WorldWideScience

Sample records for breathing adapted radiotherapy

  1. Practical recommendations for breathing-adapted radiotherapy

    International Nuclear Information System (INIS)

    Simon, L.; Giraud, P.; Rosenwald, J.C.; Dumas, J.L.; Lorchel, F.; Marre, D.; Dupont, S.; Varmenot, N.; Ginestet, C.; Caron, J.; Marchesi, V.; Ferreira, I.; Garcia, R.

    2007-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  2. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  3. Practical recommendations for breathing-adapted radiotherapy; Bonnes pratiques pour la radiotherapie asservie a la respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simon, L.; Giraud, P.; Rosenwald, J.C. [Institut Curie, Dept. d' Oncologie-radiotherapie, 75 - Paris (France); Dumas, J.L.; Lorchel, F. [CHU de Besancon, Hopital Jean-Minjoz, Service Radiotherapie, 25 - Besancon (France); Marre, D. [Institut Claudius-Regaud, Dept. des Radiations, 31 - Toulouse (France); Dupont, S. [Hopital Europeen Georges-Pompidou, Service d' Oncoradiotherapie, 75 - Paris (France); Varmenot, N. [Centre Henri-Becquerel, UnitE de Physique Medicale, 76 - Rouen (France); Ginestet, C. [Centre Leon-Berard, Dept. de Radiotherapie, 69 - Lyon (France); Caron, J. [Institut Bergonie, Dept. de Radiotherapie, 33 - Bordeaux (France); Marchesi, V. [Centre Alexis-Vautrin, Dept. de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France); Ferreira, I. [Institut Gustave-Roussy, Dept. d' Oncologie Radiotherapie, 94 - Villejuif (France); Garcia, R. [Institut Sainte-Catherine, Service de Radiotherapie, 84 - Avignon (France)

    2007-06-15

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  4. Breathing adapted radiotherapy: final clinic results of the program for the support to costly innovating techniques (Stic) of 2003

    International Nuclear Information System (INIS)

    Giraud, P.; Giraud, P.; Morvan, E.; Djadi-Prat, J.; Rosenwald, J.C.; Carrere, M.O.

    2010-01-01

    The authors report the comparison, from a clinic point of view, between breathing adapted conformational radiotherapy (BART) and conventional conformational radiotherapy, in the case of lung and breast cancers. The assessment comprised a clinic examination, a thoracic radiography, breathing functional tests, a thoracic scanography at different moments (3, 6, 12, 18 and 24 months), and dosimetric criteria for tumour target volumes and the different thoracic organs at risk. Data have been collected among more than six hundred patients. Breathing adapted techniques allow acute and late toxicity to be reduced, notably for the lung, heart and oesophagus during a lung irradiation. They are less interesting for mammary irradiation, but could be important for a radiotherapy of the left breast. Short communication

  5. Clinical Introduction of a Novel Liquid Fiducial Marker for Breathing Adapted Radiotherapy of Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman

    delivery, e.g. breathing related tumour motion and anatomical changes during treatment. To ensure dose delivery to the target, a safety margin is added to the tumour. A large treatment volume, however, can be problematic due to the proximity of vital anatomical structures in the chest region, e...... for the tumour position in lung cancer patients. Furthermore, we evaluated the potential benefit of a breathing adaptation technique, where patients hold their breath during treatment delivery. We found that this technique reduced both tumour motion and doses to risk organs. Finally, we investigated...... the potential of measuring radiation doses from an activated liquid silver marker, via photon-nuclear reactions in-situ, using positron emission-tomography and proved a clear correlation between delivered radiation dose and measured induced activity....

  6. Adaptation requirements due to anatomical changes in free-breathing and deep-inspiration breath-hold for standard and dose-escalated radiotherapy of lung cancer patients

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Ottosson, Wiviann; Sjöström, David

    2015-01-01

    to investigate the need for adaptation due to anatomical changes, for both standard (ST) and DE plans in free-breathing (FB) and DIBH. Material and methods. The effect of tumor shrinkage (TS), pleural effusion (PE) and atelectasis was investigated for patients and for a CIRS thorax phantom. Sixteen patients were...... volume. Results. Phantom simulations resulted in maximum deviations in mean dose to the GTV-T ( GTV-T ) of -1% for 3 cm PE and centrally located tumor, and + 3% for TS from 5 cm to 1 cm diameter for an anterior tumor location. For the majority of the patients, simulated PE resulted in a decreasing...

  7. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  8. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  9. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  10. Thoracic radiotherapy and breath control: current prospects; Radiotherapie thoracique et controle de la respiration: perspectives actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R. [Institut Sainte-Catherine, 84 - Avignon (France)

    2002-11-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  11. [Head and neck adaptive radiotherapy].

    Science.gov (United States)

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. Feasibility of breathing-adapted PET/CT imaging for radiation therapy of Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Aznar, M C; Andersen, Flemming; Berthelsen, A K

    2011-01-01

    Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... in PET/CT images. These results suggest that advanced therapies (such as SUV-based dose painting) will likely require breathing-adapted PET images and that the relevant SUV thresholds are yet to be investigated....

  13. Feasibility of breathing-adapted PET/CT imaging for radiation therapy of Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Aznar, M C; Andersen, Flemming; Berthelsen, A K

    2011-01-01

    Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... uptake in PET/CT images. These results suggest that advanced therapies (such as SUV-based dose painting) will likely require breathing-adapted PET images and that the relevant SUV thresholds are yet to be investigated....

  14. Voluntary Breath-hold Technique for Reducing Heart Dose in Left Breast Radiotherapy

    Science.gov (United States)

    Bartlett, Frederick R.; Colgan, Ruth M.; Donovan, Ellen M.; Carr, Karen; Landeg, Steven; Clements, Nicola; McNair, Helen A.; Locke, Imogen; Evans, Philip M.; Haviland, Joanne S.; Yarnold, John R.; Kirby, Anna M.

    2014-01-01

    Breath-holding techniques reduce the amount of radiation received by cardiac structures during tangential-field left breast radiotherapy. With these techniques, patients hold their breath while radiotherapy is delivered, pushing the heart down and away from the radiotherapy field. Despite clear dosimetric benefits, these techniques are not yet in widespread use. One reason for this is that commercially available solutions require specialist equipment, necessitating not only significant capital investment, but often also incurring ongoing costs such as a need for daily disposable mouthpieces. The voluntary breath-hold technique described here does not require any additional specialist equipment. All breath-holding techniques require a surrogate to monitor breath-hold consistency and whether breath-hold is maintained. Voluntary breath-hold uses the distance moved by the anterior and lateral reference marks (tattoos) away from the treatment room lasers in breath-hold to monitor consistency at CT-planning and treatment setup. Light fields are then used to monitor breath-hold consistency prior to and during radiotherapy delivery. PMID:25046661

  15. Adapting radiotherapy to hypoxic tumours

    Science.gov (United States)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  16. Adapting radiotherapy to hypoxic tumours

    International Nuclear Information System (INIS)

    Malinen, Eirik; Soevik, Aste; Hristov, Dimitre; Bruland, Oeyvind S; Olsen, Dag Rune

    2006-01-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO 2 -related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO 2 -related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO 2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO 2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure

  17. Image-guided and adaptive radiotherapy

    International Nuclear Information System (INIS)

    Louvel, G.; Chajon, E.; Henry, O.; Cazoulat, G.; Le Maitre, A.; Simon, A.; Bensadoun, R.J.; Crevoisier, R. de

    2012-01-01

    Image-guided radiotherapy (IGRT) aims to take into account anatomical variations occurring during irradiation by visualization of anatomical structures. It may consist of a rigid registration of the tumour by moving the patient, in case of prostatic irradiation for example. IGRT associated with intensity-modulated radiotherapy (IMRT) is strongly recommended when high-dose is delivered in the prostate, where it seems to reduce rectal and bladder toxicity. In case of significant anatomical deformations, as in head and neck tumours (tumour shrinking and decrease in volume of the salivary glands), re-planning appears to be necessary, corresponding to the adaptive radiotherapy. This should ideally be 'monitored' and possibly triggered based on a calculation of cumulative dose, session after session, compared to the initial planning dose, corresponding to the concept of dose-guided adaptive radiotherapy. The creation of 'planning libraries' based on predictable organ positions (as in cervical cancer) is another way of adaptive radiotherapy. All of these strategies still appear very complex and expensive and therefore require stringent validation before being routinely applied. (authors)

  18. Adaptive radiotherapy using helical tomotherapy system

    International Nuclear Information System (INIS)

    Jeswani, Sam; Ruchala, Kenneth; Olivera, Gustavo; Mackie, T.R.

    2008-01-01

    As commonly known in the field, adaptive radiation therapy (ART) is the use of feedback to modify a radiotherapy treatment. There are numerous ways in which this feedback can be received and used, and this presentation will discuss some of the implementations of ART being investigated with a helical TomoTherapy system

  19. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  20. Radiotherapy of lung cancer: the inspiration breath hold with a spirometric monitoring

    International Nuclear Information System (INIS)

    Garcia, R.; Oozeer, R.; Le Thanh, H.; Chastel, D.; Doyen, J.C.; Chauvet, B.; Reboul, F.

    2002-01-01

    A CT acquisition during a free breathing examination generates images of poor quality. It creates an uncertainty on the reconstructed gross tumour volume and dose distribution. The aim of this study is to test the feasibility of a breath hold method applied in all preparation and treatment days. Five patients received a thoracic radiotherapy with the benefit of this procedure. The breathing of the patient was measured with a spirometer. The patient was coached to reproduce a constant level of breath-hold in a deep inspiration. Video glasses helped the patients to fix the breath-hold at the reference level. The patients followed the coaching during preparation and treatment, without any difficulty. The better quality of the CT reconstructed images resulted in an easier contouring. No movements of the gross tumour volume lead to a better coverage. The deep breath hold decreased the volume of irradiated lung. This method improves the reproducibility of the thoracic irradiation. The decrease of irradiated lung volume offers prospects in dose escalation and intensity modulation radiotherapy. (authors)

  1. Introduction of audio gating to further reduce organ motion in breathing synchronized radiotherapy

    International Nuclear Information System (INIS)

    Kubo, H. Dale; Wang Lili

    2002-01-01

    With breathing synchronized radiotherapy (BSRT), a voltage signal derived from an organ displacement detector is usually displayed on the vertical axis whereas the elapsed time is shown on the horizontal axis. The voltage gate window is set on the breathing voltage signal. Whenever the breathing signal falls between the two gate levels, a gate pulse is produced to enable the treatment machine. In this paper a new gating mechanism, audio (or time-sequence) gating, is introduced and is integrated into the existing voltage gating system. The audio gating takes advantage of the repetitive nature of the breathing signal when repetitive audio instruction is given to the patient. The audio gating is aimed at removing the regions of sharp rises and falls in the breathing signal that cannot be removed by the voltage gating. When the breathing signal falls between voltage gate levels as well as between audio-gate levels, the voltage- and audio-gated radiotherapy (ART) system will generate an AND gate pulse. When this gate pulse is received by a linear accelerator, the linear accelerator becomes 'enabled' for beam delivery and will deliver the beam when all other interlocks are removed. This paper describes a new gating mechanism and a method of recording beam-on signal, both of which are, configured into a laptop computer. The paper also presents evidence of some clinical advantages achieved with the ART system

  2. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    International Nuclear Information System (INIS)

    Chao, Ming; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi; Wei, Jie; Li, Tianfang

    2016-01-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  −0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. (paper)

  3. Safely prolonging single breath-holds to >5 min in patients with cancer; feasibility and applications for radiotherapy

    Science.gov (United States)

    Green, Stuart; Stevens, Andrea M; Parveen, Sophia; Stephens, Rebecca; Clutton-Brock, Thomas H

    2016-01-01

    Objective: Multiple, short and deep inspiratory breath-holds with air of approximately 20 s are now used in radiotherapy to reduce the influence of ventilatory motion and damage to healthy tissue. There may be further clinical advantages in delivering each treatment session in only one single, prolonged breath-hold. We have previously developed techniques enabling healthy subjects to breath-hold for 7 min. Here, we demonstrate their successful application in patients with cancer. Methods: 15 patients aged 37–74 years undergoing radiotherapy for breast cancer were trained to breath-hold safely with pre-oxygenation and mechanically induced hypocapnia under simulated radiotherapy treatment conditions. Results: The mean breath-hold duration was 5.3 ± 0.2 min. At breakpoint, all patients were normocapnic and normoxic [mean end-tidal partial pressure of carbon dioxide was 36 ± 1 standard error millimetre of mercury, (mmHg) and mean oxygen saturation was 100 ± 0 standard error %]. None were distressed, nor had gasping, dizziness or disturbed breathing in the post-breath-hold period. Mean blood pressure had risen significantly from 125 ± 3 to 166 ± 4 mmHg at breakpoint (without heart rate falling), but normalized within approximately 20 s of the breakpoint. During breath-holding, the mean linear anteroposterior displacement slope of the L breast marker was radiotherapy treatment conditions for longer than the typical beam-on time of a single fraction. We discuss the important applications of this technique for radiotherapy. Advances in knowledge: We demonstrate for the first time a technique enabling patients with cancer to deliver safely a single prolonged breath-hold of >5 min (10 times longer than currently used in radiotherapy practice), under simulated radiotherapy treatment conditions. PMID:27168468

  4. Cost evaluation of the enslaved to breathing radiotherapy as part of support program to innovative and expensive therapies

    International Nuclear Information System (INIS)

    Remonnay, R.; Morelle, M.; Carrere, M.O.; Giraud, P.

    2009-01-01

    This study had for objective to evaluate the consequences of the implementation of the enslaved breathing on the cost of production of radiotherapy, relatively to the conformal radiotherapy without enslaved breathing (witness group) in the bronchopulmonary cancers and the breast cancers. The tariff aspect was studied. The estimation of the complete cost of the treatment enlighten the inadequacy of the pricing for innovation. (N.C.)

  5. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Wenz, Frederik; Bulsara, Max

    2014-01-01

    The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival....

  6. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman; de Blanck, Steen Riisgaard; Josipovic, Mirjana

    2017-01-01

    Purpose: The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath hold (DISH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients.Methods: Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course...... of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm.Results: A mean...... small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. (C) 2017 Elsevier B.V. All rights reserved....

  7. Integration of breathing in radiotherapy: contribution of the image deformable registration

    International Nuclear Information System (INIS)

    Boldea, Vlad

    2006-01-01

    As taking organ movements and deformations into account in radiotherapy for the treatment of lung cancer is a challenge as it allows the delivered dose to be increased while better sparing surrounding sane tissues, this research thesis addresses non-rigid (or deformable) registration iconic methods applied to thorax X ray computed tomography (X-ray CT) 3D acquisitions. The objective is to extract the information regarding lung and tumour movement and deformation. The author thus reports the development of deformable registration framework with several methods of regularisation of vector fields. Three main studies have been performed and are reported. In the first one, deformable registration allowed the breathe blockage reproducibility to be controlled. Experiments performed on ten patients showed that this blockage is efficient (displacement less than 5 mm), except for three of them with functional anomalies. In a second study, 4D X-ray CT acquisitions (3D X-ray CT images acquired at different moments of the normal breathing cycle) have been analysed to extract and follow thorax movements and deformations in order to take them into account in free breathing and to perform 4D dynamic dosimetric studies. A first 4D X-ray CT image model has been developed from 3D X-ray CT images acquired in breathe blockage at the end of expiration and at the end on inhalation [fr

  8. Online Adaptive Replanning Method for Prostate Radiotherapy

    International Nuclear Information System (INIS)

    Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen

    2010-01-01

    Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 ± 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.

  9. Implementation of single-breath-hold cone beam CT guided hypofraction radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Zhong, Renming; Lu, You; Wang, Jin; Zhou, Lin; Xu, Feng; Liu, Li; Zhou, Jidan; Jiang, Xiaoqin; Chen, Nianyong; Bai, Sen

    2014-01-01

    To analyze the feasibility of active breath control (ABC), the lung tumor reproducibility and the rationale for single-breath-hold cone beam CT (CBCT)-guided hypofraction radiotherapy. Single-breath-hold CBCT images were acquired using ABC in a cohort of 83 lung cancer patients (95 tumors) treated with hypofraction radiotherapy. For all alignments between the reference CT and CBCT images (including the pre-correction, post-correction and post-treatment CBCT images), the tumor reproducibility was evaluated via online manual alignment of the tumors, and the vertebral bone uncertainties were evaluated via offline manual alignment of the vertebral bones. The difference between the tumor reproducibility and the vertebral bone uncertainty represents the change in the tumor position relative to the vertebral bone. The relative tumor positions along the coronal, sagittal and transverse axes were measured based on the reference CT image. The correlations between the vertebral bone uncertainty, the relative tumor position, the total treatment time and the tumor reproducibility were evaluated using the Pearson correlations. Pre-correction, the systematic/random errors of tumor reproducibility were 4.5/2.6 (medial-lateral, ML), 5.1/4.8 (cranial-caudal, CC) and 4.0/3.6 mm (anterior-posterior, AP). These errors were significantly decreased to within 3 mm, both post-correction and post-treatment. The corresponding PTV margins were 4.7 (ML), 7.4 (CC) and 5.4 (AP) mm. The changes in the tumor position relative to the vertebral bone displayed systematic/random errors of 2.2/2.0 (ML), 4.1/4.4 (CC) and 3.1/3.3 (AP) mm. The uncertainty of the vertebral bone significantly correlated to the reproducibility of the tumor position (P < 0.05), except in the CC direction post-treatment. However, no significant correlation was detected between the relative tumor position, the total treatment time and the tumor reproducibility (P > 0.05). Using ABC for single-breath-hold CBCT guidance is an

  10. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Brock, Kristy K.; Kazanjian, Sahira; Fitch, Dwight; McGinn, Cornelius J.; Lawrence, Theodore S.; Haken, Randall K. ten; Balter, James

    2001-01-01

    Purpose: To evaluate the intrafraction and interfraction reproducibility of liver immobilization using active breathing control (ABC). Methods and Materials: Patients with unresectable intrahepatic tumors who could comfortably hold their breath for at least 20 s were treated with focal liver radiation using ABC for liver immobilization. Fluoroscopy was used to measure any potential motion during ABC breath holds. Preceding each radiotherapy fraction, with the patient setup in the nominal treatment position using ABC, orthogonal radiographs were taken using room-mounted diagnostic X-ray tubes and a digital imager. The radiographs were compared to reference images using a 2D alignment tool. The treatment table was moved to produce acceptable setup, and repeat orthogonal verification images were obtained. The positions of the diaphragm and the liver (assessed by localization of implanted radiopaque intra-arterial microcoils) relative to the skeleton were subsequently analyzed. The intrafraction reproducibility (from repeat radiographs obtained within the time period of one fraction before treatment) and interfraction reproducibility (from comparisons of the first radiograph for each treatment with a reference radiograph) of the diaphragm and the hepatic microcoil positions relative to the skeleton with repeat breath holds using ABC were then measured. Caudal-cranial (CC), anterior-posterior (AP), and medial-lateral (ML) reproducibility of the hepatic microcoils relative to the skeleton were also determined from three-dimensional alignment of repeat CT scans obtained in the treatment position. Results: A total of 262 fractions of radiation were delivered using ABC breath holds in 8 patients. No motion of the diaphragm or hepatic microcoils was observed on fluoroscopy during ABC breath holds. From analyses of 158 sets of positioning radiographs, the average intrafraction CC reproducibility (σ) of the diaphragm and hepatic microcoil position relative to the skeleton

  11. Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Berbeco, Ross I [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [Department of Radiology, NTT Hospital, Sapporo (Japan); Shirato, Hiroki, E-mail: maristophanous@lroc.harvard.ed [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan)

    2010-08-07

    The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion

  12. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E. [Mayo Clinic (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  13. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    International Nuclear Information System (INIS)

    Tryggestad, E.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  14. Adaptive radiotherapy: what to do and to get from it

    International Nuclear Information System (INIS)

    Di, Y.

    2015-01-01

    Adaptive radiotherapy individualizes patient treatment by systematically including treatment image feedback in the treatment planning and dose delivering control process. Treatment image feedback can provide information of daily patient treatment position, volume and delivered dose in organs of interest, as well as dose-response-induced bio-activity in tumor and normal tissues. (Author)

  15. Automated Image-Based Procedures for Adaptive Radiotherapy

    DEFF Research Database (Denmark)

    Bjerre, Troels

    be employed for contour propagation in adaptive radiotherapy. - MRI-radiotherapy devices have the potential to offer near real-time intrafraction imaging without any additional ionising radiation. It is detailed how the use of multiple, orthogonal slices can form the basis for reliable 3D soft tissue tracking.......-based treatment replanning and real-time intrafraction guidance techniques. The selected contributions detail a number of findings and techniques, in particular: - For ten head & neck cancer patients, changes in tumour density were well described by linear functions with patient-specific slope and intercept...

  16. Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam

    Science.gov (United States)

    Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.

    2018-03-01

    Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.

  17. Automated daily breath hold stability measurements by real-time imaging in radiotherapy of breast cancer

    NARCIS (Netherlands)

    De Boer, Hans C J; Van Den Bongard, Desirée J G; van Asselen, B

    2016-01-01

    Background and purpose Breath hold is increasingly used for cardiac sparing in left-sided breast cancer irradiation. We have developed a fast automated method to verify breath hold stability in each treatment fraction. Material and methods We evaluated 504 patients treated with breath hold. Moderate

  18. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2010-02-01

    Full Text Available Abstract Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT guided hypofractionated radiotherapy with active breathing control (ABC for patients with non-small cell lung cancer (NSCLC or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR, superior-inferior (SI, anterior-posterior (AP directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20% grade1-2 acute pneumonitis, 3 (15% grade1 acute esophagitis, 2 (10% grade1 late pneumonitis and 1 (5% grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used.

  19. Inter- and Intrafraction Variability in Liver Position in Non-Breath-Hold Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Case, Robert B.; Sonke, Jan-Jakob; Moseley, Douglas J.; Kim, John; Brock, Kristy K.; Dawson, Laura A.

    2009-01-01

    Purpose: The inter- and intrafraction variability of liver position was assessed in patients with liver cancer treated with kilovoltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy. Methods and Materials: A total of 314 CBCT scans obtained in the treatment position immediately before and after each fraction were evaluated from 29 patients undergoing six-fraction, non-breath-hold stereotactic body radiotherapy for unresectable liver cancer. Off-line, the CBCT scans were sorted into 10 bins, according to the phase of respiration. The liver position (relative to the vertebral bodies) was measured using rigid alignment of the exhale CBCT liver with the exhale planning CT liver, following the alignment of the vertebrae. The interfraction liver position change was measured by comparing the pretreatment CBCT scans, and the intrafraction change was measured from the CBCT scans obtained immediately before and after each fraction. Results: The mean amplitude of liver motion for all patients was 1.8 mm (range, 0.1-5.7), 8.0 mm (range, 0.1-18.8), and 4.3 mm (range 0.1-12.1) in the medial-lateral (ML), craniocaudal (CC), and anteroposterior (AP) directions, respectively. The mean absolute ML, CC, and AP interfraction changes in liver position were 2.0 mm (90th percentile, 4.2), 3.5 mm (90th percentile, 7.3), and 2.3 mm (90th percentile, 4.7). The mean absolute intrafraction ML, CC, and AP changes were 1.3 mm (90th percentile, 2.9), 1.6 mm (90th percentile, 3.6), and 1.5 mm (90th percentile, 3.1), respectively. The interfraction changes were significantly larger than the intrafraction changes, with a CC systematic error of 2.9 and 1.1 mm, respectively. The intraobserver reproducibility (σ, n = 29 fractions) was 1.3 mm in the ML, 1.4 mm in the CC, and 1.6 mm in the AP direction. Conclusion: Interfraction liver position changes relative to the vertebral bodies are an important source of geometric uncertainty, providing a rationale for prefraction

  20. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Science.gov (United States)

    2010-01-01

    Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used. PMID:20187962

  1. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    International Nuclear Information System (INIS)

    Shen, Yali; Zhang, Hong; Wang, Jin; Zhong, Renming; Jiang, Xiaoqing; Xu, Qinfeng; Wang, Xin; Bai, Sen; Xu, Feng

    2010-01-01

    To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used

  2. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Eccles, Cynthia; Bissonnette, Jean-Pierre; Brock, Kristy K.

    2005-01-01

    Purpose: A six-fraction, high-precision radiotherapy protocol for unresectable liver cancer has been developed in which active breathing control (ABC) is used to immobilize the liver and daily megavoltage (MV) imaging and repositioning is used to decrease geometric uncertainties. We report the accuracy of setup in the first 20 patients consecutively treated using this approach. Methods and materials: After setup using conventional skin marks and lasers, orthogonal MV images were acquired with the liver immobilized using ABC. The images were aligned to reference digitally reconstructed radiographs using the diaphragm for craniocaudal (CC) alignment and the vertebral bodies for anterior-posterior (AP) and mediolateral (ML) alignment. Adjustments were made for positioning errors >3 mm. Verification imaging was repeated after repositioning to assess for residual positioning error. Offline image matching was conducted to determine the setup accuracy using this approach compared with the initial setup error before repositioning. Real-time beam's-eye-view MV movies containing an air-diaphragm interface were also evaluated. Results: A total of 405 images were evaluated from 20 patients. Repositioning occurred in 109 of 120 fractions because of offsets >3 mm. Three to eight beam angles, with up to four segments per field, were used for each isocenter. Breath holds of up to 27 s were used for imaging and treatment. The average time from the initial verification image to the last treatment beam was 21 min. Image guidance and repositioning reduced the population random setup errors (σ) from 6.5 mm (CC), 4.2 mm (ML), and 4.7 mm (AP) to 2.5 mm (CC), 2.8 mm (ML), and 2.9 mm (AP). The average individual random setup errors (σ) were reduced from 4.5 mm (CC), 3.2 mm (AP), and 2.5 mm (ML) to 2.2 mm (CC), 2.0 mm (AP), and 2.0 mm (ML). The standard deviation of the distribution of systematic deviations (Σ) was also reduced from 5.1 mm (CC), 3.4 mm (ML), and 3.1 mm (AP) to 1.4 mm (CC

  3. 14C-lactose breath tests during pelvic radiotherapy: the effect of the amount of small bowel irradiated

    International Nuclear Information System (INIS)

    Weiss, R.G.; Stryker, J.A.

    1982-01-01

    Thirty patients who were undergoing pelvic radiotherapy had 14 C-lactose breath tests performed in the first and fifth weeks of treatment. In Group I (21 patients), a significant portion of the small intestine was irradiated, and in Group II (9 patients), only a small portion of the small intestine was irradiated. In Group I, the average reductions in the excretion of ingested 14 C between the first- and fifth-week tests were 41.5% at 1/2 hour postingestion (p 0.05). The data suggest that lactose malabsorption is a factor in the etiology of the nausea, vomiting, and diarrhea experienced by patients who are undergoing pelvic radiotherapy, and that the amount of bowel included in the treatment volume significantly influences the degree of malabsorption

  4. Navigator channel adaptation to reconstruct three dimensional heart volumes from two dimensional radiotherapy planning data

    International Nuclear Information System (INIS)

    Ng, Angela; Nguyen, Thao-Nguyen; Moseley, Joanne L; Hodgson, David C; Sharpe, Michael B; Brock, Kristy K

    2012-01-01

    Biologically-based models that utilize 3D radiation dosimetry data to estimate the risk of late cardiac effects could have significant utility for planning radiotherapy in young patients. A major challenge arises from having only 2D treatment planning data for patients with long-term follow-up. In this study, we evaluate the accuracy of an advanced deformable image registration (DIR) and navigator channels (NC) adaptation technique to reconstruct 3D heart volumes from 2D radiotherapy planning images for Hodgkin's Lymphoma (HL) patients. Planning CT images were obtained for 50 HL patients who underwent mediastinal radiotherapy. Twelve image sets (6 male, 6 female) were used to construct a male and a female population heart model, which was registered to 23 HL 'Reference' patients' CT images using a DIR algorithm, MORFEUS. This generated a series of population-to-Reference patient specific 3D deformation maps. The technique was independently tested on 15 additional 'Test' patients by reconstructing their 3D heart volumes using 2D digitally reconstructed radiographs (DRR). The technique involved: 1) identifying a matching Reference patient for each Test patient using thorax measurements, 2) placement of six NCs on matching Reference and Test patients' DRRs to capture differences in significant heart curvatures, 3) adapting the population-to-Reference patient-specific deformation maps to generate population-to-Test patient-specific deformation maps using linear and bilinear interpolation methods, 4) applying population-to-Test patient specific deformation to the population model to reconstruct Test-patient specific 3D heart models. The percentage volume overlap between the NC-adapted reconstruction and actual Test patient's true heart volume was calculated using the Dice coefficient. The average Dice coefficient expressed as a percentage between the NC-adapted and actual Test model was 89.4 ± 2.8%. The modified NC adaptation

  5. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  6. SU-F-T-644: Reproducibility of Target Position Using Moderate Voluntary Breath- Hold During Liver Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Cui, G; Trakul, N; Chang, E; Shiu, A

    2016-01-01

    Purpose: To evaluate the reproducibility of target position using moderate voluntary breath-hold during liver stereotactic ablative radiotherapy (SABR). Methods: Two patients who underwent liver SABR on a Varian TrueBeam STx linac were used for this study. Fiducial markers were placed in and around the target in the liver as surrogates for the target position and motion. GTVs were contoured by assessing tumor extent on contrast enhanced CT. The PTV was created from the GTV by adding 2 mm margins to account for the residual motion during breath-holds. A portable biofeedback system was used to facilitate the breath-hold to a reproducible position. The Varian RPM system was used for gating the linac. Proceeding each treatment, orthogonal kV pairs were taken, and alignment to nearby bony anatomy was performed. Then the breath-hold CBCT was acquired to align the fiducial markers. On-line fluoroscopy was used to fine-tune the breath-hold gating thresholds to correlate with the positions of the fiducial markers. The inter-fraction reproducibility of the target was evaluated by the offsets of the daily breath-hold CBCTs from the paired kV matches as a direct measure of the target position relative to the bony anatomy. The intra-fraction reproducibility of the target position was assessed by the gated window of the RPM marker block for each fraction. Results: The absolute mean offsets between the CBCT and paired kV matches in the vertical, longitudinal, and lateral directions were 0.06 cm, 0.10 cm, and 0.06 cm for patient 1, and 0.37 cm, 0.62 cm, and 0.09 cm for patient 2. The gated window of the RPM marker block for the breath-hold for each fraction was within 0.63 ± 0.16 cm and 0.59 ± 0.12 cm for patients 1 and 2, respectively. Conclusion: Moderate voluntary breath-hold showed good inter- and intra-fraction reproducibility of target position during liver SABR.

  7. SU-F-T-644: Reproducibility of Target Position Using Moderate Voluntary Breath- Hold During Liver Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Trakul, N; Chang, E; Shiu, A [University Southern California, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To evaluate the reproducibility of target position using moderate voluntary breath-hold during liver stereotactic ablative radiotherapy (SABR). Methods: Two patients who underwent liver SABR on a Varian TrueBeam STx linac were used for this study. Fiducial markers were placed in and around the target in the liver as surrogates for the target position and motion. GTVs were contoured by assessing tumor extent on contrast enhanced CT. The PTV was created from the GTV by adding 2 mm margins to account for the residual motion during breath-holds. A portable biofeedback system was used to facilitate the breath-hold to a reproducible position. The Varian RPM system was used for gating the linac. Proceeding each treatment, orthogonal kV pairs were taken, and alignment to nearby bony anatomy was performed. Then the breath-hold CBCT was acquired to align the fiducial markers. On-line fluoroscopy was used to fine-tune the breath-hold gating thresholds to correlate with the positions of the fiducial markers. The inter-fraction reproducibility of the target was evaluated by the offsets of the daily breath-hold CBCTs from the paired kV matches as a direct measure of the target position relative to the bony anatomy. The intra-fraction reproducibility of the target position was assessed by the gated window of the RPM marker block for each fraction. Results: The absolute mean offsets between the CBCT and paired kV matches in the vertical, longitudinal, and lateral directions were 0.06 cm, 0.10 cm, and 0.06 cm for patient 1, and 0.37 cm, 0.62 cm, and 0.09 cm for patient 2. The gated window of the RPM marker block for the breath-hold for each fraction was within 0.63 ± 0.16 cm and 0.59 ± 0.12 cm for patients 1 and 2, respectively. Conclusion: Moderate voluntary breath-hold showed good inter- and intra-fraction reproducibility of target position during liver SABR.

  8. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuhiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakamura, Akira [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shiinoki, Takehiro [Department of Nuclear Engineering, Kyoto University Graduate School of Engineering, Kyoto (Japan); Matsuo, Yukinori [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakata, Manabu [Clinical Radiology Service Division, Kyoto University Hospital, Kyoto (Japan); Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  9. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    International Nuclear Information System (INIS)

    Shanmugam, Senthilkumar

    2014-01-01

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle, to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation

  10. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Senthilkumar [Madurai Medical College ' Govt. Rajaji Hospital, Madurai (India)

    2014-06-01

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle, to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation

  11. Feasibility and potential utility of multicomponent exhaled breath analysis for predicting development of radiation pneumonitis after stereotactic ablative radiotherapy.

    Science.gov (United States)

    Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian

    2014-07-01

    In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.

  12. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... hypophthalmus inhabits the Mekong river system covering two climate zones during its life cycle and migrating more than 2000 km from hatching in northern Laos to its adult life in the southern delta region. It is a facultative air-breather with well-developed gills and air-breathing organ and an unusual...... circulatory bauplan. Here we examine the question of its optimal temperature through aspects of its cardio respiratory physiology including temperature effects on blood oxygen binding, ventilation and blood gasses, stereological measures of cardiorespiratory system, metabolic rate and growth. Comparing...

  13. Validation of an online replanning technique for prostate adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peng Cheng; Chen Guangpei; Ahunbay, Ergun; Wang Dian; Lawton, Colleen; Li, X Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2011-06-21

    We have previously developed an online adaptive replanning technique to rapidly adapt the original plan according to daily CT. This paper reports the quality assurance (QA) developments in its clinical implementation for prostate cancer patients. A series of pre-clinical validation tests were carried out to verify the overall accuracy and consistency of the online replanning procedure. These tests include (a) phantom measurements of 22 individual patient adaptive plans to verify their accuracy and deliverability and (b) efficiency and applicability of the online replanning process. A four-step QA procedure was established to ensure the safe and accurate delivery of an adaptive plan, including (1) offline phantom measurement of the original plan, (2) online independent monitor unit (MU) calculation for a redundancy check, (3) online verification of plan-data transfer using an in-house software and (4) offline validation of actually delivered beam parameters. The pre-clinical validations demonstrate that the newly implemented online replanning technique is dosimetrically accurate and practically efficient. The four-step QA procedure is capable of identifying possible errors in the process of online adaptive radiotherapy and to ensure the safe and accurate delivery of the adaptive plans. Based on the success of this work, the online replanning technique has been used in the clinic to correct for interfractional changes during the prostate radiation therapy.

  14. Validation of an online replanning technique for prostate adaptive radiotherapy

    International Nuclear Information System (INIS)

    Peng Cheng; Chen Guangpei; Ahunbay, Ergun; Wang Dian; Lawton, Colleen; Li, X Allen

    2011-01-01

    We have previously developed an online adaptive replanning technique to rapidly adapt the original plan according to daily CT. This paper reports the quality assurance (QA) developments in its clinical implementation for prostate cancer patients. A series of pre-clinical validation tests were carried out to verify the overall accuracy and consistency of the online replanning procedure. These tests include (a) phantom measurements of 22 individual patient adaptive plans to verify their accuracy and deliverability and (b) efficiency and applicability of the online replanning process. A four-step QA procedure was established to ensure the safe and accurate delivery of an adaptive plan, including (1) offline phantom measurement of the original plan, (2) online independent monitor unit (MU) calculation for a redundancy check, (3) online verification of plan-data transfer using an in-house software and (4) offline validation of actually delivered beam parameters. The pre-clinical validations demonstrate that the newly implemented online replanning technique is dosimetrically accurate and practically efficient. The four-step QA procedure is capable of identifying possible errors in the process of online adaptive radiotherapy and to ensure the safe and accurate delivery of the adaptive plans. Based on the success of this work, the online replanning technique has been used in the clinic to correct for interfractional changes during the prostate radiation therapy.

  15. Accuracy of image guidance using free-breathing cone-beam computed tomography for stereotactic lung radiotherapy.

    Science.gov (United States)

    Kamomae, Takeshi; Monzen, Hajime; Nakayama, Shinichi; Mizote, Rika; Oonishi, Yuuichi; Kaneshige, Soichiro; Sakamoto, Takashi

    2015-01-01

    Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.

  16. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Amy [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Gaebler, Carl P.; Huang, Hailiang; Olek, Devin [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-12-01

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for

  17. Adaptive treatment-length optimization in spatiobiologically integrated radiotherapy

    Science.gov (United States)

    Ajdari, Ali; Ghate, Archis; Kim, Minsun

    2018-04-01

    Recent theoretical research on spatiobiologically integrated radiotherapy has focused on optimization models that adapt fluence-maps to the evolution of tumor state, for example, cell densities, as observed in quantitative functional images acquired over the treatment course. We propose an optimization model that adapts the length of the treatment course as well as the fluence-maps to such imaged tumor state. Specifically, after observing the tumor cell densities at the beginning of a session, the treatment planner solves a group of convex optimization problems to determine an optimal number of remaining treatment sessions, and a corresponding optimal fluence-map for each of these sessions. The objective is to minimize the total number of tumor cells remaining (TNTCR) at the end of this proposed treatment course, subject to upper limits on the biologically effective dose delivered to the organs-at-risk. This fluence-map is administered in future sessions until the next image is available, and then the number of sessions and the fluence-map are re-optimized based on the latest cell density information. We demonstrate via computer simulations on five head-and-neck test cases that such adaptive treatment-length and fluence-map planning reduces the TNTCR and increases the biological effect on the tumor while employing shorter treatment courses, as compared to only adapting fluence-maps and using a pre-determined treatment course length based on one-size-fits-all guidelines.

  18. Deep inspiration breath-hold radiotherapy for lung cancer: impact on image quality and registration uncertainty in cone beam CT image guidance

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte F; Bangsgaard, Jens Peter

    2016-01-01

    OBJECTIVE: We investigated the impact of deep inspiration breath-hold (DIBH) and tumour baseline shifts on image quality and registration uncertainty in image-guided DIBH radiotherapy (RT) for locally advanced lung cancer. METHODS: Patients treated with daily cone beam CT (CBCT)-guided free...

  19. Assessment of voluntary deep inspiration breath-hold with CINE imaging for breast radiotherapy.

    Science.gov (United States)

    Estoesta, Reuben Patrick; Attwood, Lani; Naehrig, Diana; Claridge-Mackonis, Elizabeth; Odgers, David; Martin, Darren; Pham, Melissa; Toohey, Joanne; Carroll, Susan

    2017-10-01

    Deep Inspiration Breath-Hold (DIBH) techniques for breast cancer radiation therapy (RT) have reduced cardiac dose compared to Free Breathing (FB). Recently, a voluntary deep inspiration breath-hold (vDIBH) technique was established using in-room lasers and skin tattoos to monitor breath-hold. An in-house quality assessment of positional reproducibility during RT delivery with vDIBH in patients with left-sided breast cancer was evaluated. The electronic portal imaging device (EPID) was used in cinematographic (CINE) mode to capture a sequence of images during beam delivery. Weekly CINE images were retrospectively assessed for 20 left-sided breast cancer patients receiving RT in vDIBH, and compared with CINE images of 20 patients treated in FB. The intra-beam motion was assessed and the distance from the beam central axis (CA) to the internal chest wall (ICW) was measured on each CINE image. These were then compared to the planned distance on digitally reconstructed radiograph (DRR). The maximum intra-beam motion for any one patient measurement was 0.30 cm for vDIBH and 0.20 cm for FB. The mean difference between the distance from the CA to ICW on DRR and the equivalent distance on CINE imaging (as treated) was 0.28 cm (SD 0.17) for vDIBH patients and 0.25 cm (SD 0.14) for FB patients (P = 0.458). The measured values were comparable for patients undergoing RT in vDIBH, and for those in FB. This quality assessment showed that using in-room lasers and skin tattoos to independently monitor breath-hold in vDIBH as detected by 'on-treatment' CINE imaging is safe and effective. © 2017 The Royal Australian and New Zealand College of Radiologists.

  20. Heart position variability during voluntary moderate deep inspiration breath-hold radiotherapy for breast cancer determined by repeat CBCT scans.

    Science.gov (United States)

    van Haaren, Paul; Claassen-Janssen, Fiere; van de Sande, Ingrid; Boersma, Liesbeth; van der Sangen, Maurice; Hurkmans, Coen

    2017-08-01

    Voluntary moderate deep inspiration breath hold (vmDIBH) in left-sided breast cancer radiotherapy reduces cardiac dose. The aim of this study was to investigate heart position variability in vmDIBH using CBCT and to compare this variability with differences in heart position between vmDIBH and free breathing (FB). For 50 patients initial heart position with respect to the field edge (HP-FE) was measured on a vmDIBH planning CT scan. Breath-hold was monitored using an in-house developed vertical plastic stick. On pre-treatment CBCT scans, heart position variability with respect to the field edge (Δ HP-FE ) was measured, reflecting heart position variability when using an offline correction protocol. After registering the CBCT scan to the planning CT, heart position variability with respect to the chest wall (Δ HP-CW ) was measured, reflecting heart position variability when using an online correction protocol. As a control group, vmDIBH and FB computed tomography (CT) scans were acquired for 30 patients and registering both scans on the chest wall. For 34 out of 50 patients, the average HP-FE and HP-CW increased over the treatment course in comparison to the planning CT. Averaged over all patients and all treatment fractions, the Δ HP-FE and the Δ HP-CW was 0.8±4.2mm (range -9.4-+10.6mm) and 1.0±4.4mm (range -8.3-+10.4mm) respectively. The average gain in heart to chest wall distance was 11.8±4.6mm when using vmDIBH instead of FB. In conclusion, substantial variability in heart position using vmDIBH was observed during the treatment course. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. 14C-lactose breath tests during pelvic radiotherapy: the effect of the amount of small bowel irradiated

    International Nuclear Information System (INIS)

    Weiss, R.G.; Stryker, J.A.

    1982-01-01

    Thirty patients who were undergoing pelvic radiotherapy had 14 C-lactose breath tests performed in the first and fifth weeks of treatment. In Group I (21 patients), a significant portion of the small intestine was irradiated, and in Group II (9 patients), only a small portion of the small intestine was irradiated. In Group I, the average reductions in the excretion of ingested 14 C between the first- and fifth-week tests were 41.5% at 1/2 hour postingestion (p less than 0.05), and 21.8% at 1 hour postingestion (p less than 0.05). In Group II, the percentage reductions were 11.8% and 3.7% at 1/2 and 1 hour, respectively (p greater than 0.05). The data suggest that lactose malabsorption is a factor in the etiology of the nausea, vomiting, and diarrhea experienced by patients who are undergoing pelvic radiotherapy, and that the amount of bowel included in the treatment volume significantly influences the degree of malabsorption

  2. Adaptive radiotherapy for invasive bladder cancer: A feasibility study

    International Nuclear Information System (INIS)

    Pos, Floris J.; Hulshof, Maarten; Lebesque, Joos; Lotz, Heidi; Tienhoven, Geertjan van; Moonen, Luc; Remeijer, Peter

    2006-01-01

    Purpose: To evaluate the feasibility of adaptive radiotherapy (ART) in combination with a partial bladder irradiation. Methods and Materials: Twenty-one patients with solitary T1-T4 N0M0 bladder cancer were treated to the bladder tumor + 2 cm margin planning target volume (PTV CONV ). During the first treatment week, five daily computed tomography (CT) scans were made immediately before or after treatment. In the second week, a volume was constructed encompassing the gross tumor volumes (GTVs) on the planning scan and the five CT scans (GTV ART ). The GTV ART was expanded with a 1 cm margin for the construction of a PTV ART . Starting in the third week, patients were treated to PTV ART . Repeat CT scans were used to evaluate treatment accuracy. Results: On 5 of 91 repeat CT scans (5%), the GTV was not adequately covered by the PTV ART . On treatment planning, there was only one scan in which the GTV was not adequately covered by the 95% isodose. On average, the treatment volumes were reduced by 40% when comparing PTV ART with PTV CONV (p < 0.0001). Conclusion: The adaptive strategy for bladder cancer is an effective way to deal with treatment errors caused by variations in bladder tumor position and leads to a substantial reduction in treatment volumes

  3. Adaptive radiotherapy for invasive bladder cancer: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Floris J [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Hulshof, Maarten [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Lebesque, Joos [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Lotz, Heidi [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Tienhoven, Geertjan van [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Moonen, Luc [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2006-03-01

    Purpose: To evaluate the feasibility of adaptive radiotherapy (ART) in combination with a partial bladder irradiation. Methods and Materials: Twenty-one patients with solitary T1-T4 N0M0 bladder cancer were treated to the bladder tumor + 2 cm margin planning target volume (PTV{sub CONV}). During the first treatment week, five daily computed tomography (CT) scans were made immediately before or after treatment. In the second week, a volume was constructed encompassing the gross tumor volumes (GTVs) on the planning scan and the five CT scans (GTV{sub ART}). The GTV{sub ART} was expanded with a 1 cm margin for the construction of a PTV{sub ART}. Starting in the third week, patients were treated to PTV{sub ART}. Repeat CT scans were used to evaluate treatment accuracy. Results: On 5 of 91 repeat CT scans (5%), the GTV was not adequately covered by the PTV{sub ART}. On treatment planning, there was only one scan in which the GTV was not adequately covered by the 95% isodose. On average, the treatment volumes were reduced by 40% when comparing PTV{sub ART} with PTV{sub CONV} (p < 0.0001). Conclusion: The adaptive strategy for bladder cancer is an effective way to deal with treatment errors caused by variations in bladder tumor position and leads to a substantial reduction in treatment volumes.

  4. MRI assessment of cervical cancer for adaptive radiotherapy

    International Nuclear Information System (INIS)

    Dimopoulos, Johannes C.A.; Schirl, Gertrude; Baldinger, Anja; Poetter, Richard; Helbich, Thomas H.

    2009-01-01

    Purpose: To assess the importance of the information obtained from MRI for adaptive cervix cancer radiotherapy. Patients and methods: 49 patients with cervix cancer, treated by external-beam radiotherapy (EBRT) and MRI-assisted high-dose-rate brachytherapy ± concomitant cisplatin, underwent MRI at diagnosis and at the time of brachytherapy fractions. 190 MRI examinations were performed. Pretreatment scans were correlated with clinical examination (CE) findings. Measurements in 3-D of the tumor extension and also of the distance from the tumor to the pelvic side wall were performed using both MRI and CE. The tumor volume regression induced initially by EBRT and the subsequent regression after each brachytherapy fraction were assessed. Results: MRI and CE showed 92% agreement in overall parametrial staging and 73% agreement in terms of vaginal involvement. There was, however, disagreement in parametrial side (right/left) classification in 25% of the parametria examined. These were patients with unilateral displacement of the cervix and contralateral invasion of the parametrium. The mean tumor volume on the pretreatment MRI scan (GTVD) was 61 cm 3 . At the time of the four brachytherapy fractions the mean was 16 cm 3 , 10 cm 3 , 9 cm 3 , and 8 cm 3 , defined as the GTVBT plus the gray zones in the parametria. Conclusion: CE and MRI findings agree well in terms of overall staging. The clinical assessment of side-specific parametrial invasion improved when having access to the additional knowledge obtained from MRI. The greatest decrease in tumor volume occurs during EBRT, whereas tumor regression between the first and subsequent brachytherapy fractions is minor. (orig.)

