Schultz, Marcus J.

    2010-01-01

    Purpose: Adaptive support ventilation (ASV) is a microprocessor-controlled, closed-loop mode of mechanical ventilation that adapts respiratory rates and tidal volumes (V(T)s) based on the Otis least work of breathing formula. We studied calculated V(T)s in a computer simulation model, and V(T)s

  19. [Diuretics and their potential effect on breath-alcohol concentration--a case report].

    Science.gov (United States)

    Schmitt, Georg; Skopp, Gisela

    2015-01-01

    Many objections were raised to breath-alcohol analysis upon its introduction in the field of traffic law enforcement in Germany, but in the meantime this issue has become less relevant in forensic routine work. In the present case, the defending lawyer claimed that the ethanol concentration in the blood and hence in the breath of his client, which was 0.35 mg/l according to the Dräger Alcotest 7110® Evidential and thus above the legal limit of 0.25 mg/l, had been changed by diuretics taken 4 hours before the breath alcohol test, viz. 10 mg of torasemide, a loop diuretic, and 50 mg of spironolactone, a competitive aldosterone antagonist. According to the literature, the maximum urinary output in healthy subjects within the first 4 hours after 10 mg torasemide was 1450 ml. In patients suffering from heart failure, the urinary volume was reduced by a factor of 2.5-3; after chronic intake of torasemide, water loss did not differ from placebo. Spironolactone, which acts on the distal tubule, has little effect on urinary output. In a publication, the loss of water in excess within 24 hours was 90 ml. Co-administration of 100 mg spironolactone and 20 mg furosemide, which roughly compares to 10 mg torasemide, resulted in a mean urinary volume of 1566 ml within the first 4 hours. In terms of the reported case and provided that no compensatory fluid had been taken, a purely theoretical maximum shift of 0.007 mg/ may occur in the breath-alcohol concentration due to the smaller distribution volume even considering maximum urinary excretion values. On the other hand, already mild levels of dehydration may be associated with negative symptoms affecting driving ability.

  20. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  1. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  2. Finite volume at two-loops in chiral perturbation theory

    International Nuclear Information System (INIS)

    Bijnens, Johan; Rössler, Thomas

    2015-01-01

    We calculate the finite volume corrections to meson masses and decay constants in two and three flavour Chiral Perturbation Theory to two-loop order. The analytical results are compared with the existing result for the pion mass in two-flavour ChPT and the partial results for the other quantities. We present numerical results for all quantities.

  3. Normobaric hypoxia training: the effects of breathing-gas flow rate on symptoms.

    Science.gov (United States)

    Artino, Anthony R; Folga, Richard V; Vacchiano, Charles

    2009-06-01

    The U.S. Navy has replaced segments of refresher low-pressure chamber instruction with normobaric hypoxia training using a reduced oxygen breathing device (ROBD). A previous training evaluation revealed that this alternative instructional paradigm is a preferred means of training experienced jet aviators to recognize and recover from hypoxia. However, findings from this earlier work also indicated that air hunger was the most commonly reported symptom during ROBD training. This finding raised concern that air hunger could have resulted from a training artifact caused by the lower breathing-gas flow rate produced by the ROBD when compared to more familiar jet aircraft breathing systems. In an effort to address this issue, a software change was made that increased ROBD mask flow from 30 to 50 L x min(-1) (LPM). The purpose of this retrospective study was to determine if there are differences in the hypoxia symptoms reported by aviators trained on the ROBD upgrade (ROBD-50) compared to those trained on the original device (ROBD-30). Hypoxia training was provided to 156 aviators using the ROBD-50, and survey results were compared to those obtained from 121 aviators trained on the ROBD-30. There was a significant decrease in the number of aviators who reported experiencing air hunger while training on the ROBD-50 (44.2%) as compared to the ROBD-30 (59.4%) [Pearson chi2 (1) = 5.45, P hunger and, therefore, may impact training fidelity.

  4. WE-DE-209-02: Active Breathing Control

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D. [Stronach Regional Cancer Centre (Canada)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  5. WE-DE-209-02: Active Breathing Control

    International Nuclear Information System (INIS)

    Comsa, D.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  6. Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers.

    Science.gov (United States)

    Loring, Stephen H; O'Donnell, Carl R; Butler, James P; Lindholm, Peter; Jacobson, Francine; Ferrigno, Massimo

    2007-03-01

    Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.

  7. Shallow and deep breath lung tumor volume as estimated by spiral volumetric CT in comparison to standard axial CT using virtual simulation

    International Nuclear Information System (INIS)

    Quader, M.A.; Kalend, A.M.; Deutsch, M.; Greenberger, J.S.

    1995-01-01

    Purpose/Objective: In order to assess an individual patient tumor volume (TV) margins that are sufficient to design a beam-eye-view (BEW) conformal portal, the radiographic extent of gross tumor volume (GTV) dimensions and its fluctuation with breathing are measured by fast spiral CT scanning of patients treated for Stage II, III lung cancers using 5-6 field multi-collimated conformal beams. Materials and Methods: Over the course of conformal radiotherapy for lung cancer, a full thorax CT scans of the patient were taken by conventional axial CT scanning with patients immobilized in the treatment position and breathing normally. Patient(s) with good pulmonary function test (PFT) status were selected to perform deep breathing and re-scanned by fast spiral techniques in order to re-acquire the tomographic variation in the (GTV) with breathing. A Picker spiral ZAP-100 software running on the AQSim-PQ-2000 was used with a variable helical pitch of 1.0, 1.5 and 2.0. The variable pitch spirals were limited to tumor bed, diaphragm and lung apex area for measurements. Effect of breathing motion along x,y,z direction were then assessed for each beam-eye-view portal as seen in digitally reconstructed radiography (DRR) at the treated gantry angle. Results: Comparison of axial and spiral scans shows the progression of lung and diaphram motion with breathing can be gauged better in spiral scans. The movement of the diaphragm during shallow breathing has been found to be 2-3cm by measuring the distance between the most inferior and superior slices where diaphragm is present. The variation of the tumor dimensions along AP/PA and lateral direction seems to be less sensitive to breathing than those along inferior-superior direction. Conclusion: The fast spiral CT scanning is sensitive to patient lung motion and can be used to determine the fluctuations of the gross tumor volume with breathing. The extent of the fluctuation is location dependent and increases as one moves from the

  8. Spirometry, Static Lung Volumes, and Diffusing Capacity.

    Science.gov (United States)

    Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H

    2017-09-01

    Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11

  9. Flow loop studies with AMAX coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wildman, D.J.; Ekmann, J.M.

    1984-03-01

    The coal-water mixtures (CWM) with a stabilizer and the CWM without stabilizers were successfully transported through a flow loop facility under a variety of conditions. The handling characteristics of both CWM were reasonable. The mix tank mixer was not needed during nontesting hours to prevent settling of either material. After several days of transporting the nonstabilized material in the loop facility, the viscosity-reducing agent became ineffective. It was necessary to increase the concentration of the viscosity-reducing agent. The material with stabilizer could not be transported through the loop facility at mass flow rates greater than 209 lb/min until overnight shearing of the CWM in the tank. The CWM without a stabilizer appeared to be slightly shear-thickening, whereas the stabilized CWM initially exhibited shear-thinning behavior. The pressure losses measured for the nonstabilized material were similar to the pressure losses measured for CWM prepared at PETC with three or four percent higher concentration of Pittsburgh seam coal. Tests performed with the stabilized CWM experienced pressure losses similar to CWM prepared at PETC with Pittsburgh seam coal of five to seven percent higher concentration. Tests 1A, 2A, 1B, and 2B were not included in the comparison of in-house-prepared CWM due to differences in pretest handling procedures. 1 figure, 2 tables.

  10. Eigenvalues of the volume operator in loop quantum gravity

    International Nuclear Information System (INIS)

    Meissner, Krzysztof A

    2006-01-01

    We present a simple method to calculate certain sums of the eigenvalues of the volume operator in loop quantum gravity. We derive the asymptotic distribution of the eigenvalues in the classical limit of very large spins, which turns out to be of a very simple form. The results can be useful for example in the statistical approach to quantum gravity

  11. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  12. Uranyl Nitrate Flow Loop

    International Nuclear Information System (INIS)

    Ladd-Lively, Jennifer L

    2008-01-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by

  13. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    Science.gov (United States)

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. Copyright © 2015 the American Physiological Society.

  14. Role of cerebral blood flow in extreme breath holding

    Directory of Open Access Journals (Sweden)

    Bain Anthony R.

    2016-01-01

    Full Text Available The role of cerebral blood flow (CBF on a maximal breath-hold (BH in ultra-elite divers was examined. Divers (n = 7 performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg. Arterial blood gases and CBF were measured prior to (baseline, and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2 by about 26% (p < 0.01. Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04. In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa. The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01. These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2.

  15. MR flow measurements for assessment of the pulmonary, systemic and bronchosystemic circulation: Impact of different ECG gating methods and breathing schema

    International Nuclear Information System (INIS)

    Ley, Sebastian; Ley-Zaporozhan, Julia; Kreitner, Karl-Friedrich; Iliyushenko, Svitlana; Puderbach, Michael; Hosch, Waldemar; Wenz, Heiner; Schenk, Jens-Peter; Kauczor, Hans-Ulrich

    2007-01-01

    Purpose: Different ECG gating techniques are available for MR phase-contrast (PC) flow measurements. Until now no study has reported the impact of different ECG gating techniques on quantitative flow parameters. The goal was to evaluate the impact of the gating method and the breathing schema on the pulmonary, systemic and bronchosystemic circulation. Material and methods: Twenty volunteers were examined (1.5 T) with free breathing phase-contrast flow (PC-flow) measurements with prospective (free-prospective) and retrospective (free-retrospective) ECG gating. Additionally, expiratory breath-hold retrospective ECG gated measurements (bh-retrospective) were performed. Blood flow per minute; peak velocity and time to peak velocity were compared. The clinically important difference between the systemic and pulmonary circulation (bronchosystemic shunt) was calculated. Results: Blood flow per minute was lowest for free-prospective (6 l/min, pulmonary trunc) and highest for bh-retrospective measurements (6.9 l/min, pulmonary trunc). No clinically significant difference in peak velocity was assessed (82-83 cm/s pulmonary trunc, 109-113 cm/s aorta). Time to peak velocity was shorter for retro-gated free-retrospective and bh-retrospective than for pro-gated free-prospective. The difference between systemic and pulmonary measurements was least for the free-retrospective technique. Conclusion: The type of gating has a significant impact on flow measurements. Therefore, it is important to use the same ECG gating method, especially for follow-up examinations. Retrospective ECG gated free breathing measurements allow for the most precise assessment of the bronchosystemic blood flow and should be used in clinical routine

  16. Toward Portable Breath Acetone Analysis for Diabetes Detection

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  17. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  18. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  19. Body posture and pulmonary function in mouth and nose breathing children: cross-sectional study

    Directory of Open Access Journals (Sweden)

    Jovana de Moura Milanesi

    Full Text Available Abstract Introduction: Mouth breathing can lead to changes in body posture and pulmonary function. However, the consequences are still inconclusive and a number of studies are controversial. Objective: Evaluate and correlate spirometric parameters and postural measures in mouth breathing children, and compare them to nose breathers. Methods: two groups of 6 to 12 year-old children were evaluated: mouth breathers (MB, n = 55 and nose breathers (NB, n = 45. Spirometry and body posture analysis using photogrammetry (SAPo 0.68® v were carried out. The following spirometric measures were evaluated: peak expiratory flow (PEF, forced expiratory volume in 1 second (FEV1, forced vital capacity (FVC, FEV1/FVC ratio (% and forced expiratory flow between 25% and 75% of FVC (FEF 25-75%. Biophotogrammetric measures analyzed were: horizontal alignment of acromions (HAA and anterior superior iliac spine (HAASIS, Charpy angle, horizontal alignment of the head (HAH, cervical lordosis (CL, thoracic kyphosis (TK, lumbar lordosis (LL, cervical distance (CD and lumbar distance (LD. Results: There were no intergroup differences in spirometric and postural variables. Positive and moderate correlations were found between CL and CD measures with PEF, FEV1, FVC and FEF 25-75%, while weak correlations were observed between lumbar lordosis and PEF, FEV1 and FVC. Conclusion: The breathing mode had no influence on postural and respiratory measures. However, greater forward head posture, with smaller cervical lordosis, was related to higher lung volumes and flows in both groups.

  20. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method

    International Nuclear Information System (INIS)

    Xi Li-Ying; Chen Huan-Ming; Zheng Fu; Gao Hua; Tong Yang; Ma Zhi

    2015-01-01

    Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. (paper)

  1. The onset of flows and instabilities in a thermosyphon with parallel loops

    International Nuclear Information System (INIS)

    Zvirin, Y.

    1986-01-01

    A theoretical study is presented for the stability of various steady flows in a thermosyphon with multiple vertical channels. The main interest is in the onset of motion from a rest state or in a stagnant branch, therefore laminar flow is considered and a one-dimensional model is used to describe the flow and temperature fields. The steady state solutions include a state of no flow (rest) in the whole system and two basic flow configurations: a single loop between two channels while the others are stagnant and a symmetric flow. For a three-channel system the latter consists of an upward velocity in one branch and downward velocities in the other two. The mirror image of these basic flows are also steady state solutions. A critical modified number is found to be the stability margin for the onset of motion from a rest state in the entire system. This result was obtained both by a study of the steady state solution and by the stability analysis. The steady flow with a stagnant loop is always unstable while the symmetric flow solution in the system considered here is always stable. (orig./HP)

  2. Low-pressure dynamics of a natural-circulation two-phase flow loop

    International Nuclear Information System (INIS)

    Manera, A.; Kruijf, W.J.M. de; Hartmann, H.; Mudde, R.F.; Hagen, T.H.J.J. van der

    2001-01-01

    Flashing induced oscillations in a natural circulation loop are studied as function of heating power and inlet subcooling in symmetrical and asymmetrical power conditions. To unveil the effects of power/velocity asymmetries on the two-phase flow stability at low power and low pressure conditions different signals at several locations in the loop are recorded. In particular a Laser Doppler Anemometry set-up is used to measure the velocity simultaneously in two parallel channels and a wire-mesh sensor is used to measure the 2D void fraction distribution in a section of the ascendant part of the loop. (orig.)

  3. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  4. An evaluation of fresh gas flow rates for spontaneously breathing cats and small dogs on the Humphrey ADE semi-closed breathing system.

    Science.gov (United States)

    Gale, Elizabeth; Ticehurst, Kim E; Zaki, Sanaa

    2015-05-01

    To evaluate the fresh gas flow (FGF) rate requirements for the Humphrey ADE semi-closed breathing system in the Mapleson A mode; to determine the FGF at which rebreathing occurs, and compare the efficiency of this system to the Bain (Mapleson D) system in spontaneously breathing cats and small dogs. Prospective clinical study. Twenty-five healthy (ASA score I or II) client-owned cats and dogs (mean ± SD age 4.7 ± 5.0 years, and body weight 5.64 ± 3.26 kg) undergoing elective surgery or minor procedures. Anaesthesia was maintained with isoflurane delivered via the Humphrey ADE system in the A mode using an oxygen FGF of 100 mL kg(-1) minute(-1). The FGF was then reduced incrementally by 5-10 mL kg(-1) minute(-1) at approximately five-minute intervals, until rebreathing (inspired CO(2) >5 mmHg (0.7 kPa)) was observed, after which flow rates were increased. In six animals, once the minimum FGF at which rebreathing occurred was found, the breathing system was changed to the Bain, and the effects of this FGF delivery examined, before FGF was increased. Rebreathing did not occur at the FGF recommended by the manufacturer for the ADE. The mean ± SD FGF that resulted in rebreathing was 60 ± 20 mL kg(-1) minute(-1). The mean minimum FGF at which rebreathing did not occur with the ADE was 87 ± 39 mL kg(-1) minute(-1). This FGF resulted in significant rebreathing (inspired CO(2) 8.8 ± 2.6 mmHg (1.2 ± 0.3 kPa)) on the Bain system. The FGF rates recommended for the Humphrey ADE are adequate to prevent rebreathing in spontaneously breathing cats and dogs cats and small dogs. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  5. A novel sidestream ultrasonic flow sensor for multiple breath washout in children.

    Science.gov (United States)

    Fuchs, Susanne I; Sturz, J; Junge, S; Ballmann, M; Gappa, M

    2008-08-01

    Inert gas multiple breath washout (MBW) for measuring Lung Clearance Index using mass spectrometry and 4% sulfur hexafluoride (SF(6)) as the tracer gas has been shown to be sensitive for detecting early Cystic Fibrosis (CF) lung disease. However, mass spectrometry requires bulky equipment and is expensive to buy and maintain. A novel sidestream ultrasonic device may overcome this problem. The aims of this study were to assess the feasibility and clinical validity of measuring lung volume (functional residual capacity, FRC) and the LCI using the sidestream ultrasonic flow sensor in children and adolescents with CF in relation to spirometry and plain chest radiographs. MBW using the sidestream ultrasonic device and conventional spirometry were performed in 26 patients with CF and 22 healthy controls. In the controls (4.7-17.7 years) LCI was similar to that reported using mass spectrometry (mean (SD) 6.7 (0.5)). LCI was elevated in 77% of the CF children (6.8-18.9 years), whereas spirometry was abnormal in only 38.5%, 61.5%, and 26.9% for FEV(1), MEF(25), and FEV(1)/FVC, respectively. This was more marked in children ultrasonic MBW is a valid and simple alternative to mass spectrometry for assessing ventilation homogeneity in children. (c) 2008 Wiley-Liss, Inc.

  6. Measurement of flow rate in the third loop of PWR

    International Nuclear Information System (INIS)

    Gao Shufan.

    1986-01-01

    The range of flow rate was 14000-50000 m 3 /h. The diameter of main tube was 2.6 m. A special made pitot set was placed on the main tube in order to accurately measure the flow rate. A cross slideway and a guide devicc were used to prevent the pitot vibration. Method of equal annular area was used in the measurement. The error was less than 4.2%. A pitot cylinder flowmeter was set also on the main tube to supervise the total flow rate of the third loop

  7. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    Science.gov (United States)

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.

  8. Self-gated golden-angle spiral 4D flow MRI.

    Science.gov (United States)

    Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel

    2018-01-17

    The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Advantage of using deep inspiration breath hold with active breathing control and image-guided radiation therapy for patients treated with lung cancers

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Madhusudhansresty; Sha, Rajib Lochan; Raut, Birendra Kumar; Poornima; Subash; Mallikarjun; Anil; Krishnam Raju, A.; Vidya; Sudarshan, G.; Mahadev, Shankar; Narayana Murthy, P.

    2008-01-01

    To evaluate the impact of moderate deep inspiration breath hold (mDIBH) using an active breathing control (ABC) apparatus on heart, spinal cord, liver and contra lateral lung doses and its volumes compared with free breathing (FB) with lung cancer irradiation

  10. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    Science.gov (United States)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  11. Anomaly-free perturbations with inverse-volume and holonomy corrections in loop quantum cosmology

    International Nuclear Information System (INIS)

    Cailleteau, Thomas; Linsefors, Linda; Barrau, Aurelien

    2014-01-01

    This paper addresses the issue of the closure of the algebra of constraints for generic (cosmological) perturbations when taking into account simultaneously the two main corrections of effective loop quantum cosmology, namely the holonomy and the inverse-volume terms. Previous works on either the holonomy or the inverse-volume case are reviewed and generalized. In the inverse-volume case, we point out new possibilities. An anomaly-free solution including both corrections is found for perturbations, and the corresponding equations of motion are derived. (paper)

  12. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    Science.gov (United States)

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  13. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    Science.gov (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  14. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  15. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    Science.gov (United States)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  16. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  17. Radiotherapy of lung cancer: the inspiration breath hold with a spirometric monitoring

    International Nuclear Information System (INIS)

    Garcia, R.; Oozeer, R.; Le Thanh, H.; Chastel, D.; Doyen, J.C.; Chauvet, B.; Reboul, F.

    2002-01-01

    A CT acquisition during a free breathing examination generates images of poor quality. It creates an uncertainty on the reconstructed gross tumour volume and dose distribution. The aim of this study is to test the feasibility of a breath hold method applied in all preparation and treatment days. Five patients received a thoracic radiotherapy with the benefit of this procedure. The breathing of the patient was measured with a spirometer. The patient was coached to reproduce a constant level of breath-hold in a deep inspiration. Video glasses helped the patients to fix the breath-hold at the reference level. The patients followed the coaching during preparation and treatment, without any difficulty. The better quality of the CT reconstructed images resulted in an easier contouring. No movements of the gross tumour volume lead to a better coverage. The deep breath hold decreased the volume of irradiated lung. This method improves the reproducibility of the thoracic irradiation. The decrease of irradiated lung volume offers prospects in dose escalation and intensity modulation radiotherapy. (authors)

  18. Immediate effect of suryanadi pranayama on pulmonary function (ventilatory volumes and capacities in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Shravya Keerthi G, Hari Krishna Bandi, Suresh M, Mallikarjuna Reddy N

    2013-10-01

    Full Text Available Objectives: we found only effects of at least a short term practice extended over a period of a few days to weeks of pranayama (alternate nostril breathing rather than acute effects of unilateral right nostril breathing (suryanadi pranayama. Keeping this in mind the present study was designed to test the hypothesis that 10 min. of right nostril breathing have any immediate effect on ventilatory volumes and capacities in healthy volunteers. Methodology: Forced vital capacity (FVC, Forced expiratory volume in the first second (FEV1, Forced expiratory volume percent (FEV1/FVC%, Peak expiratory flow rate (PEFR, Forced expiratory flow25-75% (FEF25-75%, Maximum voluntary ventilation (MVV, Slow vital capacity (SVC, Expiratory reserve volume (ERV, Inspiratory reserve volume (IRV and Tidal volume (TV were recorded before and after Surya Nadi Pranayama. Results & Conclusion: There was a significant increase in FVC (p<0.0001, FEV1 (p<0.0007, PEFR (p<0.0001, FEF25-75% (p<0.0001, MVV (p<0.0001, SVC (p<0.0001, ERV (0.0006, IRV (p<0.0001 and TV (0.0055 after suryanadi pranayama. The immediate effect of suryanadi pranayama practice showed alleviation of ventilatory capacities and volumes. Any practice that increases PEFR and FEF25–75% is expected to retard the development of COPD’s. The increase in PEFR, vital capacities and flow rates by suryanadi pranayama practice obviously offers an increment in respiratory efficiency and it can be advocated to the patients of early bronchitis and as a preventive measure for COPD.

  19. Breath-to-breath variability of exhaled CO2 as a marker of lung dysmaturity in infancy.

    Science.gov (United States)

    Fouzas, Sotirios; Theodorakopoulos, Ilias; Delgado-Eckert, Edgar; Latzin, Philipp; Frey, Urs

    2017-12-01

    The concept of diffusional screening implies that breath-to-breath variations in CO 2 clearance, when related to the variability of breathing, may contain information on the quality and utilization of the available alveolar surface. We explored the validity of the above hypothesis in a cohort of young infants of comparable postmenstrual age but born at different stages of lung maturity, namely, in term-born infants ( n = 128), preterm-born infants without chronic lung disease of infancy (CLDI; n = 53), and preterm infants with moderate/severe CLDI ( n = 87). Exhaled CO 2 volume (V E,CO2 ) and concentration (F E,CO2 ) were determined by volumetric capnography, whereas their variance was assessed by linear and nonlinear variability metrics. The relationship between relative breath-to-breath change of V E,CO2 (ΔV E,CO2 ) and the corresponding change of tidal volume (ΔV T ) was also analyzed. Nonlinear F E,CO2 variability was lower in CLDI compared with term and non-CLDI preterm group ( P variability was attributed to the variability of V T ( r 2 = 0.749), whereas in term and healthy preterm infants this relationship was weaker ( r 2 = 0.507 and 0.630, respectively). The ΔV E,CO2 - ΔV T slope was less steep in the CLDI group (1.06 ± 0.07) compared with non-CLDI preterm (1.16 ± 0.07; P variability that can be quantified by nonlinear variability metrics and may reflect the degree of lung dysmaturity. In infants with moderate/severe chronic lung disease of infancy (CLDI), the variability of the exhaled CO 2 is mainly driven by the variability of breathing, whereas in term-born and healthy preterm infants this relationship is less strong. The slope of the relative CO 2 -to-volume change is less steep in CLDI infants, suggesting that dysmature lungs are less efficient in eliminating CO 2 under tidal breathing conditions.

  20. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  1. The Effect of mechanical resistive loading on optimal respiratory signals and breathing patterns under added dead space and CO2 breathing

    Directory of Open Access Journals (Sweden)

    Lin Shyan-Lung

    2016-01-01

    Full Text Available Current study aims to investigate how the respiratory resistive loading affects the behaviour of the optimal chemical-mechanical respiratory control model, the respiratory signals and breathing pattern are optimized under external dead space loading and CO2 breathing. The respiratory control was modelled to include a neuro-muscular drive as the control output to derive the waveshapes of instantaneous airflow, lung volume profiles, and breathing pattern, including total/alveolar ventilation, breathing frequency, tidal volume, inspiratory/expiratory duration, duty cycle, and arterial CO2 pressure. The simulations were performed under various respiratory resistive loads, including no load, inspiratory resistive load, expiratory resistive load, and continuous resistive load. The dead space measurement was described with Gray’s derivation, and simulation results were studied and compared with experimental findings.

  2. Intraoperative stroke volume optimization using stroke volume, arterial pressure, and heart rate: closed-loop (learning intravenous resuscitator) versus anesthesiologists.

    Science.gov (United States)

    Rinehart, Joseph; Chung, Elena; Canales, Cecilia; Cannesson, Maxime

    2012-10-01

    The authors compared the performance of a group of anesthesia providers to closed-loop (Learning Intravenous Resuscitator [LIR]) management in a simulated hemorrhage scenario using cardiac output monitoring. A prospective cohort study. In silico simulation. University hospital anesthesiologists and the LIR closed-loop fluid administration system. Using a patient simulator, a 90-minute simulated hemorrhage protocol was run, which included a 1,200-mL blood loss over 30 minutes. Twenty practicing anesthesiology providers were asked to manage this scenario by providing fluids and vasopressor medication at their discretion. The simulation program was also run 20 times with the LIR closed-loop algorithm managing fluids and an additional 20 times with no intervention. Simulated patient weight, height, heart rate, mean arterial pressure, and cardiac output (CO) were similar at baseline. The mean stroke volume, the mean arterial pressure, CO, and the final CO were higher in the closed-loop group than in the practitioners group, and the coefficient of variance was lower. The closed-loop group received slightly more fluid (2.1 v 1.9 L, p closed-loop maintained more stable hemodynamics than the practitioners primarily because the fluid was given earlier in the protocol and CO optimized before the hemorrhage began, whereas practitioners tended to resuscitate well but only after significant hemodynamic change indicated the need. Overall, these data support the potential usefulness of this closed-loop algorithm in clinical settings in which dynamic predictors are not available or applicable. Published by Elsevier Inc.

  3. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  4. Flow rate measurement in a volume

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, Cristhian

    2018-04-17

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate of the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.

  5. Inside anesthesia breathing circuits: time to reach a set sevoflurane concentration in toddlers and newborns: simulation using a test lung.

    Science.gov (United States)

    Kern, Delphine; Larcher, Claire; Basset, Bertrand; Alacoque, Xavier; Fesseau, Rose; Samii, Kamran; Minville, Vincent; Fourcade, Olivier

    2012-08-01

    We measured the time it takes to reach the desired inspired anesthetic concentration using the Primus (Drägerwerk, AG, Lübeck, Germany) and the Avance (GE Datex-Ohmeda, Munich, Germany) anesthesia machines with toddler and newborn ventilation settings. The time to reach 95% of inspired target sevoflurane concentration was measured during wash-in from 0 to 6 vol% sevoflurane and during wash-out from 6 to 0 vol% with fresh gas flows equal to 1 and 2 times the minute ventilation. The Avance was faster than the Primus (65 seconds [95% confidence interval (CI): 55 to 78] vs 310 seconds [95% CI: 261 to 359]) at 1.5 L/min fresh gas flow, tidal volume of 50 mL, and 30 breaths/min. Times were shorter by the same magnitude at higher fresh gas flows and higher minute ventilation rates. The effect of doubling fresh gas flow was variable and less than expected. The Primus is slower during newborn than toddler ventilation, whereas the Avance's response time was the same for newborn and toddler ventilation. Our data confirm that the time to reach the target-inspired anesthetic concentration depends on breathing circuit volume, fresh gas flow, and minute ventilation.

  6. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure blood use and lower mortality compared to historic controls of patients refusing blood. Transfusion reductions with HBOC use have been modest. Two HBOCs (Hemopure and Polyheme) are now in new or planned large-scale multicenter prehospital trials of trauma treatment. A new implementation of small volume resuscitation is closed-loop resuscitation (CLR), which employs microprocessors to titrate just enough fluid to reach a physiologic target . Animal studies suggest less risk of rebleeding in uncontrolled hemorrhage and a reduction in fluid needs with CLR. The first clinical application of CLR was treatment of burn shock and the US Army. Conclusions: Independently sponsored civilian trauma trials and clinical evaluations in operational combat conditions of

  7. Test of Flow Characteristics in Tubular Fuel Assembly I - Establishment of test loop and measurement validation test

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.

    2005-12-01

    Tubular type fuel has been developed as one of candidates for Advanced HANARO Reactor(AHR). It is necessary to test the flow characteristics such as velocity in each flow channels and pressure drop of tubular type fuel. A hydraulic test-loop to examine the hydraulic characteristics for a tubular type fuel has been designed and constructed. It consists of three parts; a) piping-loop including pump and motor, magnetic flow meter and valves etc, b) test-section part where a simulated tubular type fuel is located, and 3) data acquisition system to get reading signals from sensors or instruments. In this report, considerations during the design and installation of the facility and the selection of data acquisition sensors and instruments are described in detail. Before doing the experiment to measure the flow velocities in flow channels, a preliminary tests have been done for measuring the coolant velocities using pitot-tube and for validating the measurement accuracy as well. Local velocities of the radial direction in circular tubes are measured at regular intervals of 60 degrees by three pitot-tubes. Flow rate inside the circular flow channel can be obtained by integrating the velocity distribution in radial direction. The measured flow rate was compared to that of magnetic flow meter. According to the results, two values had a good agreement, which means that the measurement of coolant velocity by using pitot-tube and the flow rate measured by the magnetic flow meter are reliable. Uncertainty analysis showed that the error of velocity measurement by pitot-tube is less than ±2.21%. The hydraulic test-loop also can be adapted to others such as HANARO 18 and 36 fuel, in-pile system of FTL(Fuel Test Loop), etc

  8. A Role for the Cytoskeleton in Heart Looping

    Directory of Open Access Journals (Sweden)

    Kersti K. Linask

    2007-01-01

    Full Text Available Over the past 10 years, key genes involved in specification of left-right laterality pathways in the embryo have been defined. The read-out for misexpression of laterality genes is usually the direction of heart looping. The question of how dextral looping direction occurred mechanistically and how the heart tube bends remains unknown. It is becoming clear from our experiments and those of others that left-right differences in cell proliferation in the second heart field (anterior heart field drives the dextral direction. Evidence is accumulating that the cytoskeleton is at the center of laterality, and the bending and rotational forces associated with heart looping. If laterality pathways are modulated upstream, the cytoskeleton, including nonmuscle myosin II (NMHC-II, is altered downstream within the cardiomyocytes, leading to looping abnormalities. The cytoskeleton is associated with important mechanosensing and signaling pathways in cell biology and development. The initiation of blood flow during the looping period and the inherent stresses associated with increasing volumes of blood flowing into the heart may help to potentiate the process. In recent years, the steps involved in this central and complex process of heart development that is the basis of numerous congenital heart defects are being unraveled.

  9. Tidal breathing flow measurement in awake young children by using impedance pneumography.

    Science.gov (United States)

    Seppä, Ville-Pekka; Pelkonen, Anna S; Kotaniemi-Syrjänen, Anne; Mäkelä, Mika J; Viik, Jari; Malmberg, L Pekka

    2013-12-01

    Characteristics of tidal breathing (TB) relate to lung function and may be assessed even in young children. Thus far, the accuracy of impedance pneumography (IP) in recording TB flows in young children with or without bronchial obstruction has not been evaluated. The aim of this study was to evaluate the agreement between IP and direct flow measurement with pneumotachograph (PNT) in assessing TB flow and flow-derived indices relating to airway obstruction in young children. Tidal flow was recorded for 1 min simultaneously with IP and PNT during different phases of a bronchial challenge test with methacholine in 21 wheezy children aged 3 to 7 years. The agreement of IP with PNT was found to be excellent in direct flow signal comparison, the mean deviation from linearity ranging from 2.4 to 3.1% of tidal peak inspiratory flow. Methacholine-induced bronchoconstriction or consecutive bronchodilation induced only minor changes in the agreement. Between IP and PNT, the obstruction-related tidal flow indices were equally repeatable, and agreement was found to be high, with intraclass correlation coefficients for T PTEF/T E, V PTEF/V E, and parameter S being 0.94, 0.91, and 0.68, respectively. Methacholine-induced changes in tidal flow indices showed significant associations with changes in mechanical impedance of the respiratory system assessed by the oscillometric technique, with the highest correlation found in V PTEF/V E (r = -0.54; P tidal airflow profiles in young children with wheezing disorders.

  10. The Effect of Inhalation Volume and Breath-Hold Duration on the Retention of Nicotine and Solanesol in the Human Respiratory Tract and on Subsequent Plasma Nicotine Concentrations During Cigarette Smoking

    Directory of Open Access Journals (Sweden)

    Armitage AK

    2014-12-01

    Full Text Available The influence of inhalation depth and breath-hold duration on the retention of nicotine and solanesol in the human respiratory tract and on nicotine uptake was studied in ten cigarette smokers. In a first series of experiments, the subjects took seven puffs from a 10 mg ‘tar’ yield, test cigarette and a fixed volume of air (0, 75, 250, 500 or 1000 mL, as required by the protocol was inhaled after each puff in order to give a controlled ‘depth’ of inhalation. The inhalation was drawn from a bag containing the required volume of air. Following a 2 s breath-hold, subjects exhaled normally, with the first exhalation after each puff passing through a single acidified filter pad for collection of the non-retained nicotine and solanesol. Blood samples were taken before and at intervals during and after smoking for the sessions with 0, 75 and 500 mL inhalation volumes for determination of plasma nicotine and carboxyhaemoglobin levels. Another series of experiments was conducted with a fixed inhalation volume (500 mL and two further breath-hold durations (0 and 10 s in addition to 2 s from above. Nicotine and solanesol retentions were measured for each breath-hold condition. The amounts of nicotine retained within the respiratory system, expressed as a percentage of the amount taken into the mouth, were consistently higher than the corresponding values for solanesol in all five inhalation conditions (0-1000 mL, 2 s breath-hold. Nicotine retention increased from 46.5% at zero inhalation to 99.5% at 1000 mL inhalation (2 s breath-hold and from 98.0% at zero breath-hold to 99.9% at 10 s breath-hold (500 mL inhalation. Solanesol retention increased from 34.2% at zero inhalation volume to 71.9% at 1000 mL inhalation (2 s breath-hold and from 51.8% at zero breath-hold to 87.6% at 10 s breath-hold (500 mL inhalation. Plasma nicotine decreased from pre-smoking levels after zero inhalation indicating that the nicotine retained within the mouth was poorly

  11. Initial experience with active breathing control of liver motion during ventilation

    International Nuclear Information System (INIS)

    Robertson, John M.; Sharpe, Michael B.; Jaffray, David A.; Wong, John W.

    1997-01-01

    Purpose: Recent evidence has shown that some patients with hepatic tumors can be safely irradiated to a dose well over twice the whole liver tolerance dose if portions of normal liver are spared. Correction during treatment planning for the ventilatory motion of the liver can add a large volume of normal liver to the planning target volume. Any reduction in ventilatory motion has the potential to allow a higher dose of radiation to be given safely. Active Breathing Control (ABC) can be used to temporarily stop the airflow to a patient, thus immobilizing the liver, at any part of a patient's ventilatory cycle. ABC during helical CT scanning can be used to study the full three dimensional motion of the liver and other abdominal organs during ventilation. Ultimately, if the use of ABC is found to be clinically feasible, tolerable for patients, and, most importantly, reproducible over time, then ABC may be used during radiation treatment. Materials and Methods: An ABC apparatus was constructed using a flow monitor and scissor valves on both the inhalation and exhalation paths to the patient. The patient breathed through either a mouthpiece or facemask during the procedure. The ventilatory cycle was displayed in real time. When a stable breathing pattern was observed, the ABC was activated at a specific lung volume, closing both scissors valves, and preventing ventilation. The length of time for comfortable activation of the ABC machine for the individual patient was determined during a teaching and practice period prior to CT scanning. Helical CT scans (slice thickness 0.5 cm) to assess the potential benefit of immobilizing breathing were obtained for normal breathing, end-inspiration and end-expiration. The reproducibility of ABC over time was assessed by repeating the end-inspiration scan both immediately and one week later. The contours of the liver and kidneys were entered for each study. Results: Five patients have undergone ABC study of the abdomen. End

  12. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Science.gov (United States)

    2010-04-01

    ... volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that measures directly or indirectly the volume or flow of urine from a patient, either during the course of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine flow or volume measuring system. 876.1800...