  5. SU-E-T-450: How Important Is a Reproducible Breath Hold for DIBH Breast Radiotherapy?

    International Nuclear Information System (INIS)

    Liu, H; Wentworth, S; Sintay, B; Wiant, D

    2015-01-01

    Purpose: Deep inspiration breath hold (DIBH) for left-sided breast cancer has been shown to reduce heart dose. Surface imaging helps to ensure accurate breast positioning, but does not guarantee a reproducible breath hold (BH) at DIBH treatments. We examine the effects of variable BH positions for DIBH treatments. Methods: Twenty-Five patients with free breathing (FB) and DIBH scans were reviewed. Four plans were created for each patient: 1) FB, 2) DIBH, 3) FB-DIBH – the DIBH plans were copied to the FB images and recalculated (image registration was based on breast tissue), and 4) P-DIBH – a partial BH with the heart shifted midway between the FB and DIBH positions. The FB-DIBH plans give “worst case” scenarios for surface imaging DIBH, where the breast is aligned by surface imaging but the patient is not holding their breath. Students t-tests were used to compare dose metrics. Results: The DIBH plans gave lower heart dose and comparable breast coverage versus FB in all cases. The FB-DIBH plans showed no significant difference versus FB plans for breast coverage, mean heart dose, or maximum heart dose (p >= 0.10). The mean heart dose differed between FB-DIBH and FB by < 2 Gy for all cases, the maximum heart dose differed by < 2 Gy for 21 cases. The P-DIBH plans showed significantly lower mean heart dose than FB (p = 0.01). The mean heart doses for the P-DIBH plans were < FB for 22 cases, the maximum dose < FB for 18 cases. Conclusions: A DIBH plan delivered to a FB patient set-up with surface imaging will yield similar dosimetry to a plan created and delivered FB. A DIBH plan delivered with even a partial BH can give reduced heart dose compared to FB techniques when the breast tissue is well aligned

  6. Geometric uncertainties in voluntary deep inspiration breath hold radiotherapy for locally advanced lung cancer

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, G F; Dueck, Jenny

    2016-01-01

    BACKGROUND AND PURPOSE: Deep inspiration breath hold (DIBH) increases lung volume and can potentially reduce treatment-related toxicity in locally advanced lung cancer. We estimated geometric uncertainties in visually guided voluntary DIBH and derived the appropriate treatment margins for different...... image-guidance strategies. MATERIAL AND METHODS: Seventeen patients were included prospectively. An optical marker-based respiratory monitoring with visual guidance enabled comfortable DIBHs, adjusted to each patient's performance. All patients had three consecutive DIBH CTs at each of the treatment...

  7. Design of planning target volume margin using an active breathing control and Varian image-guided radiotherapy (IGRT) system in unresectable liver tumor

    International Nuclear Information System (INIS)

    Yue Jinbo; Yu Jinming; Liu Jing; Liu Tonghai; Yin Yong; Shi Xuetao; Song Jinlong

    2007-01-01

    Objective: To define the planning target volume(PTV) margin with an active breathing control (ABC) and the Varian image-guided radiotherapy (IGRT) system. Methods: Thirteen patients with liver cancer were treated with radiotherapy from May 2006 to September 2006. Prior to radiotherapy, all patients had undergone transarterial chemoembolization (TACE) by infusing a mixture of iodized oil contrast medium and chemotherapeutic agents, kV fluoroscopy was used to measure the potential motion of lipiodol spot positions during ABC breath-holds. ABC was used for planning CT scan and radiation delivery, with the breath held at the same phase of the respiratory cycle (near end-exhalation). Cone beam CT (CBCT) was taken using Varian IGRT system, which was then compared online with planning CT using a 3 D-3 D matching tool. Analysis relied on lipiodol spots on planning CT and CBCT manually. The treatment table was moved to produce acceptable setup before treatment delivery. Repeated CBCT image and another analysis were obtained after irradiation. Results: No motion of the intrahepatic tumor was observed on fluoroscopy during ABC breath-holds. The estimated required PTV margins, calculated according to the Stroom formula, were 4.4 mm, 5.3 mm and 7.8 mm in the x, y and z axis directions before radiotherapy. The corresponding parameters were 2.5m, 2.6 mm and 3.9 mm after radiotherapy. Conclusions: We have adopted a PTV margin of 5 mm, 6 mm and 8 mm in the x, y and z axis directions with ABC, and 3,3 and 4 mm with ABC and on-line kilovoltage CBCT. (authors)

  8. SU-E-J-153: MRI Based, Daily Adaptive Radiotherapy for Rectal Cancer: Contour Adaptation

    International Nuclear Information System (INIS)

    Kleijnen, J; Burbach, M; Verbraeken, T; Weggers, R; Zoetelief, A; Reerink, O; Lagendijk, J; Raaymakers, B; Asselen, B

    2014-01-01

    Purpose: A major hurdle in adaptive radiotherapy is the adaptation of the planning MRI's delineations to the daily anatomy. We therefore investigate the accuracy and time needed for online clinical target volume (CTV) adaptation by radiation therapists (RTT), to be used in MRI-guided adaptive treatments on a MRI-Linac (MRL). Methods: Sixteen patients, diagnosed with early stage rectal cancer, underwent a T2-weighted MRI prior to each fraction of short-course radiotherapy, resulting in 4–5 scans per patient. On these scans, the CTV was delineated according to guidelines by an experienced radiation oncologist (RO) and considered to be the gold standard. For each patient, the first MRI was considered as the planning MRI and matched on bony anatomy to the 3–4 daily MRIs. The planning MRI's CTV delineation was rigidly propagated to the daily MRI scans as a proposal for adaptation. Three RTTs in training started the adaptation of the CTV conform guidelines, after a two hour training lecture and a two patient (n=7) training set. To assess the inter-therapist variation, all three RTTs altered delineations of 3 patients (n=12). One RTT altered the CTV delineations (n=53) of the remaining 11 patients. Time needed for adaptation of the CTV to guidelines was registered.As a measure of agreement, the conformity index (CI) was determined between the RTTs' delineations as a group. Dice similarity coefficients were determined between delineations of the RTT and the RO. Results: We found good agreement between RTTs' and RO's delineations (average Dice=0.91, SD=0.03). Furthermore, the inter-observer agreement between the RTTs was high (average CI=0.94, SD=0.02). Adaptation time reduced from 10:33 min (SD= 3:46) to 2:56 min (SD=1:06) between the first and last ten delineations, respectively. Conclusion: Daily CTV adaptation by RTTs, seems a feasible and safe way to introduce daily, online MRI-based plan adaptation for a MRL

  9. Chronic adaptations of lung function in breath-hold diving fishermen

    Directory of Open Access Journals (Sweden)

    Cristiane Diniz

    2014-04-01

    Full Text Available Objectives: The aim of this study was to verify and analyze the existence of chronic adaptations of lung function in freediving fishermen whose occupation is artisanal fishing. Material and Methods: This was a cross-sectional study involving 11 breath-hold diving fishermen and 10 non-breath-hold diving fishermen (control from the village of Bitupitá in the municipality of Barroquinha (Ceará - Brazil. Anthropometric measurements, chest and abdominal circumferences as well as spirometric and respiratory muscle strength tests were conducted according to the specifications of the American Thoracic Society/European Respiratory Society (ATS/ERS. In order to compare the measured values versus the predicted values, Student t test was used in the case of parametric test and Wilcoxon test in the case of nonparametric test. To compare the inter-group means Student t test was used for parametric test and Mann-Whitney test for the nonparametric one. The level of significance was set at α = 5%. Results: The forced vital capacity (FVC (4.9±0.6 l vs. 4.3±0.4 l and forced expiratory volume in 1 s (FEV1 (4.0±0.5 l vs. 3.6±0.3 l were, respectively, higher in the group of divers compared to the control group (p ≤ 0.05. Furthermore, in the group of free divers, the measured FVC, FEV1 and FEV1/FVC ratios were significantly greater than the predicted ones. No differences were found between the measured respiratory pressures. Conclusions: These results indicate that breath-hold diving seems to produce chronic adaptations of the respiratory system, resulting in elevated lung volumes with no airway obstruction.

  10. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    Science.gov (United States)

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  11. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    Science.gov (United States)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  12. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy

    International Nuclear Information System (INIS)

    Eccles, Cynthia; Brock, Kristy K.; Bissonnette, Jean-Pierre; Hawkins, Maria; Dawson, Laura A.

    2006-01-01

    Purpose: To measure the intrabreath-hold liver motion and the intrafraction and interfraction reproducibility of liver position relative to vertebral bodies using an active breathing coordinator (ABC) in patients with unresectable liver cancer treated with hypofractionated stereotactic body radiation therapy (SBRT). Methods: Tolerability of ABC and organ motion during ABC was assessed using kV fluoroscopy in 34 patients. For patients treated with ABC, repeat breath-hold CT scans in the ABC breath-hold position were acquired at simulation to estimate the volumetric intrafraction reproducibility of the liver relative to the vertebral bodies. In addition, preceding each radiation therapy fraction, with the liver immobilized using ABC, repeat anteroposterior (AP) megavoltage verification images were obtained. Off-line alignments were completed to determine intrafraction reproducibility (from repeat images obtained before one treatment) and interfraction reproducibility (from comparisons of the final image for each fraction with the AP) of diaphragm position relative to vertebral bodies. For each image set, the vertebral bodies were aligned, and the resultant craniocaudal (CC) offset in diaphragm position was measured. Liver position during ABC was also evaluated from kV fluoroscopy acquired at the time of simulation, kV fluoroscopy at the time of treatment, and from MV beam's-eye view movie loops acquired during treatment. Results: Twenty-one of 34 patients were screened to be suitable for ABC. The average free breathing range of these patients was 13 mm (range, 5-1 mm). Fluoroscopy revealed that the average maximal diaphragm motion during ABC breath-hold was 1.4 mm (range, 0-3.4 mm). The MV treatment movie loops confirmed diaphragm stability during treatment. For a measure of intrafraction reproducibility, an analysis of 36 repeat ABC computed tomography (CT) scans in 14 patients was conducted. The average mean difference in the liver surface position was -0.9 mm, -0

  13. Magnitude of shift of tumor position as a function of moderated deep inspiration breath-hold: An analysis of pooled data of lung patients with active breath control in image-guided radiotherapy

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the reproducibility and magnitude of shift of tumor position by using active breathing control and iView-GT for patients with lung cancer with moderate deep-inspiration breath-hold (mDIBH technique. Eight patients with 10 lung tumors were studied. CT scans were performed in the breath-holding phase. Moderate deep-inspiration breath-hold under spirometer-based monitoring system was used. Few important bony anatomic details were delineated by the radiation oncologist. To evaluate the interbreath-hold reproducibility of the tumor position, we compared the digital reconstruction radiographs (DRRs from planning system with the DRRs from the iView-GT in the machine room. We measured the shift in x, y, and z directions. The reproducibility was defined as the difference between the bony landmarks from the DRR of the planning system and those from the DRR of the iView-GT. The maximum shift of the tumor position was 3.2 mm, 3.0 mm, and 2.9 mm in the longitudinal, lateral, and vertical directions. In conclusion, the moderated deep-inspiration breath-hold method using a spirometer is feasible, with relatively good reproducibility of the tumor position for image-guided radiotherapy in lung cancers.

  14. Credentialing of radiotherapy centres for a clinical trial of adaptive radiotherapy for bladder cancer (TROG 10.01)

    International Nuclear Information System (INIS)

    Kron, Tomas; Pham, Daniel; Roxby, Paul; Rolfo, Aldo; Foroudi, Farshad

    2012-01-01

    Background: Daily variations in bladder filling make conformal treatment of bladder cancer challenging. On-line adaptive radiotherapy with a choice of plans has been demonstrated to reduce small bowel irradiation in single institution trials. In order to support a multicentre feasibility clinical trial on adaptive radiotherapy for bladder cancer (TROG 10.01) a credentialing programme was developed for centres wishing to participate. Methods: The credentialing programme entails three components: a facility questionnaire; a planning exercise which tests the ability of centres to create three adaptive plans based on a planning and five cone beam CTs; and a site visit during which image quality, imaging dose and image guidance procedures are assessed. Image quality and decision making were tested using customised inserts for a Perspex phantom (Modus QUASAR) that mimic different bladder sizes. Dose was assessed in the same phantom using thermoluminescence dosimetry (TLD). Results: All 12 centres participating in the full credentialing programme were able to generate appropriate target volumes in the planning exercise and identify the correct target volume and position the bladder phantom in the phantom within 3 mm accuracy. None of the imaging doses exceeded the limit of 5 cGy with a CT on rails system having the lowest overall dose. Conclusion: A phantom mimicking the decision making process for adaptive radiotherapy was found to be well suited during site visits for credentialing of centres participating in a clinical trial of adaptive radiotherapy for bladder cancer. Combined with a planning exercise the site visit allowed testing the ability of centres to create adaptive treatment plans and make appropriate decisions based on the volumetric images acquired at treatment.

  15. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  16. Less increase of CT-based calcium scores of the coronary arteries. Effect three years after breast-conserving radiotherapy using breath-hold

    Energy Technology Data Exchange (ETDEWEB)

    Mast, M.E.; Kempen-Harteveld, M.L. van; Petoukhova, A.L. [Centre West, Radiotherapy, The Hague (Netherlands); Heijenbrok, M.W. [Medical Center Haaglanden, Department of Radiology, The Hague (Netherlands); Scholten, A.N. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Radiation Oncology, Amsterdam (Netherlands); Wolterbeek, R. [Leiden University Medical Centre, Department of Medical Statistics and Bioinformatics, Leiden (Netherlands); Schreur, J.H.M. [Medical Center Haaglanden, Department of Cardiology, The Hague (Netherlands); Struikmans, H. [Centre West, Radiotherapy, The Hague (Netherlands); Leiden University Medical Centre, Department of Clinical Oncology, Leiden (Netherlands)

    2016-10-15

    The aim of this prospective longitudinal study was to compare coronary artery calcium (CAC) scores determined before the start of whole breast irradiation with those determined 3 years afterwards. Changes in CAC scores were analysed in 99 breast cancer patients. Three groups were compared: patients receiving left- and right-sided radiotherapy, and those receiving left-sided radiotherapy with breath-hold. We analysed overall CAC scores and left anterior descending (LAD) and right coronary artery (RCA) CAC scores. Between the three groups, changes of the value of the LAD minus the RCA CAC scores of each individual patient were also compared. Three years after breath-hold-based whole breast irradiation, a less pronounced increase of CAC scores was noted. Furthermore, LAD minus RCA scores in patients treated for left-sided breast cancer without breath-hold were higher when compared to LAD minus RCA scores of patients with right-sided breast cancers and those with left-sided breast cancer treated with breath-hold. Breath-hold in breast-conserving radiotherapy leads to a less pronounced increase of CT-based CAC scores. Therefore, breath-hold probably prevents the development of radiation-induced coronary artery disease. However, the sample size of this study is limited and the follow-up period relatively short. (orig.) [German] Das Ziel dieser prospektiven Langzeitstudie war der Vergleich der Coronary-Artery-Calcium-(CAC-)Werte vor Beginn der Brustbestrahlung mit den Werten nach 3 Jahren. Aenderungen der CAC-Werte wurden bei 99 Brustkrebspatienten analysiert. Drei Gruppen wurden untersucht: Patienten nach links- und rechtsseitiger Strahlentherapie sowie mit Bestrahlung unter Atemanhalt. Wir analysierten die Gesamt-CAC-Werte sowie die CAC-Werte der vorderen linken absteigenden (''left anterior descending'', LAD) und der rechten Koronararterie (''right coronary artery'', RCA). Zwischen den drei Gruppen wurden auch die Veraenderungen

  17. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.

  18. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    International Nuclear Information System (INIS)

    Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R

    2015-01-01

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique

  19. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  20. Adaptive Neural Back-Stepping Control with Constrains for a Flexible Air-Breathing Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-01-01

    Full Text Available The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV in the presence of input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric uncertainties, neural network (NN is applied to approximate the lumped uncertainty of each subsystem of AHV model. The exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties, and varying disturbances.

  1. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Daniel, E-mail: Daniel.Pham@petermac.org [Radiotherapy Services, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Foroudi, Farshad; Siva, Shankar [Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2013-10-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

  2. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    International Nuclear Information System (INIS)

    Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Siva, Shankar

    2013-01-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk

  3. Robust adaptive multivariable higher-order sliding mode flight control for air-breathing hypersonic vehicle with actuator failures

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-10-01

    Full Text Available This article proposes an adaptive multivariable higher-order sliding mode control for the longitudinal model of an air-breathing vehicle under system uncertainties and actuator failures. Firstly, a fast finite-time control law is designed for a chain of integrators. Secondly, based on the input/output feedback linearization technique, the system uncertainty and external disturbances are modeled as additive certainty and the actuator failures are modeled as multiplicative uncertainty. By using the proposed fast finite-time control law, a robust multivariable higher-order sliding mode control is designed for the air-breathing hypersonic vehicle with actuator failures. Finally, adaptive laws are proposed for the adaptation of the parameters in the robust multivariable higher-order sliding mode control. Thus, the bounds of the uncertainties are not needed in the control system design. Simulation results show the effectiveness of the proposed robust adaptive multivariable higher-order sliding mode control.

  4. Cost evaluation of the enslaved to breathing radiotherapy as part of support program to innovative and expensive therapies; Evaluation du cout de la radiotherapie asservie a la respiration dans le cadre d'un programme de soutien aux therapeutiques innovantes et couteuses

    Energy Technology Data Exchange (ETDEWEB)

    Remonnay, R.; Morelle, M.; Carrere, M.O. [Lyon Univ., 69 (France); GATE, CNRS, UMR 5824, 69 - Ecully (France); ENS LSH, 69 - Lyon (France); Centre Leon-Berard, 69 - Lyon (France); Giraud, P. [Hopital Europeen Georges-Pompidou, Faculte Rene-Descartes, Service d' Oncologie Radiotherapie, Paris V, 75 - Paris (France)

    2009-10-15

    This study had for objective to evaluate the consequences of the implementation of the enslaved breathing on the cost of production of radiotherapy, relatively to the conformal radiotherapy without enslaved breathing (witness group) in the bronchopulmonary cancers and the breast cancers. The tariff aspect was studied. The estimation of the complete cost of the treatment enlighten the inadequacy of the pricing for innovation. (N.C.)

  5. Potential benefit and clinical implementation of adaptive radiotherapy

    NARCIS (Netherlands)

    Lutkenhaus, L.J.

    2016-01-01

    The success of radiotherapy is defined by how well we are able to treat the tumor, without overly damaging the healthy tissue. Over the entire treatment period, day-to-day anatomical variations will occur, which can be compensated for by using a different irradiation plan for each treatment day.

  6. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Guo, Y; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  7. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    International Nuclear Information System (INIS)

    Gong, G; Guo, Y; Yin, Y

    2016-01-01

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  8. Radiotherapy

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Kapp, D.S.; Weissberg, J.B.

    1983-01-01

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  9. The UK HeartSpare Study (Stage IB): Randomised comparison of a voluntary breath-hold technique and prone radiotherapy after breast conserving surgery

    International Nuclear Information System (INIS)

    Bartlett, Frederick R.; Colgan, Ruth M.; Donovan, Ellen M.; McNair, Helen A.; Carr, Karen; Evans, Philip M.; Griffin, Clare; Locke, Imogen; Haviland, Joanne S.; Yarnold, John R.; Kirby, Anna M.

    2015-01-01

    Purpose: To compare mean heart and left anterior descending coronary artery (LAD) doses (NTD mean ) and positional reproducibility in larger-breasted women receiving left breast radiotherapy using supine voluntary deep-inspiratory breath-hold (VBH) and free-breathing prone techniques. Materials and methods: Following surgery for early breast cancer, patients with estimated breast volumes >750 cm 3 underwent planning-CT scans in supine VBH and free-breathing prone positions. Radiotherapy treatment plans were prepared, and mean heart and LAD doses were calculated. Patients were randomised to receive one technique for fractions 1–7, before switching techniques for fractions 8–15 (40 Gy/15 fractions total). Daily electronic portal imaging and alternate-day cone-beam CT (CBCT) imaging were performed. The primary endpoint was the difference in mean LAD NTD mean between techniques. Population systematic (Σ) and random errors (σ) were estimated. Within-patient comparisons between techniques used Wilcoxon signed-rank tests. Results: 34 patients were recruited, with complete dosimetric data available for 28. Mean heart and LAD NTD mean doses for VBH and prone treatments respectively were 0.4 and 0.7 (p < 0.001) and 2.9 and 7.8 (p < 0.001). Clip-based CBCT errors for VBH and prone respectively were ⩽3.0 mm and ⩽6.5 mm (Σ) and ⩽3.5 mm and ⩽5.4 mm (σ). Conclusions: In larger-breasted women, supine VBH provided superior cardiac sparing and reproducibility than a free-breathing prone position

  10. Technical Note: DIRART- A software suite for deformable image registration and adaptive radiotherapy research

    International Nuclear Information System (INIS)

    Yang Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A.

    2011-01-01

    Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods: DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research.

  11. Deep inspiration breath-hold (DIBH) radiotherapy in left-sided breast cancer. Dosimetrical comparison and clinical feasibility in 20 patients

    International Nuclear Information System (INIS)

    Hepp, Rodrigo; Ammerpohl, Mark; Morgenstern, Christina; Erichsen, Patricia; Nielinger, Lisa; Abdallah, Abdallah; Galalae, Razvan

    2015-01-01

    Adjuvant radiotherapy after breast-conserving surgery (BCS) for breast cancer (BC) is a well-established indication. The risk of ischaemic heart disease after radiotherapy for BC increases linearly with the heart mean dose with no apparent threshold. Radiotherapy to the left breast in deep inspiration breath-hold (DIBH) reduces the dose to the heart. A new linac system with an integrated surface scanner (SS) for DIBH treatments was recently installed in our department. We tested it for potential benefits, safety, patients' acceptance/compliance and associated additional workload. Twenty consecutive patients following BCS for breast carcinoma of the left side were enrolled in our institutional DIBH protocol. We compared dose to the heart and ipsilateral lung (IL) between plans in DIBH and free breathing (FB) using standard defined parameters: mean dose, maximal dose to a volume of 2 cm 3 (D 2 cm 3 ), volume receiving ≥ 5 Gy (V 5 ), 10 Gy (V 10 ), 15 Gy (V 15 ) and 20 Gy (V 20 ). Comparison of median calculated dose values was performed using a two-tailed Wilcoxon signed rank test. DIBH was associated with a statistically significant reduction (p < 0.001) in all studied parameters for the heart and the IL. In 16 of 20 patients the heart D 2 cm 3 was less than 42 Gy in DIBH. In FB the heart D 2 cm 3 was ≥ 42 Gy in 17 of 20 patients. The median daily treatment time was 9 min. Radiotherapy of the left breast in DIBH using a SS could easily be incorporated into daily routine and is associated with significant dose reduction to the heart and IL. (orig.) [de

  12. Cardiorespiratory adaptation to breath-holding in air: Analysis via a cardiopulmonary simulation model.

    Science.gov (United States)

    Albanese, Antonio; Limei Cheng; Ursino, Mauro; Chbat, Nicolas W

    2015-01-01

    Apnea via breath-holding (BH) in air induces cardiorespiratory adaptation that involves the activation of several reflex mechanisms and their complex interactions. Hence, the effects of BH in air on cardiorespiratory function can become hardly predictable and difficult to be interpreted. Particularly, the effect on heart rate is not yet completely understood because of the contradicting results of different physiological studies. In this paper we apply our previously developed cardiopulmonary model (CP Model) to a scenario of BH with a twofold intent: (1) further validating the CP Model via comparison against experimental data; (2) gaining insights into the physiological reasoning for such contradicting experimental results. Model predictions agreed with published experimental animal and human data and indicated that heart rate increases during BH in air. Changes in the balance between sympathetic and vagal effects on heart rate within the model proved to be effective in inverting directions of the heart rate changes during BH. Hence, the model suggests that intra-subject differences in such sympatho-vagal balance may be one of the reasons for the contradicting experimental results.

  13. Hypofractionated image-guided breath-hold SABR (Stereotactic Ablative Body Radiotherapy of liver metastases – clinical results

    Directory of Open Access Journals (Sweden)

    Boda-Heggemann Judit

    2012-06-01

    Full Text Available Abstract Purpose Stereotactic Ablative Body Radiotherapy (SABR is a non-invasive therapy option for inoperable liver oligometastases. Outcome and toxicity were retrospectively evaluated in a single-institution patient cohort who had undergone ultrasound-guided breath-hold SABR. Patients and methods 19 patients with liver metastases of various primary tumors consecutively treated with SABR (image-guidance with stereotactic ultrasound in combination with computer-controlled breath-hold were analysed regarding overall-survival (OS, progression-free-survival (PFS, progression pattern, local control (LC, acute and late toxicity. Results PTV (planning target volume-size was 108 ± 109cm3 (median 67.4 cm3. BED2 (Biologically effective dose in 2 Gy fraction was 83.3 ± 26.2 Gy (median 78 Gy. Median follow-up and median OS were 12 months. Actuarial 2-year-OS-rate was 31%. Median PFS was 4 months, actuarial 1-year-PFS-rate was 20%. Site of first progression was predominantly distant. Regression of irradiated lesions was observed in 84% (median time to detection of regression was 2 months. Actuarial 6-month-LC-rate was 92%, 1- and 2-years-LC-rate 57%, respectively. BED2 influenced LC. When a cut-off of BED2 = 78 Gy was used, the higher BED2 values resulted in improved local control with a statistical trend to significance (p = 0.0999. Larger PTV-sizes, inversely correlated with applied dose, resulted in lower local control, also with a trend to significance (p-value = 0.08 when a volume cut-off of 67 cm3 was used. No local relapse was observed at PTV-sizes 3 and BED2 > 78 Gy. No acute clinical toxicity > °2 was observed. Late toxicity was also ≤ °2 with the exception of one gastrointestinal bleeding-episode 1 year post-SABR. A statistically significant elevation in the acute phase was observed for alkaline-phosphatase; in the chronic phase for alkaline-phosphatase, bilirubine, cholinesterase and C

  14. Radiotherapy

    Directory of Open Access Journals (Sweden)

    Rema Jyothirmayi

    1999-01-01

    Full Text Available Purpose. Conservative treatment in the form of limited surgery and post-operative radiotherapy is controversial in hand and foot sarcomas, both due to poor radiation tolerance of the palm and sole, and due to technical difficulties in achieving adequate margins.This paper describes the local control and survival of 41 patients with soft tissue sarcoma of the hand or foot treated with conservative surgery and radiotherapy. The acute and late toxicity of megavoltage radiotherapy to the hand and foot are described. The technical issues and details of treatment delivery are discussed. The factors influencing local control after radiotherapy are analysed.

  15. The desire to survive: the adaptation process of adult cancer patients undergoing radiotherapy.

    Science.gov (United States)

    Chao, Yu Huan; Wang, Shou-Yu; Hsu, Tsui Hua; Wang, Kai Wei K

    2015-01-01

    Radiotherapy is one of the primary treatment strategies for cancer. However, patients not only deal with the side-effects of radiotherapy, but they must also endure the psychological distress caused by cancer. This study explores how cancer patients adapt to the treatment process when receiving radiotherapy. This study used a grounded theory approach, and eight in-depth interviews were conducted with newly diagnosed cancer patients who received radiotherapy as a primary treatment. The core category that emerged from this study was "the desire to survive". The categories and subcategories that emerged from the data include facing unknown situations (e.g. searching for relevant information and decision-making considerations, and listening to healthcare professionals' suggestions), experiencing the pain of treatment (e.g. tolerating side-effects, tolerating inconvenience during the treatment, accepting support during the treatment, and adjusting lifestyles), and chances to extend life (e.g. accepting fate, determination to undergo the treatment, and adjusting negative emotions). The study results provide a better understanding of the experiences of cancer patients undergoing radiotherapy. Healthcare professionals should provide effective medical management for side-effects and psychological support to cancer patients during the journey of radiotherapy. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  16. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  17. Radiotherapy

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kulikov, V.A.; Mardynskij, Yu.S.

    1984-01-01

    The technique for roentgenotopometric and medicamentous preparation of patients for radiotherapy has been reported in detail. The features of planning and performing of remote, intracavitary and combined therapy in urinary bladder cancer are considered. The more effective methods of radiotherapy have been proposed taking into account own experience as well as literature data. The comparative evaluation of treatment results and prognosis are given. Radiation pathomorphism of tumors and tissues of urinary bladder is considered in detail. The problems of diagnosis, prophylaxis and treatment of complications following radiodiagnosis and radiotherapy in patients with urinary bladder cancer are illustrated widely

  18. TH-CD-202-11: Implications for Online Adaptive and Non-Adaptive Radiotherapy of Gastic and Gastroesophageal Junction Cancers Using MRI-Guided Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mittauer, K; Geurts, M; Toya, R; Bassetti, M; Harari, P; Paliwal, B; Bayouth, J [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: Radiotherapy for gastric and gastroesophageal junction (GEJ) tumors commonly requires large margins due to deformation, motion and variable changes of the stomach anatomy, at the risk of increased normal tissue toxicities. This work quantifies the interfraction variation of stomach deformation from daily MRI-guided radiotherapy to allow for a more targeted determination of margin expansion in the treatment of gastric and GEJ tumors. Methods: Five patients treated for gastric (n=3) and gastroesophageal junction (n=2) cancers with conventionally fractionated radiotherapy underwent daily MR imaging on a clinical MR-IGRT system. Treatment planning and contours were performed based on the MR simulation. The stomach was re-contoured on each daily volumetric setup MR. Dice similarity coefficients (DSC) of the daily stomach were computed to evaluate the stomach interfraction deformation. To evaluate the stomach margin, the maximum Hausdorff distance (HD) between the initial and fractional stomach surface was measured for each fraction. The margin expansion, needed to encompass all fractions, was evaluated from the union of all fractional stomachs. Results: In total, 94 fractions with daily stomach contours were evaluated. For the interfraction stomach differences, the average DSC was 0.67±0.1 for gastric and 0.62±0.1 for GEJ cases. The maximum HD of each fraction was 3.5±2.0cm (n=94) with mean HD of 0.8±0.4cm (across all surface voxels for all fractions). The margin expansion required to encompass all individual fractions (averaged across 5 patients) was 1.4 cm(superior), 2.3 cm(inferior), 2.5 cm(right), 3.2 cm(left), 3.7 cm(anterior), 3.4 cm(posterior). Maximum observed difference for margin expansion was 8.7cm(posterior) among one patient. Conclusion: We observed a notable interfractional change in daily stomach shape (i.e., mean DSC of 0.67, p<0.0001) in both gastric and GEJ patients, for which adaptive radiotherapy is indicated. A minimum PTV margin of 3

  19. TH-CD-202-11: Implications for Online Adaptive and Non-Adaptive Radiotherapy of Gastic and Gastroesophageal Junction Cancers Using MRI-Guided Radiotherapy

    International Nuclear Information System (INIS)

    Mittauer, K; Geurts, M; Toya, R; Bassetti, M; Harari, P; Paliwal, B; Bayouth, J

    2016-01-01

    Purpose: Radiotherapy for gastric and gastroesophageal junction (GEJ) tumors commonly requires large margins due to deformation, motion and variable changes of the stomach anatomy, at the risk of increased normal tissue toxicities. This work quantifies the interfraction variation of stomach deformation from daily MRI-guided radiotherapy to allow for a more targeted determination of margin expansion in the treatment of gastric and GEJ tumors. Methods: Five patients treated for gastric (n=3) and gastroesophageal junction (n=2) cancers with conventionally fractionated radiotherapy underwent daily MR imaging on a clinical MR-IGRT system. Treatment planning and contours were performed based on the MR simulation. The stomach was re-contoured on each daily volumetric setup MR. Dice similarity coefficients (DSC) of the daily stomach were computed to evaluate the stomach interfraction deformation. To evaluate the stomach margin, the maximum Hausdorff distance (HD) between the initial and fractional stomach surface was measured for each fraction. The margin expansion, needed to encompass all fractions, was evaluated from the union of all fractional stomachs. Results: In total, 94 fractions with daily stomach contours were evaluated. For the interfraction stomach differences, the average DSC was 0.67±0.1 for gastric and 0.62±0.1 for GEJ cases. The maximum HD of each fraction was 3.5±2.0cm (n=94) with mean HD of 0.8±0.4cm (across all surface voxels for all fractions). The margin expansion required to encompass all individual fractions (averaged across 5 patients) was 1.4 cm(superior), 2.3 cm(inferior), 2.5 cm(right), 3.2 cm(left), 3.7 cm(anterior), 3.4 cm(posterior). Maximum observed difference for margin expansion was 8.7cm(posterior) among one patient. Conclusion: We observed a notable interfractional change in daily stomach shape (i.e., mean DSC of 0.67, p<0.0001) in both gastric and GEJ patients, for which adaptive radiotherapy is indicated. A minimum PTV margin of 3

  20. MO-FG-CAMPUS-JeP3-05: Evaluation of 4D CT-On-Rails Target Localization Methods for Free Breathing Liver Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J; Lin, T; Jin, L; Chen, L; Veltchev, I; Wang, L; Eldib, A; Chibani, O; Wang, B; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Xu, Q [MD Anderson Cancer Center at Cooper Mt Laurel, NJ (United States)

    2016-06-15

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases of reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.

  1. MO-FG-CAMPUS-JeP3-05: Evaluation of 4D CT-On-Rails Target Localization Methods for Free Breathing Liver Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Fan, J; Lin, T; Jin, L; Chen, L; Veltchev, I; Wang, L; Eldib, A; Chibani, O; Wang, B; Price, R; Ma, C; Xu, Q

    2016-01-01

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases of reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor

  2. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer.

    Science.gov (United States)

    Hoeben, Bianca A W; Bussink, Johan; Troost, Esther G C; Oyen, Wim J G; Kaanders, Johannes H A M

    2013-10-01

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.

  3. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    Science.gov (United States)

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p FB and V-DIBH, respectively (p FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.

  4. Audiovisual biofeedback breathing guidance for lung cancer patients receiving radiotherapy: a multi-institutional phase II randomised clinical trial.

    Science.gov (United States)

    Pollock, Sean; O'Brien, Ricky; Makhija, Kuldeep; Hegi-Johnson, Fiona; Ludbrook, Jane; Rezo, Angela; Tse, Regina; Eade, Thomas; Yeghiaian-Alvandi, Roland; Gebski, Val; Keall, Paul J

    2015-07-18

    There is a clear link between irregular breathing and errors in medical imaging and radiation treatment. The audiovisual biofeedback system is an advanced form of respiratory guidance that has previously demonstrated to facilitate regular patient breathing. The clinical benefits of audiovisual biofeedback will be investigated in an upcoming multi-institutional, randomised, and stratified clinical trial recruiting a total of 75 lung cancer patients undergoing radiation therapy. To comprehensively perform a clinical evaluation of the audiovisual biofeedback system, a multi-institutional study will be performed. Our methodological framework will be based on the widely used Technology Acceptance Model, which gives qualitative scales for two specific variables, perceived usefulness and perceived ease of use, which are fundamental determinants for user acceptance. A total of 75 lung cancer patients will be recruited across seven radiation oncology departments across Australia. Patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited into the intervention arm and 1/3 in the control arm. 2:1 randomisation is appropriate as within the interventional arm there is a screening procedure where only patients whose breathing is more regular with audiovisual biofeedback will continue to use this system for their imaging and treatment procedures. Patients within the intervention arm whose free breathing is more regular than audiovisual biofeedback in the screen procedure will remain in the intervention arm of the study but their imaging and treatment procedures will be performed without audiovisual biofeedback. Patients will also be stratified by treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the arms across the sites. Patients and hospital staff operating the audiovisual biofeedback system will complete questionnaires to assess their experience with audiovisual biofeedback. The objectives of this

  5. Audiovisual biofeedback breathing guidance for lung cancer patients receiving radiotherapy: a multi-institutional phase II randomised clinical trial

    International Nuclear Information System (INIS)

    Pollock, Sean; O’Brien, Ricky; Makhija, Kuldeep; Hegi-Johnson, Fiona; Ludbrook, Jane; Rezo, Angela; Tse, Regina; Eade, Thomas; Yeghiaian-Alvandi, Roland; Gebski, Val; Keall, Paul J

    2015-01-01

    There is a clear link between irregular breathing and errors in medical imaging and radiation treatment. The audiovisual biofeedback system is an advanced form of respiratory guidance that has previously demonstrated to facilitate regular patient breathing. The clinical benefits of audiovisual biofeedback will be investigated in an upcoming multi-institutional, randomised, and stratified clinical trial recruiting a total of 75 lung cancer patients undergoing radiation therapy. To comprehensively perform a clinical evaluation of the audiovisual biofeedback system, a multi-institutional study will be performed. Our methodological framework will be based on the widely used Technology Acceptance Model, which gives qualitative scales for two specific variables, perceived usefulness and perceived ease of use, which are fundamental determinants for user acceptance. A total of 75 lung cancer patients will be recruited across seven radiation oncology departments across Australia. Patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited into the intervention arm and 1/3 in the control arm. 2:1 randomisation is appropriate as within the interventional arm there is a screening procedure where only patients whose breathing is more regular with audiovisual biofeedback will continue to use this system for their imaging and treatment procedures. Patients within the intervention arm whose free breathing is more regular than audiovisual biofeedback in the screen procedure will remain in the intervention arm of the study but their imaging and treatment procedures will be performed without audiovisual biofeedback. Patients will also be stratified by treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the arms across the sites. Patients and hospital staff operating the audiovisual biofeedback system will complete questionnaires to assess their experience with audiovisual biofeedback. The objectives of this

  6. Comparison of cardiac and lung doses for breast cancer patients with free breathing and deep inspiration breath hold technique in 3 dimensional conformal radiotherapy - a dosimetric study

    Science.gov (United States)

    Raj Mani, Karthick; Poudel, Suresh; Maria Das, K. J.

    2017-12-01

    Purpose: To investigate the cardio-pulmonary doses between Deep Inspiration Breath Hold (DIBH) and Free Breathing (FB) technique in left sided breast irradiation. Materials & Methods: DIBH CT and FB CT were acquired for 10 left sided breast patients who underwent whole breast irradiation with or without nodal irradiation. Three fields single isocenter technique were used for patients with node positive patients along with two tangential conformal fields whereas only two tangential fields were used in node negative patients. All the critical structures like lungs, heart, esophagus, thyroid, etc., were delineated in both DIBH and FB scan. Both DIBH and FB scans were fused with the Dicom origin as they were acquired with the same Dicom coordinates. Plans were created in the DIBH scan for a dose range between 50 Gy in 25 fractions. Critical structures doses were recorded from the Dose Volume Histogram for both the DIBH and FB data set for evaluation. Results: The average mean heart dose in DIBH vs FB was 13.18 Gy vs 6.97 Gy, (p = 0.0063) significantly with DIBH as compared to FB technique. The relative reduction in average mean heart dose was 47.12%. The relative V5 reduced by 14.70% (i.e. 34.42% vs 19.72%, p = 0.0080), V10 reduced by 13.83% (i.e. 27.79 % vs 13.96%, p = 0.0073). V20 reduced by 13.19% (i.e. 24.54 % vs 11.35%, p = 0.0069), V30 reduced by 12.38% (i.e. 22.27 % vs 9.89 %, p = 0.0073) significantly with DIBH as compared to FB. The average mean left lung dose reduced marginally by 1.43 Gy (13.73 Gy vs 12.30 Gy, p = 0.4599) but insignificantly with DIBH as compared to FB. Other left lung parameters (V5, V10, V20 and V30) shows marginal decreases in DIBH plans compare to FB plans. Conclusion: DIBH shows a substantial reduction of cardiac doses but slight and insignificant reduction of pulmonary doses as compared with FB technique. Using the simple DIBH technique, we can effectively reduce the cardiac morbidity and at the same time radiation induced lung

  7. Deep inspiration breath-hold radiotherapy for lung cancer: impact on image quality and registration uncertainty in cone beam CT image guidance

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte F; Bangsgaard, Jens Peter

    2016-01-01

    OBJECTIVE: We investigated the impact of deep inspiration breath-hold (DIBH) and tumour baseline shifts on image quality and registration uncertainty in image-guided DIBH radiotherapy (RT) for locally advanced lung cancer. METHODS: Patients treated with daily cone beam CT (CBCT)-guided free...... for the craniocaudal direction in FB, where it was >3 mm. On the 31st fraction, the intraobserver uncertainty increased compared with the second fraction. This increase was more pronounced in FB. Image quality scores improved in DIBH compared with FB for all parameters in all patients. Simulated tumour baseline shifts...... ≤2 mm did not affect the CBCT image quality considerably. CONCLUSION: DIBH CBCT improved image quality and reduced registration uncertainty in the craniocaudal direction in image-guided RT of locally advanced lung cancer. Baseline shifts ≤2 mm in DIBH during CBCT acquisition did not affect image...

  8. The study of target delineation and target movement of whole breast assisted by active breathing control in intensity modulated radiotherapy after breast conservative surgery

    International Nuclear Information System (INIS)

    Li Jianbing; Yu Jinming; Ma Zhifang; Lu Jie; Sun Tao; Guo Shoufang; Wang Jingguo

    2009-01-01

    Objective: To explore the influence of different delineators and different delineating time on target determination of the whole breast and to explore intrafraction and interfraction target displacements of the breast on moderate deep inspiration breathing hold (mDIBH) assisted by active breathing control (ABC) alter breast conservative surgery. Methods: Twenty patients received primary CT-simulation assisted by ABC to get five sets of CT image on the three breathing condition which included one set from free breath (FB), two sets from mDIBH and two sets from deep expiration breathing control (DEBH). After radiotherapy with ten to fifteen fractions, the repeat CT-simulation was carried out to get the same five sets of CT image as the primary CT- simulation. The whole breast target were delineated at different time by the same delineator and delineated respectively by five delineators on the first set of CT images got with mDIBH from the primary CT-simulation, and to compare the influence of delineator and delineating time on the whole breast target. The total silver clips in the cavity were marked respectively on the two sets of CT images got with mDIBH from the primary CT-simulation, and to compare the intrafraction displacement of geometric body structured by the total of silver clips. The two ribs near the isocentric plane of the breast target were delineated respectively on two sets of the mDIBH CT image from the primary CT-simulation and on one set of the mDIBH CT image from the repeat CT-simulation, and comparing the movement of the point of interest (POI) of the ribs delineated to get the value of intrafraction and interfraction thoracic expansion. Results: There was not statistically significant between the four volumes of whole breast targets delineated by the same delineator at different time, but with statistics significant between the volumes of whole breast target delineated by the different delineators ( F=19.681, P=0.000). There was not statistically

  9. SU-C-BRF-01: Correlation of DIBH Breath Hold Amplitude with Dosimetric Sparing of Heart and Left Anterior Descending Artery in Left Breast Radiotherapy

    International Nuclear Information System (INIS)

    Kim, Taeho; Reardon, Kelli; Sukovich, Kaitlyn; Crandley, Edwin; Read, Paul; Krishni, Wijesooriya

    2014-01-01

    Purpose: A 7.4% increase in major coronary events per 1 Gy increase in mean heart dose has been reported from the population-based analysis of radiation-induced cardiac toxicity following treatment of left sided breast cancer. Deep inhalation breath-hold (DIBH) is clinically utilized to reduce radiation dose to heart and left anterior descending artery (LAD). We investigated the correlation of dose sparing in heart and LAD with internal DIBH amplitude to develop a quantitative predictive model for expected dose to heart and LAD based on internal breath hold amplitude. Methods: A treatment planning study (Prescription Dose = 50 Gy) was performed on 50 left breast cancer patients underwent DIBH whole breast radiotherapy. Two CT datasets, free breathing (FB) and DIBH, were utilized for treatment planning and for determination of the internal anatomy DIBH amplitude (difference between sternum position at FB and DIBH). The heart and LAD dose between FB and DIBH plans was compared and dose to the heart and LAD as a function of breath hold amplitude was determined. Results: Average DIBH amplitude using internal anatomy was 13.9±4.2 mm. The DIBH amplitude-mean dose reduction correlation is 20%/5mm (0.3 Gy/5mm) for the heart and 18%/5mm (1.1 Gy/5mm) for LAD. The correlation with max dose reduction is 12%/5mm (3.8 Gy/5mm) for the heart and 16%/5mm (3.2 Gy/5mm) for LAD. We found that average dose reductions to LAD from 6.0±6.5 Gy to 2.0±1.6 Gy with DIBH (4.0 Gy reduction: -67%, p < 0.001) and average dose reduction to the heart from 1.3±0.7 Gy to 0.7±0.2 Gy with DIBH (0.6 Gy reduction: -46%, p < 0.001). That suggests using DIBH may reduce the risk of the major coronary event for left sided breast cancer patients. Conclusion: The correlation between breath hold amplitude and dosimetric sparing suggests that dose sparing linearly increases with internal DIBH amplitude

  10. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  11. Adaptive Radiotherapy Planning on Decreasing Gross Tumor Volumes as Seen on Megavoltage Computed Tomography Images

    International Nuclear Information System (INIS)

    Woodford, Curtis; Yartsev, Slav; Dar, A. Rashid; Bauman, Glenn; Van Dyk, Jake

    2007-01-01

    Purpose: To evaluate gross tumor volume (GTV) changes for patients with non-small-cell lung cancer by using daily megavoltage (MV) computed tomography (CT) studies acquired before each treatment fraction on helical tomotherapy and to relate the potential benefit of adaptive image-guided radiotherapy to changes in GTV. Methods and Materials: Seventeen patients were prescribed 30 fractions of radiotherapy on helical tomotherapy for non-small-cell lung cancer at London Regional Cancer Program from Dec 2005 to March 2007. The GTV was contoured on the daily MVCT studies of each patient. Adapted plans were created using merged MVCT-kilovoltage CT image sets to investigate the advantages of replanning for patients with differing GTV regression characteristics. Results: Average GTV change observed over 30 fractions was -38%, ranging from -12 to -87%. No significant correlation was observed between GTV change and patient's physical or tumor features. Patterns of GTV changes in the 17 patients could be divided broadly into three groups with distinctive potential for benefit from adaptive planning. Conclusions: Changes in GTV are difficult to predict quantitatively based on patient or tumor characteristics. If changes occur, there are points in time during the treatment course when it may be appropriate to adapt the plan to improve sparing of normal tissues. If GTV decreases by greater than 30% at any point in the first 20 fractions of treatment, adaptive planning is appropriate to further improve the therapeutic ratio

  12. Adaptive radiotherapy for long course neo-adjuvant treatment of rectal cancer

    International Nuclear Information System (INIS)

    Nijkamp, Jasper; Marijnen, Corrie; Herk, Marcel van; Triest, Baukelien van; Sonke, Jan-Jakob

    2012-01-01

    Purpose: To quantify the potential margin reduction with adaptive radiotherapy (ART) during neo-adjuvant treatment of locally-advanced rectal cancer. Methods and materials: Repeat CT scans were acquired for 28 patients treated with 25 × 2 Gy, daily during the first week, and followed by weekly scans. The CTV was delineated on all scans, and shape variation was estimated. Five ART strategies were tested, consisting of an average CTV over the planning CT and one to five repeat CTs. Required PTV margins were calculated for adapted and non-adapted treatment. The strategy with the least PTV volume over the whole treatment was selected and bowel area dose reduction was estimated. Results: Substantial systematic and random shape variation demanded for a PTV margin up to 2.4 cm at the upper-anterior part of the CTV. Plan adaptation after fraction 4 resulted in a maximum 0.7 cm margin reduction and a significant PTV reduction from 1185 to 1023 cc (p < 0.0001). The bowel area volume receiving 15, 45, and 50 Gy was reduced from 436 to 402 cc, 111 to 81 cc, and 49 to 29 cc, respectively (p < 0.0001). Conclusions: With adaptive radiotherapy, maximum required PTV margins can be reduced from 2.4 to 1.7 cm, resulting in significantly less dose to the bowel area.

  13. Radiotherapy.

    Science.gov (United States)

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  14. SU-D-BRB-05: Quantum Learning for Knowledge-Based Response-Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    El Naqa, I; Ten, R [Haken University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: There is tremendous excitement in radiotherapy about applying data-driven methods to develop personalized clinical decisions for real-time response-based adaptation. However, classical statistical learning methods lack in terms of efficiency and ability to predict outcomes under conditions of uncertainty and incomplete information. Therefore, we are investigating physics-inspired machine learning approaches by utilizing quantum principles for developing a robust framework to dynamically adapt treatments to individual patient’s characteristics and optimize outcomes. Methods: We studied 88 liver SBRT patients with 35 on non-adaptive and 53 on adaptive protocols. Adaptation was based on liver function using a split-course of 3+2 fractions with a month break. The radiotherapy environment was modeled as a Markov decision process (MDP) of baseline and one month into treatment states. The patient environment was modeled by a 5-variable state represented by patient’s clinical and dosimetric covariates. For comparison of classical and quantum learning methods, decision-making to adapt at one month was considered. The MDP objective was defined by the complication-free tumor control (P{sup +}=TCPx(1-NTCP)). A simple regression model represented state-action mapping. Single bit in classical MDP and a qubit of 2-superimposed states in quantum MDP represented the decision actions. Classical decision selection was done using reinforcement Q-learning and quantum searching was performed using Grover’s algorithm, which applies uniform superposition over possible states and yields quadratic speed-up. Results: Classical/quantum MDPs suggested adaptation (probability amplitude ≥0.5) 79% of the time for splitcourses and 100% for continuous-courses. However, the classical MDP had an average adaptation probability of 0.5±0.22 while the quantum algorithm reached 0.76±0.28. In cases where adaptation failed, classical MDP yielded 0.31±0.26 average amplitude while the

  15. Implications of free breathing motion assessed by 4D-computed tomography on the delivered dose in radiotherapy for esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duma, Marciana Nona, E-mail: Marciana.Duma@mri.tum.de [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Berndt, Johannes [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Rondak, Ina-Christine [Institute of Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Devecka, Michal; Wilkens, Jan J. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany); Geinitz, Hans [Department of Radiation Oncology, Krankenhaus Barmherzige Schwestern Linz (Austria); Combs, Stephanie Elisabeth; Oechsner, Markus [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München (Germany)

    2015-01-01

    The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc—RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (D{sub min}) and mean dose (D{sub mean}) to the esophagus within the planning target volume, the volume changes of the lungs, the D{sub mean} and the total lung volume receiving at least 40 Gy (V{sub 40}), and the V{sub 30}, V{sub 20}, V{sub 10}, and V{sub 5}. For the heart we assessed the D{sub mean} and the V{sub 25}. Over all techniques and all patients the change in D{sub mean} as compared with the planned D{sub mean} (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT-insp) and 0.55% in maximum free expiration (CT-exp). The D{sub min} CT-insp change was 0.86% and CT-exp change was 0.89%. The D{sub mean} change of the lungs (heart) was in CT-insp 1.95% (2.89%) and 3.88% (2.38%) in CT-exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% D{sub mean} to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors.

  16. Knowledge-light adaptation approaches in case-based reasoning for radiotherapy treatment planning.

    Science.gov (United States)

    Petrovic, Sanja; Khussainova, Gulmira; Jagannathan, Rupa

    2016-03-01

    Radiotherapy treatment planning aims at delivering a sufficient radiation dose to cancerous tumour cells while sparing healthy organs in the tumour-surrounding area. It is a time-consuming trial-and-error process that requires the expertise of a group of medical experts including oncologists and medical physicists and can take from 2 to 3h to a few days. Our objective is to improve the performance of our previously built case-based reasoning (CBR) system for brain tumour radiotherapy treatment planning. In this system, a treatment plan for a new patient is retrieved from a case base containing patient cases treated in the past and their treatment plans. However, this system does not perform any adaptation, which is needed to account for any difference between the new and retrieved cases. Generally, the adaptation phase is considered to be intrinsically knowledge-intensive and domain-dependent. Therefore, an adaptation often requires a large amount of domain-specific knowledge, which can be difficult to acquire and often is not readily available. In this study, we investigate approaches to adaptation that do not require much domain knowledge, referred to as knowledge-light adaptation. We developed two adaptation approaches: adaptation based on machine-learning tools and adaptation-guided retrieval. They were used to adapt the beam number and beam angles suggested in the retrieved case. Two machine-learning tools, neural networks and naive Bayes classifier, were used in the adaptation to learn how the difference in attribute values between the retrieved and new cases affects the output of these two cases. The adaptation-guided retrieval takes into consideration not only the similarity between the new and retrieved cases, but also how to adapt the retrieved case. The research was carried out in collaboration with medical physicists at the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. All experiments were performed using real-world brain cancer

  17. SU-G-JeP4-01: An Assessment of a Microsoft Kinect V2 Sensor for Voluntary Breath-Hold Monitoring in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, D; Donovan, E [The Royal Marsden NHS Foundation Trust, Sutton, London (United Kingdom)

    2016-06-15

    Purpose: To determine whether the Microsoft Kinect Version 2 (Kinect v2), a commercial off-the-shelf (COTS) depth sensors designed for entertainment purposes, were robust to the radiotherapy treatment environment and could be suitable for monitoring of voluntary breath-hold compliance. This could complement current visual monitoring techniques, and be useful for heart sparing left breast radiotherapy. Methods: In-house software to control Kinect v2 sensors, and capture output information, was developed using the free Microsoft software development kit, and the Cinder creative coding C++ library. Each sensor was used with a 12m USB 3.0 active cable. A solid water block was used as the object. The depth accuracy and precision of the sensors was evaluated by comparing Kinect reported distance to the object with a precision laser measurement across a distance range of 0.6m to 2.0 m. The object was positioned on a high-precision programmable motion platform and moved in two programmed motion patterns and Kinect reported distance logged. Robustness to the radiation environment was tested by repeating all measurements with a linear accelerator operating over a range of pulse repetition frequencies (6Hz to 400Hz) and dose rates 50 to 1500 monitor units (MU) per minute. Results: The complex, consistent relationship between true and measured distance was unaffected by the radiation environment, as was the ability to detect motion. Sensor precision was < 1 mm and the accuracy between 1.3 mm and 1.8 mm when a distance correction was applied. Both motion patterns were tracked successfully with a root mean squared error (RMSE) of 1.4 and 1.1 mm respectively. Conclusion: Kinect v2 sensors are capable of tracking pre-programmed motion patterns with an accuracy <2 mm and appear robust to the radiotherapy treatment environment. A clinical trial using Kinect v2 sensor for monitoring voluntary breath hold has ethical approval and is open to recruitment. The authors are supported by a

  18. SU-G-JeP4-01: An Assessment of a Microsoft Kinect V2 Sensor for Voluntary Breath-Hold Monitoring in Radiotherapy

    International Nuclear Information System (INIS)

    Edmunds, D; Donovan, E

    2016-01-01

    Purpose: To determine whether the Microsoft Kinect Version 2 (Kinect v2), a commercial off-the-shelf (COTS) depth sensors designed for entertainment purposes, were robust to the radiotherapy treatment environment and could be suitable for monitoring of voluntary breath-hold compliance. This could complement current visual monitoring techniques, and be useful for heart sparing left breast radiotherapy. Methods: In-house software to control Kinect v2 sensors, and capture output information, was developed using the free Microsoft software development kit, and the Cinder creative coding C++ library. Each sensor was used with a 12m USB 3.0 active cable. A solid water block was used as the object. The depth accuracy and precision of the sensors was evaluated by comparing Kinect reported distance to the object with a precision laser measurement across a distance range of 0.6m to 2.0 m. The object was positioned on a high-precision programmable motion platform and moved in two programmed motion patterns and Kinect reported distance logged. Robustness to the radiation environment was tested by repeating all measurements with a linear accelerator operating over a range of pulse repetition frequencies (6Hz to 400Hz) and dose rates 50 to 1500 monitor units (MU) per minute. Results: The complex, consistent relationship between true and measured distance was unaffected by the radiation environment, as was the ability to detect motion. Sensor precision was < 1 mm and the accuracy between 1.3 mm and 1.8 mm when a distance correction was applied. Both motion patterns were tracked successfully with a root mean squared error (RMSE) of 1.4 and 1.1 mm respectively. Conclusion: Kinect v2 sensors are capable of tracking pre-programmed motion patterns with an accuracy <2 mm and appear robust to the radiotherapy treatment environment. A clinical trial using Kinect v2 sensor for monitoring voluntary breath hold has ethical approval and is open to recruitment. The authors are supported by a

  19. Quality Assurance Challenges for Motion-Adaptive Radiation Therapy: Gating, Breath Holding, and Four-Dimensional Computed Tomography

    International Nuclear Information System (INIS)

    Jiang, Steve B.; Wolfgang, John; Mageras, Gig S.

    2008-01-01

    Compared with conventional three-dimensional (3D) conformal radiation therapy and intensity-modulated radiation therapy treatments, quality assurance (QA) for motion-adaptive radiation therapy involves various challenges because of the added temporal dimension. Here we discuss those challenges for three specific techniques related to motion-adaptive therapy: namely respiratory gating, breath holding, and four-dimensional computed tomography. Similar to the introduction of any other new technologies in clinical practice, typical QA measures should be taken for these techniques also, including initial testing of equipment and clinical procedures, as well as frequent QA examinations during the early stage of implementation. Here, rather than covering every QA aspect in depth, we focus on some major QA challenges. The biggest QA challenge for gating and breath holding is how to ensure treatment accuracy when internal target position is predicted using external surrogates. Recommended QA measures for each component of treatment, including simulation, planning, patient positioning, and treatment delivery and verification, are discussed. For four-dimensional computed tomography, some major QA challenges have also been discussed

  20. The impact of respiratory motion and active breathing control on the displacement of target area in patients with gastric cancer treated with post-operative radiotherapy

    International Nuclear Information System (INIS)

    Yu Xiaoli; Zhang Zhen; Gu Weilie; Hu Weigang; Zhu Ji; Cai Gang; Li Guichao; He Shaoqin

    2010-01-01

    Objective: To assess the impact of respiratory motion on the displacement of target area and to analyze the discrimination between free breathing and active breathing control (ABC) in patients with gastric cancer treated with post-operative radiotherapy. Methods: From January 2005 to November 2006, 22 patients with post-operatively confirmed gastric cancer were enrolled in this study. All diseases were T 3 / N +, staging II - IV. Patients were CT scanned and treated by radiation with the use of ABC. Image J software was used in image processing, motion measurement and data analysis. Surgical clips were implanted as fiducial marks in the tumor bed and lymphatic drainage area. The motion range of each clip was measured in the resultant-projection image. Motions of the clips in superior-inferior (S-I), right-left (R-L) and anterior-posterior (A-P) directions were determined from fluoroscopy movies obtained in the treatment position. Results: The motion ranges in S-I, R-L and A-P directions were 11.1 mam, 1.9 mm and 2.5 mm (F = 85.15, P = 0. 000) under free breathing, with 2.2 mm, 1.1 mm and 1.7 nun under ABC (F = 17.64, P = 0. 000), and the reduction of motion ranges was significant in both S-I and A-P directions (t = 4.36, P = 0. 000;t = 3.73,P = 0.000). When compared with under free-breathing, the motion ranges under ABC were kept unchanged in the same breathing phase of the same treatment fraction, while significant increased in different breathing phase in all three directions (t = - 4.36, P = 0. 000; t = - 3.52, P = 0.000; t =-3.79, P = 0. 000), with a numerical value of 3.7 mm, 1.6 mm and 2.8 mm, respectively (F = 19.46, P = 0. 000) . With ABC between different treatment fractions , the maximum displacements were 2.7 mm, 1.7 mm and 2.5 mm for the centre of the clip cluster (F =4.07,P =0. 019), and were 4.6 mm, 3.1 mm and 4.2 mm for the clips (F =5.17 ,P =0.007). The motion ranges were significant increased in all the three directions (t = - 4.09, P=0.000 ; t =-4

  1. MO-FG-BRA-05: Dosimetric and Radiobiological Validation of Respiratory Gating in Conventional and Hypofractionated Radiotherapy of the Lung: Effect of Dose, Dose Rate, Gating Window and Breathing Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, L; Soultan, D; Pettersson, N; Yock, A; Cornell, M; Aguilera, J; Murphy, J; Advani, S; Moiseenko, V [University of California, San Diego, La Jolla, CA (United States); Gill, B [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2016-06-15

    Purpose: to evaluate the dosimetric and radiobiological consequences from having different gating windows, dose rates, and breathing patterns in gated VMAT lung radiotherapy. Methods: A novel 3D-printed moving phantom with central high and peripheral low tracer uptake regions was 4D FDG-PET/CT-scanned using ideal, patient-specific regular, and irregular breathing patterns. A scan of the stationary phantom was obtained as a reference. Target volumes corresponding to different uptake regions were delineated. Simultaneous integrated boost (SIB) 6 MV VMAT plans were produced for conventional and hypofractionated radiotherapy, using 30–70 and 100% cycle gating scenarios. Prescribed doses were 200 cGy with SIB to 240 cGy to high uptake volume for conventional, and 800 with SIB to 900 cGy for hypofractionated plans. Dose rates of 600 MU/min (conventional and hypofractionated) and flattening filter free 1400 MU/min (hypofractionated) were used. Ion chamber measurements were performed to verify delivered doses. Vials with A549 cells placed in locations matching ion chamber measurements were irradiated using the same plans to measure clonogenic survival. Differences in survival for the different doses, dose rates, gating windows, and breathing patterns were analyzed. Results: Ion chamber measurements agreed within 3% of the planned dose, for all locations, breathing patterns and gating windows. Cell survival depended on dose alone, and not on gating window, breathing pattern, MU rate, or delivery time. The surviving fraction varied from approximately 40% at 2Gy to 1% for 9 Gy and was within statistical uncertainty relative to that observed for the stationary phantom. Conclusions: Use of gated VMAT in PET-driven SIB radiotherapy was validated using ion chamber measurements and cell survival assays for conventional and hypofractionated radiotherapy.

  2. A practical implementation of physics quality assurance for photon adaptive radiotherapy.

    Science.gov (United States)

    Cai, Bin; Green, Olga L; Kashani, Rojano; Rodriguez, Vivian L; Mutic, Sasa; Yang, Deshan

    2018-03-14

    The fast evolution of technology in radiotherapy (RT) enabled the realization of adaptive radiotherapy (ART). However, the new characteristics of ART pose unique challenges for efficiencies and effectiveness of quality assurance (QA) strategies. In this paper, we discuss the necessary QAs for ART and introduce a practical implementation. A previously published work on failure modes and effects analysis (FMEA) of ART is introduced first to explain the risks associated with ART sub-processes. After a brief discussion of QA challenges, we review the existing QA strategies and tools that might be suitable for each ART step. By introducing the MR-guided online ART QA processes developed at our institute, we demonstrate a practical implementation. The limitations and future works to develop more robust and efficient QA strategies are discussed at the end. Copyright © 2018. Published by Elsevier GmbH.

  3. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.

    2013-01-01

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden “lung” inserts with embedded Perspex “lesions” were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  4. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clements, N. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia and Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Kron, T.; Roxby, P. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Franich, R.; Dunn, L. [Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Aarons, Y.; Chesson, B. [Department of Radiation Therapy, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Siva, S.; Duplan, D.; Ball, D. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when

  5. TH-EF-BRA-11: Feasibility of Super-Resolution Time-Resolved 4DMRI for Multi-Breath Volumetric Motion Simulation in Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Li, G; Zakian, K; Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States); Hunt, M [Mem Sloan-Kettering Cancer Ctr, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel super-resolution time-resolved 4DMRI technique to evaluate multi-breath, irregular and complex organ motion without respiratory surrogate for radiotherapy planning. Methods: The super-resolution time-resolved (TR) 4DMRI approach combines a series of low-resolution 3D cine MRI images acquired during free breathing (FB) with a high-resolution breath-hold (BH) 3DMRI via deformable image registration (DIR). Five volunteers participated in the study under an IRB-approved protocol. The 3D cine images with voxel size of 5×5×5 mm{sup 3} at two volumes per second (2Hz) were acquired coronally using a T1 fast field echo sequence, half-scan (0.8) acceleration, and SENSE (3) parallel imaging. Phase-encoding was set in the lateral direction to minimize motion artifacts. The BH image with voxel size of 2×2×2 mm{sup 3} was acquired using the same sequence within 10 seconds. A demons-based DIR program was employed to produce super-resolution 2Hz 4DMRI. Registration quality was visually assessed using difference images between TR 4DMRI and 3D cine and quantitatively assessed using average voxel correlation. The fidelity of the 3D cine images was assessed using a gel phantom and a 1D motion platform by comparing mobile and static images. Results: Owing to voxel intensity similarity using the same MRI scanning sequence, accurate DIR between FB and BH images is achieved. The voxel correlations between 3D cine and TR 4DMRI are greater than 0.92 in all cases and the difference images illustrate minimal residual error with little systematic patterns. The 3D cine images of the mobile gel phantom preserve object geometry with minimal scanning artifacts. Conclusion: The super-resolution time-resolved 4DMRI technique has been achieved via DIR, providing a potential solution for multi-breath motion assessment. Accurate DIR mapping has been achieved to map high-resolution BH images to low-resolution FB images, producing 2Hz volumetric high-resolution 4DMRI

  6. Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT

    International Nuclear Information System (INIS)

    Oh, Seungjong; Stewart, James; Moseley, Joanne; Kelly, Valerie; Lim, Karen; Xie, Jason; Fyles, Anthony; Brock, Kristy K.; Lundin, Anna; Rehbinder, Henrik; Milosevic, Michael; Jaffray, David

    2014-01-01

    Purpose: Substantial organ motion and tumor shrinkage occur during radiotherapy for cervix cancer. IMRT planning studies have shown that the quality of radiation delivery is influenced by these anatomical changes, therefore the adaptation of treatment plans may be warranted. Image guidance with off-line replanning, i.e. hybrid-adaptation, is recognized as one of the most practical adaptation strategies. In this study, we investigated the effects of soft tissue image guidance using on-line MR while varying the frequency of off-line replanning on the adaptation of cervix IMRT. Materials and method: 33 cervical cancer patients underwent planning and weekly pelvic MRI scans during radiotherapy. 5 patients of 33 were identified in a previous retrospective adaptive planning study, in which the coverage of gross tumor volume/clinical target volume (GTV/CTV) was not acceptable given single off-line IMRT replan using a 3 mm PTV margin with bone matching. These 5 patients and a randomly selected 10 patients from the remaining 28 patients, a total of 15 patients of 33, were considered in this study. Two matching methods for image guidance (bone to bone and soft tissue to dose matrix) and three frequencies of off-line replanning (none, single, and weekly) were simulated and compared with respect to target coverage (cervix, GTV, lower uterus, parametrium, upper vagina, tumor related CTV and elective lymph node CTV) and OAR sparing (bladder, bowel, rectum, and sigmoid). Cost (total process time) and benefit (target coverage) were analyzed for comparison. Results: Hybrid adaptation (image guidance with off-line replanning) significantly enhanced target coverage for both 5 difficult and 10 standard cases. Concerning image guidance, bone matching was short of delivering enough doses for 5 difficult cases even with a weekly off-line replan. Soft tissue image guidance proved successful for all cases except one when single or more frequent replans were utilized in the difficult cases

  7. Radiotherapy

    International Nuclear Information System (INIS)

    Pistenma, D.A.

    1980-01-01

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  8. Evaluation of delivered dose for a clinical daily adaptive plan selection strategy for bladder cancer radiotherapy

    International Nuclear Information System (INIS)

    Lutkenhaus, Lotte J.; Visser, Jorrit; Jong, Rianne de; Hulshof, Maarten C.C.M.; Bel, Arjan

    2015-01-01

    Purpose: To account for variable bladder size during bladder cancer radiotherapy, a daily plan selection strategy was implemented. The aim of this study was to calculate the actually delivered dose using an adaptive strategy, compared to a non-adaptive approach. Material and methods: Ten patients were treated to the bladder and lymph nodes with an adaptive full bladder strategy. Interpolated delineations of bladder and tumor on a full and empty bladder CT scan resulted in five PTVs for which VMAT plans were created. Daily cone beam CT (CBCT) scans were used for plan selection. Bowel, rectum and target volumes were delineated on these CBCTs, and delivered dose for these was calculated using both the adaptive plan, and a non-adaptive plan. Results: Target coverage for lymph nodes improved using an adaptive strategy. The full bladder strategy spared the healthy part of the bladder from a high dose. Average bowel cavity V30Gy and V40Gy significantly reduced with 60 and 69 ml, respectively (p < 0.01). Other parameters for bowel and rectum remained unchanged. Conclusions: Daily plan selection compared to a non-adaptive strategy yielded similar bladder coverage and improved coverage for lymph nodes, with a significant reduction in bowel cavity V30Gy and V40Gy only, while other sparing was limited

  9. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    Science.gov (United States)

    2016-12-07

    advantages over rocket - based systems for space access vehicles. The major advantage of using air-breathing engine is that the extra oxidizer is not...sideslip angle (β) is calculated as Vt = p u2 + v2 +w2, α= t an−1 ( wu ), β= si n−1 ( vVt ) The rotational dynamic equations of AHV are given as Ṗ = c1QR...inverse controller for hypersonic vehicle. In 2010 International Conference on Information, Networking and Automation (ICINA), volume 2, pages V2 –240

  10. Setup error and motion during deep inspiration breath-hold breast radiotherapy measured with continuous portal imaging

    DEFF Research Database (Denmark)

    Lutz, Christina Maria; Poulsen, Per Rugaard; Fledelius, Walther

    2016-01-01

    BACKGROUND: The position and residual motion of the chest wall of breast cancer patients during treatment in deep inspiration breath-hold (DIBH) were investigated. MATERIAL AND METHODS: The study included 58 left-sided breast cancer patients treated with DIBH three-dimensional (3D) conformal......). At every third treatment fraction, continuous portal images were acquired. The time-resolved chest wall position during treatment was compared with the planned position to determine the inter-fraction setup errors and the intra-fraction motion of the chest wall. RESULTS: The DIBH compliance was 95% during...

  11. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy

    International Nuclear Information System (INIS)

    Seppenwoolde, Yvette; Shirato, Hiroki; Kitamura, Kei; Shimizu, Shinichi; Herk, Marcel van; Lebesque, Joos V.; Miyasaka, Kazuo

    2002-01-01

    Purpose: In this work, three-dimensional (3D) motion of lung tumors during radiotherapy in real time was investigated. Understanding the behavior of tumor motion in lung tissue to model tumor movement is necessary for accurate (gated or breath-hold) radiotherapy or CT scanning. Methods: Twenty patients were included in this study. Before treatment, a 2-mm gold marker was implanted in or near the tumor. A real-time tumor tracking system using two fluoroscopy image processor units was installed in the treatment room. The 3D position of the implanted gold marker was determined by using real-time pattern recognition and a calibrated projection geometry. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within a certain volume. The system provided the coordinates of the gold marker during beam-on and beam-off time in all directions simultaneously, at a sample rate of 30 images per second. The recorded tumor motion was analyzed in terms of the amplitude and curvature of the tumor motion in three directions, the differences in breathing level during treatment, hysteresis (the difference between the inhalation and exhalation trajectory of the tumor), and the amplitude of tumor motion induced by cardiac motion. Results: The average amplitude of the tumor motion was greatest (12±2 mm [SD]) in the cranial-caudal direction for tumors situated in the lower lobes and not attached to rigid structures such as the chest wall or vertebrae. For the lateral and anterior-posterior directions, tumor motion was small both for upper- and lower-lobe tumors (2±1 mm). The time-averaged tumor position was closer to the exhale position, because the tumor spent more time in the exhalation than in the inhalation phase. The tumor motion was modeled as a sinusoidal movement with varying asymmetry. The tumor position in the exhale phase was more stable than the tumor position in the inhale phase during individual treatment fields. However, in many

  12. Impact of respiratory-correlated CT sorting algorithms on the choice of margin definition for free-breathing lung radiotherapy treatments.

    Science.gov (United States)

    Thengumpallil, Sheeba; Germond, Jean-François; Bourhis, Jean; Bochud, François; Moeckli, Raphaël

    2016-06-01

    To investigate the impact of Toshiba phase- and amplitude-sorting algorithms on the margin strategies for free-breathing lung radiotherapy treatments in the presence of breathing variations. 4D CT of a sphere inside a dynamic thorax phantom was acquired. The 4D CT was reconstructed according to the phase- and amplitude-sorting algorithms. The phantom was moved by reproducing amplitude, frequency, and a mix of amplitude and frequency variations. Artefact analysis was performed for Mid-Ventilation and ITV-based strategies on the images reconstructed by phase- and amplitude-sorting algorithms. The target volume deviation was assessed by comparing the target volume acquired during irregular motion to the volume acquired during regular motion. The amplitude-sorting algorithm shows reduced artefacts for only amplitude variations while the phase-sorting algorithm for only frequency variations. For amplitude and frequency variations, both algorithms perform similarly. Most of the artefacts are blurring and incomplete structures. We found larger artefacts and volume differences for the Mid-Ventilation with respect to the ITV strategy, resulting in a higher relative difference of the surface distortion value which ranges between maximum 14.6% and minimum 4.1%. The amplitude- is superior to the phase-sorting algorithm in the reduction of motion artefacts for amplitude variations while phase-sorting for frequency variations. A proper choice of 4D CT sorting algorithm is important in order to reduce motion artefacts, especially if Mid-Ventilation strategy is used. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Deep inspiration breath-hold (DIBH) radiotherapy in left-sided breast cancer. Dosimetrical comparison and clinical feasibility in 20 patients

    Energy Technology Data Exchange (ETDEWEB)

    Hepp, Rodrigo; Ammerpohl, Mark; Morgenstern, Christina; Erichsen, Patricia [Evangelische Kliniken Gelsenkirchen, Klinik fuer Strahlentherapie und Radioonkologie, Gelsenkirchen (Germany); Nielinger, Lisa [Evangelische Kliniken Gelsenkirchen, Klinik fuer Strahlentherapie und Radioonkologie, Gelsenkirchen (Germany); Hochschule Hamm-Lippstadt, Lippstadt (Germany); Abdallah, Abdallah [Evangelische Kliniken Gelsenkirchen, Klinik fuer Senologie, Gelsenkirchen (Germany); Galalae, Razvan [Evangelische Kliniken Gelsenkirchen, Klinik fuer Strahlentherapie und Radioonkologie, Gelsenkirchen (Germany); Christian-Albrechts-Universitaet zu Kiel, Medizinische Fakultaet, Kiel (Germany)

    2015-09-15

    Adjuvant radiotherapy after breast-conserving surgery (BCS) for breast cancer (BC) is a well-established indication. The risk of ischaemic heart disease after radiotherapy for BC increases linearly with the heart mean dose with no apparent threshold. Radiotherapy to the left breast in deep inspiration breath-hold (DIBH) reduces the dose to the heart. A new linac system with an integrated surface scanner (SS) for DIBH treatments was recently installed in our department. We tested it for potential benefits, safety, patients' acceptance/compliance and associated additional workload. Twenty consecutive patients following BCS for breast carcinoma of the left side were enrolled in our institutional DIBH protocol. We compared dose to the heart and ipsilateral lung (IL) between plans in DIBH and free breathing (FB) using standard defined parameters: mean dose, maximal dose to a volume of 2 cm{sup 3} (D{sub 2} {sub cm} {sup 3}), volume receiving ≥ 5 Gy (V{sub 5}), 10 Gy (V{sub 10}), 15 Gy (V{sub 15}) and 20 Gy (V{sub 20}). Comparison of median calculated dose values was performed using a two-tailed Wilcoxon signed rank test. DIBH was associated with a statistically significant reduction (p < 0.001) in all studied parameters for the heart and the IL. In 16 of 20 patients the heart D{sub 2} {sub cm} {sup 3} was less than 42 Gy in DIBH. In FB the heart D{sub 2} {sub cm} {sup 3} was ≥ 42 Gy in 17 of 20 patients. The median daily treatment time was 9 min. Radiotherapy of the left breast in DIBH using a SS could easily be incorporated into daily routine and is associated with significant dose reduction to the heart and IL. (orig.) [German] Die adjuvante Strahlentherapie nach brusterhaltener Operation (BCS) bei Brustkrebs (BC) ist eine seit langem anerkannte Behandlungsform. Das postradiogene Risiko einer kardialen Ischaemie steigt linear ohne erkennbaren Schwellenwert mit der mittleren Herzdosis. Die Bestrahlung der linken Brust in tiefer Inspiration unter Anhalten der

  14. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    OpenAIRE

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Traisathit, Patrinee; Van Gestel, Dirk

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan w...

  15. Contribution to adaptive radiotherapy by systematic analysis of the entrance fluence and exit patient dose

    International Nuclear Information System (INIS)

    Celi, Sofia

    2016-01-01

    Modern radiation therapy combines complex techniques and personalized treatments, with the risk that certain evolutions and errors occurring during the course of the treatment might go unnoticed. These fluctuations may cause great damage to the health of the patient. In this perspective, we worked on the potential of a transit in vivo dosimetry system for continuous monitoring of the patient and, hereafter, adaptive radiotherapy. Our clinical experience and feasibility testing determined the main lines of work: automation and simplification of the results analysis method. The developments included the creation of a golden data library and a series of root cause analyzes, allowing us to strengthen the accuracy of the system, to enhance the automation of the setup and to identify tracks for an efficient analysis of the results and for the creation of additional analytical tools to facilitate the monitoring and adaptation of the treatments in clinical routine [fr

  16. Study of inter-fractional variations and adaptive radiotherapy in pancreatic cancer

    International Nuclear Information System (INIS)

    Yang Chengliang; Wang Jianhua; Li Dingjie; Mao Ronghu; Li, X. Allen

    2012-01-01

    Objective: To quantitatively characterize the inter-fractional anatomy variations and advantages of dosimetry for the adaptive radiotherapy in pancreatic cancer. Methods: A total of 226 daily CT images acquired from 10 patients with pancreatic cancer treated with image-guided radiotherapy were analyzed retrospectively. Targets and organs at risk (OARs) were delineated by the atlas-based automatic segmentation and modified by the skilled physician. Various parameters,including the center of mass (COM) distance, the maximal overlap ratio (MOR) and the Dice coefficient (DC), were used to quantify the inter-fractional organ displacement and deformation. The adaptive radiation therapy (ART) was applied to handle the daily GT images. The dose distributions parameters from the ART plan were compared with those from the repositioning plan. Results: The inter-fractional anatomy variations of pancreas head were obvious in the pancreatic cancer irradiation. The mean COM distance, MOR and DC of pancreas head after the bony or soft tissue alignment and registration was (7.8 ± 1.3)mm, (87.2 ± 8.4)% and (77.2 ±7.9)% respectively. Compared with the repositioning plan, the ART plan had better target coverage and OARs sparing. For example, the mean V 100 of PTV was improved from (93.32 ± 2.89) % for repositioning plan to (96.03 ± 1.42)% for ART plan with t =2.79, P =0.008 and the mean V 50.4 for duodenum was reduced from (43.4 ± 12.71)% for the repositioning plan to (15.6 ± 6.25)% for the ART plan with t =3.52, P=0.000. Conclusions: The ART can effectively account for the obvious inter-fractional anatomy variations in pancreatic cancer irradiation and be used to escalate the radiotherapy dose for the pancreatic cancer, which will lead to a promising higher local control rate. (authors)

  17. Adaptive radiotherapy of lung cancer patients with pleural effusion or atelectasis

    International Nuclear Information System (INIS)

    Møller, Ditte Sloth; Khalil, Azza Ahmed; Knap, Marianne Marquard; Hoffmann, Lone

    2014-01-01

    Background and purpose: Changes in lung density due to atelectasis, pleural effusion and pneumonia/pneumonitis are observed in lung cancer patients. These changes may be an indication for adaptive radiotherapy in order to maintain target coverage and avoid increased risk of normal tissue complications. Material and methods: CBCT scans of 163 patients were reviewed to score lung changes and find the incidence, the impact of geometric and dosimetric changes and the timing of appearance and disappearance of changes. Results: 23% of the patients had changes in the lung related to pleural effusion, atelectasis or pneumonia/pneumonitis. In 9% of all patients, the appearance or disappearance of a change introduced a shift of the tumor or lymph nodes relative to the spine >5 mm. Only major density changes affected the dose distribution, and 9% of all patients needed adaptive treatment planning due to density changes. In total, 12% of all patients did benefit from an adaptive treatment plan and in 85% of these patients, an atelectasis did change. Conclusions: An adaptive strategy was indicated for 12% of the patients due to atelectasis, pleural effusion or pneumonia/pneumonitis. The predominant cause for adaptation was atelectasis. No systematic pattern in the appearance and disappearance of the changes were observed and hence weekly evaluation is preferable

  18. A review of plan library approaches in adaptive radiotherapy of bladder cancer.

    Science.gov (United States)

    Collins, Shane D; Leech, Michelle M

    2018-05-01

    Large variations in the shape and size of the bladder volume are commonly observed in bladder cancer radiotherapy (RT). The clinical target volume (CTV) is therefore frequently inadequately treated and large isotropic margins are inappropriate in terms of dose to organs at risk (OAR); thereby making adaptive radiotherapy (ART) attractive for this tumour site. There are various methods of ART delivery, however, for bladder cancer, plan libraries are frequently used. A review of published studies on plan libraries for bladder cancer using four databases (Pubmed, Science Direct, Embase and Cochrane Library) was conducted. The endpoints selected were accuracy and feasibility of initiation of a plan library strategy into a RT department. Twenty-four articles were included in this review. The majority of studies reported improvement in accuracy with 10 studies showing an improvement in planning target volume (PTV) and CTV coverage with plan libraries, some by up to 24%. Seventeen studies showed a dose reduction to OARs, particularly the small bowel V45Gy, V40Gy, V30Gy and V10Gy, and the rectal V30Gy. However, the occurrence of no suitable plan was reported in six studies, with three studies showing no significant difference between adaptive and non-adaptive strategies in terms of target coverage. In addition, inter-observer variability in plan selection appears to remain problematic. The additional resources, education and technology required for the initiation of plan library selection for bladder cancer may hinder its routine clinical implementation, with eight studies illustrating increased treatment time required. While there is a growing body of evidence in support of plan libraries for bladder RT, many studies differed in their delivery approach. The advent of the clinical use of the MRI-linear accelerator will provide RT departments with the opportunity to consider daily online adaption for bladder cancer as an alternate to plan library approaches.

  19. SU-E-J-33: Cardiac Movement in Deep Inspiration Breath-Hold for Left-Breast Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Kim, M; Lee, S; Suh, T

    2014-01-01

    Purpose: The present study was designed to investigate the displacement of heart using Deep Inspiration Breath Hold (DIBH) CT data compared to free-breathing (FB) CT data and radiation exposure to heart. Methods: Treatment planning was performed on the computed tomography (CT) datasets of 20 patients who had received lumpectomy treatments. Heart, lung and both breasts were outlined. The prescribed dose was 50 Gy divided into 28 fractions. The dose distributions in all the plans were required to fulfill the International Commission on Radiation Units and Measurement specifications that include 100% coverage of the CTV with ≥ 95% of the prescribed dose and that the volume inside the CTV receiving > 107% of the prescribed dose should be minimized. Displacement of heart was measured by calculating the distance between center of heart and left breast. For the evaluation of radiation dose to heart, minimum, maximum and mean dose to heart were calculated. Results: The maximum and minimum left-right (LR) displacements of heart were 8.9 mm and 3 mm, respectively. The heart moved > 4 mm in the LR direction in 17 of the 20 patients. The distances between the heart and left breast ranged from 8.02–17.68 mm (mean, 12.23 mm) and 7.85–12.98 mm (mean, 8.97 mm) with DIBH CT and FB CT, respectively. The maximum doses to the heart were 3115 cGy and 4652 cGy for the DIBH and FB CT dataset, respectively. Conclusion: The present study has demonstrated that the DIBH technique could help to reduce the risk of radiation dose-induced cardiac toxicity by using movement of cardiac; away from radiation field. The DIBH technique could be used in an actual treatment room for a few minutes and could effectively reduce the cardiac dose when used with a sub-device or image acquisition standard to maintain consistent respiratory motion

  20. A new strategy for online adaptive prostate radiotherapy based on cone-beam CT

    International Nuclear Information System (INIS)

    Boggula, Ramesh; Lorenz, Friedlieb; Lohr, Frank; Wolff, Dirk; Boda-Heggemann, Judit; Hesser, Juergen; Wenz, Frederik; Wertz, Hansjoerg

    2009-01-01

    Interfractional organ motion and patient positioning errors during prostate radiotherapy can have deleterious clinical consequences. It has become clinical practice to re-position the patient with image-guided translational position correction before each treatment to compensate for those errors. However, tilt errors can only be corrected with table corrections in six degrees of freedom or ''full'' adaptive treatment planning strategies. Organ shape deformations can only be corrected by ''full'' plan adaptation. This study evaluates the potential of instant treatment plan adaptation (fast isodose line adaptation with real-time dose manipulating tools) based on cone-beam CT (CBCT) to further improve treatment quality. Using in-house software, CBCTs were modified to approximate a correct density calibration. To evaluate the dosimetric accuracy, dose distributions based on CBCTs were compared with dose distributions calculated on conventional planning CTs (PCT) for four datasets (one inhomogeneous phantom, three patient datasets). To determine the potential dosimetric benefit of a ''full'' plan adaptation over translational position correction, dose distributions were re-optimized using graphical ''online'' dose modification tools for three additional patients' CT-datasets with a substantially distended rectum while the original plans have been created with an empty rectum (single treatment fraction estimates). Absolute dose deviations of up to 51% in comparison to the PCT were observed when uncorrected CBCTs were used for replanning. After density calibration of the CBCTs, 97% of the dose deviations were ≤3% (gamma index: 3%/3 mm). Translational position correction restored the PTV dose (D 95 ) to 73% of the corresponding dose of the reference plan. After plan adaptation, larger improvements of dose restoration to 95% were observed. Additionally, the rectal dose (D 30 ) was further decreased by 42 percentage points (mean of three patient datasets). An accurate dose

  1. Adaptive plan selection vs. re-optimisation in radiotherapy for bladder cancer: A dose accumulation comparison

    International Nuclear Information System (INIS)

    Vestergaard, Anne; Muren, Ludvig Paul; Søndergaard, Jimmi; Elstrøm, Ulrik Vindelev; Høyer, Morten; Petersen, Jørgen B.

    2013-01-01

    Purpose: Patients with urinary bladder cancer are obvious candidates for adaptive radiotherapy (ART) due to large inter-fractional variation in bladder volumes. In this study we have compared the normal tissue sparing potential of two ART strategies: daily plan selection (PlanSelect) and daily plan re-optimisation (ReOpt). Materials and methods: Seven patients with bladder cancer were included in the study. For the PlanSelect strategy, a patient-specific library of three plans was generated, and the most suitable plan based on the pre-treatment cone beam CT (CBCT) was selected. For the daily ReOpt strategy, plans were re-optimised based on the CBCT from each daily fraction. Bladder contours were propagated to the CBCT scan using deformable image registration (DIR). Accumulated dose distributions for the ART strategies as well as the non-adaptive RT were calculated. Results: A considerable sparing of normal tissue was achieved with both ART approaches, with ReOpt being the superior technique. Compared to non-adaptive RT, the volume receiving more than 57 Gy (corresponding to 95% of the prescribed dose) was reduced to 66% (range 48–100%) for PlanSelect and to 41% (range 33–50%) for ReOpt. Conclusion: This study demonstrated a considerable normal tissue sparing potential of ART for bladder irradiation, with clearly superior results by daily adaptive re-optimisation

  2. The evaluation of composite dose using deformable image registration in adaptive radiotherapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chul Hwan; Ko, Seong Jin; Kim, Chang Soo; Kim, Jung Hoon; Kim, Dong Hyun; Choi, Seok Yoon; Ye, Soo Young; Kang, Se Sik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Pusan (Korea, Republic of)

    2013-09-15

    In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible(48.95±3.89 vs 49.10±3.55 Gy), oral cavity(36.93±4.03 vs 38.97±5.08 Gy), parotid gland(35.71±6.22 vs 36.12±6.70 Gy) and temporomandibular joint(18.41±9.60 vs 20.13±10.42 Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

  3. The evaluation of composite dose using deformable image registration in adaptive radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Hwang, Chul Hwan; Ko, Seong Jin; Kim, Chang Soo; Kim, Jung Hoon; Kim, Dong Hyun; Choi, Seok Yoon; Ye, Soo Young; Kang, Se Sik

    2013-01-01

    In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible(48.95±3.89 vs 49.10±3.55 Gy), oral cavity(36.93±4.03 vs 38.97±5.08 Gy), parotid gland(35.71±6.22 vs 36.12±6.70 Gy) and temporomandibular joint(18.41±9.60 vs 20.13±10.42 Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy

  4. Cone Beam Computed Tomography-Derived Adaptive Radiotherapy for Radical Treatment of Esophageal Cancer

    International Nuclear Information System (INIS)

    Hawkins, Maria A.; Brooks, Corrinne; Hansen, Vibeke N.; Aitken, Alexandra; Tait, Diana M.

    2010-01-01

    Purpose: To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Methods and materials: Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. Results: A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% ± 4% and the PTV2 = 96.8% ± 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. Conclusions: A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose.

  5. A 4D ultrasound real-time tracking system for external beam radiotherapy of upper abdominal lesions under breath-hold

    Energy Technology Data Exchange (ETDEWEB)

    Sihono, Dwi Seno Kuncoro; Vogel, Lena; Thoelking, Johannes; Wenz, Frederik; Boda-Heggemann, Judit; Wertz, Hansjoerg [University of Heidelberg, Department of Radiation Oncology, University Medical Center Mannheim, Mannheim (Germany); Weiss, Christel [University of Heidelberg, Department of Biomathematics and Medical Statistics, University Medical Center Mannheim, Mannheim (Germany); Lohr, Frank [University of Heidelberg, Department of Radiation Oncology, University Medical Center Mannheim, Mannheim (Germany); Az. Ospedaliero-Universitaria di Modena, Struttura Complessa di Radioterapia, Dipartimento di Oncologia, Modena (Italy)

    2017-03-15

    To evaluate a novel four-dimensional (4D) ultrasound (US) tracking system for external beam radiotherapy of upper abdominal lesions under computer-controlled deep-inspiration breath-hold (DIBH). The tracking accuracy of the research 4D US system was evaluated using two motion phantoms programmed with sinusoidal and breathing patterns to simulate free breathing and DIBH. Clinical performance was evaluated with five healthy volunteers. US datasets were acquired in computer-controlled DIBH with varying angular scanning angles. Tracked structures were renal pelvis (spherical structure) and portal/liver vein branches (non-spherical structure). An external marker was attached to the surface of both phantoms and volunteers as a secondary object to be tracked by an infrared camera for comparison. Phantom measurements showed increased accuracy of US tracking with decreasing scanning range/increasing scanning frequency. The probability of lost tracking was higher for small scanning ranges (43.09% for 10 and 13.54% for 20 ).The tracking success rates in healthy volunteers during DIBH were 93.24 and 89.86% for renal pelvis and portal vein branches, respectively. There was a strong correlation between marker motion and US tracking for the majority of analyzed breath-holds: 84.06 and 88.41% of renal pelvis target results and 82.26 and 91.94% of liver vein target results in anteroposterior and superoinferior directions, respectively; Pearson's correlation coefficient was between 0.71 and 0.99. The US system showed a good tracking performance in 4D motion phantoms. The tracking capability of surrogate structures for upper abdominal lesions in DIBH fulfills clinical requirements. Further investigation in a larger cohort of patients is underway. (orig.) [German] Evaluation eines neuen vierdimensionalen (4D) Ultraschall(US)-Tracking-Systems fuer die externe Strahlentherapie von Oberbauchlaesionen unter computergesteuertem tiefem Atemanhalt (DIBH). Die Tracking-Genauigkeit des 4D

  6. MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach

    International Nuclear Information System (INIS)

    Rank, Christopher M; Tremmel, Christoph; Hünemohr, Nora; Nagel, Armin M; Jäkel, Oliver; Greilich, Steffen

    2013-01-01

    In order to benefit from the highly conformal irradiation of tumors in ion radiotherapy, sophisticated treatment planning and simulation are required. The purpose of this study was to investigate the potential of MRI for ion radiotherapy treatment plan simulation and adaptation using a classification-based approach. Firstly, a voxelwise tissue classification was applied to derive pseudo CT numbers from MR images using up to 8 contrasts. Appropriate MR sequences and parameters were evaluated in cross-validation studies of three phantoms. Secondly, ion radiotherapy treatment plans were optimized using both MRI-based pseudo CT and reference CT and recalculated on reference CT. Finally, a target shift was simulated and a treatment plan adapted to the shift was optimized on a pseudo CT and compared to reference CT optimizations without plan adaptation. The derivation of pseudo CT values led to mean absolute errors in the range of 81 - 95 HU. Most significant deviations appeared at borders between air and different tissue classes and originated from partial volume effects. Simulations of ion radiotherapy treatment plans using pseudo CT for optimization revealed only small underdosages in distal regions of a target volume with deviations of the mean dose of PTV between 1.4 - 3.1% compared to reference CT optimizations. A plan adapted to the target volume shift and optimized on the pseudo CT exhibited a comparable target dose coverage as a non-adapted plan optimized on a reference CT. We were able to show that a MRI-based derivation of pseudo CT values using a purely statistical classification approach is feasible although no physical relationship exists. Large errors appeared at compact bone classes and came from an imperfect distinction of bones and other tissue types in MRI. In simulations of treatment plans, it was demonstrated that these deviations are comparable to uncertainties of a target volume shift of 2 mm in two directions indicating that especially

  7. Predicting the need for adaptive radiotherapy in head and neck cancer

    International Nuclear Information System (INIS)

    Brown, Elizabeth; Owen, Rebecca; Harden, Fiona; Mengersen, Kerrie; Oestreich, Kimberley; Houghton, Whitney; Poulsen, Michael; Harris, Selina; Lin, Charles; Porceddu, Sandro

    2015-01-01

    Background and purpose: Adaptive radiotherapy (ART) can account for the dosimetric impact of anatomical change in head and neck cancer patients; however it can be resource intensive. Consequently, it is imperative that patients likely to require ART are identified. The purpose of this study was to find predictive factors that identify oropharyngeal squamous cell carcinoma (OPC) and nasopharyngeal carcinoma (NPC) patients more likely to need ART. Materials and methods: One hundred and ten patients with OPC or NPC were analysed. Patient demographics and tumour characteristics were compared between patients who were replanned and those that were not. Factors found to be significant were included in logistic regression models. Risk profiles were developed from these models. A dosimetric analysis was performed. Results: Nodal disease stage, pre-treatment largest involved node size, diagnosis and initial weight (categorised in 2 groups) were identified as significant for inclusion in the model. Two models were found to be significant (p = 0.001), correctly classifying 98.2% and 96.1% of patients respectively. Three ART risk profiles were developed. Conclusion: Predictive factors identifying OPC or NPC patients more likely to require ART were reported. A risk profile approach could facilitate the effective implementation of ART into radiotherapy departments through forward planning and appropriate resource allocation

  8. Association between respiratory and postural adaptations and self-perception of school-aged children with mouth breathing in relation to their quality of life

    Directory of Open Access Journals (Sweden)

    Suélen E. Uhlig

    2015-06-01

    Full Text Available Objective: To investigate the respiratory and postural adaptations associated with mouth and nasal breathing and to evaluate the associations of such adaptations in mouth breathers' self-perceived quality of life. Method: Cross-sectional study with mouth breathers (initial n=116 and final n=48 and nasal breathers (initial n=131 and final n=24 from elementary school, aged between 7 and 14 years. Chest expansion, using cirtometry, the breathing pattern and the use of accessory muscles, by means of clinical evaluations and photogrammetry, and flexibility tests were evaluated in both groups. Subsequently, the mouth breathers were asked to complete the quality of life questionnaire. Statistical tests: Chi-square, odds ratio, Mann-Whitney, and binomial tests were first applied followed by logistic regressions. Results: Thoracic breathing (p=0.04, using of accessory muscles (p=0.03 and reductions in flexibility (p=0.001 increased the chances of an individual being a mouth breather when compared to nasal breathers. Subsequently, using of accessory muscles decreased the chances of snoring among mouth breathers (p=0.03; the presence of shoulder asymmetry reduced the chances of experiencing quiet sleep (p=0.05 and increased the chances of coughing or being tired when playing or running (p=0.008. Finally, forward head position reduced the chances of waking up at night (p=0.04 and experiencing shortness of breath (p=0.05. Conclusions: Respiratory and postural adaptations increased the chances of individuals persisting with mouth breathing. Additionally, these adaptations could be associated with mouth breathers' self-perceived quality of life.

  9. Interactive adaptation of a volumetric imaging radiotherapy treatment: development and validation of tools for its implementation in clinical routine

    International Nuclear Information System (INIS)

    Huger, Sandrine

    2013-01-01

    Changing anatomy during radiotherapy can lead to significant dosimetric consequences for organs at risk (OARs) and/or target volumes. Adaptive radiotherapy can compensate for these variations however its deployment for clinical work is hampered by the increased workload for the medical staff and there is still no commercialized software available for clinical use. We developed a simple in vivo dosimetric alert tool allowing rapid identification of patients who might benefit from an adaptive radiotherapy. Dosimetric evaluation of delivered treatment has been conducted onto 3D on board imaging (CBCT) whose dose calculation accuracy has been evaluated. The tool does not require a new volume of interest delineation. Tool alert is based on objectives and quantifiable criteria defined by the exceeding volumes of interest dose thresholds. Tool precision and detectability have been validated and applied in a retrospective study on 10 head and neck patients. The tool allows detecting patients where an adaptive treatment could have been considered. In its clinical implementation, adaptive radiotherapy process requires deformable matching algorithms to follow patient local's deformations occurring during treatment. Nevertheless, their use has not been validated. We conducted an evaluation of the Block Matching deformable algorithm, suitable for multimodality imaging (CT/CBCT), in comparison to rigid algorithm. A study has been conducted for 10 head and neck patients based on volume of interest contours comparison for 76 CBCT. Similarity parameters used consisted on Dice Similarity Index, Robust Hausdorff Distance (in mm) and the absolute volume difference (in cc). (author)

  10. Variations in CT determination of target volume with active breath co-ordinate in radiotherapy for post-operative gastric cancer.