  13. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  14. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.

    2013-01-01

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden “lung” inserts with embedded Perspex “lesions” were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  15. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clements, N. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia and Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Kron, T.; Roxby, P. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Franich, R.; Dunn, L. [Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Aarons, Y.; Chesson, B. [Department of Radiation Therapy, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Siva, S.; Duplan, D.; Ball, D. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when

  16. Pulmonary function in men after oxygen breathing at 3.0 ATA for 3.5 h

    Science.gov (United States)

    Clark, J. M.; Jackson, R. M.; Lambertsen, C. J.; Gelfand, R.; Hiller, W. D. B.; Unger, M.

    1991-01-01

    A complete description of pulmonary measurements obtained after continuous O2 exposure of 13 healthy men at 3.0 ATA for 3.5 h is presented. Measurements included flow-volume loops, spirometry, and airway resistance(n = 12); CO diffusing capacity (n = 11); closing volumes (n= 6); and air vs. HeO2 forced vital capacity maneuvers (n = 5). The average difference in maximum mid expiratory flows at 50 percent vital capacity on air and HeO2 was found to be significantly reduced postexposure by 18 percent. Raw and CO diffusing capacity were not changed postexposure. It is concluded that the relatively large change in forced expiratory flow at 25-75 percent of vital capacity compared with the mean forced expiratory volume in 1 s, the reduction in density dependence of flow, and the normal Raw postexposure are all consistent with flow limitation in peripheral airways as a major cause of the observed reduction in expiratory flow.

  17. Respiratory muscle activity related to flow and lung volume in preterm infants compared with term infants

    NARCIS (Netherlands)

    Hutten, Gerard J.; van Eykern, Leo A.; Latzin, Philipp; Thamrin, Cindy; van Aalderen, Wim M.; Frey, Urs

    2010-01-01

    Infants with chronic lung disease (CLD) have a capacity to maintain functional lung volume despite alterations to their lung mechanics. We hypothesize that they achieve this by altering breathing patterns and dynamic elevation of lung volume, leading to differences in the relationship between

  18. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  19. Efficacy of a Respiratory Training System on the Regularity of Breathing

    International Nuclear Information System (INIS)

    Shin, Eun Hyuk; Park, Hee Chul; Han, Young Yih; Ju, Sang Gyu; Shin, Jung Suk; Ahn, Yong Chan

    2008-01-01

    In order to enhance the efficiency of respiratory gated 4-dimensional radiation therapy for more regular and stable respiratory period and amplitude, a respiration training system was designed, and its efficacy was evaluated. Materials and Methods: The experiment was designed to measure the difference in respiration regularity following the use of a training system. A total of 11 subjects (9 volunteers and 2 patients) were included in the experiments. Three different breathing signals, including free breathing (free-breathing), guided breathing that followed training software (guided-breathing), and free breathing after the guided-breathing (post guided-breathing), were consecutively recorded in each subject. The peak-to-peak (PTP) period of the breathing signal, standard deviation (SD), peak-amplitude and its SD, area of the one cycle of the breathing wave form, and its root mean square (RMS) were measured and computed. Results: The temporal regularity was significantly improved in guided-breathing since the SD of breathing period reduced (free-breathing 0.568 vs guided-breathing 0.344, p=0.0013). The SD of the breathing period representing the post guided-breathing was also reduced, but the difference was not statistically significant (free-breathing 0.568 vs. guided-breathing 0.512, p=ns). Also the SD of measured amplitude was reduced in guided-breathing (free-breathing 1.317 vs. guided-breathing 1.068, p=0.187), although not significant. This indicated that the tidal volume for each breath was kept more even in guided-breathing compared to free-breathing. There was no change in breathing pattern between free-breathing and guided-breathing. The average area of breathing wave form and its RMS in postguided-breathing, however, was reduced by 7% and 5.9%, respectively. Conclusion: The guided-breathing was more stable and regular than the other forms of breathing data. Therefore, the developed respiratory training system was effective in improving the temporal

  20. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing

    International Nuclear Information System (INIS)

    Low, Daniel A.; Nystrom, Michelle; Kalinin, Eugene; Parikh, Parag; Dempsey, James F.; Bradley, Jeffrey D.; Mutic, Sasa; Wahab, Sasha H.; Islam, Tareque; Christensen, Gary; Politte, David G.; Whiting, Bruce R.

    2003-01-01

    Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity-modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath-hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four-dimensional (4-D) image set, where tidal lung volume is the additional dimension. An analysis of this 4-D data leads to methods for digital-spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4-D image set is generated by sorting free-breathing multislice CT scans according to user-defined tidal-volume bins. A multislice CT scanner is operated in the cine mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital-spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 cm 3 . An analysis of sagittal and

  1. ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations

    Science.gov (United States)

    Bijnens, Johan

    2018-03-01

    I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.

  2. ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations

    Directory of Open Access Journals (Sweden)

    Bijnens Johan

    2018-01-01

    Full Text Available I present higher loop order results for several calculations in Chiral perturbation Theory. 1 Two-loop results at finite volume for hadronic vacuum polarization. 2 A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3 Chiral corrections to neutron-anti-neutron oscillations.

  3. Quantifying Aerosol Delivery in Simulated Spontaneously Breathing Patients With Tracheostomy Using Different Humidification Systems With or Without Exhaled Humidity.

    Science.gov (United States)

    Ari, Arzu; Harwood, Robert; Sheard, Meryl; Alquaimi, Maher Mubarak; Alhamad, Bshayer; Fink, James B

    2016-05-01

    Aerosol and humidification therapy are used in long-term airway management of critically ill patients with a tracheostomy. The purpose of this study was to determine delivery efficiency of jet and mesh nebulizers combined with different humidification systems in a model of a spontaneously breathing tracheotomized adult with or without exhaled heated humidity. An in vitro model was constructed to simulate a spontaneously breathing adult (tidal volume, 400 mL; breathing frequency, 20 breaths/min; inspiratory-expiratory ratio, 1:2) with a tracheostomy using a teaching manikin attached to a test lung through a collecting filter (Vital Signs Respirgard II). Exhaled heat and humidity were simulated using a cascade humidifier set to deliver 37°C and >95% relative humidity. Albuterol sulfate (2.5 mg/3 mL) was administered with a jet nebulizer (AirLife Misty Max) operated at 10 L/min and a mesh nebulizer (Aeroneb Solo) using a heated pass-over humidifier, unheated large volume humidifier both at 40 L/min output and heat-and-moisture exchanger. Inhaled drug eluted from the filter was analyzed via spectrophotometry (276 nm). Delivery efficiency of the jet nebulizer was less than that of the mesh nebulizer under all conditions (P < .05). Aerosol delivery with each nebulizer was greatest on room air and lowest when heated humidifiers with higher flows were used. Exhaled humidity decreased drug delivery up to 44%. The jet nebulizer was less efficient than the mesh nebulizer in all conditions tested in this study. Aerosol deposition with each nebulizer was lowest with the heated humidifier with high flow. Exhaled humidity reduced inhaled dose of drug compared with a standard model with nonheated/nonhumidified exhalation. Further clinical research is warranted to understand the impact of exhaled humidity on aerosol drug delivery in spontaneously breathing patients with tracheostomy using different types of humidifiers. Copyright © 2016 by Daedalus Enterprises.

  4. Modern Spirometry Supports Anesthetic Management in Small Animal Clinical Practice: A Case Series.

    Science.gov (United States)

    Calice, Ivana; Moens, Yves

    2016-01-01

    Modern spirometry, like no other monitoring technique, allows insight into breath-to-breath respiratory mechanics. Spirometers continuously measure volume, airway pressure, and flow while calculating and continuously displaying respiratory system compliance and resistance in the form of loops. The aim of this case series is to show how observation of spirometric loops, similar to electrocardiogram or CO2 curve monitoring, can improve safety of anesthetic management in small animals. Spirometric monitoring cases described in this case series are based on use of the anaesthesia monitor Capnomac Ultima with a side stream spirometry sensor. The cases illustrate how recognition and understanding of spirometric loops allows for easy diagnosis of iatrogenic pneumothorax, incorrect ventilator settings, leaks in the system, kinked or partially obstructed endotracheal tube, and spontaneous breathing interfering with intermittent positive-pressure ventilation. The case series demonstrates the potential of spirometry to improve the quality and safety of anesthetic management, and, hence, its use can be recommended during intermittent positive-pressure ventilation and procedures in which interference with ventilation can be expected.

  5. Exercise training improves breathing strategy and performance during the six-minute walk test in obese adolescents.

    Science.gov (United States)

    Mendelson, Monique; Michallet, Anne-Sophie; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2014-08-15

    We aimed to examine ventilatory responses during the six-minute walk test in healthy-weight and obese adolescents before and after exercise training. Twenty obese adolescents (OB) (age: 14.5±1.7 years; BMI: 34.0±4.7kg·m(-2)) and 20 age and gender-matched healthy-weight adolescents (HW) (age: 15.5±1.5 years; BMI: 19.9±1.4kg·m(-2)) completed six-minute walk test during which breath-by-breath gas analysis and expiratory flow limitation (expFL) were measured. OB participated in a 12-week exercise-training program. Comparison between HW and OB participants showed lower distance achieved during the 6MWT in OB (-111.0m, 95%CI: -160.1 to 62.0, p<0.05) and exertional breathlessness was greater (+0.78 a.u., 95%CI: 0.091-3.27, p=0.039) when compared with HW. Obese adolescents breathed at lower lung volumes, as evidenced by lower end expiratory and end inspiratory lung volumes during exercise (p<0.05). Prevalence of expFL (8 OB vs 2 HW, p=0.028) and mean expFL (14.9±21.9 vs 5.32±14.6% VT, p=0.043, in OB and HW) were greater in OB. After exercise training, mean increase in the distance achieved during the 6MWT was 64.5 meters (95%CI: 28.1-100.9, p=0.014) and mean decrease in exertional breathlessness was 1.62 (95%CI: 0.47-2.71, p=0.05). Obese adolescents breathed at higher lung volumes, as evidenced by the increase in end inspiratory lung volume from rest to 6-min exercise (9.9±13.4 vs 20.0±13.6%TLC, p<0.05). Improved performance was associated with improved change in end inspiratory lung volume from rest to 6-min exercise (r=0.65, p=0.025). Our results suggest that exercise training can improve breathing strategy during submaximal exercise in obese adolescents and that this increase is associated with greater exercise performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  7. Effect of volume-oriented versus flow-oriented incentive spirometry on chest wall volumes, inspiratory muscle activity, and thoracoabdominal synchrony in the elderly.

    Science.gov (United States)

    Lunardi, Adriana C; Porras, Desiderio C; Barbosa, Renata Cc; Paisani, Denise M; Marques da Silva, Cibele C B; Tanaka, Clarice; Carvalho, Celso R F

    2014-03-01

    Aging causes physiological and functional changes that impair pulmonary function. Incentive spirometry is widely used for lung expansion, but the effects of volume-oriented incentive spirometry (VIS) versus flow-oriented incentive spirometry (FIS) on chest wall volumes, inspiratory muscle activity, and thoracoabdominal synchrony in the elderly are poorly understood. We compared VIS and FIS in elderly subjects and healthy adult subjects. Sixteen elderly subjects (9 women, mean ± SD age 70.6 ± 3.9 y, mean ± SD body mass index 23.8 ± 2.5 kg/m(2)) and 16 healthy adults (8 women, mean ± age 25.9 ± 4.3 y, mean ± body mass index 23.6 ± 2.4 kg/m(2)) performed quiet breathing, VIS, and FIS in randomized sequence. Chest wall kinematics (via optoelectronic plethysmography) and inspiratory muscle activity (via surface electromyography) were assessed simultaneously. Synchrony between the superior thorax and abdominal motion was calculated (phase angle). In the elderly subjects both types of incentive spirometry increased chest wall volumes similarly, whereas in the healthy adult subjects VIS increased the chest wall volume more than did FIS. FIS and VIS triggered similar lower thoracoabdominal synchrony in the elderly subjects, whereas in the healthy adults FIS induced lower synchrony than did VIS. FIS required more muscle activity in the elderly subjects to create an increase in chest wall volume. Incentive spirometry performance is influenced by age, and the differences between elderly and healthy adults response should be considered in clinical practice.

  8. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  9. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    International Nuclear Information System (INIS)

    Mistry, Nilesh N.; Diwanji, Tejan; Shi, Xiutao; Pokharel, Sabin; Feigenberg, Steven; Scharf, Steven M.; D'Souza, Warren D.

    2013-01-01

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R 2 of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance

  10. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Diwanji, Tejan; Shi, Xiutao [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Pokharel, Sabin [Morgan State University, Baltimore, Maryland (United States); Feigenberg, Steven [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Scharf, Steven M. [Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland (United States); D' Souza, Warren D. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic

  11. FLOW-i ventilator performance in the presence of a circle system leak.

    Science.gov (United States)

    Lucangelo, Umberto; Ajčević, Miloš; Accardo, Agostino; Borelli, Massimo; Peratoner, Alberto; Comuzzi, Lucia; Zin, Walter A

    2017-04-01

    Recently, the FLOW-i anaesthesia ventilator was developed based on the SERVO-i intensive care ventilator. The aim of this study was to test the FLOW-i's tidal volume delivery in the presence of a leak in the breathing circuit. We ventilated a test lung model in volume-, pressure-, and pressure-regulated volume-controlled modes (VC, PC, and PRVC, respectively) with a FLOW-i. First, the circuit remained airtight and the ventilator was tested with fresh gas flows of 6, 1, and 0.3 L/min in VC, PC, and PRVC modes and facing 4 combinations of different resistive and elastic loads. Second, a fixed leak in the breathing circuit was introduced and the measurements repeated. In the airtight system, FLOW-i maintained tidal volume (VT) and circuit pressure at approximately the set values, independently of respiratory mode, load, or fresh gas flow. In the leaking circuit, set VT = 500 mL, FLOW-i delivered higher VTs in PC (about 460 mL) than in VC and PRVC, where VTs were substantially less than 500 mL. Interestingly, VT did not differ appreciably from 6 to 0.3 L/min of fresh air flow among the 3 ventilatory modes. In the absence of leakage, peak inspiratory pressures were similar, while they were 35-45 % smaller in PRVC and VC than in PC mode in the presence of leaks. In conclusion, FLOW-i maintained VT (down to fresh gas flows of 0.3 L/min) to 90 % of its preset value in PC mode, which was 4-5 times greater than in VC or PRVC modes.

  12. Flow dynamics of volume-heated boiling pools

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C.; Chen, J.C.

    1979-01-01

    Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems

  13. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    Science.gov (United States)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2013-01-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not

  14. WE-DE-209-05: Self-Held Breath Control with Respiratory Monitoring and Feedback Guidance

    International Nuclear Information System (INIS)

    Gifford, K.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  15. WE-DE-209-05: Self-Held Breath Control with Respiratory Monitoring and Feedback Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, K. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  16. The role of arterial chemoreceptors in the breath-by-breath augmentation of inspiratory effort in rabbits during airway occlusion or elastic loading.

    Science.gov (United States)

    Callanan, D; Read, D J

    1974-08-01

    1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.

  17. Does helmet CPAP reduce cerebral blood flow and volume by comparison with Infant Flow driver CPAP in preterm neonates?

    Science.gov (United States)

    Zaramella, Patrizia; Freato, Federica; Grazzina, Nicoletta; Saraceni, Elisabetta; Vianello, Andrea; Chiandetti, Lino

    2006-10-01

    We compared neonatal helmet continuous positive airway pressure (CPAP) and the conventional nasal Infant Flow driver (IFD) CPAP in the noninvasive assessment of absolute cerebral blood flow (CBF) and relative cerebral blood volume changes (DeltaCBV) by near-infrared spectroscopy. A randomized crossover study in a tertiary referral NICU. Assessment of CBF and DeltaCBV in 17 very low birth weight infants with respiratory distress (median age 5 days) treated with two CPAP devices at a continuous distending pressure of 4 mbar. Neonates were studied for two consecutive 60-min periods with helmet CPAP and with IFD CPAP. Basal chromophore traces enabled DeltaCBV changes to be calculated. CBF was calculated in milliliters per 100 grams per minute from the saturation rise integral and rate of rise O(2)Hb-HHb. Median (range) CBF with helmet CPAP was 27.37 (9.47-48.20) vs. IFD CBF 34.74 (13.59-60.10)(p=0.049) and DeltaCBV 0.15 (0.09-0.28) with IFD and 0.13 (0.07-0.27) with helmet CPAP (NS). Using helmet and IFD CPAP, the neonates showed no difference in mean physiological parameters (transcutaneous carbon dioxide and oxygen tension, pulse oximetry saturation, heart rate, breathing rate, mean arterial blood pressure, desaturation rate, axillary temperature). Assessing CBF and DeltaCBV measured by near-infrared spectroscopy with two CPAP devices revealed no differences in relative blood volume, but CBF was lower with helmet CPAP. Greater active vasoconstriction and/or passive capillary and/or venous vessel compression seem the most likely reason, due to a positive pressure around the head, neck, and shoulders by comparison with the airway pressure.

  18. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear Engineering Center], e-mail: rnavarro@ipen.br

    2009-07-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  19. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.

    2009-01-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  20. Simulation and analysis on fields of temperature and flow rate of liquid LIPB in DRAGON-I loop

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Huang, Q.; Zhang, M.; Gao, S.; Wu, Y. [Chinese Academy of Science (China). Inst. of Plasma Physics

    2007-07-01

    LiPb loop is the most important experimental facility used to study key issues for liquid metal LiPb blanket of fusion reactors. The first thermal convection LiPb loop DRAGON-I was built in 2005 in ASIPP (Institute of Plasma Physics, Chinese Academy of Science), China. The temperatures for the hot leg and cold leg in the loop are 480 C and 420 C, respectively. It is necessary to do research on features and distributions of the fields of temperature and flow rate for liquid metal LiPb in the loop for safe operation of loop and analysis of corrosion behavior of materials used in it. The fields of LiPb temperature and flow rate in the loop were simulated by the popular commercial CFD (Computational Fluid Dynamics) software FLUENT in two-dimensional (2D) and three-dimensional (3D) models. In the simulations and calculations, segregated solver and viscous models of k-epsilon etc. were selected, the properties of LiPb and material of loop pipe were input and the boundary conditions were setup. It was shown that the results for 2D and 3D models were comparable, the temperature field of liquid LiPb was found to be changed continuously between hot leg and cold leg of the loop because of their temperature difference, the temperature of outer-pipes are about 20 C averagely higher than that of the LiPb in the same section of the pipe, the maximum value of thermal stress of pipes was identified near to the bottom of the hot leg. So two or three heating sections in the hot leg might be needed to heat the outer-pipes of hot leg in order to keep the constant temperature of 480 C along the hot leg. The flow rate of LiPb was revealed to be about 0.2 m/s in theory, and it fluctuated little inside the pipe except for the places of upper two corners of the loop. These results will be helpful for the analysis of corrosion behavior of materials with liquid LiPb. (orig.)

  1. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    Science.gov (United States)

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  2. EPRI flow-loop/in situ test program for motor-operated valves

    International Nuclear Information System (INIS)

    Hosler, J.F.; Dorfman, L.S.

    1994-01-01

    The Electric Power Research Institute is undertaking a comprehensive research program to develop and validate methods for predicting the performance of common motor-operated gate, global, and butterfly valves. To assess motor-operated valve (MOV) performance characteristics and provide a basis for methods validation, full-scale testing was conducted on 62 MOVs. Tests were performed in four flow-loop facilities and in nine nuclear units. Forty-seven gate, five globe, and 10 butterfly valves were tested under a wide range of flow and differential pressure conditions. The paper describes the test program scope, test configurations, instrumentation and data acquisition, testing approach, and data analysis methods. Key results are summarized

  3. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    Science.gov (United States)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  4. Daily activities and breathing parameters for use in respiratory tract dosimetry

    International Nuclear Information System (INIS)

    Roy, M.; Courtay, C.

    1991-01-01

    Dosimetry of inhaled substances is based on the air volumes breathed every day by people under exposure to gases and aerosols. In order to assess modern standards for average inspired air volumes according to age and gender, information was recorded on daily activities and breathing rates both indoors and outdoors, of specific categories of the population. Economic surveys recently published provided time budgets and activities of adults, teenagers and children. The data were matched with published data on physical activities and breathing parameters in order to calculate the daily inspired volumes of air. The results were given for adults (age > 17 years), neonates, and children 1, 5, 10 and 15 years old. The values obtained are close to those published by the Internal Commission for Radiological Protection and the reports of the United Nations Scientific Committee on the Effects of Atomic Radiation. (author)

  5. Integration of a turbine expander with an exothermic reactor loop--Flow sheet development and application to ammonia production

    International Nuclear Information System (INIS)

    Greeff, I.L.; Visser, J.A.; Ptasinski, K.J.; Janssen, F.J.J.G.

    2003-01-01

    This paper investigates the direct integration of a gas turbine power cycle with an ammonia synthesis loop. Such a loop represents a typical reactor-separator system with a recycle stream and cold separation of the product from the recycle loop. The hot reaction products are expanded directly instead of raising steam in a waste heat boiler to drive a steam turbine. Two new combined power and chemicals production flow sheets are developed for the process. The flow sheets are simulated using the flow sheet simulator AspenPlus (licensed by Aspen Technology, Inc.) and compared to a simulated conventional ammonia synthesis loop. The comparison is based on energy as well as exergy analysis. It was found that the pressure ratio over the turbine expander plays an important role in optimisation of an integrated system, specifically due to the process comprising an equilibrium reaction. The inlet temperature to the reactor changes with changing pressure ratio, which in turn determines the conversion and consequently the heat of reaction that is available to produce power. In terms of the minimum work requirement per kg of product a 75% improvement over the conventional process could be obtained. The work penalty due to refrigeration needed for separation was also accounted for. Furthermore this integrated flow sheet also resulted in a decrease in exergy loss and the loss was more evenly distributed between the various unit operations. A detailed exergy analysis over the various unit operations proved to be useful in explaining the overall differences in exergy loss between the flow sheets

  6. Comparison of two single-breath-held 3-D acquisitions with multi-breath-held 2-D cine steady-state free precession MRI acquisition in children with single ventricles

    Energy Technology Data Exchange (ETDEWEB)

    Atweh, Lamya A.; Dodd, Nicholas A.; Krishnamurthy, Ramkumar; Chu, Zili D. [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Pednekar, Amol [Philips Healthcare, Houston, TX (United States); Krishnamurthy, Rajesh [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Baylor College of Medicine, Department of Radiology, Houston, TX (United States); Baylor College of Medicine, Department of Pediatrics, Houston, TX (United States)

    2016-05-15

    Breath-held two-dimensional balanced steady-state free precession cine acquisition (2-D breath-held SSFP), accelerated with parallel imaging, is the method of choice for evaluating ventricular function due to its superior blood-to-myocardial contrast, edge definition and high intrinsic signal-to-noise ratio throughout the cardiac cycle. The purpose of this study is to qualitatively and quantitatively compare the two different single-breath-hold 3-D cine SSFP acquisitions using 1) multidirectional sensitivity encoding (SENSE) acceleration factors (3-D multiple SENSE SSFP), and 2) k-t broad-use linear acceleration speed-up technique (3-D k-t SSFP) with the conventional 2-D breath-held SSFP in non-sedated asymptomatic volunteers and children with single ventricle congenital heart disease. Our prospective study was performed on 30 non-sedated subjects (9 healthy volunteers and 21 functional single ventricle patients), ages 12.5 +/- 2.8 years. Two-dimensional breath-held SSFP with SENSE acceleration factor of 2, eight-fold accelerated 3-D k-t SSFP, and 3-D multiple SENSE SSFP with total parallel imaging factor of 4 were performed to evaluate ventricular volumes and mass in the short-axis orientation. Image quality scores (blood myocardial contrast, edge definition and interslice alignment) and volumetric analysis (end systolic volume, end diastolic volume and ejection fraction) were performed on the data sets by experienced users. Paired t-test was performed to compare each of the 3-D k-t SSFP and 3-D multiple SENSE SSFP clinical scores against 2-D breath-held SSFP. Bland-Altman analysis was performed on left ventricle (LV) and single ventricle volumetry. Interobserver and intraobserver variability in volumetric measurements were determined using intraclass coefficients. The clinical scores were highest for the 2-D breath-held SSFP images. Between the two 3-D sequences, 3-D multiple SENSE SSFP performed better than 3-D k-t SSFP. Bland-Altman analysis for volumes

  7. Are urine flow-volume nomograms developed on Caucasian men optimally applicable for Indian men? Need for appraisal of flow-volume relations in local population

    Directory of Open Access Journals (Sweden)

    Mayank M Agarwal

    2010-01-01

    Full Text Available Introduction : Flow-volume nomograms and volume-corrected flow-rates (cQ are tools to correct uroflow rates (Q with varied voided volumes (VV of urine. We investigated the applicability of the available nomograms in our local population. Materials and Methods : Raw data of our previous study on variation in Q with voiding position (standing, sitting, and squatting in healthy adult men was reanalyzed. Additionally, the departmental urodynamic database of the last four years was searched for uroflow data of men with voiding symptoms (International Prostatic Symptom Score (IPSS > 7 and global quality of life score >2. These results were projected on the Liverpool and Siroky nomograms for men. The Q-VV relations were statistically analyzed using curve-estimation regression method to examine the current definition of corrected maximum flow rate (Qmax. Results : We found a cubic relation between Q and VV; based on this we developed novel equation for cQ [cQ=Q/(VV 1/3 ] and novel confidence-limit flow-volume nomograms. The imaginary 16 th percentile line of Liverpool nomogram, -1 standard-deviation line of Siroky nomogram and lower 68% confidence-limit line of our nomogram had sensitivity of 96.2%, 100% and 89.3%, and specificity of 75.3% 69.3% and 86.0%, respectively for Qmax-VV relations. Corresponding values for average flow rate (Qave-volume relations were 96.2%, 100% and 94.6%, and 75.2%, 50.4% and 86.0%, respectively. The area under curve of the receiver operating characteristics (ROC curve for cQmax and cQave was 0.954 and 0.965, respectively, suggesting significantly higher discriminatory power than chance (P = 0.0001. Conclusion : Flow-volume nomograms developed on Caucasian population may not be optimally applicable to the Indian population. We introduce flow-volume nomograms and cQ, which have high sensitivity and specificity.

  8. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    Science.gov (United States)

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  9. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...

  10. Study on the Operating Characteristics and System Modelling of Loop type Thermosyphon for Using Solar Thermal Energy

    International Nuclear Information System (INIS)

    Kang, Myeong Cheol

    1999-02-01

    Solar energy is one of the promising resources of renewable energy. It is of particular interest due to the energy shortage and environment pollution problems. Water heating by solar energy for domestic use is one of the most successful and feasible applications of solar energy. The thermosyphon SDHWS and the loop type thermosyphon systems are widely used for domestic hot water system. The loop type thermosyphon is a circulation device for transferring the heat produced at the evaporator area to the condenser area in the loop by a working fluid. The system has the advantage of high heat transfer rate. A phase change of the working fluid occurs at the evaporator section and the vapor is transported to the condenser by the density gradient. The loop type thermosyphon collector can be made of smaller area and has higher efficiency than the present thermosyphon SDHWS. In this study, the operating characteristics of various working fluids being used have been identified. The working fluids employed in the study were ethanol, water and a binary mixture of ethanol and water. The volume of working fluid used in this study were 30%, 40%, 50%, 60% and 70% of evaporator volume. An increased heat was applied with the increased volume of working fluid. It is observed that, in the thermosyphon with low volume of working fluid, such as 30% or 40%, the fluid was dried out. The average efficiency of the loop type thermosyphon was 46% with high solar irradiation and 43% with low irradiation. The flow pattern and mechanism of the heat transfer were identified through this study. Flow patterns of the binary mixture working fluid were also investigated, and the patterns were recorded in the camera. The system parameters were calculated using the thermal performance data. Modelling of the system was carried out using PSTAR method and TRNSYS program

  11. Influences of prolonged apnea and oxygen inhalation on pulmonary hemodynamics during breath holding: Quantitative assessment by velocity-encoded MR imaging with SENSE technique

    International Nuclear Information System (INIS)

    Nogami, Munenobu; Ohno, Yoshiharu; Higashino, Takanori; Takenaka, Daisuke; Yoshikawa, Takeshi; Koyama, Hisanobu; Kawamitsu, Hideaki; Fujii, Masahiko; Sugimura, Kazuro

    2007-01-01

    Purpose: The purpose of our study was to assess the influence of prolonged apnea and administration of oxygen on pulmonary hemodynamics during breath holding (BH) by using velocity-encoded MR imaging combined with the SENSE technique (velocity MRI). Materials and methods: Ten healthy male volunteers underwent velocity MRI during BH with and without O 2 inhalation. All velocity MRI data sets were obtained continuously with the 2D cine phase-contrast method during a single BH period. The data were then divided into three BH time phases as follows: first, second and third. To evaluate the influence of prolonged apnea on hemodynamics, stroke volume (SV) and maximal change in flow rate during ejection (MCFR) of second and third phases were statistically compared with those of first phase by using the ANOVA followed by Turkey's HSD multiple comparison test. To assess the influence of O 2 on hemodynamics, SV and MCFR with or without O 2 were compared by the paired t-test. To assess the measuring agreement of hemodynamic indices during prolonged breath holding, Bland-Altman's analysis was performed. Results: Prolonged apnea had no significant influence on SV and MCFR regardless of administration of O 2 (p > 0.05). Mean MCFR for all phases was significantly lower with administration of O 2 than without (p 2 were smaller than without. Conclusion: O 2 inhalation modulated maximal change in flow rate during ejection, and did not influence stroke volume during breath holding. Influence of O 2 inhalation should be considered for MR measurements of pulmonary hemodynamics during breath holding

  12. Sports-related lung injury during breath-hold diving

    Directory of Open Access Journals (Sweden)

    Tanja Mijacika

    2016-12-01

    Full Text Available The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise. In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition. According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  13. Chemical-looping combustion in a reverse-flow fixed bed reactor

    International Nuclear Information System (INIS)

    Han, Lu; Bollas, George M.

    2016-01-01

    A reverse-flow fixed bed reactor concept for CLC (chemical-looping combustion) is explored. The limitations of conventional fixed bed reactors, as applied to CLC, are overcome by reversing the gas flow direction periodically to enhance the mixing characteristics of the bed, thus improving oxygen carrier utilization and energy efficiency with respect to power generation. The reverse-flow reactor is simulated by a dusty-gas model and compared with an equivalent fixed bed reactor without flow reversal. Dynamic optimization is used to calculate conditions at which each reactor operates at maximum energy efficiency. Several cases studies illustrate the benefits of reverse-flow operation for the CLC with CuO and NiO oxygen carriers and methane and syngas fuels. The results show that periodic reversal of the flow during reduction improves the contact between the fuel and unconverted oxygen carrier, enabling the system to suppress unwanted catalytic reactions and axial temperature and conversion gradients. The operational scheme presented reduces the fluctuations of temperature during oxidation and increases the high-temperature heat produced by the process. CLC in a reverse-flow reactor has the potential to achieve higher energy efficiency than conventional fixed bed CLC reactors, when integrated with a downstream gas turbine of a combined cycle power plant. - Highlights: • Reverse-flow fixed bed CLC reactors for combined cycle power systems. • Dynamic optimization tunes operation of batch and transient CLC systems. • The reverse-flow CLC system provides stable turbine-ready gas stream. • Reverse-flow CLC fixed bed reactor has superior CO 2 capture and thermal efficiency.

  14. Flow-induced vibration -- 1994. PVP-Volume 273

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Fujita, K.

    1994-01-01

    Flow-induced vibration is a subject of practical interest to many engineering disciplines, including the power generation, process, and petrochemical industries. In the nuclear industry, flow-induced vibration reaches a higher level of concern because of safety issues and the huge cost associated with down time and site repair. Not surprisingly, during the last 25 years a tremendous amount of effort has been spent in the study of flow-induced vibration phenomena related to nuclear plant components, notably nuclear steam generator tube banks and nuclear fuel bundles. Yet, in spite of this concentrated effort, the industry is still not free from flow-induced vibration-related problems. This explains why in this volume almost half of the papers address the issue of cross-flow induced vibration in tube bundles, with applications to the nuclear steam generator and nuclear fuel bundles in mind. Unlike 10 or 15 years ago, when flow-induced vibration studies almost always involved experimentation and empirical studies, the advent of high-speed computers has enabled numerical calculation and simulation of this complex phenomenon to take place. Separate abstracts were prepared for 27 papers in this volume

  15. Design validation and performance of closed loop gas recirculation system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Majumder, G.; Mondal, N.K.; Shinde, R.R.; Joshi, A.V.

    2016-01-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m 2 , with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C 2 H 2 F 4 ), isobutane (iC 4 H 10 ) and sulphur hexafluoride (SF 6 ) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  16. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  17. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. WE-DE-209-00: Practical Implementation of Deep Inspiration Breath Hold Techniques for Breast Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  19. WE-DE-209-00: Practical Implementation of Deep Inspiration Breath Hold Techniques for Breast Radiation Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  20. Free convection in a partially submerged fluid loop

    International Nuclear Information System (INIS)

    Britt, T.E.; Wood, D.C.

    1982-01-01

    Several natural convection loop systems are studied in order to determine the operational characteristics for a multiple loop container which is used to cool failed nuclear reactor assemblies. Both analytical and experimental studies were undertaken to examine flow in both circular and rectangular flow loops. It was found that when a circular loop is heated at the bottom and cooled at the top, recirculation cells form at all input power fluxes. At fluxes between 0.1 W/cm 2 and 0.7 W/cm 2 the cells caused flow oscillations and reversals. With the circular loop heated from the side, no recirculation cells were observed at the power fluxes up to 1.5 W/cm. Boiling did not occur in the circular loop. For a rectangular loop heated and cooled on its vertical sides, no recirculation cells or flow reversals were seen. At input power fluxes above 1.2 W/cm 2 , periodic boiling in the heated side caused flow oscillations

  1. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload oxygen from plasma hemoglobin as well as facilitate RBC

  2. Effect of laryngeal anesthesia on pulmonary function testing in normal subjects.

    Science.gov (United States)

    Kuna, S T; Woodson, G E; Sant'Ambrogio, G

    1988-03-01

    Pulmonary function tests (PFT) were performed on 11 normal subjects before and after topical anesthesia of the larynx. The PFT consisted of flow volume loops and body box determinations of functional residual capacity and airway resistance, each performed in triplicate. After the first set of tests, cotton pledgets soaked in 4% lidocaine were held in the pyriform sinuses for 2 min to block the superior laryngeal nerves. In addition, 1.5 ml of 10% cocaine was dropped on the vocal cords via indirect laryngoscopy. PFT were repeated 5 min after anesthesia. Besides routine analysis of the flow volume loops, areas under the inspiratory (Area I) and expiratory (Area E) portions of the loops were calculated by planimetry. Area I, peak inspiratory flow (PIF), as well as forced inspiratory flow at 25, 50, and 75% forced vital capacity (FVC), decreased after anesthesia. Peak expiratory flow decreased after anesthesia, but Area E and forced expiratory flow at 25, 50, and 75% FVC were unchanged. This protocol also was performed in 12 normal subjects with isotonic saline being substituted for the lidocaine and cocaine. In this group, no significant differences were observed when flow volume loop parameters were compared before and after topical application of saline. In 5 spontaneously breathing anesthetized dogs, posterior cricoarytenoid muscle and afferent superior laryngeal nerve activity were recorded before and after laryngeal anesthesia performed with the same procedure used in the human subjects. Laryngeal anesthesia resulted in a substantial decrease or a complete disappearance of afferent SLN activity recorded during unobstructed and obstructed respiration. The data suggest that laryngeal receptors help modulate upper airway patency in man.

  3. Regulation of liquid metal coolant flow rate in experimental loops

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Laptev, G.I.