    Science.gov (United States)

    Li, Gui-Chao; Zhang, Zhen; Ma, Xue-Jun; Yu, Xiao-Li; Hu, Wei-Gang; Wang, Jia-Zhou; Li, Qi-Wen; Liang, Li-Ping; Shen, Li-Jun; Zhang, Hui; Fan, Ming

    2016-01-01

    To investigate interobserver and inter-CT variations in using the active breath co-ordinate technique in the determination of clinical tumour volume (CTV) and normal organs in post-operative gastric cancer radiotherapy. Ten gastric cancer patients were enrolled in our study, and four radiation oncologists independently determined the CTVs and organs at risk based on the CT simulation data. To determine interobserver and inter-CT variation, we evaluated the maximum dimensions, derived volume and distance between the centres of mass (CMs) of the CTVs. We assessed the reliability in CTV determination among the observers by conformity index (CI). The average volumes ± standard deviation (cm(3)) of the CTV, liver, left kidney and right kidney were 674 ± 138 (range, 332-969), 1000 ± 138 (range, 714-1320), 149 ± 13 (range, 104-183) and 141 ± 21 (range, 110-186) cm(3), respectively. The average inter-CT distances between the CMs of the CTV, liver, left kidney and right kidney were 0.40, 0.56, 0.65 and 0.6 cm, respectively; the interobserver values were 0.98, 0.53, 0.16 and 0.15 cm, respectively. In the volume size of CTV for post-operative gastric cancer, there were significant variations among multiple observers, whereas there was no variation between different CTs. The slices in which variations more likely occur were the slices of the lower verge of the hilum of the spleen and porta hepatis, then the paraoesophageal lymph nodes region and abdominal aorta, and the inferior vena cava, and the variation in the craniocaudal orientation from the interobserver was more predominant than that from inter-CT. First, this is the first study to evaluate the interobserver and inter-CT variations in the determination of the CTV and normal organs in gastric cancer with the use of the active breath co-ordinate technique. Second, we analysed the region where variations most likely occur. Third, we investigated the influence of interobserver variation on

  11. Feasibility of dose planning using CBCT images combined with MSCT images for adaptive radiotherapy

    International Nuclear Information System (INIS)

    Usui, Keisuke; Kunieda, Etsuo; Ogawa, Koichi

    2013-01-01

    If a kilo-voltage cone-beam computed tomography (CBCT) system mounted on a linear accelerator becomes available for dose calculation, we can confirm the dose distribution of treatment in each day by referring it to the initially planned dose distribution. In this paper, we verified the validity of the calculation method using CBCT images combined with multi-slice CT images. To evaluate the accuracy of calculated dose distribution, γ analysis, distance-to-agreement analysis and dose-volume-histogram analysis were used as the conventional dose calculation methods using CBCT images. The results showed that the dose distribution calculated by our proposed method agreed with the initial treatment plan better compared with the other methods. In addition, our method was so stable that the calculated dose distribution was insensitive to variations in clinical conditions. We demonstrated the feasibility of our proposed method for adaptive radiotherapy. (author)

  12. Intra-fractional bladder motion and margins in adaptive radiotherapy for urinary bladder cancer

    DEFF Research Database (Denmark)

    Grønborg, Caroline; Vestergaard, Anne; Høyer, Morten

    2015-01-01

    and to estimate population-based and patient-specific intra-fractional margins, also relevant for a future re-optimisation strategy. MATERIAL AND METHODS: Nine patients treated in a clinical phase II ART trial of daily plan selection for bladder cancer were included. In the library plans, 5 mm isotropic margins......BACKGROUND: The bladder is a tumour site well suited for adaptive radiotherapy (ART) due to large inter-fractional changes, but it also displays considerable intra-fractional motion. The aim of this study was to assess target coverage with a clinically applied method for plan selection ART...... were added to account for intra-fractional changes. Pre-treatment and weekly repeat magnetic resonance imaging (MRI) series were acquired in which a full three-dimensional (3D) volume was scanned every second min for 10 min (a total of 366 scans in 61 series). Initially, the bladder clinical target...

  13. An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields

    International Nuclear Information System (INIS)

    Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul

    2014-01-01

    Purpose: Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). Materials and methods: The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Results: Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p < 0.01). Conclusions: DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy

  14. An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields.

    Science.gov (United States)

    Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul

    2014-09-01

    Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p<0.01). DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Adaptive radiotherapy for head and neck cancer—Dosimetric results from a prospective clinical trial

    International Nuclear Information System (INIS)

    Schwartz, David L.; Garden, Adam S.; Shah, Shalin J.; Chronowski, Gregory; Sejpal, Samir; Rosenthal, David I.; Chen, Yipei; Zhang, Yongbin; Zhang, Lifei; Wong, Pei-Fong; Garcia, John A.; Kian Ang, K.; Dong, Lei

    2013-01-01

    Purpose: To conduct a clinical trial evaluating adaptive head and neck radiotherapy (ART). Methods: Patients with locally advanced oropharyngeal cancer were prospectively enrolled. Daily CT-guided setup and deformable image registration permitted mapping of dose to avoidance structures and CTVs. We compared four planning scenarios: (1) original IMRT plan aligned daily to marked isocenter (BB); (2) original plan aligned daily to bone (IGRT); (3) IGRT with one adaptive replan (ART1); and (4) actual treatment received by each study patient (IGRT with one or two adaptive replans, ART2). Results: All 22 study patients underwent one replan (ART1); eight patients had two replans (ART2). ART1 reduced mean dose to contralateral parotid by 0.6 Gy or 2.8% (paired t-test; p = 0.003) and ipsilateral parotid by 1.3 Gy (3.9%) (p = 0.002) over the IGRT alone. ART2 further reduced the mean contralateral parotid dose by 0.8 Gy or 3.8% (p = 0.026) and ipsilateral parotid by 4.1 Gy or 9% (p = 0.001). ART significantly reduced integral body dose. Conclusions: This pilot trial suggests that head and neck ART dosimetrically outperforms IMRT. IGRT that leverages conventional PTV margins does not improve dosimetry. One properly timed replan delivers the majority of achievable dosimetric improvement. The clinical impact of ART must be confirmed by future trials

  16. Dosimetric benefit of adaptive re-planning in pancreatic cancer stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongbao [Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing (China); Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Hoisak, Jeremy D.P.; Li, Nan; Jiang, Carrie [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Tian, Zhen [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Gautier, Quentin; Zarepisheh, Masoud [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Wu, Zhaoxia; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing (China); Jia, Xun [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); and others

    2015-01-01

    Stereotactic body radiotherapy (SBRT) shows promise in unresectable pancreatic cancer, though this treatment modality has high rates of normal tissue toxicity. This study explores the dosimetric utility of daily adaptive re-planning with pancreas SBRT. We used a previously developed supercomputing online re-planning environment (SCORE) to re-plan 10 patients with pancreas SBRT. Tumor and normal tissue contours were deformed from treatment planning computed tomographies (CTs) and transferred to daily cone-beam CT (CBCT) scans before re-optimizing each daily treatment plan. We compared the intended radiation dose, the actual radiation dose, and the optimized radiation dose for the pancreas tumor planning target volume (PTV) and the duodenum. Treatment re-optimization improved coverage of the PTV and reduced dose to the duodenum. Within the PTV, the actual hot spot (volume receiving 110% of the prescription dose) decreased from 4.5% to 0.5% after daily adaptive re-planning. Within the duodenum, the volume receiving the prescription dose decreased from 0.9% to 0.3% after re-planning. It is noteworthy that variation in the amount of air within a patient's stomach substantially changed dose to the PTV. Adaptive re-planning with pancreas SBRT has the ability to improve dose to the tumor and decrease dose to the nearby duodenum, thereby reducing the risk of toxicity.

  17. Dosimetric Advantages of Four-Dimensional Adaptive Image-Guided Radiotherapy for Lung Tumors Using Online Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Harsolia, Asif; Hugo, Geoffrey D.; Kestin, Larry L.; Grills, Inga S.; Yan Di

    2008-01-01

    Purpose: This study compares multiple planning techniques designed to improve accuracy while allowing reduced planning target volume (PTV) margins though image-guided radiotherapy (IGRT) with four-dimensional (4D) cone-beam computed tomography (CBCT). Methods and Materials: Free-breathing planning and 4D-CBCT scans were obtained in 8 patients with lung tumors. Four plans were generated for each patient: 3D-conformal, 4D-union, 4D-offline adaptive with a single correction (offline ART), and 4D-online adaptive with daily correction (online ART). For the 4D-union plan, the union of gross tumor volumes from all phases of the 4D-CBCT was created with a 5-mm expansion applied for setup uncertainty. For offline and online ART, the gross tumor volume was delineated at the mean position of tumor motion from the 4D-CBCT. The PTV margins were calculated from the random components of tumor motion and setup uncertainty. Results: Adaptive IGRT techniques provided better PTV coverage with less irradiated normal tissues. Compared with 3D plans, mean relative decreases in PTV volumes were 15%, 39%, and 44% using 4D-union, offline ART, and online ART planning techniques, respectively. This resulted in mean lung volume receiving ≥ 20Gy (V20) relative decreases of 21%, 23%, and 31% and mean lung dose relative decreases of 16%, 26%, and 31% for the 4D-union, 4D-offline ART, and 4D-online ART, respectively. Conclusions: Adaptive IGRT using CBCT is feasible for the treatment of patients with lung tumors and significantly decreases PTV volume and dose to normal tissues, allowing for the possibility of dose escalation. All analyzed 4D planning strategies resulted in improvements over 3D plans, with 4D-online ART appearing optimal

  18. An automatic dose verification system for adaptive radiotherapy for helical tomotherapy

    International Nuclear Information System (INIS)

    Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo

    2014-01-01

    Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic

  19. Adaptive radiotherapy in muscle invasive urinary bladder cancer - An effective method to reduce the irradiated bowel volume

    International Nuclear Information System (INIS)

    Tuomikoski, Laura; Collan, Juhani; Keyrilaeinen, Jani; Visapaeae, Harri; Saarilahti, Kauko; Tenhunen, Mikko

    2011-01-01

    Background and purpose: To evaluate the benefits of adaptive radiotherapy for bladder cancer in decreasing irradiation of small bowel. Material and methods: Five patients with muscle invasive bladder cancer received adaptive radiotherapy to a total dose of 55.8-65 Gy with daily cone-beam computed tomography scanning. The whole bladder was treated to 45-50.4 Gy, followed by a partial bladder boost. The plan of the day was chosen from 3 to 4 pre-planned treatment plans according to the visible extent of bladder wall in cone-beam computed tomography images. Dose volume histograms for intestinal cavity volumes were constructed and compared with corresponding histograms calculated for conventional non-adaptive radiotherapy with single treatment plan of 2 cm CTV-PTV margins. CTV dose coverage in adaptive treatment technique was compared with CTV dose coverage in conventional radiotherapy. Results: The average volume of intestinal cavity receiving ≥45 Gy was reduced from 335 ± 106 cm 3 to 180 ± 113 cm 3 (1SD). The maximum volume of intestinal cavity spared at 45 Gy on a single patient was 240 cm 3 , while the minimum volume was 65 cm 3 . The corresponding reduction in average intestinal cavity volume receiving ≥45 Gy calculated for the whole bladder treatment only was 66 ± 36 cm 3 . CTV dose coverage was improved on two out of five patients and decreased on three patients. Conclusions: Adaptive radiotherapy considerably reduces dose to the small bowel, while maintaining the dose coverage of CTV at similar level when compared to the conventional treatment technique.

  20. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  1. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    International Nuclear Information System (INIS)

    Menten, Martin J.; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  2. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.

    Science.gov (United States)

    Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe

    2015-12-01

    Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real

  3. Breath-hold monitoring and visual feedback for radiotherapy using a charge-coupled device camera and a head-mounted display. System development and feasibility

    International Nuclear Information System (INIS)

    Yoshitake, Tadamasa; Nakamura, Katsumasa; Shioyama, Yoshiyuki

    2008-01-01

    The aim of this study was to present the technical aspects of the breath-hold technique with respiratory monitoring and visual feedback and to evaluate the feasibility of this system in healthy volunteers. To monitor respiration, the vertical position of the fiducial marker placed on the patient's abdomen was tracked by a machine vision system with a charge-coupled device camera. A monocular head-mounted display was used to provide the patient with visual feedback about the breathing trace. Five healthy male volunteers were enrolled in this study. They held their breath at the end-inspiration and the end-expiration phases. They performed five repetitions of the same type of 15-s breath-holds with and without a head-mounted display, respectively. A standard deviation of five mean positions of the fiducial marker during a 15-s breath-hold in each breath-hold type was used as the reproducibility value of breath-hold. All five volunteers well tolerated the breath-hold maneuver. For the inspiration breath-hold, the standard deviations with and without visual feedback were 1.74 mm and 0.84 mm, respectively (P=0.20). For the expiration breath-hold, the standard deviations with and without visual feedback were 0.63 mm and 0.96 mm, respectively (P=0.025). Our newly developed system might help the patient achieve improved breath-hold reproducibility. (author)

  4. External beam radiotherapy (EBRT) techniques used in breast cancer treatment to reduce cardiac exposure

    International Nuclear Information System (INIS)

    Fung, Esther; Hendry, Julie

    2013-01-01

    Radiotherapy in breast cancer treatment has been shown to reduce local recurrence and improve survival rates. However, there is a concern that breast radiotherapy can cause an increase in cardiac mortality, particularly in patients being treated for left-sided breast cancer. This review aims to investigate how cardiac exposure is minimised in breast radiotherapy and determine an optimal method for reducing cardiac dose, using literature from ScienceDirect, Medline and CINAHL. IMRT and breathing-adapted radiotherapy both reduce cardiac exposure but IMRT also increases the irradiated volume at low dose. Several issues were reported with regards to the clinical implementation of these techniques. It is suggested that inspiration breath-hold radiotherapy, is the preferred solution to minimising cardiac exposure but more research is warranted to confirm this. Long-term follow-up is required to determine dose–response relationships. Research needs to focus on breast cancer treatment as a whole in order to effectively reduce cardiac mortality.

  5. Combined Inter- and Intrafractional Plan Adaptation Using Fraction Partitioning in Magnetic Resonance-guided Radiotherapy Delivery.

    Science.gov (United States)

    Lagerwaard, Frank; Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna

    2018-04-05

    Magnetic resonance-guided radiation therapy (MRgRT) not only allows for superior soft-tissue setup and online MR-guidance during delivery but also for inter-fractional plan re-optimization or adaptation. This plan adaptation involves repeat MR imaging, organs at risk (OARs) re-contouring, plan prediction (i.e., recalculating the baseline plan on the anatomy of that moment), plan re-optimization, and plan quality assurance. In contrast, intrafractional plan adaptation cannot be simply performed by pausing delivery at any given moment, adjusting contours, and re-optimization because of the complex and composite nature of deformable dose accumulation. To overcome this limitation, we applied a practical workaround by partitioning treatment fractions, each with half the original fraction dose. In between successive deliveries, the patient remained in the treatment position and all steps of the initial plan adaptation were repeated. Thus, this second re-optimization served as an intrafractional plan adaptation at 50% of the total delivery. The practical feasibility of this partitioning approach was evaluated in a patient treated with MRgRT for locally advanced pancreatic cancer (LAPC). MRgRT was delivered in 40Gy in 10 fractions, with two fractions scheduled successively on each treatment day. The contoured gross tumor volume (GTV) was expanded by 3 mm, excluding parts of the OARs within this expansion to derive the planning target volume for daily re-optimization (PTV OPT ). The baseline GTVV 95%  achieved in this patient was 80.0% to adhere to the high-dose constraints for the duodenum, stomach, and bowel (V 33 Gy ViewRay Inc, Mountain View, USA) using video-assisted breath-hold in shallow inspiration. The dual plan adaptation resulted, for each partitioned fraction, in the generation of Plan PREDICTED1 , Plan RE-OPTIMIZED1  (inter-fractional adaptation), Plan PREDICTED2 , and Plan RE-OPTIMIZED2  (intrafractional adaptation). An offline analysis was

  6. Process-based quality management for clinical implementation of adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa, E-mail: smutic@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

    2014-08-15

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily

  7. Process-based quality management for clinical implementation of adaptive radiotherapy

    International Nuclear Information System (INIS)

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa

    2014-01-01

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily

  8. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  9. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    International Nuclear Information System (INIS)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.

    2012-01-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18–25 Gy) (Group 1), and larger tumors (gross tumor volume ≥12 mL) received multifraction regimens with BED ≥100 Gy (total dose, 50–60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  10. A feasibility study of dynamic adaptive radiotherapy for nonsmall cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsun, E-mail: mk688@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 (United States); Phillips, Mark H. [Departments of Radiation Oncology and Neurological Surgery, University of Washington, Seattle, Washington 98195-6043 (United States)

    2016-05-15

    Purpose: The final state of the tumor at the end of a radiotherapy course is dependent on the doses given in each fraction during the treatment course. This study investigates the feasibility of using dynamic adaptive radiotherapy (DART) in treating lung cancers assuming CBCT is available to observe midtreatment tumor states. DART adapts treatment plans using a dynamic programming technique to consider the expected changes of the tumor in the optimization process. Methods: DART is constructed using a stochastic control formalism framework. It minimizes the total expected number of tumor cells at the end of a treatment course, which is equivalent to maximizing tumor control probability, subject to the uncertainty inherent in the tumor response. This formulation allows for nonstationary dose distributions as well as nonstationary fractional doses as needed to achieve a series of optimal plans that are conformal to the tumor over time, i.e., spatiotemporally optimal plans. Sixteen phantom cases with various sizes and locations of tumors and organs-at-risk (OAR) were generated using in-house software. Each case was planned with DART and conventional IMRT prescribing 60 Gy in 30 fractions. The observations of the change in the tumor volume over a treatment course were simulated using a two-level cell population model. Monte Carlo simulations of the treatment course for each case were run to account for uncertainty in the tumor response. The same OAR dose constraints were applied for both methods. The frequency of replanning was varied between 1, 2, 5 (weekly), and 29 times (daily). The final average tumor dose and OAR doses have been compared to quantify the potential dosimetric benefits of DART. Results: The average tumor max, min, mean, and D95 doses using DART relative to these using conventional IMRT were 124.0%–125.2%, 102.1%–114.7%, 113.7%–123.4%, and 102.0%–115.9% (range dependent on the frequency of replanning). The average relative maximum doses for the

  11. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    Science.gov (United States)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  12. Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Liu Han; Wu Qiuwen

    2011-01-01

    For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed

  13. Lung tumor reproducibility with active breath control (ABC) in image-guided radiotherapy based on cone-beam computed tomography with two registration methods

    International Nuclear Information System (INIS)

    Wang Xin; Zhong Renming; Bai Sen; Xu Qingfeng; Zhao Yaqin; Wang Jin; Jiang Xiaoqin; Shen Yali; Xu Feng; Wei Yuquan

    2011-01-01

    Purpose: To study the inter- and intrafraction tumor reproducibility with active breath control (ABC) utilizing cone-beam computed tomography (CBCT), and compare validity of registration with two different regions of interest (ROI). Methods and materials: Thirty-one lung tumors in 19 patients received conventional or stereotactic body radiotherapy with ABC. During each treatment, patients had three CBCT scanned before and after online position correction and after treatment. These CBCT images were aligned to the planning CT using the gray scale registration of tumor and bony registration of the thorax, and tumor position uncertainties were then determined. Results: The interfraction systematic and random translation errors in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions were 3.6, 4.8, and 2.9 mm; 2.5, 4.5, and 3.5 mm, respectively, with gray scale alignment; 1.9, 4.3, 2.0 mm and 2.5, 4.4, 2.9 mm, respectively, with bony alignment. The interfraction systematic and random rotation errors with gray scale and bony alignment groups ranged from 1.4 o to 3.0 o and 0.8 o to 2.3 o , respectively. The intrafraction systematic and random errors with gray scale registration in LR, SI, AP directions were 0.9, 2.0, 1.8 mm and 1.5, 1.7, 2.9 mm, respectively, for translation; 1.5 o , 0.9 o , 1.0 o and 1.2 o , 2.2 o , 1.8 o , respectively, for rotation. The translational errors in SI direction with bony alignment were significantly larger than that of gray scale (p < 0.05). Conclusions: With CBCT guided online correction the interfraction positioning errors can be markedly reduced. The intrafraction errors were not diminished by the use of ABC. Rotation errors were not very remarkable both inter- and intrafraction. Gray scale alignment of tumor may provide a better registration in SI direction.

  14. Adaptive radiotherapy for soft tissue changes during helical tomotherapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duma, M.N.; Kampfer, S.; Winkler, C.; Geinitz, H. [Universitaetsklinikum rechts der Isar, Muenchen (Germany). Dept. of Radiation Oncology; Schuster, T. [Universitaetsklinikum rechts der Isar, Muenchen (Germany). Inst. of Medical Statistics and Epidemiology

    2012-03-15

    The goal of the present study was to assess the frequency and impact of replanning triggered solely by soft tissue changes observed on the daily setup mega-voltage CT (MVCT) in head and neck cancer (H and N) helical tomotherapy (HT). A total of 11 patients underwent adaptive radiotherapy (ART) using MVCT. Preconditions were a soft tissue change > 0.5 cm and a tight mask. The dose-volume histograms (DVHs) derived from the initial planning kVCT (inPlan), the recalculated DVHs of the fraction (fx) when replanning was decided (actSit) and the DVHs of the new plan (adaptPlan) were compared. Assessed were the following: maximum dose (D{sub max}), minimum dose (D{sub min}), and mean dose (D{sub mean}) to the planning target volume (PTV) normalized to the prescribed dose; the D{sub mean}/fx to the parotid glands (PG), oral cavity (OC), and larynx (Lx); and the D{sub max}/fx to the spinal cord (SC) in Gy/fx. No patient had palpable soft tissue changes. The median weight loss at the moment of replanning was 2.3 kg. The median PTV D{sub mean} was 100% for inPlan, 103% for actSit, and 100% for adaptPlan. The PTV was always covered by the prescribed dose. A statistically significant increase was noted for all organs at risk (OAR) in the actSit. The D{sub mean} to the Lx, the D{sub mean} to the OC and the D{sub max} to the SC were statistically better in the adaptPlan. No statistically significant improvement was achieved by ART for the PGs. No significant correlations between weight and volume loss or between the volume changes of the organs to each other were observed, except a strong positive correlation of the shrinkage of the PGs ({rho} = + 0.77, p = 0.005). Soft tissue shrinkage without clinical palpable changes will not affect the coverage of the PTV, but translates into a higher delivered dose to the PTV itself and the normal tissue outside the PTV. The gain by ART in individual patients - especially in patients who receive doses close to the tolerance doses of the OAR

  15. An Adaptive Off-Line Procedure for Radiotherapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Nuver, Tonnis T.; Hoogeman, Mischa S.; Remeijer, Peter; Herk, Marcel van; Lebesque, Joos V.

    2007-01-01

    Purpose: To determine the planning target volume (PTV) margin for an adaptive radiotherapy procedure that uses five computed tomography (CT) scans to calculate an average prostate position and rectum shape. To evaluate alternative methods to determine an average rectum based on a single delineation. Methods and Materials: Repeat CT scans (8-13) of 19 patients were used. The contoured prostates of the first four scans were matched on the planning CT (pCT) prostate contours. With the resulting translations and rotations the average prostate position was determined. An average rectum was obtained by either averaging the coordinates of corresponding points on the rectal walls or by selecting the 'best' rectum or transforming the pCT rectum. Dose distributions were calculated for various expanded average prostates. The remaining CT scans were used to determine the dose received by prostate and rectum during treatment. Results: For the prostate of the pCT scan and a 10-mm margin, all patients received more than 95% of the prescribed dose to 95% of the prostate. For the average prostate, a margin of 7 mm was needed to obtain a similar result (average PTV reduction 30%). The average rectum overestimated the mean dose to the rectum by 0.4 ± 1.6 Gy, which was better than the pCT rectum (2.1 ± 3.0 Gy) and the alternative average rectums (1.0 ± 2.6 Gy and 1.4 ± 3.2 Gy). Conclusions: Our adaptive procedure allows for reduction of the PTV margin to 7 mm without decreasing prostate coverage during treatment. For accurate estimation of the rectum dose, rectums need to be delineated and averaged over multiple scans

  16. An enhanced block matching algorithm for fast elastic registration in adaptive radiotherapy

    International Nuclear Information System (INIS)

    Malsch, U; Thieke, C; Huber, P E; Bendl, R

    2006-01-01

    Image registration has many medical applications in diagnosis, therapy planning and therapy. Especially for time-adaptive radiotherapy, an efficient and accurate elastic registration of images acquired for treatment planning, and at the time of the actual treatment, is highly desirable. Therefore, we developed a fully automatic and fast block matching algorithm which identifies a set of anatomical landmarks in a 3D CT dataset and relocates them in another CT dataset by maximization of local correlation coefficients in the frequency domain. To transform the complete dataset, a smooth interpolation between the landmarks is calculated by modified thin-plate splines with local impact. The concept of the algorithm allows separate processing of image discontinuities like temporally changing air cavities in the intestinal track or rectum. The result is a fully transformed 3D planning dataset (planning CT as well as delineations of tumour and organs at risk) to a verification CT, allowing evaluation and, if necessary, changes of the treatment plan based on the current patient anatomy without time-consuming manual re-contouring. Typically the total calculation time is less than 5 min, which allows the use of the registration tool between acquiring the verification images and delivering the dose fraction for online corrections. We present verifications of the algorithm for five different patient datasets with different tumour locations (prostate, paraspinal and head-and-neck) by comparing the results with manually selected landmarks, visual assessment and consistency testing. It turns out that the mean error of the registration is better than the voxel resolution (2 x 2 x 3 mm 3 ). In conclusion, we present an algorithm for fully automatic elastic image registration that is precise and fast enough for online corrections in an adaptive fractionated radiation treatment course

  17. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    International Nuclear Information System (INIS)

    Jin, Xiance; Han, Ce; Zhou, Yongqiang; Yi, Jinling; Yan, Huawei; Xie, Congying

    2013-01-01

    To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm 3 in the iCT to 71.44 ± 37.46 cm 3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm 3 and 21.58 ± 6.16 cm 3 in the iCT to 11.80 ± 2.79 cm 3 and 13.29 ± 4.17 cm 3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTV GTV and PTV CTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to parotids

  18. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    International Nuclear Information System (INIS)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S; Fast, M; Nill, S; Oelfke, U; Denis de Senneville, B

    2016-01-01

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), the cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or

  19. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S [University Medical Center Utrecht, Utrecht (Netherlands); Fast, M; Nill, S; Oelfke, U [The Institute of Cancer Research, London (United Kingdom); Denis de Senneville, B [University Medical Center Utrecht, Utrecht (Netherlands); IMB, UMR 5251 CNRS/University of Bordeaux, Talence, FR (France)

    2016-06-15

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), the cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or

  20. FDG-PET-based radiotherapy planning in lung cancer. Optimum breathing protocol and patient positioning - an intraindividual comparison; FDG-PET-basierte Bestrahlungsplanung von nicht kleinzelligen Bronchialkarzinomen. Optimales Atemprotokoll und Patientenpositionierung - ein intraindividueller Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Grgic, A.; Schaefer-Schuler, A.; Kirsch, C.M.; Hellwig, D. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Nuklearmedizin; Nestle, U. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde; Kremp, S. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2008-12-15

    FDG-PET and PET / CT is increasingly used for radiotherapy (RT) planning in non-small-cell lung carcinoma (NSCLC). The planning process is often based on separately-acquired FDG-PET / CT and planning CT. We compared intraindividual differences between PET acquired in diagnostic and radiotherapy treatment position coregistered with planning CTs acquired using different breathing protocols. Sixteen patients with NSCLC underwent two PET acquisitions (diagnostic position-D-PET, radiotherapy position-RT-PET) and three planning-CT acquisitions (expiration-EXP, inspiration-INS, mid-breathhold-MID) on the same day. All scans were rigidly coregistered resulting in six fused datasets: D-INS, D-EXP, D-MID, RT-INS, RT-EXP and RT-MID. Fusion accuracy was assessed by three readers at eight anatomical landmarks: lung apices, aortic arch, heart, spine, sternum, carina, diaphragm and tumor using an alignment score ranging from 1 (no alignment) to 5 (exact alignment). RT-PET showed better alignment with any CT than D-PET (p < 0.001). With regard to breathing, RT-MID showed the best mean alignment score (3.7 {+-} 1.0) followed by RT-EXP (3.5 {+-} 0.9) and RT-INS (3.0 {+-} 0.8), all differences being significant (p < 0.001). Comparing the alignment scores with regard to anatomical landmarks, the largest deviations were found at diaphragm, heart and apices. Overall, there was a fair agreement (? = 0.48; p < 0.001) among the three readers. Significantly better fusion of PET and planning-CT can be reached with PET acquired in RT-position. The best intraindividual fusion results are obtained with the planning-CT performed during mid-breathhold. Our data justify the acquisition of a separate planning-PET in RT-treatment position if only a diagnostic PET-scan is available. (orig.)

  1. A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Yan Jiang [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843 and Department of Physics, University of California San Diego, La Jolla, California 92093 (United States); Smith, Arthur-Allen; Mcilvena, David; Manilay, Zherrina; Lai, Yuet Kong [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Rice, Roger; Mell, Loren; Cerviño, Laura, E-mail: lcervino@ucsd.edu, E-mail: steve.jiang@utsouthwestern.edu [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843 (United States); Jia, Xun; Jiang, Steve B., E-mail: lcervino@ucsd.edu, E-mail: steve.jiang@utsouthwestern.edu [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843 and Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235 (United States)

    2015-04-15

    Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patient is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end

  2. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-01-01

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  3. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    Science.gov (United States)

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  4. A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Lei Yu; Wu Qiuwen

    2010-01-01

    Offline adaptive radiotherapy (ART) has been used to effectively correct and compensate for prostate motion and reduce the required margin. The efficacy depends on the characteristics of the patient setup error and interfraction motion through the whole treatment; specifically, systematic errors are corrected and random errors are compensated for through the margins. In online image-guided radiation therapy (IGRT) of prostate cancer, the translational setup error and inter-fractional prostate motion are corrected through pre-treatment imaging and couch correction at each fraction. However, the rotation and deformation of the target are not corrected and only accounted for with margins in treatment planning. The purpose of this study was to investigate whether the offline ART strategy is necessary for an online IGRT protocol and to evaluate the benefit of the hybrid strategy. First, to investigate the rationale of the hybrid strategy, 592 cone-beam-computed tomography (CBCT) images taken before and after each fraction for an online IGRT protocol from 16 patients were analyzed. Specifically, the characteristics of prostate rotation were analyzed. It was found that there exist systematic inter-fractional prostate rotations, and they are patient specific. These rotations, if not corrected, are persistent through the treatment fraction, and rotations detected in early fractions are representative of those in later fractions. These findings suggest that the offline adaptive replanning strategy is beneficial to the online IGRT protocol with further margin reductions. Second, to quantitatively evaluate the benefit of the hybrid strategy, 412 repeated helical CT scans from 25 patients during the course of treatment were included in the replanning study. Both low-risk patients (LRP, clinical target volume, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles) were included in the simulation. The contours of prostate and seminal vesicles were

  5. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians.

    Science.gov (United States)

    Cupello, Camila; Meunier, François J; Herbin, Marc; Clément, Gaël; Brito, Paulo M

    2017-03-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus ) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae , providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.

  6. Automatic Delineation of On-Line Head-And-Neck Computed Tomography Images: Toward On-Line Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Zhang Tiezhi; Chi Yuwei; Meldolesi, Elisa; Yan Di

    2007-01-01

    Purpose: To develop and validate a fully automatic region-of-interest (ROI) delineation method for on-line adaptive radiotherapy. Methods and Materials: On-line adaptive radiotherapy requires a robust and automatic image segmentation method to delineate ROIs in on-line volumetric images. We have implemented an atlas-based image segmentation method to automatically delineate ROIs of head-and-neck helical computed tomography images. A total of 32 daily computed tomography images from 7 head-and-neck patients were delineated using this automatic image segmentation method. Manually drawn contours on the daily images were used as references in the evaluation of automatically delineated ROIs. Two methods were used in quantitative validation: (1) the dice similarity coefficient index, which indicates the overlapping ratio between the manually and automatically delineated ROIs; and (2) the distance transformation, which yields the distances between the manually and automatically delineated ROI surfaces. Results: Automatic segmentation showed agreement with manual contouring. For most ROIs, the dice similarity coefficient indexes were approximately 0.8. Similarly, the distance transformation evaluation results showed that the distances between the manually and automatically delineated ROI surfaces were mostly within 3 mm. The distances between two surfaces had a mean of 1 mm and standard deviation of <2 mm in most ROIs. Conclusion: With atlas-based image segmentation, it is feasible to automatically delineate ROIs on the head-and-neck helical computed tomography images in on-line adaptive treatments

  7. Patient positioning and immobilization in static and dynamic adaptive radiotherapy: an integral part of IGRT

    International Nuclear Information System (INIS)

    Oinam, Arun S.

    2016-01-01

    Radiotherapy treatment deals with different varieties of treatment procedures depending on type and stages of tumors. These treatments are grossly classified into palliative curative treatment. Immobilizations used in this treatment are designed with respect to this classification as well as the techniques. With the improvements in imaging technology used in Radiotherapy, patient position set up margin can be reduced as compared to the conventional radiotherapy. Still immobilization in patient position setup has been an integral part of Image Guided Radiotherapy (lGRT) and Stereotactic Radio Surgery (SRS) and Radiotherapy (SRT). Immobilization used in this technique should produce a minimum attenuation of radiation beam as well as positioning comfort and this will enhance the reproducibility for the daily position setup and immobilize the patient during the treatment. Advanced dose delivery technique like Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Radiotherapy (VMAT) can do differential dose sculpting around and inside the irregular shape different target volumes while minimizing the dose to the surrounding organs at risk. A small positional error may produce the mistreatment of target and exposure of organs at risk beyond the acceptable dose limits. Such a potential positional error can be reduced if different varieties of good immobilizing devices are properly utilized. The immobilization used in the treatment of Head and Neck and Cranial tumor can produce better immobilization as compared to abdominal and pelvic tumors which are forced to move by the inability to control movements of lung and heart as well as the very large flabby tissues which are attached skeleton bones

  8. SU-E-J-145: Geometric Uncertainty in CBCT Extrapolation for Head and Neck Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Kumarasiri, A; Chetvertkov, M; Gordon, J; Chetty, I; Siddiqui, F; Kim, J [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: One primary limitation of using CBCT images for H'N adaptive radiotherapy (ART) is the limited field of view (FOV) range. We propose a method to extrapolate the CBCT by using a deformed planning CT for the dose of the day calculations. The aim was to estimate the geometric uncertainty of our extrapolation method. Methods: Ten H'N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken, were selected. Furthermore, a small FOV CBCT (CT2short) was synthetically created by cropping CT2 to the size of a CBCT image. Then, an extrapolated CBCT (CBCTextrp) was generated by deformably registering CT1 to CT2short and resampling with a wider FOV (42mm more from the CT2short borders), where CT1 is deformed through translation, rigid, affine, and b-spline transformations in order. The geometric error is measured as the distance map ||DVF|| produced by a deformable registration between CBCTextrp and CT2. Mean errors were calculated as a function of the distance away from the CBCT borders. The quality of all the registrations was visually verified. Results: Results were collected based on the average numbers from 10 patients. The extrapolation error increased linearly as a function of the distance (at a rate of 0.7mm per 1 cm) away from the CBCT borders in the S/I direction. The errors (μ±σ) at the superior and inferior boarders were 0.8 ± 0.5mm and 3.0 ± 1.5mm respectively, and increased to 2.7 ± 2.2mm and 5.9 ± 1.9mm at 4.2cm away. The mean error within CBCT borders was 1.16 ± 0.54mm . The overall errors within 4.2cm error expansion were 2.0 ± 1.2mm (sup) and 4.5 ± 1.6mm (inf). Conclusion: The overall error in inf direction is larger due to more large unpredictable deformations in the chest. The error introduced by extrapolation is plan dependent. The mean error in the expanded region can be large, and must be considered during implementation. This work is supported in part by Varian Medical Systems, Palo Alto, CA.

  9. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy.

    Science.gov (United States)

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  10. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy

    Directory of Open Access Journals (Sweden)

    Hualiang Zhong

    2016-01-01

    Full Text Available Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs, the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung

  11. Breath-hold technique in conventional APPA or intensity-modulated radiotherapy for Hodgkin's lymphoma. Comparison of ILROG IS-RT and the GHSG IF-RT

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, Jan; Spickermann, Max; Lehrich, Philipp; Reinartz, Gabriele; Eich, Hans; Haverkamp, Uwe [University of Muenster, Department of Radiation Oncology, Muenster (Germany); Schmidberger, Heinz [University Mainz, Department of Radiation Oncology, Mainz (Germany)

    2015-09-15

    The present study addresses the role of intensity-modulated radiotherapy (IMRT) in contrast to standard RT (APPA) for patients with Hodgkin's lymphoma (HL) with a focus on deep inspiration breath-hold (DIBH) technique and a comparison between the International Lymphoma Radiation Oncology Group (ILROG) Involved Site Radiotherapy (IS-RT) versus the German Hodgkin Study Group (GHSG) Involved Field Radiotherapy (IF-RT). APPA treatment and 2 IMRT plans were compared for 11 patients with HL. Furthermore, treatment with DIBH versus free breathing (FB) and two different treatment volumes, i.e. IF-RT versus IS-RT, were compared. IMRT was planned as a sliding-window technique with 5 and 7 beam angles. For each patient 12 different treatment plans were calculated (132 plans). Following organs at risk (OAR) were analysed: lung, heart, spinal cord, oesophagus, female breast and skin. Comparisons of the different values with regard to dose-volume histograms (DVH), conformity and homogeneity indices were made. IS-RT reduces treatment volumes. With respect to the planning target volume (PTV), IMRT achieves better conformity but the same homogeneity. Regarding the D{sub mean} for the lung, IMRT shows increased doses, while RT in DIBH reduces doses. The IMRT shows improved values for D{sub max} concerning the spinal cord, whereas the APPA shows an improved D{sub mean} of the lung and the female breast. IS-RT reduces treatment volumes. Intensity-modulated radiotherapy shows advantages in the conformity. Treatment in DIBH also reduces the dose applied to the lungs and the heart. (orig.) [German] Ziel dieser Auswertung ist es, die konventionelle APPA-Feldanordnung mit der Intensitaetsmodulierten Radiotherapie (IMRT) bei Patienten mit Hodgkin-Lymphom (HL) zu vergleichen. Ein besonderer Fokus liegt hierbei auf der Bestrahlung in tiefer Inspiration und Atemanhaltetechnik (DIBH). Des Weiteren wurde die ''Involved-site''-Radiotherapie (IS-RT) der International

  12. TU-AB-BRA-11: Indications for Online Adaptive Radiotherapy Based On Dosimetric Consequences of Interfractional Pancreas-To-Duodenum Motion in MRI-Guided Pancreatic Radiotherapy

    International Nuclear Information System (INIS)

    Mittauer, K; Rosenberg, S; Geurts, M; Bassetti, M; Wojcieszynski, A; Harari, P; Labby, Z; Hill, P; Paliwal, B; Bayouth, J; Chen, I; Henke, L; Kashani, R; Parikh, P; Olsen, J

    2016-01-01

    Purpose: Dose limiting structures, such as the duodenum, render the treatment of pancreatic cancer challenging. In this multi-institutional study, we assess dosimetric differences caused by interfraction pancreas-to-duodenum motion using MR-IGRT to determine the potential impact of adaptive replanning. Methods: Ten patients from two institutions undergoing MRI-guided radiotherapy with conventional fractionation (n=5) or SBRT (n=5) for pancreatic cancer were included. Initial plans were limited by duodenal dose constraints of 50 Gy (0.5 cc)/31 Gy (0.1 cc) for conventional/SBRT with prescriptions of 30 Gy/5 fractions (SBRT) and 40–50 Gy/25 fractions (conventional). Daily volumetric MR images were acquired under treatment conditions on a clinical MR-IGRT system. The correlation was assessed between interfractional GTV-to-duodenum positional variation and daily recalculations of duodenal dose metrics. Positional variation was quantified as the interfraction difference in Hausdorff distance from simulation baseline (ΔHD) between the GTV and proximal duodenal surface, or volume overlap between GTV and duodenum for cases with HD_0=0 (GTV abutting duodenum). Adaptation was considered indicated when daily positional variations enabled dose escalation to the target while maintaining duodenal constraints. Results: For fractions with ΔHD>0 (n=14, SBRT only), the mean interfraction duodenum dose decrease from simulation to treatment was 44±53 cGy (maximum 136 cGy). A correlation was found between ΔHD and dosimetric difference (R"2=0.82). No correlation was found between volume of overlap and dosimetric difference (R"2=0.31). For 89% of fractions, the duodenum remained overlapped with the target and the duodenal dose difference was negligible. The maximum observed indication for adaptation was for interfraction ΔHD=11.6 mm with potential for adaptive dose escalation of 136 cGy. Conclusion: This assessment showed that Hausdorff distance was a reasonable metric to use to

  13. TU-AB-BRA-11: Indications for Online Adaptive Radiotherapy Based On Dosimetric Consequences of Interfractional Pancreas-To-Duodenum Motion in MRI-Guided Pancreatic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mittauer, K; Rosenberg, S; Geurts, M; Bassetti, M; Wojcieszynski, A; Harari, P; Labby, Z; Hill, P; Paliwal, B; Bayouth, J [University of Wisconsin, School of Medicine and Public Health, Madison, WI (United States); Chen, I; Henke, L; Kashani, R; Parikh, P [Washington University School of Medicine, St. Louis, MO (United States); Olsen, J [University of Colorado- Denver, Aurora, CO (United States)

    2016-06-15

    Purpose: Dose limiting structures, such as the duodenum, render the treatment of pancreatic cancer challenging. In this multi-institutional study, we assess dosimetric differences caused by interfraction pancreas-to-duodenum motion using MR-IGRT to determine the potential impact of adaptive replanning. Methods: Ten patients from two institutions undergoing MRI-guided radiotherapy with conventional fractionation (n=5) or SBRT (n=5) for pancreatic cancer were included. Initial plans were limited by duodenal dose constraints of 50 Gy (0.5 cc)/31 Gy (0.1 cc) for conventional/SBRT with prescriptions of 30 Gy/5 fractions (SBRT) and 40–50 Gy/25 fractions (conventional). Daily volumetric MR images were acquired under treatment conditions on a clinical MR-IGRT system. The correlation was assessed between interfractional GTV-to-duodenum positional variation and daily recalculations of duodenal dose metrics. Positional variation was quantified as the interfraction difference in Hausdorff distance from simulation baseline (ΔHD) between the GTV and proximal duodenal surface, or volume overlap between GTV and duodenum for cases with HD{sub 0}=0 (GTV abutting duodenum). Adaptation was considered indicated when daily positional variations enabled dose escalation to the target while maintaining duodenal constraints. Results: For fractions with ΔHD>0 (n=14, SBRT only), the mean interfraction duodenum dose decrease from simulation to treatment was 44±53 cGy (maximum 136 cGy). A correlation was found between ΔHD and dosimetric difference (R{sup 2}=0.82). No correlation was found between volume of overlap and dosimetric difference (R{sup 2}=0.31). For 89% of fractions, the duodenum remained overlapped with the target and the duodenal dose difference was negligible. The maximum observed indication for adaptation was for interfraction ΔHD=11.6 mm with potential for adaptive dose escalation of 136 cGy. Conclusion: This assessment showed that Hausdorff distance was a reasonable

  14. Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.

    Science.gov (United States)

    Hargrave, Catriona; Mason, Nicole; Guidi, Robyn; Miller, Julie-Anne; Becker, Jillian; Moores, Matthew; Mengersen, Kerrie; Poulsen, Michael; Harden, Fiona

    2016-03-01

    Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.

  15. Adaptive-Predictive Organ Localization Using Cone-Beam Computed Tomography for Improved Accuracy in External Beam Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Lalondrelle, Susan; Huddart, Robert; Warren-Oseni, Karole; Hansen, Vibeke Nordmark; McNair, Helen; Thomas, Karen; Dearnaley, David; Horwich, Alan; Khoo, Vincent

    2011-01-01

    Purpose: To examine patterns of bladder wall motion during high-dose hypofractionated bladder radiotherapy and to validate a novel adaptive planning method, A-POLO, to prevent subsequent geographic miss. Methods and Materials: Patterns of individual bladder filling were obtained with repeat computed tomography planning scans at 0, 15, and 30 minutes after voiding. A series of patient-specific plans corresponding to these time-displacement points was created. Pretreatment cone-beam computed tomography was performed before each fraction and assessed retrospectively for adaptive intervention. In fractions that would have required intervention, the most appropriate plan was chosen from the patient's 'library,' and the resulting target coverage was reassessed with repeat cone-beam computed tomography. Results: A large variation in patterns of bladder filling and interfraction displacement was seen. During radiotherapy, predominant translations occurred cranially (maximum 2.5 cm) and anteriorly (maximum 1.75 cm). No apparent explanation was found for this variation using pretreatment patient factors. A need for adaptive planning was demonstrated by 51% of fractions, and 73% of fractions would have been delivered correctly using A-POLO. The adaptive strategy improved target coverage and was able to account for intrafraction motion also. Conclusions: Bladder volume variation will result in geographic miss in a high proportion of delivered bladder radiotherapy treatments. The A-POLO strategy can be used to correct for this and can be implemented from the first fraction of radiotherapy; thus, it is particularly suited to hypofractionated bladder radiotherapy regimens.

  16. Towards real-time plan adaptation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Kontaxis, Charis

    2017-01-01

    The introduction of hybrid MRI and linear accelerator (MRI-linac) machines enables the online volumetric imaging during radiation delivery with the superior soft tissue contrast of the diagnostic quality MRI. In this context, conventional radiotherapy workflow will gradually transfer from an offline

  17. An effective deep-inspiration breath-hold radiotherapy technique for left-breast cancer: impact of post-mastectomy treatment, nodal coverage, and dose schedule on organs at risk

    Directory of Open Access Journals (Sweden)

    Rice L

    2017-06-01

    Full Text Available Lynsey Rice,1,2 Christy Goldsmith,1,2 Melanie ML Green,2 Susan Cleator,1,2 Patricia M Price1,2 1Department of Radiation Oncology, The Harley Street Clinic, 2Department of Surgery and Cancer, Imperial College London, London, UK Background: We developed, applied, and prospectively evaluated a novel deep-inspiration breath-hold (DIBH screening and delivery technique to optimize cardiac sparing in left-breast radiotherapy (RT at our clinic. The impact of set-up and dose variables upon organs at risk (OAR dose in DIBH RT was investigated.Methods and materials: All patients with left-breast cancer referred between 2011 and 2014 – of all disease stages, set-up variations, and dose prescriptions – were included. Radiographers used simple screening criteria at CT simulation, to systematically assess patients for obvious DIBH benefit and capability. Selected patients received forward-planned intensity-modulated RT (IMRT based on a DIBH CT scan. A 3D-surface monitoring system with visual feedback assured reproducible DIBH positioning during gated radiation delivery. Patient, target set-up, and OAR dose information were collected at treatment.Results: Of 272 patients who were screened, 4 withdrew, 56 showed no obvious advantage, and 56 showed benefit but had suitability issues; 156 patients were selected and successfully completed DIBH treatment. The technique was compatible with complex set-up and optimal target coverage was maintained. Comparison of free-breathing (FB and DIBH treatment plans in the first five patients enrolled confirmed DIBH reduced heart radiation by ~80% (p = 0.032. Low OAR doses were achieved overall: the mean (95% confidence interval [CI] heart dose was 1.17 (1.12–1.22 Gy, and the mean ipsilateral lung dose was 5.26 (5.01–5.52 Gy. Patients who underwent a standard radiation schedule (40 Gy/15# after breast-conserving surgery had the lowest OAR doses: post-mastectomy treatment, simultaneous supraclavicular (SCV node

  18. Expected treatment dose construction and adaptive inverse planning optimization: Implementation for offline head and neck cancer adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan Di; Liang Jian [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan 48073 (United States)

    2013-02-15

    Purpose: To construct expected treatment dose for adaptive inverse planning optimization, and evaluate it on head and neck (h and n) cancer adaptive treatment modification. Methods: Adaptive inverse planning engine was developed and integrated in our in-house adaptive treatment control system. The adaptive inverse planning engine includes an expected treatment dose constructed using the daily cone beam (CB) CT images in its objective and constrains. Feasibility of the adaptive inverse planning optimization was evaluated retrospectively using daily CBCT images obtained from the image guided IMRT treatment of 19 h and n cancer patients. Adaptive treatment modification strategies with respect to the time and the number of adaptive inverse planning optimization during the treatment course were evaluated using the cumulative treatment dose in organs of interest constructed using all daily CBCT images. Results: Expected treatment dose was constructed to include both the delivered dose, to date, and the estimated dose for the remaining treatment during the adaptive treatment course. It was used in treatment evaluation, as well as in constructing the objective and constraints for adaptive inverse planning optimization. The optimization engine is feasible to perform planning optimization based on preassigned treatment modification schedule. Compared to the conventional IMRT, the adaptive treatment for h and n cancer illustrated clear dose-volume improvement for all critical normal organs. The dose-volume reductions of right and left parotid glands, spine cord, brain stem and mandible were (17 {+-} 6)%, (14 {+-} 6)%, (11 {+-} 6)%, (12 {+-} 8)%, and (5 {+-} 3)% respectively with the single adaptive modification performed after the second treatment week; (24 {+-} 6)%, (22 {+-} 8)%, (21 {+-} 5)%, (19 {+-} 8)%, and (10 {+-} 6)% with three weekly modifications; and (28 {+-} 5)%, (25 {+-} 9)%, (26 {+-} 5)%, (24 {+-} 8)%, and (15 {+-} 9)% with five weekly modifications. Conclusions

  19. SU-F-BRB-07: A Plan Comparison Tool to Ensure Robustness and Deliverability in Online-Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Hill, P; Labby, Z; Bayliss, R A; Geurts, M; Bayouth, J

    2015-01-01

    Purpose: To develop a plan comparison tool that will ensure robustness and deliverability through analysis of baseline and online-adaptive radiotherapy plans using similarity metrics. Methods: The ViewRay MRIdian treatment planning system allows export of a plan file that contains plan and delivery information. A software tool was developed to read and compare two plans, providing information and metrics to assess their similarity. In addition to performing direct comparisons (e.g. demographics, ROI volumes, number of segments, total beam-on time), the tool computes and presents histograms of derived metrics (e.g. step-and-shoot segment field sizes, segment average leaf gaps). Such metrics were investigated for their ability to predict that an online-adapted plan reasonably similar to a baseline plan where deliverability has already been established. Results: In the realm of online-adaptive planning, comparing ROI volumes offers a sanity check to verify observations found during contouring. Beyond ROI analysis, it has been found that simply editing contours and re-optimizing to adapt treatment can produce a delivery that is substantially different than the baseline plan (e.g. number of segments increased by 31%), with no changes in optimization parameters and only minor changes in anatomy. Currently the tool can quickly identify large omissions or deviations from baseline expectations. As our online-adaptive patient population increases, we will continue to develop and refine quantitative acceptance criteria for adapted plans and relate them historical delivery QA measurements. Conclusion: The plan comparison tool is in clinical use and reports a wide range of comparison metrics, illustrating key differences between two plans. This independent check is accomplished in seconds and can be performed in parallel to other tasks in the online-adaptive workflow. Current use prevents large planning or delivery errors from occurring, and ongoing refinements will lead to

  20. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  1. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians

    Science.gov (United States)

    Meunier, François J.; Herbin, Marc; Clément, Gaël; Brito, Paulo M.

    2017-01-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages. PMID:28405393

  2. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Patrinee, Traisathit; Gestel, Dirk Van

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan was generated by applying the optimization parameters of the original treatment plan to the anatomy of the second CT scan. The dose-volume histograms (DVHs) and dose statistics of the hybrid plan and the adapted plan were compared. The mean volume of the ipsilateral and contralateral parotid gland decreased by 6.1 cm 3 (30.5%) and 5.4 cm 3 (24.3%), respectively. Compared with the hybrid plan, the adapted plan provided a higher dose to the target volumes with better homogeneity, and a lower dose to the organs at risk (OARs). The Dmin of all planning target volumes (PTVs) increased. The Dmax of the spinal cord and brainstem were lower in 94% of the patients (1.6-5.9 Gy, P < 0.001 and 2.1-9.9 Gy, P < 0.001, respectively). The D mean of the contralateral parotid decreased in 70% of the patients (range, 0.2-4.4 Gy). We could not find a relationship between dose variability and weight loss. Our two-phase adaptive IMRT protocol improves dosimetric results in terms of target volumes and OARs in patients with locally advanced NPC. (author)

  3. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Kumar, Prashant; Oechsner, Markus; Richter, Anne; Song, Shiyu; Myers, Michael; Polat, Bülent; Bzdusek, Karl; Tomé, Wolfgang A; Cannon, Donald M; Brouwer, Charlotte L; Wittendorp, Paul WH; Dogan, Nesrin; Guckenberger, Matthias; Allaire, Stéphane; Mallya, Yogish

    2012-01-01

    Adaptive Radiotherapy aims to identify anatomical deviations during a radiotherapy course and modify the treatment plan to maintain treatment objectives. This requires regions of interest (ROIs) to be defined using the most recent imaging data. This study investigates the clinical utility of using deformable image registration (DIR) to automatically propagate ROIs. Target (GTV) and organ-at-risk (OAR) ROIs were non-rigidly propagated from a planning CT scan to a per-treatment CT scan for 22 patients. Propagated ROIs were quantitatively compared with expert physician-drawn ROIs on the per-treatment scan using Dice scores and mean slicewise Hausdorff distances, and center of mass distances for GTVs. The propagated ROIs were qualitatively examined by experts and scored based on their clinical utility. Good agreement between the DIR-propagated ROIs and expert-drawn ROIs was observed based on the metrics used. 94% of all ROIs generated using DIR were scored as being clinically useful, requiring minimal or no edits. However, 27% (12/44) of the GTVs required major edits. DIR was successfully used on 22 patients to propagate target and OAR structures for ART with good anatomical agreement for OARs. It is recommended that propagated target structures be thoroughly reviewed by the treating physician

  5. SU-G-BRC-13: Model Based Classification for Optimal Position Selection for Left-Sided Breast Radiotherapy: Free Breathing, DIBH, Or Prone

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H; Liu, T; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Petillion, S; Kindts, I [University Hospitals Leuven, Leuven, Vlaams-Brabant (Belgium); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States)

    2016-06-15

    Purpose: There are clinical decision challenges to select optimal treatment positions for left-sided breast cancer patients—supine free breathing (FB), supine Deep Inspiration Breath Hold (DIBH) and prone free breathing (prone). Physicians often make the decision based on experiences and trials, which might not always result optimal OAR doses. We herein propose a mathematical model to predict the lowest OAR doses among these three positions, providing a quantitative tool for corresponding clinical decision. Methods: Patients were scanned in FB, DIBH, and prone positions under an IRB approved protocol. Tangential beam plans were generated for each position, and OAR doses were calculated. The position with least OAR doses is defined as the optimal position. The following features were extracted from each scan to build the model: heart, ipsilateral lung, breast volume, in-field heart, ipsilateral lung volume, distance between heart and target, laterality of heart, and dose to heart and ipsilateral lung. Principal Components Analysis (PCA) was applied to remove the co-linearity of the input data and also to lower the data dimensionality. Feature selection, another method to reduce dimensionality, was applied as a comparison. Support Vector Machine (SVM) was then used for classification. Thirtyseven patient data were acquired; up to now, five patient plans were available. K-fold cross validation was used to validate the accuracy of the classifier model with small training size. Results: The classification results and K-fold cross validation demonstrated the model is capable of predicting the optimal position for patients. The accuracy of K-fold cross validations has reached 80%. Compared to PCA, feature selection allows causal features of dose to be determined. This provides more clinical insights. Conclusion: The proposed classification system appeared to be feasible. We are generating plans for the rest of the 37 patient images, and more statistically significant

  6. Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command

    International Nuclear Information System (INIS)

    Gutzeit, Andreas; Matoori, Simon; Weymarn, Constantin von; Reischauer, Carolin; Goyen, Matthias; Hergan, Klaus; Meissnitzer, Matthias; Forstner, Rosemarie; Froehlich, Johannes M.; Kolokythas, Orpheus; Soyka, Jan D.; Doert, Aleksis; Koh, Dow-Mu

    2016-01-01

    To investigate whether a trained group of technicians using a modified breathing command during gadoxetate-enhanced liver MRI reduces respiratory motion artefacts compared to non-trained technicians using a traditional breathing command. The gadoxetate-enhanced liver MR images of 30 patients acquired using the traditional breathing command and the subsequent 30 patients after training the technicians to use a modified breathing command were analyzed. A subgroup of patients (n = 8) underwent scans both by trained and untrained technicians. Images obtained using the traditional and modified breathing command were compared for the presence of breathing artefacts [respiratory artefact-based image quality scores from 1 (best) to 5 (non-diagnostic)]. There was a highly significant improvement in the arterial phase image quality scores in patients using the modified breathing command compared to the traditional one (P < 0.001). The percentage of patients with severe and extensive breathing artefacts in the arterial phase decreased from 33.3 % to 6.7 % after introducing the modified breathing command (P = 0.021). In the subgroup that underwent MRI using both breathing commands, arterial phase image quality improved significantly (P = 0.008) using the modified breathing command. Training technicians to use a modified breathing command significantly improved arterial phase image quality of gadoxetate-enhanced liver MRI. (orig.)

  7. Bad Breath

    Science.gov (United States)

    ... garlic, onions, cheese, orange juice, and soda poor dental hygiene (say: HI-jeen), meaning not brushing and flossing regularly smoking and other tobacco use Poor oral hygiene leads to bad breath because when food particles ...

  8. Breathing Difficulties

    Science.gov (United States)

    ... symptoms. Symptoms associated with weak respiratory muscles: Air “hunger” (gasping, labored breathing) with an without activity Fatigue ... Start your own fundraising event & help create a world without ALS Start an Event Site Map | Press ...

  9. Bad Breath

    Science.gov (United States)

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  10. Adaptive radiotherapy with an average anatomy model: Evaluation and quantification of residual deformations in head and neck cancer patients

    International Nuclear Information System (INIS)

    Kranen, Simon van; Mencarelli, Angelo; Beek, Suzanne van; Rasch, Coen; Herk, Marcel van; Sonke, Jan-Jakob

    2013-01-01

    Background and purpose: To develop and validate an adaptive intervention strategy for radiotherapy of head-and-neck cancer that accounts for systematic deformations by modifying the planning-CT (pCT) to the average misalignments in daily cone beam CT (CBCT) measured with deformable registration (DR). Methods and materials: Daily CBCT scans (808 scans) for 25 patients were retrospectively registered to the pCT with B-spline DR. The average deformation vector field ( ) was used to deform the pCT for adaptive intervention. Two strategies were simulated: single intervention after 10 fractions and weekly intervention with an from the previous week. The model was geometrically validated with the residual misalignment of anatomical landmarks both on bony-anatomy (BA; automatically generated) and soft-tissue (ST; manually identified). Results: Systematic deformations were 2.5/3.4 mm vector length (BA/ST). Single intervention reduced deformations to 1.5/2.7 mm (BA/ST). Weekly intervention resulted in 1.0/2.2 mm (BA/ST) and accounted better for progressive changes. 15 patients had average systematic deformations >2 mm (BA): reductions were 1.1/1.9 mm (single/weekly BA). ST improvements were underestimated due to observer and registration variability. Conclusions: Adaptive intervention with a pCT modified to the average anatomy during treatment successfully reduces systematic deformations. The improved accuracy could possibly be exploited in margin reduction and/or dose escalation

  11. Outcomes of Risk-Adapted Fractionated Stereotactic Radiotherapy for Stage I Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lagerwaard, Frank J.; Haasbeek, Cornelis J.A.; Smit, Egbert F.; Slotman, Ben J.; Senan, S.

    2008-01-01

    Purpose: High local control rates can be achieved using stereotactic radiotherapy in Stage I non-small-cell lung cancer (NSCLC), but reports have suggested that toxicity may be of concern. We evaluated early clinical outcomes of 'risk-adapted' fractionation schemes in patients treated in a single institution. Methods and Materials: Of 206 patients with Stage I NSCLC, 81% were unfit to undergo surgery and the rest refused surgery. Pathologic confirmation of malignancy was obtained in 31% of patients. All other patients had new or growing 18F-fluorodeoxyglucose positron emission tomography positive lesions with radiologic characteristics of malignancy. Planning four-dimensional computed tomography scans were performed and fractionation schemes used (3 x 20 Gy, 5 x 12 Gy, and 8 x 7.5 Gy) were determined by T stage and risk of normal tissue toxicity. Results: Median overall survival was 34 months, with 1- and 2-year survivals of 81% and 64%, respectively. Disease-free survival (DFS) at 1 and 2 years was 83% and 68%, respectively, and DFS correlated with T stage (p = 0.002). Local failure was observed in 7 patients (3%). The crude regional failure rate was 9%; isolated regional recurrence was observed in 4%. The distant progression-free survival at 1 and 2 years was 85% and 77%, respectively. SRT was well tolerated and severe late toxicity was observed in less than 3% of patients. Conclusions: SRT is well tolerated in patients with extensive comorbidity with high local control rates and minimal toxicity. Early outcomes are not inferior to those reported for conventional radiotherapy. In view of patient convenience, such risk-adapted SRT schedules should be considered treatment of choice in patients presenting with medically inoperable Stage I NSCLC

  12. The first clinical implementation of real-time image-guided adaptive radiotherapy using a standard linear accelerator.

    Science.gov (United States)

    Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Caillet, Vincent; Hewson, Emily; Poulsen, Per Rugaard; Bromley, Regina; Bell, Linda; Eade, Thomas; Kneebone, Andrew; Martin, Jarad; Booth, Jeremy T

    2018-04-01

    Until now, real-time image guided adaptive radiation therapy (IGART) has been the domain of dedicated cancer radiotherapy systems. The purpose of this study was to clinically implement and investigate real-time IGART using a standard linear accelerator. We developed and implemented two real-time technologies for standard linear accelerators: (1) Kilovoltage Intrafraction Monitoring (KIM) that finds the target and (2) multileaf collimator (MLC) tracking that aligns the radiation beam to the target. Eight prostate SABR patients were treated with this real-time IGART technology. The feasibility, geometric accuracy and the dosimetric fidelity were measured. Thirty-nine out of forty fractions with real-time IGART were successful (95% confidence interval 87-100%). The geometric accuracy of the KIM system was -0.1 ± 0.4, 0.2 ± 0.2 and -0.1 ± 0.6 mm in the LR, SI and AP directions, respectively. The dose reconstruction showed that real-time IGART more closely reproduced the planned dose than that without IGART. For the largest motion fraction, with real-time IGART 100% of the CTV received the prescribed dose; without real-time IGART only 95% of the CTV would have received the prescribed dose. The clinical implementation of real-time image-guided adaptive radiotherapy on a standard linear accelerator using KIM and MLC tracking is feasible. This achievement paves the way for real-time IGART to be a mainstream treatment option. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Method for automatic re contouring straight adaptive radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Rodriguez Vila, B.; Garcia Vicente, F.; Aguilera, E. J.

    2011-01-01

    Outline of quickly and accurately the rectal wall is important in Image Guided Radiotherapy (IGRT in the acronym) as an organ of greatest influence in limiting the dose in the planning of radiation therapy in prostate cancer. Deformabies registration methods based on image intensity can not create a correct spatial transformation if there is no correspondence between the image and image planning session. The rectal content variation creates a non-correspondence in the image intensity becomes a major obstacle to the deformable registration based on image intensity.

  14. Normal tissue sparing in a phase II trial on daily adaptive plan selection in radiotherapy for urinary bladder cancer.

    Science.gov (United States)

    Vestergaard, Anne; Muren, Ludvig P; Lindberg, Henriette; Jakobsen, Kirsten L; Petersen, Jørgen B B; Elstrøm, Ulrik V; Agerbæk, Mads; Høyer, Morten

    2014-08-01

    Background: Patients with urinary bladder cancer often display large changes in the shape and size of their bladder target during a course of radiotherapy (RT), making adaptive RT (ART) appealing for this tumour site. We are conducting a clinical phase II trial of daily plan selection-based ART for bladder cancer and here report dose-volume data from the first 20 patients treated in the trial. All patients received 60 Gy in 30 fractions to the bladder; in 13 of the patients the pelvic lymph nodes were simultaneously treated to 48 Gy. Daily patient set-up was by use of cone beam computed tomography (CBCT) guidance. The first 5 fractions were delivered with large, population-based (non-adaptive) margins. The bladder contours from the CBCTs acquired in the first 4 fractions were used to create a patient-specific library of three plans, corresponding to a small, medium and large size bladder. From fraction 6, daily online plan selection was performed, where the smallest plan covering the bladder was selected prior to each treatment delivery. A total of 600 treatment fractions in the 20 patients were evaluated. Small, medium and large size plans were used almost equally often, with an average of 10, 9 and 11 fractions, respectively. The median volume ratio of the course-averaged PTV (PTV-ART) relative to the non-adaptive PTV was 0.70 (range: 0.46-0.89). A linear regression analysis showed a 183 cm(3) (CI 143-223 cm(3)) reduction in PTV-ART compared to the non-adaptive PTV (R(2) = 0.94). Daily adaptive plan selection in RT of bladder cancer results in a considerable normal tissue sparing, of a magnitude that we expect will translate into a clinically significant reduction of the treatment-related morbidity.

  15. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    International Nuclear Information System (INIS)

    Cervino, Laura I; Gupta, Sonia; Rose, Mary A; Yashar, Catheryn; Jiang, Steve B

    2009-01-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  16. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Gupta, Sonia; Rose, Mary A; Yashar, Catheryn; Jiang, Steve B [Department of Radiation Oncology, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92037-0843 (United States)], E-mail: sbjiang@ucsd.edu

    2009-11-21

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p < 0.001 for reproducibility, p < 0.01 for stability). Significant changes (>2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  17. The outcome of a multi-centre feasibility study of online adaptive radiotherapy for muscle-invasive bladder cancer TROG 10.01 BOLART

    International Nuclear Information System (INIS)

    Foroudi, Farshad; Pham, Daniel; Rolfo, Aldo; Bressel, Mathias; Tang, Colin I.; Tan, Alex; Turner, Sandra; Hruby, George; Williams, Stephen; Hayne, Dickon; Lehman, Margot; Skala, Marketa; Jose, Chakiath C.; Gogna, Kumar; Kron, Tomas

    2014-01-01

    Purpose: To assess whether online adaptive radiotherapy for bladder cancer is feasible across multiple Radiation Oncology departments using different imaging, delivery and recording technology. Materials and methods: A multi-centre feasibility study of online adaptive radiotherapy, using a choice of three “plan of the day”, was conducted at 12 departments. Patients with muscle-invasive bladder cancer were included. Departments were activated if part of the pilot study or after a site-credentialing visit. There was real time review of the first two cases from each department. Results: 54 patients were recruited, with 50 proceeding to radiotherapy. There were 43 males and 7 females with a mean age of 78 years. The tumour stages treated included T1 (1 patient), T2 (35), T3 (10) and T4 (4). One patient died of an unrelated cause during radiotherapy. The three adaptive plans were created before the 10th fraction in all cases. In 8 (16%) of the patients, a conventional plan using a ‘standard’ CTV to PTV margin of 1.5 cm was used for one or more fractions where the pre-treatment bladder CTV was larger than any of the three adaptive plans. The bladder CTV extended beyond the PTV on post treatment imaging in 9 (18%) of the 49 patients. Conclusions: From a technical perspective an online adaptive radiotherapy technique can be instituted in a multi-centre setting. However, without further bladder filling control or imaging, a CTV to PTV margin of 7 mm is insufficient

  18. Technology: cancer treatment: breath control set radiotherapy free. Two new methods allow to aim the tumors with precision without suffering of respiratory move

    International Nuclear Information System (INIS)

    Blanc, S.

    2004-01-01

    The challenge of radiotherapy consists in improving the ratio between the destruction of tumor cells and the preservation of sane cells. The efficiency of the treatment depends on the precision of radiations impact on the tumor but this one is difficult to get because the patient respiration makes the target mobile. It is now possible to get this precision. It is a question to block the patient respiration or to register the movements and then establish the shooting window of radiations in function of the tumor optimum exposure. (N.C.)

  19. Adaptive fractionated stereotactic Gamma Knife radiotherapy of meningioma using integrated stereotactic cone-beam-CT and adaptive re-planning (a-gkFSRT)

    International Nuclear Information System (INIS)

    Stieler, F.; Wenz, F.; Abo-Madyan, Y.; Schweizer, B.; Polednik, M.; Herskind, C.; Giordano, F.A.; Mai, S.

    2016-01-01

    The Gamma Knife Icon (Elekta AB, Stockholm, Sweden) allows frameless stereotactic treatment using a combination of cone beam computer tomography (CBCT), a thermoplastic mask system, and an infrared-based high-definition motion management (HDMM) camera system for patient tracking during treatment. We report on the first patient with meningioma at the left petrous bone treated with adaptive fractionated stereotactic radiotherapy (a-gkFSRT). The first patient treated with Gamma Knife Icon at our institute received MR imaging for preplanning before treatment. For each treatment fraction, a daily CBCT was performed to verify the actual scull/tumor position. The system automatically adapted the planned shot positions to the daily position and recalculated the dose distribution (online adaptive planning). During treatment, the HDMM system recorded the intrafractional patient motion. Furthermore, the required times were recorded to define a clinical treatment slot. Total treatment time was around 20 min. Patient positioning needed 0.8 min, CBCT positioning plus acquisition 1.65 min, CT data processing and adaptive planning 2.66 min, and treatment 15.6 min. The differences for the five daily CBCTs compared to the reference are for rotation: -0.59 ± 0.49 /0.18 ± 0.20 /0.05 ± 0.36 and for translation: 0.94 ± 0.52 mm/-0.08 ± 0.08 mm/-1.13 ± 0.89 mm. Over all fractions, an intrafractional movement of 0.13 ± 0.04 mm was observed. The Gamma Knife Icon allows combining the accuracy of the stereotactic Gamma Knife system with the flexibility of fractionated treatment with the mask system and CBCT. Furthermore, the Icon system introduces a new online patient tracking system to the clinical routine. The interfractional accuracy of patient positioning was controlled with a thermoplastic mask and CBCT. (orig.) [de

  20. BrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction.

    Directory of Open Access Journals (Sweden)

    Brad Thomas Townsley

    2015-05-01

    Full Text Available Next Generation Sequencing (NGS is driving rapid advancement in biological understanding and RNA-sequencing (RNA-seq has become an indispensable tool for biology and medicine. There is a growing need for access to these technologies although preparation of NGS libraries remains a bottleneck to wider adoption. Here we report a novel method for the production of strand specific RNA-seq libraries utilizing inherent properties of double-stranded cDNA to capture and incorporate a sequencing adapter. Breath Adapter Directional sequencing (BrAD-seq reduces sample handling and requires far fewer enzymatic steps than most available methods to produce high quality strand-specific RNA-seq libraries. The method we present is optimized for 3-prime Digital Gene Expression (DGE libraries and can easily extend to full transcript coverage shotgun (SHO type strand-specific libraries and is modularized to accommodate a diversity of RNA and DNA input materials. BrAD-seq offers a highly streamlined and inexpensive option for RNA-seq libraries.

  1. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M; Feigenberg, S [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  2. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    International Nuclear Information System (INIS)

    Lin, M; Feigenberg, S

    2015-01-01

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  3. Introduction of online adaptive radiotherapy for bladder cancer through a multicentre clinical trial (Trans-Tasman Radiation Oncology Group 10.01): lessons learned

    International Nuclear Information System (INIS)

    Pham, Daniel; Roxby, Paul; Kron, Tomas; Rolfo, Aldo; Foroudi, Farshad

    2013-01-01

    Online adaptive radiotherapy for bladder cancer is a novel radiotherapy technique that was found feasible in a pilot study at a single academic institution. In September 2010 this technique was opened as a multicenter study through the Trans-Tasman Radiation Oncology Group (TROG 10.01 bladder online adaptive radiotherapy treatment). Twelve centers across Australia and New-Zealand registered interest into the trial. A multidisciplinary team of radiation oncologists, radiation therapists and medical physicists represented the trial credentialing and technical support team. To provide timely activation and proper implementation of the adaptive technique the following key areas were addressed at each site: Staff education/training; Practical image guided radiotherapy assessment; provision of help desk and feedback. The trial credentialing process involved face-to-face training and technical problem solving via full day site visits. A dedicated 'help-desk' team was developed to provide support for the clinical trial. 26% of the workload occurred at the credentialing period while the remaining 74% came post-center activation. The workload was made up of the following key areas; protocol clarification (36%), technical problems (46%) while staff training was less than 10%. Clinical trial credentialing is important to minimizing trial deviations. It should not only focus on site activation quality assurance but also provide ongoing education and technical support. (author)

  4. Introduction of online adaptive radiotherapy for bladder cancer through a multicentre clinical trial (Trans-Tasman Radiation Oncology Group 10.01: Lessons learned

    Directory of Open Access Journals (Sweden)

    Daniel Pham

    2013-01-01

    Full Text Available Online adaptive radiotherapy for bladder cancer is a novel radiotherapy technique that was found feasible in a pilot study at a single academic institution. In September 2010 this technique was opened as a multicenter study through the Trans-Tasman Radiation Oncology Group (TROG 10.01 bladder online adaptive radiotherapy treatment. Twelve centers across Australia and New-Zealand registered interest into the trial. A multidisciplinary team of radiation oncologists, radiation therapists and medical physicists represented the trial credentialing and technical support team. To provide timely activation and proper implementation of the adaptive technique the following key areas were addressed at each site: Staff education/training; Practical image guided radiotherapy assessment; provision of help desk and feedback. The trial credentialing process involved face-to-face training and technical problem solving via full day site visits. A dedicated "help-desk" team was developed to provide support for the clinical trial. 26% of the workload occurred at the credentialing period while the remaining 74% came post-center activation. The workload was made up of the following key areas; protocol clarification (36%, technical problems (46% while staff training was less than 10%. Clinical trial credentialing is important to minimizing trial deviations. It should not only focus on site activation quality assurance but also provide ongoing education and technical support.

  5. Cardiac dose reduction with deep inspiration breath hold for left-sided breast cancer radiotherapy patients with and without regional nodal irradiation.

    Science.gov (United States)

    Yeung, Rosanna; Conroy, Leigh; Long, Karen; Walrath, Daphne; Li, Haocheng; Smith, Wendy; Hudson, Alana; Phan, Tien

    2015-09-22

    Deep inspiration breath hold (DIBH) reduces heart and left anterior descending artery (LAD) dose during left-sided breast radiation therapy (RT); however there is limited information about which patients derive the most benefit from DIBH. The primary objective of this study was to determine which patients benefit the most from DIBH by comparing percent reduction in mean cardiac dose conferred by DIBH for patients treated with whole breast RT ± boost (WBRT) versus those receiving breast/chest wall plus regional nodal irradiation, including internal mammary chain (IMC) nodes (B/CWRT + RNI) using a modified wide tangent technique. A secondary objective was to determine if DIBH was required to meet a proposed heart dose constraint of Dmean irradiation.

  6. A self-adaptive case-based reasoning system for dose planning in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Nishikant; Petrovic, Sanja; Sundar, Santhanam [Automated Scheduling, Optimisation and Planning Research Group, School of Computer Science, University of Nottingham, Nottingham NG8 1BB (United Kingdom); Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB (United Kingdom)

    2011-12-15

    Purpose: Prostate cancer is the most common cancer in the male population. Radiotherapy is often used in the treatment for prostate cancer. In radiotherapy treatment, the oncologist makes a trade-off between the risk and benefit of the radiation, i.e., the task is to deliver a high dose to the prostate cancer cells and minimize side effects of the treatment. The aim of our research is to develop a software system that will assist the oncologist in planning new treatments. Methods: A nonlinear case-based reasoning system is developed to capture the expertise and experience of oncologists in treating previous patients. Importance (weights) of different clinical parameters in the dose planning is determined by the oncologist based on their past experience, and is highly subjective. The weights are usually fixed in the system. In this research, the weights are updated automatically each time after generating a treatment plan for a new patient using a group based simulated annealing approach. Results: The developed approach is analyzed on the real data set collected from the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. Extensive experiments show that the dose plan suggested by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Conclusions: The developed case-based reasoning system enables the use of knowledge and experience gained by the oncologist in treating new patients. This system may play a vital role to assist the oncologist in making a better decision in less computational time; it utilizes the success rate of the previously treated patients and it can also be used in teaching and training processes.

  7. A self-adaptive case-based reasoning system for dose planning in prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Mishra, Nishikant; Petrovic, Sanja; Sundar, Santhanam

    2011-01-01

    Purpose: Prostate cancer is the most common cancer in the male population. Radiotherapy is often used in the treatment for prostate cancer. In radiotherapy treatment, the oncologist makes a trade-off between the risk and benefit of the radiation, i.e., the task is to deliver a high dose to the prostate cancer cells and minimize side effects of the treatment. The aim of our research is to develop a software system that will assist the oncologist in planning new treatments. Methods: A nonlinear case-based reasoning system is developed to capture the expertise and experience of oncologists in treating previous patients. Importance (weights) of different clinical parameters in the dose planning is determined by the oncologist based on their past experience, and is highly subjective. The weights are usually fixed in the system. In this research, the weights are updated automatically each time after generating a treatment plan for a new patient using a group based simulated annealing approach. Results: The developed approach is analyzed on the real data set collected from the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. Extensive experiments show that the dose plan suggested by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Conclusions: The developed case-based reasoning system enables the use of knowledge and experience gained by the oncologist in treating new patients. This system may play a vital role to assist the oncologist in making a better decision in less computational time; it utilizes the success rate of the previously treated patients and it can also be used in teaching and training processes.

  8. Adaptive fractionated stereotactic Gamma Knife radiotherapy of meningioma using integrated stereotactic cone-beam-CT and adaptive re-planning (a-gkFSRT)

    Energy Technology Data Exchange (ETDEWEB)

    Stieler, F.; Wenz, F.; Abo-Madyan, Y.; Schweizer, B.; Polednik, M.; Herskind, C.; Giordano, F.A.; Mai, S. [University of Heidelberg, Department of Radiation Oncology, University Medical Center Mannheim, Mannheim (Germany)

    2016-11-15

    The Gamma Knife Icon (Elekta AB, Stockholm, Sweden) allows frameless stereotactic treatment using a combination of cone beam computer tomography (CBCT), a thermoplastic mask system, and an infrared-based high-definition motion management (HDMM) camera system for patient tracking during treatment. We report on the first patient with meningioma at the left petrous bone treated with adaptive fractionated stereotactic radiotherapy (a-gkFSRT). The first patient treated with Gamma Knife Icon at our institute received MR imaging for preplanning before treatment. For each treatment fraction, a daily CBCT was performed to verify the actual scull/tumor position. The system automatically adapted the planned shot positions to the daily position and recalculated the dose distribution (online adaptive planning). During treatment, the HDMM system recorded the intrafractional patient motion. Furthermore, the required times were recorded to define a clinical treatment slot. Total treatment time was around 20 min. Patient positioning needed 0.8 min, CBCT positioning plus acquisition 1.65 min, CT data processing and adaptive planning 2.66 min, and treatment 15.6 min. The differences for the five daily CBCTs compared to the reference are for rotation: -0.59 ± 0.49 /0.18 ± 0.20 /0.05 ± 0.36 and for translation: 0.94 ± 0.52 mm/-0.08 ± 0.08 mm/-1.13 ± 0.89 mm. Over all fractions, an intrafractional movement of 0.13 ± 0.04 mm was observed. The Gamma Knife Icon allows combining the accuracy of the stereotactic Gamma Knife system with the flexibility of fractionated treatment with the mask system and CBCT. Furthermore, the Icon system introduces a new online patient tracking system to the clinical routine. The interfractional accuracy of patient positioning was controlled with a thermoplastic mask and CBCT. (orig.) [German] Das Gamma Knife Icon (Elekta AB, Stockholm, Schweden) ermoeglicht die stereotaktische Behandlung von Patienten mittels Cone-beam-Computertomographie (CBCT

  9. Cardiac dose reduction with deep inspiration breath hold for left-sided breast cancer radiotherapy patients with and without regional nodal irradiation

    International Nuclear Information System (INIS)

    Yeung, Rosanna; Conroy, Leigh; Long, Karen; Walrath, Daphne; Li, Haocheng; Smith, Wendy; Hudson, Alana; Phan, Tien

    2015-01-01

    Deep inspiration breath hold (DIBH) reduces heart and left anterior descending artery (LAD) dose during left-sided breast radiation therapy (RT); however there is limited information about which patients derive the most benefit from DIBH. The primary objective of this study was to determine which patients benefit the most from DIBH by comparing percent reduction in mean cardiac dose conferred by DIBH for patients treated with whole breast RT ± boost (WBRT) versus those receiving breast/chest wall plus regional nodal irradiation, including internal mammary chain (IMC) nodes (B/CWRT + RNI) using a modified wide tangent technique. A secondary objective was to determine if DIBH was required to meet a proposed heart dose constraint of D mean < 4 Gy in these two cohorts. Twenty consecutive patients underwent CT simulation both free breathing (FB) and DIBH. Patients were grouped into two cohorts: WBRT (n = 11) and B/CWRT + RNI (n = 9). 3D-conformal plans were developed and FB was compared to DIBH for each cohort using Wilcoxon signed-rank tests for continuous variables and McNemar’s test for discrete variables. The percent relative reduction conferred by DIBH in mean heart and LAD dose, as well as lung V 20 were compared between the two cohorts using Wilcox rank-sum testing. The significance level was set at 0.05 with Bonferroni correction for multiple testing. All patients had comparable target coverage on DIBH and FB. DIBH statistically significantly reduced mean heart and LAD dose for both cohorts. Percent reduction in mean heart and LAD dose with DIBH was significantly larger in the B/CWRT + RNI cohort compared to WBRT group (relative reduction in mean heart and LAD dose: 55.9 % and 72.1 % versus 29.2 % and 43.5 %, p < 0.02). All patients in the WBRT group and five patients (56 %) in the B/CWBRT + RNI group met heart D mean <4 Gy with FB. All patients met this constraint with DIBH. All patients receiving WBRT met D mean Heart < 4 Gy on FB, while only slightly over

  10. Demons Registration of CT Volume and CBCT Projections for Adaptive Radiotherapy: Avoiding CBCT Reconstruction

    DEFF Research Database (Denmark)

    Bjerre, Troels; Aznar, M.; Munck af Rosenschöld, P.

    2012-01-01

    with adaptive fluidity (smoothing kernel width). For forward/back-projection, the separable footprints algorithm with trapezoid functions was applied. The similarity between the simulated and measured projections was measured as the SSD. Results: The figure shows a slice of; the CT volume (reference), the CT...

  11. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  12. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  13. Medical Issues: Breathing

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common ...

  14. 18F-Fdg-PET-guided Planning and Re-Planning (Adaptive) Radiotherapy in Head and Neck Cancer: Current State of Art.

    Science.gov (United States)

    Farina, Eleonora; Ferioli, Martina; Castellucci, Paolo; Farina, Arianna; Zanirato Rambaldi, Giuseppe; Cilla, Savino; Cammelli, Silvia; Fanti, Stefano; Morganti, Alessio G

    2017-12-01

    A review of the literature is proposed as a contribution to current knowledge on technical, physical, and clinical issues about PET-guided planning and re-planning radiotherapy (RT) in head and neck cancer. PubMed and Scopus electronic databases were searched for articles including clinical trials. Search terms were "gross tumor volume (GTV) delineation", "head and neck cancer", "radiotherapy", "adaptive radiotherapy" in combination with "PET". A 18 F-FDG-PET and CT-scan comparison in GTV definition for RT planning of head and neck cancer was shown in twenty-seven clinical trials with a total of 712 patients. Only two clinical trials focused on PET-guided adaptive radiotherapy (ART) with a total of 31 patients. 18 F-FDG-PET is able to achieve an accurate and precise definition of GTV boundaries during RT planning, especially in combination with CT-scan. ART strategies are proposed to evaluate tumor volume changes, plan boost irradiation on metabolically active residual neoplasm and protect organs at risk (OaRs). Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. SU-E-J-20: Adaptive Aperture Morphing for Online Correction for Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Sandhu, R; Qin, A; Yan, D

    2014-01-01

    Purpose: Online adaptive aperture morphing is desirable over translational couch shifts to accommodate not only the target position variation but also anatomic changes (rotation, deformation, and relation of target to organ-atrisks). We proposed quick and reliable method for adapting segment aperture leaves for IMRT treatment of prostate. Methods: The proposed method consists of following steps: (1) delineate the contours of prostate, SV, bladder and rectum on kV-CBCT; (2) determine prostate displacement from the rigid body registration of the contoured prostate manifested on the reference CT and the CBCT; (3) adapt the MLC segment apertures obtained from the pre-treatment IMRT planning to accommodate the shifts as well as anatomic changes. The MLC aperture adaptive algorithm involves two steps; first move the whole aperture according to prostate translational/rotational shifts, and secondly fine-tune the aperture shape to maintain the spatial relationship between the planning target contour and the MLC aperture to the daily target contour. Feasibility of this method was evaluated retrospectively on a seven-field IMRT treatment of prostate cancer patient by comparing dose volume histograms of the original plan and the aperture-adjusted plan, with/without additional segments weight optimization (SWO), on two daily treatment CBCTs selected with relative large motion and rotation. Results: For first daily treatment, the prostate rotation was significant (12degree around lateral-axis). With apertureadjusted plan, the D95 to the target was improved 25% and rectum dose (D30, D40) was reduced 20% relative to original plan on daily volumes. For second treatment-fraction, (lateral shift = 6.7mm), after adjustment target D95 improved by 3% and bladder dose (D30, maximum dose) was reduced by 1%. For both cases, extra SWO did not provide significant improvement. Conclusion: The proposed method of adapting segment apertures is promising in treatment position correction

  16. MO-E-BRC-00: Online Adaptive Radiotherapy - Considerations for Practical Clinical Implementation

    International Nuclear Information System (INIS)

    2016-01-01

    Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled the implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.

  17. SU-E-J-20: Adaptive Aperture Morphing for Online Correction for Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, R; Qin, A; Yan, D [William Beaumont Hospital, Royal Oak, MI (United States)

    2014-06-01

    Purpose: Online adaptive aperture morphing is desirable over translational couch shifts to accommodate not only the target position variation but also anatomic changes (rotation, deformation, and relation of target to organ-atrisks). We proposed quick and reliable method for adapting segment aperture leaves for IMRT treatment of prostate. Methods: The proposed method consists of following steps: (1) delineate the contours of prostate, SV, bladder and rectum on kV-CBCT; (2) determine prostate displacement from the rigid body registration of the contoured prostate manifested on the reference CT and the CBCT; (3) adapt the MLC segment apertures obtained from the pre-treatment IMRT planning to accommodate the shifts as well as anatomic changes. The MLC aperture adaptive algorithm involves two steps; first move the whole aperture according to prostate translational/rotational shifts, and secondly fine-tune the aperture shape to maintain the spatial relationship between the planning target contour and the MLC aperture to the daily target contour. Feasibility of this method was evaluated retrospectively on a seven-field IMRT treatment of prostate cancer patient by comparing dose volume histograms of the original plan and the aperture-adjusted plan, with/without additional segments weight optimization (SWO), on two daily treatment CBCTs selected with relative large motion and rotation. Results: For first daily treatment, the prostate rotation was significant (12degree around lateral-axis). With apertureadjusted plan, the D95 to the target was improved 25% and rectum dose (D30, D40) was reduced 20% relative to original plan on daily volumes. For second treatment-fraction, (lateral shift = 6.7mm), after adjustment target D95 improved by 3% and bladder dose (D30, maximum dose) was reduced by 1%. For both cases, extra SWO did not provide significant improvement. Conclusion: The proposed method of adapting segment apertures is promising in treatment position correction

  18. MO-E-BRC-00: Online Adaptive Radiotherapy - Considerations for Practical Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled the implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.

  19. SU-E-J-208: Fast and Accurate Auto-Segmentation of Abdominal Organs at Risk for Online Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V; Wang, Y; Romero, A; Heijmen, B; Hoogeman, M [Erasmus MC Cancer Institute, Rotterdam (Netherlands); Myronenko, A; Jordan, P [Accuray Incorporated, Sunnyvale, United States. (United States)

    2014-06-01

    Purpose: Various studies have demonstrated that online adaptive radiotherapy by real-time re-optimization of the treatment plan can improve organs-at-risk (OARs) sparing in the abdominal region. Its clinical implementation, however, requires fast and accurate auto-segmentation of OARs in CT scans acquired just before each treatment fraction. Autosegmentation is particularly challenging in the abdominal region due to the frequently observed large deformations. We present a clinical validation of a new auto-segmentation method that uses fully automated non-rigid registration for propagating abdominal OAR contours from planning to daily treatment CT scans. Methods: OARs were manually contoured by an expert panel to obtain ground truth contours for repeat CT scans (3 per patient) of 10 patients. For the non-rigid alignment, we used a new non-rigid registration method that estimates the deformation field by optimizing local normalized correlation coefficient with smoothness regularization. This field was used to propagate planning contours to repeat CTs. To quantify the performance of the auto-segmentation, we compared the propagated and ground truth contours using two widely used metrics- Dice coefficient (Dc) and Hausdorff distance (Hd). The proposed method was benchmarked against translation and rigid alignment based auto-segmentation. Results: For all organs, the auto-segmentation performed better than the baseline (translation) with an average processing time of 15 s per fraction CT. The overall improvements ranged from 2% (heart) to 32% (pancreas) in Dc, and 27% (heart) to 62% (spinal cord) in Hd. For liver, kidneys, gall bladder, stomach, spinal cord and heart, Dc above 0.85 was achieved. Duodenum and pancreas were the most challenging organs with both showing relatively larger spreads and medians of 0.79 and 2.1 mm for Dc and Hd, respectively. Conclusion: Based on the achieved accuracy and computational time we conclude that the investigated auto

  20. SU-E-J-208: Fast and Accurate Auto-Segmentation of Abdominal Organs at Risk for Online Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Gupta, V; Wang, Y; Romero, A; Heijmen, B; Hoogeman, M; Myronenko, A; Jordan, P

    2014-01-01

    Purpose: Various studies have demonstrated that online adaptive radiotherapy by real-time re-optimization of the treatment plan can improve organs-at-risk (OARs) sparing in the abdominal region. Its clinical implementation, however, requires fast and accurate auto-segmentation of OARs in CT scans acquired just before each treatment fraction. Autosegmentation is particularly challenging in the abdominal region due to the frequently observed large deformations. We present a clinical validation of a new auto-segmentation method that uses fully automated non-rigid registration for propagating abdominal OAR contours from planning to daily treatment CT scans. Methods: OARs were manually contoured by an expert panel to obtain ground truth contours for repeat CT scans (3 per patient) of 10 patients. For the non-rigid alignment, we used a new non-rigid registration method that estimates the deformation field by optimizing local normalized correlation coefficient with smoothness regularization. This field was used to propagate planning contours to repeat CTs. To quantify the performance of the auto-segmentation, we compared the propagated and ground truth contours using two widely used metrics- Dice coefficient (Dc) and Hausdorff distance (Hd). The proposed method was benchmarked against translation and rigid alignment based auto-segmentation. Results: For all organs, the auto-segmentation performed better than the baseline (translation) with an average processing time of 15 s per fraction CT. The overall improvements ranged from 2% (heart) to 32% (pancreas) in Dc, and 27% (heart) to 62% (spinal cord) in Hd. For liver, kidneys, gall bladder, stomach, spinal cord and heart, Dc above 0.85 was achieved. Duodenum and pancreas were the most challenging organs with both showing relatively larger spreads and medians of 0.79 and 2.1 mm for Dc and Hd, respectively. Conclusion: Based on the achieved accuracy and computational time we conclude that the investigated auto

  1. National arrangements for radiotherapy

    International Nuclear Information System (INIS)

    2007-01-01

    After a presentation of several letters exchanged between the French health ministry and public agencies in charge of public health or nuclear safety after a radiotherapy accident in Epinal, this report comments the evolution of needs in cancerology care and the place given to radiotherapy. It outlines the technological and organisational evolution of radiotherapy and presents the distribution of radiotherapy equipment, of radio-therapists and other radiotherapy professionals in France. Within the context of radiotherapy accidents which occurred in 2007, it presents the regulatory arrangements which aimed at improving the safety, short term and middle term arrangements which are needed to support and structure radiotherapy practice quality. It stresses the fact that the system will deeply evolve by implementing a radiotherapy vigilance arrangement and a permanent follow-on and adaptation plan based on surveys and the creation of a national committee

  2. Adaptive fractionated stereotactic Gamma Knife radiotherapy of meningioma using integrated stereotactic cone-beam-CT and adaptive re-planning (a-gkFSRT).

    Science.gov (United States)

    Stieler, F; Wenz, F; Abo-Madyan, Y; Schweizer, B; Polednik, M; Herskind, C; Giordano, F A; Mai, S

    2016-11-01

    The Gamma Knife Icon (Elekta AB, Stockholm, Sweden) allows frameless stereotactic treatment using a combination of cone beam computer tomography (CBCT), a thermoplastic mask system, and an infrared-based high-definition motion management (HDMM) camera system for patient tracking during treatment. We report on the first patient with meningioma at the left petrous bone treated with adaptive fractionated stereotactic radiotherapy (a-gkFSRT). The first patient treated with Gamma Knife Icon at our institute received MR imaging for preplanning before treatment. For each treatment fraction, a daily CBCT was performed to verify the actual scull/tumor position. The system automatically adapted the planned shot positions to the daily position and recalculated the dose distribution (online adaptive planning). During treatment, the HDMM system recorded the intrafractional patient motion. Furthermore, the required times were recorded to define a clinical treatment slot. Total treatment time was around 20 min. Patient positioning needed 0.8 min, CBCT positioning plus acquisition 1.65 min, CT data processing and adaptive planning 2.66 min, and treatment 15.6 min. The differences for the five daily CBCTs compared to the reference are for rotation: -0.59 ± 0.49°/0.18 ± 0.20°/0.05 ± 0.36° and for translation: 0.94 ± 0.52 mm/-0.08 ± 0.08 mm/-1.13 ± 0.89 mm. Over all fractions, an intrafractional movement of 0.13 ± 0.04 mm was observed. The Gamma Knife Icon allows combining the accuracy of the stereotactic Gamma Knife system with the flexibility of fractionated treatment with the mask system and CBCT. Furthermore, the Icon system introduces a new online patient tracking system to the clinical routine. The interfractional accuracy of patient positioning was controlled with a thermoplastic mask and CBCT.

  3. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy

    Science.gov (United States)

    Zhang, Yawei; Yin, Fang-Fang; Zhang, You; Ren, Lei

    2017-05-01

    The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4  ±  0.1 mm/5.5  ±  2.2%, 0.6  ±  0.3 mm/7.2  ±  2.8%, 0.5  ±  0.2 mm/7.1  ±  2.6%, 0.6  ±  0.2 mm/8.3  ±  2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation

  4. Poster – 41: External marker block placement on the breast or chest wall for left-sided deep inspiration breath-hold radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Leigh; Guebert, Alexandra; Smith, Wendy [Tom Baker Cancer Centre (Canada)

    2016-08-15

    Purpose: We investigate DIBH breast radiotherapy using the Real-time Position Management (RPM) system with the marker-block placed on the target breast or chest wall. Methods: We measured surface dose for three different RPM marker-blocks using EBT3 Gafchromic film at 0° and 30° incidence. A registration study was performed to determine the breast surface position that best correlates with overall internal chest wall position. Surface and chest wall contours from MV images of the medial tangent field were extracted for 15 patients. Surface contours were divided into three potential marker-block positions on the breast: Superior, Middle, and Inferior. Translational registration was used to align the partial contours to the first-fraction contour. Each resultant transformation matrix was applied to the chest wall contour, and the minimum distance between the reference chest wall contour and the transformed chest wall contour was evaluated for each pixel. Results: The measured surface dose for the 2-dot, 6-dot, and 4-dot marker-blocks at 0° incidence were 74%, 71%, and 77% of dose to dmax respectively. At 30° beam incidence this increased to 76%, 72%, and 81%. The best external surface position was patient and fraction dependent, with no consistent best choice. Conclusions: The increase in surface dose directly under the RPM block is approximately equivalent to 3 mm of bolus. No marker-block position on the breast surface was found to be more representative of overall chest wall motion; therefore block positional stability and reproducibility can be used to determine optimal placement on the breast or chest wall.