    1987-01-01

    The possibility to use the VRT-2, RPA-T and R 133 analog temperature regulators for the automated regulation of liquid metal flow rate in the experimental loops for investigations on sodium and sodium-potassium alloy technology is considered. The RPA-T device is shown to be the most convenient one; it is characterized by the following parameters: measuring modulus transfer coefficient is 500; the range of regulating modulus proportionality factor variation - 0.3 - 50; the range of the regulating modulus intergrating time constant variation - 5 - 500 s

  4. Variations in tumor size and position due to irregular breathing in 4D-CT: A simulation study

    International Nuclear Information System (INIS)

    Sarker, Joyatee; Chu, Alan; Mui, Kit; Wolfgang, John A.; Hirsch, Ariel E.; Chen, George T. Y.; Sharp, Gregory C.

    2010-01-01

    Purpose: To estimate the position and volume errors in 4D-CT caused by irregular breathing. Methods: A virtual 4D-CT scanner was designed to reproduce axial mode scans with retrospective resorting. This virtual scanner creates an artificial spherical tumor based on the specifications of the user, and recreates images that might be produced by a 4D-CT scanner using a patient breathing waveform. 155 respiratory waveforms of patients were used to test the variability of 4D-CT scans. Each breathing waveform was normalized and scaled to 1, 2, and 3 cm peak-to-peak motion, and artificial tumors with 2 and 4 cm radius were simulated for each scaled waveform. The center of mass and volume of resorted 4D-CT images were calculated and compared to the expected values of center of mass and volume for the artificial tumor. Intrasubject variability was investigated by running the virtual scanner over different subintervals of each patient's breathing waveform. Results: The average error in the center of mass location of an artificial tumor was less than 2 mm standard deviation for 2 cm motion. The corresponding average error in volume was less than 4%. In the worst-case scenarios, a center of mass error of 1.0 cm standard deviation and volume errors of 30%-60% at inhale were found. Systematic errors were observed in a subset of patients due to irregular breathing, and these errors were more pronounced when the tumor volume is smaller. Conclusions: Irregular breathing during 4D-CT simulation causes systematic errors in volume and center of mass measurements. These errors are small but depend on the tumor size, motion amplitude, and degree of breathing irregularity.

  5. LOCA simulation tests in the RD-12 loop with multiple heat channels

    International Nuclear Information System (INIS)

    Ardron, K.H.; McGee, G.R.; Hawley, E.H.

    1985-11-01

    A series of tests has been performed in the RD-12 loop to study the bahaviour of a CANDU-type, primary heat transport system (PHTS) during the blowdown and injection phases of a loss-of-coolant accident (LOCA). Specifically, the tests were used to investigate flow stagnation and refilling of the core following a LOCA. RD-12 is a pressurized water loop with the basic geometry of a CANDU reactor PHTS, but at approximately 1/125 volume scale. The loop consists of U-tube steam generators, pumps, headers, feeders, and heated channels arranged in the symmetrical figure-of-eight configuration of the CANDU PHTS. In the LOCA simulation tests, the loop contained four horizontal heated channels, each containing a seven-element assembly of indirectly heated, fuel-rod simulators. The channels were nominally identical, and were arranged in parallel pairs between the headers in each half-circuit. Tests were carried out using various restricting orifices to represent pipe breaks of different sizes. The break sizes were specifically chosen such that stagnation conditions in the heated channels would be likely to occur. In some tests, the primary pumps were programmed to run down over a 100-s period to simulate a LOCA with simultaneous loss of pump power. Test results showed that, for certain break sizes, periods of low flow occurred in the channels in one half of the loop, leading to flow stratification and sheath temperature excursions. This report reviews the results of two of the tests, and discusses possible mechanisms that may have led to the low channel flow conditions observed in some cases. Plans for future experiments in the larger scale RD-14 facility are outlined. 5 refs

  6. Use of tidal breathing curves for evaluating expiratory airway obstruction in infants.

    Science.gov (United States)

    Hevroni, Avigdor; Goldman, Aliza; Blank-Brachfeld, Miriam; Abu Ahmad, Wiessam; Ben-Dov, Lior; Springer, Chaim

    2018-01-15

    To evaluate tidal breathing (TB) flow-volume and flow-time curves for identification of expiratory airway obstruction in infants. Pulmonary function tests were analyzed retrospectively in 156 infants aged 3-24 months with persistent or recurrent respiratory complaints. Parameters derived from TB curves were compared to maximal expiratory flow at functional residual capacity ([Formula: see text]maxFRC) measured by rapid thoracoabdominal compression technique. Analyzed parameters were: inspiratory time (t I ), expiratory time (t E ), tidal volume, peak tidal expiratory flow (PTEF), time to peak tidal expiratory flow (t PTEF ), expiratory flow when 50% and 25% of tidal volume remains in the lungs (FEF 50 , FEF 25 , respectively), and the ratios t PTEF /t E , t I /t E , FEF 50 /PTEF, and FEF 25 /PTEF. Statistical comparisons between flow indices and TB parameters were performed using mean squared error and Pearson's sample correlation coefficient. The study population was also divided into two groups based on severity of expiratory obstruction (above or below z-score for [Formula: see text]maxFRC of -2) to generate receiver operating characteristic (ROC) curves and calculate discriminatory values between the groups. TB parameters that were best correlated to [Formula: see text]maxFRC were: t PTEF /t E , FEF 50 /PTEF, and FEF 25 /PTEF, with r = 0.61, 0.67, 0.65, respectively (p < 0.0001 for all). ROC curves for FEF 50 /PTEF, FEF 25 /PTEF and t PTEF /t E showed areas under the curve of 0.813, 0.797, and 0.796, respectively. Cutoff value z-scores of -0.35, -0.34, and -0.43 for these three parameters, respectively, showed an 86% negative predictive value for severe airway obstructions. TB curves can assist in ruling out severe expiratory airway obstruction in infants.

  7. Airflow Characteristics at the Breathing Zone of a Seated Person

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Bolashikov, Zhecho Dimitrov; Nagano, Hideaki

    2011-01-01

    A method for active control over the interaction between the free convection flow around occupant‘s body and locally applied airflow from front on the velocity field at the breathing zone of a seated person was studied. A workplace equipped with personalised ventilation (PV) generating flow from......) was installed below the table board, above the thighs of the manikin, and was used to exhaust the air of the free convection flow coming from the lower body parts of the manikin. The velocity field at the breathing zone was measured with Particle Image Velocimetry consisting of a dual cavity laser and two CCD...

  8. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  9. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Damiano, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehta, Chaitanya [Univ. of Tennessee, Knoxville, TN (United States); Collins, Price [Univ. of Tennessee, Knoxville, TN (United States); Lish, Matthew [Univ. of Tennessee, Knoxville, TN (United States); Cady, Brian [Univ. of Tennessee, Knoxville, TN (United States); Lollar, Victor [Univ. of Tennessee, Knoxville, TN (United States); de Wet, Dane [Univ. of Tennessee, Knoxville, TN (United States); Bayram, Duygu [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  10. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    International Nuclear Information System (INIS)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; De Wet, Dane; Bayram, Duygu

    2015-01-01

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  11. Coupled hydrodynamic-structural analysis of an integral flowing sodium test loop in the TREAT reactor

    International Nuclear Information System (INIS)

    Zeuch, W.R.; A-Moneim, M.T.

    1979-01-01

    A hydrodynamic-structural response analysis of the Mark-IICB loop was performed for the TREAT (Transient Reactor Test Facility) test AX-1. Test AX-1 is intended to provide information concerning the potential for a vapor explosion in an advanced-fueled LMFBR. The test will be conducted in TREAT with unirradiated uranium-carbide fuel pins in the Mark-IICB integral flowing sodium loop. Our analysis addressed the ability of the experimental hardware to maintain its containment integrity during the reference accident postulated for the test. Based on a thermal-hydraulics analysis and assumptions for fuel-coolant interaction in the test section, a pressure pulse of 144 MPa maximum pressure and pulse width of 1.32 ms has been calculated as the reference accident. The response of the test loop to the pressure transient was obtained with the ICEPEL and STRAW codes. Modelling of the test section was completed with STRAW and the remainder of the loop was modelled by ICEPEL

  12. Shining light on human breath analysis with quantum cascade laser spectroscopy

    NARCIS (Netherlands)

    Reyes Reyes, A.

    2017-01-01

    In the search for new non-invasive diagnostic methods, healthcare researchers have turned their attention to exhaled human breath. Breath consists of thousands of molecular compounds in very low concentrations, in the order of parts per million by volume (ppmv), parts per billion by

  13. Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops.

    Science.gov (United States)

    Dekker, A L A J; Phelps, B; Dijkman, B; van der Nagel, T; van der Veen, F H; Geskes, G G; Maessen, J G

    2004-06-01

    Patients in heart failure with left bundle branch block benefit from cardiac resynchronization therapy. Usually the left ventricular pacing lead is placed by coronary sinus catheterization; however, this procedure is not always successful, and patients may be referred for surgical epicardial lead placement. The objective of this study was to develop a method to guide epicardial lead placement in cardiac resynchronization therapy. Eleven patients in heart failure who were eligible for cardiac resynchronization therapy were referred for surgery because of failed coronary sinus left ventricular lead implantation. Minithoracotomy or thoracoscopy was performed, and a temporary epicardial electrode was used for biventricular pacing at various sites on the left ventricle. Pressure-volume loops with the conductance catheter were used to select the best site for each individual patient. Relative to the baseline situation, biventricular pacing with an optimal left ventricular lead position significantly increased stroke volume (+39%, P =.01), maximal left ventricular pressure derivative (+20%, P =.02), ejection fraction (+30%, P =.007), and stroke work (+66%, P =.006) and reduced end-systolic volume (-6%, P =.04). In contrast, biventricular pacing at a suboptimal site did not significantly change left ventricular function and even worsened it in some cases. To optimize cardiac resynchronization therapy with epicardial leads, mapping to determine the best pace site is a prerequisite. Pressure-volume loops offer real-time guidance for targeting epicardial lead placement during minimal invasive surgery.

  14. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo

    2016-01-01

    radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis......A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo...

  15. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  16. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... sufficient volume to prevent gas waste during exhalation and to provide an adequate reserve for inhalation. (b) Breathing bags shall be constructed of materials which are flexible and resistant to gasoline...

  17. Microcomputer-controlled flow meter used on a water loop

    International Nuclear Information System (INIS)

    Haniger, L.

    1982-01-01

    The report describes a microcomputer-controlled instrument intended for operational measurement on an experimental water loop. On the basis of pressure and temperature input signals the instrument calculates the specific weight, and for ten operator-selectable measuring channels it calculates the mass flow G(kp/s), or the voluminal flow Q(m 3 /h). On pressing the appropriate push-buttons the built-in display indicates the values of pressure (p) and temperature (t), as well as the values of specific weight γ calculated therefrom. For ten individually selectable channels the instrument displays either the values of the pressure differences of the measuring throttling elements (√Δpsub(i)), or the values of Gsub(i) or Qsub(i) as obtained by calculation. In addition, on pressing the Σ-push-button it summarizes the values of Gsub(i) and Qsub(i) for the selected channels. The device is controlled by an 8085 microprocessor, the analog unit MP 6812 being used as the A/D convertor. The instrument algorithm indicates some possible errors which may concern faults of input signals or mistakes in calculation. (author)

  18. Experiments on the Microenvironment and Breathing of a Person in Isothermal and Stratified Surroundings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Litewnicki, Michal

    2009-01-01

    This study investigates the characteristics of human exhalation. Experiments are performed on a breathing thermal manikin in a test room. The manikin is heated, and an artificial lung is used to generate varying air flows with specific flow rates and temperatures for breathing. Smoke visualisation...... is used to show the formation, movement and disappearance of the exhalation jets from both nose and mouth. The exhalation of breathing without ventilation in the room, and with stratified surroundings (displacement ventilation) is analysed....

  19. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    International Nuclear Information System (INIS)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon

    2002-01-01

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  20. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon [Hallym University College of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  1. Analytical study of flow instability behaviour in a boiling two-phase natural circulation loop under low quality conditions

    International Nuclear Information System (INIS)

    Nayak, A.K.; Kumar, N.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2002-01-01

    Analytical investigations have been carried out to study the flow instability behaviour in a boiling two-phase natural circulation loop under low quality conditions. For this purpose, the computer code TINFLO-S has been developed. The code solves the conservation equations of mass, momentum and energy and equation of state for homogeneous equilibrium twophase flow using linear analytical technique. The results of the code have been validated with the experimental data of the loop for both the steady state and stability. The study reveals that the stability behaviour of low quality flow oscillations is different from that of the high quality flow oscillations. The instability reduces with increase in power and throttling at the inlet of the heater. The instability first increases and then reduces with increase in pressure at any subcooling. The effects of diameter of riser pipe, heater and the height of the riser on this instability are also investigated. (orig.) [de

  2. Experimental Study on Hydrate Induction Time of Gas-Saturated Water-in-Oil Emulsion using a High-Pressure Flow Loop

    Directory of Open Access Journals (Sweden)

    Lv X.F.

    2015-11-01

    Full Text Available Hydrate is one of the critical precipitates which have to be controlled for subsea flow assurance. The induction time of hydrate is therefore a significant parameter. However, there have been few studies on the induction time of the natural gas hydrate formation in a flow loop system. Consequently, a series of experiments were firstly performed, including water, natural gas and Diesel oil, on the hydrate induction time under various conditions such as the supercooling and supersaturation degree, water cut, anti-agglomerant dosage, etc. The experiments were conducted in a high-pressure hydrate flow loop newly constructed in the China University of Petroleum (Beijing, and dedicated to flow assurance studies. Then, based on previous research, this study puts forward a method for induction time, which is characterized by clear definition, convenient measurement and good generality. Furthermore, we investigated the influences of the experimental parameters and analyzed the experimental phenomena for the hydrate induction time in a flowing system.

  3. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2003-09-15

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 +- 39.7 ml/min for the right side and 127.6 +- 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 +- 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 +- 59.19 ml/min in male, and 217.28 +- 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  4. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    International Nuclear Information System (INIS)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol

    2003-01-01

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 ± 39.7 ml/min for the right side and 127.6 ± 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 ± 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 ± 59.19 ml/min in male, and 217.28 ± 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  5. Flow effect on {sup 135}I and {sup 135}Xe evolution behavior in a molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianhui; Guo, Chen [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Cai, Xiangzhou [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Chenggang; Zou, Chunyan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Jianlong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jingen, E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-04-01

    Highlights: • {sup 135}Xe and {sup 135}I evolution law in a molten salt reactor is analytically deduced. • The circulation of fuel salt through the primary loop decreases the concentration of {sup 135}I and {sup 135}Xe. • {sup 135}I and {sup 135}Xe concentration reduction is independent with the mass flow rate at normal core operating condition. • Increasing the external core volume would raise {sup 135}I and {sup 135}Xe concentration reduction caused by the flow effect. - Abstract: Molten Salt Reactor (MSR) employs fissile material dissolved in the fluoride salt as fuel which continuously circulates through the primary loop with the flow cycle time being a few tens of seconds. The nuclei evolution law is quite different from that in a solid fuel reactor. In this paper, we analytically deduce the nuclei evolution law of {sup 135}Xe and {sup 135}I which are entrained in the flowing salt, evaluate its concentration changing with the burnup time, and validate the result with the SCALE6. The circulation of fuel salt could decrease the concentration of {sup 135}Xe and {sup 135}I, and the reduction can achieve to around 40% and 50% for {sup 135}Xe and {sup 135}I respectively at a small power level (e.g., 2 MW) when the core has the same fuel salt volume as that of the outer-loop. Furthermore, it can be found that the reduction is inversely proportional to the core to outer-loop volume ratio, but uncorrelated with the mass flow rate under normal operating condition of a MSR. At low core power scale, the flow effect on {sup 135}Xe concentration reduction is apparent, but it is mitigated as the core power scale increases because of the rise of {sup 135}I concentration, which raises its decay to {sup 135}Xe and compensates the loss of {sup 135}Xe due to decay at the outer-loop. The decreased {sup 135}Xe concentration results in a core reactivity increase varying from around 150 pcm to 1000 pcm depending on the core power and core to outer-loop volume ratio.

  6. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  7. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  8. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  9. Tidal volume single breath washout of two tracer gases--a practical and promising lung function test.

    Directory of Open Access Journals (Sweden)

    Florian Singer

    Full Text Available BACKGROUND: Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI, which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW of sulfur hexafluoride (SF(6 and helium (He using an ultrasonic flowmeter (USFM. METHODS: The tracer gas mixture contained 5% SF(6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC, were determined in seven subjects performing three SBW 24 hours apart. RESULTS: USFM reliably measured MM during all SBW tests (n = 60. MM from USFM reflected SF(6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. CONCLUSION: The USFM accurately measured relative changes in SF(6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF(6 and He washout patterns during tidal breathing.

  10. Tidal Volume Single Breath Washout of Two Tracer Gases - A Practical and Promising Lung Function Test

    Science.gov (United States)

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-01-01

    Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing. PMID:21423739

  11. Tidal volume single breath washout of two tracer gases--a practical and promising lung function test.

    Science.gov (United States)

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-03-10

    Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF(6)) and helium (He) using an ultrasonic flowmeter (USFM). The tracer gas mixture contained 5% SF(6) and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF(6) and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. The USFM accurately measured relative changes in SF(6) and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF(6) and He washout patterns during tidal breathing.

  12. Clinical application of a right ventricular pressure-volume loop determined by gated blood-pool imaging and simultaneously measured right ventricular pressure

    International Nuclear Information System (INIS)

    Yasue, Takao; Watanabe, Sachiro; Sugishita, Nobuyoshi; Tanaka, Tsutomu; Yokoyama, Hideo

    1983-01-01

    The data obtained by ECG-gated radionuclide angiography were collected simultaneously with right ventricular pressure and thermal cardiac output (CO) obtained by a Swan-Ganz catheter in Scintipac 1200 (Shimazu Co) in order to create a right ventricular pressure-volume (RV P-V) loop. Subjects consisted of 15 patients with old myocardial infarction (MI group), seven with angina pectoris (AP group), six with congestive cardiomyopathy (CCM group) and five with neurocirculatory asthenia (NCA group). Right ventricular end-diastolic volume (RVEDV) was calculated as RVEDV = CO/(EF x HR) (CO = cardiac output; HR = heart rate). Systolic work (W sub(S)), diastolic work (W sub(D)) and net work (W sub(N)) were calculated from a RV P-V loop by Simpson's method. The measurements were performed before and 5 min after sublingual administration of nitroglycerin (NG) (0.3 mg). The results were as follows: 1. RV P-V loops shifted towards the left lower part of the P-V plane after sublingual administration of nitroglycerin, indicating the reduction of pressure and volume of the right ventricle. 2. Right ventricular ejection fraction (RVEF) in the MI, AP and CCM groups showed smaller values than that of the NCA group. 3. Right ventricular end-diastolic volume index (RVEDVI) showed a converse relation with RVEF. 4. Cardiac index in all groups decreased after NG and a statistical significance was seen in the MI, AP and NCA groups (p<0.05). 5. RV W sub(S), RV W sub(D) and RV W sub(N) showed no difference among each groups in the control state, and significantly decreased after NG. We conclude that the present method using RV P-V loop might be useful as a noninvasive bedside monitoring and permits the evaluation of RV function in a clinical setting

  13. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  14. The relationship between partial upper-airway obstruction and inter-breath transition period during sleep.

    Science.gov (United States)

    Mann, Dwayne L; Edwards, Bradley A; Joosten, Simon A; Hamilton, Garun S; Landry, Shane; Sands, Scott A; Wilson, Stephen J; Terrill, Philip I

    2017-10-01

    Short pauses or "transition-periods" at the end of expiration and prior to subsequent inspiration are commonly observed during sleep in humans. However, the role of transition periods in regulating ventilation during physiological challenges such as partial airway obstruction (PAO) has not been investigated. Twenty-nine obstructive sleep apnea patients and eight controls underwent overnight polysomnography with an epiglottic catheter. Sustained-PAO segments (increased epiglottic pressure over ≥5 breaths without increased peak inspiratory flow) and unobstructed reference segments were manually scored during apnea-free non-REM sleep. Nasal pressure data was computationally segmented into inspiratory (T I , shortest period achieving 95% inspiratory volume), expiratory (T E , shortest period achieving 95% expiratory volume), and inter-breath transition period (T Trans , period between T E and subsequent T I ). Compared with reference segments, sustained-PAO segments had a mean relative reduction in T Trans (-24.7±17.6%, P<0.001), elevated T I (11.8±10.5%, P<0.001), and a small reduction in T E (-3.9±8.0, P≤0.05). Compensatory increases in inspiratory period during PAO are primarily explained by reduced transition period and not by reduced expiratory period. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Steady state flow analysis of two-phase natural circulation in multiple parallel channel loop

    International Nuclear Information System (INIS)

    Bhusare, V.H.; Bagul, R.K.; Joshi, J.B.; Nayak, A.K.; Kannan, Umasankari; Pilkhwal, D.S.; Vijayan, P.K.

    2016-01-01

    Highlights: • Liquid circulation velocity increases with increasing superficial gas velocity. • Total two-phase pressure drop decreases with increasing superficial gas velocity. • Channels with larger driving force have maximum circulation velocities. • Good agreement between experimental and model predictions. - Abstract: In this work, steady state flow analysis has been carried out experimentally in order to estimate the liquid circulation velocities and two-phase pressure drop in air–water multichannel circulating loop. Experiments were performed in 15 channel circulating loop. Single phase and two-phase pressure drops in the channels have been measured experimentally and have been compared with theoretical model of Joshi et al. (1990). Experimental measurements show good agreement with model.

  16. Identification of flow paths and quantification of return flow volumes and timing at field scale

    Science.gov (United States)

    Claes, N.; Paige, G. B.; Parsekian, A.

    2017-12-01

    Flood irrigation, which constitutes a large part of agricultural water use, accounts for a significant amount of the water that is diverted from western streams. Return flow, the portion of the water applied to irrigated areas that returns to the stream, is important for maintaining base flows in streams and ecological function of riparian zones and wetlands hydrologically linked with streams. Prediction of timing and volumes of return flow during and after flood irrigation pose a challenge due to the heterogeneity of pedogenic and soil physical factors that influence vadose zone processes. In this study, we quantify volumes of return flow and potential pathways in the subsurface through a vadose zone flow model that is informed by both hydrological and geophysical observations in a Bayesian setting. We couple a two-dimensional vadose zone flow model through a Bayesian Markov Chain Monte Carlo approach with time lapse ERT, borehole NMR datasets that are collected during and after flood irrigation experiments, and soil physical lab analysis. The combination of both synthetic models and field observations leads to flow path identification and allows for quantification of volumes and timing and associated uncertainties of subsurface return that stems from flood irrigation. The quantification of the impact of soil heterogeneity enables us to translate these results to other sites and predict return flow under different soil physical settings. This is key when managing irrigation water resources and predictions of outcomes of different scenarios have to be evaluated.

  17. Vector Volume Flow in Arteriovenous Fistulas

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Heerwagen, Søren; Pedersen, Mads Møller

    2013-01-01

    , but is very challenging due to the angle dependency of the Doppler technique and the anatomy of the fistula. The angle independent vector ultrasound technique Transverse Oscillation provides a new and more intuitive way to measure volume flow in an arteriovenous fistula. In this paper the Transverse...

  18. IMPLEMENTATION OF BIOFEEDBACK IN A CLOSED LOOP OF HEART RATE VARIABILITY AND PACED BREATHING IN PATIENTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    O. L. Kulik

    2014-06-01

    Full Text Available The effectiveness of biofeedback in a closed loop of heart rate variability (HRV and paced breathing in patients with arterial hypertension was studied. 61 subjects with arterial hypertension (31 females and 30 males, mean age 56.8 ± 6.2 years were examined. In accordance with the objective of the study all subjects were divided into 2 groups: 1 – biofeedback group (34 subjects and 2 – the comparison group (27 subjects. 5 biofeedback sessions were performed in biofeedback group. In the comparison group only two biofeedback sessions were performed – at admission and before discharge from the hospital. Efficacy of biofeedback was evaluated by comparing the values of systolic and diastolic blood pressure (SBP and DBP, respectively, heart rate (HR, HRV indices, indicators of optimality (O, sensitivity (S and efficiency (E and BQI index at admission and discharge in both groups of patients. The use of biofeedback in arterial hypertension subjects allowed to achieve better control of heart rate, systolic and diastolic blood pressure and improves HRV indices. The positive dynamics of optimality and the integral BQI values indicated a training effect of regulation systems.

  19. Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam

    Science.gov (United States)

    Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.

    2018-03-01

    Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.

  20. THE INFLUENCE OF BIOFEEDBACK SESSIONS IN CLOSED LOOP OF HEART RATE VARIABILITY AND PACED BREATHING ON SYSTOLIC BLOOD PRESSURE CONTROL DURING STANDARD DRUG THERAPY IN PATIENTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    S. A. S. Belal

    2015-06-01

    Full Text Available Changes of systolic blood pressure (SBP in biofeedback (BFB sessions with closed loop of paced breathing (PB and heart rate variability (HRV during standard drug therapy of arterial hypertension (AH was studied. 275 patients with 1-3 degree of AH (143 men and 132 women, mean age 58,55 ± 7,99 years was divided into two comparable groups: 1 - BFB (139 patients in investigated PB loop, 2 - control group (136 patients with BFB without PB. In both groups was performed 10 sessions of BFB. Changes of SBP depending on the stage and degree of AH, gender and age was assessed. BP was measured by the method of Korotkov’s with monometer Microlife BP AG1-20 in same conditions. Data were processed by parametric and nonparametric statistics. It is proved that the use of biofeedback in the loop of PB and HRV significantly (p < 0.01 exceeds in efficiency an isolated drug therapy in control of SBP at any stage and degree of AH in patients of both sexes in all age groups. Extent of the effect increases with the stage and degree of the disease and not related to the sex and age of the patient. Findings allow to recommend this technique in clinical practice.

  1. Intermittent aerosol delivery to the lungs during high-flow nasal cannula therapy.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Azimi, Mandana; Syed, Aamer; Hindle, Michael

    2014-10-01

    Use of submicrometer particles combined with condensational growth techniques has been proposed to reduce drug losses within components of high-flow nasal cannula therapy systems and to enhance the dose reaching the lower respiratory tract. These methods have been evaluated using continuous inhalation flow rather than realistic inhalation/exhalation breathing cycles. The goal of this study was to evaluate in vitro aerosol drug delivery using condensational growth techniques during high-flow nasal cannula therapy using realistic breathing profiles and incorporating intermittent aerosol delivery techniques. A mixer-heater combined with a vibrating mesh nebulizer was used to generate a submicrometer aerosol using a formulation of 0.2% albuterol sulfate and 0.2% sodium chloride in water. Delivery efficiency of the aerosol for 1 min through a nasal cannula was considered using an intermittent delivery regime with aerosol being emitted for either the entire inhalation time (2 s) or half of the inhalation period (1 s) and compared with continuous delivery. The deposition of the aerosol was evaluated in the nasal delivery components (ventilator tubing and cannula) and an in vitro adult nose-mouth-throat (NMT) model using 3 realistic breathing profiles. Significant improvements in dose delivered to the exit of the NMT model (ex-NMT) were observed for both condensational growth methods using intermittent aerosol delivery compared with continuous delivery, and increasing the tidal volume was found useful. The combination of the largest tidal volume with the shortest intermittent delivery time resulted in the lowest respiration losses and the highest ex-NMT delivered dose. Intermittent aerosol delivery using realistic breathing profiles of submicrometer condensational growth aerosols was found to be efficient in delivering nasally administered drugs in an in vitro airway model. Copyright © 2014 by Daedalus Enterprises.

  2. Microwave emission from flaring magnetic loops

    International Nuclear Information System (INIS)

    Vlahos, L.

    1980-01-01

    The microwave emission from a flaring loop is considered. In particular the author examines the question: What will be the characteristics of the radio emission at centimeter wavelengths from a small compact flaring loop when the mechanism which pumps magnetic energy into the plasma in the form of heating and/or electron acceleration satisfies the conditions: (a) the magnetic energy is released in a small volume compared to the volume of the loop, and the rate at which magnetic energy is transformed into plasma energy is faster than the energy losses from the same volume. This causes a local enhancement of the temperature by as much as one or two orders of magnitude above the coronal temperature; (b) The bulk of the energy released goes into heating the plasma and heats primarily the electrons. (Auth.)

  3. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  4. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    Science.gov (United States)

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  5. A Novel, Inexpensive Method to Monitor, Record, and Analyze Breathing Behavior During Normobaric Hypoxia Generated by the Reduced Oxygen Breathing Device.

    Science.gov (United States)

    Temme, Leonard A; St Onge, Paul; Adams, Mark; Still, David L; Statz, Jonathan K; Williams, Steven T

    2017-03-01

    Since hypoxia remains one of the most important physiological hazards the aviation environment poses, military aviators are trained to recognize symptoms of hypoxia in order to implement appropriate safety procedures and countermeasures when hypoxia occurs. A widely used commercial instrument for hypoxia training, demonstration, and research is the Reduced Oxygen Breathing Device (ROBD). Here we describe a novel, inexpensive method to use the ROBD's breathing loop pressure (BLP) to measure respiration rate, a critically important response parameter for hypoxia. The ROBD can be controlled by a computer to export several variables including BLP, via the ROBD's RS232 port. An archived database was reanalyzed to assess the BLP data. New instrumentation added independent measures of respiration and expired oxygen and carbon dioxide; these measures were integrated with the ROBD output. Analysis of the archived data showed that the BLP reflected realistic breathing patterns. The new instrumentation integrated well with the ROBD, and independently supported the potential of the BLP as a valid measure of respiration. The ROBD's BLP data may provide a basis for a reliable, sensitive measure of respiration that is available at no additional cost. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  6. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  7. Influence of Gravity on Blood Volume and Flow Distribution

    Science.gov (United States)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  8. Assessment of tidal volume and thoracoabdominal motion using volume and flow-oriented incentive spirometers in healthy subjects

    Directory of Open Access Journals (Sweden)

    V.F. Parreira

    2005-07-01

    Full Text Available The objective of the present study was to evaluate incentive spirometers using volume- (Coach and Voldyne and flow-oriented (Triflo II and Respirex devices. Sixteen healthy subjects, 24 ± 4 years, 62 ± 12 kg, were studied. Respiratory variables were obtained by respiratory inductive plethysmography, with subjects in a semi-reclined position (45º. Tidal volume, respiratory frequency, minute ventilation, inspiratory duty cycle, mean inspiratory flow, and thoracoabdominal motion were measured. Statistical analysis was performed with Kolmogorov-Smirnov test, t-test and ANOVA. Comparison between the Coach and Voldyne devices showed that larger values of tidal volume (1035 ± 268 vs 947 ± 268 ml, P = 0.02 and minute ventilation (9.07 ± 3.61 vs 7.49 ± 2.58 l/min, P = 0.01 were reached with Voldyne, whereas no significant differences in respiratory frequency were observed (7.85 ± 1.24 vs 8.57 ± 1.89 bpm. Comparison between flow-oriented devices showed larger values of inspiratory duty cycle and lower mean inspiratory flow with Triflo II (0.35 ± 0.05 vs 0.32 ± 0.05 ml/s, P = 0.00, and 531 ± 137 vs 606 ± 167 ml/s, P = 0.00, respectively. Abdominal motion was larger (P < 0.05 during the use of volume-oriented devices compared to flow-oriented devices (52 ± 11% for Coach and 50 ± 9% for Voldyne; 43 ± 13% for Triflo II and 44 ± 14% for Respirex. We observed that significantly higher tidal volume associated with low respiratory frequency was reached with Voldyne, and that there was a larger abdominal displacement with volume-oriented devices.

  9. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  10. UPTF loop seal tests and their RELAP simulation

    International Nuclear Information System (INIS)

    Tuomainen, M.; Tuunanen, J.

    1997-01-01

    In a pressurized water reactor the loop seals have an effect on the natural circulation. If a loop seal is filled with water it can cause a flow stagnation in the loop during two-phase natural circulation. Also the pressure loss over a filled loop seal is high, which lowers the water level in the core. Tests to investigate the loop seal behaviour were performed on a German Upper Plenum Test Facility (UPTF). The purpose of the tests was to study the amount of water in the loop seal under different steam flow rates. The tests were simulated with RELAP5/MOD3.2. With high steam flow rates the code had problems in simulating the amount of the water remaining in the pump elbow, but in general the agreement between the calculated results and the experimental data was good. (orig.)

  11. Use of an iPad App to simulate pressure-volume loops and cardiovascular physiology.

    Science.gov (United States)

    Leisman, Staci; Burkhoff, Daniel

    2017-09-01

    The purpose of this laboratory exercise is to model the changes in preload, afterload, and contractility on a simulated pressure-volume loop and to correlate those findings with common measurements of clinical cardiovascular physiology. Once students have modeled these changes on a healthy heart, the students are asked to look at a simulated case of cardiogenic shock. Effects on preload, contractility, and afterload are explored, as well as the hemodynamic effects of a number of student-suggested treatment strategies. Copyright © 2017 the American Physiological Society.

  12. Time course of ozone-induced changes in breathing pattern in healthy exercising humans.

    Science.gov (United States)

    Schelegle, Edward S; Walby, William F; Adams, William C

    2007-02-01

    We examined the time course of O3-induced changes in breathing pattern in 97 healthy human subjects (70 men and 27 women). One- to five-minute averages of breathing frequency (f(B)) and minute ventilation (Ve) were used to generate plots of cumulative breaths and cumulative exposure volume vs. time and cumulative exposure volume vs. cumulative breaths. Analysis revealed a three-phase response; delay, no response detected; onset, f(B) began to increase; response, f(B) stabilized. Regression analysis was used to identify four parameters: time to onset, number of breaths at onset, cumulative inhaled dose of ozone at onset of O3-induced tachypnea, and the percent change in f(B). The effect of altering O3 concentration, Ve, atropine treatment, and indomethacin treatment were examined. We found that the lower the O3 concentration, the greater the number of breaths at onset of tachypnea at a fixed ventilation, whereas number of breaths at onset of tachypnea remains unchanged when Ve is altered and O3 concentration is fixed. The cumulative inhaled dose of O3 at onset of tachypnea remained constant and showed no relationship with the magnitude of percent change in f(B). Atropine did not affect any of the derived parameters, whereas indomethacin did not affect time to onset, number of breaths at onset, or cumulative inhaled dose of O3 at onset of tachypnea but did attenuate percent change in f(B). The results are discussed in the context of dose response and intrinsic mechanisms of action.

  13. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    Science.gov (United States)

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Sleep-Disordered Breathing in Neuromuscular Disease: Diagnostic and Therapeutic Challenges.

    Science.gov (United States)

    Aboussouan, Loutfi S; Mireles-Cabodevila, Eduardo

    2017-10-01

    Normal sleep-related rapid eye movement sleep atonia, reduced lung volumes, reduced chemosensitivity, and impaired airway dilator activity become significant vulnerabilities in the setting of neuromuscular disease. In that context, the compounding effects of respiratory muscle weakness and disease-specific features that promote upper airway collapse or cause dilated cardiomyopathy contribute to various sleep-disordered breathing events. The reduction in lung volumes with neuromuscular disease is further compromised by sleep and the supine position, exaggerating the tendency for upper airway collapse and desaturation with sleep-disordered breathing events. The most commonly identified events are diaphragmatic/pseudo-central, due to a decrease in the rib cage contribution to the tidal volume during phasic rapid eye movement sleep. Obstructive and central sleep apneas are also common. Noninvasive ventilation can improve survival and quality of sleep but should be used with caution in the context of dilated cardiomyopathy or significant bulbar symptoms. Noninvasive ventilation can also trigger sleep-disordered breathing events, including ineffective triggering, autotriggering, central sleep apnea, and glottic closure, which compromise the potential benefits of the intervention by increasing arousals, reducing adherence, and impairing sleep architecture. Polysomnography plays an important diagnostic and therapeutic role by correctly categorizing sleep-disordered events, identifying sleep-disordered breathing triggered by noninvasive ventilation, and improving noninvasive ventilation settings. Optimal management may require dedicated hypoventilation protocols and a technical staff well versed in the identification and troubleshooting of respiratory events. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. PHOTOSPHERIC PROPERTIES OF WARM EUV LOOPS AND HOT X-RAY LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ueda, K. [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuneta, S., E-mail: ryouhei.kano@nao.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2014-02-20

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between ''warm loops'' (1-2 MK), which are coronal loops observed in EUV wavelengths, and ''hot loops'' (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ∼77 km and horizontal flow at ∼2.6 km s{sup –1} with a spatial scale of ∼120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 10{sup 6} erg s{sup –1} cm{sup –2}, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  16. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  17. Off-line breath acetone analysis in critical illness.

    Science.gov (United States)

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  18. Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.

    Science.gov (United States)

    Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-04-15

    Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. Copyright © 2015 the American Physiological Society.