  5. Towards adaptive radiotherapy for head and neck patients: validation of an in-house deformable registration algorithm

    Science.gov (United States)

    Veiga, C.; McClelland, J.; Moinuddin, S.; Ricketts, K.; Modat, M.; Ourselin, S.; D'Souza, D.; Royle, G.

    2014-03-01

    The purpose of this work is to validate an in-house deformable image registration (DIR) algorithm for adaptive radiotherapy for head and neck patients. We aim to use the registrations to estimate the "dose of the day" and assess the need to replan. NiftyReg is an open-source implementation of the B-splines deformable registration algorithm, developed in our institution. We registered a planning CT to a CBCT acquired midway through treatment for 5 HN patients that required replanning. We investigated 16 different parameter settings that previously showed promising results. To assess the registrations, structures delineated in the CT were warped and compared with contours manually drawn by the same clinical expert on the CBCT. This structure set contained vertebral bodies and soft tissue. Dice similarity coefficient (DSC), overlap index (OI), centroid position and distance between structures' surfaces were calculated for every registration, and a set of parameters that produces good results for all datasets was found. We achieve a median value of 0.845 in DSC, 0.889 in OI, error smaller than 2 mm in centroid position and over 90% of the warped surface pixels are distanced less than 2 mm of the manually drawn ones. By using appropriate DIR parameters, we are able to register the planning geometry (pCT) to the daily geometry (CBCT).

  6. SU-E-J-254: Utility of Pinnacle Dynamic Planning Module Utilizing Deformable Image Registration in Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Jani, S

    2014-01-01

    Purpose For certain highly conformal treatment techniques, changes in patient anatomy due to weight loss and/or tumor shrinkage can result in significant changes in dose distribution. Recently, the Pinnacle treatment planning system added a Dynamic Planning module utilizing Deformable Image Registration (DIR). The objective of this study was to evaluate the effectiveness of this software in adapting to altered anatomy and adjusting treatment plans to account for it. Methods We simulated significant tumor response by changing patient thickness and altered chin positions using a commercially-available head and neck (H and N) phantom. In addition, we studied 23 CT image sets of fifteen (15) patients with H and N tumors and eight (8) patients with prostate cancer. In each case, we applied deformable image registration through Dynamic Planning module of our Pinnacle Treatment Planning System. The dose distribution of the original CT image set was compared to the newly computed dose without altering any treatment parameter. Result was a dose if we did not adjust the plan to reflect anatomical changes. Results For the H and N phantom, a tumor response of up to 3.5 cm was correctly deformed by the Pinnacle Dynamic module. Recomputed isodose contours on new anatomies were within 1 mm of the expected distribution. The Pinnacle system configuration allowed dose computations resulting from original plans on new anatomies without leaving the planning system. Original and new doses were available side-by-side with both CT image sets. Based on DIR, about 75% of H and N patients (11/15) required a re-plan using new anatomy. Among prostate patients, the DIR predicted near-correct bladder volume in 62% of the patients (5/8). Conclusions The Dynamic Planning module of the Pinnacle system proved to be an accurate and useful tool in our ability to adapt to changes in patient anatomy during a course of radiotherapy

  7. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    International Nuclear Information System (INIS)

    Yu, Gang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Liang, Yueqiang; Yin, Yong; Li, Dengwang

    2015-01-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software. (paper)

  8. Adaptive radiotherapy strategies for pelvic tumors - a systematic review of clinical implementations

    DEFF Research Database (Denmark)

    Thörnqvist, Sara; Hysing, Liv B; Tuomikoski, Laura

    2016-01-01

    Med. For each tumor site, the identified papers were screened independently by two researches for selection of studies describing all processes of an ART workflow: treatment monitoring and evaluation, decision and execution of adaptations. Both brachytherapy and external beam studies were eligible for review...... patients were treated with offline re-planning, all to account for tumor regression detected by magnetic resonance imaging (MRI)/computed tomography (CT). For bladder and gyne, 161 and 64 patients, respectively, were treated with library-based online plan selection to account for target volume and shape...

  9. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    International Nuclear Information System (INIS)

    Ge, Y; OBrien, R; Shieh, C; Booth, J; Keall, P

    2014-01-01

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor system phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an

  10. SU-E-J-68: Adaptive Radiotherapy of Head and Neck Cancer: Re-Planning Based On Prior Dose

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, N; Padgett, K [University of Miami Miller School of Medicine, Miami, FL (United States); Evans, J; Sleeman, W; Song, S [Virginia Commonwealth University, Richmond, VA (United States); Fatyga, M [Mayo Clinic Arizona, Phoenix, AZ (United States)

    2015-06-15

    Purpose: Adaptive Radiotherapy (ART) with frequent CT imaging has been used to improve dosimetric accuracy by accounting for anatomical variations, such as primary tumor shrinkage and/or body weight loss, in Head and Neck (H&N) patients. In most ART strategies, the difference between the planned and the delivered dose is estimated by generating new plans on repeated CT scans using dose-volume constraints used with the initial planning CT without considering already delivered dose. The aim of this study was to assess the dosimetric gains achieved by re-planning based on prior dose by comparing them to re-planning not based-on prior dose for H&N patients. Methods: Ten locally-advanced H&N cancer patients were selected for this study. For each patient, six weekly CT imaging were acquired during the course of radiotherapy. PTVs, parotids, cord, brainstem, and esophagus were contoured on both planning and six weekly CT images. ART with weekly re-plans were done by two strategies: 1) Generating a new optimized IMRT plan without including prior dose from previous fractions (NoPriorDose) and 2) Generating a new optimized IMRT plan based on the prior dose given from previous fractions (PriorDose). Deformable image registration was used to accumulate the dose distributions between planning and six weekly CT scans. The differences in accumulated doses for both strategies were evaluated using the DVH constraints for all structures. Results: On average, the differences in accumulated doses for PTV1, PTV2 and PTV3 for NoPriorDose and PriorDose strategies were <2%. The differences in Dmean to the cord and brainstem were within 3%. The esophagus Dmean was reduced by 2% using PriorDose. PriorDose strategy, however, reduced the left parotid D50 and Dmean by 15% and 14% respectively. Conclusion: This study demonstrated significant parotid sparing, potentially reducing xerostomia, by using ART with IMRT optimization based on prior dose for weekly re-planning of H&N cancer patients.

  11. Magnetic resonance imaging for assessment of parametrial tumour spread and regression patterns in adaptive cervix cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Maximilian P.; Fidarova, Elena [Dept. of Radiotherapy, Comprehensive Cancer Center, Medical Univ. of Vienna, Vienna (Austria)], e-mail: maximilian.schmid@akhwien.at; Poetter, Richard [Dept. of Radiotherapy, Comprehensive Cancer Center, Medical Univ. of Vienna, Vienna (Austria); Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology, Medical Univ. of Vienna (Austria)] [and others

    2013-10-15

    Purpose: To investigate the impact of magnetic resonance imaging (MRI)-morphologic differences in parametrial infiltration on tumour response during primary radio chemotherapy in cervical cancer. Material and methods: Eighty-five consecutive cervical cancer patients with FIGO stages IIB (n = 59) and IIIB (n = 26), treated by external beam radiotherapy ({+-}chemotherapy) and image-guided adaptive brachytherapy, underwent T2-weighted MRI at the time of diagnosis and at the time of brachytherapy. MRI patterns of parametrial tumour infiltration at the time of diagnosis were assessed with regard to predominant morphology and maximum extent of parametrial tumour infiltration and were stratified into five tumour groups (TG): 1) expansive with spiculae; 2) expansive with spiculae and infiltrating parts; 3) infiltrative into the inner third of the parametrial space (PM); 4) infiltrative into the middle third of the PM; and 5) infiltrative into the outer third of the PM. MRI at the time of brachytherapy was used for identifying presence (residual vs. no residual disease) and signal intensity (high vs. intermediate) of residual disease within the PM. Left and right PM of each patient were evaluated separately at both time points. The impact of the TG on tumour remission status within the PM was analysed using {chi}2-test and logistic regression analysis. Results: In total, 170 PM were analysed. The TG 1, 2, 3, 4, 5 were present in 12%, 11%, 35%, 25% and 12% of the cases, respectively. Five percent of the PM were tumour-free. Residual tumour in the PM was identified in 19%, 68%, 88%, 90% and 85% of the PM for the TG 1, 2, 3, 4, and 5, respectively. The TG 3 - 5 had significantly higher rates of residual tumour in the PM in comparison to TG 1 + 2 (88% vs. 43%, p < 0.01). Conclusion: MRI-morphologic features of PM infiltration appear to allow for prediction of tumour response during external beam radiotherapy and chemotherapy. A predominantly infiltrative tumour spread at the

  12. The influence of the image registration method on the adaptive radiotherapy. A proof of the principle in a selected case of prostate IMRT.

    Science.gov (United States)

    Berenguer, Roberto; de la Vara, Victoria; Lopez-Honrubia, Veronica; Nuñez, Ana Teresa; Rivera, Miguel; Villas, Maria Victoria; Sabater, Sebastia

    2018-01-01

    To analyse the influence of the image registration method on the adaptive radiotherapy of an IMRT prostate treatment, and to compare the dose accumulation according to 3 different image registration methods with the planned dose. The IMRT prostate patient was CT imaged 3 times throughout his treatment. The prostate, PTV, rectum and bladder were segmented on each CT. A Rigid, a deformable (DIR) B-spline and a DIR with landmarks registration algorithms were employed. The difference between the accumulated doses and planned doses were evaluated by the gamma index. The Dice coefficient and Hausdorff distance was used to evaluate the overlap between volumes, to quantify the quality of the registration. When comparing adaptive vs no adaptive RT, the gamma index calculation showed large differences depending on the image registration method (as much as 87.6% in the case of DIR B-spline). The quality of the registration was evaluated using an index such as the Dice coefficient. This showed that the best result was obtained with DIR with landmarks compared with the rest and it was always above 0.77, reported as a recommended minimum value for prostate studies in a multi-centre review. Apart from showing the importance of the application of an adaptive RT protocol in a particular treatment, this work shows that the election of the registration method is decisive in the result of the adaptive radiotherapy and dose accumulation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Evaluation of radiotherapy methods for adaptative head and neck treatment with RapidArc®

    International Nuclear Information System (INIS)

    Mazaro, Sarah J.; Vasconcellos, Herminiane L.; Silva, Laura E. da; Bastos, Fernanda M.; Silva, Leonardo P. da; Alvaro S; Migoviski, Igor

    2015-01-01

    Head and neck cancer is considered a public health problem worldwide. The intensity-modulated techniques have shown benefit in the treatment of these sites, particularly with respect to reduction of deterministic effects of risk, such as parotid. Anatomical variations in cases of head and neck are very frequent and may lead, for example, to an overdose in the parotid. This can be mitigated if making use of adaptive radiation therapy. The work aims to analyze a methodology to redo the planning of treatments, through 02 acquisitions of TC. The results showed that, due to a reduction in the volumes of the parotid, the doses delivered to these organs are underestimated, which is relevant to readapt the treatment, with the addition of only a second scan without the need of the third. (author)

  14. Adaptive Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer Does Not Underdose the Microscopic Disease and has the Potential to Increase Tumor Control

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Richter, Anne; Wilbert, Juergen; Flentje, Michael; Partridge, Mike

    2011-01-01

    Purpose: To evaluate doses to the microscopic disease (MD) in adaptive radiotherapy (ART) for locally advanced non–small-cell lung cancer (NSCLC) and to model tumor control probability (TCP). Methods and Materials: In a retrospective planning study, three-dimensional conformal treatment plans for 13 patients with locally advanced NSCLC were adapted to shape and volume changes of the gross tumor volume (GTV) once or twice during conventionally fractionated radiotherapy with total doses of 66 Gy; doses in the ART plans were escalated using an iso-mean lung dose (MLD) approach compared to non-adapted treatment. Dose distributions to the volumes of suspect MD were simulated for a scenario with synchronous shrinkage of the MD and GTV and for a scenario of a stationary MD despite GTV shrinkage; simulations were performed using deformable image registration. TCP calculations considering doses to the GTV and MD were performed using three different models. Results: Coverage of the MD at 50 Gy was not compromised by ART. Coverage at 60 Gy in the scenario of a stationary MD was significantly reduced from 92% ± 10% to 73% ± 19% using ART; however, the coverage was restored by iso-MLD dose escalation. Dose distributions in the MD were sufficient to achieve a TCP >80% on average in all simulation experiments, with the clonogenic cell density the major factor influencing TCP. The combined TCP for the GTV and MD was 19.9% averaged over all patients and TCP models in non-adaptive treatment with 66 Gy. Iso-MLD dose escalation achieved by ART increased the overall TCP by absolute 6% (adapting plan once) and by 8.7% (adapting plan twice) on average. Absolute TCP values were significantly different between the TCP models; however, all TCP models suggested very similar TCP increase by using ART. Conclusions: Adaptation of radiotherapy to the shrinking GTV did not compromise dose coverage of volumes of suspect microscopic disease and has the potential to increase TCP by >40% compared

  15. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.

  16. Long-term effect of adaptive servo ventilation on patients with chronic heart failure and sleep-disordered breathing: Meta analysis

    Directory of Open Access Journals (Sweden)

    Yu-xing FEI

    2017-02-01

    Full Text Available Objective To evaluate the long-tem effect of adaptive servo ventilation (ASV on patients with chronic heart failure (CHF and sleep-disordered breathing (SDB. Methods The controlled clinical articles were searched included in PubMed, Cochrane, EMBASE and CBM, CJFD, WangFang Database from Jan. 1970 to Dec. 2015. Included standard: left ventricular ejection fraction (LVEF ≤55%, apnea hypopnea index (AHI ≥15/h, follow up period over 4 weeks. After quality assessment (modified Jadad score and data extraction by two independent reviewers, mete analysis was performed with RevMan 5.3 software. Results Thirteen studies were recruited including 442 cases being followed over 4 weeks [ASV group 233 cases and control group 216 cases (corssover design 7]. Compared to control group, LVEF increased [weighted mean difference (WMD=3.72, 95%CI: 1.80-5.64, P<0.01] and AHI decreased significantly (WMD=–18.63, 95%CI: –26.19-–11.08, the distance walked in 6 minutes increased (WMD=28.72, 95%CI: 2.26-55.18, P=0.03 and plasma N terminal brain natriuretic peptide precursor (NT-pro BNP decreased significantly (WMD=–744.03, 95%CI: –1262.45-–225.62, P<0.05 in ASV group. Conclusion Over 4 weeks ASV may improve LVEF and AHI, increase 6-min walking distance and decrease NT-pro BNP in patients with CHF and SDB. DOI: 10.11855/j.issn.0577-7402.2016.12.12

  17. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    International Nuclear Information System (INIS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Jia, Xun; Jiang, Steve; Zhou, Linghong

    2013-01-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose–volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30

  18. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  19. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  20. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer

    Science.gov (United States)

    Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-01

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  1. Efficient Interplay Effect Mitigation for Proton Pencil Beam Scanning by Spot-Adapted Layered Repainting Evenly Spread out Over the Full Breathing Cycle.

    Science.gov (United States)

    Poulsen, Per Rugaard; Eley, John; Langner, Ulrich; Simone, Charles B; Langen, Katja

    2018-01-01

    To develop and implement a practical repainting method for efficient interplay effect mitigation in proton pencil beam scanning (PBS). A new flexible repainting scheme with spot-adapted numbers of repainting evenly spread out over the whole breathing cycle (assumed to be 4 seconds) was developed. Twelve fields from 5 thoracic and upper abdominal PBS plans were delivered 3 times using the new repainting scheme to an ion chamber array on a motion stage. One time was static and 2 used 4-second, 3-cm peak-to-peak sinusoidal motion with delivery started at maximum inhalation and maximum exhalation. For comparison, all dose measurements were repeated with no repainting and with 8 repaintings. For each motion experiment, the 3%/3-mm gamma pass rate was calculated using the motion-convolved static dose as the reference. Simulations were first validated with the experiments and then used to extend the study to 0- to 5-cm motion magnitude, 2- to 6-second motion periods, patient-measured liver tumor motion, and 1- to 6-fraction treatments. The effect of the proposed method was evaluated for the 5 clinical cases using 4-dimensional (4D) dose reconstruction in the planning 4D computed tomography scan. The target homogeneity index, HI = (D 2 - D 98 )/D mean , of a single-fraction delivery is reported, where D 2 and D 98 is the dose delivered to 2% and 98% of the target, respectively, and D mean is the mean dose. The gamma pass rates were 59.6% ± 9.7% with no repainting, 76.5% ± 10.8% with 8 repaintings, and 92.4% ± 3.8% with the new repainting scheme. Simulations reproduced the experimental gamma pass rates with a 1.3% root-mean-square error and demonstrated largely improved gamma pass rates with the new repainting scheme for all investigated motion scenarios. One- and two-fraction deliveries with the new repainting scheme had gamma pass rates similar to those of 3-4 and 6-fraction deliveries with 8 repaintings. The mean HI for the 5 clinical cases was 14.2% with no

  2. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Royle, Gary [Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Lourenço, Ana Mónica [Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Acoustics and Ionizing Radiation Team, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Mouinuddin, Syed [Department of Radiotherapy, University College London Hospital, London NW1 2BU (United Kingdom); Herk, Marcel van [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands); Modat, Marc; Ourselin, Sébastien; McClelland, Jamie R. [Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom)

    2015-02-15

    Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of

  3. TU-AB-BRA-12: Quality Assurance of An Integrated Magnetic Resonance Image Guided Adaptive Radiotherapy Machine Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, J; Bruza, P; Saunders, S; Pogue, B [Dartmouth College, Hanover, NH (United States); Mooney, K; Curcuru, A; Green, O [Washington University School of Medicine, Saint Louis, MO (United States); Gladstone, D [Dartmouth-Hitchcock Med. Ctr., Lebanon, NH (Lebanon)

    2016-06-15

    Purpose: To investigate the viability of using Cherenkov imaging as a fast and robust method for quality assurance tests in the presence of a magnetic field, where other instruments can be limited. Methods: Water tank measurements were acquired from a clinically utilized adaptive magnetic resonance image guided radiation therapy (MR-IGRT) machine with three multileaf-collimator equipped 60Co sources. Cherenkov imaging used an intensified charge coupled device (ICCD) camera placed 3.5m from the treatment isocenter, looking down the bore of the 0.35T MRI into a water tank. Images were post-processed to make quantitative comparison between Cherenkov light intensity with both film and treatment planning system predictions, in terms of percent depth dose curves as well as lateral beam profile measurements. A TG-119 commissioning test plan (C4: C-Shape) was imaged in real-time at 6.33 frames per second to investigate the temporal and spatial resolution of the Cherenkov imaging technique. Results: A .33mm/pixel Cherenkov image resolution was achieved across 1024×1024 pixels in this setup. Analysis of the Cherenkov image of a 10.5×10.5cm treatment beam in the water tank successfully measured the beam width at the depth of maximum dose within 1.2% of the film measurement at the same point. The percent depth dose curve for the same beam was on average within 2% of ionization chamber measurements for corresponding depths between 3–100mm. Cherenkov video of the TG-119 test plan provided qualitative agreement with the treatment planning system dose predictions, and a novel temporal verification of the treatment. Conclusions: Cherenkov imaging was successfully used to make QA measurements of percent depth dose curves and cross beam profiles of MRI-IGRT radiotherapy machines after only several seconds of beam-on time and data capture; both curves were extracted from the same data set. Video-rate imaging of a dynamic treatment plan provided new information regarding temporal

  4. Quantifying the Reproducibility of Heart Position During Treatment and Corresponding Delivered Heart Dose in Voluntary Deep Inhalation Breath Hold for Left Breast Cancer Patients Treated With External Beam Radiotherapy

    International Nuclear Information System (INIS)

    McIntosh, Alyson; Shoushtari, Asal N.; Benedict, Stanley H.; Read, Paul W.; Wijesooriya, Krishni

    2011-01-01

    Purpose: Voluntary deep inhalation breath hold (VDIBH) reduces heart dose during left breast irradiation. We present results of the first study performed to quantify reproducibility of breath hold using bony anatomy, heart position, and heart dose for VDIBH patients at treatment table. Methods and Materials: Data from 10 left breast cancer patients undergoing VDIBH whole-breast irradiation were analyzed. Two computed tomography (CT) scans, free breathing (FB) and VDIBH, were acquired to compare dose to critical structures. Pretreatment weekly kV orthogonal images and tangential ports were acquired. The displacement difference from spinal cord to sternum across the isocenter between coregistered planning Digitally Reconstructed Radiographs (DRRs) and kV imaging of bony thorax is a measure of breath hold reproducibility. The difference between bony coregistration and heart coregistration was the measured heart shift if the patient is aligned to bony anatomy. Results: Percentage of dose reductions from FB to VDIBH: mean heart dose (48%, SD 19%, p = 0.002), mean LAD dose (43%, SD 19%, p = 0.008), and maximum left anterior descending (LAD) dose (60%, SD 22%, p = 0.008). Average breath hold reproducibility using bony anatomy across the isocenter along the anteroposterior (AP) plane from planning to treatment is 1 (range, 0–3; SD, 1) mm. Average heart shifts with respect to bony anatomy between different breath holds are 2 ± 3 mm inferior, 1 ± 2 mm right, and 1 ± 3 mm posterior. Percentage dose changes from planning to delivery: mean heart dose (7%, SD 6%); mean LAD dose, ((9%, SD 7%)S, and maximum LAD dose, (11%, SD 11%) SD 11%, p = 0.008). Conclusion: We observed excellent three-dimensional bony registration between planning and pretreatment imaging. Reduced delivered dose to heart and LAD is maintained throughout VDIBH treatment.

  5. What Causes Bad Breath?

    Science.gov (United States)

    ... Videos for Educators Search English Español What Causes Bad Breath? KidsHealth / For Teens / What Causes Bad Breath? Print en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  6. A comparison between radiation therapists and medical specialists in the use of kilovoltage cone-beam computed tomography scans for potential lung cancer radiotherapy target verification and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Sandie Carolyn, E-mail: sandie.watt@sswahs.gov.au [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); Vinod, Shalini K. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Dimigen, Marion [Department of Radiology, Liverpool Hospital, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Descallar, Joseph [Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Zogovic, Branimere [Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Atyeo, John [University of Sydney, Sydney, NSW (Australia); Wallis, Sian [University of Western Sydney, NSW (Australia); Holloway, Lois C. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Institute of Medical Physics, University of Sydney, Sydney, NSW (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia. (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia)

    2016-04-01

    Target volume matching using cone-beam computed tomography (CBCT) is the preferred treatment verification method for lung cancer in many centers. However, radiation therapists (RTs) are trained in bony matching and not soft tissue matching. The purpose of this study was to determine whether RTs were equivalent to radiation oncologists (ROs) and radiologists (RDs) in alignment of the treatment CBCT with the gross tumor volume (GTV) defined at planning and in delineating the GTV on the treatment CBCT, as may be necessary for adaptive radiotherapy. In this study, 10 RTs, 1 RO, and 1 RD performed a manual tumor alignment and correction of the planning GTV to a treatment CBCT to generate an isocenter correction distance for 15 patient data sets. Participants also contoured the GTV on the same data sets. The isocenter correction distance and the contoured GTVs from the RTs were compared with the RD and RO. The mean difference in isocenter correction distances was 0.40 cm between the RO and RD, 0.51 cm between the RTs, and RO and 0.42 cm between the RTs and RD. The 95% CIs were smaller than the equivalence limit of 0.5 cm, indicating that the RTs were equivalent to the RO and RD. For GTV delineation comparisons, the RTs were not found to be equivalent to the RD or RO. The alignment of the planning defined GTV and treatment CBCT using soft tissue matching by the RTs has been shown to be equivalent to those by the RO and RD. However, tumor delineation by the RTs on the treatment CBCT was not equivalent to that of the RO and RD. Thus, it may be appropriate for RTs to undertake soft tissue alignment based on CBCT; however, further investigation may be necessary before RTs undertake delineation for adaptive radiotherapy purposes.

  7. SU-E-J-267: Weekly Volumetric and Dosimetric Changes in Adaptive Conformal Radiotherapy of Non-Small-Cell-Lung Cancer Using 4D CT and Gating

    International Nuclear Information System (INIS)

    Li, Z; Shang, Q; Xiong, F; Zhang, X; Zhang, Q; Fu, S

    2014-01-01

    Purpose: This study was to evaluate the significance of weekly imageguided patient setup and to assess the volumetric and dosimetric changes in no-small-cell-lung cancer (NSCLC) patients treated with adaptive conformal radiotherapy (CRT). Methods: 9 NSCLC patients treated with 3D CRT underwent 4D CT-on-rail every five fractions. ITV was generated from three phases of the 4DCT (the end of exhalation, 25% before and after the end of exhalation). The margin of ITV to PTV is 5mm. 6 weekly CTs were acquired for each patient. The weekly CTs were fused with the planning CT by vertebrae. The couch shift was recorded for each weekly CT to evaluate the setup error. The gross tumor volumes (GTVs) were contoured on weekly CT images by a physician. Beams from the original plans were applied to weekly CTs to calculate the delivered doses. All patients underwent replanning after 20 fractions. Results: Among the total 54 CTs, the average setup error was 2.0± 1.7, 2.6± 2.1, 2.7± 2.2 mm in X, Y, and Z direction, respectively. The average volume of the primary GTV was reduced from 42.45 cc to 22.78 cc (47.04%) after 6 weeks. The maximal volume regression occurred between 15 and 20 fractions. Adaptive radiation therapy (ART) reduced the V20 and V5 of the lung by 33.5% and 16.89%, respectively. ART also reduced Dmean and D1/3 of the heart by 31.7% and 32.32%, respectively. Dmax of the spinal cord did not vary much during the treatment course. Conclusion: 5 mm margin is sufficient for 4D weekly CTguided radiotherapy in lung cancer. Tumor regression was observed in the majority of patients. ART significantly reduced the OARs dose. Our preliminary results indicated that an off-line ART approach is appropriate in clinical practice

  8. A comparison between radiation therapists and medical specialists in the use of kilovoltage cone-beam computed tomography scans for potential lung cancer radiotherapy target verification and adaptation

    International Nuclear Information System (INIS)

    Watt, Sandie Carolyn; Vinod, Shalini K.; Dimigen, Marion; Descallar, Joseph; Zogovic, Branimere; Atyeo, John; Wallis, Sian; Holloway, Lois C.

    2016-01-01

    Target volume matching using cone-beam computed tomography (CBCT) is the preferred treatment verification method for lung cancer in many centers. However, radiation therapists (RTs) are trained in bony matching and not soft tissue matching. The purpose of this study was to determine whether RTs were equivalent to radiation oncologists (ROs) and radiologists (RDs) in alignment of the treatment CBCT with the gross tumor volume (GTV) defined at planning and in delineating the GTV on the treatment CBCT, as may be necessary for adaptive radiotherapy. In this study, 10 RTs, 1 RO, and 1 RD performed a manual tumor alignment and correction of the planning GTV to a treatment CBCT to generate an isocenter correction distance for 15 patient data sets. Participants also contoured the GTV on the same data sets. The isocenter correction distance and the contoured GTVs from the RTs were compared with the RD and RO. The mean difference in isocenter correction distances was 0.40 cm between the RO and RD, 0.51 cm between the RTs, and RO and 0.42 cm between the RTs and RD. The 95% CIs were smaller than the equivalence limit of 0.5 cm, indicating that the RTs were equivalent to the RO and RD. For GTV delineation comparisons, the RTs were not found to be equivalent to the RD or RO. The alignment of the planning defined GTV and treatment CBCT using soft tissue matching by the RTs has been shown to be equivalent to those by the RO and RD. However, tumor delineation by the RTs on the treatment CBCT was not equivalent to that of the RO and RD. Thus, it may be appropriate for RTs to undertake soft tissue alignment based on CBCT; however, further investigation may be necessary before RTs undertake delineation for adaptive radiotherapy purposes.

  9. Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D; Di Yan; Jian Liang

    2007-01-01

    In this work, five 4D image-guidance strategies (two population, an offline adaptive and two online strategies) were evaluated that compensated for both inter- and intra-fraction variability such as changes to the baseline tumour position and respiratory pattern. None of the strategies required active motion compensation such as gating or tracking; all strategies simulated a free-breathing-based treatment technique. Online kilovoltage fluoroscopy was acquired for eight patients with lung tumours, and used to construct inter- and intra-fraction tumour position variability models. Planning was performed on a mid-ventilation image acquired from a respiration-correlated CT scan. The blurring effect of tumour position variability was included in the dose calculation by convolution. CTV to PTV margins were calculated for variability in the cranio-caudal direction. A population margin of 9.0 ± 0.7 mm was required to account for setup error and respiration in the study population without the use of image-guidance. The greatest mean margin reduction was introduced by the offline adaptive strategy. A daily online correction strategy produced a small reduction (1.6 mm) in the mean margin from the offline strategy. Adaptively correcting for an inter-fraction change in the respiratory pattern had little effect on margin size due to most patients having only small daily changes in the respiratory pattern. A daily online correction strategy would be useful for patients who exhibit large variations in the daily mean tumour position, while an offline adaptive strategy is more applicable to patients with less variation

  10. Surveillance after prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Supiot, S.; Rio, E.; Clement-Colmou, K.; Bouchot, O.; Rigaud, J.

    2011-01-01

    Follow-up after prostate cancer radiotherapy aims at detecting local or metastatic relapse, as well as long-term toxicity, requiring adapted treatments. Several scientific societies have published guidelines including clinical, biological and imaging recommendations. More data suggest a role for aggressive salvage therapy in case of local failure following radiotherapy. An adequate follow-up is required for the sake of patients' safety, i.e. to a posteriori validate dose constraints and radiation technique in each radiotherapy department. (authors)

  11. Postmastectomy radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Naoto; Koguchi, Masahiko; Sasaki, Shigeru; Kaneko, Tomoki; Shinoda, Atsunori; Nishikawa, Atsushi [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-10-01

    Since there have been few reports on postmastectomy radiotherapy having a high evidence level in Japan, the significance of postoperative radiotherapy and the irradiation techniques were reviewed based on reports from Western countries. Authors focused on the indications for postoperative irradiation, irradiation methods (irradiation sites, irradiation techniques; prosthetics, methods of irradiating the chest wall and lymph nodes, timing of irradiation), and complications, and discuss them. The factors thought to be adaptable to postmastectomy radiotherapy have been listed. Axillary lymph node metastasis and the size of the primary focus are thought to be important factors in locoregional recurrence. The chest wall and the supraclavicular lymph nodes are the usual sites of irradiation after mastectomy. The irradiation method consists of tangential irradiation of the chest wall and single-field irradiation of the supraclavicular lymph nodes, with 46-50 Gy in fractional doses of 1.8-2 Gy x 5/w is administered for 4.5-5.5 weeks. The timing of irradiation in the West is generally after chemotherapy. Adverse radiation effects include ischemic heart disease, pneumonitis, arm edema, rib fractures, and brachial plexus paralysis. The frequency of these complications is increased by the combined use of chemotherapy or surgery. The breast cancer cure rate in Japan is generally better than in the West. It remains to be determined whether the clinical data from Europe and America are applicable to the treatment of breast cancer in Japan. To address this issue, a clinical investigation should be performed in Japan with close cooperation between surgeons, physicians, pathologists, and radiotherapists. (K.H.)

  12. First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate

    International Nuclear Information System (INIS)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-01-01

    Purpose: We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Method and Materials: Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. Results: In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume–planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam’s electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. Conclusion: We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard

  13. First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate.

    Science.gov (United States)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-08-01

    We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume-planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam's electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard linear accelerator to correct 6 degrees of freedom of

  14. SU-F-J-145: MRI-Guided Interventional Boost Radiotherapy for Rectal Cancer: Investigating the Feasibility of Adapting the Anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Kleijnen, J J E; Couwenberg, A M; Asselen, B van; Lagendijk, J J W; Intven, M; Raaymakers, B W [University Medical Center Utrecht, Utrecht, Utrecht (Netherlands)

    2016-06-15

    Purpose: The recent development of an MRI-linac allows adaptation of treatments to the anatomy of the moment. This anatomy, in turn, could be altered into a more favorable situation for radiotherapy purposes. The purpose of this study is to investigate the potential dosimetric benefits of manipulating rectal anatomy in MRI-guided interventional external-beam radiotherapy for rectal cancer. Methods: For this retrospective analysis, four patients (1M/3F) diagnosed with rectal cancer were included. These underwent MR-imaging using sonography transmission gel as endorectal contrast at time of diagnosis and standard, non-contrast, MR-imaging prior to radiotherapy planning. In the contrast scan, the rectum is inflated by the inserted contrast gel, thereby potentially increasing the distance between tumor and the organs-at-risk (OAR). Both anatomies were delineated and 7- beam IMRT-plans were calculated for both situations (RT-standard and RT-inflated), using in-house developed treatment planning software. Each plan was aimed to deliver 15Gy to the planning target volume (PTV; tumor+3mm margin) with a D99>95% and Dmax<120% of the planned dose. The D2cc dose to the OAR were then compared for both situations. Results: At equal (or better) target coverage, we found a mean reduction in D2cc of 4.1Gy/237% [range 2.6Gy–6.3Gy/70%–621%] for the bladder and of 2.0Gy/145% [range −0.7Gy–7.9Gy/−73%–442%] for the small-bowel, for the RT-inflated compared to the RT-standard plans. For the three female patients, a reduction in D2cc of 5.2Gy/191% [range 3.2Gy–9.2Gy/44%–475%] for the gynecological organs was found. We found all D2cc doses to be better for the RT-inflated plans, except for one patient for whom the bladder D2cc dose was slightly increased. Conclusion: Reduction of OAR dose by manipulation of anatomy is feasible. Inflation of the rectum results in more distance between OAR and PTV. This leads to a substantial reduction in dose to OAR at equal or better target

  15. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  16. Patient training in respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Kini, Vijay R.; Vedam, Subrahmanya S.; Keall, Paul J.; Patil, Sumukh; Chen, Clayton; Mohan, Radhe

    2003-01-01

    Respiratory gating is used to counter the effects of organ motion during radiotherapy for chest tumors. The effects of variations in patient breathing patterns during a single treatment and from day to day are unknown. We evaluated the feasibility of using patient training tools and their effect on the breathing cycle regularity and reproducibility during respiratory-gated radiotherapy. To monitor respiratory patterns, we used a component of a commercially available respiratory-gated radiotherapy system (Real Time Position Management (RPM) System, Varian Oncology Systems, Palo Alto, CA 94304). This passive marker video tracking system consists of reflective markers placed on the patient's chest or abdomen, which are detected by a wall-mounted video camera. Software installed on a PC interfaced to this camera detects the marker motion digitally and records it. The marker position as a function of time serves as the motion signal that may be used to trigger imaging or treatment. The training tools used were audio prompting and visual feedback, with free breathing as a control. The audio prompting method used instructions to 'breathe in' or 'breathe out' at periodic intervals deduced from patients' own breathing patterns. In the visual feedback method, patients were shown a real-time trace of their abdominal wall motion due to breathing. Using this, they were asked to maintain a constant amplitude of motion. Motion traces of the abdominal wall were recorded for each patient for various maneuvers. Free breathing showed a variable amplitude and frequency. Audio prompting resulted in a reproducible frequency; however, the variability and the magnitude of amplitude increased. Visual feedback gave a better control over the amplitude but showed minor variations in frequency. We concluded that training improves the reproducibility of amplitude and frequency of patient breathing cycles. This may increase the accuracy of respiratory-gated radiation therapy

  17. SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, R; Qin, A; Yan, D [William Beaumont Hospital, Royal Oak, MI (United States)

    2015-06-15

    Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated with seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and

  18. SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Sandhu, R; Qin, A; Yan, D

    2015-01-01

    Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated with seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and

  19. MO-E-BRC-02: MRI-Guided Online Adaptive Radiotherapy: The UCLA Approach to Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J. [University of California, Los Angeles (United States)

    2016-06-15

    Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled the implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.

  20. MO-E-BRC-02: MRI-Guided Online Adaptive Radiotherapy: The UCLA Approach to Quality Management

    International Nuclear Information System (INIS)

    Lamb, J.

    2016-01-01

    Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled the implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.

  1. Individualized Nonadaptive and Online-Adaptive Intensity-Modulated Radiotherapy Treatment Strategies for Cervical Cancer Patients Based on Pretreatment Acquired Variable Bladder Filling Computed Tomography Scans

    International Nuclear Information System (INIS)

    Bondar, M.L.; Hoogeman, M.S.; Mens, J.W.; Quint, S.; Ahmad, R.; Dhawtal, G.; Heijmen, B.J.

    2012-01-01

    bladder and rectum inside the PTV (0% to 10% and −1% to 9%; p < 0.004) and the CTV-to-PTV volume (4–96 ml). Conclusions: Compared with population-based margins, an individualized PTV results in better organ-at-risk sparing. Online-adaptive radiotherapy further improves organ-at-risk sparing.

  2. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X

    2014-01-01

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method

  3. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-15

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method.

  4. Radiotherapy physics

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Collier, J.M.; Lyman, J.T.; Pitluck, S.

    1982-01-01

    The Radiotherapy Physics Group works on the physical and biophysical aspects of charged particle radiotherapy. Our activities include the development of isosurvival beams (beams of uniform biological effect), computerized treatment planning development for charged particle radiotherapy, design of compensation to shape dose distributions, and development of dosimetry techniques to verify planned irradiations in both phantoms and patients

  5. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  6. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

    Science.gov (United States)

    Li, X; Zhang, Y Y; Shi, Y H; Zhou, L H; Zhen, X

    2016-04-29

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast.

  7. Differences in the definition of internal target volumes using slow CT alone or in combination with thin-slice CT under breath-holding conditions during the planning of stereotactic radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Seki, Satoshi; Kunieda, Etsuo; Takeda, Atsuya; Nagaoka, Tomoaki; Deloar, Hossain M.; Kawase, Takatsugu; Fukada, Junichi; Kawaguchi, Osamu; Uematsu, Minoru; Kubo, Atsushi

    2007-01-01

    Purpose: To investigate how the delineations of the internal target volume (ITV) made from 'slow' CT alter with reference to 'thin-slice' CT. Materials and methods: Thin-slice CT images taken under breath-holding conditions and slow CT images taken under shallow-breathing conditions (8 s/image) of 11 lung cancers were used for this study. Five radiation oncologists delineated ITV of the 11 lesions using slow CT images (ITV1), and then redefined them with reference to thin-slice CT images (ITV2). SD-images (standard deviation image) were created for all patients from ITV images in order to visualize the regional variation of the ITVs. Results: The mean value of ITV2 was smaller than that initially defined by ITV1. There was no significant change in ITV1 and ITV2 between operators with regard to standard deviation in volume. There was a significant difference in the distribution of the ratio of ITV1 to ITV2 obtained on thin-slice CTs between cases with and without ground glass opacity. In cases without ground glass opacity there was a tendency for ITV2 to have a smaller volume than ITV1. Conclusions: Combined use of slow CT and thin-slice CT in delineation of ITV contours appeared to be useful in making adjustments for obscured tumor images caused by respiratory movement

  8. Radiotherapy in digestive tumours in elderly patients; Radiotherapie dans les tumeurs digestives chez le patient age

    Energy Technology Data Exchange (ETDEWEB)

    Guillerme, F.; Clavier, J.B.; Nehme-Schuster, H.; Schumacher, C.; Noel, G. [Centre de lutte contre le cancer Paul-Strauss, Strasbourg (France)

    2011-10-15

    The authors comment the taking into care of a digestive cancer in the case of elderly patient. These patients are treated by radiotherapy, operative radiotherapy with concomitant chemotherapy, or pre-operative radiotherapy, depending on the age, on the cancer type, with an adaptation of the total dose or with a hypo-fractionation of the treatment. Short communication

  9. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.

  10. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  11. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Zhang, J; Ates, O; Li, X

    2016-01-01

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed with CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.

  12. High-resolution pulmonary ventilation and perfusion PET/CT allows for functionally adapted intensity modulated radiotherapy in lung cancer

    International Nuclear Information System (INIS)

    Siva, Shankar; Thomas, Roshini; Callahan, Jason; Hardcastle, Nicholas; Pham, Daniel; Kron, Tomas; Hicks, Rodney J.; MacManus, Michael P.; Ball, David L.; Hofman, Michael S.

    2015-01-01

    Background and purpose: To assess the utility of functional lung avoidance using IMRT informed by four-dimensional (4D) ventilation/perfusion (V/Q) PET/CT. Materials and methods: In a prospective clinical trial, patients with non-small cell lung cancer (NSCLC) underwent 4D-V/Q PET/CT scanning before 60 Gy of definitive chemoradiation. Both “highly perfused” (HPLung) and “highly ventilated” (HVLung) lung volumes were delineated using a 70th centile SUV threshold, and a “ventilated lung volume” (VLung) was created using a 50th centile SUV threshold. For each patient four IMRT plans were created, optimised to the anatomical lung, HPLung, HVLung and VLung volumes, respectively. Improvements in functional dose volumetrics when optimising to functional volumes were assessed using mean lung dose (MLD), V5, V10, V20, V30, V40, V50 and V60 parameters. Results: The study cohort consisted of 20 patients with 80 IMRT plans. Plans optimised to HPLung resulted in a significant reduction of functional MLD by a mean of 13.0% (1.7 Gy), p = 0.02. Functional V5, V10 and V20 were improved by 13.2%, 7.3% and 3.8% respectively (p-values < 0.04). There was no significant sparing of dose to functional lung when adapting to VLung or HVLung. Plan quality was highly consistent with a mean PTV D95 and D5 ranging from 60.8 Gy to 61.0 Gy and 63.4 Gy to 64.5 Gy, respectively, and mean conformity and heterogeneity index ranging from 1.11 to 1.17 and 0.94 to 0.95, respectively. Conclusion: IMRT plans adapted to perfused but not ventilated lung on 4D-V/Q PET/CT allowed for reduced dose to functional lung whilst maintaining consistent plan quality

  13. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Ates, O; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed with CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.

  14. Breath biomarkers in toxicology.

    Science.gov (United States)

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  15. A dose-escalation trial with the adaptive radiotherapy process as a delivery system in localized prostate cancer: Analysis of chronic toxicity

    International Nuclear Information System (INIS)

    Brabbins, Donald; Martinez, Alvaro; Yan Di; Lockman, David; Wallace, Michell; Gustafson, Gary; Chen, Peter; Vicini, Frank; Wong, John

    2005-01-01

    Purpose: To evaluate the validity of the chosen adaptive radiotherapy (ART) dose-volume constraints while testing the hypothesis that toxicity would not be greater at higher tumor dose levels. Materials and methods: In the ART dose escalation/selection trial, treatment was initiated with a generic planning target volume (PTV) formed as a 1-cm expansion of the clinical target volume (CTV). After the first week of therapy, the patient was replanned with a patient-specific PTV, constructed with CT and electronic portal images obtained in the first 4 days of treatment. A new multileaf collimator beam aperture was used. A minimum dose prescribed to the patient-specific PTV, ranging 70.2-79.2 Gy, was determined on the basis of the following rectal and bladder constraints: 82 Gy, 75.6 Gy, 75.6 Gy, and the maximum bladder dose is 85 Gy. A conformal four-field and/or intensity-modulated radiotherapy (IMRT) technique was used. Independent reviewers scored toxicities. The worst toxicity score seen was used as per the Common Toxicity Criteria grade scale (version 2). We divided the patients into three separate groups: 70.2-72 Gy, >72-75.6 Gy, and >75.6-79.2 Gy. Toxicities in each group were quantified and compared by the Pearson chi-squared test to validate our dose escalation/selection model. Grades 0, 1, 2, and 3 were censored as none vs. each category and none vs. any. Results: We analyzed patients with follow-up greater than 1 year. The mean duration of follow-up was 29 months (range, 12-46 months). We report on 280 patients, mean age 72 years (range, 51-87 years). Only 60 patients received adjuvant hormones. Mean pretreatment prostate-specific antigen level was 9.3 ng/mL (range, 0.6-120 ng/mL). Mean Gleason score was 6 (range, 3-9). The lowest dose level was given to 49 patients, the intermediate dose to 131 patients, and 100 patients received the highest dose escalation. One hundred eighty-one patients (65%) were treated to a prostate field only and 99 patients (35%) to

  16. Impact of head and neck cancer adaptive radiotherapy to spare the parotid glands and decrease the risk of xerostomia.

    Science.gov (United States)

    Castelli, Joel; Simon, Antoine; Louvel, Guillaume; Henry, Olivier; Chajon, Enrique; Nassef, Mohamed; Haigron, Pascal; Cazoulat, Guillaume; Ospina, Juan David; Jegoux, Franck; Benezery, Karen; de Crevoisier, Renaud

    2015-01-09

    Large anatomical variations occur during the course of intensity-modulated radiation therapy (IMRT) for locally advanced head and neck cancer (LAHNC). The risks are therefore a parotid glands (PG) overdose and a xerostomia increase. The purposes of the study were to estimate: - the PG overdose and the xerostomia risk increase during a "standard" IMRT (IMRTstd); - the benefits of an adaptive IMRT (ART) with weekly replanning to spare the PGs and limit the risk of xerostomia. Fifteen patients received radical IMRT (70 Gy) for LAHNC. Weekly CTs were used to estimate the dose distributions delivered during the treatment, corresponding either to the initial planning (IMRTstd) or to weekly replanning (ART). PGs dose were recalculated at the fraction, from the weekly CTs. PG cumulated doses were then estimated using deformable image registration. The following PG doses were compared: pre-treatment planned dose, per-treatment IMRTstd and ART. The corresponding estimated risks of xerostomia were also compared. Correlations between anatomical markers and dose differences were searched. Compared to the initial planning, a PG overdose was observed during IMRTstd for 59% of the PGs, with an average increase of 3.7 Gy (10.0 Gy maximum) for the mean dose, and of 8.2% (23.9% maximum) for the risk of xerostomia. Compared to the initial planning, weekly replanning reduced the PG mean dose for all the patients (pxerostomia by 11% (pxerostomia risk.

  17. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  18. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.

  19. Shortness of Breath

    Science.gov (United States)

    ... filled with air (called pneumotho- rax), it will hinder expansion of the lung, resulting in shortness of ... of Chest Physi- cians. Shortness of Breath: Patient Education. http: / / www. onebreath. org/ document. doc? id= 113. ...

  20. Breath-Holding Spells

    Science.gov (United States)

    ... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...

  1. Impact of head and neck cancer adaptive radiotherapy to spare the parotid glands and decrease the risk of xerostomia

    International Nuclear Information System (INIS)

    Castelli, Joel; Simon, Antoine; Louvel, Guillaume; Henry, Olivier; Chajon, Enrique; Nassef, Mohamed; Haigron, Pascal; Cazoulat, Guillaume; Ospina, Juan David; Jegoux, Franck; Benezery, Karen; Crevoisier, Renaud de

    2015-01-01

    Large anatomical variations occur during the course of intensity-modulated radiation therapy (IMRT) for locally advanced head and neck cancer (LAHNC). The risks are therefore a parotid glands (PG) overdose and a xerostomia increase. The purposes of the study were to estimate: - the PG overdose and the xerostomia risk increase during a “standard” IMRT (IMRT std ); - the benefits of an adaptive IMRT (ART) with weekly replanning to spare the PGs and limit the risk of xerostomia. Fifteen patients received radical IMRT (70 Gy) for LAHNC. Weekly CTs were used to estimate the dose distributions delivered during the treatment, corresponding either to the initial planning (IMRT std ) or to weekly replanning (ART). PGs dose were recalculated at the fraction, from the weekly CTs. PG cumulated doses were then estimated using deformable image registration. The following PG doses were compared: pre-treatment planned dose, per-treatment IMRT std and ART. The corresponding estimated risks of xerostomia were also compared. Correlations between anatomical markers and dose differences were searched. Compared to the initial planning, a PG overdose was observed during IMRT std for 59% of the PGs, with an average increase of 3.7 Gy (10.0 Gy maximum) for the mean dose, and of 8.2% (23.9% maximum) for the risk of xerostomia. Compared to the initial planning, weekly replanning reduced the PG mean dose for all the patients (p < 0.05). In the overirradiated PG group, weekly replanning reduced the mean dose by 5.1 Gy (12.2 Gy maximum) and the absolute risk of xerostomia by 11% (p < 0.01) (30% maximum). The PG overdose and the dosimetric benefit of replanning increased with the tumor shrinkage and the neck thickness reduction (p < 0.001). During the course of LAHNC IMRT, around 60% of the PGs are overdosed of 4 Gy. Weekly replanning decreased the PG mean dose by 5 Gy, and therefore by 11% the xerostomia risk

  2. Whither radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W M

    1987-03-01

    The 1986 Glyn Evans Memorial Lecture, given at the Joint Provincial Meeting of the Royal College of Radiologists, Sheffield, September 1986, sketches an outline of the history of radiotherapy and discusses the future development of the art. Topics included are siting of centres, training needs, the relationship of radiotherapy to other medical specialities, and the advantages and disadvantages of radiotherapy practitioners forming a separate medical College. (U.K.)

  3. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  4. SU-F-T-592: A Delivery QA-Free Approach for Adaptive Therapy of Prostate Cancer with Static Intensity Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Roth, T; Dooley, J; Zhu, T; Woods, R; Mavroidis, P; Lian, J

    2016-01-01

    Purpose: Clinical implementations of adaptive radiotherapy (ART) are limited mainly by the requirement of delivery QA (DQA) prior to the treatment. Small segment size and small segment MU are two dominant factors causing failures of DQA. The aim of this project is to explore the feasibility of ART treatment without DQA by using a partial optimization approach. Methods: A retrospective simulation study was performed on two prostate cancer patients treated with SMLC-IMRT. The prescription was 180cGx25 fractions with daily CT-on-rail imaging for target alignment. For each patient, seven daily CTs were selected randomly across treatment course. The contours were deformablely transferred from the simulation CT onto the daily CTs and modified appropriately. For each selected treatment, dose distributions from original beams were calculated on the daily treatment CTs (DCT plan). An ART plan was also created by optimizing the segmental MU only, while the segment shapes were preserved and the minimum MU constraint was respected. The overlaps, between PTV and the rectum, between PTV and the bladder, were normalized by the PTV volume. This ratio was used to characterize the difficulty of organs-at-risk (OAR) sparing. Results: Comparing to the original plan, PTV coverage was compromised significantly in DCT plans (82% ± 7%) while all ART plans preserved PTV coverage. ART plans showed similar OAR sparing as the original plan, such as V40Gy=11.2cc (ART) vs 11.4cc (original) for the rectum and D10cc=4580cGy vs 4605cGy for the bladder. The sparing of the rectum/bladder depends on overlap ratios. The sparing in ART was either similar or improved when overlap ratios in treatment CTs were smaller than those in original plan. Conclusion: A partial optimization method is developed that may make the real-time ART feasible on selected patients. Future research is warranted to quantify the applicability of the proposed method.

  5. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Science.gov (United States)

    Li, Xin; Zhang, Yuyu; Shi, Yinghua; Wu, Shuyu; Xiao, Yang; Gu, Xuejun; Zhen, Xin; Zhou, Linghong

    2017-01-01

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) for propagating contours between planning computerized tomography (CT) images and treatment CT/cone-beam CT (CBCT) images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N) cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e., the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB), the vertebral foramen (VF), the parotid gland (PG) and the submandibular gland (SMG). It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  6. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Li

    Full Text Available Deformable image registration (DIR is a critical technic in adaptive radiotherapy (ART for propagating contours between planning computerized tomography (CT images and treatment CT/cone-beam CT (CBCT images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT. Three similarity metrics, i.e., the Dice similarity coefficient (DSC, the percentage error (PE and the Hausdorff distance (HD, were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB, the vertebral foramen (VF, the parotid gland (PG and the submandibular gland (SMG. It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  7. Treatment of acromegaly patients with risk-adapted single or fractionated stereotactic high-precision radiotherapy. High local control and low toxicity in a pooled series

    International Nuclear Information System (INIS)

    Bostroem, Jan Patrick; Kinfe, Thomas; Pintea, Bogdan; Meyer, Almuth; Gerlach, Ruediger; Surber, Gunnar; Hamm, Klaus; Lammering, Guido

    2015-01-01

    The purpose of this work was to evaluate a prospectively initiated two-center protocol of risk-adapted stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) in patients with acromegaly. In total 35 patients (16 men/19 women, mean age 54 years) were prospectively included in a treatment protocol of SRS [planning target volume (PTV) < 4 ccm, > 2 mm to optic pathways = low risk] or SRT (PTV ≥ 4 ccm, ≤ 2 mm to optic pathways = high risk). The mean tumor volume was 3.71 ccm (range: 0.11-22.10 ccm). Based on the protocol guidelines, 21 patients were treated with SRS and 12 patients with SRT, 2 patients received both consecutively. The median follow-up (FU) reached 8 years with a 5-year overall survival (OS) of 87.3 % [confidence interval (CI): 70.8-95.6 %] and 5-year local control rate of 97.1 % (CI: 83.4-99.8 %). Almost 80 % (28/35) presented tumor shrinkage during FU. Endocrinological cure was achieved in 23 % and IGF-1 normalization with reduced medication was achieved in 40 % of all patients. An endocrinological response was generally achieved within the first 3 years, but endocrinological cure can require more than 8 years. A new adrenocorticotropic hypopituitarism occurred in 13 patients (46.4 %). A new visual field disorder and a new oculomotor palsy occurred in 1 patient, respectively. Patients with occurrence of visual/neurological impairments had a longer FU (p = 0.049). Our SRS/SRT protocol proved to be safe and successful in terms of tumor control and protection of the visual system. The timing and rate of endocrine improvements are difficult to predict. One has to accept an unavoidable rate of additional adrenocorticotropic hypopituitarism in the long term. (orig.) [de

  8. Risk-adapted single or fractionated stereotactic high-precision radiotherapy in a pooled series of nonfunctioning pituitary adenomas. High local control and low toxicity

    International Nuclear Information System (INIS)

    Bostroem, Jan Patrick; Meyer, Almuth; Pintea, Bogdan; Gerlach, Ruediger; Surber, Gunnar; Hamm, Klaus; Lammering, Guido

    2014-01-01

    The purpose of this work was to evaluate a prospectively initiated two-center protocol of risk-adapted single-fraction (SRS) or fractionated radiotherapy (SRT) in patients with nonsecretory pituitary adenomas (NSA). A total of 73 NSA patients (39 men/34 women) with a median age of 62 years were prospectively included in a treatment protocol of SRS [planning target volume (PTV) 2 mm to optic pathways = low risk] or SRT (PTV ≥ 4 ccm, ≤ 2 mm to optic pathways = high risk) in two Novalis registered centers. Mean tumor volume was 7.02 ccm (range 0.58-57.29 ccm). Based on the protocol guidelines, 5 patients were treated with SRS and 68 patients with SRT. Median follow-up (FU) reached 5 years with 5-year overall survival (OS) of 90.4 % (CI 80.2-95 %) and 5-year local control and progression-free survival rates of 100 % (CI 93.3-100 %) and 90.4 % (CI 80.2-95 %), respectively. A post-SRS/SRT new visual disorder occurred in 2 patients (2.7 %), a new oculomotor nerve palsy in one pre-irradiated patient, in 3 patients (4.1 %) a pre-existing visual disorder improved. New complete hypopituitarism occurred in 4 patients (13.8 %) and in 3 patients (25 %) with pre-existing partial hypopituitarism. Pituitary function in 26 % of patients retained normal. Patients with tumor shrinkage (65.75 %) had a significantly longer FU (p = 0.0093). Multivariate analysis confirmed correlation of new hypopituitarism with duration of FU (p = 0.008) and correlation of new hypopituitarism and tumor volume (p = 0.023). No significant influence factors for occurrence of visual disorders were found. Our SRS/SRT protocol proved to be safe and successful in terms of tumor control and protection of the visual system, especially for large tumors located close to optic pathways. (orig.) [de

  9. MO-C-17A-13: Uncertainty Evaluation of CT Image Deformable Registration for H and N Cancer Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, A; Yan, D [William Beaumont Hospital, Royal Oak, MI (United States)

    2014-06-15

    Purpose: To evaluate uncertainties of organ specific Deformable Image Registration (DIR) for H and N cancer Adaptive Radiation Therapy (ART). Methods: A commercial DIR evaluation tool, which includes a digital phantom library of 8 patients, and the corresponding “Ground truth Deformable Vector Field” (GT-DVF), was used in the study. Each patient in the phantom library includes the GT-DVF created from a pair of CT images acquired prior to and at the end of the treatment course. Five DIR tools, including 2 commercial tools (CMT1, CMT2), 2 in-house (IH-FFD1, IH-FFD2), and a classic DEMON algorithms, were applied on the patient images. The resulting DVF was compared to the GT-DVF voxel by voxel. Organ specific DVF uncertainty was calculated for 10 ROIs: Whole Body, Brain, Brain Stem, Cord, Lips, Mandible, Parotid, Esophagus and Submandibular Gland. Registration error-volume histogram was constructed for comparison. Results: The uncertainty is relatively small for brain stem, cord and lips, while large in parotid and submandibular gland. CMT1 achieved best overall accuracy (on whole body, mean vector error of 8 patients: 0.98±0.29 mm). For brain, mandible, parotid right, parotid left and submandibular glad, the classic Demon algorithm got the lowest uncertainty (0.49±0.09, 0.51±0.16, 0.46±0.11, 0.50±0.11 and 0.69±0.47 mm respectively). For brain stem, cord and lips, the DVF from CMT1 has the best accuracy (0.28±0.07, 0.22±0.08 and 0.27±0.12 mm respectively). All algorithms have largest right parotid uncertainty on patient #7, which has image artifact caused by tooth implantation. Conclusion: Uncertainty of deformable CT image registration highly depends on the registration algorithm, and organ specific. Large uncertainty most likely appears at the location of soft-tissue organs far from the bony structures. Among all 5 DIR methods, the classic DEMON and CMT1 seem to be the best to limit the uncertainty within 2mm for all OARs. Partially supported by

  10. Reconstructing cone-beam CT with spatially varying qualities for adaptive radiotherapy: a proof-of-principle study.

    Science.gov (United States)

    Lu, Wenting; Yan, Hao; Gu, Xuejun; Tian, Zhen; Luo, Ouyang; Yang, Liu; Zhou, Linghong; Cervino, Laura; Wang, Jing; Jiang, Steve; Jia, Xun

    2014-10-21

    With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSEs) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3-6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1-3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART.

  11. Breath in the technoscientific imaginary

    OpenAIRE

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentr...

  12. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing

    International Nuclear Information System (INIS)

    Low, Daniel A.; Nystrom, Michelle; Kalinin, Eugene; Parikh, Parag; Dempsey, James F.; Bradley, Jeffrey D.; Mutic, Sasa; Wahab, Sasha H.; Islam, Tareque; Christensen, Gary; Politte, David G.; Whiting, Bruce R.

    2003-01-01

    Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity-modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath-hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four-dimensional (4-D) image set, where tidal lung volume is the additional dimension. An analysis of this 4-D data leads to methods for digital-spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4-D image set is generated by sorting free-breathing multislice CT scans according to user-defined tidal-volume bins. A multislice CT scanner is operated in the cine mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital-spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 cm 3 . An analysis of sagittal and

  13. Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunteers Breathing with Three Portable Ventilators and a Critical Care Ventilator

    National Research Council Canada - National Science Library

    Austin, Paul

    2001-01-01

    .... The purpose of this study was to assess the imposed inspiratory work of breathing and breathing comfort of nonintubated healthy volunteers breathing spontaneously through three portable ventilators...

  14. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Yin, Y [Shandong Cancer Hospital, Jinan, Shandong (China)

    2014-06-01

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group, 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.

  15. Risk-adapted single or fractionated stereotactic high-precision radiotherapy in a pooled series of nonfunctioning pituitary adenomas. High local control and low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Jan Patrick [MediClin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Meyer, Almuth [HELIOS Klinikum Erfurt, Department of Endocrinology, Erfurt (Germany); Pintea, Bogdan [University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Gerlach, Ruediger [HELIOS Klinikum Erfurt, Department of Neurosurgery, Erfurt (Germany); Surber, Gunnar; Hamm, Klaus [HELIOS Klinikum Erfurt, Department of Radiosurgery, Erfurt (Germany); Lammering, Guido [MediClin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); Heinrich-Heine-University of Duesseldorf, Department of Radiotherapy and Radiation Oncology, Duesseldorf (Germany)

    2014-12-15

    The purpose of this work was to evaluate a prospectively initiated two-center protocol of risk-adapted single-fraction (SRS) or fractionated radiotherapy (SRT) in patients with nonsecretory pituitary adenomas (NSA). A total of 73 NSA patients (39 men/34 women) with a median age of 62 years were prospectively included in a treatment protocol of SRS [planning target volume (PTV) < 4 ccm, > 2 mm to optic pathways = low risk] or SRT (PTV ≥ 4 ccm, ≤ 2 mm to optic pathways = high risk) in two Novalis registered centers. Mean tumor volume was 7.02 ccm (range 0.58-57.29 ccm). Based on the protocol guidelines, 5 patients were treated with SRS and 68 patients with SRT. Median follow-up (FU) reached 5 years with 5-year overall survival (OS) of 90.4 % (CI 80.2-95 %) and 5-year local control and progression-free survival rates of 100 % (CI 93.3-100 %) and 90.4 % (CI 80.2-95 %), respectively. A post-SRS/SRT new visual disorder occurred in 2 patients (2.7 %), a new oculomotor nerve palsy in one pre-irradiated patient, in 3 patients (4.1 %) a pre-existing visual disorder improved. New complete hypopituitarism occurred in 4 patients (13.8 %) and in 3 patients (25 %) with pre-existing partial hypopituitarism. Pituitary function in 26 % of patients retained normal. Patients with tumor shrinkage (65.75 %) had a significantly longer FU (p = 0.0093). Multivariate analysis confirmed correlation of new hypopituitarism with duration of FU (p = 0.008) and correlation of new hypopituitarism and tumor volume (p = 0.023). No significant influence factors for occurrence of visual disorders were found. Our SRS/SRT protocol proved to be safe and successful in terms of tumor control and protection of the visual system, especially for large tumors located close to optic pathways. (orig.) [German] Evaluation eines prospektiv angelegten Behandlungsprotokolls einer risikoadaptierten Radiochirurgie (SRS) oder stereotaktischen Radiotherapie (SRT) von Patienten mit hormoninaktiven Hypophysenadenomen

  16. Treatment of acromegaly patients with risk-adapted single or fractionated stereotactic high-precision radiotherapy. High local control and low toxicity in a pooled series

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Jan Patrick [Mediclin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Kinfe, Thomas; Pintea, Bogdan [University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Meyer, Almuth [HELIOS Klinikum Erfurt, Department of Endocrinology, Erfurt (Germany); Gerlach, Ruediger [HELIOS Klinikum Erfurt, Department of Neurosurgery, Erfurt (Germany); Surber, Gunnar; Hamm, Klaus [HELIOS Klinikum Erfurt, Department of Radiosurgery, Erfurt (Germany); Lammering, Guido [Mediclin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); Heinrich-Heine-University of Duesseldorf, Department of Radiotherapy and Radiation Oncology, Duesseldorf (Germany)

    2015-01-10

    The purpose of this work was to evaluate a prospectively initiated two-center protocol of risk-adapted stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) in patients with acromegaly. In total 35 patients (16 men/19 women, mean age 54 years) were prospectively included in a treatment protocol of SRS [planning target volume (PTV) < 4 ccm, > 2 mm to optic pathways = low risk] or SRT (PTV ≥ 4 ccm, ≤ 2 mm to optic pathways = high risk). The mean tumor volume was 3.71 ccm (range: 0.11-22.10 ccm). Based on the protocol guidelines, 21 patients were treated with SRS and 12 patients with SRT, 2 patients received both consecutively. The median follow-up (FU) reached 8 years with a 5-year overall survival (OS) of 87.3 % [confidence interval (CI): 70.8-95.6 %] and 5-year local control rate of 97.1 % (CI: 83.4-99.8 %). Almost 80 % (28/35) presented tumor shrinkage during FU. Endocrinological cure was achieved in 23 % and IGF-1 normalization with reduced medication was achieved in 40 % of all patients. An endocrinological response was generally achieved within the first 3 years, but endocrinological cure can require more than 8 years. A new adrenocorticotropic hypopituitarism occurred in 13 patients (46.4 %). A new visual field disorder and a new oculomotor palsy occurred in 1 patient, respectively. Patients with occurrence of visual/neurological impairments had a longer FU (p = 0.049). Our SRS/SRT protocol proved to be safe and successful in terms of tumor control and protection of the visual system. The timing and rate of endocrine improvements are difficult to predict. One has to accept an unavoidable rate of additional adrenocorticotropic hypopituitarism in the long term. (orig.) [German] Zielsetzung dieser Arbeit ist die Evaluation eines prospektiv angelegten Behandlungsprotokolls einer risikoadaptierten stereotaktischen Radiochirurgie (SRS) oder stereotaktischen Radiotherapie (SRT) von Patienten mit Akromegalie aus 2 Zentren. Insgesamt 35 Patienten (16

  17. National arrangements for radiotherapy; Mesures nationales pour la radiotherapie. Travail collectif des missions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    After a presentation of several letters exchanged between the French health ministry and public agencies in charge of public health or nuclear safety after a radiotherapy accident in Epinal, this report comments the evolution of needs in cancerology care and the place given to radiotherapy. It outlines the technological and organisational evolution of radiotherapy and presents the distribution of radiotherapy equipment, of radio-therapists and other radiotherapy professionals in France. Within the context of radiotherapy accidents which occurred in 2007, it presents the regulatory arrangements which aimed at improving the safety, short term and middle term arrangements which are needed to support and structure radiotherapy practice quality. It stresses the fact that the system will deeply evolve by implementing a radiotherapy vigilance arrangement and a permanent follow-on and adaptation plan based on surveys and the creation of a national committee.

  18. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Martinez, Alvaro; Kestin, Larry L.; Yan Di; Grills, Inga; Brabbins, Donald S.; Lockman, David M.; Liang Jian; Gustafson, Gary S.; Chen, Peter Y.; Vicini, Frank A.; Wong, John W.

    2005-01-01

    Purpose We analyzed our experience treating localized prostate cancer with image-guided off-line correction with adaptive high-dose radiotherapy (ART) in our Phase II dose escalation study to identify factors predictive of chronic rectal toxicity. Materials and Methods From 1999-2002, 331 patients with clinical stage T1-T3N0M0 prostate cancer were prospectively treated in our Phase II 3D conformal dose escalation ART study to a median dose of 75.6 Gy (range, 63.0-79.2 Gy), minimum dose to confidence limited-planning target volume (cl-PTV) in 1.8 Gy fractions (median isocenter dose = 79.7 Gy). Seventy-four patients (22%) also received neoadjuvant/adjuvant androgen deprivation therapy. A patient-specific cl-PTV was constructed using 5 computed tomography scans and 4 sets of electronic portal images by applying an adaptive process to assure target accuracy and minimize PTV margin. For each case, the rectum (rectal solid) was contoured from the sacroiliac joints or rectosigmoid junction (whichever was higher) to the anal verge or ischial tuberosities (whichever was lower), with a median volume of 81.2 cc. The rectal wall was defined using the rectal solid with an individualized 3-mm wall thickness (median volume = 29.8 cc). Rectal wall dose-volume histogram was used to determine the prescribed dose. Toxicity was quantified using the National Cancer Institute Common Toxicity Criteria 2.0. Multiple dose-volume endpoints were evaluated for their association with chronic rectal toxicity. Results Median follow-up was 1.6 years. Thirty-four patients (crude rate 10.3%) experienced Grade 2 chronic rectal toxicity at a median interval of 1.1 years. Nine patients (crude rate = 2.7%) experienced Grade ≥3 chronic rectal toxicity (1 was Grade 4) at a median interval of 1.2 years. The 3-year rates of Grade ≥2 and Grade ≥3 chronic rectal toxicity were 20% and 4%, respectively. Acute toxicity predicted for chronic: Acute Grade 2-3 rectal toxicity (p 40% respectively. The volume

  19. SU-E-J-220: Evaluation of Atlas-Based Auto-Segmentation (ABAS) in Head-And-Neck Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Liu, Q; Yan, D

    2014-01-01

    Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b) intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore

  20. SU-E-J-109: Evaluation of Deformable Accumulated Parotid Doses Using Different Registration Algorithms in Adaptive Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084 China (China); Chinese PLA General Hospital, Beijing, 100853 China (China); Liu, B [Image processing center, Beihang University, Beijing, 100191 China (China)

    2015-06-15

    Purpose: Three deformable image registration (DIR) algorithms are utilized to perform deformable dose accumulation for head and neck tomotherapy treatment, and the differences of the accumulated doses are evaluated. Methods: Daily MVCT data for 10 patients with pathologically proven nasopharyngeal cancers were analyzed. The data were acquired using tomotherapy (TomoTherapy, Accuray) at the PLA General Hospital. The prescription dose to the primary target was 70Gy in 33 fractions.Three DIR methods (B-spline, Diffeomorphic Demons and MIMvista) were used to propagate parotid structures from planning CTs to the daily CTs and accumulate fractionated dose on the planning CTs. The mean accumulated doses of parotids were quantitatively compared and the uncertainties of the propagated parotid contours were evaluated using Dice similarity index (DSI). Results: The planned mean dose of the ipsilateral parotids (32.42±3.13Gy) was slightly higher than those of the contralateral parotids (31.38±3.19Gy)in 10 patients. The difference between the accumulated mean doses of the ipsilateral parotids in the B-spline, Demons and MIMvista deformation algorithms (36.40±5.78Gy, 34.08±6.72Gy and 33.72±2.63Gy ) were statistically significant (B-spline vs Demons, P<0.0001, B-spline vs MIMvista, p =0.002). And The difference between those of the contralateral parotids in the B-spline, Demons and MIMvista deformation algorithms (34.08±4.82Gy, 32.42±4.80Gy and 33.92±4.65Gy ) were also significant (B-spline vs Demons, p =0.009, B-spline vs MIMvista, p =0.074). For the DSI analysis, the scores of B-spline, Demons and MIMvista DIRs were 0.90, 0.89 and 0.76. Conclusion: Shrinkage of parotid volumes results in the dose increase to the parotid glands in adaptive head and neck radiotherapy. The accumulated doses of parotids show significant difference using the different DIR algorithms between kVCT and MVCT. Therefore, the volume-based criterion (i.e. DSI) as a quantitative evaluation of

  1. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.

    Science.gov (United States)

    Kumarasiri, Akila; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J; Kim, Jinkoo

    2014-12-01

    To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H&N) adaptive radiotherapy. Ten H&N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3-4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm(3). Organs with volumes <3 cm(3) and/or those with poorly defined boundaries showed Dice coefficients of ∼ 0.5-0.6. For the propagation of small organs (<3 cm(3)), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was "clinically acceptable with minor modification or major modification in a small number of contours." Use of DIR-based contour propagation in the routine

  2. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    International Nuclear Information System (INIS)

    Kumarasiri, Akila; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo

    2014-01-01

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm 3 . Organs with volumes <3 cm 3 and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm 3 ), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions

  3. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States)

    2014-12-15

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours

  4. SU-D-202-04: Validation of Deformable Image Registration Algorithms for Head and Neck Adaptive Radiotherapy in Routine Clinical Setting

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L; Pi, Y; Chen, Z; Xu, X [University of Science and Technology of China, Hefei, Anhui (China); Wang, Z [University of Science and Technology of China, Hefei, Anhui (China); The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui (China); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Long, T; Luo, W; Wang, F [The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui (China)

    2016-06-15

    Purpose: To evaluate the ROI contours and accumulated dose difference using different deformable image registration (DIR) algorithms for head and neck (H&N) adaptive radiotherapy. Methods: Eight H&N cancer patients were randomly selected from the affiliated hospital. During the treatment, patients were rescanned every week with ROIs well delineated by radiation oncologist on each weekly CT. New weekly treatment plans were also re-designed with consistent dose prescription on the rescanned CT and executed for one week on Siemens CT-on-rails accelerator. At the end, we got six weekly CT scans from CT1 to CT6 including six weekly treatment plans for each patient. The primary CT1 was set as the reference CT for DIR proceeding with the left five weekly CTs using ANACONDA and MORFEUS algorithms separately in RayStation and the external skin ROI was set to be the controlling ROI both. The entire calculated weekly dose were deformed and accumulated on corresponding reference CT1 according to the deformation vector field (DVFs) generated by the two different DIR algorithms respectively. Thus we got both the ANACONDA-based and MORFEUS-based accumulated total dose on CT1 for each patient. At the same time, we mapped the ROIs on CT1 to generate the corresponding ROIs on CT6 using ANACONDA and MORFEUS DIR algorithms. DICE coefficients between the DIR deformed and radiation oncologist delineated ROIs on CT6 were calculated. Results: For DIR accumulated dose, PTV D95 and Left-Eyeball Dmax show significant differences with 67.13 cGy and 109.29 cGy respectively (Table1). For DIR mapped ROIs, PTV, Spinal cord and Left-Optic nerve show difference with −0.025, −0.127 and −0.124 (Table2). Conclusion: Even two excellent DIR algorithms can give divergent results for ROI deformation and dose accumulation. As more and more TPS get DIR module integrated, there is an urgent need to realize the potential risk using DIR in clinical.

  5. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  6. Breathing Like a Fish

    Science.gov (United States)

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  7. Breathing difficulty - lying down

    Science.gov (United States)

    ... other conditions that lead to it) Panic disorder Sleep apnea Snoring Home Care Your health care provider may recommend self-care measures. For example, weight loss may be suggested if you are obese. When to Contact a Medical Professional If you have any unexplained difficulty in breathing ...

  8. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  9. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  10. Respiratory gated radiotherapy: current techniques and potential benefits

    International Nuclear Information System (INIS)

    Giraud, P.; Campana, F.; Rosenwald, J.C.; Cosset, J.M.; Reboul, F.; Garcia, R.; Clippe, S.; Carrie, C.; Dubray, B.

    2003-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart...) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily breath-hold. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. These techniques presently investigated in several medical centers worldwide. Although promising, the first results obtained in lung and liver cancer patients require confirmation. Physical, technical and physiological questions still remain to be answered. This paper describes the most frequently used gated techniques and the main published clinical reports on the use of respiration-gated radiotherapy in order to evaluate the impact of these techniques. (author)

  11. Cardiac Side-effects From Breast Cancer Radiotherapy.

    Science.gov (United States)

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. Successful treatment of a 67-year-old woman with urethral adenocarcinoma with the use of external beam radiotherapy and image guided adaptive interstitial brachytherapy

    DEFF Research Database (Denmark)

    Mujkanovic, Jasmin; Tanderup, Kari; Agerbæk, Mads

    2016-01-01

    Primary urethral cancer (PUC) is a very rare disease. This case report illustrates a successful treatment approach of a 67-year-old woman with a urethral adenocarcinoma selected for an organ preserving treatment with external beam radiotherapy (EBRT) and interstitial brachytherapy (BT) boost, using...

  13. Accurate radiotherapy positioning system investigation based on video

    International Nuclear Information System (INIS)

    Tao Shengxiang; Wu Yican

    2006-01-01

    This paper introduces the newest research production on patient positioning method in accurate radiotherapy brought by Accurate Radiotherapy Treating System (ARTS) research team of Institute of Plasma Physics of Chinese Academy of Sciences, such as the positioning system based on binocular vision, the position-measuring system based on contour matching and the breath gate controlling system for positioning. Their basic principle, the application occasion and the prospects are briefly depicted. (authors)

  14. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Lourenço, Ana; Ricketts, Kate; Annkah, James; Royle, Gary [Radiation Physics Group, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); McClelland, Jamie; Modat, Marc; Ourselin, Sébastien [Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Moinuddin, Syed [Department of Radiotherapy, University College London Hospital, London NW1 2BU (United Kingdom); D’Souza, Derek [Department of Radiotherapy Physics, University College London Hospital, London NW1 2PG (United Kingdom)

    2014-03-15

    a replan CT. The DD is smaller than 2% of the prescribed dose on 90% of the body's voxels and it passes a 2% and 2 mm gamma-test on over 95% of the voxels. Target coverage similarity was assessed in terms of the 95%-isodose volumes. A mean value of 0.962 was obtained for the DSC, while the distance between surfaces is less than 2 mm in 95.4% of the pixels. The method proposed provided adequate dose estimation, closer to the gold standard than the other two approaches. Differences in DVH curves were mainly due to differences in the OARs definition (manual vs warped) and not due to differences in dose estimation (dose calculated in replan CT vs dose calculated in deformed CT). Conclusions: Deforming a planning CT to match a daily CBCT provides the tools needed for the calculation of the “dose of the day” without the need to acquire a new CT. The initial clinical application of our method will be weekly offline calculations of the “dose of the day,” and use this information to inform adaptive radiotherapy (ART). The work here presented is a first step into a full implementation of a “dose-driven” online ART.

  15. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for "dose of the day" calculations.

    Science.gov (United States)

    Veiga, Catarina; McClelland, Jamie; Moinuddin, Syed; Lourenço, Ana; Ricketts, Kate; Annkah, James; Modat, Marc; Ourselin, Sébastien; D'Souza, Derek; Royle, Gary

    2014-03-01

    than 2% of the prescribed dose on 90% of the body's voxels and it passes a 2% and 2 mm gamma-test on over 95% of the voxels. Target coverage similarity was assessed in terms of the 95%-isodose volumes. A mean value of 0.962 was obtained for the DSC, while the distance between surfaces is less than 2 mm in 95.4% of the pixels. The method proposed provided adequate dose estimation, closer to the gold standard than the other two approaches. Differences in DVH curves were mainly due to differences in the OARs definition (manual vs warped) and not due to differences in dose estimation (dose calculated in replan CT vs dose calculated in deformed CT). Deforming a planning CT to match a daily CBCT provides the tools needed for the calculation of the "dose of the day" without the need to acquire a new CT. The initial clinical application of our method will be weekly offline calculations of the "dose of the day," and use this information to inform adaptive radiotherapy (ART). The work here presented is a first step into a full implementation of a "dose-driven" online ART.

  16. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations

    International Nuclear Information System (INIS)

    Veiga, Catarina; Lourenço, Ana; Ricketts, Kate; Annkah, James; Royle, Gary; McClelland, Jamie; Modat, Marc; Ourselin, Sébastien; Moinuddin, Syed; D’Souza, Derek

    2014-01-01

    a replan CT. The DD is smaller than 2% of the prescribed dose on 90% of the body's voxels and it passes a 2% and 2 mm gamma-test on over 95% of the voxels. Target coverage similarity was assessed in terms of the 95%-isodose volumes. A mean value of 0.962 was obtained for the DSC, while the distance between surfaces is less than 2 mm in 95.4% of the pixels. The method proposed provided adequate dose estimation, closer to the gold standard than the other two approaches. Differences in DVH curves were mainly due to differences in the OARs definition (manual vs warped) and not due to differences in dose estimation (dose calculated in replan CT vs dose calculated in deformed CT). Conclusions: Deforming a planning CT to match a daily CBCT provides the tools needed for the calculation of the “dose of the day” without the need to acquire a new CT. The initial clinical application of our method will be weekly offline calculations of the “dose of the day,” and use this information to inform adaptive radiotherapy (ART). The work here presented is a first step into a full implementation of a “dose-driven” online ART

  17. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  18. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.  Created: 11/16/2011 by National Center for Chronic Disease Prevention and Health Promotion, Division of Adult and Community Health (NCCDPHP, DACH).   Date Released: 11/16/2011.

  19. Radiochromic film for individual patient QA in extracranial stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Kron, T.; Clements, N.; Aarons, Y.; Dunn, L.; Chesson, B.; Miller, J.; Roozen, K.; Ball, D.

    2011-01-01

    Introduction: Modern radiotherapy is characterised by increasingly complex radiation delivery such as Intensity Modulated Radiation Therapy (IMRT) or extracranial stereotactic radiotherapy (ESR). It has become common practice to verify the delivery for each patient in IMRT, however, no such methods have been defined to date for ESR. It was the aim of the present work to develop a method to verify the dose distribution for ESR in a moving phantom using radiochromic film. Methods: Radiochromic film (ISP EBT2) was used in a cylindrical film cassette fitted into a QUASAR phantom (Modus Medical). The cassette can be moved forwards and backwards with motion patterns that can mimic the breathing of individual patients. The radiotherapy treatment plans of four patients were re-planned for the phantom. Between 8 and 10 radiation fields of 6 MV photons from a Varian Trilogy linear accelerator were used to deliver target doses between 18 and 26 Gy per fraction. In order to allow for measurements with EBT2 film all monitor units were divided by 3 or 4 resulting in maximum doses not exceeding 10 Gy. The film was evaluated using a transmission scan on an Epson Perfection V700 scanner with 50 dpi spatial resolution (3 colors, 48bit). A calibration curve was used to convert either the red or green component of the scan to dose. Results: Qualitative film analysis found no discernible discrepancies from planned isodose distributions in the stationary images. The dose distribution in the moving phantom was used successfully to confirm the appropriateness of the ITV construction in the planning process. Conclusions: We have developed a QA procedure that accounts for breathing patterns of individual patients in ESR for lung cancer. Radiochromic film was found to be easy to adapt to this process.

  20. Radiotherapy; Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wannenmacher, M. [Heidelberg Univ., Mannheim (Germany). Abt. fuer Klinische Radiologie; Debus, J. [Univ. Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie; Wenz, F. (eds.) [Universitaetsklinikum Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2006-07-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy.

  1. Functional changes motorics of breathing in pregnant women and their influence by the Physiotherapy

    OpenAIRE

    Chytrá, Markéta

    2013-01-01

    During pregnancy there are many changes in the mother organism that influence each other. This bachelor's thesis summarizes the information about these significant changes. The thesis is focused on breathing mechanics and breathing patterns changes and considers ways how to influence and adapt breathing during physiologic pregnancy. One chapter points to psychosomatics of pregnant woman associated with the changes of organ systems and growth of foetus. The main part discusses possibilities of...

  2. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    -term plans for their analytical tools, in this case to take breath analysis away from the large complex instruments in the laboratory to the outpatient clinic and eventually to the home care market. Similarly, for environmental and public health research, it is always desirable to have easily operated and deployable instruments that can be taken to the field, rather than bringing numerous subjects to a central laboratory. Bio-monitoring. Although the SAMAP community is much more focused on air rather than breath measurement, this is changing because of the realization that longer deployment times (on submarines and spacecraft) will affect more than just acute health. To monitor longer-term health outcomes, there is a great deal of commonality between our respective research communities. Any instrument that monitors for contaminants in environmental air could certainly be adapted to breath analysis for assessing exposures and health state. Instruments that simultaneously provide rapid response and high specificity to a broad range of analytes, such as those based on optical spectroscopy and mass spectrometry, are particularly valued. The path forward We found the SAMAP meeting to be a worthwhile experience, largely from the discovery that another high-tech community exists with similar needs as the IABR community. Some collaboration could be fruitful for us; we suggest that the IABR community stay in contact with SAMAP in the future and attempt to attend each other's meetings if possible. SAMAP meetings tend to run on a two year cycle and so the next one has not yet been announced. We will let the IABR community know when the next meeting is scheduled, and will certainly make the SAMAP people aware of IABR meetings and the Journal of Breath Research. This article has been subjected to EPA Agency review and approved for publication. Statements do not necessarily reflect official Agency policy.

  3. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.

    1985-01-01

    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  4. Breath pacing system and method for pacing the respiratory activity of a subject

    NARCIS (Netherlands)

    2016-01-01

    To provide a breath pacing system and a corresponding method for pacing the respiratory activity of a subject that provide the possibility to adapt the output signal to the respiration characteristics of the subject automatically and effectively a breath pacing system (10) for pacing the respiratory

  5. Metabolic and thyroidal response in air-breathing perch (Anabus testudineus) to water-borne kerosene

    NARCIS (Netherlands)

    Peter, V.S.; Joshua, E.K.; Wendelaar Bonga, S.E.; Peter, M.C.S.

    2007-01-01

    To address the physiological compensatory adaptations in air-breathing fish to a toxicant, we studied the metabolite pattern, serum and liver enzymes and thyroidal response in a tropical air-breathing perch, Anabas testudineus (kept at 30 _C in a 12-h L:D cycle) after exposing the fish for 48 h to

  6. Dose evaluation and risk estimation for secondary cancer in contralateral breast and a study of correlation between thorax shape and dose to organs at risk following tangentially breast irradiation during deep inspiration breath-hold and free breathing

    International Nuclear Information System (INIS)

    Johansen, Safora; Vikstroem, Johan; Blihovde Hjelstuen, Mari Helene; Mjaaland, Ingvil; Dybvik, Kjell Ivar; Olsen, Dag Rune

    2011-01-01

    Purpose: To assess the impact of using breathing adapted radiotherapy on contralateral breast (CB) dose, to relate the thorax shape with the dose to the organs at risk (OARs) and to predict the risk for induced malignancies in CB using linear and non-linear models, following tangential irradiation of breast. Material and methods. Sixteen patients with stage I-II breast cancer treatment planned with tangential fields using deep inspiration breath hold (DIBH) and free breathing (FB) techniques were included in this analysis. The dose results mainly based on DVH analysis were compared. Four parameters were defined to describe thoracic shape. Excess relative risk (ERR) for cancer induction in CB, employing linear and non-linear models was calculated. Results. Average CB volumes exposed to a dose of 1 Gy is 1.3 times higher in DIBH plans than in FB plans. No significant difference in average V3Gy and V5Gy for DIBH and FB plans is observed. The average mean CB dose for DIBH and FB plans is 0.33 and 0.28 Gy, respectively. No correlation between thorax shape parameters and mean OARs dose is observed. The estimated average mean ERR with linear model is lower in FB plans (0.12) than for the DIBH plans (0.14). The estimated ERR with non-linear model is 0.14 for DIBH plans and 0.15 for FB plans. Conclusion. No significant difference in CB dose between DIBH and FB plans is observed. The four thorax shape parameters defined in this study can not be related to the dose at OARs using DIBH and FB radiation techniques. The ERR estimates for secondary CB cancer are nearly the same for FB and DIBH planning when using a linear and non-linear risk prediction models

  7. Method for automatic re contouring straight adaptive radiotherapy for prostate cancer; Metodo para el recontorneo automatico del recto en radioterapia adaptativa en cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vila, B.; Garcia Vicente, F.; Aguilera, E. J.

    2011-07-01

    Outline of quickly and accurately the rectal wall is important in Image Guided Radiotherapy (IGRT in the acronym) as an organ of greatest influence in limiting the dose in the planning of radiation therapy in prostate cancer. Deformabies registration methods based on image intensity can not create a correct spatial transformation if there is no correspondence between the image and image planning session. The rectal content variation creates a non-correspondence in the image intensity becomes a major obstacle to the deformable registration based on image intensity.

  8. Preliminary report on a breathing coaching and assessment system for use by patients at home

    International Nuclear Information System (INIS)

    Fox, C.D.; Kron, T.; Winton, J.R.S.; Rothwell, R.

    2010-01-01

    Full text: Respiratory-gated radiotherapy requires consistent breathing. Therefore, we developed a system that will assess breathing consistency and allow patients to train themselves at home. Real-time feedback is to be provided visually to patients against a reference breathing track derived from their own breathing pattern. The system would need to generate the reference track and to use this reference track for coaching. The system should be simple, robust and affordable, without complex setup. Results The system uses a net book with a USB connected data acquisition module (DAQ). The patient's breathing is sampled by the DAQ, measuring intra-nasal pressure through nasal prongs. Software was written in collaboration with the Victorian eResearch Strategic Initiative (YERSi). The system is used to collect a patient reference breathing track. This track is processed to generate a 'golden breathing cycle' (GBC), normalised in both amplitude and duration, containing the shape of the breathing cycle. After training, the patient takes the system home for a number of sessions of coaching and assessment. In coaching mode the patient is asked to maintain a graphic representation of their current state of breathing in close correlation to the golden breathing cycle as it moves across the screen. Displayed GBC amplitude and duration respond dynamically to the patient's breathing rhythm. Statistics are collected measuring the patient's ability to conform to the GBC and may be used to decide suitability for gated therapy. Conclusion The DAQ hardware is completed, and software is approaching completion. Sample data has been collected from volunteers.

  9. Body composition variation following diaphragmatic breathing ...

    African Journals Online (AJOL)

    Body composition variation following diaphragmatic breathing. ... effect of commonly prescribed diaphragmatic breathing training on the body composition ... a non-exercising control (NE) group (n = 22) or diaphragmatic breathing (DB) group.

  10. BREATHE to Understand©

    Science.gov (United States)

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  11. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Patient's breath controls comfort devices

    Science.gov (United States)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  13. Interstitial radiotherapy

    International Nuclear Information System (INIS)

    Scardino, P.T.; Bretas, F.

    1987-01-01

    The authors now have 20 years of experience with modern techniques of brachytherapy. The large number of patients treated in medical centers around the world and the widespread use of this type of radiotherapy have provided us with substantial information about the indications and contraindications, advantages and disadvantages, pitfalls and complications, as well as the results of these techniques. Although the focus of this review is the experience at Baylor using the combined technique of gold seed implantation plus external beam irradiation, the alternative forms of brachytherapy will be described and compared. The authors' intention is to provide the busy clinician with a succinct and informative review indicating the status of modern interstitial radiotherapy and describing day-to-day approach and results

  14. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  15. Palliative Radiotherapy

    International Nuclear Information System (INIS)

    Salinas, J.

    2003-01-01

    Palliative care does not attempt to prolong survival but to the achieve the highest quality of life both for the patient and their family covering their physical, psychological, social and spiritual needs. Radiotherapy (RT), one of the most important therapeutic modalities, has a great significance in palliative medicine for cancer since it attempts to reduce as much as possible the acute reaction associated with the treatment for the patient. (Author)

  16. Accelerated Deformable Registration of Repetitive MRI during Radiotherapy in Cervical Cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Kiritsis, Christian

    2006-01-01

    Tumour regression and organ deformations during radiotherapy (RT) of cervical cancer represent major challenges regarding accurate conformation and calculation of dose when using image-guided adaptive radiotherapy. Deformable registration algorithms are able to handle organ deformations, which can...... be useful with advanced tools such as auto segmentation of organs and dynamic adaptation of radiotherapy. The aim of this study was to accelerate and validate deformable registration in MRI-based image-guided radiotherapy of cervical cancer.    ...

  17. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  18. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  19. SU-F-T-415: Differences in Lung Sparing in Deep Inspiration Breath-Hold and Free Breathing Breast Plans Calculated in Pinnacle and Monaco

    Energy Technology Data Exchange (ETDEWEB)

    Saenz, D; Stathakis, S [University of Texas Health Science Center San Antonio, San Antonio, TX (United States)

    2016-06-15

    Purpose: Deep inspiration breath-hold (DIBH) is used for left-sided breast radiotherapy to spare the heart and lung. The magnitude of sparing has been shown to be significant. Monte Carlo, furthermore, has the potential to calculate most accurately the dose in the heterogeneous lung medium at the interface with the lung wall. The lung dose was investigated in Monaco to determine the level of sparing relative to that calculated in Pinnacle{sup 3}. Methods: Five patients undergoing DIBH radiotherapy on an Elekta Versa HD linear accelerator in conjunction with the Catalyst C-RAD surface imaging system were planned using Phillips Pinnacle{sup 3}. Free breathing plans were also created to clinically assure a benefit. Both plans were re-calculated in Monaco to determine if there were any significant differences. The mean heart dose, mean left lung, and mean total lung dose were compared in addition to the V20 for left and both lungs. Dose was calculated as dose to medium as well as dose to water with a statistical precision of 0.7%. Results: Mean lung dose was significantly different (p < 0.003) between the two calculations for both DIBH (11.6% higher in Monaco) and free breathing (14.2% higher in Monaco). V20 was also higher in Monaco (p < 0.05) for DIBH (5.7% higher) and free breathing (4.9% higher). The mean heart dose was not significantly different between the dose calculations for either DIBH or free breathing. Results were no more than 0.1% different when calculated as dose to water. Conclusion: The use of Monte Carlo can provide insight on the lung dose for both free breathing and DIBH techniques for whole breast irradiation. While the sparing (dose reductions with DIBH as compared to free breathing) is equivalent for either planning system, the lung doses themselves are higher when calculated with Monaco.

  20. Breath of hospitality.

    Science.gov (United States)

    Škof, Lenart

    2016-12-01

    In this paper we outline the possibilities of an ethic of care based on our self-affection and subjectivity in the ethical spaces between-two. In this we first refer to three Irigarayan concepts - breath, silence and listening from the third phase of her philosophy, and discuss them within the methodological framework of an ethics of intersubjectivity and interiority. Together with attentiveness, we analyse them as four categories of our ethical becoming. Furthermore, we argue that self-affection is based on our inchoate receptivity for the needs of the other(s) and is thus dialectical in its character. In this we critically confront some epistemological views of our ethical becoming. We wind up this paper with a proposal for an ethics towards two autonomous subjects, based on care and our shared ethical becoming - both as signs of our deepest hospitality towards the other.

  1. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  2. Differential risk assessments from five hypoxia specific assays: The basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients

    DEFF Research Database (Denmark)

    Nordsmark, Marianne; Eriksen, Jesper Grau; Gebski, Val

    2007-01-01

    osteopontin measured by ELISA, tumour oxygenation status using pO(2) needle electrodes and tumour osteopontin, hypoxia inducible factor 1alpha (HIF-1alpha) and carboxyanhydrase 9 (CA9) by immunohistochemistry. The primary treatment was radiotherapy and the hypoxic radiosensitizer nimorazole. Loco......-regional tumour control was evaluated at 5 years. RESULTS: All five markers showed inter-tumour variability. Inter-marker correlations were inconsistent. Only plasma osteopontin inversely correlated with median tumour pO(2), (p=0.02, r=0.28) and CA9 correlated with HIF-1alpha (p...-Meier analysis high plasma osteopontin, high HIF-1alpha and high proportion of tumour pO(2)2.5mmHg (HP(2.5)) related significantly with poorer loco-regional control, whereas CA9 and tumour osteopontin failed to predict loco-regional control in this set dataset. When analyzing Hb, stage, and the five markers...