  19. Tracer responses and control of vessels with variable flow and volume

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1990-01-01

    Continuous flow vessels which are subject to variation of flow and volume are characterized by time-variable parameters. It is shown that their residence time distributions and weighting functions obtained by tracer testing are made invariant with regard to the integrated flow variables which are introduced. Under variable flow but constant volume, one such integrated variable is sufficient. Under variable volume, two different variables are suggested for the residence time distribution and weighting function, while the appropriate variable of the perfect mixer differs distinctly from that of vessels with a distinct velocity profile. It is shown through a number of example cases, that an agreement with their mathematical models is reached. The approach is extended to include also arbitrary, non-analytic response functions obtained by tracer measurements. Applications of the derived models and their incorporation in automatic control algorithms is discussed. (orig.) [de

  20. Quantitative assessment of irradiated lung volume and lung mass in breast cancer patients treated with tangential fields in combination with deep inspiration breath hold (DIBH)

    International Nuclear Information System (INIS)

    Kapp, Karin Sigrid; Zurl, Brigitte; Stranzl, Heidi; Winkler, Peter

    2010-01-01

    Purpose: Comparison of the amount of irradiated lung tissue volume and mass in patients with breast cancer treated with an optimized tangential-field technique with and without a deep inspiration breath-hold (DIBH) technique and its impact on the normal-tissue complication probability (NTCP). Material and Methods: Computed tomography datasets of 60 patients in normal breathing (NB) and subsequently in DIBH were compared. With a Real-Time Position Management Respiratory Gating System (RPM), anteroposterior movement of the chest wall was monitored and a lower and upper threshold were defined. Ipsilateral lung and a restricted tangential region of the lung were delineated and the mean and maximum doses calculated. Irradiated lung tissue mass was computed based on density values. NTCP for lung was calculated using a modified Lyman-Kutcher-Burman (LKB) model. Results: Mean dose to the ipsilateral lung in DIBH versus NB was significantly reduced by 15%. Mean lung mass calculation in the restricted area receiving ≤ 20 Gy (M 20 ) was reduced by 17% in DIBH but associated with an increase in volume. NTCP showed an improvement in DIBH of 20%. The correlation of individual breathing amplitude with NTCP proved to be independent. Conclusion: The delineation of a restricted area provides the lung mass calculation in patients treated with tangential fields. DIBH reduces ipsilateral lung dose by inflation so that less tissue remains in the irradiated region and its efficiency is supported by a decrease of NTCP. (orig.)

  1. Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives

    DEFF Research Database (Denmark)

    Cristescu, S M; Marchenko, D; Mandon, J

    2012-01-01

    monitoring of NO concentrations in exhaled breath, and from plants under pathogen attack. A simple hand-held breath sampling device that allows single breath collection at various exhalation flows (15, 50, 100 and 300mL/s, respectively) is developed for off-line measurements and validated in combination...... with the WMS-based sensor. Additionally, the capability of plants to remove environmental NO is presented....

  2. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    Science.gov (United States)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  3. Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow field

    International Nuclear Information System (INIS)

    Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei

    2011-01-01

    An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min −1 . The results indicate that the μDMFC can work steadily with high methanol concentration.

  4. Hypoxemia, hypercapnia, and breathing pattern in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Parot, S; Miara, B; Milic-Emili, J; Gautier, H

    1982-11-01

    The results of lung function tests (total and functional residual capacities, residual volume/total lung capacity ratio, forced expiratory volume in one second) breathing patterns and arterial PO2 and PCO2 were studied in 651 ambulatory male patients with chronic obstructive pulmonary disease, functionally and clinically stable. Function tests were only loosely correlated with gas tensions: abnormalities in mechanics and in gas exchange are not necessarily related. In patients matched for the degree of obstruction, the breathing pattern depended upon both PaO2 and PaCO2. Isolated hypoxemia was accompanied by increased respiratory frequency without any variation in tidal volume: this suggests that the chemoreceptive systems still responded to changes in PaO2. Isolated hypercapnia was accompanied by a decrease in tidal volume and an increase in respiratory frequency. Consequently, the dead space/tidal volume ratio increased, leading to a drop in alveolar ventilation and to CO2 retention.

  5. [The repercussions of pulmonary congestion on ventilatory volumes, capacities and flows].

    Science.gov (United States)

    Carmo, M M; Ferreira, T; Lousada, N; Bárbara, C; Neves, P R; Correia, J M; Rendas, A B

    1994-10-01

    To evaluate the effects of pulmonary congestion on pulmonary function. Prospective study performed in patients with left ventricular failure or mitral stenosis. Forty-eight hospitalized patients were included suffering from pulmonary congestion either from left ventricular failure or mitral stenosis. While in hospital all patients were submitted to right heart catheterization by the Swan-Ganz method and also to an echocardiographic examination. Within 48 hours after the patients were submitted to the following lung function studies: lung volumes and capacities by the multi-breath helium dilution method and airway flows by pneumotachography. Respiratory symptoms were evaluated by the Medical Research Council Questionnaire and the functional class classified according to the NYHA. Correlations were made between the functional and clinical data. Regarding the cardiac evaluation patients presented with a mean pulmonary wedge pressure of 19.9 +/- 8.6 mmHg, a cardiac index of 2.5 +/- 0.8 l/min/m2, an end diastolic dimension of the left ventricle of 65.9 +/- 10.1 mm, and end systolic dimension of 51.2 +/- 12.2 mm, with a shortening fraction of 21.8 +/- 9.5%. The pulmonary evaluation showed a restrictive syndrome with a reduction in the mean values of the following parameters: total pulmonary capacity 71 +/- 14.4% of the predicted value (pv), forced vital capacity (FVC) 69.8 +/- 20.5% pv, and forced expiratory volume (FEV1) of 64 +/- 21.8% vp. The index FEV1/FVC was within the normal value of 72.7 +/- 9.7%. These lung function results did not correlate significantly with either the clinical, the hemodynamic or echocardiographic findings. In these group of patients pulmonary congestion led to the development of a restrictive syndrome which failed to correlate in severity with the duration of the disease, the pulmonary wedge pressure and the left ventricular function.

  6. Study on gas-liquid loop reactors with annular bubbling

    International Nuclear Information System (INIS)

    Fei, L.M.; Wang, S.X.; Wu, X.Q.; Lu, D.W.

    1987-01-01

    Bubbling column with draft tube is one of nearly developed reactor. On the background of hydrocarbon oxidations and biochemical engineerings, it has been widely used in chemical industry due to the well characteristics of mass and heat transfer. In this paper, the characteristics of fluid flow, such as gas hold-up, backmixing and mass transfer referred to the liquid volume were measured in a gas-liquid loop reactor with annular bubbling. Different materials - water, alcohol and oi l- were used in the study in measuring the gas hold-up in the annular of the reactor

  7. Lung function in North American Indian children: reference standards for spirometry, maximal expiratory flow volume curves, and peak expiratory flow.

    Science.gov (United States)

    Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S

    1982-02-01

    Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.

  8. A review of investigations on flow instabilities in natural circulation boiling loops

    International Nuclear Information System (INIS)

    Gonella V Durga Prasad; Manmohan Pandey; Manjeet S Kalra

    2005-01-01

    Full text of publication follows: Steam generation systems are subjected to flow instabilities due to parametric fluctuations, inlet conditions etc., which may result in mechanical vibrations of components (called flow induced vibrations) and system control problems. Analysis of these instabilities in natural circulation boiling loops is very important for the safety of nuclear reactors and other boiling systems. This paper presents the state of the art in this area by reviewing over 100 contributions made in the past 30 years. A large number of experimental and numerical investigations have been conducted to study and understand the conditions for inception of flow instabilities, parametric effects of instabilities, and the system behavior under such conditions. Work done on instabilities due to channel thermal-hydraulics as well as neutronics-thermohydraulics coupling has been reviewed. Different methods of analysis used by researchers and results obtained by them have been discussed. Various numerical techniques adopted and computer codes developed have also been discussed. The knowledge obtained from the investigations made in the past three decades has been summarized to present the state of the art of the understanding of flow instabilities. (authors)

  9. Breath-hold duration in man and the diving response induced by face immersion.

    Science.gov (United States)

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  10. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  11. Concepts of self-acting circulation loops for downward heat transfer (reverse thermosiphons)

    International Nuclear Information System (INIS)

    Dobriansky, Y.

    2011-01-01

    This paper reviews the scientific and technical knowledge related to general self-acting flow loops (thermosiphons and heat pipes) that transmit heat upwards and self-acting reverse flow loops that transmit heat downwards. This paper classifies the heat and mass transfer processes that take place in general flow loops and analyses the nomenclature applied in the literature. It also presents the principles of operation of sixteen reverse flow loops; four of the loops are powered by an external source of energy, while the remaining loops are self-acting. Of the self-acting loops, vapor was used for heat transfer in seven of them and liquid was used in the remaining ones. Based on the available research results, a list of the advantages and disadvantages of both types of loops is presented.

  12. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  13. A simple, remote, video based breathing monitor.

    Science.gov (United States)

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  14. The effect of various breathing exercises (pranayama in patients with bronchial asthma of mild to moderate severity

    Directory of Open Access Journals (Sweden)

    Saxena Tarun

    2009-01-01

    Full Text Available Background/Aim: The incidence of bronchial asthma is on increase. Chemotherapy is helpful during early course of the disease, but later on morbidity and mortality increases. The efficacy of yoga therapy though appreciated is yet to be defined and modified. Aim: To study the effect of breathing exercises ( pranayama in patients with bronchial asthma of mild to moderate severity. Materials and Methods: Fifty cases of bronchial asthma (Forced Expiratory Volume in one second (FEV1 > 70% were studied for 12 weeks. Patients were allocated to two groups: group A and group B (control group. Patients in group A were treated with breathing exercises (deep breathing, Brahmari , and Omkara , etc. for 20 minutes twice daily for a period of 12 weeks. Patients were trained to perform Omkara at high pitch (forceful with prolonged exhalation as compared to normal Omkara . Group B was treated with meditation for 20 minutes twice daily for a period of 12 weeks. Subjective assessment, FEV1%, and Peak Expiratory Flow Rate (PEFR were done in each case initially and after 12 weeks. Results: After 12 weeks, group A subjects had significant improvement in symptoms, FEV1, and PEFR as compared to group B subjects. Conclusion: Breathing exercises ( pranayama , mainly expiratory exercises, improved lung function subjectively and objectively and should be regular part of therapy.

  15. Salivary Markers and Microbial Flora in Mouth Breathing Late Adolescents

    Directory of Open Access Journals (Sweden)

    Stefano Mummolo

    2018-01-01

    Full Text Available Objective. This is a 6-month observational case-control study that aims to estimate plaque index (PI, salivary flow, buffering capacity of saliva, and specific Streptococcus mutans (S. mutans and Lactobacillus rates in a mouth breathing late adolescents sample, after a professional oral hygiene procedure and home oral hygiene instructions. Subjects and Methods. A sample of 20 mouth breathing late adolescents/young adults (average: 19.2±2.5; range: 18–23 years and a matched control group of nose breathing subjects (average: 18.3±3.2; range 18–23 years were included in the study. All the participants were subjected to a professional oral hygiene procedure and appropriate home oral hygiene instructions (t0. After three months (t1 and six months (t2, the PI, salivary flow, buffering capacity of saliva, and S. mutans and Lactobacilli rates were recorded. Results. The mean buffering capacity of saliva and the salivary flow rate showed no significant difference between the two groups, all over the observational period. For PI, a significantly higher mode (score 1 of PI was observed in the study group at t1 (score 0 = 35% of subjects; score 1 = 60%; score 2 = 5% and t2 (score 1 = 65% of subjects, score 2 = 35%, with respect to control group. Furthermore, mouth breathing subjects show a significant 4 times higher risk to develop S. mutans CFU > 105 (CI lower limit: 0.95; CI upper limit: 9.48; chi-square: 4.28; p=0.03, with respect to the control subjects. Conclusions. Mouth breathing late adolescents show a significantly higher risk to develop S. mutans CFU > 105 and an increased level of PI. Interceptive orthodontic treatments in growing subjects, like palatal expansion, are encouraged to improve the nasal air flow. In older subjects, orthodontic treatments should be performed with removable appliances like clear aligners, in order to allow a better oral hygiene level.

  16. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions.

    Science.gov (United States)

    Xue, Hui; Kellman, Peter; Larocca, Gina; Arai, Andrew E; Hansen, Michael S

    2013-11-14

    Cine cardiovascular magnetic resonance (CMR) is challenging in patients who cannot perform repeated breath holds. Real-time, free-breathing acquisition is an alternative, but image quality is typically inferior. There is a clinical need for techniques that achieve similar image quality to the segmented cine using a free breathing acquisition. Previously, high quality retrospectively gated cine images have been reconstructed from real-time acquisitions using parallel imaging and motion correction. These methods had limited clinical applicability due to lengthy acquisitions and volumetric measurements obtained with such methods have not previously been evaluated systematically. This study introduces a new retrospective reconstruction scheme for real-time cine imaging which aims to shorten the required acquisition. A real-time acquisition of 16-20s per acquired slice was inputted into a retrospective cine reconstruction algorithm, which employed non-rigid registration to remove respiratory motion and SPIRiT non-linear reconstruction with temporal regularization to fill in missing data. The algorithm was used to reconstruct cine loops with high spatial (1.3-1.8 × 1.8-2.1 mm²) and temporal resolution (retrospectively gated, 30 cardiac phases, temporal resolution 34.3 ± 9.1 ms). Validation was performed in 15 healthy volunteers using two different acquisition resolutions (256 × 144/192 × 128 matrix sizes). For each subject, 9 to 12 short axis and 3 long axis slices were imaged with both segmented and real-time acquisitions. The retrospectively reconstructed real-time cine images were compared to a traditional segmented breath-held acquisition in terms of image quality scores. Image quality scoring was performed by two experts using a scale between 1 and 5 (poor to good). For every subject, LAX and three SAX slices were selected and reviewed in the random order. The reviewers were blinded to the reconstruction approach and acquisition protocols and

  17. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    Science.gov (United States)

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  18. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    Science.gov (United States)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  19. Reactor loops at Chalk River

    International Nuclear Information System (INIS)

    Sochaski, R.O.

    1962-07-01

    This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)

  20. Motion Correction using Coil Arrays (MOCCA) for Free-Breathing Cardiac Cine MRI

    Science.gov (United States)

    Hu, Peng; Hong, Susie; Moghari, Mehdi H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Hauser, Thomas H.; Manning, Warren J; Nezafat, Reza

    2014-01-01

    In this study, we present a motion compensation technique based on coil arrays (MOCCA) and evaluate its application in free-breathing respiratory self-gated cine MRI. MOCCA takes advantages of the fact that motion-induced changes in k-space signal are modulated by individual coil sensitivity profiles. In the proposed implementation of MOCCA self-gating for free-breathing cine MRI, the k-space center line is acquired at the beginning of each k-space segment for each cardiac cycle with 4 repetitions. For each k-space segment, the k-space center line acquired immediately before was used to select one of the 4 acquired repetitions to be included in the final self-gated cine image by calculating the cross-correlation between the k-space center line with a reference line. The proposed method was tested on a cohort of healthy adult subjects for subjective image quality and objective blood-myocardium border sharpness. The method was also tested on a cohort of patients to compare the left and right ventricular volumes and ejection fraction measurements with that of standard breath-hold cine MRI. Our data indicate that the proposed MOCCA method provides significantly improved image quality and sharpness compared to free-breathing cine without respiratory self-gating, and provides similar volume measurements compared with breath-hold cine MRI. PMID:21773986

  1. Variations in CT determination of target volume with active breath co-ordinate in radiotherapy for post-operative gastric cancer.

    Science.gov (United States)

    Li, Gui-Chao; Zhang, Zhen; Ma, Xue-Jun; Yu, Xiao-Li; Hu, Wei-Gang; Wang, Jia-Zhou; Li, Qi-Wen; Liang, Li-Ping; Shen, Li-Jun; Zhang, Hui; Fan, Ming

    2016-01-01

    To investigate interobserver and inter-CT variations in using the active breath co-ordinate technique in the determination of clinical tumour volume (CTV) and normal organs in post-operative gastric cancer radiotherapy. Ten gastric cancer patients were enrolled in our study, and four radiation oncologists independently determined the CTVs and organs at risk based on the CT simulation data. To determine interobserver and inter-CT variation, we evaluated the maximum dimensions, derived volume and distance between the centres of mass (CMs) of the CTVs. We assessed the reliability in CTV determination among the observers by conformity index (CI). The average volumes ± standard deviation (cm(3)) of the CTV, liver, left kidney and right kidney were 674 ± 138 (range, 332-969), 1000 ± 138 (range, 714-1320), 149 ± 13 (range, 104-183) and 141 ± 21 (range, 110-186) cm(3), respectively. The average inter-CT distances between the CMs of the CTV, liver, left kidney and right kidney were 0.40, 0.56, 0.65 and 0.6 cm, respectively; the interobserver values were 0.98, 0.53, 0.16 and 0.15 cm, respectively. In the volume size of CTV for post-operative gastric cancer, there were significant variations among multiple observers, whereas there was no variation between different CTs. The slices in which variations more likely occur were the slices of the lower verge of the hilum of the spleen and porta hepatis, then the paraoesophageal lymph nodes region and abdominal aorta, and the inferior vena cava, and the variation in the craniocaudal orientation from the interobserver was more predominant than that from inter-CT. First, this is the first study to evaluate the interobserver and inter-CT variations in the determination of the CTV and normal organs in gastric cancer with the use of the active breath co-ordinate technique. Second, we analysed the region where variations most likely occur. Third, we investigated the influence of interobserver variation on

  2. Quest to validate and define performance for the high volume metallic stator PCP at 250 degrees Celsius

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, S.G. [ConocoPhillips Co., Houston, TX (United States); Klaczek, W.; Piers, K. [C-FER Technologies, Edmonton, AB (Canada); Seince, L. [PCM USA Inc., Houston, TX (United States); Jahn, S. [Kudu Industries, Calgary, AB (Canada)

    2008-10-15

    ConocoPhillips has been searching for a high volume artificial lift system that will reliably operate in a 250 degree Celsius downhole environment to meet the needs of steam assisted gravity drainage (SAGD) operations. This paper described the complexity of building and operating a high temperature flow loop rated for 250 degrees Celsius. It also described the lessons learned while upgrading an existing flow loop, from the initial design, procurement and construction through to the final commissioning phases. The paper described the issues encountered with the first artificial lit system tested at 250 degrees Celsius. The system consisted of a metallic progressing cavity pump system rated for 6919 barrels per day at 500 rotations per minute. The final upgraded capabilities of the flow loop were also listed. Images of the upgraded flow loop were also provided. It was concluded that the test program not only served to validate and define the pump's performance, but also provided valuable lessons on the completion configuration and operational procedures. Testing new artificial lift technology in a controlled flow loop, rather than in field installation, provided the opportunity to test these pumping systems under a large variety of conditions to truly understand the performance and limitations of each pump. 3 refs., 1 tab., 5 figs.

  3. Usefulness of breath-hold cardiac cine MR imaging with a middle field MRI system

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Kentaro; Sato, Kiyoto; Aono, Masaki; Inoshita, Kenji; Utsumi, Naoko [Kagawa Inoshita Hospital, Ohnohara (Japan)

    1999-07-01

    To assess the accuracy of contrast-enhanced, single breath-hold cine MR imaging in calculating left ventricular volume and ejection fraction, we compared MR measurements with those obtained by using cine ventriculography in 60 patients. Fast cine MR images were acquired with a middle field MR system (0.5 T). A breath-hold single slice multi-phase fast gradient-echo (Fast Card) sequence was used to obtain fast cine MR images with the following parameters; TR of 16 ms, TE of 3 ms, flip angle of 30 degree, matrix elements of 256 x 128, view per segment of 6, field of view of 350 x 260 mm and one excitation. Left ventricular end-diastolic volume and ejection fraction obtained with contrast-enhanced Fast Card correlated well with those obtained with cine ventriculography (end-diastolic volume, y=1.00x+14.0, r=0.904, p<0.001; ejection fraction, y=0.961x+2.8, r=0.936, p<0.001). Our results show that contrast enhanced breath-hold cardiac cine MR imaging on horizontal long-axis view using a middle field MR system is an accurate method for evaluating left ventricular volume and ejection fraction. (author)

  4. The effect of climbing Mount Everest on spleen contraction and increase in hemoglobin concentration during breath holding and exercise.

    Science.gov (United States)

    Engan, Harald K; Lodin-Sundström, Angelica; Schagatay, Fanny; Schagatay, Erika

    2014-04-01

    Release of stored red blood cells resulting from spleen contraction improves human performance in various hypoxic situations. This study determined spleen volume resulting from two contraction-evoking stimuli: breath holding and exercise before and after altitude acclimatization during a Mount Everest ascent (8848 m). Eight climbers performed the following protocol before and after the climb: 5 min ambient air respiration at 1370 m during rest, 20 min oxygen respiration, 20 min ambient air respiration at 1370 m, three maximal-effort breath holds spaced by 2 min, 10 min ambient air respiration, 5 min of cycling at 100 W, and finally 10 min ambient air respiration. We measured spleen volume by ultrasound and capillary hemoglobin (HB) concentration after each exposure, and heart rate (HR) and arterial oxygen saturation (Sao2) continuously. Mean (SD) baseline spleen volume was unchanged at 213 (101) mL before and 206 (52) mL after the climb. Before the climb, spleen volume was reduced to 184 (83) mL after three breath holds, and after the climb three breath holds resulted in a spleen volume of 132 (26) mL (p=0.032). After exercise, the preclimb spleen volume was 186 (89) mL vs. 112 (389) mL) after the climb (p=0.003). Breath hold duration and cardiovascular responses were unchanged after the climb. We concluded that spleen contraction may be enhanced by altitude acclimatization, probably reflecting both the acclimatization to chronic hypoxic exposure and acute hypoxia during physical work.

  5. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  6. An automatic sodium-loop for testing the lon-term behaviour of sintered bodies flowed through by gas

    International Nuclear Information System (INIS)

    Barkleit, G.; George, G.; Haase, I.; Kiessling, W.

    1980-08-01

    An automatic sodium loop NAKOS for testing the long-term behaviour of porous stainless steel bodies which are flowed through by gas is described. The loop using a special safety protection system is capable of working without control up to 1000 h. During a 500 h-experiment the safety system and the gas permeability measuring method for testing the porous bodies were tested. Both first results of the behaviour of sintered bodies in liquid sodium of high purity and temperatures of about 850 K and some details of the production of these bodies are given. (author)

  7. Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis.

    Science.gov (United States)

    de Vries, R; Brinkman, P; van der Schee, M P; Fens, N; Dijkers, E; Bootsma, S K; de Jongh, F H C; Sterk, P J

    2015-10-15

    New 'omics'-technologies have the potential to better define airway disease in terms of pathophysiological and clinical phenotyping. The integration of electronic nose (eNose) technology with existing diagnostic tests, such as routine spirometry, can bring this technology to 'point-of-care'. We aimed to determine and optimize the technical performance and diagnostic accuracy of exhaled breath analysis linked to routine spirometry. Exhaled breath was collected in triplicate in healthy subjects by an eNose (SpiroNose) based on five identical metal oxide semiconductor sensor arrays (three arrays monitoring exhaled breath and two reference arrays monitoring ambient air) at the rear end of a pneumotachograph. First, the influence of flow, volume, humidity, temperature, environment, etc, was assessed. Secondly, a two-centre case-control study was performed using diagnostic and monitoring visits in day-to-day clinical care in patients with a (differential) diagnosis of asthma, chronic obstructive pulmonary disease (COPD) or lung cancer. Breathprint analysis involved signal processing, environment correction based on alveolar gradients and statistics based on principal component (PC) analysis, followed by discriminant analysis (Matlab2014/SPSS20). Expiratory flow showed a significant linear correlation with raw sensor deflections (R(2)  =  0.84) in 60 healthy subjects (age 43  ±  11 years). No correlation was found between sensor readings and exhaled volume, humidity and temperature. Exhaled data after environment correction were highly reproducible for each sensor array (Cohen's Kappa 0.81-0.94). Thirty-seven asthmatics (41  ±  14.2 years), 31 COPD patients (66  ±  8.4 years), 31 lung cancer patients (63  ±  10.8 years) and 45 healthy controls (41  ±  12.5 years) entered the cross-sectional study. SpiroNose could adequately distinguish between controls, asthma, COPD and lung cancer patients with cross-validation values

  8. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.

    Science.gov (United States)

    Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W

    2010-03-31

    This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (pplane changes in sitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Breathing pattern and chest wall volumes during exercise in patients with cystic fibrosis, pulmonary fibrosis and COPD before and after lung transplantation.

    Science.gov (United States)

    Wilkens, H; Weingard, B; Lo Mauro, A; Schena, E; Pedotti, A; Sybrecht, G W; Aliverti, A

    2010-09-01

    Pulmonary fibrosis (PF), cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often cause chronic respiratory failure (CRF). In order to investigate if there are different patterns of adaptation of the ventilatory pump in CRF, in three groups of lung transplant candidates with PF (n=9, forced expiratory volume in 1 s (FEV(1))=37+/-3% predicted, forced vital capacity (FVC)=32+/-2% predicted), CF (n=9, FEV(1)=22+/-3% predicted, FVC=30+/-3% predicted) and COPD (n=21, FEV(1)=21+/-1% predicted, FVC=46+/-2% predicted), 10 healthy controls and 16 transplanted patients, total and compartmental chest wall volumes were measured by opto-electronic plethysmography during rest and exercise. Three different breathing patterns were found during CRF in PF, CF and COPD. Patients with COPD were characterised by a reduced duty cycle at rest and maximal exercise (34+/-1%, pvolume (0.75+/-0.10 and 0.79+/-0.07 litres) (pvolumes increased significantly in patients with COPD and CF but not in those with PF. End-inspiratory volumes did not increase in CF and PF. The breathing pattern of transplanted patients was similar to that of healthy controls. There are three distinct patterns of CRF in patients with PF, CF and COPD adopted by the ventilatory pump to cope with the underlying lung disease that may explain why patients with PF and CF are prone to respiratory failure earlier than patients with COPD. After lung transplantation the chronic adaptations of the ventilatory pattern to advanced lung diseases are reversible and indicate that the main contributing factor is the lung itself rather than systemic effects of the disease.

  10. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented.

  11. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    International Nuclear Information System (INIS)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented

  12. Corrosion behaviour of martensitic and austenitic steels in flowing lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Martin-Munoz, F.J.; Soler-Crespo, L.; Gomez-Briceno, D.

    2011-01-01

    The LINCE loop is a forced convection loop designed for long-term corrosion tests in lead-bismuth eutectic (LBE) at CIEMAT. The LBE volume of in the loop is 250 l and the maximum flow velocity in the region of specimens is approximately 1 m s -1 . An oxygen control system has been implemented in the loop. The corrosion behaviour of AISI 316L and T91 steels was investigated in flowing LBE at temperatures of 575 and 725 K for exposure times of 2000, 5000 and 10,000 h. At 575 K, the results showed a good response, with no weight loss detected in any of the materials after exposure to the flowing LBE up to 10,000 h. A similar behaviour was observed for the specimens tested at 725 K during 2000 and 10,000 h. Specimens extracted at intermediate time (5000 h) showed an anomalous behaviour with important weight loss. These specimens were placed at the bottom of the hot test section, and this position probably made them to suffer an accused process of cavitation-erosion.

  13. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    Science.gov (United States)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  14. Repeatability of FDG PET/CT metrics assessed in free breathing and deep inspiration breath hold in lung cancer patients.

    Science.gov (United States)

    Nygård, Lotte; Aznar, Marianne C; Fischer, Barbara M; Persson, Gitte F; Christensen, Charlotte B; Andersen, Flemming L; Josipovic, Mirjana; Langer, Seppo W; Kjær, Andreas; Vogelius, Ivan R; Bentzen, Søren M

    2018-01-01

    We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV) peak , SUV max , SUV mean , metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUV max . FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUV peak FB/DIBH: 16.2%/16.5%; SUV max : 18.2%/22.1%; SUV mean : 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUV max of 12.6%, SUV peak 4.4% and SUV mean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients.

  15. High frequency components of tracheal sound are emphasized during prolonged flow limitation

    International Nuclear Information System (INIS)

    Tenhunen, M; Huupponen, E; Saastamoinen, A; Kulkas, A; Himanen, S-L; Rauhala, E

    2009-01-01

    A nasal pressure transducer, which is used to study nocturnal airflow, also provides information about the inspiratory flow waveform. A round flow shape is presented during normal breathing. A flattened, non-round shape is found during hypopneas and it can also appear in prolonged episodes. The significance of this prolonged flow limitation is still not established. A tracheal sound spectrum has been analyzed further in order to achieve additional information about breathing during sleep. Increased sound frequencies over 500 Hz have been connected to obstruction of the upper airway. The aim of the present study was to examine the tracheal sound signal content of prolonged flow limitation and to find out whether prolonged flow limitation would consist of abundant high frequency activity. Sleep recordings of 36 consecutive patients were examined. The tracheal sound spectral analysis was performed on 10 min episodes of prolonged flow limitation, normal breathing and periodic apnea-hypopnea breathing. The highest total spectral amplitude, implicating loudest sounds, occurred during flow-limited breathing which also presented loudest sounds in all frequency bands above 100 Hz. In addition, the tracheal sound signal during flow-limited breathing constituted proportionally more high frequency activities compared to normal breathing and even periodic apnea-hypopnea breathing

  16. Design of planning target volume margin using an active breathing control and Varian image-guided radiotherapy (IGRT) system in unresectable liver tumor

    International Nuclear Information System (INIS)

    Yue Jinbo; Yu Jinming; Liu Jing; Liu Tonghai; Yin Yong; Shi Xuetao; Song Jinlong

    2007-01-01

    Objective: To define the planning target volume(PTV) margin with an active breathing control (ABC) and the Varian image-guided radiotherapy (IGRT) system. Methods: Thirteen patients with liver cancer were treated with radiotherapy from May 2006 to September 2006. Prior to radiotherapy, all patients had undergone transarterial chemoembolization (TACE) by infusing a mixture of iodized oil contrast medium and chemotherapeutic agents, kV fluoroscopy was used to measure the potential motion of lipiodol spot positions during ABC breath-holds. ABC was used for planning CT scan and radiation delivery, with the breath held at the same phase of the respiratory cycle (near end-exhalation). Cone beam CT (CBCT) was taken using Varian IGRT system, which was then compared online with planning CT using a 3 D-3 D matching tool. Analysis relied on lipiodol spots on planning CT and CBCT manually. The treatment table was moved to produce acceptable setup before treatment delivery. Repeated CBCT image and another analysis were obtained after irradiation. Results: No motion of the intrahepatic tumor was observed on fluoroscopy during ABC breath-holds. The estimated required PTV margins, calculated according to the Stroom formula, were 4.4 mm, 5.3 mm and 7.8 mm in the x, y and z axis directions before radiotherapy. The corresponding parameters were 2.5m, 2.6 mm and 3.9 mm after radiotherapy. Conclusions: We have adopted a PTV margin of 5 mm, 6 mm and 8 mm in the x, y and z axis directions with ABC, and 3,3 and 4 mm with ABC and on-line kilovoltage CBCT. (authors)

  17. Accuracy and Sources of Error for an Angle Independent Volume Flow Estimator

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Hansen, Peter Møller

    2014-01-01

    This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estima tor’s accuracy is performed theoretically and investigated in vivo . Womersley’s model for pulsatile flow is used to simulate velo city profiles and calculate volume flow errors....... A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistu la are measured on B-mode images by rotating the scan plane 90 degrees. The major axis...

  18. Medical Issues: Breathing

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common ...

  19. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    Science.gov (United States)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

  20. Dynamical behaviour of natural convection in closed loops

    International Nuclear Information System (INIS)

    Ehrhard, P.

    1988-04-01

    A one dimensional model is presented together with experiments, which describe the natural convective flow in closed loops heated at the bottom and cooled in the upper semicircle. Starting from a single loop, mechanical and thermal coupling with a second loop is discussed. The experiments and the theoretical model both concurrently demonstrate that the investigated natural convection is clearly influenced by non-linear effects. Beside the variety of stable steady flows there are extensive subcritical ranges of convective flow. In these parameter ranges subcritical instabilities of the steady state flow could occur in the presence of finite amplitude disturbances. However, the supercritical, global unstable range is characterized by chaotic histories of the variables of state. Non-symmetric heating generates an imperfect bifurcation out of the steady solution with zero velocity in the loop. This effect stabilizes the flow in the preferred direction. The flow in the opposite direction only remains stable in a small isolated interval of the heating parameter. Furthermore the calculations with the model equations demonstrate that a stable periodic behaviour of the flow is possible in a small parameter window. However, it has not been possible to verify this particular effect in the experiments conducted to date. (orig./GL) [de

  1. Noninvasive quantification of left-to-right shunt by phase contrast magnetic resonance imaging in secundum atrial septal defect: the effects of breath holding and comparison with invasive oximetry.

    Science.gov (United States)

    Yamasaki, Yuzo; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Sakamoto, Ichiro; Hiasa, Ken-Ichi; Yabuuchi, Hidetake; Nagao, Michinobu; Honda, Hiroshi

    2018-01-16

    To investigate the effect of breath-holding on left-to-right shunts in patients with a secundum atrial septal defect (ASD). Thirty-five consecutive patients with secundum ASDs underwent right heart catheterization and invasive oximetry. Phase-contrast magnetic resonance imaging (MRI) was performed for the main pulmonary artery and ascending aorta. All measurements were obtained during free breathing (FB) (quiet breathing; no breath-hold), expiratory breath-hold (EBH), and inspiratory breath-hold (IBH). Pulmonary circulation flow (Qp) and systemic circulation flow (Qs) were calculated by multiplying the heart rate by the stroke volume. Measurements during FB, EBH, and IBH were compared, and the differences compared to invasive oximetry were evaluated. There were significant differences among the measurements during FB, EBH, and IBH for Qp (FB, 7.70 ± 2.68; EBH, 7.18 ± 2.34; IBH, 6.88 ± 2.51 l/min); however, no significant difference was found for Qs (FB, 3.44 ± 0.74; EBH, 3.40 ± 0.83; IBH, 3.40 ± 0.86 l/min). There were significant differences among the measurements during FB, EBH, and IBH for Qp/Qs (FB, 2.38 ± 1.12; EBH, 2.24 ± 0.95; IBH, 2.14 ± 0.97). Qp/Qs during FB and EBH correlated better with Qp/Qs measured by invasive oximetry than did IBH. The limit of agreement was smaller for EBH than for FB and IBH. In patients with secundum ASDs, Qp/Qs significantly decreased with breath-holding. The accuracy of the Qp/Qs measurement by MRI compared with invasive oximetry during EBH was higher than during FB and IBH.

  2. A statistical learning strategy for closed-loop control of fluid flows

    Science.gov (United States)

    Guéniat, Florimond; Mathelin, Lionel; Hussaini, M. Yousuff

    2016-12-01

    This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz'63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.

  3. Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model

    Science.gov (United States)

    Hazan, Aurélien

    2017-05-01

    We show that a steady-state stock-flow consistent macro-economic model can be represented as a Constraint Satisfaction Problem (CSP). The set of solutions is a polytope, which volume depends on the constraints applied and reveals the potential fragility of the economic circuit, with no need to study the dynamics. Several methods to compute the volume are compared, inspired by operations research methods and the analysis of metabolic networks, both exact and approximate. We also introduce a random transaction matrix, and study the particular case of linear flows with respect to money stocks.

  4. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  5. Mass spectrometry for real-time quantitative breath analysis

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Herbig, J.; Beauchamp, J.

    2014-01-01

    Roč. 8, č. 2 (2014), 027101 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : breath analysis * proton transfer reaction mass spectrometry * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  6. Tissue hepatic blood volume and liver function

    International Nuclear Information System (INIS)

    Masuyama, Mamoru

    1997-01-01

    Positron emission tomography (PET) scan has an advantage that it can measure regional organ blood flow and volume not only quantitatively but also non-invasively. In order to estimate the liver function, tissue hepatic blood volume was measured using C 15 O inhalation in conjunction with positron emission tomography. PET scans of the liver were performed after the single breath inhalation of 20 mCi of high specific activity 15 O-labeled carbon monoxide in 105 patients which were classified 3 groups; normal, chronic hepatitis, and cirrhosis. They consist of 61, 14, and 30 patients, respectively. Significant differences between normal and cirrhotic patients were noted in tissue hepatic blood volume (mean 20.4, 18.2, 16.0 ml/100 g, respectively). Tissue hepatic blood volume (tHBV) correlated with the reaction of the peripheral reticuloendothelial compartment and protein synthesis, because there was a potent correlation between tHBV and hepatic fibrosis. In normal livers, we were able to demonstrate significant differences in tissue hepatic blood volume among liver segments. (author)

  7. Fluid mechanics experiments in oscillatory flow. Volume 1

    International Nuclear Information System (INIS)

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re max , Re W , and A R , embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation)

  8. Initial liquid metal magnetohydrodynamic thin film flow experiments in the MeGA-loop facility at UCLA

    International Nuclear Information System (INIS)

    Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.