  3. Improved Correlation of the Neuropathologic Classification According to Adapted World Health Organization Classification and Outcome After Radiotherapy in Patients With Atypical and Anaplastic Meningiomas

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Schulz-Ertner, Daniela; Debus, Jürgen; Deimling, Andreas von; Hartmann, Christian

    2011-01-01

    Purpose: To evaluate the correlation between the 1993 and 2000/2007 World Health Organization (WHO) classification with the outcome in patients with high-grade meningiomas. Patients and Methods: Between 1985 and 2004, 73 patients diagnosed with atypical or anaplastic meningiomas were treated with radiotherapy. Sections from the paraffin-embedded tumor material from 66 patients (90%) from 13 different pathology departments were re-evaluated according to the first revised WHO classification from 1993 and the revised classifications from 2000/2007. In 4 cases, the initial diagnosis meningioma was not reproducible (5%). Therefore, 62 patients with meningiomas were analyzed. Results: All 62 tumors were reclassified according to the 1993 and 2000/2007 WHO classification systems. Using the 1993 system, 7 patients were diagnosed with WHO grade I meningioma (11%), 23 with WHO grade II (37%), and 32 with WHO grade III meningioma (52%). After scoring using the 2000/2007 system, we found 17 WHO grade I meningiomas (27%), 32 WHO grade II meningiomas (52%), and 13 WHO grade III meningiomas (21%). According to the 1993 classification, the difference in overall survival was not statistically significant among the histologic subgroups (p = .96). Using the 2000/2007 WHO classifications, the difference in overall survival became significant (p = .02). Of the 62 reclassified patients 29 developed tumor progression (47%). No difference in progression-free survival was observed among the histologic subgroups (p = .44). After grading according to the 2000/2007 WHO classifications, significant differences in progression-free survival were observed among the three histologic groups (p = .005). Conclusion: The new 2000/2007 WHO classification for meningiomas showed an improved correlation between the histologic grade and outcome. This classification therefore provides a useful basis to determine the postoperative indication for radiotherapy. According to our results, a comparison of the

  4. Improved Correlation of the Neuropathologic Classification According to Adapted World Health Organization Classification and Outcome After Radiotherapy in Patients With Atypical and Anaplastic Meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E., E-mail: Stephanie.Combs@med.uni-heidelberg.de [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Schulz-Ertner, Daniela [Radiologisches Institut, Markuskrankenhaus Frankfurt, Frankfurt am Main (Germany); Debus, Juergen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Deimling, Andreas von; Hartmann, Christian [Department of Neuropathology, Institute for Pathology, University Hospital of Heidelberg, Heidelberg (Germany); Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg (Germany)

    2011-12-01

    Purpose: To evaluate the correlation between the 1993 and 2000/2007 World Health Organization (WHO) classification with the outcome in patients with high-grade meningiomas. Patients and Methods: Between 1985 and 2004, 73 patients diagnosed with atypical or anaplastic meningiomas were treated with radiotherapy. Sections from the paraffin-embedded tumor material from 66 patients (90%) from 13 different pathology departments were re-evaluated according to the first revised WHO classification from 1993 and the revised classifications from 2000/2007. In 4 cases, the initial diagnosis meningioma was not reproducible (5%). Therefore, 62 patients with meningiomas were analyzed. Results: All 62 tumors were reclassified according to the 1993 and 2000/2007 WHO classification systems. Using the 1993 system, 7 patients were diagnosed with WHO grade I meningioma (11%), 23 with WHO grade II (37%), and 32 with WHO grade III meningioma (52%). After scoring using the 2000/2007 system, we found 17 WHO grade I meningiomas (27%), 32 WHO grade II meningiomas (52%), and 13 WHO grade III meningiomas (21%). According to the 1993 classification, the difference in overall survival was not statistically significant among the histologic subgroups (p = .96). Using the 2000/2007 WHO classifications, the difference in overall survival became significant (p = .02). Of the 62 reclassified patients 29 developed tumor progression (47%). No difference in progression-free survival was observed among the histologic subgroups (p = .44). After grading according to the 2000/2007 WHO classifications, significant differences in progression-free survival were observed among the three histologic groups (p = .005). Conclusion: The new 2000/2007 WHO classification for meningiomas showed an improved correlation between the histologic grade and outcome. This classification therefore provides a useful basis to determine the postoperative indication for radiotherapy. According to our results, a comparison of the

  5. MO-FG-BRA-02: A Feasibility Study of Integrating Breathing Audio Signal with Surface Surrogates for Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y; Zhu, X; Zheng, D; Li, S; Ma, R; Zhang, M; Fan, Q; Wang, X; Verma, V; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States)

    2016-06-15

    Purpose: Tracking the surrogate placed on patient skin surface sometimes leads to problematic signals for certain patients, such as shallow breathers. This in turn impairs the 4D CT image quality and dosimetric accuracy. In this pilot study, we explored the feasibility of monitoring human breathing motion by integrating breathing sound signal with surface surrogates. Methods: The breathing sound signals were acquired though a microphone attached adjacently to volunteer’s nostrils, and breathing curve were analyzed using a low pass filter. Simultaneously, the Real-time Position Management™ (RPM) system from Varian were employed on a volunteer to monitor respiratory motion including both shallow and deep breath modes. The similar experiment was performed by using Calypso system, and three beacons taped on volunteer abdominal region to capture breath motion. The period of each breathing curves were calculated with autocorrelation functions. The coherence and consistency between breathing signals using different acquisition methods were examined. Results: Clear breathing patterns were revealed by the sound signal which was coherent with the signal obtained from both the RPM system and Calypso system. For shallow breathing, the periods of breathing cycle were 3.00±0.19 sec (sound) and 3.00±0.21 sec (RPM); For deep breathing, the periods were 3.49± 0.11 sec (sound) and 3.49±0.12 sec (RPM). Compared with 4.54±0.66 sec period recorded by the calypso system, the sound measured 4.64±0.54 sec. The additional signal from sound could be supplement to the surface monitoring, and provide new parameters to model the hysteresis lung motion. Conclusion: Our preliminary study shows that the breathing sound signal can provide a comparable way as the RPM system to evaluate the respiratory motion. It’s instantaneous and robust characteristics facilitate it possibly to be a either independently or as auxiliary methods to manage respiratory motion in radiotherapy.

  6. MO-FG-BRA-02: A Feasibility Study of Integrating Breathing Audio Signal with Surface Surrogates for Respiratory Motion Management

    International Nuclear Information System (INIS)

    Lei, Y; Zhu, X; Zheng, D; Li, S; Ma, R; Zhang, M; Fan, Q; Wang, X; Verma, V; Zhou, S; Tang, X

    2016-01-01

    Purpose: Tracking the surrogate placed on patient skin surface sometimes leads to problematic signals for certain patients, such as shallow breathers. This in turn impairs the 4D CT image quality and dosimetric accuracy. In this pilot study, we explored the feasibility of monitoring human breathing motion by integrating breathing sound signal with surface surrogates. Methods: The breathing sound signals were acquired though a microphone attached adjacently to volunteer’s nostrils, and breathing curve were analyzed using a low pass filter. Simultaneously, the Real-time Position Management™ (RPM) system from Varian were employed on a volunteer to monitor respiratory motion including both shallow and deep breath modes. The similar experiment was performed by using Calypso system, and three beacons taped on volunteer abdominal region to capture breath motion. The period of each breathing curves were calculated with autocorrelation functions. The coherence and consistency between breathing signals using different acquisition methods were examined. Results: Clear breathing patterns were revealed by the sound signal which was coherent with the signal obtained from both the RPM system and Calypso system. For shallow breathing, the periods of breathing cycle were 3.00±0.19 sec (sound) and 3.00±0.21 sec (RPM); For deep breathing, the periods were 3.49± 0.11 sec (sound) and 3.49±0.12 sec (RPM). Compared with 4.54±0.66 sec period recorded by the calypso system, the sound measured 4.64±0.54 sec. The additional signal from sound could be supplement to the surface monitoring, and provide new parameters to model the hysteresis lung motion. Conclusion: Our preliminary study shows that the breathing sound signal can provide a comparable way as the RPM system to evaluate the respiratory motion. It’s instantaneous and robust characteristics facilitate it possibly to be a either independently or as auxiliary methods to manage respiratory motion in radiotherapy.

  7. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    International Nuclear Information System (INIS)

    Pollock, S; Keall, P; Keall, R

    2015-01-01

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  8. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, S; Keall, P [University of Sydney, Sydney (Australia); Keall, R [Hammond Care Palliative and Supportive Care Service, Sydney, NSW (Australia)

    2015-06-15

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  9. How to breathe when you are short of breath

    Science.gov (United States)

    ... you: Watch TV Use your computer Read a newspaper How to do Pursed lip Breathing The steps ... of Medicine, Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Also ...

  10. Effects of low dose mitomycin C on experimental tumor radiotherapy

    International Nuclear Information System (INIS)

    Yang Jianzheng; Liang Shuo; Qu Yaqin; Pu Chunji; Zhang Haiying; Wu Zhenfeng; Wang Xianli

    2001-01-01

    Objective: To evaluate the possibility of low dose mitomycin C(MMC) as an adjunct therapy for radiotherapy. Methods: Change in tumor size tumor-bearing mice was measured. Radioimmunoassay was used to determine immune function of mice. Results: Low dose Mac's pretreatment reduced tumor size more markedly than did radiotherapy only. The immune function in mice given with low dose MMC 12h before radiotherapy was obviously higher than that in mice subjected to radiotherapy only (P<0.05), and was close to that in the tumor-bearing mice before radiotherapy. Conclusion: Low dose MMC could improve the radiotherapy effect. Pretreatment with low dose MMC could obviously improve the immune suppression state in mice caused by radiotherapy. The mechanism of its improvement of radiotherapeutic effect by low dose of MMC might be due to its enhancement of immune function and induction of adaptive response in tumor-bearing mice

  11. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  12. The utility of e-Learning to support training for a multicentre bladder online adaptive radiotherapy trial (TROG 10.01-BOLART).

    Science.gov (United States)

    Foroudi, Farshad; Pham, Daniel; Bressel, Mathias; Tongs, David; Rolfo, Aldo; Styles, Colin; Gill, Suki; Kron, Tomas

    2013-10-01

    An e-Learning programme appeared useful for providing training and information regarding a multi-centre image guided radiotherapy trial. The aim of this study is to demonstrate the utility of this e-Learning programme. Modules were created on relevant pelvic anatomy, Cone Beam CT soft tissue recognition and trial details. Radiation therapist participants' knowledge and confidence were evaluated before, at the end of, and after at least 6 weeks of e-Learning (long term). One hundred and eighty-five participants were recruited from 12 centres, with 118 in the first, and 67 in the second cohort. One hundred and forty-six participants had two tests (pre and post e-Learning) and 39 of these had three tests (pre, post, and long term). There was an increase confidence after completion of modules (pe-Learning for a multi-centre clinical trial was feasible and improved confidence and knowledge. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. The utility of e-Learning to support training for a multicentre bladder online adaptive radiotherapy trial (TROG 10.01-BOLART)

    International Nuclear Information System (INIS)

    Foroudi, Farshad; Pham, Daniel; Bressel, Mathias; Tongs, David; Rolfo, Aldo; Styles, Colin; Gill, Suki; Kron, Tomas

    2013-01-01

    Background and purpose: An e-Learning programme appeared useful for providing training and information regarding a multi-centre image guided radiotherapy trial. The aim of this study is to demonstrate the utility of this e-Learning programme. Materials and methods: Modules were created on relevant pelvic anatomy, Cone Beam CT soft tissue recognition and trial details. Radiation therapist participants’ knowledge and confidence were evaluated before, at the end of, and after at least 6 weeks of e-Learning (long term). Results: One hundred and eighty-five participants were recruited from 12 centres, with 118 in the first, and 67 in the second cohort. One hundred and forty-six participants had two tests (pre and post e-Learning) and 39 of these had three tests (pre, post, and long term). There was an increase confidence after completion of modules (p < 0.001). The first cohort pre scores increased from 67 ± 11 to 79 ± 8 (p < 0.001) post. The long term same question score was 73 ± 14 (p = 0.025, comparing to pre-test), and different questions’ score was 77 ± 13 (p = 0.014). In the second cohort, pre-test scores were 64 ± 10, post-test same question score 78 ± 9 (p < 0.001) and different questions’ score 81 ± 11 (p < 0.001). Conclusions: e-Learning for a multi-centre clinical trial was feasible and improved confidence and knowledge

  14. Can we reduce the risk of disease heart in treatments of left breast? bated breath

    International Nuclear Information System (INIS)

    Fuentemilla Urio, N.; Lozares Cordero, S.; Otal Palacin, A.; Olasolo Alonso, J.; Pellejero Pellejero, S.; Martin Albina, M. L.; Maneru Camara, F.; Miquelez Alonso, S.; Rubio Arroniz, T.; Soto Prados, P.

    2013-01-01

    In studies related to breast cancer and mortality, there has been an increase in the mortality of patients with survival greater than 10 years treated with radiotherapy. Subsequent studies it appears that the main cause is heart disease. Therefore, that the heart started to consider organ of risk in the treatment of breast cancer with radiation therapy (adjuvant). Reducing the doses both heart and coronary arteries leads to a reduction in the risk of heart disease. Currently are introducing new techniques, to reduce the dose in heart and in the left anterior descending coronary artery such as new positions or techniques of Breath bated breath hold... (Author)

  15. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  16. Radiotherapy in bladder cancer

    International Nuclear Information System (INIS)

    Rozan, R.

    1992-01-01

    In 1992, the problem of the vesical radiotherapy is not resolved. The author presents the situation and the different techniques of radiotherapy in bladder cancers: external radiotherapy, only and associated with surgery, interstitial curietherapy and non-classical techniques as per operative radiotherapy, neutron therapy and concurrent radiotherapy with chemotherapy. In order to compare their efficiency, the five-year survival are given in all cases.(10 tabs)

  17. Bystander effects and radiotherapy.

    Science.gov (United States)

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  18. SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Chetty, I; Mao, W; Kumarasiri, A; Zhong, H; Brown, S; Siddiqui, F [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To utilize deformable dose accumulation (DDA) to determine how cold spots within the PTV change over the course of fractionated head and neck (H&N) radiotherapy. Methods: Voxel-based dose was tracked using a DDA platform. The DDA process consisted of B-spline-based deformable image registration (DIR) and dose accumulation between planning CT’s and daily cone-beam CT’s for 10 H&N cancer patients. Cold spots within the PTV (regions receiving less than the prescription, 70 Gy) were contoured on the cumulative dose distribution. These cold spots were mapped to each fraction, starting from the first fraction to determine how they changed. Spatial correlation between cold spot regions over each fraction, relative to the last fraction, was computed using the Jaccard index Jk (Mk,N), where N is the cold spot within the PTV at the end of the treatment, and Mk the same region for fraction k. Results: Figure 1 shows good spatial correlation between cold spots, and highlights expansion of the cold spot region over the course of treatment, as a result of setup uncertainties, and anatomical changes. Figure 2 shows a plot of Jk versus fraction number k averaged over 10 patients. This confirms the good spatial correlation between cold spots over the course of treatment. On average, Jk reaches ∼90% at fraction 22, suggesting that possible intervention (e.g. reoptimization) may mitigate the cold spot region. The cold spot, D99, averaged over 10 patients corresponded to a dose of ∼65 Gy, relative to the prescription dose of 70 Gy. Conclusion: DDA-based tracking provides spatial dose information, which can be used to monitor dose in different regions of the treatment plan, thereby enabling appropriate mid-treatment interventions. This work is supported in part by Varian Medical Systems, Palo Alto, CA.

  19. Can adaptive threshold-based metabolic tumor volume (MTV) and lean body mass corrected standard uptake value (SUL) predict prognosis in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy?

    Science.gov (United States)

    Akagunduz, Ozlem Ozkaya; Savas, Recep; Yalman, Deniz; Kocacelebi, Kenan; Esassolak, Mustafa

    2015-11-01

    To evaluate the predictive value of adaptive threshold-based metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax) and maximum lean body mass corrected SUV (SULmax) measured on pretreatment positron emission tomography and computed tomography (PET/CT) imaging in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy. Pretreatment PET/CT of the 62 patients with locally advanced head and neck cancer who were treated consecutively between May 2010 and February 2013 were reviewed retrospectively. The maximum FDG uptake of the primary tumor was defined according to SUVmax and SULmax. Multiple threshold levels between 60% and 10% of the SUVmax and SULmax were tested with intervals of 5% to 10% in order to define the most suitable threshold value for the metabolic activity of each patient's tumor (adaptive threshold). MTV was calculated according to this value. We evaluated the relationship of mean values of MTV, SUVmax and SULmax with treatment response, local recurrence, distant metastasis and disease-related death. Receiver-operating characteristic (ROC) curve analysis was done to obtain optimal predictive cut-off values for MTV and SULmax which were found to have a predictive value. Local recurrence-free (LRFS), disease-free (DFS) and overall survival (OS) were examined according to these cut-offs. Forty six patients had complete response, 15 had partial response, and 1 had stable disease 6 weeks after the completion of treatment. Median follow-up of the entire cohort was 18 months. Of 46 complete responders 10 had local recurrence, and of 16 partial or no responders 10 had local progression. Eighteen patients died. Adaptive threshold-based MTV had significant predictive value for treatment response (p=0.011), local recurrence/progression (p=0.050), and disease-related death (p=0.024). SULmax had a predictive value for local recurrence/progression (p=0.030). ROC curves analysis revealed a cut-off value of 14.00 mL for

  20. [Radiotherapy for nasopharyngeal carcinoma].

    Science.gov (United States)

    Maingon, P; Blanchard, P; Bidault, F; Calmels, L

    2016-09-01

    Nasapharyngeal carcinoma is a rare disease. Oftenly, the diagnostic is made for advanced disease. Localized tumors, T1 or T2 NO observed a good prognosis and are locally controlled in more than 90 % of the cases by radiotherapy alone. The standard treatment of locally advanced disease is combined chemoradiation. A special vigilance of fast decrease of the volume of the pathological lymph nodes, sometimes associated to loss of weight might indicate an adaptive dosimetric revision. The treatment of recurrent disease is of great importance. Surgical indications are limited but should be discussed in multidisciplinary tumor board when possible. Surgical nodal sampling has to be proposed for nodal recurrence as well as reirradiation, which could be indicated according to the technical issues. Copyright © 2016. Published by Elsevier SAS.

  1. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    Science.gov (United States)

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  2. Radiotherapy of bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Heilmann, H.P.

    1982-01-01

    Radiotherapy of branchogenic carcinoma comprises; palliative treatment, postoperative or pre-operative radiotherapy, radiotherapy as part of a combination of chemotherapy and radiotherapy of small cell carcinoma and curative radiotherapy of non-operable non-small cell carcinoma. Atelectasis and obstruction are indications for palliative radiotherapy. Postoperative radiotherapy is given only in cases of incomplete resection or mediastinal metastases. In the treatment of small cell carcinoma by combined irradiation and chemotherapy the mediastinum and primary tumour are irradiated, generally after chemotherapy, and the C.N.S. receives prophylactic radiotherapy. Curative radiotherapy is indicated in cases of non-operable small cell carcinoma. Irradiation with doses of 60-70 Gy produced 5-years-survival rates of 10-14% in cases classified as T 1 -T 2 N 0 M 0 . (orig.) [de

  3. SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ghaffar, I; Balik, S; Zhuang, T; Chao, S; Xia, P [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To investigate the feasibility of using TMR ratio correction factors for a fast online adaptive plan to compensate for anatomical changes in stereotactic radiosurgery (SRS) of L-spine tumors. Methods: Three coplanar treatment plans were made for 11 patients: Uniform (9 IMRT beams equally distributed around the patient); Posterior (IMRT with 9 posterior beams every 20 degree) and VMAT (2 360° arcs). For each patient, the external body and bowel gas were contoured on the planning CT and pre-treatment CBCT. After registering CBCT and the planning CT by aligning to the tumor, the CBCT contours were transferred to the planning CT. To estimate the actual delivered dose while considering patient’s anatomy of the treatment day, a hybrid CT was created by overriding densities in planning CT using the differences between CT and CBCT external and bowel gas contours. Correction factors (CF) were calculated using the effective depth information obtained from the planning system using the hybrid CT: CF = TMR (delivery)/TMR (planning). The adaptive plan was generated by multiplying the planned Monitor Units with the CFs. Results: The mean absolute difference (MAD) in V16Gy of the target between planned and estimated delivery with and without TMR correction was 0.8 ± 0.7% vs. 2.4 ± 1.3% for Uniform and 1.0 ± 0.9% vs. 2.6 ± 1.3% for VMAT plans(p<0.05), respectively. For V12Gy of cauda-equina with and without TMR correction, MAD was 0.24 ± 0.19% vs. 1.2 ± 1.02% for Uniform and 0.23 ± 0.20% vs. 0.78 ± 0.79% for VMAT plans(p<0.05), respectively. The differences between adaptive and original plans were not significant for posterior plans. Conclusion: The online adaptive strategy using TMR ratios and pre-treatment CBCT information was feasible strategy to compensate for anatomical changes for the patients treated for L-spine tumors, particularly for equally spaced IMRT and VMAT plans.

  4. Implantable oxygen microelectrode suitable for medium-term investigations of post-surgical tissue hypoxia and changes in tumor tissue oxygenation produced by radiotherapy

    International Nuclear Information System (INIS)

    Burke, T.R.; Johnson, R.J.; Krishnamsetty, C.B.; Sako, K.; Karakousis, C.; Wojtas, F.

    1980-01-01

    Teflon-covered platinum oxygen probes were used to monitor tissue oxygen levels in post-surgical cancer patients and those treated with radiotherapy. Progressive wound healing was usually accompanied by a decrease in tissue pO2. Radiotherapy produced a slight increase in pO2 while hyperthermia effected a significant increase in the oxygen level during 100% oxygen breathing

  5. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac

    Science.gov (United States)

    Kontaxis, C.; Bol, G. H.; Stemkens, B.; Glitzner, M.; Prins, F. M.; Kerkmeijer, L. G. W.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2017-09-01

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system’s capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  6. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.

    Science.gov (United States)

    Kontaxis, C; Bol, G H; Stemkens, B; Glitzner, M; Prins, F M; Kerkmeijer, L G W; Lagendijk, J J W; Raaymakers, B W

    2017-08-21

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system's capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  7. SU-E-J-102: Performance Variations Among Clinically Available Deformable Image Registration Tools in Adaptive Radiotherapy: How Should We Evaluate and Interpret the Result?

    International Nuclear Information System (INIS)

    Nie, K; Pouliot, J; Smith, E; Chuang, C

    2015-01-01

    Purpose: To evaluate the performance variations in commercial deformable image registration (DIR) tools for adaptive radiation therapy. Methods: Representative plans from three different anatomical sites, prostate, head-and-neck (HN) and cranial spinal irradiation (CSI) with L-spine boost, were included. Computerized deformed CT images were first generated using virtual DIR QA software (ImSimQA) for each case. The corresponding transformations served as the “reference”. Three commercial software packages MIMVista v5.5 and MIMMaestro v6.0, VelocityAI v2.6.2, and OnQ rts v2.1.15 were tested. The warped contours and doses were compared with the “reference” and among each other. Results: The performance in transferring contours was comparable among all three tools with an average DICE coefficient of 0.81 for all the organs. However, the performance of dose warping accuracy appeared to rely on the evaluation end points. Volume based DVH comparisons were not sensitive enough to illustrate all the detailed variations while isodose assessment on a slice-by-slice basis could be tedious. Point-based evaluation was over-sensitive by having up to 30% hot/cold-spot differences. If adapting the 3mm/3% gamma analysis into the evaluation of dose warping, all three algorithms presented a reasonable level of equivalency. One algorithm had over 10% of the voxels not meeting this criterion for the HN case while another showed disagreement for the CSI case. Conclusion: Overall, our results demonstrated that evaluation based only on the performance of contour transformation could not guarantee the accuracy in dose warping. However, the performance of dose warping accuracy relied on the evaluation methodologies. Nevertheless, as more DIR tools are available for clinical use, the performance could vary at certain degrees. A standard quality assurance criterion with clinical meaning should be established for DIR QA, similar to the gamma index concept, in the near future

  8. Understanding the rhythm of breathing: so near yet so far

    OpenAIRE

    Feldman, Jack L.; Del Negro, Christopher A.; Gray, Paul A.

    2012-01-01

    Understanding the mechanisms leading from DNA to molecules to neurons to networks to behavior is a major goal for neuroscience, but largely out of reach for many fundamental and interesting behaviors. The neural control of breathing may be a rare exception, presenting a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to rapidly and slowly changing conditions, and how particular dysf...

  9. Theme and variations: amphibious air-breathing intertidal fishes.

    Science.gov (United States)

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  10. Radiotherapy of malignant lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Kujawska, J [Instytut Onkologii, Krakow (Poland)

    1979-01-01

    The paper discusses current views on the role of radiotherapy in the treatment of patients with malignant lymphomas. Principles of radiotherapy employed in the Institute of Oncology in Cracow in case of patients with malignant lymphomas are also presented.

  11. The feasibility of utilizing pseudo CT-data for online MRI based treatment plan adaptation for a stereotactic radiotherapy treatment of spinal bone metastases

    International Nuclear Information System (INIS)

    Hoogcarspel, Stan J; Van der Velden, Joanne M; Lagendijk, Jan J W; Van Vulpen, Marco; Raaymakers, Bas W

    2014-01-01

    The purpose of this study was to investigate what pseudo-CT (pCT) strategy is sufficient for online MRI based treatment plan adaptation of a stereotactic treatment for spinal bone metastases. For this purpose, the dosimetric accuracy of five increasingly complex pCT strategies was evaluated using the planning CT data of 20 patients suffering from spinal metastases. For each pCT, a treatment plan was developed and simulated on both the pCT and the original CT data of the patient. The two resulting dose distributions were compared using gamma analysis of 2%/2 mm. In this paper, a Gamma Pass Rate (GPR) of ⩾95% within the Target Volume (TV) was considered clinically acceptable. We additionally demonstrated in this paper the automatic generation of each investigated pCT strategy with the use of dedicated MRI data complemented with pre-treatment CT data of a patient in treatment position. The dosimetric accuracy of a pCT increases when additional bulk densities are utilized for a pCT. However, the dosimetric accuracy of even the most complex ‘bulk density’ pCT strategy used in this study had an average GPR of only 78% within the TV. However, if information on the heterogeneous electron density distribution within the affected vertebral body was available, a clinically acceptable 99% mean GPR was observed. All pCTs could successfully be generated using the MRI data in combination with the CT data of a patient in treatment position. The results presented in this study show that a simple ‘bulk density’ pseudo-CT strategy is not feasible for online MRI based treatment plan adaptation for spinal bone metastases. However, a clinically acceptable result is generated if the information on the heterogeneous electron density (ED) distribution within the affected vertebral bone is available. Therefore, any pCT strategy for this tumor site should include a method which can estimate the heterogeneous ED of the affected vertebral bone. (paper)

  12. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    International Nuclear Information System (INIS)

    Pollock, Sean; Keall, Paul; Keall, Robyn

    2015-01-01

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  13. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Sean, E-mail: sean.pollock@sydney.edu.au; Keall, Paul [Radiation Physics Laboratory, University of Sydney, Sydney 2050 (Australia); Keall, Robyn [Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care and Supportive Care Service, Greenwich 2065 (Australia)

    2015-09-15

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  14. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching

    International Nuclear Information System (INIS)

    Neicu, Toni; Berbeco, Ross; Wolfgang, John; Jiang, Steve B

    2006-01-01

    Recently, at Massachusetts General Hospital (MGH) we proposed a new treatment technique called synchronized moving aperture radiation therapy (SMART) to account for tumour motion during radiotherapy. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator with the tumour motion induced by respiration. The two key requirements for being able to successfully use SMART in clinical practice are the precise and fast detection of tumour position during the simulation/treatment and the good reproducibility of the tumour motion pattern. To fulfil the first requirement, an integrated radiotherapy imaging system is currently being developed at MGH. The results of a previous study show that breath coaching techniques are required to make SMART an efficient technique in general. In this study, we investigate volunteer and patient respiratory coaching using a commercial respiratory gating system as a respiration coaching tool. Five healthy volunteers, observed during six sessions, and 33 lung cancer patients, observed during one session when undergoing 4D CT scans, were investigated with audio and visual promptings, with free breathing as a control. For all five volunteers, breath coaching was well tolerated and the intra- and inter-session reproducibility of the breathing pattern was greatly improved. Out of 33 patients, six exhibited a regular breathing pattern and needed no coaching, four could not be coached at all due to the patient's medical condition or had difficulty following the instructions, 13 could only be coached with audio instructions and 10 could follow the instructions of and benefit from audio-video coaching. We found that, for all volunteers and for those patients who could be properly coached, breath coaching improves the duty cycle of SMART treatment. However, about half of the patients could not follow both audio and video instructions simultaneously, suggesting that the current coaching

  15. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching

    Energy Technology Data Exchange (ETDEWEB)

    Neicu, Toni; Berbeco, Ross; Wolfgang, John; Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2006-02-07

    Recently, at Massachusetts General Hospital (MGH) we proposed a new treatment technique called synchronized moving aperture radiation therapy (SMART) to account for tumour motion during radiotherapy. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator with the tumour motion induced by respiration. The two key requirements for being able to successfully use SMART in clinical practice are the precise and fast detection of tumour position during the simulation/treatment and the good reproducibility of the tumour motion pattern. To fulfil the first requirement, an integrated radiotherapy imaging system is currently being developed at MGH. The results of a previous study show that breath coaching techniques are required to make SMART an efficient technique in general. In this study, we investigate volunteer and patient respiratory coaching using a commercial respiratory gating system as a respiration coaching tool. Five healthy volunteers, observed during six sessions, and 33 lung cancer patients, observed during one session when undergoing 4D CT scans, were investigated with audio and visual promptings, with free breathing as a control. For all five volunteers, breath coaching was well tolerated and the intra- and inter-session reproducibility of the breathing pattern was greatly improved. Out of 33 patients, six exhibited a regular breathing pattern and needed no coaching, four could not be coached at all due to the patient's medical condition or had difficulty following the instructions, 13 could only be coached with audio instructions and 10 could follow the instructions of and benefit from audio-video coaching. We found that, for all volunteers and for those patients who could be properly coached, breath coaching improves the duty cycle of SMART treatment. However, about half of the patients could not follow both audio and video instructions simultaneously, suggesting that the current coaching

  16. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    Pulmonary Function Responses to Active Cycle. Breathing ... Key Words: Heart Failure, Active Cycle of Breathing ... cough, fatigue, reduced respiratory muscle mass, and. [5] ... an amount of exercise which is said to lower disease. [9].

  17. Oral breathing and speech disorders in children

    Directory of Open Access Journals (Sweden)

    Silvia F. Hitos

    2013-07-01

    Conclusion: Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals.

  18. Hyperthermia and radiotherapy

    International Nuclear Information System (INIS)

    Fitspatrick, C.

    1990-01-01

    Hyperthermia and radiotherapy have for long been used to assist in the control of tumours, either as separate entities, or, in a combined treatment scheme. This paper outlines why hyperthermia works, thermal dose and the considerations required in the timing when hyperthermia is combined with radiotherapy. Previously reported results for hyperthermia and radiotherapy used together are also presented. 8 refs., 8 tabs

  19. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  20. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  1. Periaqueductal Gray Control of Breathing

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert; Homma,; Onimaru, H; Fukuchi, Y

    2010-01-01

    Change of the basic respiratory rhythm (eupnea) is a pre-requisite for survival. For example, sudden escape from danger needs rapid shallow breathing, strenuous exercise requires tachypnea for sufficient supply of oxygen and a strong anxiety reaction necessitates gasping. Also for vocalization (and

  2. On-line MRI guidance for Radiotherapy

    NARCIS (Netherlands)

    Crijns, S.P.M.

    2013-01-01

    Image-guided radiotherapy has the potential to increase success of treatment by decreasing uncertainties concerning tumour position and shape. MRI is the modality of choice when it comes to imaging for tumour delineation and characterisation, set-up correction, treatment plan adaptation, response

  3. SU-F-T-449: Dosimetric Comparison of Acuros XB, Adaptive Convolve in Intensity Modulated Radiotherapy for Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, R [National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Tachibana, H [National Cancer Center, Kashiwa, Chiba (Japan)

    2016-06-15

    Purpose: There have been several publications focusing on dose calculation in lung for a new dose calculation algorithm of Acuros XB (AXB). AXB could contribute to dose calculation for high-density media for bone and dental prosthesis rather than in lung. We compared the dosimetric performance of AXB, Adaptive Convolve (AC) in head and neck IMRT plans. Methods: In a phantom study, the difference in depth profile between AXB and AC was evaluated using Kodak EDR2 film sandwiched with tough water phantoms. 6 MV x-ray using the TrueBeam was irradiated. In a patient study, 20 head and neck IMRT plans had been clinically approved in Pinnacle3 and were transferred to Eclipse. Dose distribution was recalculated using AXB in Eclipse while maintaining AC-calculated monitor units and MLC sequence planned in Pinnacle. Subsequently, both the dose-volumetric data obtained using the two different calculation algorithms were compared. Results: The results in the phantom evaluation for the shallow area ahead of the build-up region shows over-dose for AXB and under-dose for AC, respectively. In the patient plans, AXB shows more hot spots especially around the high-density media than AC in terms of PTV (Max difference: 4.0%) and OAR (Max. difference: 1.9%). Compared to AC, there were larger dose deviations in steep dose gradient region and higher skin-dose. Conclusion: In head and neck IMRT plans, AXB and AC show different dosimetric performance for the regions inside the target volume around high-density media, steep dose gradient regions and skin-surface. There are limitations in skin-dose and complex anatomic condition using even inhomogeneous anthropomorphic phantom Thus, there is the potential for an increase of hot-spot in AXB, and an underestimation of dose in substance boundaries and skin regions in AC.

  4. SU-F-T-449: Dosimetric Comparison of Acuros XB, Adaptive Convolve in Intensity Modulated Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Uehara, R; Tachibana, H

    2016-01-01

    Purpose: There have been several publications focusing on dose calculation in lung for a new dose calculation algorithm of Acuros XB (AXB). AXB could contribute to dose calculation for high-density media for bone and dental prosthesis rather than in lung. We compared the dosimetric performance of AXB, Adaptive Convolve (AC) in head and neck IMRT plans. Methods: In a phantom study, the difference in depth profile between AXB and AC was evaluated using Kodak EDR2 film sandwiched with tough water phantoms. 6 MV x-ray using the TrueBeam was irradiated. In a patient study, 20 head and neck IMRT plans had been clinically approved in Pinnacle3 and were transferred to Eclipse. Dose distribution was recalculated using AXB in Eclipse while maintaining AC-calculated monitor units and MLC sequence planned in Pinnacle. Subsequently, both the dose-volumetric data obtained using the two different calculation algorithms were compared. Results: The results in the phantom evaluation for the shallow area ahead of the build-up region shows over-dose for AXB and under-dose for AC, respectively. In the patient plans, AXB shows more hot spots especially around the high-density media than AC in terms of PTV (Max difference: 4.0%) and OAR (Max. difference: 1.9%). Compared to AC, there were larger dose deviations in steep dose gradient region and higher skin-dose. Conclusion: In head and neck IMRT plans, AXB and AC show different dosimetric performance for the regions inside the target volume around high-density media, steep dose gradient regions and skin-surface. There are limitations in skin-dose and complex anatomic condition using even inhomogeneous anthropomorphic phantom Thus, there is the potential for an increase of hot-spot in AXB, and an underestimation of dose in substance boundaries and skin regions in AC.

  5. Imaged-guided liver stereotactic body radiotherapy using VMAT and real-time adaptive tumor gating. Concerns about technique and preliminary clinical results.

    Science.gov (United States)

    Llacer-Moscardo, Carmen; Riou, Olivier; Azria, David; Bedos, Ludovic; Ailleres, Norbert; Quenet, Francois; Rouanet, Philippe; Ychou, Marc; Fenoglietto, Pascal

    2017-01-01

    Motion management is a major challenge in abdominal SBRT. We present our study of SBRT for liver tumors using intrafraction motion review (IMR) allowing simultaneous KV information and MV delivery to synchronize the beam during gated RapidArc treatment. Between May 2012 and March 2015, 41 patients were treated by liver SBRT using gated RapidArc technique in a Varian Novalis Truebeam STx linear accelerator. PTV was created by expanding 5 mm from the ITV. Dose prescription ranged from 40 to 50 Gy in 5-10 fractions. The prescribed dose and fractionation were chosen depending on hepatic function and dosimetric results. Thirty-four patients with a minimal follow-up of six months were analyzed for local control and toxicity. Accuracy for tumor repositioning was evaluated for the first ten patients. With a median follow-up of 13 months, the treatment was well tolerated and no patient presented RILD, perforation or gastrointestinal bleeding. Acute toxicity was found in 3 patients with G1 abdominal pain, 2 with G1 nausea, 10 with G1 asthenia and 1 with G2 asthenia. 6 patients presented asymptomatic transitory perturbation of liver enzymes. In-field local control was 90.3% with 7 complete responses, 14 partial responses and 7 stabilisations. 3 patients evolved "in field". 12 patients had an intrahepatic progression "out of field". Mean intrafraction deviation of fiducials in the craneo-caudal direction was 0.91 mm (0-6 mm). The clinical tolerance and oncological outcomes were favorable when using image-guided liver SBRT with real-time adaptive tumor gating.

  6. Relationships between breath ratios, spirituality and health ...

    African Journals Online (AJOL)

    The aim of this retrospective, quantitative study was to investigate relationships between breath ratios, spirituality perceptions and health perceptions, with special reference to breath ratios that best predict optimal health and spirituality. Significant negative correlations were found between breath ratios and spirituality ...

  7. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  8. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    Science.gov (United States)

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  9. Australian survey on current practices for breast radiotherapy.

    Science.gov (United States)

    Dundas, Kylie L; Pogson, Elise M; Batumalai, Vikneswary; Boxer, Miriam M; Yap, Mei Ling; Delaney, Geoff P; Metcalfe, Peter; Holloway, Lois

    2015-12-01

    Detailed, published surveys specific to Australian breast radiotherapy practice were last conducted in 2002. More recent international surveys specific to breast radiotherapy practice include a European survey conducted in 2008/2009 and a Spanish survey conducted in 2009. Radiotherapy techniques continue to evolve, and the utilisation of new techniques, such as intensity-modulated radiation therapy (IMRT), is increasing. This survey aimed to determine current breast radiotherapy practices across Australia. An online survey was completed by 50 of the 69 Australian radiation therapy treatment centres. Supine tangential beam whole breast irradiation remains the standard of care for breast radiotherapy in Australia. A growing number of institutions are exploring prone positioning and IMRT utilisation. This survey demonstrated a wide variation in the benchmarks used to limit and report organ at risk doses, prescribed dose regimen, and post-mastectomy bolus practices. This survey also indicated, when compared with international literature, that there may be less interest in or uptake of external beam partial breast irradiation, prone positioning, simultaneous integrated boost and breath hold techniques. These are areas where further review and research may be warranted to ensure Australian patients are receiving the best care possible based on the best evidence available. This survey provides insight into the current radiotherapy practice for breast cancer in Australia. © 2015 The Royal Australian and New Zealand College of Radiologists.

  10. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Shah, Chirag; Badiyan, Shahed; Berry, Sameer; Khan, Atif J.; Goyal, Sharad; Schulte, Kevin; Nanavati, Anish; Lynch, Melanie; Vicini, Frank A.

    2014-01-01

    Breast cancer radiotherapy represents an essential component in the overall management of both early stage and locally advanced breast cancer. As the number of breast cancer survivors has increased, chronic sequelae of breast cancer radiotherapy become more important. While recently published data suggest a potential for an increase in cardiac events with radiotherapy, these studies do not consider the impact of newer radiotherapy techniques commonly utilized. Therefore, the purpose of this review is to evaluate cardiac dose sparing techniques in breast cancer radiotherapy. Current options for cardiac protection/avoidance include (1) maneuvers that displace the heart from the field such as coordinating the breathing cycle or through prone patient positioning, (2) technological advances such as intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT), and (3) techniques that treat a smaller volume around the lumpectomy cavity such as accelerated partial breast irradiation (APBI), or intraoperative radiotherapy (IORT). While these techniques have shown promise dosimetrically, limited data on late cardiac events exist due to the difficulties of long-term follow up. Future studies are required to validate the efficacy of cardiac dose sparing techniques and may use surrogates for cardiac events such as biomarkers or perfusion imaging

  11. Analysis of Exhaled Breath for Disease Detection

    Science.gov (United States)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  12. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  13. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  14. The metabolic radiotherapy. La radiotherapie metabolique

    Energy Technology Data Exchange (ETDEWEB)

    Begon, F.; Gaci, M. (Centre Hospitalier Universitaire, 86 - Poitiers (France))

    In this article, the authors recall the principles of the metabolic radiotherapy and present these main applications in the treatment of thyroid cancers, hyperthyroidism, polycythemia, arthritis, bone metastases, adrenergic neoplasms. They also present the radioimmunotherapy.

  15. Postoperative radiotherapy for prostate cancer. Morbidity of local-only or local-plus-pelvic radiotherapy

    International Nuclear Information System (INIS)

    Waldstein, Cora; Poetter, Richard; Widder, Joachim; Goldner, Gregor; Doerr, Wolfgang

    2018-01-01

    The aim of this work was to characterise actuarial incidence and prevalence of early and late side effects of local versus pelvic three-dimensional conformal postoperative radiotherapy for prostate cancer. Based on a risk-adapted protocol, 575 patients received either local (n = 447) or local-plus-pelvic (n = 128) radiotherapy. Gastrointestinal (GI) and genitourinary (GU) side effects (≥grade 2 RTOG/EORTC criteria) were prospectively assessed. Maximum morbidity, actuarial incidence rate, and prevalence rates were compared between the two groups. For local radiotherapy, median follow-up was 68 months, and the mean dose was 66.7 Gy. In pelvic radiotherapy, the median follow-up was 49 months, and the mean local and pelvic doses were 66.9 and 48.3 Gy respectively. Early GI side effects ≥ G2 were detected in 26% and 42% of patients respectively (p < 0.001). Late GI adverse events were detected in 14% in both groups (p = 0.77). The 5-year actuarial incidence rates were 14% and 14%, while the prevalence rates were 2% and 0% respectively. Early GU ≥ G2 side effects were detected in 15% and 16% (p = 0.96), while late GU morbidity was detected in 18% and 24% (p = 0.001). The 5-year actuarial incidence rates were 16% and 35% (p = 0.001), while the respective prevalence rates were 6% and 8%. Despite the low prevalence of side effects, postoperative pelvic radiotherapy results in significant increases in the actuarial incidence of early GI and late GU morbidity using a conventional 4-field box radiotherapy technique. Advanced treatment techniques like intensity-modulated radiotherapy (IMRT) or volumetric modulated arc radiotherapy (VMAT) should therefore be considered in pelvic radiotherapy to potentially reduce these side effects. (orig.) [de

  16. Conformal radiotherapy: principles and classification

    International Nuclear Information System (INIS)

    Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)

  17. External respiratory motion for abdominal radiotherapy patients: implications for patient alignment

    International Nuclear Information System (INIS)

    Kearvell, Rachel; Ebert, Martin A.

    2003-01-01

    Conformal external beam radiotherapy relies on accurate spatial positioning of the tumor and normal tissues during treatment. For abdominal patients, this is complicated by the motion of internal organs and the external patient contour due to respiration. As external motion influences the degree of accuracy achievable in patient setup, this motion was studied to provide indication of motions occurring during treatment, as well as to assess the technique of breath-holding at exhale (B-HEX). The motion of external abdominal points (anterior and right lateral) of a series of volunteers was tracked in real-time using an infrared tracking system, with the volunteers in treatment position. The resulting motion data was assessed to evaluate (1) the change in position of each point per breath/breath-hold, (2) the change in position between breaths/breath-holds, and (3) the change in position across the whole recording time. Analysis shows that, for the anterior abdominal point, there is little difference in the variation of position with time for free-breathing as opposed to the B-HEX technique. For the lateral point however, the B-HEX technique reduces the motion during each treatment cycle (i.e., during the breath-hold) and over an extended period (i.e., during a series of breath-holds). The B-HEX technique thus provides greater accuracy for setup to lateral markers and provides the opportunity to reduce systematic and random localization errors

  18. Automatization in radiotherapy

    International Nuclear Information System (INIS)

    Schraub, S.; Dutou, L.; Bernard, D.; Koechlin, M.; Beer-Gabel, J.

    1978-01-01

    Data-processing in external radiotherapy has to be adapted to each local situation, taking into account the patients to be treated, the irradiation equipment, the data-processing centers available locally, regionally, and nationally, and the rentability of the data-processing system required. It should be recalled that most dosimetric methods used today can be treated manually, and the question of rentability has to be kept in mind when deciding to buy a data-processing system. The radiotherapist should, therefore, prepare a list of costs for each situation, and verify the validity of each programme proposed by the supplier. It is difficult to make a definite choice between the presently available systems. The radiotherapist has to choose in relation to his activity, his availability and the systems available to him. It can sometimes be more advantageous to have a terminal linked to a large computer, rather than to readapt a series of programmes for a data-processing system available locally: many such solutions, though original, cannot be 'exported'. It should be recalled that a large number of dosimetries can be obtained manually, and on the rare occasions when the aid of a computer is essential, the assistance of better equipped neighbouring centers can be obtained. The decision as to whether a data-processing system needs to be acquired has to take all these imperatives into account [fr

  19. Radiotherapy in small countries.

    Science.gov (United States)

    Barton, Michael B; Zubizarreta, Eduardo H; Polo Rubio, J Alfredo

    2017-10-01

    To examine the availability of radiotherapy in small countries. A small country was defined as a country with a population less than one million persons. The economic status of each country was defined using the World Bank Classification. The number of cancers in each country was obtained from GLOBOCAN 2012. The number of cancer cases with an indication or radiotherapy was calculated using the CCORE model. There were 41 countries with a population of under 1 million; 15 were classified as High Income, 15 Upper Middle Income, 10 Lower Middle Income and one Low Income. 28 countries were islands. Populations ranged from 799 (Holy See) to 886450 (Fiji) and the total number of cancer cases occurring in small countries was 21,043 (range by country from 4 to 2476). Overall the total number of radiotherapy cases in small countries was 10982 (range by country from 2 to 1239). Radiotherapy was available in all HIC islands with 80 or more new cases of cancer in 2012 but was not available in any LMIC island. Fiji was the only LMIC island with a large radiotherapy caseload. Similar caseloads in non-island LMIC all had radiotherapy services. Most non-island HIC did not have radiotherapy services presumably because of the easy access to radiotherapy in neighbouring countries. There are no radiotherapy services in any LMIC islands. Copyright © 2017. Published by Elsevier Ltd.

  20. Rationale and design of the SERVE-HF study: treatment of sleep-disordered breathing with predominant central sleep apnoea with adaptive servo-ventilation in patients with chronic heart failure.

    Science.gov (United States)

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2013-08-01

    Central sleep apnoea/Cheyne-Stokes respiration (CSA/CSR) is a risk factor for increased mortality and morbidity in heart failure (HF). Adaptive servo-ventilation (ASV) is a non-invasive ventilation modality for the treatment of CSA/CSR in patients with HF. SERVE-HF is a multinational, multicentre, randomized, parallel trial designed to assess the effects of addition of ASV (PaceWave, AutoSet CS; ResMed) to optimal medical management compared with medical management alone (control group) in patients with symptomatic chronic HF, LVEF ≤45%, and predominant CSA. The trial is based on an event-driven group sequential design, and the final analysis will be performed when 651 events have been observed or the study is terminated at one of the two interim analyses. The aim is to randomize ∼1200 patients to be followed for a minimum of 2 years. Patients are to stay in the trial up to study termination. The first patient was randomized in February 2008 and the study is expected to end mid 2015. The primary combined endpoint is the time to first event of all-cause death, unplanned hospitalization (or unplanned prolongation of a planned hospitalization) for worsening (chronic) HF, cardiac transplantation, resuscitation of sudden cardiac arrest, or appropriate life-saving shock for ventricular fibrillation or fast ventricular tachycardia in implantable cardioverter defibrillator patients. The SERVE-HF study is a randomized study that will provide important data on the effect of treatment with ASV on morbidity and mortality, as well as the cost-effectiveness of this therapy, in patients with chronic HF and predominantly CSA/CSR. ISRCTN19572887.

  1. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  2. Breath-hold duration in man and the diving response induced by face immersion.

    Science.gov (United States)

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  3. Sleep disordered breathing in pregnancy

    Directory of Open Access Journals (Sweden)

    Bilgay Izci Balserak

    2015-12-01

    Sleep disordered breathing (SDB is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the severity of SDB, the epidemiology and the risk factors of SDB in pregnancy, the association of SDB with adverse pregnancy outcomes, and screening and management options specific for this population.

  4. Environmental contamination and breathing disease

    International Nuclear Information System (INIS)

    Cardona A, Jose D

    2003-01-01

    The atmospheric contamination is the main component of the environmental contamination and it can be defined as the presence in the atmosphere of an or several substances in enough quantity to produce alterations of the health, it is presented in aerosol form, with its gassy and specific components, altering the quality of the population's life and the degradation of the ecosystems. The main pollutant, as much for the frequency as for the importance of its effects, is the smoke of cigarettes. The paper mentions other types of polluting agents and their effects in the breathing apparatus

  5. On-line MR imaging for dose validation of abdominal radiotherapy

    International Nuclear Information System (INIS)

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant.In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur.The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions.In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose.Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  −2.3–1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  −2.5 to 1.9 Gy could be traced back. (paper)

  6. On-line MR imaging for dose validation of abdominal radiotherapy

    Science.gov (United States)

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Kontaxis, C.; Prins, F. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-11-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  -2.5 to 1.9 Gy could be traced back.

  7. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, WA (United States); Xie, R [Ironwood Cancer and Research Centers, Chandler, AZ (United States)

    2016-06-15

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  8. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    International Nuclear Information System (INIS)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D; Xie, R

    2016-01-01

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  9. News from the Breath Analysis Summit 2011.

    Science.gov (United States)

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 Sept