    1995-01-01

    Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)

  9. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.

    Science.gov (United States)

    Campbell, R S; Davis, K; Johannigman, J A; Branson, R D

    2000-03-01

    Passive humidifiers have gained acceptance in the intensive care unit because of their low cost, simple operation, and elimination of condensate from the breathing circuit. However, the additional dead space of these devices may adversely affect respiratory function in certain patients. This study evaluates the effects of passive humidifier dead space on respiratory function. Two groups of patients were studied. The first group consisted of patients recovering from acute lung injury and breathing spontaneously on pressure support ventilation. The second group consisted of patients who were receiving controlled mechanical ventilation and were chemically paralyzed following operative procedures. All patients used 3 humidification devices in random order for one hour each. The devices were a heated humidifier (HH), a hygroscopic heat and moisture exchanger (HHME) with a dead space of 28 mL, and a heat and moisture exchanger (HME) with a dead space of 90 mL. During each measurement period the following were recorded: tidal volume, minute volume, respiratory frequency, oxygen consumption, carbon dioxide production, ratio of dead space volume to tidal volume (VD/VT), and blood gases. In the second group, intrinsic positive end-expiratory pressure was also measured. Addition of either of the passive humidifiers was associated with increased VD/VT. In spontaneously breathing patients, VD/VT increased from 59 +/- 13 (HH) to 62 +/- 13 (HHME) to 68 +/- 11% (HME) (p < 0.05). In these patients, constant alveolar ventilation was maintained as a result of increased respiratory frequency, from 22.1 +/- 6.6 breaths/min (HH) to 24.5 +/- 6.9 breaths/min (HHME) to 27.7 +/- 7.4 breaths/min (HME) (p < 0.05), and increased minute volume, from 9.1 +/- 3.5 L/min (HH) to 9.9 +/- 3.6 L/min (HHME) to 11.7 +/- 4.2 L/min (HME) (p < 0.05). There were no changes in blood gases or carbon dioxide production. In the paralyzed patient group, VD/VT increased from 54 +/- 12% (HH) to 56 +/- 10% (HHME

  10. Assessment of breathing rate of adult Korean for use in internal dosimetry

    International Nuclear Information System (INIS)

    Kim, J.I.; Lee, Y.J.; Jin, Y.W.; Kim, C.S.; Lee, J.K.

    2003-01-01

    Breathing rate is one of the key factors in evaluating doses due to inhalation of airborne radionuclides. Since the reference values of breathing rate provided by the International Commission on Radiological Protection (ICRP) are based on the physiology of Caucasian, they are not necessarily appropriate for internal dosimetry for Korean. In this study, we assessed breathing rate of Korean by measuring the forced vital capacity (FVC), the forced expiratory volume in second (FEV1) and the minute ventilation(MV). Measurements were made using SP-1 spirometry unit (Schiller AG. 1998) for 1474 adult Koreans whose heights and weights are in the range of one standard deviation from the mean values. The total liters of air breathed for working and resting were evaluated after the ICRP approach. We also considered smoking and ailment in the lungs. The resulting breathing rate appears to be 2.3x10 4 L/day which well agrees with the value given in ICRP 23

  11. Regional specific mean expiratory gas flow from Slmsub(Kr) equilibrium inhalation data

    International Nuclear Information System (INIS)

    Hamilton, D.; Causer, D.A.; McIntosh, J.A.; Godfrey, K.R.

    1985-01-01

    A new method of analysing the data available from routine sup(81m) Kr equilibrium inhalation investigations has been developed. The data for analysis are acquired from a gamma camera in the form of a sequential series of images from which multiple breath activity-time curves are generated for eight regions in the lung. The method is based on a description of the behaviour of the radioactive gas in the lung using a mathematical model. Values of specific mean expiratory gas flow, that is mean expiratory gas flow per unit lung volume, are calculated from the application of the model to the expiratory phase only only of a single breath activity-time curve which is generated from the multiple breath activity-time curve using post-acquisition gating. This method overcomes the problem of non-uniform inspiratory concentration of tracer gas experienced in previously reported techniques of analysing inhalation data obtained using poorly soluble radioactive gases. The model is shown, in simulation studies, to be an adequate description of the behaviour of radioactive gas in the lung and the analysis technique is shown, in clinical studies, to be both reproducible and sensitive to disease state. (orig.)

  12. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...

  13. A wireless breathing-training support system for kinesitherapy.

    Science.gov (United States)

    Tawa, Hiroki; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton

    2009-01-01

    We have developed a new wireless breathing-training support system for kinesitherapy. The system consists of an optical sensor, an accelerometer, a microcontroller, a Bluetooth module and a laptop computer. The optical sensor, which is attached to the patient's chest, measures chest circumference. The low frequency components of circumference are mainly generated by breathing. The optical sensor outputs the circumference as serial digital data. The accelerometer measures the dynamic acceleration force produced by exercise, such as walking. The microcontroller sequentially samples this force. The acceleration force and chest circumference are sent sequentially via Bluetooth to a physical therapist's laptop computer, which receives and stores the data. The computer simultaneously displays these data so that the physical therapist can monitor the patient's breathing and acceleration waveforms and give instructions to the patient in real time during exercise. Moreover, the system enables a quantitative training evaluation and calculation the volume of air inspired and expired by the lungs.

  14. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  15. Inspirometria de incentivo e breath stacking: repercussões sobre a capacidade inspiratória em indivíduos submetidos à cirurgia abdominal Incentive spirometry and breath stacking: effects on the inspiratory capacity of individuals submitted to abdominal surgery

    Directory of Open Access Journals (Sweden)

    CM Dias

    2008-04-01

    Full Text Available CONTEXTUALIZAÇÃO: As complicações respiratórias são as principais causas de aumento da morbidade e da mortalidade em indivíduos submetidos à cirurgia de andar superior do abdômen. A eficácia dos procedimentos fisioterapêuticos precisa ser melhor definida, assim como é necessário o conhecimento da melhor estratégia terapêutica a ser implementada. OBJETIVO: Comparar o volume inspiratório mobilizado durante a técnica de breath stacking, com o volume na inspirometria de incentivo em pacientes submetidos à cirurgia abdominal. MATERIAIS E MÉTODOS: Doze pacientes, no primeiro dia de pós-operatório, foram orientados a inspirar profundamente por meio do inspirômetro de incentivo Voldyne® e a realizar esforços inspiratórios sucessivos pela máscara facial adaptada para realização da manobra de breath stacking. Cada técnica foi realizada cinco vezes de acordo com a randomização. No período pré-operatório, os pacientes realizaram prova espirométrica, foram avaliados e instruídos quanto à realização das técnicas. Um ventilômetro de Wright® permitiu o registro da capacidade inspiratória. RESULTADOS: A capacidade inspiratória foi significativamente maior durante o breath stacking do que durante a inspirometria de incentivo, tanto no pré quanto no pós-operatório. Houve redução significativa dos volumes após o procedimento cirúrgico, independentemente da técnica realizada. CONCLUSÕES: A técnica de breath stacking mostrou-se eficaz e superior à inspirometria de incentivo para a geração e sustentação de volumes inspiratórios. Por não haver descrição de efeitos adversos, essa técnica pode, provavelmente, ser utilizada de forma segura e eficaz, principalmente em pacientes pouco cooperativos.BACKGROUND: Respiratory complications are the main causes of increased morbidity and mortality in individuals who undergo upper abdominal surgery. The efficacy of physical therapy procedures needs clarification, and

  16. Mixed convection in a two-phase flow cooling loop

    International Nuclear Information System (INIS)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N PCh - N Sub ) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the modelling of the interfacial area

  17. Mixed convection in a two-phase flow cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N{sub PCh} - N{sub Sub}) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the

  18. Accuracy of small diameter sheathed thermocouples for the core flow test loop

    International Nuclear Information System (INIS)

    Anderson, R.L.; Kollie, T.G.

    1979-04-01

    This report summarizes the research and development on 0.5-mm-diameter, compacted, metal sheathed thermocouples. The objectives of this research effort have been: to identify and analyze the sources of temperature measurement errors in the use of 0.5-mm-diameter sheathed thermocouples to measure the surface temperature of the cladding of fuel-rod simulators in the Core Flow Test Loop (CFTL) at ORNL; to devise methods for reducing or correcting for these temperature measurement errors; to estimate the overall temperature measurement uncertainties; and to recommend modifications in the manufacture, installation, or materials used to minimize temperature measurement uncertainties in the CFTL experiments

  19. Effects of fresh gas flow, tidal volume, and charcoal filters on the washout of sevoflurane from the Datex Ohmeda (GE) Aisys, Aestiva/5, and Excel 210 SE Anesthesia Workstations.

    Science.gov (United States)

    Sabouri, A Sassan; Lerman, Jerrold; Heard, Christopher

    2014-10-01

    We investigated the effects of tidal volume (VT), fresh gas flow (FGF), and a charcoal filter in the inspiratory limb on the washout of sevoflurane from the following Datex Ohmeda (GE) Anesthesia Workstations (AWSs): Aisys, Aestiva/5, and Excel 210SE. After equilibrating the AWSs with 2% sevoflurane, the anesthetic was discontinued, and the absorbent anesthesia breathing circuit (ABC), reservoir bag, and test lung were changed. The lung was ventilated with 350 or 200 mL·breath(-1), 15 breaths·min(-1), and a FGF of 10 L·min(-1) while the washout of sevoflurane was performed in triplicate using a calibrated Datex Ohmeda Capnomac Ultima™ and a calibrated MIRAN SapphIRe XL ambient air analyzer until the concentration was ≤ 10 parts per million (ppm). The effects of decreasing the FGF to 5 and 2 L·min(-1) after the initial washout and of a charcoal filter in the ABC were recorded separately. The median washout times with the Aisys AWS (14 min, P Excel 210SE (32 min). The mean (95% confidence interval) washout time with the Aisys increased to 23.5 (21.5 to 25.5) min with VT 200 mL·breath(-1) (P < 0.01). Decreasing the FGF from 10 to 5 and 2 L·min(-1) with the Aisys caused a rebound in sevoflurane concentration to ≥ 50 ppm. Placement of a charcoal filter in the inspiratory limb reduced the sevoflurane concentration to < 2 ppm in the Aisys and Aestiva/5 AWSs within two minutes. The GE AWSs should be purged with large FGFs and VTs ~350 mL·breath(-1) for ~25 min to achieve 10 ppm sevoflurane. The FGF should be maintained to avoid a rebound in anesthetic concentration. Charcoal filters rapidly decrease the anesthetic concentration to < 2 ppm.

  20. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki [Chiba Univ. (Japan). School of Medicine

    2000-10-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year ({delta}D) were significantly greater than in groups R and B (%TFV: 74.1{+-}0.07 vs 15.2{+-}0.03 vs 11.8{+-}0.04, p<0.01; {delta}D: 3.62{+-}0.82 vs 0 vs 0.58{+-}0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and {delta}D (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  1. Work related to increasing the exploitation and experimental possibilities of the RA reactor, 05. Independent CO2 loop for cooling the samples irradiated in the RA vertical experimental channels (I-IV), Part II, IZ-240-0379-1963, Vol. II Head of the low temperature RA reactor coolant loop

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    The objective of the project was to design the head of the CO 2 coolant loop for cooling the materials during irradiation in the RA reactor. Six heads of coolant loops will be placed in the RA reactor, two in the region of heavy water in the experimental channels VEK-6 and four in the graphite reflector in the channels VEK-G. maximum generated heat in the heads of the coolant loop is 10500 kcal/h and minimum generated heat is 1500 kcal/h. The loops are cooled by CO 2 gas, coolant flow is 420 kg/h, and the pressure is 4.5 atu. There is a need to design and construct the secondary coolant loop for the low temperature coolant loop. This volume includes technical specifications of the secondary CO 2 loop with instructions for construction and testing; needed calculations; specification of materials; cost estimation for materials, equipment and construction; and graphical documentation [sr

  2. Multiscale CT-Based Computational Modeling of Alveolar Gas Exchange during Artificial Lung Ventilation, Cluster (Biot and Periodic (Cheyne-Stokes Breathings and Bronchial Asthma Attack

    Directory of Open Access Journals (Sweden)

    Andrey Golov

    2017-02-01

    Full Text Available An airflow in the first four generations of the tracheobronchial tree was simulated by the 1D model of incompressible fluid flow through the network of the elastic tubes coupled with 0D models of lumped alveolar components, which aggregates parts of the alveolar volume and smaller airways, extended with convective transport model throughout the lung and alveolar components which were combined with the model of oxygen and carbon dioxide transport between the alveolar volume and the averaged blood compartment during pathological respiratory conditions. The novel features of this work are 1D reconstruction of the tracheobronchial tree structure on the basis of 3D segmentation of the computed tomography (CT data; 1D−0D coupling of the models of 1D bronchial tube and 0D alveolar components; and the alveolar gas exchange model. The results of our simulations include mechanical ventilation, breathing patterns of severely ill patients with the cluster (Biot and periodic (Cheyne-Stokes respirations and bronchial asthma attack. The suitability of the proposed mathematical model was validated. Carbon dioxide elimination efficiency was analyzed in all these cases. In the future, these results might be integrated into research and practical studies aimed to design cyberbiological systems for remote real-time monitoring, classification, prediction of breathing patterns and alveolar gas exchange for patients with breathing problems.

  3. Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops

    Directory of Open Access Journals (Sweden)

    P. K. Vijayan

    2008-01-01

    Full Text Available In natural circulation loops, the driving force is usually low as it depends on the riser height which is generally of the order of a few meters. The heat transport capability of natural circulation loops (NCLs is directly proportional to the flow rate it can generate. With low driving force, the straightforward way to enhance the flow is to reduce the frictional losses. A simple way to do this is to increase the loop diameter which can be easily adopted in pressure tube designs such as the AHWR and the natural circulation boilers employed in fossil-fuelled power plants. Further, the loop diameter also plays an important role on the stability behavior. An extensive experimental and theoretical investigation of the effect of loop diameter on the steady state and stability behavior of single- and two-phase natural circulation loops have been carried out and the results of this study are presented in this paper.

  4. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  5. SU-F-207-13: Comparison of Four Dimensional Computed Tomography (4D CT) Versus Breath Hold Images to Determine Pulmonary Nodule Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M; Loo, B; Maxim, P [Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: Elasticity may distinguish malignant from benign pulmonary nodules. To compare determining of malignant pulmonary nodule (MPN) elasticity from four dimensional computed tomography (4D CT) images versus inhale/exhale breath-hold CT images. Methods: We analyzed phase 00 and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy (SABR). The radius of the smallest MPN was 0.3 cm while the biggest one was 2.1 cm. An intensity based deformable image registration (DIR) workflow was applied to the 4D CT and breath-hold images to determine the volumes of the MPNs and a 1 cm ring of surrounding lung tissue (ring) in each state. Next, an elasticity parameter was derived by calculating the ratio of the volume changes of MPN (exhale:inhale or phase50:phase00) to that of a 1 cm ring of lung tissue surrounding the MPN. The proposed formulation of elasticity enables us to compare volume changes of two different MPN in two different locations of lung. Results: The calculated volume ratio of MPNs from 4D CT (phase50:phase00) and breath-hold images (exhale:inhale) was 1.00±0.23 and 0.95±0.11, respectively. It shows the stiffness of MPN and comparably bigger volume changes of MPN in breath-hold images because of the deeper degree of inhalation. The calculated elasticity of MPNs from 4D CT and breath-hold images was 1.12±0.22 and 1.23±0.26, respectively. For five patients who have had two MPN in their lung, calculated elasticity of tumor A and tumor B follows same trend in both 4D CT and breath-hold images. Conclusion: We showed that 4D CT and breath-hold images are comparable in the ability to calculate the elasticity of MPN. This study has been supported by Department of Defense LCRP 2011 #W81XWH-12-1-0286.

  6. Computational stability appraisal of rectangular natural circulation loop: Effect of loop inclination

    International Nuclear Information System (INIS)

    Krishnani, Mayur; Basu, Dipankar N.

    2017-01-01

    Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints

  7. Numerical simulation of losses along a natural circulation helium loop

    Energy Technology Data Exchange (ETDEWEB)

    Knížat, Branislav, E-mail: branislav.knizat@stuba.sk; Urban, František, E-mail: frantisek.urban@stuba.sk; Mlkvik, Marek, E-mail: marek.mlkvik@stuba.sk; Ridzoň, František, E-mail: frantisek.ridzon@stuba.sk; Olšiak, Róbert, E-mail: robert.olsiak@stuba.sk [Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Nám. slobody 17, 812 31 Bratislava, Slovak Republik (Slovakia)

    2016-06-30

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  8. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  9. RPC gas recovery by open loop method

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Avinash [Alpha Pneumatics, 11, Krishna Kutir, Madanlal Dhigra Road, Panch Pakhadi (India)], E-mail: alpha_pneumatics@hotmail.com

    2009-05-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S{sub 2}F{sub 10} produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF{sub 6} is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  10. RPC gas recovery by open loop method

    International Nuclear Information System (INIS)

    Joshi, Avinash

    2009-01-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S 2 F 10 produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF 6 is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  11. In-pile loop experiments in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, J.; Jindrich, K.; Masarik, V.; Fric, Z.; Chotivka, V.; Hamerska, H.; Vsolak, R.; Erben, O.

    1986-08-01

    Methods and techniques used were as follows: (a) Method of polarizing resistance for remote monitoring of instantaneous rate of uniform corrosion. (b) Out-of-pile loop at the temperature 350 degC, pressure 19 MPa, circulation 20 kgs/h, testing time 1000 h. (c) High temperature electromagnetic filter with classical solenoid and ball matrix for high pressure filtration tests. (d) High pressure and high temperature in-pile water loop with coolant flow rate 10 000 kgs/h, neutron flux in active channel 7x10 13 n/cm 2 .s, 16 MPa, 330 degC. (e) Evaluation of experimental results by chemical and radiochemical analysis of coolant, corrosion products and corrosion layer on surface. The results of measurements carried out in loop facilities can be summarized into the following conclusions: (a) In-pile and out-of-pile loops are suitable means of investigating corrosion processes and mass transport in the nuclear power plant primary circuit. (b) In studying transport phenomena in the loop, it is necessary to consider the differences in geometry of the loop and the primary circuit, mainly the ratio of irradiated and non-irradiated surfaces and volumes. (c) In the experimental facility simulating the WWER-type nuclear power plant primary circuit, solid suspended particles of a chemical composition corresponding most frequently to magnetite or nickel ferrite, though with non-stoichiometric composition Me x 2+ Fe 3-x 3+ O 4 , were found. (d) Continuous filtration of water by means of an electromagnetic filter removing large particles of corrosion products leads to a decrease in radioactivity of the outer epitactic layer only. The effect of filtration on the inner topotactic layer is negligible

  12. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  13. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  14. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki

    2000-01-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year (ΔD) were significantly greater than in groups R and B (%TFV: 74.1±0.07 vs 15.2±0.03 vs 11.8±0.04, p<0.01; ΔD: 3.62±0.82 vs 0 vs 0.58±0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and ΔD (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  15. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    Science.gov (United States)

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  16. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  17. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.

    Science.gov (United States)

    Bark, D L; Johnson, B; Garrity, D; Dasi, L P

    2017-01-04

    Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Lung and chest wall impedances in the dog in normal range of breathing: effects of pulmonary edema.

    Science.gov (United States)

    Barnas, G M; Stamenović, D; Lutchen, K R

    1992-09-01

    We evaluated the effect of pulmonary edema on the frequency (f) and tidal volume (VT) dependences of respiratory system mechanical properties in the normal ranges of breathing. We measured resistance and elastance of the lungs (RL and EL) and chest wall of four anesthetized-paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz), delivered at a constant mean airway pressure. Measurements were made before and after severe pulmonary edema was produced by injection of 0.06 ml/kg oleic acid into the right atrium. Chest wall properties were not changed by the injection. Before oleic acid, EL increased slightly with increasing f in each dog but was independent of VT. RL decreased slightly and was independent of VT from 0.2 to 0.4 Hz, but above 0.4 Hz it tended to increase with increasing flow, presumably due to the airway contribution. After oleic acid injection, EL and RL increased greatly. Large negative dependences of EL on VT and of RL on f were also evident, so that EL and RL after oleic acid changed two- and fivefold, respectively, within the ranges of f and VT studied. We conclude that severe pulmonary edema changes lung properties so as to make behavior VT dependent (i.e., nonlinear) and very frequency dependent in the normal range of breathing.

  19. Steady state and linear stability analysis of a supercritical water natural circulation loop

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-01-01

    Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.

  20. Unusual cause of respiratory distress misdiagnosed as refractory asthma

    Directory of Open Access Journals (Sweden)

    Al-Otair Hadil

    2006-01-01

    Full Text Available We report a young lady, who was labeled as a case of refractory asthma for a few years, based on history of shortness of breath on minimal exertion, noisy breathing and normal chest radiograph. Repeated upper airway exam by an otolaryngologist and computerized tomography scan, were normal. On presentation to our hospital, she was diagnosed to have fixed upper airway obstruction, based on classical flow-volume loop findings. Fibroptic bronchoscopy revealed a web-shaped subglottic stenosis. The histopathology of a biopsy taken from that area, showed non-specific inflammation. No cause for this stenosis could be identified. The patient was managed with rigid bronchoscopy dilatation, without recurrence. We report this case as idiopathic subglottic stenosis, that was misdiagnosed as refractory bronchial asthma, stressing the importance of performing spirometry in the clinic.

  1. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion.

    Science.gov (United States)

    Španěl, Patrik; Dryahina, Kseniya; Vicherková, Petra; Smith, David

    2015-11-19

    Aspartame, methyl-L-α-aspartyl-L-phenylalaninate, is used worldwide as a sweetener in foods and drinks and is considered to be safe at an acceptable daily intake (ADI) of 40 mg per kg of body weight. This compound is completely hydrolyzed in the gastrointestinal tract to aspartic acid, phenylalanine and methanol, each being toxic at high levels. The objective of the present study was to quantify the volatile methanol component in the exhaled breath of ten healthy volunteers following the ingestion of a single ADI dose of aspartame. Direct on-line measurements of methanol concentration were made in the mouth and nose breath exhalations using selected ion flow tube mass spectrometry, SIFT-MS, several times before aspartame ingestion in order to establish individual pre-dose (baseline) levels and then during two hours post-ingestion to track their initial increase and subsequent decrease. The results show that breath methanol concentrations increased in all volunteers by 1082   ±   205 parts-per-billion by volume (ppbv) from their pre-ingestion values, which ranged from 193 to 436 ppbv to peak values ranging from 981-1622 ppbv, from which they slowly decreased. These observations agree quantitatively with a predicted increase of 1030 ppbv estimated using a one-compartment model of uniform dilution of the methanol generated from a known amount of aspartame throughout the total body water (including blood). In summary, an ADI dose of aspartame leads to a 3-6 fold increase of blood methanol concentration above the individual baseline values.

  2. Breathing rates and daily activities: parameters of exposure to inhaled substances

    International Nuclear Information System (INIS)

    Roy, M.; Malarbet, J.L.; Courtay, C.

    1993-01-01

    The intake of inhaled toxic substances is based upon the air volumes breathed every day by people under exposure to gases and aerosols. On the occasion of the revision of the respiratory tract model by the International Commission on Radiological Protection (ICRP), modern standards have been assessed for average inspired air volumes according to age and sex. Recent data of breathing rates as a function of physical activity have been recorded, and economical surveys recently published by the National Institute of Statistics and Economical studies (INSEE) provided time budgets and activities of specific categories of the population. The results were calculated for adults and children, 3 months, 1, 5, 10 and 15 years old. These values are slightly different from those formerly published by ICRP and the United Nations scientific committee on the effects of atomic radiation (UNSCEAR). (author). 27 refs., 6 tabs

  3. Operation manual for the core flow test loop zone power-supply controller

    Energy Technology Data Exchange (ETDEWEB)

    Harper, R.E.

    1981-11-01

    The core flow test loop, which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at ORNL, is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit study of the performance at steady-state and transient conditions of simulated segments of core assemblies for a GCFR demonstration plant. The simulated core segments, which are divided into zones, contain electrical heating elements to simulate the heat generated by fission. To control the power which is applied to a zone, a novel multitapped transformer and zone power control system have been designed and built which satisfy stringent design criteria. The controller can match power output to demand to within better than +-1% over a 900:1 dynamic range and perform full-power transients within 1 s. The power is applied in such a way as to minimize the electromagnetic interference at the bandwidth of the loop instrumentation, and the controller incorporates several error detection techniques, making it inherently fail-safe. The operation manual describes the specifications, operating instructions, error detection capabilities, error recovery, troubleshooting, calibration and QA procedures, and maintenance requirements. Also included are sections on the theory of operation, circuitry description, and a complete set of schematics.

  4. Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia.

    Science.gov (United States)

    Kingma, J G; Linderoth, B; Ardell, J L; Armour, J A; DeJongste, M J; Foreman, R D

    2001-08-13

    Electrical stimulation of the dorsal aspect of the upper thoracic spinal cord is used increasingly to treat patients with angina pectoris refractory to conventional therapeutic strategies. The purpose of this study was to determine whether spinal cord stimulation (SCS) in dogs affects regional myocardial blood flow and left-ventricular (LV) function before and during transient obstruction of the left anterior descending coronary artery (LAD). In anesthetized dogs, regional myocardial blood flow distribution was determined using radiolabeled microspheres and left-ventricular function was measured by impedance-derived pressure-volume loops. SCS was accomplished by stimulating the dorsal T1-T2 segments of the spinal cord using epidural bipolar electrodes at 90% of motor threshold (MT) (50 Hz, 0.2-ms duration). Effects of 5-min SCS were assessed under basal conditions and during 4-min occlusion of the LAD. SCS alone evoked no change in regional myocardial blood flow or cardiovascular indices. Transient LAD occlusion significantly diminished blood flow within ischemic, but not in non-ischemic myocardial tissue. Left ventricular pressure-volume loops were shifted rightward during LAD occlusion. Cardiac indices were altered similarly during LAD occlusion and concurrent SCS. SCS does not influence the distribution of blood flow within the non-ischemic or ischemic myocardium. Nor does it modify LV pressure-volume dynamics in the anesthetized experimental preparation.

  5. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    Science.gov (United States)

    Dhillon, Navdeep Singh

    . To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into

  6. Quantitative analysis of normal fetal brain volume and flow by three-dimensional power Doppler ultrasound

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    2013-09-01

    Conclusion: 3D ultrasound can be used to assess the fetal brain volume and blood flow development quantitatively. Our study indicates that the fetal brain vascularization and blood flow correlates significantly with the advancement of GA. This information may serve as a reference point for further studies of the fetal brain volume and blood flow in abnormal conditions.

  7. Evaluating the Effect of Flow and Interface Type on Pressures Delivered With Bubble CPAP in a Simulated Model.

    Science.gov (United States)

    Bailes, Stephanie A; Firestone, Kimberly S; Dunn, Diane K; McNinch, Neil L; Brown, Miraides F; Volsko, Teresa A

    2016-03-01

    Bubble CPAP, used for spontaneously breathing infants to avoid intubation or postextubation support, can be delivered with different interface types. This study compared the effect that interfaces had on CPAP delivery. We hypothesized that there would be no difference between set and measured levels between interface types. A validated preterm infant nasal airway model was attached to the ASL 5000 breathing simulator. The simulator was programmed to deliver active breathing of a surfactant-deficient premature infant with breathing frequency at 70 breaths/min inspiratory time of 0.30 s, resistance of 150 cm H2O/L/s, compliance of 0.5 mL/cm H2O, tidal volume of 5 mL, and esophageal pressure of -10 cm H2O. Nasal CPAP prongs, size 4030, newborn and infant RAM cannulas were connected to a nasal airway model and a bubble CPAP system. CPAP levels were set at 4, 5, 6, 7, 8, and 9 cm H2O with flows of 6, 8, and 10 L/min each. Measurements were recorded after 1 min of stabilization. The analysis was performed using SAS 9.4. The Kolmogorov-Smirnov test assessed normality of the data. The Friedman test was used to compare non-normally distributed repeated measures. The Wilcoxon signed-rank test was used to conduct post hoc analysis. All tests were 2-sided, and P values of CPAP levels, 4-6 cm H2O, measured CPAP dropped precipitously with the nasal prongs with the highest flow setting. At higher CPAP levels, 7-9 cm H2O measured CPAP concomitantly increased as the flow setting increased. Statistically significant differences in set and measured CPAP occurred for all devices across all CPAP levels, with the measured CPAP less than set for all conditions, P CPAP. The concomitant drop in measured pressure with high and low flows could be attributed to increased resistance to spontaneous breathing or insufficient flow to meet inspiratory demand. Clinicians should be aware of the effect that the interface and flow have on CPAP delivery. Copyright © 2016 by Daedalus Enterprises.

  8. An experimental study of two-phase natural circulation in an adiabatic flow loop

    International Nuclear Information System (INIS)

    Tan, M.J.; Lambert, G.A.; Ishii, Mamoru.

    1988-01-01

    An experimental investigation was conducted to study the two-phase flow aspect of the phenomena of interruption and resumption of natural circulation, two-phase flow patterns and pattern transitions in the hot legs of B and W light water reactor systems. The test facility was a scaled adiabatic loop designed in accordance with the scaling criteria developed by Kocamustafaogullari and Ishii. The diameter and the height of the hot leg were 10 cm and 5.5 m, respectively; the working fluid pair was nitrogen-water. The effects of the thermal center in the steam generators, friction loss in the cold leg, and configuration of the inlet to the hot leg on the flow conditions in the hot leg were investigated by varying the water level in a gas separator, controlling the size of opening of a friction loss control valve, and using two inlet geometries. Methods for estimating the distribution parameter and the average drift velocity are proposed so that they may be used in the application of one-dimensional drift-flux model to the analysis of the interruption and resumption of natural circulation in a similar geometry. 7 refs., 17 figs., 4 tabs

  9. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    International Nuclear Information System (INIS)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D'Ippolito, Giuseppe; Colleoni, Ramiro

    2008-01-01

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  10. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem]. E-mail: ar.leao@uol.com.br; Colleoni, Ramiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Gastroenterologia

    2008-09-15

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  11. Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunteers Breathing with Three Portable Ventilators and a Critical Care Ventilator

    National Research Council Canada - National Science Library

    Austin, Paul

    2001-01-01

    .... The purpose of this study was to assess the imposed inspiratory work of breathing and breathing comfort of nonintubated healthy volunteers breathing spontaneously through three portable ventilators...

  12. Connection between encounter volume and diffusivity in geophysical flows

    Science.gov (United States)

    Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.

    2018-04-01

    Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.

  13. Noninvasive measurement of mean alveolar carbon dioxide tension and Bohr's dead space during tidal breathing.

    Science.gov (United States)

    Koulouris, N G; Latsi, P; Dimitroulis, J; Jordanoglou, B; Gaga, M; Jordanoglou, J

    2001-06-01

    The lack of methodology for measuring the alveolar carbon dioxide tension (PA,CO2) has forced investigators to make several assumptions, such as that PA,CO2 is equal to end-tidal (PET,CO2) and arterial CO2 tension (Pa,CO2). The present study measured the mean PA,CO2 and Bohr's dead space ratio (Bohr's dead space/tidal volume (VD,Bohr/VT)) during tidal breathing. The method used is a new, simple and noninvasive technique, based on the analysis of the expired CO2 volume per breath (VCO2) versus the exhaled VT. This curve was analysed in 21 normal, healthy subjects and 35 chronic obstructive pulmonary disease (COPD) patients breathing tidally through a mouthpiece apparatus in the sitting position. It is shown that: 1) PA,CO2 is similar to Pa,CO2 in normal subjects, whilst it is significantly lower than Pa,CO2 in COPD patients; 2) PA,CO2 is significantly higher than PET,CO2 in all subjects, especially in COPD patients; 3) VD,Bohr/VT is increased in COPD patients as compared to normal subjects; and 4) VD,Bohr/VT is lower than the "physiological" dead space ratio (VD,phys/VT) in COPD patients. It is concluded that the expired carbon dioxide versus tidal volume curve is a useful tool for research and clinical work, because it permits the noninvasive and accurate measurement of Bohr's dead space and mean alveolar carbon dioxide tension accurately during spontaneous breathing.

  14. Detection of bronchial breathing caused by pneumonia.

    Science.gov (United States)

    Gross, V; Fachinger, P; Penzel, Th; Koehler, U; von Wichert, P; Vogelmeier, C

    2002-06-01

    The classic auscultation with stethoscope is the established clinical method for the detection of lung diseases. The interpretation of the sounds depends on the experience of the investigating physician. Therefore, a new computer-based method has been developed to classify breath sounds from digital lung sound recordings. Lung sounds of 11 patients with one-sided pneumonia and bronchial breathing were recorded on both the pneumonia side and on contralateral healthy side simultaneously using two microphones. The spectral power for the 300-600 Hz frequency band was computed for four respiratory cycles and normalized. For each breath, the ratio R between the time-segments (duration = 0.1 s) with the highest inspiratory and highest expiratory flow was calculated and averaged. We found significant differences in R between the pneumonia side (R = 1.4 +/- 1.3) and the healthy side (R = 0.5 +/- 0.5; p = 0.003 Wilcoxon-test) of lung. In 218 healthy volunteers we found R = 0.3 +/- 0.2 as a reference-value. The differences of ratio R (delta R) between the pneumonia side and the healthy side (delta R = 1.0 +/- 0.9) were significantly higher compared to follow-up studies after recovery (delta R = 0.0 +/- 0.1, p = 0.005 Wilcoxon-test). The computer based detection of bronchial breathing can be considered useful as part of a quantitative monitoring of patients at risk to develop pneumonia.

  15. MHD PbLi experiments in MaPLE loop at UCLA

    International Nuclear Information System (INIS)

    Courtessole, C.; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-01-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  16. MHD PbLi experiments in MaPLE loop at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Courtessole, C., E-mail: cyril@fusion.ucla.edu; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-11-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  17. Advances on Propulsion Technology for High-Speed Aircraft. Volume 1

    Science.gov (United States)

    2007-03-01

    breathing propulsion in the 21st century make space travel routine and intercontinental travel as easy as intercity travel is today? This presentation...higher thermal margins. The second fluid of the cooling system travels in a closed Brayton loop. A compressor pumps the second fluid which enters the...the compressor, closing the Brayton loop. The heated fuel travels from the heat exchanger to the combustor, where it utilized I to propel the high

  18. A closed-loop forward osmosis-nanofiltration hybrid system: Understanding process implications through full-scale simulation

    KAUST Repository

    Phuntsho, Sherub

    2016-12-30

    This study presents simulation of a closed-loop forward osmosis (FO)-nanofiltration (NF) hybrid system using fertiliser draw solution (DS) based on thermodynamic mass balance in a full-scale system neglecting the non-idealities such as finite membrane area that may exist in a real process. The simulation shows that the DS input parameters such as initial concentrations and its flow rates cannot be arbitrarily selected for a plant with defined volume output. For a fixed FO-NF plant capacity and feed concentration, the required initial DS flow rate varies inversely with the initial DS concentration or vice-versa. The net DS mass flow rate, a parameter constant for a fixed plant capacity but that increases linearly with the plant capacity and feed concentration, is the most important operational parameter of a closed-loop system. Increasing either of them or both increases the mass flow rate to the system directly affecting the final concentration of the diluted DS with direct energy implications to the NF process. Besides, the initial DS concentration and flow rates are also limited by the optimum recovery rates at which NF process can be operated which otherwise also have direct implications to the NF energy. This simulation also presents quantitative analysis of the reverse diffusion of fertiliser nutrients towards feed brine and the gradual accumulation of feed solutes within the closed system.

  19. On-line radiometry in high-performance liquid chromatography using a storage loop

    International Nuclear Information System (INIS)

    Nieuwkerk, H.J. van.

    1987-01-01

    Difficulty with radiometric chromatography is that large measured volumes are required for accurate detections, but large volumes cause band widening and thus poor separation capacity. The solution proposed here is based on the use of a capillary storage loop for temporary residence of the column eluate. To avoid back mixing, the liquid is interspaced with a second, immiscible, phase ('spacer') so as to form a sequence of small 10-50 μl separate segments. This train passes the on-line radiometric detector to obtain a first scan of the chromatogram, called the 'direct' measurement. It then reaches the storage loop. The usual on-line UV measurement is done in the same run. The eluate cum spacer is, at a later stage, pumped through the detector at a greatly reduced flow rate to obtain the 'reversed' or 'delayed' measurement. Beta-detection is based on liquid scintillation. Accordingly, the (organic) liquid scintillant is used as the 'spacer'. In most cases it is possible to extract the analyte from the aqueous eluate into the organic phase during transport to and storage in the loop. This ensures a high counting efficiency. If the analyte is non-extractable, the counting efficiency is considerably less but the number of counts collected is still sufficient for quantitative assay, due to the extended counting time. The report is divided into 5 chapters, each dealing with a radiometric HPCL separation making use of this method. 36 figs.; 124 refs.; 16 tables

  20. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    Science.gov (United States)

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  1. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration

    International Nuclear Information System (INIS)

    Barnes, Elizabeth A.; Murray, Brad R.; Robinson, Donald M.; Underwood, Lori J.; Hanson, John; Roa, Wilson H.Y.

    2001-01-01

    Purpose:To examine the dosimetric benefit of self-gated radiotherapy at deep-inspiration breath hold (DIBH) in the treatment of patients with non-small-cell lung cancer (NSCLC). The relative contributions of tumor immobilization at breath hold (BH) and increased lung volume at deep inspiration (DI) in sparing high-dose lung irradiation (≥20 Gy) were examined. Methods and Materials:Ten consecutive patients undergoing radiotherapy for Stage I-IIIB NSCLC who met the screening criteria were entered on this study. Patients were instructed to BH at DI without the use of external monitors or breath-holding devices (self-gating). Computed tomography (CT) scans of the thorax were performed during free breathing (FB) and DIBH. Fluoroscopy screened for reproducible tumor position throughout DIBH, and determined the maximum superior-inferior (SI) tumor motion during both FB and DIBH. Margins used to define the planning target volume (PTV) from the clinical target volume included 1 cm for setup error and organ motion, plus an additional SI margin for tumor motion, as determined from fluoroscopy. Three conformal treatment plans were then generated for each patient, one from the FB scan with FB PTV margins, a second from the DIBH scan with FB PTV margins, and a third from the DIBH scan with DIBH PTV margins. The percent of total lung volume receiving ≥20 Gy (using a prescription dose of 70.9 Gy to isocenter) was determined for each plan. Results:Self-gating at DIBH was possible for 8 of the 10 patients; 2 patients were excluded, because they were not able to perform a reproducible DIBH. For these 8 patients, the median BH time was 23 (range, 19-52) s. The mean percent of total lung volume receiving ≥20 Gy under FB conditions (FB scan with FB PTV margins) was 12.8%. With increased lung volume alone (DIBH scan with FB PTV margins), this was reduced to 11.0%, tending toward a significant decrease in lung irradiation over FB (p=0.086). With both increased lung volume and tumor

  2. Double blind randomised controlled trial of two different breathing techniques in the management of asthma.

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic-Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-08-01

    Previous studies have shown that breathing techniques reduce short acting beta(2) agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non-specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non-specific upper body exercises.

  3. Assessment of volume and leak measurements during CPAP using a neonatal lung model

    International Nuclear Information System (INIS)

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen and Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2–10 ml, 20–100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error ±SD was 3.5 ± 2.6% (2–10 ml) and 5.9 ± 0.7% (20–60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F i O 2 caused the measured tidal volume to increase by up to 25% (F i O 2 = 1.0). The relative error ±SD of the leak measurements was −0.2 ± 11.9%. For leaks >19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F i O 2 >0.4 and for leaks >19%, a numerical correction of the displayed volume should be performed

  4. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    Science.gov (United States)

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  5. On vortex loops and filaments: three examples of numerical predictions of flows containing vortices.

    Science.gov (United States)

    Krause, Egon

    2003-01-01

    Vortex motion plays a dominant role in many flow problems. This article aims at demonstrating some of the characteristic features of vortices with the aid of numerical solutions of the governing equations of fluid mechanics, the Navier-Stokes equations. Their discretized forms will first be reviewed briefly. Thereafter three problems of fluid flow involving vortex loops and filaments are discussed. In the first, the time-dependent motion and the mutual interaction of two colliding vortex rings are discussed, predicted in good agreement with experimental observations. The second example shows how vortex rings are generated, move, and interact with each other during the suction stroke in the cylinder of an automotive engine. The numerical results, validated with experimental data, suggest that vortex rings can be used to influence the spreading of the fuel droplets prior to ignition and reduce the fuel consumption. In the third example, it is shown that vortices can also occur in aerodynamic flows over delta wings at angle of attack as well as pipe flows: of particular interest for technical applications of these flows is the situation in which the vortex cores are destroyed, usually referred to as vortex breakdown or bursting. Although reliable breakdown criteria could not be established as yet, the numerical predictions obtained so far are found to agree well with the few experimental data available in the recent literature.

  6. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    Science.gov (United States)

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p FB and V-DIBH, respectively (p FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.

  7. Portable optical spectroscopy for accurate analysis of ethane in exhaled breath

    Science.gov (United States)

    Patterson, Claire S.; McMillan, Lesley C.; Longbottom, Christopher; Gibson, Graham M.; Padgett, Miles J.; Skeldon, Kenneth D.

    2007-05-01

    We report on a maintenance-free, ward-portable, tunable diode laser spectroscopy system for the ultra-sensitive detection of ethane gas. Ethane is produced when cellular lipids are oxidized by free radicals. As a breath biomarker, ethane offers a unique measure of such oxidative stress. The ability to measure real-time breath ethane fluctuations will open up new areas in non-invasive healthcare. Instrumentation for such a purpose must be highly sensitive and specific to the target gas. Our technology has a sensitivity of 70 parts per trillion and a 1 s sampling rate. Based on a cryogenically cooled lead-salt laser, the instrument has a thermally managed closed-loop refrigeration system, eliminating the need for liquid coolants. Custom LabVIEW software allows automatic control by a laptop PC. We have field tested the instrument to ensure that target performance is sustained in a range of environments. We outline the novel applications underway with the instrument based on an in vivo clinical assessment of oxidative stress.

  8. Influence of the CVCS Modelling on Results of the Loss of Offsite Power (LOOP) Safety Analysis for NPP Krsko

    International Nuclear Information System (INIS)

    Bencik, V.; Bajs, T.; Debrecin, N.

    2006-01-01

    A Loss of Offsite Power (LOOP) transient scenario is based on a complete loss of non-emergency AC power that results in the loss of all power to the plant auxiliaries, i.e., the Reactor Coolant Pumps (RCPs), condensate pumps, etc. An actual LOOP event would cause a loss of all feedwater, a loss of forced Reactor Coolant System (RCS) flow and a reactor trip within less than 2 seconds as a result of either loss of power to the rod cluster assembly gripper coils or any RCS flow trips. For safety analysis purposes the LOOP event is conservatively modelled as a Loss of Normal Feedwater (LONF) transient with a subsequent loss of offsite power as a result of a reactor trip. The reactor trip followed by RCP trip are delayed until a low-low Steam Generator (SG) level signal is reached. This is a more conservative scenario than the LOOP event because the least amount of SG secondary side water mass available for heat removal and the increased amount of the stored energy in the primary circuit at the time of the loss of RCS flow result. The standard LOOP safety analysis is aimed to demonstrate the natural circulation capability of the RCS to remove residual and decay heat from the core aided by Auxiliary Feedwater in the secondary system. In addition to this goal the presented work is aimed to resolve the potential safety issue resulting from the influence of the Chemical and Volume Control System (CVCS) operation during LOOP event for NPP Krsko. The potential safety concern for the LOOP analysis is that the loss of instrument air system may occur thus leading to the CVCS charging and letdown flow imbalance. A net RCS inventory addition may result with water solid pressurizer condition. Water discharge through the pressurizer relief and safety valves could lead to overpressurization of the Pressurizer Relief Tank (PRT) and rupture of the PRT rupture disks. Additional concern is that pressurizer relief and safety valves may fail to properly reseat when exposed to water relief

  9. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  10. Two-phase natural circulation experiments in a pressurized water loop with CANDU geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ardron, K.H.; Krishnan, V.S.; McGee, G.R.; Anderson, J.W.D.; Hawley, E.H.

    1984-07-01

    A series of tests has been performed in the RD-12 loop, a 10-MPa pressurized-water loop containing two active boilers, two pumps, and two, or four, heated horizontal channels arranged in a symmetrical figure-of-eight configuration characteristic of the CANDU reactor primary heat-transport system. In the tests, single-phase natural circulation was established in the loop and void was introduced by controlled draining, with the surge tank (pressurizer) valved out of the system. Results indicate that a stable, two-phase, natural circulation flow can usually be established. However, as the void fraction in the loop is increased, large-amplitude flow oscillations can occur. The initial flow oscillations in the two halves of the loop are usually very nearly 180/sup 0/ out-of-phase. However, as the loop inventory is further decreased, an in-phase oscillation component is observed. In tests with two parallel, heated channels in each half-loop, oscillations associated with mass transfer between the channel pairs are also observed. Although flow oscillations can lead to intermittent dryout of the upper elements of the heater-rod assemblies in the horizontal channels, natural circulation cooling appears to be effective until about 50% of the loop inventory is drained; sustained flow stratification then occurs in the heated channels, leading to heater temperature excursions. The paper reviews the experimental results obtained and describes the evolution of natural circulation flow in particular cases as voidage is progressively increased. The stability behavior is discussed briefly with reference to a simple stability model.

  11. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    International Nuclear Information System (INIS)

    Wang, Chuji; Surampudi, Anand B

    2008-01-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring

  12. Design Principles for Closed Loop Supply Chains

    NARCIS (Netherlands)

    H.R. Krikke (Harold); C.P. Pappis (Costas); G.T. Tsoulfas; J.M. Bloemhof-Ruwaard (Jacqueline)

    2001-01-01

    textabstractIn this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the

  13. Study on influence of flow rates on voids in waxy crude oil subjected to dynamic and static cooling

    Directory of Open Access Journals (Sweden)

    Girma T. Chala

    2015-12-01

    Full Text Available The assumption of constant yield stress in the conventional restart pressure equation neglects the effects of thermal shrinkage and gas voids formation, which in turn resulted in an over-designed production piping systems. This paper presents a study on the effects of flow rates on the formation of voids in gelled waxy crude oil. A flow loop rig simulating offshore waxy crude oil transportation was used to produce a gel. A Magnetic Resonance Imaging (MRI was used to scan the gelled crude oil over the three planes. Waxy crude oil underwent both dynamic and static cooling to observe the effects of volume flow rates on the voids formed in wax-oil gel. Volume flow rate was found to have different influences on the intra-gel voids in the pipeline. A volume flow rate of 5 L/min resulted in a maximum total voids volume of 6.98% while 20 L/min produced a minimum total voids volume of 5.67% in the entire pipe. Slow flow rates resulted in a larger voids volume near the pipe wall. In contrast, faster flow rates produced insignificantly higher voids volume around pipe core. Generally, slower flow rates favoured the formation of higher total voids volume following sufficient steady time of wax crystal formation, producing larger voids areas in gelled waxy crude oil.

  14. Improved pulmonary function in working divers breathing nitrox at shallow depths

    Science.gov (United States)

    Fitzpatrick, Daniel T.; Conkin, Johnny

    2003-01-01

    INTRODUCTION: There is limited data about the long-term pulmonary effects of nitrox use in divers at shallow depths. This study examined changes in pulmonary function in a cohort of working divers breathing a 46% oxygen enriched mixture while diving at depths less than 12 m. METHODS: A total of 43 working divers from the Neutral Buoyancy Laboratory (NBL), NASA-Johnson Space Center completed a questionnaire providing information on diving history prior to NBL employment, diving history outside the NBL since employment, and smoking history. Cumulative dive hours were obtained from the NBL dive-time database. Medical records were reviewed to obtain the diver's height, weight, and pulmonary function measurements from initial pre-dive, first year and third year annual medical examinations. RESULTS: The initial forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were greater than predicted, 104% and 102%, respectively. After 3 yr of diving at the NBL, both the FVC and FEV1 showed a significant (p < 0.01) increase of 6.3% and 5.5%, respectively. There were no significant changes in peak expiratory flow (PEF), forced mid-expiratory flow rate (FEF(25-75%)), and forced expiratory flow rates at 25%, 50%, and 75% of FVC expired (FEF25%, FEF50%, FEF75%). Cumulative NBL dive hours was the only contributing variable found to be significantly associated with both FVC and FEV1 at 1 and 3 yr. CONCLUSIONS: NBL divers initially belong to a select group with larger than predicted lung volumes. Regular diving with nitrox at shallow depths over a 3-yr period did not impair pulmonary function. Improvements in FVC and FEV1 were primarily due to a training effect.

  15. Water hammer characteristics of integral pressurized water reactor primary loop

    International Nuclear Information System (INIS)

    Zuo, Qiaolin; Qiu, Suizheng; Lu, Wei; Tian, Wenxi; Su, Guanghui; Xiao, Zejun

    2013-01-01

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions

  16. Water hammer characteristics of integral pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Qiaolin [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Lu, Wei; Tian, Wenxi; Su, Guanghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Xiao, Zejun [Nuclear Power Institute of China, Chengdu, Sichuan 610041 (China)

    2013-08-15

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions.

  17. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)

    2002-04-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  18. Response of Hepatoma 9618a and Normal Liver to Host Carbogen and Carbon Monoxide Breathing

    Directory of Open Access Journals (Sweden)

    Simon P. Robinson

    1999-12-01

    Full Text Available The effects of hyperoxia (induced by host carbogen 95% oxygen/5% carbon dioxide breathing. and hypoxia (induced by host carbon monoxide CO at 660 ppm. breathing were compared by using noninvasive magnetic resonance (MR methods to gain simultaneous information on blood flow/oxygenation and the bioenergetic status of rat Morris H9618a hepatomas. Both carbogen and CO breathing induced a 1.5- to 2-fold increase in signal intensity in blood oxygenation level dependent (BOLD MR images. This was due to a decrease in deoxyhemoglobin (deoxyHb, which acts as an endogenous contrast agent, caused either by formation of oxyhemoglobin in the case of carbogen breathing, or carboxyhemoglobin with CO breathing. The results were confirmed by observation of similar changes in deoxyHb in arterial blood samples examined ex vivo after carbogen or CO breathing. There was no change in nucleoside triphosphates (NTP/PI in either tumor or liver after CO breathing, whereas NTP/Pl increased twofold in the hepatoma (but not in the liver after carbogen breathing. No changes in tumor intracellular pH were seen after either treatment, whereas extracellular pH became more alkaline after CO breathing and more acid after carbogen breathing, respectively. This tumor type and the liver are unaffected by CO breathing at 660 ppm, which implies an adequate oxygen supply.

  19. Breath analysis using external cavity diode lasers: a review

    Science.gov (United States)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  20. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    Science.gov (United States)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  1. EFFECT OF SITTING POSTURE ON THORACIC CONFIGURATION AND CHANGES IN VOLUME OF HEMITHORACES

    Directory of Open Access Journals (Sweden)

    Shōbo A

    2017-06-01

    Full Text Available Background: Poor posture is detrimental to breathing. Our purpose was to investigate the effect of upright and hunchbacked sitting on thoracic configuration and changes in the volume of the thorax during quiet and volitional deep breathing. Methods: The participants were 11 healthy men with a mean age of 21.6 years, mean body mass of 59.8 kg, mean height of 169.7 cm and a body mass index of 20.7 kg/m2. Eighty-four reflective markers were placed on the trunk. Three-dimensional motion analysis measured the volume within the hemithoraces. To calculate upper and lower thoracic volumes, six imaginary hexahedra were visualized using four reflective markers for each on both aspects of the thorax. Each hexahedron was divided into three imaginary triangular pyramids to calculate positional vectors. Finally, the volume for the hexahedra and triangular pyramids was calculated. Upper thoracic volume encompassed a space from the sternal notch to a midpoint on the ventral aspect of the third rib and the lower thoracic volume from the xiphoid process to the midpoint on tenth rib’s dorsal aspect. Results: In hunchbacked sitting during quiet breathing the left lower hemithorax yielded a significantly larger volume (p=0.003, and both breathing patterns during inspiration and expiration yielded a significantly greater change in thoracic configuration (p=0.01, p=0.016. Conclusion: Findings suggested that, in a hunchbacked sitting, there was decreased thoracic asymmetry with re-establishment of thoracic vertebral alignment, consequently stabilizing the sitting position, but breathing was suppressed and tidal volume decreased. Physiotherapy should aim at ensuring correction of hunchbacked posture and maintenance of thoracic symmetry.

  2. Double blind randomised controlled trial of two different breathing techniques in the management of asthma

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic‐Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-01-01

    Background Previous studies have shown that breathing techniques reduce short acting β2 agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non‐specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. Methods After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Results Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Conclusion Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non‐specific upper body exercises. PMID:16517572

  3. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode

    Science.gov (United States)

    Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian

    2017-09-01

    The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.

  4. Thermohaline loops, Stommel box models, and the Sandström theorem

    OpenAIRE

    Wunsch, Carl

    2005-01-01

    The Stommel two-box, two flow-regime box model is kinematically and dynamically equivalent to the flow in a onedimensional fluid loop, although one having awkward and extreme mixing coefficients. More generally, such a loop, when heated and cooled at the same geopotential, provides a simple example of the working of the Sandström theorem, with flow intensity capable of increasing or decreasing with growing diffusion. Stress dominates real oceanic flows, and its introduction into the purely th...

  5. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    Science.gov (United States)

    Bijnens, Johan; Rössler, Thomas

    2015-11-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.

  6. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  7. Status of external breath functions of the Northern Kazakhstan residents from a uranium mining areas

    International Nuclear Information System (INIS)

    Ajnabekova, B.A.; Mukhambetov, D.D.; Sutyusheva, G.R.; Braun, M.A.; Sarzhanova, A.N.; Rutenko, N.A.

    2003-01-01

    The aim of the present study is the external breath functions status in population of the Northern Kazakhstan uranium-miming areas. During the obtained data analysis it was revealed, that the indexes both the volume forced breathing-out behind the first wall and the vital lung capacity were low in residents are living at the mines more than 10 years, than in ones are living less than 10 years. The obtained data could not evidencing about reliable influence of low ionizing radiation dose on the bronchus permeability indexes. Presumably, that a possible reason for the reveled breath functions destabilization formation is the dust factor action

  8. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis E.B.

    2015-01-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ( 137 Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  9. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  10. Mechanism of formation of loop-type prominences

    International Nuclear Information System (INIS)

    Uralov, A.M.; Fedorov, L.V.

    1978-01-01

    Chromospheric gas heated to high temperatures flows out to the corona, filling and carrying up arches of the coronal magnetic field. Under the action of the magnetic tension and of the gravitation, a part of matter contained in the field tubes begins to fall back. The magnetic pressure of the magnetic loop reduced to its original size prevents the vertical fall of gas. At the loop top, braking of gas is most significant, due to field quasi-transversality. Here, in the first place gas compression and cooling by emission of radiation occurs, the already visible matter thereafter flowing away from the condensation point, thus marking the loop contours. A continuous return to the state of equilibrium of new field tubes with matter leads to an apparent ascent of the arch structure into the corona

  11. Dynamic Characterization of a Low Cost Microwave Water-Cut Sensor in a Flow Loop

    KAUST Repository

    Karimi, Muhammad Akram

    2017-03-31

    Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water-cut sensor based upon pipe conformable microwave T-resonator. A 10″ microwave stub based T-resonator has been implemented directly on the pipe surface whose resonance frequency changes in the frequency band of 90MHz–190MHz (111%) with changing water fraction in oil. The designed sensor is capable of detecting even small changes in WC with a resolution of 0.07% at low WC and 0.5% WC at high WC. The performance of the microwave WC sensor has been tested in an in-house flow loop. The proposed WC sensor has been characterized over full water-cut range (0%–100%) not only in vertical but also in horizontal orientation. The sensor has shown predictable response in both orientations with huge frequency shift. Moreover, flow rate effect has also been investigated on the proposed WC sensor’s performance and it has been found that the sensor’s repeatability is within 2.5% WC for variable flow rates.

  12. Lung volume reduction in chronic obstructive pulmonary disease ...

    African Journals Online (AJOL)

    Lung volume reduction in chronic obstructive pulmonary disease. ... loss to improve pulmonary mechanics and compliance, thereby reducing the work of breathing. ... of obtaining similar functional advantages to surgical lung volume reduction, ...

  13. Automation of secondary loop operation in Indus-2 LCW plant

    International Nuclear Information System (INIS)

    Srinivas, L.; Pandey, R.M.; Yadav, R.P.; Gupta, S.; Gandhi, M.L.; Thakurta, A.C.

    2013-01-01

    Indus-2 Low Conductivity Water (LCW) plant has two loops, primary loop and secondary loop. The primary loop mainly supplies LCW to magnets, power supplies and RF systems at constant flow rate. The secondary loop extracts heat from the primary loop through heat exchangers to maintain the supply water temperature of the primary loop around a set value. The supply water temperature of the primary loop is maintained by operating the pumps and cooling towers in the secondary loop. The desired water flow rate in the secondary loop is met by the manual operation of the required number of the pumps. The automatic operation of the pumps and the cooling towers is proposed to replace the existing inefficient manual operation. It improves the operational reliability and ensures the optimum utilization of the pumps and the cooling towers. An algorithm has been developed using LabView programming to achieve optimized operation of the pumps and the cooling towers by incorporating First-In-First-Out (FIFO) logic. It also takes care of safety interlocks, and generates alarms. The program exchanges input and output signals of the plant using existing SCADA system. In this paper, the development of algorithm, its design and testing are elaborated. In the end, the results obtained thereof are discussed. (author)

  14. In vivo proton MRS of normal pancreas metabolites during breath-holding and free-breathing

    International Nuclear Information System (INIS)

    Su, T.-H.; Jin, E.-H.; Shen, H.; Zhang, Y.; He, W.

    2012-01-01

    Aim: To characterize normal pancreas metabolites using in vivo proton magnetic resonance spectroscopy ( 1 H MRS) at 3 T under conditions of breath-holding and free-breathing. Materials and methods: The pancreases of 32 healthy volunteers were examined using 1 H MRS during breath-holding and free-breathing acquisitions in a single-voxel point-resolved selective spectroscopy sequence (PRESS) technique using a 3 T MRI system. Resonances were compared between paired spectra of the two breathing modes. Furthermore, correlations between lipid (Lip) content and age, body-mass index (BMI), as well as choline (Cho) peak visibility of the normal pancreas were analysed during breath-holding. Results: Twenty-nine pairs of spectra were successfully obtained showing three major resonances, Lip, Cho, cholesterol and the unsaturated parts of the olefinic region of fatty acids (Chol + Unsat). Breath-hold spectra were generally better, with higher signal-to-noise ratios (SNR; Z=–2.646, p = 0.008) and Cho peak visible status (Z=–2.449, p = 0.014). Correlations were significant between spectra acquired by the two breathing modes, especially for Lip height, Lip area, and the area of other peaks at 1.9–4.1 ppm. However, the Lip resonance was significantly different between the spectra of the two breathing modes (p 1 H MRS of the normal pancreas at 3 T is technically feasible and can characterize several metabolites. 1 H MRS during breath-holding acquisition is superior to that during free-breathing acquisition.

  15. Active Breathing Control for Hodgkin's Disease in Childhood and Adolescence: Feasibility, Advantages, and Limits

    International Nuclear Information System (INIS)

    Claude, Line; Malet, Claude Phys.; Pommier, Pascal; Thiesse, Philippe; Chabaud, Sylvie; Carrie, Christian

    2007-01-01

    Purpose: The challenge in early Hodgkin's disease (HD) in children is to maintain good survival rates while sparing organs at risk. This study assesses the feasibility of active breathing control (ABC) in children, and compares normal tissue irradiation with and without ABC. Methods and Materials: Between May 2003 and June 2004, seven children with HD with mediastinal involvement, median age 15, were treated by chemotherapy and involved-field radiation therapy. A free-breathing computed tomography simulation scan and one additional scan during deep inspiration using ABC were performed. A comparison between planning treatment with clinical target volume including supraclavicular regions, mediastinum, and hila was performed, both in free breathing and using ABC. Results: For a prescription of 36 Gy, pulmonary dose-volume histograms revealed a mean reduction in lung volume irradiated at more than 20 Gy (V20) and 30 Gy (V30) of 25% and 26%, respectively, using ABC (p = 0.016). The mean volume of heart irradiated at 30 Gy or more decreased from 15% to 12% (nonsignificant). The mean dose delivered to breasts in girls was small in both situations (less than 2 Gy) and stable with or without ABC. Considering axillary irradiation, the mean dose delivered to breasts remained low (<9 Gy), without significant difference using ABC or not. The mean radiation dose delivered to thyroid was stable using ABC or not. Conclusions: Using ABC is feasible in childhood. The use of ABC decreases normal lung tissue irradiation. Concerning heart irradiation, a minimal gain is also shown. No significant change has been demonstrated concerning breast and thyroid irradiation

  16. An Experimental Study of Natural Circulation in a Loop with Parallel Flow Test Sections

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, R P; Eklind, O

    1965-10-15

    The dynamic behaviour of a natural circulation loop parallel round duct channels has been studied. The test sections were both electrically heated and the power distribution was uniform along the 4300 mm heated length of the 20 mm dia. channels. The inter channel interference and the threshold of flow instability were obtained by using a dynamically calibrated flowmeter in each channel. The pressure was 50 bars and the sub-cooling 6 deg C. The main parameters varied, were the flow restrictions in the one-phase and two-phase sections. The instability data were correlated to the resistance coefficients due to these restrictions. Theoretical calculations for parallel channels in natural circulation have been compared with the experimental results. For the conditions determined by the above mentioned magnitudes, the steady-state computations are in excellent agreement with experiment. The transients are also nearly similar, except for the resonance frequency which for the theoretical case is higher by an amount between 0.3 and 0.5 c.p.s.

  17. An Experimental Study of Natural Circulation in a Loop with Parallel Flow Test Sections

    International Nuclear Information System (INIS)

    Mathisen, R.P.; Eklind, O.

    1965-10-01

    The dynamic behaviour of a natural circulation loop parallel round duct channels has been studied. The test sections were both electrically heated and the power distribution was uniform along the 4300 mm heated length of the 20 mm dia. channels. The inter channel interference and the threshold of flow instability were obtained by using a dynamically calibrated flowmeter in each channel. The pressure was 50 bars and the sub-cooling 6 deg C. The main parameters varied, were the flow restrictions in the one-phase and two-phase sections. The instability data were correlated to the resistance coefficients due to these restrictions. Theoretical calculations for parallel channels in natural circulation have been compared with the experimental results. For the conditions determined by the above mentioned magnitudes, the steady-state computations are in excellent agreement with experiment. The transients are also nearly similar, except for the resonance frequency which for the theoretical case is higher by an amount between 0.3 and 0.5 c.p.s

  18. A hybrid breath hold and continued respiration-triggered technique for time-resolved 3D MRI perfusion studies in lung cancer

    International Nuclear Information System (INIS)

    Hintze, C.; Stemmer, A.; Bock, M.

    2010-01-01

    Assessment of lung cancer perfusion is impaired by respiratory motion. Imaging times for contrast agent wash-out studies often exceed breath hold capabilities, and respiration triggering reduces temporal resolution. Temporally resolved volume acquisition of entire tumors is required to assess heterogeneity. Therefore, we developed and evaluated an MR measurement technique that exceeds a single breath hold, and provides a variable temporal resolution during acquisition while suspending breath-dependent motion. 20 patients with suspected lung cancer were subjected to perfusion studies using a spoiled 3D gradient echo sequence after bolus injection of 0.07 mmol/kg body weight of Gd-DTPA. 10 acquisitions in expiratory breath hold were followed by 50 navigator-triggered acquisitions under free breathing. Post-processing allowed for co-registration of the 3D data sets. An ROI-based visualization of the signal-time curves was performed. In all cases motion-suspended, time-resolved volume data sets (40 x 33 x 10 cm 3 , voxel size: 2.1 x 2.1 x 5.0 mm 3 ) were generated with a variable, initially high temporal resolution (2.25 sec) that was synchronized with the breath pattern and covered up to 8(1)/(2) min. In 7 / 20 cases a remaining offset could be reduced by rigid co-registration. The tumors showed fast wash-in, followed by rapid signal decay (8 / 20) or a plateau. The feasibility of a perfusion study with hybrid breath hold and navigator-triggered time-resolved 3D MRI which combines high initial temporal resolution during breath hold with a long wash-out period under free breathing was demonstrated. (orig.)

  19. Computational simulation of flow and heat transfer in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Pinheiro, Larissa Cunha

    2017-01-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  20. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  1. COMPARISON OF 3 NORMAL BREATHING TECHNIQUES TO ASSESS REVERSIBILITY OF AIRWAY-OBSTRUCTION

    NARCIS (Netherlands)

    GIMENO, F; POSTMA, DS; VANALTENA, R

    1992-01-01

    Measurement of forced expiratory volume in one second (FEV1) is generally used to assess airway obstruction. Function tests during normal breathing are used as complementary tests as well as alternatives. Studies have been done comparing the esophageal pressure method with body plethysmography, and

  2. Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study.

    Science.gov (United States)

    Dahl, Michael K; Vistisen, Simon T; Koefoed-Nielsen, Jacob; Larsson, Anders

    2009-01-01

    Fluid responsiveness prediction is difficult in spontaneously breathing patients. Because the swings in intrathoracic pressure are minor during spontaneous breathing, dynamic parameters like pulse pressure variation (PPV) and systolic pressure variation (SPV) are usually small. We hypothesized that during spontaneous breathing, inspiratory and/or expiratory resistors could induce high arterial pressure variations at hypovolemia and low variations at normovolemia and hypervolemia. Furthermore, we hypothesized that SPV and PPV could predict fluid responsiveness under these conditions. Eight prone, anesthetized and spontaneously breathing pigs (20 to 25 kg) were subjected to a sequence of 30% hypovolemia, normovolemia, and 20% and 40% hypervolemia. At each volemic level, the pigs breathed in a randomized order either through an inspiratory and/or an expiratory threshold resistor (7.5 cmH2O) or only through the tracheal tube without any resistor. Hemodynamic and respiratory variables were measured during the breathing modes. Fluid responsiveness was defined as a 15% increase in stroke volume (DeltaSV) following fluid loading. Stroke volume was significantly lower at hypovolemia compared with normovolemia, but no differences were found between normovolemia and 20% or 40% hypervolemia. Compared with breathing through no resistor, SPV was magnified by all resistors at hypovolemia whereas there were no changes at normovolemia and hypervolemia. PPV was magnified by the inspiratory resistor and the combined inspiratory and expiratory resistor. Regression analysis of SPV or PPV versus DeltaSV showed the highest R2 (0.83 for SPV and 0.52 for PPV) when the expiratory resistor was applied. The corresponding sensitivity and specificity for prediction of fluid responsiveness were 100% and 100%, respectively, for SPV and 100% and 81%, respectively, for PPV. Inspiratory and/or expiratory threshold resistors magnified SPV and PPV in spontaneously breathing pigs during hypovolemia

  3. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    Science.gov (United States)

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  4. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  5. Lung volumes, pulmonary ventilation, and hypoxia following rapid decompression to 60,000 ft (18,288 m).

    Science.gov (United States)

    Connolly, Desmond M; D'Oyly, Timothy J; McGown, Amanda S; Lee, Vivienne M

    2013-06-01

    Rapid decompressions (RD) to 60,000 ft (18,288 m) were undertaken by six subjects to provide evidence of satisfactory performance of a contemporary, partial pressure assembly life support system for the purposes of flight clearance. A total of 12 3-s RDs were conducted with subjects breathing 56% oxygen (balance nitrogen) at the base (simulated cabin) altitude of 22,500 ft (6858 m), switching to 100% oxygen under 72 mmHg (9.6 kPa) of positive pressure at the final (simulated aircraft) altitude. Respiratory pressures, flows, and gas compositions were monitored continuously throughout. All RDs were completed safely, but one subject experienced significant hypoxia during the minute at final altitude, associated with severe hemoglobin desaturation to a low of 53%. Accurate data on subjects' lung volumes were obtained and individual responses post-RD were reviewed in relation to patterns of pulmonary ventilation. The occurrence of severe hypoxia is explained by hypoventilation in conjunction with unusually large lung volumes (total lung capacity 10.18 L). Subjects' lung volumes and patterns of pulmonary ventilation are critical, but idiosyncratic, determinants of alveolar oxygenation and severity of hypoxia following RD to 60,000 ft (18,288 m). At such extreme altitudes even vaporization of water condensate in the oxygen mask may compromise oxygen delivery. An altitude ceiling of 60,000 ft (18,288 m) is the likely threshold for reliable protection using partial pressure assemblies and aircrew should be instructed to take two deep 'clearing' breaths immediately following RD at such extreme pressure breathing altitudes.

  6. Inductive flow meter for measuring the speed of flow and gas volume contained in a flow of liquid metal

    International Nuclear Information System (INIS)

    Mueller, S.

    1980-01-01

    The speed of flow of the sodium is measured in two closely adjacent flow crossections using pairs of electrodes in the field of two disc-shaped permanent magnets made of AlNiCo 450, by means of measurements of running time of speed fluctuations. The result of the measurement is independent of the temperature of the sensor and the temperature of the sodium. The same arrangement makes it possible to determine the proportion by volume of the fission gas in sodium with a limiting freequency of several kHz. (DG) [de

  7. Apparatus for measuring fluid flow

    Science.gov (United States)

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  8. Blood flow and blood volume in a transplanted rat fibrosarcoma

    International Nuclear Information System (INIS)

    Tozer, G.M.; Morris, C.C.

    1990-01-01

    Blood flow measurements following i.v. infusion of iodi-antipyrine labelled with 14 C ( 14 C-IAP) and blood volume measurements following i.v. injection of 125 I human serum albumin and 51 Cr-labelled red blood cells were made in a transplanted rat fibrosarcoma for comparison with various normal tissues. The tumour-blood partition co-efficient for 14 C-IAP w as found to be 0.79 ± 0.07 which is similar to most of the normal tissues studied. The solubility of 14 C-IAP in plasma was found to be higher than that in whole blood. Blood flow to tumours 3 was found to be 17.9 ± 4.0 ml blood 100 g tissue -1 xmin -1 . These values were considered to be primarily measurements of nutritive flow. Blood in the tumours was found to occupy around 1% of the tissue space which was similar to that found for normal muscle and skin. There was no direct correlation between % blood volume and blood flow for the different tissues studied. Th haematocrit of blood contained in tumour tissue was calculated to be significantly lower than that of blood contained in the normal tissues. It was suspected that permeability of tumour blood vessel walls to 125 I-HSA could have accounted for this difference. (author). 41 refs.; 2 figs.; 3 tabs

  9. Single breath study for lung scan with krypton-81m: proposition of a mathematical model

    International Nuclear Information System (INIS)

    Pommet, R.; Mathieu, E.

    1981-01-01

    A single breath study with sup(81m)Kr was proceeded in patients, and we studied a theorical model. Based on experimental datas, the model was extrapolated by simple compartimental hypothesis, permitting a study per area of the instant alveolar lung flow by a deconvolution operation. An other approach to present the local ventilation is proposed too. Based on the average flow of ventilation index, calculation is obtained easier than by deconvolution method, and this method fully agree with the proposed model. This index allows the realisation of functionnal views of the local ventilation flow, made possible by the use of a computer for the study of each elementary area of the lung and the realisation of the activity curve recorded during the sup(81m)Kr first breath [fr

  10. Measurement of volume and flow in the digestive tract

    International Nuclear Information System (INIS)

    Dixon, R.M.; Kennedy, P.M.; Milligan, L.P.

    1983-01-01

    Measurement of digesta volume and flow in the gastro-intestinal tract of ruminants may be achieved by either of two methods. The first involves total recovery of digesta through a cannula with gravimetric and physical (sieving) analysis. Alternatively, the flow of digesta may be estimated by reference to markers, with digesta samples taken through a T-shaped or re-entral intestinal cannula. The second approach assumes steady nutritional conditions, with the movement of digesta fractions estimated from the disappearance of specific markers. The adequacy of markers currently available for this purpose is discussed. Advantages of complementary techniques are emphasized. (author)

  11. What Causes Bad Breath?

    Science.gov (United States)

    ... Videos for Educators Search English Español What Causes Bad Breath? KidsHealth / For Teens / What Causes Bad Breath? Print en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  12. Effects of a facial nerve lesion on responses in forehead microvessels to conjunctival irritation and paced breathing.

    Science.gov (United States)

    Drummond, Peter D

    2012-08-16

    To investigate parasympathetic influences on the forehead microvasculature, blood flow was monitored bilaterally in seven participants with a unilateral facial nerve lesion during conjunctival irritation with Schirmer's strips and while breathing at 0.15 Hz. Blood flow and slow-wave frequency increased on the intact side of the forehead during Schirmer's test but did not change on the denervated side. However, a 0.15 Hz vascular wave strengthened during paced breathing, particularly on the denervated side. These findings indicate that parasympathetic activity in the facial nerve increases forehead blood flow during minor conjunctival irritation, but may interfere with the 0.15 Hz vascular wave. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Description of the sodium loop ML-3

    International Nuclear Information System (INIS)

    Torre, de la M.; Melches, I; Lapena, J.; Martinez, T.A.; Miguel, de D.; Duran, F.

    1979-01-01

    The sodium loop ML-3 is described. The main objective of this facility is to obtain mechanical property data for LMFBR materials in creep and low cycle fatigue testing in flowing sodium. ML-3 includes 10 test stations for creep and two for fatigue. It is possible to operate simultaneously at three different temperature levels. The maximum operating temperature is 650 deg C at flow velocities up to 5 m/s. The ML-3 loop has been located in a manner that permits the fill/dump tank cover gas and security systems to be shared with an earlier circuit, the ML-1. (author)

  14. Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations

    Science.gov (United States)

    Themelis, George; D'Arceuil, Helen; Diamond, Solomon G.; Thaker, Sonal; Huppert, Theodore J.; Boas, David A.

    2009-01-01

    We describe a near-infrared spectroscopy (NIRS) method to noninvasively measure relative changes in the pulsate components of cerebral blood flow (pCBF) and volume (pCBV) from the shape of heartbeat oscillations. We present a model that is used and data to show the feasibility of the method. We use a continuous-wave NIRS system to measure the arterial oscillations originating in the brains of piglets. Changes in the animals' CBF are induced by adding CO2 to the breathing gas. To study the influence of scalp on our measurements, comparative, invasive measurements are performed on one side of the head simultaneously with noninvasive measurements on the other side. We also did comparative measurements of CBF using a laser Doppler system to validate the results of our method. The results indicate that for sufficient source-detector separation, the signal contribution of the scalp is minimal and the measurements are representative of the cerebral hemodynamics. Moreover, good correlation between the results of the laser Doppler system and the NIRS system indicate that the presented method is capable of measuring relative changes in CBF. Preliminary results show the potential of this NIRS method to measure pCBF and pCBV relative changes in neonatal pigs. PMID:17343508

  15. Breath biomarkers in toxicology.

    Science.gov (United States)

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  16. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  17. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  18. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  19. Lung and chest wall impedances in the dog: effects of frequency and tidal volume.

    Science.gov (United States)

    Barnas, G M; Stamenović, D; Lutchen, K R; Mackenzie, C F

    1992-01-01

    Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.

  20. Unique rod lens/video system designed to observe flow conditions in emergency core coolant loops of pressurized water reactors

    International Nuclear Information System (INIS)

    Carter, G.W.

    1979-01-01

    Techniques and equipment are described which are used for video recordings of the single- and two-phase fluid flow tests conducted with the PKL Spool Piece Measurement System designed by Lawrence Livermore Laboratory and EG and G Inc. The instrumented spool piece provides valuable information on what would happen in pressurized water reactor emergency coolant loops should an accident or rupture result in loss of fluid. The complete closed-circuit television video system, including rod lens, light supply, and associated spool mounting fixtures, is discussed in detail. Photographic examples of test flows taken during actual spool piece system operation are shown

  1. Effects of Anti-VEGF on Predicted Antibody Biodistribution: Roles of Vascular Volume, Interstitial Volume, and Blood Flow

    Science.gov (United States)

    Boswell, C. Andrew; Ferl, Gregory Z.; Mundo, Eduardo E.; Bumbaca, Daniela; Schweiger, Michelle G.; Theil, Frank-Peter; Fielder, Paul J.; Khawli, Leslie A.

    2011-01-01

    Background The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. Methodology/Principal Findings Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05) on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048) in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05) in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25%) in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. Conclusions/Significance These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF. PMID:21436893

  2. UNDERWATER STROKE KINEMATICS DURING BREATHING AND BREATH-HOLDING FRONT CRAWL SWIMMING

    Directory of Open Access Journals (Sweden)

    Nickos Vezos

    2007-03-01

    Full Text Available The aim of the present study was to determine the effects of breathing on the three - dimensional underwater stroke kinematics of front crawl swimming. Ten female competitive freestyle swimmers participated in the study. Each subject swam a number of front crawl trials of 25 m at a constant speed under breathing and breath-holding conditions. The underwater motion of each subject's right arm was filmed using two S-VHS cameras, operating at 60 Hz, which were positioned behind two underwater viewing windows. The spatial coordinates of selected points were calculated using the DLT procedure with 30 control points and after the digital filtering of the raw data with a cut-off frequency of 6 Hz, the hand's linear displacements and velocities were calculated. The results revealed that breathing caused significantly increases in the stroke duration (t9 = 2.764; p < 0.05, the backward hand displacement relative to the water (t9 = 2.471; p<0.05 and the lateral displacement of the hand in the X - axis during the downsweep (t9 = 2.638; p < 0.05. On the contrary, the peak backward hand velocity during the insweep (t9 = 2.368; p < 0.05 and the displacement of the hand during the push phase (t9 = -2.297; p < 0.05 were greatly reduced when breathing was involved. From the above, it was concluded that breathing action in front crawl swimming caused significant modifications in both the basic stroke parameters and the overall motor pattern were, possibly due to body roll during breathing

  3. Trial on MR portal blood flow measurement with phase contrast technique

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Togami, Izumi

    1991-01-01

    Portal blood flow measurement is considered to be important for the analysis of hemodynamics in various liver diseases. The Doppler ultrasound method has been used extensively during the past several years for measuring portal blood flow, as a non-invasive method. However, the Doppler ultrasound technique do not allow the portal blood flow to be measured in cases of obesity, with much intestinal gas, and so on. In this study, we attempted to measure the blood flow in the main trunk of portal vein as an application of MR phase contrast technique to the abdominal region. In the flow phantom study, the flow volumes and the velocities measured by phase contrast technique showed a close correlation with those measured by electromagnetic flowmeter. In the clinical study with 10 healthy volunteers, various values of portal blood flow were obtained. Mean portal blood flow could be measured within the measuring time (about 8 minutes) under natural breathing conditions. Phase contrast technique is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  4. Hyperinflation and intrinsic positive end-expiratory pressure: less room to breathe.

    Science.gov (United States)

    Krieger, Bruce P

    2009-01-01

    Clinically, the symptoms and limited exercise capabilities of patients with chronic obstructive pulmonary disease (COPD) correlate better with changes in lung volumes than with airflow measurements. The realization of the clinical importance of hyperinflation has been overshadowed for decades by the use of forced expiratory volume during 1 s (FEV(1)) and the ratio of the FEV(1) to the forced expiratory vital capacity (FEV(1)/FVC) to categorize the severity and progression of COPD. Hyperinflation is defined as an elevation in the end-expiratory lung volume or functional residual capacity. When severe hyperinflation encroaches upon inspiratory capacity and limits vital capacity, it results in elevated intrinsic positive end-expiratory pressure (PEEPi) that places the diaphragm at a mechanical disadvantage and increases the work of breathing. Severe hyperinflation is the major physiologic cause of the resulting hypercarbic respiratory failure and patients' inability to transition (i.e. wean) from mechanical ventilatory support to spontaneous breathing. This paper reviews the basic physiologic principles of hyperinflation and its clinical manifestations as demonstrated by PEEPi. Also reviewed are the adverse effects of hyperinflation and PEEPi in critically ill patients with COPD, and methods for minimizing or counterbalancing these effects. Copyright 2009 S. Karger AG, Basel.

  5. Measurement of hepatic volume and effective blood flow with radioactive colloids: Evaluation of development in liver diseases

    International Nuclear Information System (INIS)

    Fujii, M.; Uchino, H.; Kyoto Univ.

    1982-01-01

    Changes in hepatic volume and the blood flow effectively perfusing the liver parenchyma were studied as an assessment of the severity of liver diseases. Hepatic effective blood flow was estimated as the hepatic fractional clearance of radioactive colloids, obtained from the disappearance rate multiplied by the fraction of injected dose taken up by the liver. The hepatic fractional clearance was normal or not markedly decreased in patients with acute hepatitis which had developed favorably, but was severely decreased in patients with fulminant hepatitis. In liver diseases, the ratio of hepatic volume to fractional clearance was found to increase as the clearance decreased. In subjects with normal clearance, hepatic fractional clearance was correlated significantly with liver volume, indicating that hepatic effective blood flow is proportional to parenchymal volume in an unanesthetized, resting state. In biopsied cases changes in volume and blood flow accorded well with changes indicated by morphological criteria. In chronic persistent hepatitis, effective hepatic blood flow is not diminished. However, hepatic blood flow were observed between the cirrhosis or chronic aggressive hepatitis, and normal control groups. Extension of chronic inflammatory infiltration into the parenchyma distinguishes chronic aggressive hepatitis from chronic persistent hepatitis. Architecture is often disturbed in the former. These changes should be accompanied by disturbance of microcirculation. The present study indicates that the decrease in effective hepatic blood flow in chronic hepatitis and cirrhosis has two aspects: one is a summation of microcirculatory disturbances, and the other is a decrease in liver cell mass. (orig.)

  6. Breath in the technoscientific imaginary

    OpenAIRE

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentr...

  7. Natural ventilation without air breathing in the top openings of highway tunnels

    Science.gov (United States)

    Jin, Sike; Jin, Jiali; Gong, Yanfeng

    2017-05-01

    A number of urban shallow-buried highway tunnels have been built in China. Despite much better internal air quality compared to the traditional tunnels, there is no sufficient theoretical ground or experimental support for the construction of such tunnels. Most researchers hold that natural ventilation in such tunnels depends on air breathing in the top openings, but some others are skeptical about this conclusion. By flow visualization technology on a tunnel experiment platform, we tested the characteristics of airflow in the top openings of highway tunnels. The results showed that air always flowed from outside to inside in all top openings above a continuous traffic stream, and the openings did not breathe at all. In addition, intake air in the top openings reached its maximum velocity at the tunnel entrance, and then gradually slowed down with tunnel depth increasing.

  8. Control-volume-based model of the steam-water injector flow

    Science.gov (United States)

    Kwidziński, Roman

    2010-03-01

    The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

  9. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    Science.gov (United States)

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Differences in the definition of internal target volumes using slow CT alone or in combination with thin-slice CT under breath-holding conditions during the planning of stereotactic radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Seki, Satoshi; Kunieda, Etsuo; Takeda, Atsuya; Nagaoka, Tomoaki; Deloar, Hossain M.; Kawase, Takatsugu; Fukada, Junichi; Kawaguchi, Osamu; Uematsu, Minoru; Kubo, Atsushi

    2007-01-01

    Purpose: To investigate how the delineations of the internal target volume (ITV) made from 'slow' CT alter with reference to 'thin-slice' CT. Materials and methods: Thin-slice CT images taken under breath-holding conditions and slow CT images taken under shallow-breathing conditions (8 s/image) of 11 lung cancers were used for this study. Five radiation oncologists delineated ITV of the 11 lesions using slow CT images (ITV1), and then redefined them with reference to thin-slice CT images (ITV2). SD-images (standard deviation image) were created for all patients from ITV images in order to visualize the regional variation of the ITVs. Results: The mean value of ITV2 was smaller than that initially defined by ITV1. There was no significant change in ITV1 and ITV2 between operators with regard to standard deviation in volume. There was a significant difference in the distribution of the ratio of ITV1 to ITV2 obtained on thin-slice CTs between cases with and without ground glass opacity. In cases without ground glass opacity there was a tendency for ITV2 to have a smaller volume than ITV1. Conclusions: Combined use of slow CT and thin-slice CT in delineation of ITV contours appeared to be useful in making adjustments for obscured tumor images caused by respiratory movement

  11. Humidification performance of two high-flow nasal cannula devices: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Izawa, Masayo; Okuda, Nao; Itagaki, Taiga; Nakataki, Emiko; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2014-08-01

    Delivering heated and humidified medical gas at 20-60 L/min, high-flow nasal cannula (HFNC) creates low levels of PEEP and ameliorates respiratory mechanics. It has become a common therapy for patients with respiratory failure. However, independent measurement of heat and humidity during HFNC and comparison of HFNC devices are lacking. We evaluated 2 HFNC (Airvo 2 and Optiflow system) devices. Each HFNC was connected to simulated external nares using the manufacturer's standard circuit. The Airvo 2 outlet-chamber temperature was set at 37°C. The Optiflow system incorporated an O2/air blender and a heated humidifier, which was set at 40°C/3. For both systems, HFNC flow was tested at 20, 40, and 50 L/min. Simulating spontaneous breathing using a mechanical ventilator and TTL test lung, we tested tidal volumes (VT) of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. The TTL was connected to the simulated external nares with a standard ventilator circuit. To prevent condensation, the circuit was placed in an incubator maintained at 37°C. Small, medium, and large nasal prongs were tested. Absolute humidity (AH) of inspired gas was measured at the simulated external nares. At 20, 40, and 50 L/min of flow, respective AH values for the Airvo 2 were 35.3 ± 2.0, 37.1 ± 2.2, and 37.6 ± 2.1 mg/L, and for the Optiflow system, 33.1 ± 1.5, 35.9 ± 1.7, and 36.2 ± 1.8 mg/L. AH was lower at 20 L/min of HFNC flow than at 40 and 50 L/min (P 30 mg/L.

  12. A simple blowdown code for SUPER-SARA loop conditions

    International Nuclear Information System (INIS)

    Fritz, G.

    1981-01-01

    The Super Sara test programme (SSTP) is aimed to study in pile the fuel and cluster behaviour under two types of accident conditions: - the ''Large break loss of coolant'' condition (LB-Loca), - the ''Severe fuel damage'' (SFD) in a boildown caused by a small break. BIVOL was developed for the LB-Loca situation. This code is made for a loop where essentially two volumes define the thermohydraulics during the blowdown. In the SUPERSARA loop these two volumes are represented by the hot leg and cold leg pipings together with the respective upper and lower plenum of the test section

  13. Gas Test Loop Booster Fuel Hydraulic Testing

    International Nuclear Information System (INIS)

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  14. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  15. Comparison between total lung capacity and residual volume values obtained by pletysmography and single breath methods with methane

    Directory of Open Access Journals (Sweden)

    Ricardo Marques Dias

    2006-11-01

    Full Text Available We analyzed pulmonary function tests of twenty asthmatic patients from Gaffrée e Guinle University Hospital, classified according to Brazilian Guidelines for Asthma (2002, similar to GINA, into mild persistent or moderate (9 or severe (11 asthma. We obtained parameters from spirometry, plethysmograph(PL and single breath technique for diffusion capacity (SB, with methane. Total lung capacity and residual volume were called TLCPL and RVPL when measured by pletysmography and TLCSB and RVSB when determined by single breath test. There were 13 women and 7 men with mean age of 47.6 years. The pulmonary dysfunction degree to FEV1/FVC was 58.8% with CI95=53.9 to 63.6. The mean values in litres for TLCPL (5.94 and RVPL (2.55 were significantly higher than for TLCSB (4.73 and RVSB (1.66. Multiple regression equations were determined for TLCPL e RVPL using only single breath values, TLCSB or RVSB, and spirographic parameters, with significant regression coefficients. However, the inclusion of spirometric parameters, except for FVC, did not improve the predicted capacity for the equations. Considering only the TLCSB, r2=0.79, the equation is: TLCPL=(TLCSB*1.025+1.088, with EPE=0.64. The regression for RVPL, r2=0.23, is: RVPL=(RVSB*0.9268+1.012. The results obtained after bronchodilation with 400 mcg of salbutamol did not improve the regression. We concluded that the SB technique did not obtain the same results as pletysmography for TLC and RV, but for TLC this difference can be predicted. Resumo: Foram analisados exames de função pulmonar de 20 asmáticos, em acompanhamento no HU Gaffrée Guinle, classificados, segundo o Consenso Brasileiro (2002, em asma leve persistente ou moderada (9 e grave (11. Foram obtidos os valores dos parâmetros da espirografia, da pletismografia e da técnica de respiração única, com metano, para a medida da difusão pulmonar (DLco. Assim, a capacidade pulmonar total e o volume residual, quando

  16. Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Li Ning

    2003-01-01

    The corrosion of steels exposed to flowing liquid metals is influenced by local and global conditions of flow systems. The present study improves the previous local models when applied to closed loops by incorporating some global condition effects. In particular the bulk corrosion product concentration is calculated based on balancing the dissolution and precipitation in the entire closed loop. Mass transfer expressions developed in aqueous medium and an analytical expression are tested in the liquid-metal environments. The improved model is applied to a pure lead loop and produces results closer to the experimental data than the previous local models do. The model is also applied to a lead-bismuth eutectic (LBE) test loop. Systematic studies illustrate the effects of the flow rate, the oxygen concentration in LBE, and the temperature profile on the corrosion rate

  17. Measurement of Cyclic Flows in Trachea Using PIV and Numerical simulation

    Directory of Open Access Journals (Sweden)

    Bělka Miloslav

    2015-01-01

    Full Text Available Inhalation of pharmaceutical aerosols is a convenient way to treat lung or even systemic diseases. For effective treatment it is very important to understand air flow characteristics within respiratory airways and determine deposition hot spots. In this paper the air flow in trachea was investigated by numerical simulations. To validate these results we carried out particle image velocimetry experiments and compared resulting velocity fields. Simplified geometry of respiratory airways from oral cavity to 4th generation of branching was employed. Air flow characteristics were analysed during sinusoidal breathing pattern for light activity conditions (period 4 s and tidal volume 1 l. The observed flow fields indicated that the flow in trachea is turbulent during the sinusoidal flow except phases of flow turnarounds. The flow was skewed to front side of the trachea during inspiration and had twin-peak profile during expiration because of the mixing from daughter branches. The methods were compared and good agreement was found. This validation of CFD simulation can result into its further usage in respiratory airflow studies.

  18. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Strain Fields And Crystallographic Characteristics Of Interstitial Dislocation Loops of Various Geometry In BCC Iron

    International Nuclear Information System (INIS)

    Sivak, Alexander B.; Chernov, Viatcheslav M.; Romanov, Vladimir A.

    2008-01-01

    The formation energy, the relaxation volume, the dipole-force tensor, the self strain tensor and strain fields of interstitial dislocation loops in bcc iron (clusters of self interstitial atoms) have been calculated by molecular statics. Hexagonal and square dislocation loops of different types with different Burgers vectors, directions of dislocation segments and habit planes containing up to ∼2500 self-interstitials have been considered. Analytical expressions describing size dependence of the formation energy, the relaxation volume and the self strain tensor for the loops stated have been obtained. The most energetically favorable loops are hexagonal loops with Burgers vector a/2 and habit plane {11x}, where x takes values in the range from 0 to 1 depending on the loop size. The formation energy of a loops with and dislocation segments is ∼14% and 23% greater than that of hexagonal a/2 loops at N>500, respectively. The analysis of the formation energies of a/2 and a loops demonstrated that the nucleation of an a loop by joining of two a/2 loops is possible when the total number of constituent self-interstitials in these loops is larger than 13

  20. Role of Doppler ultrasonography evaluation of superior mesenteric artery flow volume in the assessment of Crohn's disease activity

    Directory of Open Access Journals (Sweden)

    Fabiana Paiva Martins

    2013-09-01

    Full Text Available Objective To investigate superior mesenteric artery flow measurement by Doppler ultrasonography as a means of characterizing inflammatory activity in Crohn's disease. Materials and Methods Forty patients were examined and divided into two groups – disease activity and remission – according to their Crohn's disease activity index score. Mean superior mesenteric artery flow volume was calculated for each group and correlated with Crohn's disease activity index score. Results The mean superior mesenteric artery flow volume was significantly greater in the patients with active disease (626 ml/min ± 236 × 376 ml/min ± 190; p = 0.001. As a cut off corresponding to 500 ml/min was utilized, the superior mesenteric artery flow volume demonstrated sensitivity of 83% and specificity of 82% for the diagnosis of Crohn's disease activity. Conclusion The present results suggest that patients with active Crohn's disease have increased superior mesenteric artery flow volume as compared with patients in remission. Superior mesenteric artery flow measurement had a good performance in the assessment of disease activity in this study sample.

  1. Electrokinetic pumping and detection of low-volume flows in nanochannels

    NARCIS (Netherlands)

    Mela, P.; Tas, Niels Roelof; Berenschot, Johan W.; van Nieuwkasteele, Jan William; van den Berg, Albert

    2004-01-01

    Electrokinetic pumping of low-volume rates was performed on-chip in channels of small cross sectional area and height in the sub-m range. The flow was detected with the current monitoring technique by monitoring the change in resistance of the fluid in the channel upon the electroosmosis-driven

  2. Coaxial Tubing Systems Increase Artificial Airway Resistance and Work of Breathing.

    Science.gov (United States)

    Wenzel, Christin; Schumann, Stefan; Spaeth, Johannes

    2017-09-01

    Tubing systems are an essential component of the ventilation circuit, connecting the ventilator to the patient's airways. Coaxial tubing systems incorporate the inspiratory tube within the lumen of the expiratory one. We hypothesized that by design, these tubing systems increase resistance to air flow compared with conventional ones. We investigated the flow-dependent pressure gradient across coaxial, conventional disposable, and conventional reusable tubing systems from 3 different manufacturers. Additionally, the additional work of breathing and perception of resistance during breathing through the different devices were determined in 18 healthy volunteers. The pressure gradient across coaxial tubing systems was up to 6 times higher compared with conventional ones (1.90 ± 0.03 cm H 2 O vs 0.34 ± 0.01 cm H 2 O, P tubing systems, accordingly. Our findings suggest that the use of coaxial tubing systems should be carefully considered with respect to their increased resistance. Copyright © 2017 by Daedalus Enterprises.

  3. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Olof Birna Olafsdottir

    Full Text Available To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1. Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min and then again room air (10 minutes recovery.Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001 and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001. The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001. The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001 and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001.Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.

  4. Criteria for inhalation exposure systems utilizing concurrent flow spirometry

    International Nuclear Information System (INIS)

    Raabe, O.G.; Yeh, H.C.

    1974-01-01

    Principles are given for the design and operation of a new class of inhalation exposure systems utilizing concurrent flow spirometry (CFS), a simple method for providing realtime measurement of respiratory volumes and rates during inhalation exposure by mouth or nose of individual experimental animals or man to aerosols or gases. This technique is especially useful for inhalation exposure of larger experimental animals, such as horses, where whole-body plethysmography is usually impractical. Difficulties encountered with conventional exposure systems in maintenance of uniform aerosol or gas concentrations and prevention of large pressure excursions in the exposure chamber during breathing are obviated by systems utilizing the principles of concurrent flow spirometry. For illustration, two exposure units with CFS are described, one for exposure of Beagle dogs and one for ponies. (U.S.)

  5. PROGRESS IN SIFT-MS: BREATH ANALYSIS AND OTHER APPLICATIONS

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2011-01-01

    Roč. 30, č. 2 (2011), s. 236-267 ISSN 0277-7037 R&D Projects: GA MPO FT-TA4/124; GA ČR GA202/09/0800; GA ČR GA203/09/0256 Institutional research plan: CEZ:AV0Z40400503 Keywords : SIFT-MS * breath analysis * ion flow tube Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 10.461, year: 2011

  6. Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Spinato, Giulia; Borhani, Navid; Thome, John R.

    2015-01-01

    In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained. - Highlights: • A novel synchronized thermal and visual investigation technique was applied to a CLPHP. • Thermal and hydrodynamic behaviors were analyzed by means of spectral analysis. • 3D frequency spectra for temperature and flow data show significant trends. • A spring-mass-damper system model was developed for the two-phase flow motion. • System stiffness and mass have an effect on the two-phase flow dynamics.

  7. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    International Nuclear Information System (INIS)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations

  8. Automated 13CO2 analyzing system for the 13C breath test

    International Nuclear Information System (INIS)

    Suehiro, Makiko; Kuroda, Akira; Maeda, Masahiro; Hinaga, Kou; Watanabe, Hiroyuki.

    1987-01-01

    An automated 13 CO 2 analyzing system for the 13 C breath test was designed, built and evaluated. The system, which was designed to be controlled by a micro-computer, includes CO 2 purification, 13 CO 2 abundance measurement, data processing and data filing. This article gives the description of the whole system with flow charts. This system has proved to work well and it has become feasible to dispose of 5 to 6 CO 2 samples per hour. With such a system, the 13 C breath test will be carried out much more easily and will obtain much greater popularity. (author)

  9. Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops

    International Nuclear Information System (INIS)

    Chen, Lin; Deng, Bi-Li; Jiang, Bin; Zhang, Xin-Rong

    2013-01-01

    Highlights: ► We model thermosyphon heat transfer and stability with super-/trans-critical turbulence model incorporated. ► Potentials of super-/trans-critical CO 2 thermosyphon are confirmed. ► Three characteristics found: flow instability; high flow rate with density wave; heat transfer discrepancies. ► Major laws of system stability factors are different compared with traditional fluids. ► Traditional thermosyphon flow correlation has its limitations and deserves further development. -- Abstract: Natural convective flow of supercritical fluids has become a hot topic in engineering applications. Natural circulation thermosyphon using supercritical/trans-critical CO 2 can be a potential choice for effectively transportation of heat and mass without pumping devices. This paper presents a series of numerical investigations into the fundamental features in a supercritical/trans-critical CO 2 based natural circulation loop. New heat transport model aiming at trans-critical thermosyphon heat transfer and stability is proposed with supercritical/trans-critical turbulence model incorporated. In this study, the fundamentals include the basic flow and heat transfer behavior of the above loop, the effect of heat source temperature on system stability, the effect of loop diameter on natural convection supercritical CO 2 loop and its coupling effect with heat source temperature and the effect of constant changing heat input condition and system behavior evolution during unsteady input or failure conditions. The fundamental potentials of supercritical/trans-critical CO 2 based natural convection system are confirmed. Basic supercritical CO 2 closed loop flow and heat transfer behaviors are clarified. During this study, the CO 2 loop stability map are also put forward and introduced as an important feature of supercritical CO 2 system. Stability factors of natural convective trans-critical CO 2 flow and its implications on real system control are also discussed in

  10. Padrão respiratório e movimento toracoabdominal de crianças respiradoras orais Breathing pattern and thoracoabdominal motion in mouth-breathing children

    Directory of Open Access Journals (Sweden)

    TCS Brant

    2008-12-01

    motion of mouth-breathing children aged between eight and ten years and to compare these characteristics with those of nose-breathing children of the same ages. METHODS: This observational study was carried out in a university laboratory. The sample size of 50 subjects was estimated based on the results of a pilot study with ten children in each group (total of 20 children and considering a significance level of 0.05 and statistical power of 0.80. Twenty-six mouth-breathing and 25 nose-breathing children participated. Calibrated respiratory inductive plethysmography was used to analyze the following variables, among others: respiratory frequency (f, rib cage contribution towards tidal volume (%RC/Vt, phase angle (PhAng and the ratio between time taken to reach peak inspiratory flow and total inspiratory time (PifT/Ti. Peripheral oxygen saturation of hemoglobin (SpO2 was measured using pulse oximetry. Statistical analysis was performed using the Student's t test for independent groups or the Mann-Whitney U test, according to the sample distribution of the variables. RESULTS: A total of 4,816 respiratory cycles were analyzed: 2,455 from mouth-breathers and 2,361 from nose-breathers, with a mean of 94 cycles per child. No statistically significant differences were observed between the groups, for the variables studied (f=20.00±2.68 versus 20.73±2.58, p=0.169; %RC/Vt=39.30±11.86 versus 38.36±10.93, p=0.769; PhAng=14.53±7.97 versus 13.31±7.74, p=0.583; PifT/Ti=57.40±7.16 versus 58.35±5.99, p=0.610; SpO2=96.42±1.52% versus 96.88± 1.01%, p=0.208; respectively. CONCLUSIONS: These results suggest that mouth-breathing children show breathing patterns and thoracoabdominal motion that are similar to those of nose-breathing children in the same age group.

  11. Characterization of free breathing patterns with 5D lung motion model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Tianyu; Lu Wei; Yang Deshan; Mutic, Sasa; Noel, Camille E.; Parikh, Parag J.; Bradley, Jeffrey D.; Low, Daniel A. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

    2009-11-15

    Purpose: To determine the quiet respiration breathing motion model parameters for lung cancer and nonlung cancer patients. Methods: 49 free breathing patient 4DCT image datasets (25 scans, cine mode) were collected with simultaneous quantitative spirometry. A cross-correlation registration technique was employed to track the lung tissue motion between scans. The registration results were applied to a lung motion model: X-vector=X-vector{sub 0}+{alpha}-vector{beta}-vector f, where X-vector is the position of a piece of tissue located at reference position X-vector{sub 0} during a reference breathing phase (zero tidal volume v, zero airflow f). {alpha}-vector is a parameter that characterizes the motion due to air filling (motion as a function of tidal volume v) and {beta}-vector is the parameter that accounts for the motion due to the imbalance of dynamical stress distributions during inspiration and exhalation that causes lung motion hysteresis (motion as a function of airflow f). The parameters {alpha}-vector and {beta}-vector together provide a quantitative characterization of breathing motion that inherently includes the complex hysteresis interplay. The {alpha}-vector and {beta}-vector distributions were examined for each patient to determine overall general patterns and interpatient pattern variations. Results: For 44 patients, the greatest values of |{alpha}-vector| were observed in the inferior and posterior lungs. For the rest of the patients, |{alpha}-vector| reached its maximum in the anterior lung in three patients and the lateral lung in two patients. The hysteresis motion {beta}-vector had greater variability, but for the majority of patients, |{beta}-vector| was largest in the lateral lungs. Conclusions: This is the first report of the three-dimensional breathing motion model parameters for a large cohort of patients. The model has the potential for noninvasively predicting lung motion. The majority of patients exhibited similar |{alpha}-vector| maps

  12. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study.

    Science.gov (United States)

    da Cruz, André Luis; Fernandes, Marisa Narciso

    2016-12-01

    The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O 2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O 2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Flow simulation of a Pelton bucket using finite volume particle method

    International Nuclear Information System (INIS)

    Vessaz, C; Jahanbakhsh, E; Avellan, F

    2014-01-01

    The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is an arbitrary Lagrangian-Eulerian method, which combines attractive features of Smoothed Particle Hydrodynamics and conventional mesh-based Finite Volume Method. This method is able to satisfy free surface and no-slip wall boundary conditions precisely. The fluid flow is assumed weakly compressible and the wall boundary is represented by one layer of particles located on the bucket surface. In the present study, the simulations of the flow in a stationary bucket are investigated for three different impinging angles: 72°, 90° and 108°. The particles resolution is first validated by a convergence study. Then, the FVPM results are validated with available experimental data and conventional grid-based Volume Of Fluid simulations. It is shown that the wall pressure field is in good agreement with the experimental and numerical data. Finally, the torque evolution and water sheet location are presented for a simulation of five rotating Pelton buckets

  14. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  15. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    Science.gov (United States)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  16. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold.

    Science.gov (United States)

    Kido, Tomoyuki; Kido, Teruhito; Nakamura, Masashi; Watanabe, Kouki; Schmidt, Michaela; Forman, Christoph; Mochizuki, Teruhito

    2016-08-24

    Cardiovascular cine magnetic resonance (CMR) accelerated by compressed sensing (CS) is used to assess left ventricular (LV) function. However, it is difficult for prospective CS cine CMR to capture the complete end-diastolic phase, which can lead to underestimation of the end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF), compared to retrospective standard cine CMR. This prospective study aimed to evaluate the diagnostic quality and accuracy of single-breath-hold full cardiac cycle CS cine CMR, acquired over two heart beats, to quantify LV volume in comparison to multi-breath-hold standard cine CMR. Eighty-one participants underwent standard segmented breath-hold cine and CS real-time cine CMR examinations to obtain a stack of eight contiguous short-axis images with same high spatial (1.7 × 1.7 mm(2)) and temporal resolution (41 ms). Two radiologists independently performed qualitative analysis of image quality (score, 1 [i.e., "nondiagnostic"] to 5 [i.e., "excellent"]) and quantitative analysis of the LV volume measurements. The total examination time was 113 ± 7 s for standard cine CMR and 24 ± 4 s for CS cine CMR (p cine image quality was slightly lower than standard cine (4.8 ± 0.5 for standard vs. 4.4 ± 0.5 for CS; p cine were above 4 (i.e., good). No significant differences existed between standard and CS cine MR for all quantitative LV measurements. The mean differences with 95 % confidence interval (CI), based on Bland-Altman analysis, were 1.3 mL (95 % CI, -14.6 - 17.2) for LV end-diastolic volume, 0.2 mL (95 % CI, -9.8 to10.3) for LV end-systolic volume, 1.1 mL (95 % CI, -10.5 to 12.7) for LV stroke volume, 1.0 g (95 % CI, -11.2 to 13.3) for LV mass, and 0.4 % (95 % CI, -4.8 - 5.6) for LV ejection fraction. The interobserver and intraobserver variability for CS cine MR ranged from -4.8 - 1.6 % and from -7.3 - 9.3 %, respectively, with slopes of the regressions ranging 0.88-1.0 and 0

  17. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Loop quantum cosmology with self-dual variables

    Science.gov (United States)

    Wilson-Ewing, Edward

    2015-12-01

    Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.

  19. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  20. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P...... breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P ... 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P breath hold diverts blood toward the brain with a >100% increase in MCA V(mean), largely...

  1. Open-loop heat-recovery dryer

    Science.gov (United States)

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  2. Ventilatory muscle endurance training in quadriplegia: effects on breathing pattern.

    Science.gov (United States)

    Loveridge, B; Badour, M; Dubo, H

    1989-10-01

    We examined the effects of ventilatory muscle endurance training on resting breathing pattern in 12 C6-C7 traumatic quadriplegics at least 1 year post-injury. All subjects had complete motor loss below the lesion level. Subjects were randomly assigned to a training (N = 6), or a control group (N = 6). Baseline tests included measurement of resting ventilation and breathing pattern using mercury in rubber strain gauges for 20 minutes in a seated position; maximum inspiratory mouth pressure (MIP) at FRC, and sustainable inspiratory mouth pressure for 10 minutes (SIP); lung volumes, and arterial blood gases (ABG's). The training protocol consisted of breathing through an inspiratory resistor equivalent to 85% SIP for 15 minutes twice daily, 5 days a week for 8 weeks. Both trainers and controls attended the lab every 2 weeks for reassessment of MIP and SIP and the inspiratory resistance was increased in the training group as SIP increased. At the end of 8 weeks, baseline tests were repeated. All subjects had normal ABG's. There was a significant increase in mean MIP and SIP in both the control group (30% +/- 19% and 31% +/- 18% respectively), and in the training group (42% +/- 24% and 78% +/- 49% respectively). Although the absolute values for both MIP and SIP were greater in the training group than in the control group, the differences were not significant. The alterations in resting breathing pattern were also the same in both groups. Mean frequency decreased significantly in the control group (20.2/minute to 16.9/minute) and, while insignificant, the change in frequency in the training group was the same, 19.4/minute to 16.4/minute. Mean tidal volume (Vt) increased 18.2% of baseline Vt in the control group and 17.0% baseline in the trainers, resulting in no change in minute ventilation. As MIP and SIP increased similarly in both groups, the data from the control and trainers was pooled and timing changes re-evaluated pre- and post-study. A significant decrease in

  3. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  4. Deep breathing exercises performed 2 months following cardiac surgery: a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Urell, Charlotte; Jonsson, Marcus; Bryngelsson, Ing-Liss; Hedenström, Hans; Emtner, Margareta

    2014-01-01

    Postoperative breathing exercises are recommended to cardiac surgery patients. Instructions concerning how long patients should continue exercises after discharge vary, and the significance of treatment needs to be determined. Our aim was to assess the effects of home-based deep breathing exercises performed with a positive expiratory pressure device for 2 months following cardiac surgery. The study design was a prospective, single-blinded, parallel-group, randomized trial. Patients performing breathing exercises 2 months after cardiac surgery (n = 159) were compared with a control group (n = 154) performing no breathing exercises after discharge. The intervention consisted of 30 slow deep breaths performed with a positive expiratory pressure device (10-15 cm H2O), 5 times a day, during the first 2 months after surgery. The outcomes were lung function measurements, oxygen saturation, thoracic excursion mobility, subjective perception of breathing and pain, patient-perceived quality of recovery (40-Item Quality of Recovery score), health-related quality of life (36-Item Short Form Health Survey), and self-reported respiratory tract infection/pneumonia and antibiotic treatment. Two months postoperatively, the patients had significantly reduced lung function, with a mean decrease in forced expiratory volume in 1 second to 93 ± 12% (P< .001) of preoperative values. Oxygenation had returned to preoperative values, and 5 of 8 aspects in the 36-Item Short Form Health Survey were improved compared with preoperative values (P< .01). There were no significant differences between the groups in any of the measured outcomes. No significant differences in lung function, subjective perceptions, or quality of life were found between patients performing home-based deep breathing exercises and control patients 2 months after cardiac surgery.

  5. Measurement of regional pulmonary blood volume in patients with increased pulmonary blood flow or pulmonary arterial hypertension

    International Nuclear Information System (INIS)

    Wollmer, P.; Rozcovek, A.; Rhodes, C.G.; Allan, R.M.; Maseri, A.

    1984-01-01

    The effects of chronic increase in pulmonary blood flow and chronic pulmonary hypertension on regional pulmonary blood volume was measured in two groups of patients. One group of patients had intracardiac, left-to-right shunts without appreciable pulmonary hypertension, and the other consisted of patients with Eisenmenger's syndrome or primary pulmonary hypertension, i.e. patients with normal or reduced blood flow and severe pulmonary hypertension. A technique based on positron tomography was used to measure lung density (by transmission scanning) and regional pulmonary blood volume (after inhalation of /sup 11/CO). The distribution of pulmonary blood volume was more uniform in patients with chronic increase in pulmonary blood flow than in normal subjects. There were also indications of an absolute increase in intrapulmonary blood volume by about 15%. In patients with chronic pulmonary arterial hypertension, the distribution of pulmonary blood volume was also abnormally uniform. There was, however, no indication that overall intrapulmonary blood volume was substantially different from normal subjects. The abnormally uniform distribution of pulmonary blood volume can be explained by recruitment and/or dilatation of vascular beds. Intrapulmonary blood volume appears to be increased in patients with intracardiac, left-to-right shunts. With the development of pulmonary hypertension, intrapulmonary blood volume falls, which may be explained by reactive changes in the vasculature and/or obliteration of capillaries

  6. Chronic adaptations of lung function in breath-hold diving fishermen

    Directory of Open Access Journals (Sweden)

    Cristiane Diniz

    2014-04-01

    Full Text Available Objectives: The aim of this study was to verify and analyze the existence of chronic adaptations of lung function in freediving fishermen whose occupation is artisanal fishing. Material and Methods: This was a cross-sectional study involving 11 breath-hold diving fishermen and 10 non-breath-hold diving fishermen (control from the village of Bitupitá in the municipality of Barroquinha (Ceará - Brazil. Anthropometric measurements, chest and abdominal circumferences as well as spirometric and respiratory muscle strength tests were conducted according to the specifications of the American Thoracic Society/European Respiratory Society (ATS/ERS. In order to compare the measured values versus the predicted values, Student t test was used in the case of parametric test and Wilcoxon test in the case of nonparametric test. To compare the inter-group means Student t test was used for parametric test and Mann-Whitney test for the nonparametric one. The level of significance was set at α = 5%. Results: The forced vital capacity (FVC (4.9±0.6 l vs. 4.3±0.4 l and forced expiratory volume in 1 s (FEV1 (4.0±0.5 l vs. 3.6±0.3 l were, respectively, higher in the group of divers compared to the control group (p ≤ 0.05. Furthermore, in the group of free divers, the measured FVC, FEV1 and FEV1/FVC ratios were significantly greater than the predicted ones. No differences were found between the measured respiratory pressures. Conclusions: These results indicate that breath-hold diving seems to produce chronic adaptations of the respiratory system, resulting in elevated lung volumes with no airway obstruction.

  7. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    Science.gov (United States)

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  8. Flow characteristics of natural circulation in a lead-bismuth eutectic loop

    Institute of Scientific and Technical Information of China (English)

    Chen-Chong Yue; Liu-Li Chen; Ke-Feng Lyu; Yang Li; Sheng Gao; Yue-Jing Liu; Qun-Ying Huang

    2017-01-01

    Lead and lead-alloys are proposed in future advanced nuclear system as coolant and spallation target.To test the natural circulation and gas-lift and obtain thermal-hydraulics data for computational fluid dynamics (CFD) and system code validation,a lead-bismuth eutectic rectangular loop,the KYLIN-Ⅱ Thermal Hydraulic natural circulation test loop,has been designed and constructed by the FDS team.In this paper,theoretical analysis on natural circulation thermal-hydraulic performance is described and the steady-state natural circulation experiment is performed.The results indicated that the natural circulation capability depends on the loop resistance and the temperature and center height differences between the hot and cold legs.The theoretical analysis results agree well with,while the CFD deviate from,the experimental results.

  9. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  10. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    Directory of Open Access Journals (Sweden)

    Florian Hiermeier

    2017-11-01

    Full Text Available Valveless pumping phenomena (peristalsis, Liebau-effect can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  11. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man

    Science.gov (United States)

    Begin, R.; Epstein, M.; Sackner, M. A.; Levinson, R.; Dougherty, R.; Duncan, D.

    1976-01-01

    A rapid noninvasive breathing method is used to obtain serial measurements of the pulmonary capillary blood flow, diffusing capacity per unit of alveolar volume, combined pulmonary tissue plus capillary volume, functional residual capacity, and oxygen consumption in five normal subjects undergoing 6 h of sitting, 4 h of sitting while immersed to the neck in thermoneutral water, and 4 h of lying in thermoneutral water to the neck. The rebreathing method employed a test gas mixture containing 0.5% C2H2, 0.3% C(18)O, 10% He, 21% O2, and balance N2. It is shown that immersion to the neck in the seated posture results in significant increases in sodium excretion cardiac output, and diffusing capacity per unit of alveolar volume. The pulmonary tissue plus capillary volume did not change, demonstrating that the central vascular engorgement induced by water immersion is not accompanied by significant extravasation of fluid into the pulmonary interstitial space.

  12. Dual registration of abdominal motion for motility assessment in free-breathing data sets acquired using dynamic MRI

    International Nuclear Information System (INIS)

    Menys, A; Hamy, V; Makanyanga, J; Taylor, S A; Atkinson, D; Hoad, C; Gowland, P; Odille, F

    2014-01-01

    At present, registration-based quantification of bowel motility from dynamic MRI is limited to breath-hold studies. Here we validate a dual-registration technique robust to respiratory motion for the assessment of small bowel and colonic motility. Small bowel datasets were acquired in breath-hold and free-breathing in 20 healthy individuals. A pre-processing step using an iterative registration of the low rank component of the data was applied to remove respiratory motion from the free breathing data. Motility was then quantified with an existing optic-flow (OF) based registration technique to form a dual-stage approach, termed Dual Registration of Abdominal Motion (DRAM). The benefit of respiratory motion correction was assessed by (1) assessing the fidelity of automatically propagated segmental regions of interest (ROIs) in the small bowel and colon and (2) comparing parametric motility maps to a breath-hold ground truth. DRAM demonstrated an improved ability to propagate ROIs through free-breathing small bowel and colonic motility data, with median error decreased by 90% and 55%, respectively. Comparison between global parametric maps showed high concordance between breath-hold data and free-breathing DRAM. Quantification of segmental and global motility in dynamic MR data is more accurate and robust to respiration when using the DRAM approach. (paper)

  13. IR1 flow tube and In-Pile Test Section Pressure drop test for the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, K. N.; Chi, D. Y.; Sim, B. S.; Park, S. K.; Lee, J. M.; Lee, C. Y.; Kim, H. N

    2006-02-15

    The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vertical hole call IR1 of HANARO reactor core. In order to verify the pressure drop and flow rate both the inside region of IPS at the annular region between IPS and IR1 flow tube, a pressure drop was measured by varing the flow rate on both regions. The measured pressure drop in the annular region is 209kpa at 14.9kg/s which meets the limiting condition of operation of 200kpa. The measured pressure drop in side the IPS becomes 260.25kpa which is lower than the designed value of 306.65kpa. As the pressure drop is lower than the design value, it is quite conservative from the safety and operating point of view.

  14. Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles

    Science.gov (United States)

    Badfar, Homayoun; Motlagh, Saber Yekani; Sharifi, Abbas

    2017-10-01

    In this paper, biomagnetic blood flow in the stenosis vessel under the effect of the solenoid magnetic field is studied using the ferrohydrodynamics (FHD) model. The parabolic profile is considered at an inlet of the axisymmetric stenosis vessel. Blood is modeled as electrically non-conducting, Newtonian and homogeneous fluid. Finite volume and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are utilized to discretize governing equations. The investigation is studied at different magnetic numbers ( MnF=164, 328, 1640 and 3280) and the number of the coil loops (three, five and nine loops). Results indicate an increase in heat transfer, wall shear stress and energy loss (pressure drop) with an increment in the magnetic number (ratio of Kelvin force to dynamic pressure force), arising from the FHD, and the number of solenoid loops. Furthermore, the flow pattern is affected by the magnetic field, and the temperature of blood can be decreased up to 1.48 {}°C under the effect of the solenoid magnetic field with nine loops and reference magnetic field ( B0) of 2 tesla.

  15. Quantitative analysis of normal fetal medulla oblongata volume and flow by three-dimensional power Doppler ultrasound.

    Science.gov (United States)

    Shyu, Ing-Luen; Wang, Peng-Hui; Chen, Chih-Yao; Chen, Yi-Jen; Chang, Chia-Ming; Horng, Huann-Cheng; Yang, Ming-Jie; Yen, Ming-Shyen

    2016-06-01

    Assessment of the fetal medulla oblongata volume (MOV) and blood flow might be important in the evaluation of fetal brain growth. We used three-dimensional power Doppler ultrasound (3DPDUS) to assess the fetal MOV and blood flow index in normal gestation. The relationships between these parameters were further analyzed. We assessed the total volume and blood flow index of the fetal MO in normal pregnancies using a 3DPDUS (Voluson 730 Expert). The true sagittal plane over the fetal occipital area was measured by a 3D transabdominal probe to scan the fetal MO under the power Doppler mode. Then, we quantitatively assessed the total volume of the fetal MOV, mean gray area (MG), vascularization index (VI), and flow index (FI). A total of 106 fetuses, ranging from 19 weeks to 39 weeks of gestation, were involved in our study. The volume of the fetal MO was highly positively correlated with gestational age [correlation coefficient (r) = 0.686, p < 0.0001]. The MG was negatively correlated with gestational age [r = -0.544, p < 0.0001). VI and FI showed no significant correlation with gestational age (p = 0.123 and p = 0.219, respectively). 3DPDUS can be used to assess the fetal MOV and blood flow development quantitatively. Our study indicated that fetal MOV and blood flow correlated significantly with the advancement of gestational age. This information may serve as reference data for further studies of the fetal brain and blood flow under abnormal conditions. Copyright © 2016. Published by Elsevier B.V.

  16. Novel methodology to perform sulfur hexafluoride (SF6)-based multiple-breath wash-in and washout in infants using current commercially available equipment.

    Science.gov (United States)

    Gustafsson, P M; Robinson, P D; Lindblad, A; Oberli, D

    2016-11-01

    Multiple-breath inert gas washout (MBW) is ideally suited for early detection and monitoring of serious lung disease, such as cystic fibrosis, in infants and young children. Validated commercial options for the MBW technique are limited, and suitability of nitrogen (N 2 )-based MBW is of concern given the detrimental effect of exposure to pure O 2 on infant breathing pattern. We propose novel methodology using commercially available N 2 MBW equipment to facilitate 4% sulfur hexafluoride (SF 6 ) multiple-breath inert gas wash-in and washout suitable for the infant age range. CO 2 , O 2 , and sidestream molar mass sensor signals were used to accurately calculate SF 6 concentrations. An improved dynamic method for synchronization of gas and respiratory flow was developed to take into account variations in sidestream sample flow during MBW measurement. In vitro validation of triplicate functional residual capacity (FRC) assessments was undertaken under dry ambient conditions using lung models ranging from 90 to 267 ml, with tidal volumes of 28-79 ml, and respiratory rates 20-60 per minute. The relative mean (SD, 95% confidence interval) error of triplicate FRC determinations by washout was -0.26 (1.84, -3.86 to +3.35)% and by wash-in was 0.57 (2.66, -4.66 to +5.79)%. The standard deviations [mean (SD)] of percentage error among FRC triplicates were 1.40 (1.14) and 1.38 (1.32) for washout and wash-in, respectively. The novel methodology presented achieved FRC accuracy as outlined by current MBW consensus recommendations (95% of measurements within 5% accuracy). Further clinical evaluation is required, but this new technique, using existing commercially available equipment, has exciting potential for research and clinical use. Copyright © 2016 the American Physiological Society.

  17. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  18. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    Science.gov (United States)

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas

  19. Improved fireman's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  20. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    International Nuclear Information System (INIS)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J.; Wang, D.F.

    2015-01-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  1. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  2. Information flow to assess cardiorespiratory interactions in patients on weaning trials.

    Science.gov (United States)

    Vallverdú, M; Tibaduisa, O; Clariá, F; Hoyer, D; Giraldo, B; Benito, S; Caminal, P

    2006-01-01

    Nonlinear processes of the autonomic nervous system (ANS) can produce breath-to-breath variability in the pattern of breathing. In order to provide assess to these nonlinear processes, nonlinear statistical dependencies between heart rate variability and respiratory pattern variability are analyzed. In this way, auto-mutual information and cross-mutual information concepts are applied. This information flow analysis is presented as a short-term non linear analysis method to investigate the information flow interactions in patients on weaning trials. 78 patients from mechanical ventilation were studied: Group A of 28 patients that failed to maintain spontaneous breathing and were reconnected; Group B of 50 patients with successful trials. The results show lower complexity with an increase of information flow in group A than in group B. Furthermore, a more (weakly) coupled nonlinear oscillator behavior is observed in the series of group A than in B.

  3. Point-defect migration into an infinitesimal dislocation loop

    International Nuclear Information System (INIS)

    Woo, C.H.

    1981-11-01

    Point-defect migration into an infinitesimal dislocation loop in an isotropic linear elastic medium is described. Particular care has been taken to include the effects of the saddle-point shape anisotropy of the point defect. Expressions for the reaction radii and the bias are derived, both in the presence and absence of an external applied stress. These are found to depend on intrinsic parameters, such as the loop strength, the loop nature (vacancy or interstitial), the relaxation volume, the saddle-point shape, and extrinsic parameters, such as the magnitude and direction of the external stress, and the temperature. The implications of the results are discussed

  4. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  5. Pre-compression volume on flow ripple reduction of a piston pump

    Science.gov (United States)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  6. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  7. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  8. Observational constraints on loop quantum cosmology.

    Science.gov (United States)

    Bojowald, Martin; Calcagni, Gianluca; Tsujikawa, Shinji

    2011-11-18

    In the inflationary scenario of loop quantum cosmology in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to compare with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background and other cosmological experiments, we place bounds on the quantum corrections.

  9. A closed-loop analysis of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1991-01-01

    The tubuloglomerular feedback (TGF) mechanism is of importance in the regulation of glomerular filtration rate (GFR). A second mechanism of potential importance is the change in proximal pressure caused by a change, for example, in the rate of proximal fluid reabsorption. The quantitative contrib...... and the late proximal flow rate, with changes in the proximal pressure of lesser importance. Furthermore, under closed-loop conditions the operating point for the TGF mechanism is at or close to the point of maximal sensitivity....... nl/min in steps of 5 nl/min. The open-loop gain (OLG) was 3.1 (range 1.5-9.9, n = 13) at the unperturbed tubular flow rate, and decreased as the tubular flow rate was either increased or decreased. The proximal pressure increased by 0.21 +/- 0.03 mmHg per unit increase in late proximal flow rate (nl...

  10. SU-E-J-178: A Normalization Method Can Remove Discrepancy in Ventilation Function Due to Different Breathing Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Qu, H; Yu, N; Stephans, K; Xia, P [Cleveland Clinic, Cleveland, OH (United States)

    2014-06-01

    Purpose: To develop a normalization method to remove discrepancy in ventilation function due to different breathing patterns. Methods: Twenty five early stage non-small cell lung cancer patients were included in this study. For each patient, a ten phase 4D-CT and the voluntarily maximum inhale and exhale CTs were acquired clinically and retrospectively used for this study. For each patient, two ventilation maps were calculated from voxel-to-voxel CT density variations from two phases of the quiet breathing and two phases of the extreme breathing. For the quiet breathing, 0% (inhale) and 50% (exhale) phases from 4D-CT were used. An in-house tool was developed to calculate and display the ventilation maps. To enable normalization, the whole lung of each patient was evenly divided into three parts in the longitude direction at a coronal image with a maximum lung cross section. The ratio of cumulated ventilation from the top one-third region to the middle one-third region of the lung was calculated for each breathing pattern. Pearson's correlation coefficient was calculated on the ratios of the two breathing patterns for the group. Results: For each patient, the ventilation map from the quiet breathing was different from that of the extreme breathing. When the cumulative ventilation was normalized to the middle one-third of the lung region for each patient, the normalized ventilation functions from the two breathing patterns were consistent. For this group of patients, the correlation coefficient of the normalized ventilations for the two breathing patterns was 0.76 (p < 0.01), indicating a strong correlation in the ventilation function measured from the two breathing patterns. Conclusion: For each patient, the ventilation map is dependent of the breathing pattern. Using a regional normalization method, the discrepancy in ventilation function induced by the different breathing patterns thus different tidal volumes can be removed.

  11. SU-E-J-178: A Normalization Method Can Remove Discrepancy in Ventilation Function Due to Different Breathing Patterns

    International Nuclear Information System (INIS)

    Qu, H; Yu, N; Stephans, K; Xia, P

    2014-01-01

    Purpose: To develop a normalization method to remove discrepancy in ventilation function due to different breathing patterns. Methods: Twenty five early stage non-small cell lung cancer patients were included in this study. For each patient, a ten phase 4D-CT and the voluntarily maximum inhale and exhale CTs were acquired clinically and retrospectively used for this study. For each patient, two ventilation maps were calculated from voxel-to-voxel CT density variations from two phases of the quiet breathing and two phases of the extreme breathing. For the quiet breathing, 0% (inhale) and 50% (exhale) phases from 4D-CT were used. An in-house tool was developed to calculate and display the ventilation maps. To enable normalization, the whole lung of each patient was evenly divided into three parts in the longitude direction at a coronal image with a maximum lung cross section. The ratio of cumulated ventilation from the top one-third region to the middle one-third region of the lung was calculated for each breathing pattern. Pearson's correlation coefficient was calculated on the ratios of the two breathing patterns for the group. Results: For each patient, the ventilation map from the quiet breathing was different from that of the extreme breathing. When the cumulative ventilation was normalized to the middle one-third of the lung region for each patient, the normalized ventilation functions from the two breathing patterns were consistent. For this group of patients, the correlation coefficient of the normalized ventilations for the two breathing patterns was 0.76 (p < 0.01), indicating a strong correlation in the ventilation function measured from the two breathing patterns. Conclusion: For each patient, the ventilation map is dependent of the breathing pattern. Using a regional normalization method, the discrepancy in ventilation function induced by the different breathing patterns thus different tidal volumes can be removed

  12. Relationship between regional ventilation and aerosol deposition in tidal breathing

    Energy Technology Data Exchange (ETDEWEB)

    Trajan, M.; Logus, J.W.; Enns, E.G.; Man, S.F.

    1984-07-01

    The regional distribution of the deposition of 1.2 micron particles of 99mTc sulfur colloid inhaled by tidal breathing was compared with the distribution of ventilation as measured by a 133Xe washout technique. Twelve subjects were studied, 6 with normal pulmonary function tests, 5 with air-flow limitation, and 1 with unilateral phrenic nerve paralysis. Both xenon and aerosol were inhaled at tidal volume by the subjects while seated upright. A large field gamma camera acquired posterior scans. Thirteen experiments were also done on 7 dogs: 1 with extrathoracic obstruction of the airway to 1 lung, and 12 with bronchoconstriction from the instillation of methacholine chloride into the airways of a lower lobe. Two of these dogs were studied with a gamma camera system, and the others were studied with a Picker multi-probe system. Both in humans and in dogs, an increase in time constant, which indicated a decrease in ventilation, was associated with an increase in peripheral aerosol deposition when normalized for ventilation. It is suggested that the increased residence time is responsible for the increased deposition in regions that received lesser ventilation.

  13. Relationship between regional ventilation and aerosol deposition in tidal breathing

    International Nuclear Information System (INIS)

    Trajan, M.; Logus, J.W.; Enns, E.G.; Man, S.F.

    1984-01-01

    The regional distribution of the deposition of 1.2 micron particles of 99mTc sulfur colloid inhaled by tidal breathing was compared with the distribution of ventilation as measured by a 133Xe washout technique. Twelve subjects were studied, 6 with normal pulmonary function tests, 5 with air-flow limitation, and 1 with unilateral phrenic nerve paralysis. Both xenon and aerosol were inhaled at tidal volume by the subjects while seated upright. A large field gamma camera acquired posterior scans. Thirteen experiments were also done on 7 dogs: 1 with extrathoracic obstruction of the airway to 1 lung, and 12 with bronchoconstriction from the instillation of methacholine chloride into the airways of a lower lobe. Two of these dogs were studied with a gamma camera system, and the others were studied with a Picker multi-probe system. Both in humans and in dogs, an increase in time constant, which indicated a decrease in ventilation, was associated with an increase in peripheral aerosol deposition when normalized for ventilation. It is suggested that the increased residence time is responsible for the increased deposition in regions that received lesser ventilation

  14. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    International Nuclear Information System (INIS)

    Ford, Nancy L; Wheatley, Andrew R; Holdsworth, David W; Drangova, Maria

    2007-01-01

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations-which influences both image quality and the ability to quantify respiratory function-was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 ± 0.03 mL) and tidal volumes (0.08 ± 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 μm versus 90 μm voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations

  15. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nancy L [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wheatley, Andrew R [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada); Holdsworth, David W [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada); Drangova, Maria [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada)

    2007-09-21

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations-which influences both image quality and the ability to quantify respiratory function-was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 {+-} 0.03 mL) and tidal volumes (0.08 {+-} 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 {mu}m versus 90 {mu}m voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations.

  16. Effect of breathing fluctuations on cerebral blood flow in demented patients and its correction method using end-tidal CO/sub 2/ concentration

    Energy Technology Data Exchange (ETDEWEB)

    Komatani, Akio; Yamaguchi, Koichi; Kera, Masahiro; Takanashi, Toshiyasu; Shinohara, Masao; Kawakatsu, Shinobu; Yazaki, Mitsuyasu

    1989-02-01

    During mouthpiece respiration of Xe-133 for a measurement of regional cerebral blood flow (rCBF), the breathing pattern of patients fluctuated and it caused a change of end-tidal CO/sub 2/ concentration that had an excellent correlation with PaCO/sub 2/ in patients without respiratory disease. The end-tidal CO/sub 2/ concentration of demented patients varied within lower ranges than senile control group. The range of fluctuation on the end-tidal CO/sub 2/ concentration was dependent on the type and the degree of dementia, and it fluctuated most widely at the middle stage of Alzheimer disease. Mean cerebral blood flow increased by 13.9% for each l% increase in end-tidal CO/sub 2/ concentration (3.6%/mmHg PaCO/sub 2/) in the case of demented patients without cerebrovascular disease. To improve the reliability of rCBF in demented patients, especially in Alzheimer disease, the correction of rCBF data for end-tidal CO/sub 2/ concentration should be performed.

  17. Free-breathing whole-heart 3D cine magnetic resonance imaging with prospective respiratory motion compensation.

    Science.gov (United States)

    Moghari, Mehdi H; Barthur, Ashita; Amaral, Maria E; Geva, Tal; Powell, Andrew J

    2018-07-01

    To develop and validate a new prospective respiratory motion compensation algorithm for free-breathing whole-heart 3D cine steady-state free precession (SSFP) imaging. In a 3D cine SSFP sequence, 4 excitations per cardiac cycle are re-purposed to prospectively track heart position. Specifically, their 1D image is reconstructed and routed into the scanner's standard diaphragmatic navigator processing system. If all 4 signals are in end-expiration, cine image data from the entire cardiac cycle is accepted for image reconstruction. Prospective validation was carried out in patients (N = 17) by comparing in each a conventional breath-hold 2D cine ventricular short-axis stack and a free-breathing whole-heart 3D cine data set. All 3D cine SSFP acquisitions were successful and the mean scan time was 5.9 ± 2.7 min. Left and right ventricular end-diastolic, end-systolic, and stroke volumes by 3D cine SSFP were all larger than those from 2D cine SSFP. This bias was 3D cine images had a lower ventricular blood-to-myocardium contrast ratio, contrast-to-noise ratio, mass, and subjective quality score. The novel prospective respiratory motion compensation method for 3D cine SSFP imaging was robust and efficient and yielded slightly larger ventricular volumes and lower mass compared to breath-hold 2D cine imaging. Magn Reson Med 80:181-189, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  19. Multiphase integral reacting flow computer code (ICOMFLO): User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1997-11-01

    A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air-breathing

  20. Research and design of 3He pressure control loop

    International Nuclear Information System (INIS)

    Huang Xin; Zhang Peisheng; Tang Guoliang; Zhang Aimin; Zhang Yingchao

    2008-01-01

    In order to carry out power transient tests for PWR fuel element in China Advanced Research Reactor (CARR), the research and conceptual design of 3He pressure control loop were completed. The working principle, design parameters and technological flow of the loop were described. It is seen that the a He loop can adjust the power of the tested PWR fuel element rapidly, evenly and flexibly and it is an optimal path to realize the power transient regulation for tested PWR fuel. (authors)

  1. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy

    International Nuclear Information System (INIS)

    Eccles, Cynthia; Brock, Kristy K.; Bissonnette, Jean-Pierre; Hawkins, Maria; Dawson, Laura A.

    2006-01-01

    Purpose: To measure the intrabreath-hold liver motion and the intrafraction and interfraction reproducibility of liver position relative to vertebral bodies using an active breathing coordinator (ABC) in patients with unresectable liver cancer treated with hypofractionated stereotactic body radiation therapy (SBRT). Methods: Tolerability of ABC and organ motion during ABC was assessed using kV fluoroscopy in 34 patients. For patients treated with ABC, repeat breath-hold CT scans in the ABC breath-hold position were acquired at simulation to estimate the volumetric intrafraction reproducibility of the liver relative to the vertebral bodies. In addition, preceding each radiation therapy fraction, with the liver immobilized using ABC, repeat anteroposterior (AP) megavoltage verification images were obtained. Off-line alignments were completed to determine intrafraction reproducibility (from repeat images obtained before one treatment) and interfraction reproducibility (from comparisons of the final image for each fraction with the AP) of diaphragm position relative to vertebral bodies. For each image set, the vertebral bodies were aligned, and the resultant craniocaudal (CC) offset in diaphragm position was measured. Liver position during ABC was also evaluated from kV fluoroscopy acquired at the time of simulation, kV fluoroscopy at the time of treatment, and from MV beam's-eye view movie loops acquired during treatment. Results: Twenty-one of 34 patients were screened to be suitable for ABC. The average free breathing range of these patients was 13 mm (range, 5-1 mm). Fluoroscopy revealed that the average maximal diaphragm motion during ABC breath-hold was 1.4 mm (range, 0-3.4 mm). The MV treatment movie loops confirmed diaphragm stability during treatment. For a measure of intrafraction reproducibility, an analysis of 36 repeat ABC computed tomography (CT) scans in 14 patients was conducted. The average mean difference in the liver surface position was -0.9 mm, -0

  2. Modified Qigong Breathing Exercise for Reducing the Sense of Hunger on an Empty Stomach

    Science.gov (United States)

    Voroshilov, Alexander P.; Wang, Zhixin; Marchenko, Elena V.

    2017-01-01

    Background. The aims of this study were to determine whether a modified Qigong breathing exercise can reduce the sense of hunger and identify possible mechanisms. Methods. The results from the test group, which performed the exercise, are compared with the control group, which performed deep breathing. Intestinal pressure measurements, stomach pH monitoring, and participant surveys were used for assessment. Results. Stomach pH was increased by 3 (0.2) and intestinal pressure was reduced by 12 (0.5) mm Hg in the experimental group and did not change significantly in the control group. The study provides strong evidence that the exercise can significantly reduce, or even suppress the sense of hunger on an empty stomach. Conclusion. This breathing exercise provides comfort in different circumstances, such as lack of regular meals, limited volume or caloric diet, and even during temporary complete absence of food in therapeutic fasting. PMID:28497701

  3. A comparative approach to closed-loop computation.

    Science.gov (United States)

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Body composition variation following diaphragmatic breathing ...

    African Journals Online (AJOL)

    Body composition variation following diaphragmatic breathing. ... effect of commonly prescribed diaphragmatic breathing training on the body composition ... a non-exercising control (NE) group (n = 22) or diaphragmatic breathing (DB) group.

  5. Numerical modeling of supercritical CO{sub 2} natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Archana, V., E-mail: archanav@barc.gov.in [Homi Bhabha National Institute, Mumbai, Maharashtra 400 094 (India); Vaidya, A.M., E-mail: avaidya@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Vijayan, P.K., E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India)

    2015-11-15

    Highlights: • Supercritical CO{sub 2} natural circulation loop is modeled by in-house developed 1D and 2D axi-symmetric CFD codes. • Steady state characteristics of VHVC configuration of supercritical CO{sub 2} natural circulation loop are studied over a range of power. • Improved accuracy of predictions by 2D axi-symmetric formulation over 1D formulation is demonstrated. • The validity of correlations used in 1D model such as friction factor and heat transfer correlations is analyzed. • Simulation results shows normal, enhanced and deteriorated heat transfer regimes in supercritical CO{sub 2} natural circulation loop. - Abstract: The objective of this research project is to estimate steady state characteristics of supercritical natural circulation loop (SCNCL) using computational methodology and to compliment on-going experimental investigation of the same at the authors’ organization. For computational investigation, a couple of in-house codes are developed. At first, formulation and a corresponding computer program for the SCNCL based on conservation equations written in 1D framework is developed. Comparison of 1D code results with experimental data showed that, under some operating conditions, there is deviation between computed results and experimental data. To improve predictive capability, it was thought to model the SCNCL using conservation equations in 2D axi-symmetric framework. An existing 2D axi-symmetric code (named NAFA), which was developed and validated for supercritical fluid flow in pipes, is modified for natural circulation loop (NCL) geometry. The modified code, named NAFA-Loop, is subsequently used to compute the steady state characteristics of the SCNCL. These results are compared with experimental data. The steady state characteristics such as the variation of mass flow rate with power, velocity and temperature profiles in heater and cooler are studied using NAFA-Loop. The computed velocity and temperature fields show that the

  6. CFD simulation of a four-loop PWR at asymmetric operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian-Ping; Yan, Li-Ming; Li, Feng-Chen, E-mail: lifch@hit.edu.cn

    2016-04-15

    Highlights: • A CFD numerical simulation procedure was established for simulating RPV of VVER-1000. • The established CFD approach was validated by comparing with available data. • Thermal hydraulic characteristics under asymmetric operation condition were investigated. • Apparent influences of the shutdown loop on its neighboring loops were obtained. - Abstract: The pressurized water reactor (PWR) with multiple loops may have abnormal working conditions with coolant pumps out of running in some loops. In this paper, a computational fluid dynamics (CFD) numerical study of the four-loop VVER-1000 PWR pressure vessel model was presented. Numerical simulations of the thermohydrodynamic characteristics in the pressure vessel were carried out at different inlet conditions with four and three loops running, respectively. At normal stead-state condition (four-loop running), different parameters were obtained for the full fluid domain, including pressure losses across different parts, pressure, velocity and temperature distributions in the reactor pressure vessel (RPV) and mass flow distribution of the coolant at the inlet of reactor core. The obtained results for pressure losses matched with the experimental reference values of the VVER-1000 PWR at Tianwan nuclear power plant (NPP). For most fuel assemblies (FAs), the inlet flow rates presented a symmetrical distribution about the center under full-loop operation conditions, which accorded with the practical distribution. These results indicate that it is now possible to study the dynamic transition process between different asymmetric operation conditions in a multi-loop PWR using the established CFD method.

  7. SIFT-MS Analysis of Nose-Exhaled Breath; Mouth Contamination and the Influence of Exercise

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Chippendale, T. W. E.; Dryahina, Kseniya; Španěl, Patrik

    2013-01-01

    Roč. 9, č. 2013 (2013), s. 565-575 ISSN 1573-4110 Institutional support: RVO:61388955 Keywords : selected ion flow tube mass spectrometry * breath analysis * nose exhalation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.194, year: 2013

  8. Response of the primary piping loop to an HCDA

    International Nuclear Information System (INIS)

    Chang, Y.W.; Moneim, M.T.A.; Wang, C.Y.; Gvildys, J.

    1975-01-01

    The paper describes a method for analyzing the response of the primary piping loop that consists of straight pipes, elbows, and other components connected in series and subject to hypothetical core disruptive accident (HCDA) loads at both ends of the loop. The complete hydrodynamic equations in two-dimensions, that include both the nonlinear convective and viscous dissipation terms are used for the fluid dynamics together with the implicit ICE technique. The external walls of the pipes and components are treated as thin shells in which the analysis accounts for the membrane and bending strength of the wall, elastic-plastic material behavior, as well as large deformation under the effect of transient loading conditions. In the straight pipes, the flow is assumed to be axisymmetric; in the elbow regions, the two dimensions considered are the r and theta directions. The flow in the other components is also assumed to be axisymmetric; the components are modeled as a circular cylinder, in which the radius of the cylinder can be varied to conform with the outside shape of the component and the flow area inside can be changed independently from the outside shape. However, they must remain axially symmetric. The method is applied to a piping loop which consists of six elastic-plastic pipes and five rigid elbows connected in series and subjected to pressure pulses at both ends of the loop

  9. Studies concerning average volume flow and waterpacking anomalies in thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Ching, J.T.; Mecham, D.C.

    1977-01-01

    One-dimensional hydrodynamic codes have been observed to exhibit anomalous behavior in the form of non-physical pressure oscillations and spikes. It is our experience that sometimes this anomaloous behavior can result in mass depletion, steam table failure and in severe cases, problem abortion. In addition, these non-physical pressure spikes can result in long running times when small time steps are needed in an attempt to cope with anomalous solution behavior. The source of these pressure spikes has been conjectured to be caused by nonuniform enthalpy distribution or wave reflection off the closed end of a pipe or abrupt changes in pressure history when the fluid changes from subcooled to two-phase conditions. It is demonstrated in this paper that many of the faults can be attributed to inadequate modeling of the average volume flow and the sharp fluid density front crossing a junction. General corrective models are difficult to devise since the causes of the problems touch on the very theoretical bases of the differential field equations and associated solution scheme. For example, the fluid homogeneity assumption and the numerical extrapolation scheme have placed severe restrictions on the capability of a code to adequately model certain physical phenomena involving fluid discontinuities. The need for accurate junction and local properties to describe phenomena internal to a control volume often points to additional lengthy computations that are difficult to justify in terms of computational efficiency. Corrective models that are economical to implement and use are developed. When incorporated into the one-dimensional, homogeneous transient thermal-hydraulic analysis computer code, RELAP4, they help mitigate many of the code's difficulties related to average volume flow and water-packing anomalies. An average volume flow model and a critical density model are presented. Computational improvements due to these models are also demonstrated

  10. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Daniel, E-mail: Daniel.Pham@petermac.org [Radiotherapy Services, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Foroudi, Farshad; Siva, Shankar [Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2013-10-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

  11. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    International Nuclear Information System (INIS)

    Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Siva, Shankar

    2013-01-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk

  12. Bistable flow spectral analysis. Repercussions on jet pumps

    International Nuclear Information System (INIS)

    Gavilan Moreno, C.J.

    2011-01-01

    Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments

  13. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  14. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  15. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    Science.gov (United States)

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  16. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    Science.gov (United States)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  17. News from the Breath Analysis Summit 2011.

    Science.gov (United States)

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  18. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    International Nuclear Information System (INIS)

    Soultan, D; Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L; Gill, B

    2015-01-01

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing

  19. Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Burns, David P; Roy, Arijit; Lucking, Eric F; McDonald, Fiona B; Gray, Sam; Wilson, Richard J; Edge, Deirdre; O'Halloran, Ken D

    2017-11-01

    Respiratory failure is a leading cause of mortality in Duchenne muscular dystrophy (DMD), but little is known about the control of breathing in DMD and animal models. We show that young (8 weeks of age) mdx mice hypoventilate during basal breathing due to reduced tidal volume. Basal CO 2 production is equivalent in wild-type and mdx mice. We show that carotid bodies from mdx mice have blunted responses to hyperoxia, revealing hypoactivity in normoxia. However, carotid body, ventilatory and metabolic responses to hypoxia are equivalent in wild-type and mdx mice. Our study revealed profound muscle weakness and muscle fibre remodelling in young mdx diaphragm, suggesting severe mechanical disadvantage in mdx mice at an early age. Our novel finding of potentiated neural motor drive to breathe in mdx mice during maximal chemoactivation suggests compensatory neuroplasticity enhancing respiratory motor output to the diaphragm and probably other accessory muscles. Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypoventilated, owing to a reduction in tidal volume. Basal CO 2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and

  20. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.